
P R O A C T I V E M E C H A N I S M S F O R V I D E O - O N - D E M A N D
C O N T E N T D E L I V E RY

Efficient Proactive Content Distribution
and Placement of Video-on-Demand Content

Vom Fachbereich Elektrotechnik und Informationstechnik
der Technischen Universität Darmstadt

zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)

genehmigte Dissertation

von

christian koch , m .sc . , m .sc .

Geboren am 5. April 1988 in Mühlhausen, Deutschland

Vorsitzender: Prof. Dr.-Ing. Tran Quoc Khanh

Erstgutachter: Prof. Dr.-Ing. Ralf Steinmetz

Zweitgutachter: Prof. Dr. David Hausheer (nach Absprache vorgeschlagen)

Tag der Einreichung: 26. Juni 2018

Tag der Disputation: 17. Oktober 2018

Hochschulkennziffer: D17

Darmstadt 2018

Christian Koch: Proactive Mechanisms for Video-on-Demand Content Delivery
Darmstadt, Technische Universität Darmstadt,
Jahr der Veröffentlichung der Dissertation auf TUprints: 2018

URN: urn:nbn:de:tuda-tuprints-82127

URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/8212
Tag der mündlichen Prüfung: 17. Oktober 2018

Veröffentlicht unter Creative Commons Lizenz
Namensnennung - Keine Bearbeitungen 4.0 International
https://creativecommons.org/licenses/by-nd/4.0/deed.de

This publication is licensed under the following Creative Commons License
Attribution-NoDerivatives 4.0 International
https://creativecommons.org/licenses/by-nd/4.0/deed.en

https://tuprints.ulb.tu-darmstadt.de/id/eprint/8212
https://creativecommons.org/licenses/by-nd/4.0/deed.de
https://creativecommons.org/licenses/by-nd/4.0/deed.en

A B S T R A C T

Video delivery over the Internet is the dominant source of network load all
over the world. Especially Video-on-Demand (VoD) streaming services such

as YouTube, Netflix, and Amazon Video have propelled the proliferation of VoD in
many peoples’ everyday life. VoD allows watching video from a large quantity of
content at any time and on a multitude of devices, including smart TVs, laptops,
and smartphones. Studies show that many people under the age of 32 grew up with
VoD services and have never subscribed to a traditional cable TV service. This shift
in video consumption behavior is continuing with an ever-growing number of users.
To satisfy this large demand, VoD service providers usually rely on Content Delivery
Networks (CDNs), which make VoD streaming scalable by operating a geographi-
cally distributed network of several hundreds of thousands of servers. Thereby, they
deliver content from locations close to the users, which keeps traffic local and en-
ables a fast playback start. CDNs experience heavy utilization during the day and
are usually reactive to the user demand, which is not optimal as it leads to expensive
over-provisioning, to cope with traffic peaks, and overreacting content eviction that
decreases the CDN’s performance. However, to sustain future VoD streaming projec-
tions with hundreds of millions of users, new approaches are required to increase
the content delivery efficiency. To this end, this thesis identifies three key research
areas that have the potential to address the future demand for VoD content.

Our first contribution is the design of vFetch, a privacy-preserving prefetching
mechanism for mobile devices. It focuses explicitly on Over-the-Top (OTT) VoD
providers such as YouTube. vFetch learns the user interest towards different con-
tent channels and uses these insights to prefetch content on a user terminal. To do
so, it continually monitors the user behavior and the device’s mobile connectivity
pattern, to allow for resource-efficient download scheduling. Thereby, vFetch illus-
trates how personalized prefetching can reduce the mobile data volume and alleviate
mobile networks by offloading peak-hour traffic.

Our second contribution focuses on proactive in-network caching. To this end, we
present the design of the ProCache mechanism that divides the available cache stor-
age concerning separate content categories. Thus, the available storage is allocated
to these divisions based on their contribution to the overall cache efficiency. We pro-
pose a general work-flow that emphasizes multiple categories of a mixed content
workload in addition to a work-flow tailored for music video content, the dominant
traffic source on YouTube. Thereby, ProCache shows how content-awareness can
contribute to efficient in-network caching.

Our third contribution targets the application of multicast for VoD scenarios. Many
users request popular VoD content with only small differences in their playback
start time which offers a potential for multicast. Therefore, we present the design of
the VoDCast mechanism that leverages this potential to multicast parts of popular
VoD content. Thereby, VoDCast illustrates how Internet Service Providers (ISPs) can
collaborate with CDNs to coordinate on content that should be delivered by ISP-
internal multicast.

K U R Z FA S S U N G

Die Übertragung von Videoinhalten über das Internet ist maßgeblich verant-
wortlich für die Last von Internetanbietern auf der ganzen Welt. Vor allem

Video-on-Demand (VoD) Streaming-Dienste wie YouTube, Netflix und Amazon Vi-
deo haben dazu beigetragen, dass VoD-Dienste zu einem festen Bestandteil der tägli-
chen Routine vieler Menschen geworden sind. Mittels dieser Dienste kann jederzeit
eine Vielzahl von Inhalten auf unterschiedlichen Geräten wie Smart-TVs, Laptops
und Smartphones angesehen werden. Eine US-Studie zeigt, dass viele Personen, die
jünger als 32 Jahre sind, bereits mit VoD-Diensten aufgewachsen sind und mit zu-
nehmendem Anteil noch nie einen traditionellen TV-Bezahldienst abonniert haben.
Diese Verschiebung des Video-Konsumverhaltens setzt sich fort und wird von ei-
ner wachsenden Anzahl von Benutzern begleitet. Um die daraus resultierende große
Nachfrage nah VoD-Inhalten zu bedienen, verlassen sich VoD-Dienste typischerweise
auf CDN-Netzwerke, welche VoD-Streaming skalierbar machen, indem sie ein geo-
grafisch verteiltes Netzwerk von mehreren hunderttausend Servern betreiben. Da-
durch liefern CDN-Netzwerke Inhalte von Servern in der Nähe der Benutzer aus,
was den Datenverkehr lokal hält und einen schnellen Start der Wiedergabe ermög-
licht. CDNs sind tagsüber stark ausgelastet und verhalten sich in der Regel reaktiv
zu den Benutzeranfragen, was nicht optimal ist, da dies zu kostspieliger Überprovi-
sionierung auf Seiten der CDN- und Internetanbieter-Netze führt, um die Verkehrss-
pitzen bedienen zu können. Damit jedoch zukünftige VoD-Streaming-Szenarien mit
Millionen von Benutzern ermöglicht werden, sind neue Ansätze erforderlich, um die
Effizienz der Inhaltsbereitstellung zu erhöhen. Zu diesem Zweck identifiziert diese
Arbeit drei Forschungsschwerpunkte, welche die zukünftige Nachfrage nach VoD-
Inhalten adressieren.

Der erste Beitrag ist das Design von vFetch, einem Vorlade-Mechanismus für mo-
bile Geräte, der die Privatsphäre der Nutzer wahrt. vFetch konzentriert sich speziell
auf Over-the-Top (OTT) VoD-Dienste wie YouTube. Dabei lernt der Mechanismus das
Nutzerinteresse an verschiedenen Inhaltskanälen und nutzt diese Erkenntnisse, um
Videoinhalte auf mobilen Endgeräten prädiktiv herunterzuladen. Dazu überwacht
vFetch kontinuierlich das Benutzerverhalten und die zur Verfügung stehenden mo-
bilen Verbindungskanäle des Geräts, um eine effiziente und ressourcenschonende
Download-Planung zu ermöglichen. vFetch zeigt unter anderem, wie personalisier-
tes Vorladen von Videoinhalten das mobile Datenvolumen schonen und mobile Net-
ze entlasten kann, während es gleichzeitig eine netzunabhängige und hochqualitati-
ve Videowiedergabe gewährleistet.

Der zweite Beitrag konzentriert sich auf proaktives Zwischenspeichern von Vi-
deoinhalten in Netzwerken. Zu diesem Zweck wird das Design des ProCache-
Mechanismus präsentiert, der den Speicherbereich von Caches basierend auf Inhalts-
kategorien in separate Speicherbereiche aufteilt. Der verfügbare Speicher wird diesen
Bereichen basierend auf ihrem Beitrag zur Effizienz des Gesamtsystems zugeord-
net. Wir schlagen die Unterstützung von mehreren Videokategorien sowie einen auf
Musikvideoinhalte zugeschnittenen Arbeitsablauf vor, da Musikvideos die Haupt-

last von YouTube darstellen. Damit zeigt ProCache, wie die Berücksichtigung von
Inhaltskategorien zu einem effizienten Zwischenspeichern von Inhalten in Netzen
beitragen kann.

Der dritte Beitrag zielt auf die Anwendung von Multicast für VoD-Szenarien ab.
Populäre VoD-Inhalte werden von vielen Nutzern mit nur geringen Unterschieden
in ihrer Wiedergabe-Startzeit geschaut, was ein Potential für Multicast eröffnet. Der
vorgeschlagene Mechanismus, VoDCast, nutzt dieses Potenzial, indem Teile belieb-
ter Videos per Multicast übertragen werden. Dadurch zeigt VoDCast, wie Internet-
Anbieter mit CDN-Netzwerken kooperieren können, um die VoDCast-basierte Vi-
deoübertragung zu koordinieren.

A C K N O W L E D G M E N T S

There are numerous people who have helped and supported me working on
this thesis. First of all, I would like to thank my supervisors Prof. Dr.-Ing. Ralf

Steinmetz and Prof. Dr. David Hausheer for giving me the opportunity to become a
doctor at the TU Darmstadt and for providing valuable and productive work places.
Furthermore, I would like to thank Dr. Amr Rizk for his support, advice, and guid-
ance. Especially the Multimedia Communications Lab (KOM) and the collaborative
research center MAKI have strongly promoted my research. I would also like to
thank Prof. Klara Nahrstedt for her advice, help, and for the opportunity to work
at the Multimedia Operating Systems and Networking (MONET) Research Group
at the University of Illinois Urbana-Champaign. A special thank you goes to Prof.
Wolfgang Effelsberg, Prof. Andreas Mauthe, and Prof. Michael Zink from them I
got many inspirations during our fruitful discussions. Furthermore, I would like to
thank all my current and past colleagues at KOM – especially Alex, Denny, Fabian,
Jeremias, Julius, Leo, Manisha, Matthias, Rhaban, Sounak and Stefan – Mrs. Scholz-
Schmidt, Mrs. Ehlhardt, and the administrative staff! And further thanks to my stu-
dents, especially Andreas, Benedikt, Ganna, Johannes, Moritz, and Stefan. I am es-
pecially grateful to my parents, my grandparents, and my friends Christof, Jakob,
Lukas, and Sacha for their constant support and encouragement. Last but not least,
I would like to thank, Hans-Jörg Kolbe, Georg Schyguda and Gerhard Hasslinger
from T-Systems (Deutsche Telekom) as well as Ali Gouta for their valuable input
and fruitful discussions.

C O N T E N T S

1 introduction 1

1.1 Motivation and Problem Statement . 2

1.2 Research Goals . 6

1.3 Methodology . 7

1.4 Contributions . 8

1.5 Thesis Organization . 9

2 background 10

2.1 Internet Service Provider . 10

2.1.1 ISP Network Architecture . 10

2.1.2 Transit and Peering Agreements 11

2.1.3 OTT IP Multicast . 12

2.2 Content Delivery Networks . 13

2.2.1 Video Caching . 14

2.2.2 Cache Hierarchies . 17

2.2.3 Video Popularity . 18

2.3 Over-the-Top Video-on-Demand Streaming 19

2.3.1 Adaptive Video Streaming . 20

2.4 Machine Learning . 23

2.4.1 Supervised Learning . 23

2.4.2 Unsupervised Learning . 25

2.4.3 Music Classification . 26

2.5 Software-defined Networking . 29

2.5.1 OpenFlow . 31

2.5.2 SDN in Hardware . 32

2.6 Multi-Mechanisms Transitions . 32

3 related work 34

3.1 Mobile Video Prefetching . 34

3.1.1 Taxonomy . 34

3.1.2 Discussion of Selected and Representative Work 38

3.1.3 Summary . 40

3.2 Proactive Caching . 43

3.2.1 Taxonomy . 44

3.2.2 Discussion of Selected and Representative Work 47

3.2.3 Summary . 49

3.3 SDN-based Multicast Approaches for Video-on-Demand 52

3.3.1 Taxonomy . 52

3.3.2 Discussion of Selected and Representative Work 55

3.3.3 Summary . 58

4 privacy-preserving mobile video prefetching with vfetch 60

4.1 Conceptual Overview . 61

4.2 Use Cases . 61

vii

contents viii

4.3 User Study Design and Analysis . 62

4.3.1 Dataset Analysis . 64

4.4 Design Decisions . 71

4.5 System Design . 72

4.5.1 Architectural Overview . 72

4.5.2 Functional Overview . 73

4.6 Evaluation . 76

4.6.1 Methodology . 76

4.6.2 Storage Size and Caching . 77

4.6.3 Watch History . 79

4.6.4 Storage Overhead . 79

4.7 Summary and Discussion . 81

5 efficient and proactive network caching with procache 83

5.1 Conceptual Overview . 83

5.2 Use Cases . 85

5.3 System Design . 86

5.3.1 Architectural Overview . 86

5.3.2 Functional Overview . 87

5.3.3 Supporting Music Video Content 93

5.4 Evaluation . 100

5.4.1 Methodology . 100

5.4.2 Dataset Analysis . 101

5.4.3 Evaluation Metrics . 103

5.4.4 Best Caching Strategy per Content Category 105

5.4.5 Multiple Cache Divisions for Mixed-Content Workloads 106

5.4.6 Music-specific Support by a dedicated Division 113

5.5 Summary and Discussion . 115

6 sdn-enabled multicast for video-on-demand with vodcast 116

6.1 Conceptual Overview . 116

6.2 Use Cases . 117

6.3 System Design . 119

6.3.1 Architectural Overview . 119

6.3.2 Functional Overview . 120

6.4 Evaluation . 126

6.4.1 Methodology . 126

6.4.2 Flow Entry State and Changes 127

6.4.3 Bandwidth Utilization . 130

6.5 Summary and Discussion . 131

7 summary, conclusions , and outlook 132

7.1 Summary . 132

7.2 Contributions . 133

7.2.1 vFetch . 133

7.2.2 ProCache . 135

7.2.3 VoDCast . 136

7.3 Outlook . 137

contents ix

bibliography 140

list of figures 165

list of tables 168

list of definitions 169

list of acronyms 170

a appendix 173

a.1 Details of the Video Origin presented in the Prefetching User Study . 173

a.2 User Request Time Affinity Considering Daytime 173

a.3 Extending vFetch for Mobile Network Operator Cooperation 178

a.4 Evaluation of further Proactive Caching Policies 180

a.5 Video Popularity Models . 182

b author’s publications 187

b.1 Main Publications . 187

b.2 Co-authored Publications . 187

b.3 Demo Papers . 188

b.4 Technical Reports . 188

c curriculum vitæ 189

d erklärung laut promotionsordnung 193

1
I N T R O D U C T I O N

Video streaming is the transmission of live or prerecorded video content over
the Internet and an essential part of many people’s daily routine. Just a decade

ago, television was the undisputed single source of multimedia entertainment in
people’s homes. At this time, video content was delivered to customers by satellite Benefits of

video
streaming

or by cable. The content with the highest perceived quality, in resolution as well as
substance, was offered by pay television. What people watched was decided only
by broadcast and television networks. Nowadays, smartphones, tablets, PCs as well
as TVs connected to the Internet allow people to consume video from more than
one device and content source [Con16]. Using multiple of these devices at the same
time is a new trend known as second screen watching. For many people, Video-on-
Demand (VoD) services such as YouTube, Netflix, or Amazon Video are used daily
and often are the only possibility to watch the highest video quality, which is at
this time a 4k resolution. In the US, more people have a Netflix subscription than
a cable TV subscription [Hud17] and television does no longer dominate the total
screen time since 2016 [Con16]. Overall, the so-called "cable-nevers", who grew up
with VoD services and never have subscribed to cable TV services are forecasted to
account for 50% of the people under the age of 32 in the US by 2025 [Lyn15].

The increasing popularity of video streaming services is propelled mostly by faster
end-user Internet connections and higher bandwidths available at Internet Service
Provider (ISP) core and access networks, as well as a multitude of affordable mobile
devices, highly compressive video codecs [GMM+13; ES98], and a rapidly growing
amount of, e.g., music, movies, tutorials, and information available as video [Eri13;
Eri15]. Recent reports show that multimedia streaming constitutes the largest share Video traffic

on the riseof the global Internet traffic [San15a; San15b; Cis17c]. In addition to that, they forecast
an ongoing and robust growth of Internet traffic, mainly caused by video streaming.
Overall, Internet Protocol (IP) traffic is forecasted to grow with a Cumulative Average
Growth Rate of 24% [Cis17c] between 2016 and 2021. Video traffic is forecasted to
grow even faster with a Cumulative Average Growth Rate of 31% and, hence, to
account for 82% of total consumer Internet traffic by 2021 [Cis17d].

VoD streaming services are experiencing increasingly high user-adoption due to VoD
dominates
video traffic

several inherent advantages. Foremost, time-independent and user-initiated content
consumption has become possible by VoD, in contrast to, broadcast or live video
streaming. Taking fixed networks in North America as an example, two major players
cause more than half of the Internet traffic: Netflix1 and YouTube2 [San15a]. Netflix
offers on-demand streaming of TV series and movies. In contrast to Netflix, YouTube
delivers mainly User-generated Content (UGC).

Remarkably, in mobile networks, YouTube was the dominant source of video traf- YouTube as a
major VoD
service

fic accounting for 40%–70% of all mobile video traffic by 2017 [Eri17]. This is a large
traffic share compared with Netflix accounting for just 10%-20%. Among all VoD

1Netflix Inc., https://www.netflix.com/ [Accessed: November 19, 2018]
2YouTube, https://www.youtube.com/ [Accessed: November 19, 2018]

1

https://www.netflix.com/
https://www.youtube.com/

1.1 motivation and problem statement 2

services, YouTube is the most used service, with 70% of their users utilize it at least
on a weekly basis. With more than one billion users and more than one billion hours
of watch time per day, on mobile devices alone, YouTube reaches more people aging
between 18 and 34 years than any cable TV network in the US3. Both YouTube and
Netflix are Over-the-Top (OTT) content providers, meaning that they have to trans-
fer their content through the Internet’s transit and broadband access ISPs [Cla16]
instead of IP Television (IPTV), serving the video content from an ISP directly to its
customers [DRC10; LLW+11].

Summarizing multiple reports, the delivery of OTT VoD content through the In-
ternet is already highly important and forecasted to grow further. The support of
efficient OTT VoD mechanisms is fundamental considering the expected traffic vol-
ume which is driven by trends, such as the demand for higher quality video streams,
larger display sizes, better cameras, 360° videos, and virtual reality [Ste12; Ste92].
Given the vast amount of VoD traffic in the foreseeable future, new content distri-
bution and placement mechanisms are required to act proactively by reflecting the
dynamic and heterogeneous user demands. In this context, the term proactive refers
to a popularity prediction for known content. This includes mechanisms applied on
Content Delivery Networks (CDNs), which help to scale video streaming and bring
content to the users operating hundreds of thousands of globally deployed cache
servers. Furthermore, ISPs and user terminals can benefit from proactive mecha-
nisms.

1.1 motivation and problem statement

Both industry and the scientific community have extensively studied the distribu-
tion of VoD content on an Internet-scale due to its fundamental importance and
implied challenges for the future. According to IneoQuest, by 2016, 51% of stream-
ing viewers experienced "buffer rage", an industry term for uncontrollable fury or
violent anger induced by the delayed or interrupted enjoyment of streaming OTT
video content [Ine16; Con16]. Men watching sports videos experience the strongest OTT VoD

delivery is an
open research
area

buffer rage, the most often. Further, studies also found dissatisfying experiences of
users watching videos on YouTube [CDF+14b; CDF+14a]. This indicates that user
demand grows faster than the available bandwidth [BBS14; GEF16]. In addition to
insufficient bandwidth, packet loss and high latency caused by long transmission
paths or request redirection [AJC+12] impair the video quality by introducing initial
playback stalling [HSB+13; SFF+16]. This demonstrates that efficient video streaming
is still an open research area with high relevance for the industry since high-quality
video delivery is a crucial differentiator for streaming service providers [Gri17].

In the scope of this thesis, three complementary key research areas were identified
focusing on individual aspects of the problem and, thus, define the focal points of
this thesis. Figure 1 depicts the overall OTT VoD delivery scenario and highlights the Three key

research areas
for OTT VoD

conceptual focus on these three areas. On the figure’s left side, the logical layers are
depicted to classify the three areas depicted on the right side. This thesis is motivated
by an observed lack of proactive and efficient OTT VoD support in all three areas.
Without proactivity, caching mechanisms are prone to ephemeral popularity changes,
multicast mechanisms are inefficient to use for the large number of OTT VoD content

3YouTube, https://www.youtube.com/yt/about/press/ [Accessed: November 19, 2018]

https://www.youtube.com/yt/about/press/

1.1 motivation and problem statement 3

available, and prefetching performs poorly because of its inability to adapt to a user’s
interests in the absence of proactivity [WSS+16; WRT+15]. By addressing the research
areas at the application and network layer, large-scale OTT VoD streaming will stay
feasible given the large amount of traffic estimated. In each of the three areas, several
specific individual sub-challenges have to be solved toward this goal. In the first area,
adaptability and accuracy are challenging as individual persons are highly diverse
in interest, taste, and predictability. Regarding the second area, a detailed content-
oriented understanding of how proactive caching can contribute to efficient content
delivery is missing. Considering the third area, selecting VoD content and efficiently
using Software-defined Networking (SDN)-based multicast for OTT video delivery
is challenging. To leverage the underutilized potential of proactivity, in contrast to
traditional reactive mechanisms, we address the areas presented in Figure 1.

BGP-based Internet

Transit
ISP

Broadband
Access

ISP

Transit
ISP

Recoding &
Encoding

Media
Servers

User

Streaming
Client

Area I:
Prefetching

Mechanisms for
VoD on Client

Devices

Area II:
Proactive
Caching

Mechanisms for
CDN-distributed

VoD Delivery

Area III:
Multicast

Mechanisms for
ISP-internal OTT

VoD

Content
Provider

End-user Clients

N
et

w
or

k
La

ye
r

A
pp

lic
at

io
n

La
ye

r

Figure 1: Relevant areas of flexible and efficient OTT VoD delivery (based on [Rüc16])

Research Area I: Prefetching Mechanisms for VoD on Client Devices

The first research area addresses the ”last mile” and refers to the comparable low ca-
pacities of the aggregation and access network compared with the ISP core network.
Thus, if many users demand bandwidth at the same time is it likely that the per-user Traffic peaks

are expensivebandwidth decreases. This applies to mobile as well as to fixed networks. Just in-

1.1 motivation and problem statement 4

creasing the Capital Expenditures (CAPEXs) and overprovision networks by buying
more hardware is rather inefficient as the bandwidth demand is not constant but
fluctuates on a daily basis. Furthermore, traffic is costly as ISPs typically pay traffic
from and to another ISP by burstable billing4, i.e., traffic peaks are most expensive.

Prefetching mechanisms have been proposed to transfer network load to off-peak
hours and, hence, reduce the overall transit costs. Furthermore, when prefetching Prefetching

circumvents
low-quality
Internet
connections

is applied on client devices, prefetched content can be played back without relying
on a potential low-quality mobile connection. Thereby, Quality of Service (QoS) im-
pairing factors such as insufficient bandwidth, high latency, and packet loss can be
avoided. This usually correlates with a high Quality of Experience (QoE), i.e., the in-
dividual user-perceived quality of the video playback. Especially for mobile devices,
prefetching can help to save a large amount of energy, a limited resource on mobile
terminals. When Wi-Fi is used for offloading instead of streaming via 4G, the energy
costs are about 20-times lower [HQG+12], thereby avoiding a fast battery depletion.

However, accurately predicting what content the user is interested in is challeng-
ing. While it is likely that a Netflix or an Amazon Video customer watches the next VoD

prefetching is
challenging

episode of a series the customer regularly watches [DKA+15], the prediction for
services like YouTube is more complex. Notably, the potential for caching YouTube
content is significantly higher than for Netflix content [RDH+13]. For example, the
intuitive idea of prefetching recent videos from YouTube channels the user has sub-
scribed to is generally inefficient [KLR+17]. Although YouTube recommends videos
on its landing page, prefetching based on this information has also shown a poor per-
formance [WSS+16] similarly to selecting videos by their like count [WRT+15]. Na- Prefetching

for individual
users

tive video features, such as the video’s channel subscription status [KLR+17] and the
global popularity [WRT+15], are rather ineffective for prefetching. This demonstrates
that individual video prefetching is still challenging for efficient traffic offloading.

Research Area II: Proactive Caching Mechanisms for CDN-distributed VoD Delivery

Content Delivery Networks (CDNs) provide a globally distributed overlay network
of cache servers. Thereby, they help video streaming to become scalable and reliable CDNs make

video
streaming
scalable

as CDNs are capable of serving millions of users at the same time and have the pos-
sibility to load-balance the traffic among their cache servers [MS15]. As the content
can be streamed from nearby cache servers, also the transmission latency is lower
than when streaming it from the potentially far-away content source. This leads to
enhanced QoS and user satisfaction, as users expect a web page or a video to load
timely [Kis17; SKL+14].

However, efficient caching at the ISP’s access and aggregation network is still chal-
lenging. In the future Internet, it is likely that many in-network caches are deployed Proactive

caching as a
promising
technique for
caching

at different locations, e.g., at base stations or per metropolitan area of a country as
well as in home routers in the form of in-network caches serving femtocells [BBD14;
GSD+12]. Here, cache capacities are limited and smaller than in data centers. Hence,

4http://www.netrepid.com/burstable-billing-95th-percentile/ [Accessed: November 19,
2018]

http://www.netrepid.com/burstable-billing-95th-percentile/

1.1 motivation and problem statement 5

varying content demand to a large content catalog decreases the cache performance
because most caching approaches are designed for large data center-scale caches
and not for the smaller storage capacities at the network’s edge. The most com-
mon cache performance metric is the Cache Hit Rate (CHR) which is the ratio of
content delivery by the cache to the overall content requests to the cache. For small
caches but also for larger caches, proactive caching has shown to outperform reactive
caching [Gou+15; HNH14; KWR+18]. Preliminary work shows that proactively plac-
ing content on servers [SBE+16], femtocells [GSD+12], and home routers [LPB+15;
SBH13] has the potential to unburden content servers and networks efficiently. Here,
content is loaded and statically kept within the cache based on, e.g., social informa-
tion or content properties. Since small caches are operated at the edge of the network,
they can efficiently unburden the core network and reduce costly transit traffic and
at the same time enhance the video service quality due to a low transmission latency.

Research Area III: Multicast Mechanisms for ISP-internal Delivery of OTT VoD

The third area is motivated by the potential of cooperation between content providers
or CDNs and ISPs. CDNs are used for streaming of, both, on-demand as well as live
video content, among others. Though, they are often not allowed to place and operate Missing

multicast
support for
OTT VoD
services

their reverse proxies inside ISPs because they consider CDNs as unpredictable and
hard to manage traffic sources [HH11]. Consequently, CDNs are often not present in-
side ISP networks and, hence, cannot help to optimize the content distribution there.
However, ISPs often use multicast for efficient delivery of their own IPTV services
which are available only for the ISP’s customers [LLW+11]. Nevertheless, limited
resources make traditional IP multicast unlikely to scale for OTT services, because
each router on the delivery path needs to offer multicast capabilities [DLL+00].

ISPs are widely adopting SDN [JKM+13] which is an enabling technology for a
multitude of network services, also for multicast. Here, SDN enables ISPs to de- SDN as an

enabling
technology for
multicast

liver content based on efficient network-level multicast in cooperation with content
providers or CDNs. So far, Software-defined Multicast (SDM) has been proposed
and evaluated for OTT live streaming [Rüc16; RBH+16; YYR+15], but has not yet
been adapted to the OTT VoD delivery scenario. Popular VoD content is typically
watched thousands of times per day solely within a single broadband access ISP
network. To this end, it is likely that different persons stream the same content with Multicast for

OTT VoDonly minor differences in their playback positions. This case offers the potential to
efficiently multicast parts of these videos and, thereby, reduce the ISP’s and CDN’s
link utilization, and consequently decreasing operational expenditures.

A further distinguishing criterion between live and on-demand is that much more
on-demand content, e.g., about 1.2 billion5 videos in the case of YouTube, exists
compared with the much smaller content catalog of IPTV services. Since the num- Challenges for

SDN-based
multicast for
OTT VoD

ber of multicast groups that can be supported by SDN-enabled switches is lim-
ited by the amount of memory they are equipped with [KRE+15], network-based

5http://tinyurl.com/j63ffxd [Accessed: November 19, 2018]

http://tinyurl.com/j63ffxd

1.2 research goals 6

multicast cannot deliver all of these videos. In addition, VoD popularity is Zipf-
distributed [GHM13; ACG+09; GAL+07]. Therefore, only a small fraction of the
content catalog is popular and, thus, efficient to be delivered by multicast. Further,
efficiently selecting videos for multicast is challenging as popularity changes dynam-
ically based on, e.g., video age and daytime [CKR+07]. So far, none of the existing
works explores the potential of SDN-based multicast of VoD content streams with
a small playback distance and Zipf-distributed popularity. Furthermore, related ap-
proaches focus mostly on live video streaming [RBH+16; YYR+15] or ignore net-
work resources limitations and ignore the user’s need for a small initial buffering
time [DSS96; HCS98; ACG+09]. Summarizing, an efficient SDM-based system for
VoD delivery needs to, first, adapt to the video popularity, second, consider the
limited number of possible multicast groups, and, third, reduce the ISP and CDN
bandwidth utilization.

1.2 research goals

After the three research areas have been introduced in the preceding section, now we
define the primary goals of this thesis. Based on the problem statement above and
the previously identified research areas, three primary goals are formulated for this
thesis. These goals imply a number of research questions, presented in the following.

Research Goal 1: Support of Prefetching for Individual Users on End Devices

The first research goal is to design a predictive prefetching mechanism that deter-
mines user interests in a way that videos, interesting to the user, can be detected
and downloaded in advance of the actual user video request. The term ”predictive
model” refers to a user-specific and adaptive mechanism that regularly adapts to the
user’s interests and behavior. To this end, textual features, regular user habits, as well
as connectivity patterns have to be considered to maximize the efficiency. Research
questions that are of interest in the context of the first research goal are:

RQ 1.1: How accurate can video requests of different users be predicted, consid-
ering user interests?

RQ 1.2: Which CHR gain can be achieved by considering content properties for
content access prediction?

RQ 1.3: How much of a user’s mobile video traffic can be saved using a predic-
tive prefetching model?

Research Goal 2: Support of Proactive Caching for Video-on-Demand Content

The second research goal is to design a proactive caching mechanism that considers
content popularity dynamics to increase the CHR and decreases write operations
on the cache storage. In this context, the term ”proactive” refers to a popularity

1.3 methodology 7

prediction of known content for a fixed set of users whose requests pass the caching
system. To study the effect of proactive caching, a distinct storage share of the caches
is filled proactively with content according to the prediction, while the remainder
is managed in a traditional reactive fashion. Since CDN caches are often connected
by an overlay, common overlay topologies have to be considered. Research questions
that are of interest in the context of the second goal are:

RQ 2.1: How can proactivity be used to enhance caching performance?

RQ 2.2: Which prediction policies show the highest performance regarding the
CHR?

RQ 2.3: How does cache storage size contribute to the CHR gain of proactive
caching?

Research Goal 3: Support of Multicast for Popular Video-on-Demand Content

The goal is to design a multicast mechanism that supports broadband access ISPs
to deliver OTT VoD content to their customers efficiently. Here, the ISP is assumed
to be explicitly involved in the content delivery process and to collaborate with the
content origin or the CDN hosting the content. Additionally, to the network load
reduction, we also address costs occurring by providing and managing multicast
groups. Research questions that are of interest in the context of the third goal are:

RQ 3.1: How much does multicast lower the traffic volume caused by VoD con-
tent within ISP networks?

RQ 3.2: How can VoD multicast be realized using SDN?

RQ 3.3: Which VoD content should be selected for being delivered by multicast
to decrease the data traffic volume?

1.3 methodology

To answer the proposed research questions, the related work in the respective areas is
studied and reviewed. In the scope of this thesis, we propose innovative mechanisms
considering existing systems, realistic workloads, and the different stakeholders in
the VoD delivery process. Our mechanisms are designed for the application and net-
work layer, and they contain communication protocols and policies. Thereby, they
consider suitable measures of content popularity to anticipate and react to dynamic
network load and demand changes proactively. We evaluate the mechanisms’ per-
formances and costs by implementing them as a simulation model, using real-world
workloads from either user traces or a network trace from a large European mobile
ISP. We laid a particular focus on evaluating the proposed mechanisms in relevant
but exemplary simulation environments. However, an evaluation of the proposed
mechanisms in real-world productive deployments was not conducted due to the
large number of required resources and implementation effort for CDNs, ISPs, and
end users.

We developed and presented individual functional prototypes and technical demon-
strations [KRB+14; KBR+15; KPR+18] to the scientific community to highlight the
practicability of selected mechanism aspects and their deployment.

1.4 contributions 8

1.4 contributions

This thesis proposes three contributions that aim to address the presented research
questions:

• Design of a novel privacy-preserving & individual prefetching mechanism:
In Chapter 4, we propose the privacy-preserving prefetching mechanism vFetch.
It accurately determines the user interests and downloads matching content to
the user’s mobile terminal. Thereby, Wi-Fi-offloading is preferred to save en-
ergy and mobile data plane.

• Design of an innovative proactive caching mechanism for CDNs and ISPs:
In Chapter 5, we propose the ProCache mechanism which uses efficient proac-
tive caching by adapting its cache storage allocation to dynamic content popu-
larity distributions.

• Design of a new SDN-based multicast mechanism for OTT VoD content:
In Chapter 6, the SDN-based multicast mechanism VoDCast is proposed, en-
abling an efficient delivery of OTT VoD content to customers of broadband
access ISPs.

Each of the proposed mechanisms for the individual research areas can contribute
to more efficient OTT VoD delivery on its own. However, all three of these ap-
proaches can coexist to achieve a higher impact than each approach on its own,
thereby allowing an even more efficient and high-quality delivery of OTT VoD con-
tent for a significantly more demanding audience than observed in today’s Internet.
While vFetch runs independently of VoDCast and ProCache on user terminals, Popularity-

triggered
mechanism
transition

ProCache and VoDCast are ISP/CDN-operated and are likely to benefit from coor-
dination [FCL17]. In Figure 2, we find that the different mechanisms address content
of different popularity. Hence, a transition (cf. Section 2.6) between the three pro-
posed mechanisms over a content’s popularity life cycle is desirable. Thereby, con-
tent that changes its popularity, e.g., due to its age, should be served by the most
suitable of the three mechanisms. VoDCast addresses highly popular content such
as new music releases from popular artists, e.g., the ”Gangnam Style” video6. Pro-
Cache handles content that is still requested by many users, but the Inter-Request
Time (IRT) requirements are relaxed compared to VoDCast, i.e., no overlapping user
video playbacks are required. In the absence of VoDCast, ProCache can also man-
age highly popular content efficiently. vFetch manages content belonging to the
popularity distribution’s long tail efficiently, as it can adapt to highly diverse and
individual user interests.

6https://www.youtube.com/watch?v=9bZkp7q19f0 [Accessed: November 19, 2018]

https://www.youtube.com/watch?v=9bZkp7q19f0

1.5 thesis organization 9

P
op

ul
ar

ity

Video Content

New music
videos
such as

"Gangnam
Style"

Entertaining content
& recent video blogs

Locally relevant content and informative
content such as how-tos & documentaries

VoDCast ProCache vFetch

Figure 2: Coexistence of the three proposed contributions: VoDCast, ProCache, and vFetch

1.5 thesis organization

The remainder of this thesis is structured as follows: Chapter 2 describes background
information on, e.g., ISPs, CDNs, SDN, and video streaming. Moreover, this chapter
introduces fundamental concepts of the proposed research contributions, such as
caching strategies and machine learning. Chapter 3 describes related work in the
areas of the different research contributions. Chapter 4 presents the design and eval-
uates the vFetch mechanism. Efficient and proactive network caching is presented
and evaluated in Chapter 5. In Chapter 6, the SDN-based multicast of popular VoD
content is designed and evaluated. The three contribution chapters are concluded by
Chapter 7, summarizing the obtained insights and results. Additionally, promising
directions of future research are presented by an outlook.

2
B A C K G R O U N D

This chapter provides the necessary information to follow and understand the re-
search contributions presented in this thesis. To this end, the following presents

basics of video streaming, Software-defined Networking (SDN), machine learning,
and multi-mechanism transitions.

2.1 internet service provider

Definition 1: Internet Service Provider

An Internet Service Provider (ISP), in the context of this thesis, is understood as a
company providing broadband Internet access to its customers that are typically
private customers but can also be commercial customers.

ISPs provide broadband access to different networks and, thereby, create a network
of networks known as the Internet. Usually, the term ISP refers to broadband access
providers like AT&T, Verizon, and Deutsche Telekom. However, next to these broad-
band access ISPs, another kind exists that provides access, not for private customers
but other ISPs and companies. ISPs are autonomously managed networks, identi-
fied by a unique Autonomous System Number that allows routing between different
Autonomous Systems (ASes). When two ASes connect, the Exterior Gateway Proto-
col exchanges sets of Internet Protocol (IP) prefixes reachable within and through
the ASes [HB96]. Thereby, connectivity between different ISPs is provided.

The architecture of modern ISP networks is presented in the following. This sec-
tion’s content is partially based on the works of Doverspike et al. [DRC10] on AT&T’s
ISP network and Betker et al. [BGK+14] providing insights in the ISP topology of
Deutsche Telekom. Thereby, we focus on the transport layer because of the relevance
for this thesis and the sake of simplicity.

2.1.1 ISP Network Architecture

An ISP network’s topological structure is by no means fixed and can vary between
different countries depending on, e.g., the population density and country size.
Though, an ISP-internal network architecture comprises typically three different
parts: the access network, the aggregation network, and the core network [DRC10].
Figure 3 gives an overview of a typical ISP network topology.

The access network provides Internet access to the ISP customers via the Broadband
Network Gateway (BNG), which ensures the customer can authenticate by providing
its credentials and does not consume more bandwidth than the customer pays for.
The connection between a customer and a BNG is established by the customer’s Dig- Access

Networkital Subscriber Line modem which initiates a Point-to-Point Protocol over Ethernet

10

2.1 internet service provider 11

Figure 3: Typical ISP network topology: Star-/tree-like and meshed network parts [BGK+14]

connection with the BNG. An access network is typically tree-shaped and aggre-
gates several customers along the way back to the BNG by so-called concentration
nodes [BGK+14].

BNGs and Label Edge Routers route Internet traffic between the access network
and the aggregation network, also known as Metropolitan Area Network, using Mul-
tiprotocol Label Switching as the routing protocol. Physically, an aggregation net- Aggregation

Networkwork is built by fiber optic cables which are formed in a ring topology connected to
a core router. While multiple Label Switching Routers are placed on the ring, on the
network layer, only one hop to a dedicated core network router is possible.

The core network is the ISP’s backbone that provides high bandwidth capacities.
These core network capacities typically largely exceed the demand needed to route Core Network

the traffic. This is called over-provisioning and avoids customer connection impair-
ments in unlikely worst-case scenarios of network congestions or outages. In case of
Deutsche Telekom, the complete backbone exists twice, i.e., for each core router, a sec-
ond core router exists for safety and redundancy reasons. In case of a core router de-
fect or an optical link failure, the routes can be re-configured within 50ms[BGK+14]
and take over. After the traffic reaches the core network, two possibilities exist. If
the destination is within the ISP network, the core network routes the traffic to the
corresponding aggregation network, where it is routed to the corresponding access
network and eventually delivered. If the destination is outside of the ISP network,
the traffic has to be routed to a Border Gateway which is able to forward the traffic
outside the ISP network and find the destination ISP.

2.1.2 Transit and Peering Agreements

To allow traffic routing from and to other ASes, two kinds of business agreements
exist, peering and transit. Peering agreements are often seen between ISPs of equal
size which transmit about the same amount of traffic in each other’s ISP network.
However, if the ISPs are unequal in size and traffic, transit agreements are applied.

2.1 internet service provider 12

Overall, transit agreements represent the majority of intra-ISP agreements [Nor14]. Transit

When using transit agreements, the small ISP pays the large ISP for providing it
access to the rest of the Internet. Thereby, the large ISP becomes the so-called up-
stream provider of the smaller ISP. Measuring and billing of Internet transit traffic
is a well-established business model, especially for large ISPs, so-called Tier 1 ISPs,
whose only business model is to provide smaller ISPs with access to the rest of the
Internet.

In contrast to this, peering is an interconnection between ISPs of similar data trans-
fer volume without charging costs between each other. A further difference to transit Peering

agreements is that peering is not transitive [Nor14]. This means the peering ISPs do
not provide access to other ISPs to which they might be connected, e.g., by a cost-
charging transit agreement. Instead, peering provides only access between the two
ISPs and, hence, to each of their customers.

2.1.3 OTT IP Multicast

Multicast is the delivery of the same data to a set of clients without transferring
it redundantly over the same link. Instead, the data is only transferred once along
the delivery path and replicated at the latest possible point in the network to de-
liver it individually to the requesting clients. In the IP multicast model proposed by
Deering [Dee89], a packet is transmitted at most once over a link. Figure 4 gives an
example by visualizing the paths taken by packets in case of unicast and IP multi-
cast. Thereby, the number of clients can vary from only a few to millions. Parallel to
the number of clients, the state needed for multicast management grows. Technically,
multicast is realized by placing multicast-capable routers within the ISP network.
This approach has two major limitations. First, multicast routers are only capable
of serving a limited amount of clients. Second, also the user churn, i.e., new users
joining the multicast stream and leaving it creates a management overhead and is
limited.

However, this is a viable approach for scenarios with a limited number of users
and streams. One example for such a scenario are ISP-internal IP Television (IPTV)
services [LLW+11; RCW16], such as EntertainTV1 from Deutsche Telekom. However,
for Over-the-Top (OTT) streaming, IP multicast is not used as ISPs fear external
content sources such as Content Delivery Networks (CDNs) as unpredictable and
hard to manage traffic sources [HH11]. The term OTT emphasizes that the content
provider uses the public Internet as transport for data delivery (cf. Definition 3).

This is likely to be the reason that none of the proposed solution models developed
by researchers [HC99; DLL+00] has been applied in reality so far. To this end, OTT
video content is commonly not served by ISP-internal multicast and, hence, is deliv-
ered using unicast. This does not scale well for live events with millions of viewers
such as an Apple keynote, where even a single data center can become a bandwidth
bottleneck [AMM+03] as each client gets the content delivered by a separate unicast
transmission.

With the advent of the SDN paradigm, ISP-internal multicast for OTT content
has been reconsidered and new promising solution models have been developed as
discussed further in Section 3.3.

1https://WWW.telekom.de/zuhause/fernsehen/entertaintv [Accessed: November 19, 2018]

https://WWW.telekom.de/zuhause/fernsehen/entertaintv

2.2 content delivery networks 13

Figure 4: Typical ISP data dissemination using unicast (left) and IP multicast (right)

2.2 content delivery networks

Content Delivery Networks (CDNs) carry more than half of the multimedia content
in today’s Internet and are predicted to deliver 71% of the global Internet traffic
by 2021 [Cis17d]. In the course of this thesis, we define CDNs based on Buyya et
al. [BPV08] as follows.

Definition 2: Content Delivery Network

A Content Delivery Network (CDN) is a collaborative collection of servers span-
ning the Internet, replicating content between them to perform transparent and
effective delivery of files to end users.

CDNs have advantages for content providers, ISPs, and users. By placing content
close to users, CDNs offload the content provider. Thereby, their service becomes Benefits of

CDNsscalable and reliable as CDNs are capable of serving millions of users at the same
time and have the possibility to load-balance the traffic amongst its reverse proxy
servers [MS15]. As the content can be streamed from nearby reverse proxies, also the
delay is much lower than streaming it from the potentially far-away content source.
This leads to enhanced Quality of Service (QoS) [Fur98] and user satisfaction as users
expect a web page or a video to load timely [Kis17; SKL+14].

Especially in the case of video streaming, low delays influence not just the time
till the video playback starts. Besides, it is likely to positively affect the Quality of
Experience (QoE) during the entire streaming session [SFF+16; Ste96].

For ISPs, the main advantage of CDNs is that they reduce the amount of traffic
to carry as near-by reverse proxies deliver the content instead of the potentially far-
away content source. Thereby, the amount of Internet traffic and potential transit
costs are reduced. To achieve the benefits mentioned above, CDNs have to fulfill Tasks of

CDNsspecific operational tasks. Vakali and Pallis define four essential tasks a CDN has to
take care of [VP03]:

1. Caching of the content source’s content at the CDN’s cache proxies. Not much
is known about how exactly cache management is operated because this is
the key business secret of a CDN. However, Akamai revealed that Least Re-

2.2 content delivery networks 14

cently Used (LRU) is used as cache eviction policy at most of their cache prox-
ies [MS15].

2. Routing of client requests to a suitable cache proxy. Large CDNs operate thou-
sands of cache proxies distributed in data centers around the world. Here, user
request assignment is performed considering multiple metrics, such as the dis-
tance to the user but also the load of the proxies [MS15].

3. Content distribution of the content from the content source to the cache prox-
ies is performed by a high capacity backbone managed by the CDN.

4. Accounting provides mechanisms for the content source to get informed on its
contents’ popularity and potential costs that have to be paid to the CDN.

More details on how CDNs work internally can be found in the paper of Maggs
and Sitaraman [MS15] as well as in Vakali’s and Pallis’ paper [VP03].

A term that gains importance in this context is Over-the-Top (OTT) video stream-
ing. This term means that a video stream is delivered from a third party, i.e., over the Over-the-Top

Streamingpublic Internet and not from within the user’s broadband access ISP [NLB12]. Exam-
ples of OTT streaming providers are YouTube, Netflix, and Amazon Video. YouTube
and Netflix are the two largest sources of Internet traffic in North America and ac-
count for more than half of the peak downstream traffic [Cis17b]. Hence, the delivery
of Video-on-Demand (VoD) content, as defined by Steinmetz et al. [Ste12], is a ma-
jor use case for CDNs. In contrast to ISP-internal IPTV services, when using OTT
video streaming services, no guarantees for the delivered video quality can be given.
Here, ISPs only deliver the OTT video stream but typically have no control over the
delivery method. In the course of this thesis, we define OTT as follows.

Definition 3: Over-the-Top

Over-the-Top (OTT) video streaming delivers video content using the public In-
ternet. Thereby, the content provider is a third party different from the request-
ing user’s broadband access ISP.

2.2.1 Video Caching

CDNs are often used to provide content caching for OTT video streaming services.
Depending on the ISP policies, caches can be operated for OTT services within the
ISP’s network or just close to it. Especially large ISPs tend to avoid having caches for
OTT services in their networks. However, they are often not allowed to place and op-
erate their reverse proxies inside ISPs because they consider CDNs as unpredictable
and hard to manage traffic sources [HH11]. However, they may use caches for their
own IPTV services for their customers [LLW+11]. In the following, we will focus on
OTT VoD content caching, though, live video streaming, ISP-owned IPTV services,
and other web services also make use of caching. It is expected that caching will
stay and even rise as a major part of the video streaming process. This is foremost
reasoned by the memory and bandwidth cost projections [RS13]. However, the traffic

2.2 content delivery networks 15

decreasing effect of a single cache is limited by its capacity, i.e., the number of bytes
or items it can contain. To this end, most research in this area focuses on increasing
the Cache Hit Rate (CHR) or decreasing the write operations on the cache’s disks to
increase their lifetime and, hence, reduce Capital Expenditure (CAPEX).

Since most videos are just watched partially [KH14; MGP+18] and different quality
demands exist, it is state-of-the-art to cache not entire videos but video segments of
about 1-10 seconds length and a certain quality (ref. Section 2.3.1). Especially in
VoD, it is common that users crawl over videos sequentially and watch just the first
segments till they find an interesting video which they are interested in for a longer
time.

Definition 4: Caching Strategy

A caching strategy is a combination of an admission policy, determining if a
newly requested item is cached, and an eviction policy, determining which item
has to be deleted to allow inserting a new item.

In the remainder of this thesis, we define a caching strategy as a combination of
an admission and an eviction policy. An admission policy determines if a newly re-
quested item is cached (ref. Definition 4). In case the cache does not provide enough
free storage to insert this item into the cache, an eviction policy determines which
item has to be deleted to allow inserting the item to be inserted. In the following,
we give an overview of the most established admission and eviction policies. One of
our papers [KPR+18] contributes to the following two sections introducing the most
established admission (ref. Section 2.2.1.1) and eviction policies (ref. Section 2.2.1.2).

2.2.1.1 Admission Policies

In reality, caches within a CDN’s delivery network are connected within an overlay
and, thereby, build a particular topology. Consequently, a user request can be served
by any of the caches on the delivery path. When the item is found in one of the
caches, the reply to the user’s request can also pass multiple caches on the reply
path. Here, an admission policy defines on which of these caches the transferred
content contained in the reply is stored. The most common admission policies are
introduced in the following:

1. Leave Copy Everywhere stores the content on every intermediate cache it
passes [LSS04; CTW02]

2. Leave a Copy Down stores the content only on the cache that is the direct
successor of the cache on the answer path that generated is in possession of
the content or, in case none of the caches holds the content, on the cache that
is connected to the Origin Server [LSS04; LCS06].

3. Move Copy Down moves the requested content to the cache that succeeds
the cache that serves the content and, thereby, brings the content closer to the
requesting user [LSS04; ZLL13].

2.2 content delivery networks 16

4. Probability Admission (Prob) assigns a probability to each of the caches on
the response path that defines how likely it is for the respective cache to store
the bypassing content [LSS04; LSS04]. If the content is requested for the first
time, it is cached at the cache succeeding the Origin Server. One variant of Prob
is PProb. Here, for each cache on the reply path, the caching probability is
determined based on the cache’s distance to the requesting user. Therefore, the
probability is chosen proportionally to the number of caches it takes to get to
the content source.

5. NHIT Caching stores the content if it a request to it has passed the cache at
least N-times within a time interval of a specific length. Only the N+1st request
in this interval causes the content to be cached. Thereby, the performance-
impairing effect of caching content of low popularity [MS15] is reduced. De-
pending on the content popularity distribution, N can be chosen appropriately.
In the course of this thesis, we denote NHIT caching with N = 1 as NHIT1 and
with N = 2 as NHIT2.

2.2.1.2 Eviction Policies

Cache eviction policies define which content is deleted from a cache in case new
content has to be inserted and no free storage is left. The most popular eviction
policies are LRU and Least Frequently Used (LFU), while also extensions such as
LFU with Dynamic Aging (LFUDA) [DA99] exist. LRU evicts the content that has
not been requested for the longest time, while LFU evicts the content that has the
lowest request frequency. In the following, we describe two LRU enhancements that
are sensitive to the video popularity distribution: Segmented Least Recently Used
(SLRU) [KLW94] and Adaptive Replacement Cache (ARC) [MM04]. Both approaches
aim to maximize the hit rate, by splitting the cache storage into two parts.

• Segmented Least Recently Used uses a constant storage division between the
two parts. Hence, both storage part sizes are constant. We denote the first stor-
age part as the probationary part. It stores content on its first request. If a
second request occurs, i.e., a hit in the probationary part, the content is moved
to the second cache part, which we denote as the protected part. Thereby, the
performance-impairing effect of content that is requested just once can be de-
creased. If content is evicted from the protected part, it is moved to the pro-
bationary part to provide it with a second chance and, thereby, replaces the
probationary part’s last element in a First In - First Out (FIFO)-fashion.

• Adaptive Replacement Cache is an extension of SLRU that introduces a ghost
lists, which keeps track of recently evicted content. Initially, the cache storage
is split into two cache divisions where each has its own ghost list. The first
cache division is a probationary cache, like introduced before for SLRU, which
stores content that is requested for the first time. If new content has to be
cached and the probationary part is full, the oldest content is evicted in a FIFO-
manner and the new content is stored. In this case, the ID of the evicted item is
stored in the probationary part’s ghost list. Using ARC, ghost lists are limited
in the number of items and cannot exceed the size of the corresponding cache
division. A cache hit in the probationary part causes the content to be moved

2.2 content delivery networks 17

inside the LRU cache assuming that it will be requested again soon. In case the
LRU cache evicts content, the content ID is stored in the LRU cache’s ghost list.
If the requested content is stored in the probationary part but its ID is already
present in its ghost list, this indicates that the probationary part is too small.
Therefore, its size needs to be increased. Consequently, the LRU cache’s size
needs to be decreased to not exceed the available storage space. Similarly, in
case content is moved from the probationary to the LRU cache and is present
in the LRU cache’s ghost list, the LRU cache is increased and its probationary
part decreased in size [Eva14; MM04].

2.2.2 Cache Hierarchies

CDNs operate a globally distributed set of caches, which are ordered in a particular
topology consisting of one or many levels. Figure 5 provides an overview of typical
CDN cache hierarchies. We see that the first level caches are directly connected with
the content source on the one side and the second level caches on the other side. It
is common that caches communicate only with caches of neighboring levels, but not
with caches on the same level [SKL+14; RSB99]. We introduce three different roles
present in a typical cache hierarchy. Note that the nomenclature varies in different
works.

1. Content source: Stores the entire content catalog, but is limited in connectivity.
A world-wide delivery using only the content source cannot scale for popular
content.

2. Edge cache: Is connected to another edge cache of a different layer or directly
to the content source.

3. Leaf cache: Is connected to one edge cache. In contrast to the other roles, leaf
caches are connected with the clients [SKL+14] and serve them.

If any of the caches does not store the requested content, it demands it from a
cache that is one level higher in the hierarchy. In case none of the caches on the way
back to the content source stores the requested content, it is retrieved directly from
the content source.

In the following, we give a brief overview of selected and relevant related works in
the area of cache hierarchies. Rodriguez [RSB99] et al. report on the performance dif-
ferences between distributed and hierarchical web document caching. They found
that hierarchical caching has the advantage of shorter connection times. Che et
al. [CTW02] present a hierarchical web caching system and model caches as low-pass
filters that allow objects with large inter-request times to pass to a cache higher in the
hierarchy but absorbing, i.e., storing content that is frequently requested. Laoutaris
et al. [LSS04] present three admission policies: Leave Copy Everywhere (LCE), Leave
a Copy Down (LCD), Move Copy Down (MCD), and Probabilistic Admission (Prob).
In their evaluation, LCD achieves the highest performance and, thereby, outperforms
Che’s approach [CTW02]. Dai et al. [DHL+12] enhance caching systems to support
dynamic request routing. To do so, they design an efficient distributed caching sys-
tem relying on a realistic IPTV network topology. During their experiments, they no-
tice three key performance influencer: i) topology characteristics, ii) heterogeneous

2.2 content delivery networks 18

Content

L

L

L

L

L

L

L

L

E

E

Content

L

L

E

L

L

ContentL

L

E

Content

Leaf
Cache

Edge
Cache

Content
Source

1) Binary Tree 2) One-level 3) Tree 4) Single

ContentE

Figure 5: Overview of typical topology components in CDN cache hierarchies [RZS17]

request patterns at different locations, and iii) heterogeneous network capacities. Hu
et al. [HGC+15] and Sarkar et al. [SH00] stress that the effort for collaboration and
coordination between caches within a hierarchy have to be kept low as they are
likely to decrease the performance, e.g., by introducing additional network latency
and, thereby, delaying content delivery. Rizk et al. [RZS17] addressed that cache hi-
erarchies are difficult to analyze, though, they have been in use for a few decades
by CDNs. Due to the lack of analytical models, caches hierarchies are currently de-
signed in an ad-hoc fashion. To this end, they design a novel model that allows them
to estimate the CHR for caches within a hierarchy. Their model is based on single
cache models [CTW02; MGL14; GLM16].

2.2.3 Video Popularity

For efficient caching, it is important to consider the content popularity. Gill et al. [GAL+07]
study content popularity changes on a daily basis since the monthly and longer varia-
tions are only marginal. The authors found that popular videos have a high rating on
average and a length below the maximum of ten minutes. The popularity of the con-
tent also correlated with the user engagement according to Cheng et al. [CMM+14].
Regarding the video metadata, Abhari et al. [AS10] observe only a weak correlation
between view count, rating, or video length and the video popularity. Hence, it is
hard to determine a video’s popularity just by its metadata.

When comparing the local popularity in YouTube’s edge network to the global con-
tent popularity, no significant correlation was found [GAL+07]. This finding was con-
firmed in a more recent work of Zink et al. [ZSG+09]. A reason for this observation
is that within User-generated Content (UGC) platforms, only little social networking
between users happens. Thus, network effects, which affect a broader community
do not appear. Further insights on social dynamics of online media sharing can be
found in the paper of Halvey et al. [HK07].

User demand patterns are studied by Arvidsson et al. [ADA+13]. Considering the
number of repetitive requests, they found differences at city access points and the
ones located at a university campus indicating that socially-driven content sharing
works in on a small scale. Li et al. [LLX+12] study the propagation of video in
Online Social Networks (OSNs). They found that requests coming from an OSN
contribute to amplifying the skewness of video popularity: Only 0.31 % of the most
popular video content accounts for almost 80 % of all views. However, prediction of
popularity from videos shared in OSNs is hard due to the unpredictability of the
sharing behavior.

2.3 over-the-top video-on-demand streaming 19

2.3 over-the-top video-on-demand streaming

The three most important stakeholders within the video streaming ecosystem are the
content source, the CDN, the ISP, and the end users. In the following, we provide an
overview of the major interests of each stakeholder mentioned above.

On the user’s side, video streaming is a continuous consumption of video data
from the video player’s buffer. However, this buffer is restricted in size and pro- Playback

stalling
decreases the
user
experience

vides only a limited relaxation of immediate delivery of video data. If the buffer is
empty, the video playback stalls temporarily. This is a severe impairment of the QoE
perceived by the user. Consequently, the user might leave or abandon the stream-
ing service. Two types of video playback stalling can be distinguished based on the
video’s playback position.

1. Initial stalling: The video pauses when it is started before it starts playing
back. This is also known as startup delay or initial buffering delay. The duration
of the initial stalling has been shown to correlate with the probability that a
user leaves the video service [Sit13] and, hence, is undesirable.

2. Playback stalling: The video can pause during the video playback. For the
second type of playback stalling, not only the length but also the frequency
impacts the QoE [HSB+13]. Generally, frequent and short stalling decreased the
QoE more than one long stalling event [QD06]. However, stalling is generally
worse than a reduction of the video quality, e.g., a frame rate reduction [HG08].

One way to reduce stalling events is caching, which can contribute to decreased
latencies, overcome network congestions, and hence increase the user-perceived QoE
in many cases. Cost-efficiency is a major concern of today’s content delivery systems
as the traffic volume grows about 24% annually [Cis17c]. Therefore, their deployment Content

caching
increases the
user
experience

strategy is driven by bandwidth and energy cost reduction [LWY+12; QWB+09] as
well as constant hardware upgrading and reducing peering costs [NSS10]. Thereby,
CDNs aim to deliver content in a timely fashion as a standard requirement for
streaming services [Lei09; NSS10] since it is a primary influencer of the user engage-
ment [DSA+11]. However, their cache-user assignment is mainly economically driven
and, hence, end users are not always being assigned to the cache server whose se-
lection for delivery would result in the highest QoE. CDNs have limited information
about the delivery inside ISP networks to optimize their content delivery process.
However, they aim to estimate end-to-end characteristics using, e.g., active band-
width and delay measurements as well as user-side reports to predict the resulting
performance [NSS10; KMS+]. Still, this does not provide a guarantee for better ser-
vice quality and can even worsen existing bottlenecks or create new ones [FPL+13].

By providing connectivity between, e.g., CDNs and end users, ISPs have to carry
the user’s video streaming traffic. Thereby, higher qualities also bring higher net- ISPs-internal

caching is
mostly done
for
ISP-owned
services

work load and costs. Since today’s video streaming is done mostly using Hypertext
Transfer Protocol Secure (HTTPS), the actual data transferred is not visible to the
ISPs. Hence, caching and multicasting schemes are not effective anymore. However,
a collaboration between the content providers, e.g., the CDNs and the ISPs in a fash-
ion that the CDNs are allowed to place caches within the ISP’s network can severely
decrease inter-ISP network load and, hence, potential transit costs. Additionally, it
results in a decreased content delivery latency for content cached inside the ISP and,

2.3 over-the-top video-on-demand streaming 20

thereby, is likely to increase the user’s QoE [SFF+16]. Consequently, this is likely to
increase the user’s attitude towards the ISP, as for the user it is often not transparent
which of the stakeholders within the video streaming ecosystem is responsible for a
poor video stream quality.

2.3.1 Adaptive Video Streaming

As mentioned in Section 2.2, video dominates the Internet traffic and has become a
part of most people’s daily life [Eri14]. A video stream typically starts with a video
player that requests video data from a content provider, which replies with the re-
quested content in a way that the video player can start the video playback while
the video content is still downloading. As the Internet can only offer best-effort de-
livery, fluctuating available bandwidth has to be considered during video streaming.
To this end, the media player has a buffer which can store a certain portion of the
video in advance, before the player consumes the video data. More insights about
how the video player’s buffer affects the QoE can be found in the article from Sani
et al. [SME17]. Note that the bandwidth available for the video transmission needs
to be higher than the video bitrate to avoid playback interruptions, so-called stalling
events, which negatively impact the user experience [HSB+13]. Today’s prevalent
streaming technique is adaptive video streaming, which we define as follows.

Definition 5: Adaptive Video Streaming

A dynamic adaptation of the video stream quality during the transmission via
the Internet aiming to utilize but not overburden the available network band-
width.

The term QoE, in the context of video streaming, refers to the individual percep-
tion of the video quality. The International Telecommunication Union ITU’s defini-
tion [Rec08] based on Brunnström et al. [BBD+13] is given below.

Definition 6: Quality of Experience

The degree of delight or annoyance of the user of an application or service. It
results from the fulfillment of the user’s expectations concerning the utility and
/ or enjoyment of the application or service in the light of the user’s personality
and current state.

Note that a technical solution can not optimize some QoE influencing factors such
as personal interest in the content, cognitive abilities, and socio-cultural background
as well as display brightness, visual abilities, and display-eye distance. However,
most of the QoE can be explained by QoS parameters, i.e., bandwidth, delay, loss
rate, and jitter [KC10; KLL+08; BSR+06; Ste96; SW97]. Figure 6 presents a taxonomy
of QoE influencing factors based on the work of Seufert et al. [SES+15].

The most essential adaptation dimensions for video quality are the image qual-
ity, i.e., the encoding quality, the spatial resolution, and the temporal resolution, i.e.,

2.3 over-the-top video-on-demand streaming 21

Waiting
Times

HAS QoE Influence Factors

Perceptual Technical

Video
Adaptation

Video Quality Context
Factors

Server
Side

Client
Side

Adaptation
Logic

Entities
Interactions

Initial Delay

Stalling
Frequency

Stalling
Duration

Switching
Frequency

Amplitude

Time on
each Layer

Spatial
Resolution

Temporal
Resolution

Image
Quality

Device

Content

Usage

Video Codec

Segment
Size

Connectivity

Video Player

Adaptation

Video Buffer

QoS
Monitoring

Bitrate
Estimation

Buffer
Filling

Multiple HAS
Clients

HAS & TCP

HAS & other
Applications

Figure 6: Taxonomy of QoE influence factors in HAS [SES+15]

the frame rate [SES+15; ZHA+10]. Additionally, stalling times decrease the video
quality, to an even larger extent than, e.g., the video frame rate [HG08] and nega-
tively impact the rate at which users abandon a video streaming service [Sit13; KS13].
Furthermore, the perceived quality varies between users and between devices. For Playback

stalling as the
most
prominent
QoE
impairment

example, video content of a low resolution can be suitable for a small smartphone
display, while on a 4k large TV screen it is considered as low quality. Hence, adaptive
video streaming allows also for video delivery in different resolutions depending on
the device demands. To assess the quality perceived by the users, typically crowd-
sourcing [HSH+11] or lab environment assessments are conducted to derive mod-
els that allow estimating the perceived QoE based on QoS measurements [HHS+17;
AFA16]. In addition to the device, the quality can also be adapted due to a low or
unstable bandwidth. While in the case of Constant Bitrate (CBR), users with a lower
bandwidth than the video bitrate cannot receive the video in a streaming-fashion,
adaptive streaming allows selecting a video quality that meets the user’s bandwidth
capacities. This can also help in case of an unstable wireless connection, a congested
network link, or other apps demanding bandwidth on the user device.

Several application protocols for multimedia streaming have been proposed dur-
ing the last decades, e.g., Microsoft Media Server Protocol (MMS)2 and Real-time
Transport Protocol (RTP) [SCF+03]. However, nowadays the de-facto standard has
become another group of protocols, i.e., adaptive video streaming, which is based
on Hypertext Transfer Protocol (HTTP). Hence, these protocols rely on Transmission
Control Protocol (TCP) by definition. Two different basic approaches to implement
adaptive video streaming exist: Scalable Video Coding (SVC) and HTTP Adaptive
Streaming (HAS). Both approaches slice the video into video segments along the
time dimension. Depending on the implementation these segments are between 2

seconds (Microsoft Smooth Streaming3) and 10 seconds (Apple HLS4) long. The opti-
mal segment size for a video streaming system depends on many influencing factors,
whereby bandwidth fluctuation is considered as the most important one [Led15]. On
the one hand, if the segment duration is chosen too large, a bandwidth change is

2https://msdn.microsoft.com/en-us/library/cc239490.aspx [Accessed: November 19, 2018]
3http://www.iis.net/downloads/microsoft/smooth-streaming [Accessed: November 19, 2018]
4https://developer.apple.com/streaming/ [Accessed: November 19, 2018]

https://msdn.microsoft.com/en-us/library/cc239490.aspx
http://www.iis.net/downloads/microsoft/smooth-streaming
https://developer.apple.com/streaming/

2.3 over-the-top video-on-demand streaming 22

more likely to cause a playback stalling as quality adaptation can only happen on
a per-segment basis. On the other hand, a smaller segment size increases overhead
introduced by the segment-encoding, header information as well as more requests
traversing the network. Lederer [Led15] demonstrates that for persistent HTTP 1.1
connections the optimal segment duration should be in the range of 2− 3 s. For non-
persistent HTTP 1.0 connections, a segment length of 5− 8 s is recommended.

Furthermore, for each segment, multiple quality options are generated which al-
lows adapting the video quality during streaming. Using SVC requires the client
to download the base layer, containing the video segments in low quality. If the
bandwidth allows, additional enhancement layers can be downloaded to increase
the video quality. However, for the enhancement layers, all preceding quality layers
down to the base layer are required to allow decoding the video. In contrast to this,
using HAS, the different quality layers are independent from each other and only
one segment representing the desired quality needs to be downloaded at a time.
Today’s video services use HAS as a de-facto standard.

500
kbps

1,000
kbps

2,000
kbps

R
ep

re
se

nt
at

io
ns

HTTP

Time

Throughput

Figure 7: DASH example with three video qualities and fluctuating client bandwidth based
on [HSS+15]. Dashed vertical lines mark quality adaptations.

The most prominent HAS implementation is Dynamic Adaptive Streaming over
HTTP (DASH). DASH defines how videos should be encoded and in which for-
mat the client is informed about the different representations available as well as
their locations. This information is encapsulated in a so-called DASH manifest file.
Depending on the adaptation algorithm used, the clients select the video segment
of a specific quality and download it into their video buffer. Since the adaptation
logic is on the client’s side, DASH is state-less on the server side. An example of
one client’s behavior is given by Figure 7. Here, the client adapts only based on the
available bandwidth and downloads one of the available video segments at a time.
Video quality adaptation algorithms aim for maximizing the user-perceived quality Video quality

adaptation
algorithms

by monitoring the current network conditions, video bitrate, and playback buffer
status [HSS+15]. This information is used to determine the video segment which is
requested next that will not lead to a playback stalling but of highest possible quality.
Note that adaptive streaming mechanisms cannot entirely eliminate the occurrence
of video stalling events as they can have many causes, e.g., network congestions,
fluctuating network connectivity, or high transmission latencies. More information
on recent adaptation algorithms and their user-perceived quality can be found in the
paper of Hoßfeld et al. [HSS+15] and the dissertation of Konstantin Miller [Mil16].

2.4 machine learning 23

2.4 machine learning

In this thesis, we define Machine Learning as proposed by Andrew Ng [Ng09]:

Definition 7: Machine Learning

Machine learning is the science of getting computers to act without being explic-
itly programmed.

In traditional programming, a programmer designs a program which takes data
as an input and outputs a result. Machine learning breaks with this concept by
taking data x and its output value(s) y to learn a program [Dom12] in case of su-
pervised learning which is the most common form of machine learning. The most
prominent taxonomy distinguishes three major classes: supervised, unsupervised,
and semi-supervised techniques. Supervised techniques require the training of a ma-
chine learning model using labeled data. In contrast to this, unsupervised learning
does not require such a training phase and can directly be applied to a dataset. Semi-
supervised techniques require human intervention in cases where the machine learn-
ing model’s certainty about the output is low. In the following, we give an overview
of supervised and unsupervised machine learning methods as they are relevant for
this thesis. Further information on semi-supervised methods can be found in the
book of Chapelle et al. [CSZ10].

2.4.1 Supervised Learning

Supervised learning and, especially, classification is the most common form of ma-
chine learning. To also classify previously unseen observations, machine learning al-
gorithms are required to generalize from provided training examples [Dom12]. This
generalization allows judging on previously unseen data to compute the estimated
output ŷ. In case this output is a class, e.g., determining the genre of a music track,
this is a classification task. If the estimated output is a numerical value, e.g., the
probability that a smartphone is connected to Wi-Fi, this is a regression task. In the
following, we introduce these two supervised learning concepts in detail.

2.4.1.1 Classification

Classification is the task of deciding to which category or set of categories a certain
observation belongs. These classes have to be categorical, e.g., blood groups or if
an email is spam or not. To do so, a classifier needs to be trained on observations
with known categories, also known as labels. This dataset is denoted as the training
dataset. Hence, a classification is a supervised learning task relying on the existence
of training data. The observations on which the classifier is trained is usually repre-
sented by a feature vector that contains numerical and/or categorical variables. De-
pending on the training algorithm used, categorical features need to be embedded
in a pure numerical feature vector, e.g., by one-hot encoding. After the training, the
classification model is able to estimate the true class of a given input. In the simplest
case an observation belongs just to one class. In this case, the model outputs a vector
containing one likelihood value for each possible class. The estimated class can be

2.4 machine learning 24

determined by taking the highest value of the class values as the classifiers estimate.
In case of a multi-class classification, an item can belong to multiple classes. There-
fore, the likelihood for each available class is determined. Often, the term likelihood
is used interchangeably with the term score. The most popular classification class is Linear

Classifiersdenoted as linear classifiers. The name arises from the underlying computation of a
so-called score value, expressing the probability that an observation belongs to the
model’s class k. Thereby, the input vector Xi is multiplied by the coefficients βk of
the learned linear model using the dot product: score(Xi) = βk ·Xi.

Decision tree [SL91; HMS66; BFS+84] is a term that comprises two different tree
types: i) Classification trees, if the variable to predict is categorical and ii) regression Decision Tree

trees, if the variable to predict is continuous. In the following, we will focus on clas-
sification trees due to their importance for this thesis and use the term decision tree
and classification tree interchangeably. One advantage of decision trees is that the
decisions can be visualized in form of a tree and, thereby, are easy to comprehend
compared with, e.g., Deep Neural Networks (DNNs) embedding the learned deci-
sion logic in a concatenated sequence of weighted sums. The decision tree model is
learned in a greedy-fashion by testing which split along all available input dimen-
sions decreases the classification error. Each node in the tree refers to a decision that
splits the data into further nodes or a leaf. This decision can be a numerical compar-
ison (<,>,6,>) or a categorical comparison (=, 6=). Typically, leafs are nodes which
cannot profit from any more splits. Hence, decision trees are limited by splitting the
feature space along individual feature axis in a consecutive fashion.

Support Vector Machines (SVMs) [SC08; CV95] are also commonly used for classifi-
cation tasks. They fundamentally differ from linear classifiers by not learning a score Support

Vector
Machines

function but discriminating hyperplanes in the multi-dimensional feature space. The
SVM training algorithm aims to find a decision boundary, i.e., a hyperplane that lies
in the gap between observations belonging to the class or not. At this point, this is
still a linear classification. However, SVMs can be extended to non-linear classifiers
by applying the so-called kernel trick. The kernel trick maps the SVM’s numerical
input to a higher-dimensional space using a kernel function. Thereby, the datasets
original dimensions, e.g., x1 and x2 are combined into a new dimension z by a kernel
function: z(x1, x2) which maps the input dimensions to a scalar, i.e., RN ×RN → R.
An example is given by Figure 8. Here, the two-dimensional dataset is extended
by a third dimension, i.e., the z-axis which is computed using the kernel function
z(x1, x2) = x21 + x

2
2. As depicted on the figure’s left side, the dataset is not linearly

separable and, hence, no meaningful decision boundary can be learned using a linear
classifier. On the right side, the dataset is transformed into R3 and becomes easily
separable by a linear function in R3, which corresponds to a non-linear function in
R2, i.e., a discontinuous function. Thus, the kernel trick allows learning a classifier
that can correctly represent the data-inherent pattern that decides if an observation
belongs to the class or not. The distance from the SVM’s decision boundary can,
thereby, serve as an indication of how confident the classification is. Note that the
example given uses just two input dimensions while in reality, the input dimension-
ality is typically higher. However, applying a vast number of kernel functions to the
dataset and, thereby, increasing its dimensionality in the hope that a meaningful ker-
nel function is amongst them is not a feasible solution. The drawback of this method Curse of di-

mensionalityand in general huge feature spaces is that training becomes harder, i.e., the accuracy
can be expected to decrease. This phenomenon is known as the curse of dimensionality

2.4 machine learning 25

and refers to the fact that with increasing dimensions their contained space increases
so fast that observations become sparse and dissimilar in many of the dimensions.
This renders the training of machine learning models severely harder.

Figure 8: Left: A dataset in R2, not linearly separable. Right: The same dataset transformed
into R3 by the kernel function z(x1, x2) = x21 + x

2
2. [Kim15]

2.4.1.2 Regression

Regression is the problem of estimating a continuous quantity output for an observa-
tion. Some machine learning algorithms can be used for, both, classification as well
as regression with small modifications. Examples are decision trees and Artificial
Neural Network. However, for some algorithms, it is not as easy or even impossi-
ble to be used for both problem types. Some learning tasks can also be transferred Regression vs.

Classificationfrom a regression task to a classification task. One example is the prediction of house
prices, a regression task, that can be converted into a classification problem by intro-
ducing price classes, e.g., luxury, expensive, average, and cheap. A further difference
between regression and classification is how the respective machine learning mod-
els are evaluated. While classification models can be evaluated using the accuracy,
regression models cannot and, instead, use, e.g., the Root Mean Square Error.

The simplest regression model is the linear regression which assumes a linear re-
lationship between the observation’s input variables x and a single output variable
y. Therefore, the model’s training tasks compile a search for the optimal linear com- Linear

Regressionbination of the input variables to estimate the output. The most common training
algorithm for linear regression models is Ordinary Least Squares which aims to min-
imize the sum of the squared residuals, i.e., the difference between the given correct
output and the predicted output. For observations of high input dimensionality, also
Gradient Descent is an efficient and common training approach.

2.4.2 Unsupervised Learning

In contrast to supervised learning, in unsupervised learning, no model of the data-
inherent pattern is learned and only unlabeled input data is provided. Instead, the
learning is based on the data provided and seeks to determine how the data is
organized.

2.4 machine learning 26

2.4.2.1 Clustering

Clustering or cluster analysis divides a given set of observations into clusters, i.e.,
subsets of similar items. Most common is that an item can only belong to one cluster
which is called hard clustering. Less popular are soft clustering approaches which
assign each observation for each cluster a probability to belong to it. Thereby, the
clustering algorithm works without prior knowledge about potentially existing clus-
ters or what is expected. Hence, clustering is a method for knowledge discovery and
provides insights into data-inherent groupings. Examples of clustering tasks are cus-
tomer segmentation and anomaly detection. The three most used clustering model
types are introduced and explained in the following.

• Connectivity models: Observations close to each other are considered to be-
long to a cluster. The cluster creation is done in one out of two ways. The first
option is to assign each observation to a cluster and aggregate them based on
the smallest distance. The second option is to assign all data points to a sin-
gle cluster and split it iteratively based on the largest distance between the
resulting clusters. An example of this clustering type is hierarchical clustering.

• Centroid models: As the name suggests, these type of clustering models as-
signs observations around centroids in the dataset based on the distance to
the centroid. This is done iteratively until all observations are assigned to one
of the clusters. The inherent weakness of this approach is to determine good
centroids. Furthermore, the number of cluster centroids k has to be provided
as an input and, hence, prior knowledge of the dataset is required. The most
prominent example of this class is k-means clustering. Notably, mechanisms to
determine an optimal k exist, e.g., X-means [PM00] and k-means++ [AV07].

• Density models: These models identify regions of high density, i.e., a large
share of the observations and assign remaining observations by their distance
to the density-based clusters. The most prominent algorithm in this class is
Density-based Spatial Clustering of Applications with Noise. This algorithm
performs optimal for many observation distributions. A visual and intuitive
evaluation of a variety of clustering algorithms can be found here5.

2.4.3 Music Classification

In parts of this thesis, we rely on existing methods of music classification and apply
them in the context of proactive music video caching. Therefore, we present a brief
overview of relevant works in the areas of music mood and genre classification.

Music classification aims to assign a label from a pre-specified set of labels to a
music track referring to, e.g., the track’s genre or mood. For many tracks, such la-
bels can be retrieved from online music databases, e.g., from last.fm6. However, for
very recent tracks, this information is unlikely to be available as these databases
rely on tags assigned to the tracks by users. Thus, automated classification is prefer-
able as it can also assign labels to new tracks. To this end, we use a set of music
tracks together and their known labels to train a classifier that is able to estimate the

5http://scikit-learn.org/stable/modules/clustering.html [Accessed: November 19, 2018]
6https://www.last.fm [Accessed: November 19, 2018]

http://scikit-learn.org/stable/modules/clustering.html
https://www.last.fm

2.4 machine learning 27

respective labels. Most existing research in the area of music information retrieval
aims at genre or mood classification. The features on which the classifier is trained
are traditionally characteristic audio features such as the Mel Frequency Cepstral
Coefficients (MFCC) [Log00]. Wang et al. [Wan+13] evaluate the impact of different
acoustic feature sets regarding classification accuracy. Therefore, they extracted fea-
tures from, both, the signal processing and musical dimension using MIRtoolbox
[LTE08]. Next, they train SVMs on different feature subsets. A combination of, e.g.,
Rhythm, Timbre, and Tonality achieves 79.5% accuracy using a labeled dataset of
1,000 tracks [Stu13]. Note that the classification accuracy strongly depends on the
experts who annotated the training dataset and its size. The spectrum for, e.g., mood
classification ranges between 25% [GS15] and 90.44% [Lau+10]. Recent works use
neural networks to derive music features and show a more stable and higher perfor-
mance compared to traditional approaches. This way, Costa et al. [Cos+17] achieve
87.4% accuracy. Choi et al. [Cho+17] present a transfer learning approach for music
classification using ConvNets. These networks take the music’s Mel spectrograms
as an input, which efficiently approximates human auditory perception. The train-
ing uses several publicly available datasets and aims at music tagging. However, the
resulting 160-dimensional feature vector of their network is useful for any music
information retrieval task. The authors use this feature vector as an input for mu-
sic genre classification and achieve 89.8% accuracy. Hence, we conclude that neural
networks are in general more powerful to retrieve expressive music features.

Framework Name #Descriptors Last update

MPEG-7 descriptors [KMS05] 17 2004

Marsyas [TC02] 30 2015

jAudio [MMF+05] 40 2009

MIRtoolbox [LTE08] 55 2014

Table 1: Music feature extraction frameworks

In most of the related works discussed, feature extraction frameworks are used
to determine low-level features. Most commonly used frameworks in the scientific
literature are depicted in Table 1 together with the number of audio descriptors, and
the year of their last update.

To classify the emotion or genre of a music track, the following procedure is widely
used: First, a representative sample of the music file is selected, e.g., seconds 30-60

to avoid the often not representative, intro. Second, the loudness is normalized to
make loudness-sensitive metrics comparable between different tracks. Third, music
features are derived using one of the feature extraction frameworks shown in Table 1.
Fourth, a machine learning model, e.g., a Support Vector Machine (SVM) is trained
which is able to classify a mood state based on music features.

Genres are well-defined classes to which a music track can belong to. In contrast
to this, mood states are more complex to represent. One widely accepted model rep-
resenting mood states is Thayer’s mood model [Tha90]. As depicted in Figure 9, the
model defines a mood by a point in a 2D coordinate system with a certain intensity
of valence on the x-axis and arousal on the y-axis. The arousal value is defined as the
intensity of the emotion, while the valence value refers to how positive or negative

2.4 machine learning 28

Figure 9: Thayer’s mood model [YLS+08]

the emotion is perceived. For different domains, variants of this model have been
derived. A typical representation is depicted in Figure 9.

Yang et al. propose a fuzzy approach for music emotion recognition [YLC06].
Fuzzy classifiers are characterized by not only computing the most probable class Music mood

classificationbut returning a fuzzy vector containing the probability of the music sample belong-
ing to each of the classes. They evaluate two classifiers: fuzzy k-nearest neighbors
and fuzzy nearest mean. Therefore, a dataset containing 195 popular music samples
of 25 seconds length is used. Each sample is manually annotated with a mood. The
four mood classes considered represent the four quadrants of Thayer’s mood model.
Additionally, to track mood changes within a song, a track is split in 10 seconds
samples overlapping by 1

3 of the previous sample and the mood for each sample is
evaluated. The results show that a fuzzy nearest mean classifier with an accuracy of
78.33% is superior to fuzzy k-nearest neighbors.

Trohidis et al. [TTK+08] extend Thayer’s mood model by two dimensions: pleas-
ant/unpleasant and engaging/disengaging. The authors select a multi-label classifi-
cation approach, using six labels: amazed-surprised, happy-pleased, relaxing-calm,
quiet-still, sad-lonely, and angry-fearful. The dataset used consists of 593 expert-
annotated songs from the genres Classical, Reggae, Rock, Pop, Hip-Hop, Techno,
and Jazz. These genres serve as features for their multi-label classifier evaluation. As
classifiers, they choose binary relevance (BR), label powerset (LP), random k-label-
sets (RAKEL), and multilabel k-nearest neighbor (MLkNN). Among these classifiers,
RAKEL provides the highest prediction accuracy with 80% but different accuracies
for each class.

Laurier et al. [LMS+10] categorize music into one of Thayer’s mood model quad-
rants by using SVM, Decision Trees and Random Forests, k-nearest neighbors, lo-
gistic regression, and Gaussian mixture models. Out of the chosen models, an SVM
with polynomial kernel achieved highest mean accuracy of 90.44% for the categories
angry, relaxed, and sad.

The highest accuracy is achieved by [LMS+10] compared with [RHH09; HRJ+10;
YLS+08; SDP12], even though they also use SVMs. Table 2 summarizes mood clas-
sification works showing their best performing algorithm and the corresponding
accuracy. Most works achieve a high accuracy by manually annotating music tracks
and using a small training set in the range of a few hundred tracks only. However,

2.5 software-defined networking 29

Paper Algorithm Accuracy

Laurier et al. [LMS+10] SVM with polynomial kernel 90.44%

Trohidis et al. [TTK+08] Random k-label set 76–90%

Rho et al. [RHH09] SVM with radial kernel 87.8%

Han et al. [HRJ+10] SVM with polynomial kernel 87.78%

Eerola et al. [ELT09] Partial least squares regression 75–85%

Yang et al. [YLC06] Fuzzy nearest mean clustering 78.33%

Yang et al. [YLS+08] SVR 58.3%

Song et al. [SDP12] SVM with polynomial kernel 54%

Gillhofer et al. [GS15] Random Forest 25%

Table 2: Music mood classification approaches and the best performing algorithm per paper

[GS15] achieves only 25% accuracy by using on average ten mood classes. Therefore,
the classification performance is assumed to vary strongly depending on the data
and algorithm used as well as on the number of classes chosen.

Gillhofer et al. [GS15] collect a dataset of 7,628 listening events to 4,149 music
tracks, obtained through a mobile app provided in the scope of a user study. For each Music genre

classificationevent, time, location, weather, device, network, and motion are logged. Additionally,
they acquired the genre and mood information for each track from last.fm. For genre
classification, k-NN, decision tree and random forest, rule learner, and ZeroR are
evaluated. They achieve an accuracy of about 60% for the genre prediction using a
decision tree approach.

Huang et al. [HLW+14] propose a genre classification system using separate feature-
selection for each genre class. The features used are intensity, pitch, timbre, tonality,
and rhythm. For each pair of two genres, a local feature set is derived by their self-
adapting harmony search (SAHS) algorithm. To get accurate results even for ambigu-
ous genres, multiple one-against-one SVM classifiers are trained. The final classifica-
tion is computed by a classifier ensemble containing the SVMs mentioned above.
Evaluations of multiple strategies are conducted on the GZTAN dataset7 published
2002. They achieved an accuracy of 97.2% for ten different music genre classes. This
is a 13% increase compared with just using the original feature set.

To the best of our knowledge, the work presented in this thesis is the first deriving
audio features from a recent dataset containing video requests from a mobile net-
work to YouTube. The data used for genre classification is more recent than, e.g., the
GTZAN dataset used by Huang et al. [HLW+14] and considerably larger with over 4

million requests, than the datasets used in the related work for mood classification.

2.5 software-defined networking

Traditional network equipment such as switches and routers are often distributed
and heterogeneous which makes them hard to configure as vendor-specific com-
mands have to be used. To do so, a specialist needs to configure each device involved
in, e.g., a firewall or a load balancing network service separately. The reason for this

7http://marsyasweb.appspot.com/download/data_sets/ [Accessed: November 19, 2018]

http://marsyasweb.appspot.com/download/data_sets/

2.5 software-defined networking 30

is that both the control and the data plane are implemented in each device. Here,
the forwarding plane refers to fast packet processing and forwarding, i.e., switch-
ing. The control plane defines where a packet has to be forwarded by implementing,
managing, and updating routing logic, e.g., a specific routing protocol. As each ven-
dor provides different control logic elements, no common control primitives and
control Application Programming Interface (API) exists. However, this is a require-
ment to allow for innovation in IP networks. We provide an abstract example of an
SDN-enabled network in Figure 10.

This is exactly where SDN improves upon traditional network architectures, offer-
ing a common API and further innovation-fostering features. We define SDN in this
work following the definition of Kreutz et al. [KRE+15].

Definition 8: Software-defined Networking

Software-defined Networking (SDN) is a network paradigm based on four pil-
lars: i) decoupling of control and data plane, ii) flows as a key concept for packet
forwarding, iii) control logic is moved outside the forwarding devices, and iv)
programmability of the network.

OpenFlow Controller

OpenFlow
Switch

Flow TablePort
B

Port
 A

Port
D

Port
C

OpenFlow
Switch

Flow TablePort
B

Port
 A

Port
D

Port
C

OpenFlow
Switch

Flow TablePort
B

Port
 A

Port
D

Port
C

OpenFlow
Switch

Flow TablePort
B

Port
 A

Port
D

Port
C

OpenFlow
Switch

Flow TablePort
B

Port
 A

Port
D

Port
C

NetApp A NetApp B

OpenFlow ProtocolData Plane

Control Plane

Northbound API

Southbound API

Figure 10: Major components of an OpenFlow-supporting network

The first pillar is the decoupling of the control logic from network devices. Hence, Decoupled
control and
data plane

SDN assumes networking devices to be pure forwarding devices without own local
control logic at the devices. To this end, the data plane has to offer a standardized
interface to allow receiving control signals from an external controller. One of the
most popular standardized interfaces nowadays is OpenFlow.

Traditional network devices make forwarding decisions on a per-packet basis. In Flow-based
packet
forwarding

contrast to this, SDN uses the flow concept for packet forwarding decisions. Here,
a flow is defined by a so-called matcher which comprises a set of header values

2.5 software-defined networking 31

or value ranges. All packets matching a flow can be applied to one or a set of ac-
tions, e.g., to forward it to a specific port, rewrite protocol fields, or drop the packet.
Two exemplary actions are packet duplication and replacement of the destination IP
address.

The control plane consists of one or more SDN controllers, i.e., a software that may
run on commodity hardware. The controller communicates with the SDN-enabled
switches by its southbound API, while providing access to NetApps, i.e., control
applications by its northbound API. The actual network logic resides in the control External

control logicapplications which use well-defined abstractions and primitives offered by the con-
troller. Therefore, the controller has to translate these commands to the respective
SDN flow entries and implement them in the involved SDN switches. Furthermore,
the controller takes care of security tasks such as NetApp isolation, deciding how to
handle previously unseen flows, and how to resolve conflicts between NetApps.

By doing so, the network becomes programmable. Foremost, network applications
have two benefits. First, they lower the costs of network management as the network Pro-

grammable
network

can be controlled in a standardized and automatic fashion. Second, standardized
programming interfaces allow for innovative network applications, abstracting from
different vendors and hardware, thereby allowing innovative network software that
would be hard to realize without SDN.

2.5.1 OpenFlow

The OpenFlow protocol is the most popular implementation of the SDN paradigm.
The following section is based on the OpenFlow protocol specification [Ope15] stan-
dardized by the Open Networking Foundation (ONF). The core element of this spec-
ification is an OpenFlow switch. However, the standard only presents concepts and
ideas but does not provide information on how to implement them.

Matcher Instruction Statistics

Switch
Port

MAC
Src

MAC
Dst

IP
Src

IP
Dst

Eth
Type

VLAN
ID

IP
Proto

IP
Src Port

IP
Dst Port

 Packet and Byte Counter

 1. Encapsulate and Forward to Controller
 2. Forward Packet to Switch Port(s)
 3. Drop

Figure 11: Conceptual components of an OpenFlow flow entry

Simplified, an OpenFlow switch contains a number of flow tables and network
ports. A flow table contains flow entries which are set by the OpenFlow controller
and define how incoming packets are handled. Figure 11 provides a conceptual
overview of an SDN flow entry. Each flow consists of three components: a matcher,
an instruction, and statistic counters. The controller can install these entries, modify
them later on, and read their statistic counters by communicating via the OpenFlow

2.6 multi-mechanisms transitions 32

protocol with the switch. Upon incoming packets, an OpenFlow switch tries to find a
matching flow entry by comparing the packets’ header field with the flow entries in
its flow tables. If a matching flow entry is found, one or several actions are applied to
the packet, e.g., forwarding it to a specific port, modifying its header fields or drop-
ping it. OpenFlow has evolved considerably between the first version 1.0 [Ope09]
and its current version 1.5.1 [Ope15]. While in version 1.0 only a single flow table
per switch exists and the set of actions and instructions are limited, OpenFlow 1.5.1
offers plenty of features and performance improvements. For example, multiple con-
catenated flow tables and group tables allow storing flow entries much more efficient
than a single flow table. Additionally, a richer set of matchers and more actions are
available.

2.5.2 SDN in Hardware

It is crucial to guarantee a packet forwarding performance close to line speed and
not to slow down the forwarding process by OpenFlow unnecessarily. Thus, a fast
and efficient technique is required to match, process, and forward packets to deter-
mine if they belong to a particular flow. In today’s SDN-enabled hardware switches,
fast packet matching is allowed by Content-Addressable Memory (CAM). This spe-
cial memory allows using arbitrary addresses to access memory, a concept similar
to HashMaps known from programming languages. If a packet has to be matched, all
memory entries are searched within one clock cycle and the result is returned [ACS03].
While CAM allows a lookup in constant time, inserting new data is comparably
slow, similar to HashMaps. Hence, using CAM is avoided in case of the flow statistic
counters, which are instead stored in the switch’s Static Random-Access Memory.
CAM has an additional disadvantage as it allows only for exact matching but not
partial matching. Therefore, tasks like matching a subnet that includes wildcards
are not possible. Therefore, modern SDN switches store their flow tables in Ternary
Content-Addressable Memory (TCAM) which allows setting specific parts of a key
as "don’t care" values, which allows partial key matching. At present, optimizing
TCAM memory usage, energy consumption, and manufacturing costs are on-going
research challenges [ACS03].

2.6 multi-mechanisms transitions

The concept of multi-mechanism transition used in this thesis is taken from the defini-
tion provided by the members of the Collaborative Research Centre "MAKI"8 [Ric17;
Wik16; SHK+15; FHK+16]. Transitions are a paradigm adapting a communication
system’s service or protocol components. Hence, a group of protocols or services
that offer the same functionality is required. This group, offering exchangeable func-
tionality, is denoted as a multi-mechanism [Wik16]. The transition between these
mechanisms is initiated by a context change which can be, e.g., varying bandwidth,
changing requirements, or different QoE needs and aims at a stable system perfor-
mance. To this end, the mechanisms which perform best for a given context is chosen.
The performance can be for example the user-perceived QoE, fairness, or service sta-
bility. However, costs must also be taken into account when selecting the optimal

8https://www.maki.tu-darmstadt.de [Accessed: November 19, 2018]

https://www.maki.tu-darmstadt.de

2.6 multi-mechanisms transitions 33

mechanism. Thereby, costs depend on the application scenario, available resources,
and environmental constraints. If the environment changes often and rapidly, the
mechanism transition may not pay off and be kept constant to avoid continuous and
potentially costly oscillations between mechanisms and their potentially high costs.
In the scope of this thesis, transitions occur in the exchange of predictive models
in the scope of Prefetching systems (ref. Section 4) and when considering different
proactive caching mechanisms in the presence of varying cache storage sizes (ref.
Section 5).

3
R E L AT E D W O R K

In this chapter, we discuss the related work of the contributions proposed in Chap-
ter 1. Hence, the related work chapter presents three main parts. Section 3.1 dis-

cusses the related work on mobile video prefetching. In Section 3.2, we discuss recent
works in the area of proactive caching, and Section3.3 presents the related work on
SDN-based multicasting of Video-on-Demand (VoD) content. In each section, we first
identify, describe, and discuss design goals from existing works in the context of to
the research challenges presented in Chapter 1. Subsequently, we detail and discuss
individual works that are most relevant to the three main parts of this thesis.

3.1 mobile video prefetching

Prefetching is a technique applied in a variety of application areas, e.g., memory ar-
chitectures [Smi82], file systems [KE93], databases, cloud computing, and distributed
systems [KS92]. The commonality between prefetching in the context of these appli-
cation domains is that they anticipate the need for data in advance to load it specu-
latively into a storage area, i.e., a cache, that is closer to the location where the data
might be eventually needed. We define mobile video prefetching as estimating and
downloading a user’s future demand for VoD content. If the estimation is correct,
the requested content is provided on request without the need to use the potentially
low-quality cellular Internet connection.

3.1.1 Taxonomy

Figure 12 depicts the taxonomy of mobile video prefetching used in this thesis. Here,
the first level (light gray) of the taxonomy tree depicts the Optimization Goals, Can-
didate Source, Candidate Selection, Download Scheduling, and Caching. In the following,
we discuss these categories and their manifestations (gray).

3.1.1.1 Optimization Goals

The idea of mobile video prefetching is to serve videos from local storage to avoid
an unstable Quality of Service (QoS) caused by a potentially low-quality cellular
Internet connection. We characterize a low-quality mobile connection by low band-
width, high delay, or even interruptions. These QoS parameters have a direct impact QoE

on the Quality of Experience (QoE) as we detail in the context of video streaming,
in Section 2.3.1. Under these circumstances, prefetching can avoid the drawbacks of
such a connection by fetching the data in advance instead of on-demand. Note that
low-quality mobile connectivity is not the only reason for decreased video quality
or playback interruptions as they also occur when using fixed-network Internet con-
nections, e.g., when being connected over Wi-Fi [SSF08]. The goal of prefetching is

34

3.1 mobile video prefetching 35

Mobile Video
Prefetching

Optimization Goals Candidate Source

Social Network

ContentWi-Fi Offloading

Startup Delay

Energy Saving

Download
Scheduling

Candidate Selection Caching

Popularity

Collaborative

Recency Wi-Fi Only

Wi-Fi and Cellular

Connection-unaware

Delete after Watched

LRU

Manually

Data Cap

Figure 12: Taxonomy of mobile video prefetching mechanisms

to deliver video content fast and stable to the video player. This implies a low initial
stalling as it might occur by using a low-quality mobile connection.

Mobile video prefetching allows to move data transmissions from the cellular net-
work to Wi-Fi networks and, thereby, enhance the battery lifetime. This is commonly Energy

savingknown as Wi-Fi-offloading. A mobile prefetching system has to consider the net-
work capabilities as well as their energy properties to minimize its energy footprint.
Using a cellular network connection is more energy consuming than using a Wi-Fi
connection since the transceiver consumes more power. Furthermore, the device’s
3G/4G transceiver stays in a high power-consuming state for a short period after
the last data has been transmitted in anticipation that the next transmission begins
soon. Thus, when using a cellular network, the connection to the base station is kept
open longer than the actual data transfer takes. This additional time is denoted as
the tail time [PHZ12] and additionally leads to energy consumption even though
no data is going to be transmitted. The negative effect of this behavior can be mit-
igated by aggregating delay-tolerant traffic and send it as a batch [QWG+10]. Data
transmissions that use Wi-Fi have often more stable network conditions and tend
to be much more energy efficient. Gross et al. [Gro+13] investigate accurate energy
models of smartphones and conclude that transmissions using the mobile 3G connec-
tion are one magnitude less energy-efficient than Wi-Fi transmissions. These results
are still valid for state-of-the-art Long Term Evolution (LTE) networks. Huang et
al. [HQG+12] measured the performance and power characteristics of LTE networks.
They conclude that the client-side energy consumption is up to 32-times higher com-
pared with Wi-Fi. Gautam et al. [GPN13] report an energy saving of up to 84% when
using Wi-Fi instead of 3G and up to 98% compared to streaming via 2G.

From these results, we deduce that the energy demand between cellular and Wi-Fi
transmissions cannot be expected to converge in the near future, even though this is
part of the vision for future 5G networks.

To allow simulating regarding mobile device energy consumption, energy models
which are in large parts device-specific have been proposed. One popular [HFG+12;
ZAC+13] source for smartphone energy models is PowerTutor [ZTQ+10]. These mod-
els allow calculating the cost of downloading data over a certain network interface
and, therefore, can be used as a valuable input for prefetching heuristics.

3.1 mobile video prefetching 36

Mansy et al. [MAC+14] investigate the behavior of mobile streaming apps on iOS
and Android in combination with the video players provided by YouTube, Netflix,
and Hulu. They observe that redundant traffic causes up to 15% of traffic in video
streaming sessions. This is caused by video quality adaptation due to varying net-
work conditions. Hence, prefetching a single quality on a mobile connection can
reduce energy consumption in case the video is requested later on.

In some countries, there are only limited mobile data contracts available and,
when unlimited rates are available, they are usually the most expensive tariff op-
tion. Prefetching is speculatively and can deplete the mobile data volume severely Data cap

if not considered as a limited and costly resource. To this end, Wi-Fi offloading is
preferable to using a cellular connection. Though, not every terminal may connect to
a Wi-Fi regularly or too late to achieve an efficient prefetching performance.

The optimization goals mentioned before strongly correlate with the precision and
the recall of the prefetching mechanism. Therefore, they are commonly used in the
evaluation of mobile prefetching systems. They are superior to the Cache Hit Rate
(CHR), which is commonly used to evaluate web caching since prefetching a single
content that is afterward being requested already achieves the maximum CHR.

3.1.1.2 Candidate Source

Prefetching mechanisms need be informed about new content that becomes available.
Content portals like YouTube can serve this purpose. Here, the subscribed channels
or videos marked by the user for later watching can serve as relevant sources of
video content. Similarly, Online Social Networks (OSNs) like Facebook, Twitter, or
Instagram can serve this purpose. Here, content is posted by friends, colleagues,
acquaintances, or groups and, thereby, shown to the user on his news feed. The
two previously mentioned sources, both, have a certain familiarity for the user who
knows the source from which the content comes personally. It has been shown that
about 45% of all videos requested are selected from the related video list [KZG13]
of videos watched before. Furthermore, 80% of these videos belong to the top 10

positions of the related video lists. A third approach, Collaborative Filtering (CF),
identifies video content that the user might be interested in, even though he has no
direct connection to the content source or the person sharing the content. The idea
of CF is to identify users that show similar video preferences as the user at hand and
consider content watched by these users as likely to be of interest to this user.

3.1.1.3 Candidate Selection

The video content available from the candidate sources have a set content and so-
cial properties. Examples on which content can be selected are the source, the topic
of the content, the content’s category, and interactions of friends with the content.
Though, the features which determine if a content is especially appealing can vary
among different persons. Generally, four different sources can serve the prefetching
mechanism with video candidates [GPN13]:

• Automatic selection by an algorithm running on the user’s device

• Manual selection by the user

• Selection by the content provider

3.1 mobile video prefetching 37

• Selection by the network operator

Among the presented candidate sources, an automatized content selection on the
user’s device is most convenient and privacy preserving.

If the user selects the content manually, the CHR is likely to be close to 100% since
the user is likely to select content he is interested in. The major drawback of this is
that the user is burdened with more effort. Besides, contents on OSNs are often so
important for the user that it is not acceptable to select them for prefetching first
and watch them later. The user may want to consume the content immediately, to be
informed and able to communicate with his peers about the content.

The content provider and the network operator have the ability to apply machine
learning approaches like CF to a vast number of users. This allows determining simi-
larities between users and making predictions based on content that a user similar to
another user has already watched. Furthermore, the network operator has the global
knowledge of his entire network which allows him to move data traffic to times of
low network utilization and thereby achieving higher transmission bandwidth, less
packet loss, and lower energy consumption. Gouta et al. [Gou+15] present a prefetch-
ing mechanism denoted as CPSys for mobile video prefetching. Inspired by Google’s
page rank algorithm, they propose using CF to predict videos for users based on
user similarity according to the videos requested.

On the one hand, an automated content selection is the most desirable method,
since it can happen in the background without introducing effort for the user. On the
other hand, automatic prefetching has the drawback that it is speculative and a 100%
CHR is unlikely to be achieved. Hence, cost and benefit of prefetching mechanisms
have to be carefully evaluated.

In the following, we focus on prefetching mechanisms which run on the client’s
device which covers the majority of mechanisms. Furthermore, it respects the user’s
privacy requirements and is more convenient than a manual selection.

3.1.1.4 Download Scheduling

Especially for mobile devices, the potential rewards achievable with prefetching are
high according to Higgins et al. [HFG+12]. Downloading video content during off-
peak hours can alleviate carrier networks during times of high load.

In case a non-prefetched item is requested, the request time can be simplified mod-
eled as Tfetch,t =

S
BWt

+ Lt, where S is the data size, BWt is the bandwidth at time t,
and Lt is the one-way channel delay, at time t, needed by the content request to arrive
at the content source. Knowledge about the connectivity over the course of the day Timely

prefetchingcan be used to choose an optimal time for prefetching. Nicholson and Noble [NN08]
follow this principle and forecast the cost of prefetching for a certain time in the
future tdownload, with the following condition: t0 6 tdownload 6 twatch. Here t0 is
the time when the system becomes aware of the data item, that might be requested
in the future and tdownload is the time when the download occurs. There are also
approaches using the average observed network capabilities, i.e., availability, band-
width, and latency, as a baseline for the future. To this end, measurements have to be
made. Ideally, these measurements are obtained passively, which determine the cur-
rent network conditions without transmitting additional data. Keep-alive messages
and small data packets are sent quite often on modern smartphones and, therefore,

3.1 mobile video prefetching 38

might be used for this purpose. However, Transmission Control Protocol (TCP) does
not leave the slow start phase when transmitting small data; hence these measure-
ments are likely to be biased. Therefore, active measurements often provide a better
quality of measurements.

3.1.1.5 Caching

Prefetched videos need to be stored locally. Thus, an imprecise mechanism would Low storage
utilizationunnecessarily occupy storage on the client device. However, it is unrealistic to assume

a perfect prefetching approach that only stores content that is requested by the user
at the right time. Therefore, video content needs to be stored locally until it becomes
unlikely to be watched or more promising video candidates become available. In the
case of smartphones, large storage capabilities are common nowadays. Though, in
the case of smartwatches, which are also capable of playing videos, storage is still a
limited resource.

3.1.2 Discussion of Selected and Representative Work

In the following, we present and discuss selected and representative works in the
area of video prefetching. While the focus of this thesis is on mobile prefetching,
approaches from stationary clients, i.e., PCs are closely related. To make this distinc-
tion clear, we first present traditional approaches for stationary devices and, second,
prefetching mechanisms tailored for mobile devices.

A fundamental question in prefetching is how much of a video, i.e., typically mea-
sured by the number of video segments should be prefetched. Wang et al. [WSY11] How much of

a video to
prefetch?

propose prefetching a fixed chunk length of 1200 bytes. However, a fixed byte size is
not applicable in Dynamic Adaptive Streaming over HTTP (DASH)-based streaming
platforms as they deliver several video qualities in the form of segments that last
2-10 seconds (cf. Section 2.3.1). Hence, a more applicable solution is prefetching a
certain number of video segments instead of bytes. Khemmarat et al. [KZK+12] pro-
pose using prefix-prefetching. Based on the available bandwidth, the video duration,
and the video bitrate, the prefix size is determined dynamically. Therefore, the prefix
size is chosen in a way that allows downloading the rest of the video, i.e., the not yet
prefetched part, if a user begins to watch the video.

OSNs play a vital role in the distribution of video content. In 2009, 25% of the Social
network-based
mechanisms

YouTube views came from person-to-person sharing in OSNs according to Broxton
et al. [BIV+13]. The authors note that 90% of the total views are caused by 2% of the
most popular videos in a Facebook-like OSN. This characteristic can be observed on
many video platforms, e.g., the Korean OSN Daum (cf. Section A.5), and is known as
the short-tail/long-tail distribution, i.e., the popularity distribution can be described
as a power-law function (cf. Section A.5). Further research on the distribution of
content through OSNs can be found for Twitter [RBC+11], YouTube [SMM+11], for
Facebook [SRM+09], and Flickr [CMG09]. One interesting finding is that, e.g., im-
ages on Twitter, even the popular ones, spread significantly slower than video con-
tent [LWL+13]. This stressed the importance of VoD content for the Internet and for
this thesis. On OSNs, there is a vast number of potentially interesting videos for
a user, which is hard to predict. However, using OSN information has proven to
be predictive of a user’s watching behavior [ZDW+13]. Sedhain et al. [SSX+13] pro-

3.1 mobile video prefetching 39

pose a content filtering mechanism, denoted as social affinity filtering, which is able
to select promising photos and videos from the users’ OSN. They investigate how
predictive particular OSN features are, e.g., likes, comments, and tags. In addition,
groups, pages, and favorites are investigated separately. One of their key insights is
that interactions on videos are most predictive. Especially, a user’s participating in
small online groups are predictive for long-tail content. Wilk et al. [WRT+15] con-
duct a Facebook user study. They investigate social-aware multimedia prefetching
by providing a smartphone application denoted as SonNet to their participants. They
found that video watching behavior is quite heterogeneous across the participants
and do not find a single predictive feature that would allow efficient prefetching for
all participants. Therefore, a video’s like and comment counts, as well as the content
coming from a 1-hop Facebook friend alone, are not sufficiently predictive features.
Paul et al. [PPW+15] confirmed this results using a browser plugin 1 that monitored
Facebook user behavior within the scope of a user study.

Cheng and Liu propose NetTube [CL09], which uses an additional Peer-to-Peer
(P2P) overlay [SW05] per video to support the video content distribution. Thereby,
they focus on prefix-based prefetching to support a fast video playback start. They Prefetching in

P2P systemsfocus on increasing the user experience, which has shown to be sensitive to stalling
events at the video playback start [HSK14]. Li et al. present SocialTube [LSW+12], a
P2P video prefetching mechanism that focuses on social relationships. The authors
observe that 90% of the video views can be explained by direct or 2-hops friends
of the requesting user. SocialTube pushes a prefix of a newly published content of a
user to all of its follower. If a follower starts the video playback, the remaining video
content is retrieved in a BitTorrent [Coh03] fashion. Wang et al. [WSY11] rely on
the Chinese Facebook variant RenRen to analyze the QoE gain achievable by using
P2P-assisted video streaming. Their proposed mechanism strives to reduce the initial
video stalling time similar to NetTube and, hence to increase the user-perceived QoE.
Therefore, the authors argue to prefetch the first video segments since they are most
likely to be requested. The prefetching candidates are determined using the social
relationships between RenRen users and their preferences.

Khemmarat et al. [KZK+12] propose two novel YouTube-specific prefetching ap-
proaches. The first approach uses a user’s search results to prefetch the videos ap- Prefetching

related videospearing in a search result on, e.g., YouTube, to prefetch their prefixes. The second
approach uses the recommended videos of a currently watched video to prefetch
prefixes of these. Thereby, the recommender system of YouTube is leveraged by their
system. The authors demonstrated that prefetching videos retrieved from the related
video list of an already watched video can efficiently offload networks when applied
on network proxies and also on mobile devices. Plecsca et al. [PCO16] propose a
similar mechanism which also determined prefetching candidates from the related
video list of already watched videos. To this end, they use Markovian policies fed by
the YouTube video recommendation list. However, when a user currently watches
a video, it might be impossible, in case of, e.g., a low-quality mobile connection, to
prefetch videos from the related video list in parallel. Furthermore, this might impair
the quality of the currently watched video as they share the same mobile connection.

In the following, we present selected works that focus on prefetching for mobile
devices specifically. Gautam et al. [GPN13] present an Android application that can Prefetching

for mobile
devices

1http://www.daniel-puscher.de/fpw/ [Accessed: November 19, 2018]

http://www.daniel-puscher.de/fpw/

3.1 mobile video prefetching 40

download videos from a user’s OSN feeds. The prefetched videos are presented to
the user by the app. Thus, it is difficult to compare this approach with a transparent
prefetching mechanism that does not change the look and feel of the native OSN
feeds. Finamore et al. [FMG+13] investigate the exploitation of the wireless broad-
cast channel in 3G/4G networks. Based on this broadcast mechanism, they aim at
prefetching popular content to mobile devices. The authors discuss if the estimated
benefit is worth engineering such a system and use a real operator trace for their
evaluation. However, the performance of their system is poor and the authors argue
if such a system is worth the engineering effort. Zhao et al. [ZDW+13; DZW+14] de-
sign a middleware for mobile devices denoted as Offline Online Social Media (O2SM)
middleware. It estimates prefetching candidate videos by taking the user’s Facebook
feed as an input. They use commenting, sharing, and liking of posts, the number
of private messages exchanged, the number of viewed videos from friends or pages,
and the global post popularity to determine promising prefetch candidates. To de-
rive the user’s engagement, their own Facebook application needs to be used, which
is likely to introduce a bias, since the post ordering and the look-and-feel differ from
the native Facebook client. Thus, it remains unclear how O2SM orders Facebook
posts and, generally, which design choices the authors made to create the frame-
work. CPSys [Gou+15] is designed for mobile video prefetching of YouTube videos.
The system consists of two main modules, a prefetch agent running on smartphones
and a central predictor which informs the agent which videos should be prefetched.
The central predictor keeps track of all user requests and determines the most sim-
ilar users to a given user, i.e., the nearest neighbors by using the Jaccard index as
a similarity measure. The number of videos to prefetch is determined by the num-
ber of videos requested over the last 10 days for each user separately. The videos to
prefetch are selected, per user, by a queue containing all the videos requested by a
user’s neighbors. This queue is ordered firstly by popularity and secondly by recency
if there are multiple items with the same popularity. Downloading of the videos is
only conducted when a Wi-Fi connection is available. CPSys achieves overall a cor-
rect prediction ratio of 18-20%. However, in the analysis of CPSys, music videos are
explicitly excluded as they show a different and more persistent popularity pattern
compared with other video categories. Furthermore, the approach requires continu-
ous monitoring of many users to work efficiently. This does not respect the user’s
need for privacy.

3.1.3 Summary

In the following, we discuss the presented related works in the context of vFetch.
A set of OSN-based prefetching-related works have been proposed, e.g., Facebook-
based approaches [SSX+13; ZDW+13; DZW+14] and a RenRen-based approach [WSY11].
However, the video like and comment counts, as well as a Facebook friendship, are
not sufficiently predictive features [WRT+15; PPW+15] for prefetching. Furthermore,
the majority, i.e., 75% of YouTube video requests did not originate from social shar-
ing [BIV+13]. Therefore, we decided to not rely on OSN information for the design
of vFetch but to focus on content features and individual user preferences since they
are more likely to be predictable for a larger share of a user’s video views. Prefetch-
ing from the related video list [KZK+12; PCO16] shows a promising accuracy which

3.1 mobile video prefetching 41

we also observed for our users (cf. Section A.1), though it is only applicable if a video
is currently played. Hence, content prefetching for a related video must happen at
the same time before the user decides to watch a related video next. This puts an ad-
ditional burden on the user’s Internet connection and is likely to decrease the video
quality of the currently watched video. For vFetch which strives to prefetch content
hours in advance ideally over Wi-Fi, this is an inefficient approach. The prefetching
application from Gautam et al. [GPN13] requires the user to use a different applica-
tion that presents prefetched content to the user. This prevents the user from using
the native YouTube application with its desired features, including look and feel. Fur-
thermore, when we tried the app, it downloaded a vast amount of videos from our
YouTube subscriptions and drained the battery. By reverse-engineering the app, we
could not find any filter, selection, or machine learning-based mechanism. Finamore
et al. [FMG+13] propose a wireless broadcast of popular content over 3G/4G net-
works. However, they discuss if the low performance of their system is worth the
engineering effort. This matches the results of our user study in which almost no
channel was subscribed by two users which indicates a very diverse user interest
that cannot be efficiently served by globally or country-wide popular content. CP-
Sys [Gou+15] does not focus on popular content but on individual user similarity
to determine prefetching candidates. This results in a decent performance. However,
the mechanism requires to store a user-item matrix that covers a large time span.
Hence, the user’s privacy is violated by tracing each individual user’s requests. In
some countries, this is likely to be illegal. Therefore, we design vFetch to run on a
user’s mobile device and only rely on this user’s request history. Thereby, the user’s
data is kept local on his device and is not collected and stored externally as in the
case of CPSys.

In Table 3 we provide a synopsis of the related work. Here, we distinguish prefetch-
ing mechanisms based on their application scenario which can be either general sta-
tionary devices or mobile devices. Additionally, we show to which extent efficiency
metrics, i.e., Wi-Fi offloading and QoS metrics are considered in the design and evalu-
ation of the mechanism, as well as cost metrics and research area-implied properties.
To the best of the author’s knowledge, there is currently no privacy-preserving mo-
bile prefetching mechanism and no YouTube-specific mechanism solely focusing on
content properties. This motivates the vFetch mechanism presented in Chapter 4.

3.1 mobile video prefetching 42

W
i-F

iO
ffl

oa
di

ng

Q
oS

En
er

gy
Sa

vi
ng

D
at

a
C

ap

O
ve

rh
ea

d A
ut

om
at

iz
ed

U
se

rI
nt

er
es

ts

N
et

w
or

k
D

yn
am

ic
s

Pr
iv

ac
y-

pr
es

er
vi

ng

Fo
cu

s
C

on
te

nt
Ty

pe

Sc
en

ar
io

A
pp

ro
ac

h
Ef

fic
ie

nc
y

C
os

ts
R

es
ea

rc
h

ar
ea

im
pl

ie
d

D
es

cr
ip

ti
on

StationaryDevices

N
e

t
Tu

b
e

[C
L0

9
]

−
+

◦
◦

◦
+

◦
◦

◦
So

ci
al

Yo
uT

ub
e

G
en

er
at

es
an

ad
di

ti
on

al
P2

P
ov

er
la

y
pe

r
vi

de
o

fo
r

us
er

s
to

re
-d

is
tr

ib
ut

e
th

ei
r

ca
ch

ed
vi

de
os

.

So
c

i
a

l
Tu

b
e

[L
SW

+1
2
]

−
+

−
−

−
+

+
−

(+
)

So
ci

al
Fa

ce
bo

ok
G

en
er

at
es

an
ad

di
ti

on
al

us
er

in
te

re
st

-b
as

ed
P2

P
ov

er
la

y;
us

es
O

SN
-b

as
ed

vi
de

o
pr

ef
et

ch
-

in
g

W
an

g
et

al
.

[W
SY

1
1
]

−
+

◦
◦

◦
+

+
−

◦
So

ci
al

R
en

R
en

A
pr

ef
et

ch
in

g
m

ec
ha

ni
sm

ba
se

d
on

th
e

us
er

’s
so

ci
al

ti
es

in
an

O
SN

is
pr

op
os

ed
.

K
he

m
m

ar
at

et
al

.
[K

Z
K

+1
2
]

−
−

−
−

+
+

−
−

+
C

on
te

nt
Yo

uT
ub

e
Pr

ef
et

ch
in

g
ca

nd
id

at
es

ar
e

se
le

ct
ed

fr
om

th
e

to
p

vi
de

os
fr

om
a

w
at

ch
ed

vi
de

o’
s

re
la

te
d

vi
de

o
lis

t
or

Yo
uT

ub
e

se
ar

ch
re

su
lt

s

Pl
eş

ca
et

al
.

[P
C

O
1

6
]

−
+

−
−

−
+

−
(+

)
(+

)
C

on
te

nt
Yo

uT
ub

e
Th

eo
re

ti
ca

l
op

ti
m

al
pr

ef
et

ch
in

g
po

lic
ie

s
ar

e
de

ri
ve

d
us

in
g

M
ar

ko
v

ch
ai

ns
to

m
od

el
us

er
vi

de
o

re
qu

es
t

se
qu

en
ce

s

In
c

o
m

i
n

g

[G
PN

1
3
]

+
−

+
−

−
+

−
−

−
C

on
te

nt
M

ul
ti

Th
e

en
er

gy
ef

fic
ie

nc
y

of
W

i-
Fi

of
flo

ad
in

g
is

in
-

ve
st

ig
at

ed

Fi
na

m
or

e
et

al
.

[F
M

G
+1

3
]

−
−

−
−

+
+

−
−

−
C

on
te

nt
M

ul
ti

W
ir

el
es

s
br

oa
dc

as
to

f3
G

/4
G

ne
tw

or
ks

is
us

ed
to

di
st

ri
bu

te
po

pu
la

r
co

nt
en

t

MobileDevices

O
²S

M
[Z

D
W

+1
3

]
+

+
+

+
+

+
+

−
−

So
ci

al
Fa

ce
bo

ok
Pr

op
os

es
a

m
id

dl
ew

ar
e

le
ar

ni
ng

a
us

er
’s

in
te

r-
es

ts
an

d
co

ns
id

er
s

en
er

gy
an

d
co

nn
ec

ti
vi

ty

D
o

et
al

.
[D

Z
W

+1
4

]
+

◦
+

+
+

+
−

+
−

So
ci

al
Fa

ce
bo

ok
A

br
ok

er
-p

ro
xy

ar
ch

it
ec

tu
re

is
pr

op
os

ed
,

de
-

te
rm

in
in

g
pr

ef
et

ch
in

g
ca

nd
id

at
es

at
th

e
br

ok
er

an
d

pr
ef

et
ch

in
g

th
em

to
th

e
m

ob
ile

de
vi

ce

C
PS

y
s

[G
ou

+1
5
]

◦
◦

◦
◦

+
+

◦
◦

−
So

ci
al

Yo
uT

ub
e

Pr
ef

et
ch

in
g

ba
se

d
on

us
er

si
m

ila
ri

ti
es

co
ns

id
-

er
in

g
pa

st
an

d
re

ce
nt

vi
de

o
re

qu
es

ts
;

ig
no

re
s

m
us

ic
vi

de
os

v
Fe

t
c

h

[K
LR

+1
7
]

+
+

−
+

+
+

+
−

+
C

on
te

nt
Yo

uT
ub

e
Pr

ef
et

ch
in

g
ba

se
d

on
m

ob
ile

In
te

rn
et

co
n-

ne
ct

iv
it

y
an

d
co

nt
en

t
af

fin
it

y
us

in
g

co
nt

en
t

fe
at

ur
es

su
ch

as
ch

an
ne

ls
;

op
er

at
es

pr
iv

ac
y-

pr
es

er
vi

ng
on

us
er

de
vi

ce
s

Ta
bl

e
3

:C
la

ss
ifi

ca
ti

on
of

pr
ef

et
ch

in
g

m
ec

ha
ni

sm
s,

th
ei

r
de

si
gn

go
al

s
an

d
ke

y
fe

at
ur

es
as

su
pp

or
te

d/
op

tim
iz

ed
pe

r
de

si
gn

(+
),

po
te

nt
ia

lly
co

m
pa

tib
le

((
+
))

,
un

aw
ar

e/
no

td
is

cu
ss

ed
/u

nc
le

ar
(◦

)
or

in
ef

fic
ie

nt
/in

co
m

pa
tib

le
w

ith
de

si
gn

(−
).

3.2 proactive caching 43

3.2 proactive caching

Video caching is a well-established technique to make high-quality video delivery
scalable and decrease the delivery latency which comes with an increased QoE.
Thereby, the content is served from nearby caches instead of a single, potentially
far away source with limited bandwidth. Providing content by a geographically dis-
tributed network of caches allows scalable and fast delivery of video content but also,
e.g., JavaScript files, images, and HTML pages. Content Delivery Networks (CDNs)
provide globally-distributed content caching as a service, e.g., Google Global Cache2

in the case of YouTube and Open Connect in the case of Netflix3. Caching can be
done in several places within the content delivery ecosystem. Large Internet Service Caching

locationsProviders (ISPs) also use intra-ISP caching to distribute the content of their own IP
Television (IPTV) services [LLW+11]. However, at the moment large ISPs hesitate
to allow CDNs to operate caches within their network as they fear CDN traffic is
unpredictable and hard to manage [HH11]. In the past, ISPs also cached content
from bypassing requests, e.g., from YouTube. However, since there is a trend to en-
crypt every connection, this is not feasible anymore since almost the entire web uses
encrypted Hypertext Transfer Protocol Secure (HTTPS). A solution to this hurdle
would be an ISP-CDN cooperation, which is a recent research topic.

Caching has been a research topic since the early 90s [LWY93]. Remarkably, the Caching
researchinterest in this topic has not diminished due to the emergence of new technologies

and the important use case of VoD delivery. CDNs [YLZ+09], P2P systems [LSW+12;
HLL+07; LBW+09], IPTV [LLW+11], Information-centric Networking [ZLL13], and
femto caching [GSD+12; BBD14] are among the most popular trends which rely on in-
network content caching. A survey of traditional web caching replacement strategies
can be found in the article of Podlipnig et al. [PB03] and more information on cache
placement in the paper of Zhang et al. [ZW17] for wireless networks and in the paper
of Aadhikari et al. [AJC+12] for YouTube specifically.

In the vision of future 5G scenarios [BBD14], intra-ISP caching is likely to become
a pay-per-use service. Cost trends suggest that caching generally becomes more cost- Research

visionsefficient since the cost of storage decreases faster than the cost of bandwidth [ER15].
Hence, the storage-bandwidth trade-off [CKS02; EGH+11; RS13] becomes more and
more attractive from the cost perspective. Robers and Sbihi [RS13] investigate the
trade-off between saved bandwidth and cache storage capacity. Their evaluation is
based on Che’s approximation [CTW02] using a realistic traffic model derived from
BitTorrent popularity measurements.

For the future, edge caches [LRD+13; MH10; EGH+11] at home routers[LPB+15;
SBH13], cellular network antennas, mobile cloud nodes, and PDN Gateways are envi-
sioned [Sar12; ER15; SBH13; LPB+15] as well as caching for individual users on their
end devices [KZG13; HFG+12; FMG+13; GPN13; QQH+12], opportunistic caching
for mobile devices [NLH15; TMB+13; HHK+12], and collaborative media sharing in
public transportation [LC06; TCZ+13; TPS+16].

Currently, the most prominent position for caches for Over-the-Top (OTT) VoD
content are peering nodes, e.g., the DE-CIX4 in Frankfurt, Germany. However, tradi-
tional reactive caching is not efficient for nodes which receive low demand due to the

2https://peering.google.com/#/infrastructure [Accessed: November 19, 2018]
3https://openconnect.netflix.com [Accessed: November 19, 2018]
4https://www.de-cix.net [Accessed: November 19, 2018]

https://peering.google.com/#/infrastructure
https://openconnect.netflix.com
https://www.de-cix.net

3.2 proactive caching 44

Proactive
Caching

Optimization
Goals

Popularity-oriented

View Growth Pattern

Storage Division
per Category

Disk Deterioration

Saving Bandwidth

Locality-sensitiveAnticipative

Trigger

Announcement-based

Content Consolidation

Source Selection

Local Popularity

Scheduled

Continuous

Quality of Experience

System Metrics

Popularity Prediction

Figure 13: Taxonomy of proactive video caching

performance-decreasing impact of content churn [ER15]. Thus, it is suggested that Proactive
cachingbase stations or mobile cloud node caches must be managed proactively, i.e., content

that is estimated to be popular is placed and kept statically in the cache. Though,
this is not the only variant that can be considered to be proactive. Further examples
are proactive request routing [BRZ+17] or location-sensitive caching [DTK+16].

Ramanan et al. [RDH+13] analyze mobile data traffic and different content types,
e.g., application, audio, image, text, video, and others. They focus on selective caching Content-

aware
caching

based on content type and caching at the Serving Gateway in an LTE network’s
Evolved Packet Core. To this end, they used an LTE request trace. Furthermore,
they use the cacheability metric, which indicates how useful it is to cache an item
depending on its content type. Thereby, cacheability is defined as

∑n
1 (ki−1)si∑n
1 ki−1

as
originally proposed by Ager at al. [ASK+10]. Here, ki denotes the total number
of downloads for item i of size si They found that 30% of all request responses are
cacheable, accounting for 73% of the data volume. The content types showing the
highest cacheability are application and video. In their analysis, YouTube content
has shown to be even more valuable to cache than Netflix content, while both belong
to the largest traffic sources. Before we review the related work in the area of proac-
tive caching, we define a taxonomy. This taxonomy is used to categorize the related
work with respect to their design choices.

3.2.1 Taxonomy

Figure 13 depicts the taxonomy of proactive caching used in this thesis. On the
taxonomy tree’s first level, we see the Optimization Goals, the Trigger causing a proac-
tive process, and the three classes of proactive mechanisms: Content-oriented, Antic-
ipative, and Locality-sensitive mechanisms. The manifestations of each of the nodes
mentioned above are discussed in the following.

3.2.1.1 Optimization Goals

Caches serve as a low-pass filter for popular content. Hence, depending on the Saving
bandwidthcacheability of the request distribution observed, caches reduce the amount of net-

work load measured in bandwidth between the cache and the content source which

3.2 proactive caching 45

holds the entire content catalog. This property can be efficiently leveraged, e.g., in
heterogeneous networks with network segments of different bandwidth availability.
One prominent example are mobile networks, where the backhaul, i.e., access and
aggregation network, is often considered to be or to become a bottleneck [Zha14;
BNP+15; TMF+14]. Therefore, caches between the mobile backhaul network and the
customers can reduce the load and, thereby, the required bandwidth at the backhaul
network. Though, this is only possible if the content is cacheable, which requires re-
dundant requests within a certain time interval as well as unencrypted transmissions
or a collaboration of the ISP and the content provider.

The Cache Hit Rate is the most common metric when evaluating caching mecha-
nisms and describes the percentage of requests that were served from the caching
system instead of from the source. The CHR is defined as the ratio of cache hits of
the cache or, in case of multiple caches, for the entire hierarchy to the overall number
of requests N, i.e., 1

N

∑N
i=1 1hi with hi evaluates to true if request i is a hit and

false otherwise.
Accordingly, this metric indicates the origin offload, i.e., how much traffic can be

saved at the content origin by caching. A high CHR does not only save bandwidth Quality of
experiencebut also increases the transmission latency to the client which increases the user-

perceived QoE (cf. Section 2.3.1) as videos tend to start playing back faster and the
overall QoE is increased by a lower transmission latency as measured by Stohr et
al. [SFF+16]. A weakness of the CHR is that it does not reflect the number of bytes
but of cached content items. However, each content item can have a different size. To
this end, the less prominent Byte Hit Rate (BHR) can be used if the absolute amount
of bytes served from the caching system has to be evaluated. Similar to the CHR, the
BHR is defined as the ratio of Bytes delivered from the cache to the overall number
of Bytes requested B, i.e., 1B

∑N
i=1 bi with bi as the size of the content in Bytes that

belongs to request i.
During peak usage times, disk load is often a major performance bottleneck next

to network latency. Here, insert and delete operations take much more time than Disk
deteriorationread operations and, furthermore, lead to deterioration of Hard Disk Drives (HDDs)

as well as Solid-State-Drives (SSDs). In recent years, the price gap between SSDs
and HDDs has closed [Hac15], which makes SSDs attractive as storage for caches.
One drawback when using SSDs is the deterioration. SSDs, as NAND flash devices,
consist of storage cells, which store bits by assigning two different voltage levels:
one representing a 1 and the other one representing a 0. These cells are limited
in the number of times this value can change [Bas15]. Hence, the number of write
operations is a vital cost metric considering the lifetime of SSDs. Read operations are
far less costly and strongly correlate with the CHR.

3.2.1.2 Proactivity Trigger

In a practical deployment, a proactive mechanism is executed multiple times. There-
fore, it needs to be defined which event triggers the mechanism execution. A con- Continuous

triggertinuous activation of the proactive mechanism is the most preferable from the per-
formance perspective as it permanently adapts the respective mechanism. However,
this might come at a high price, e.g., when the required computational effort is high,
e.g., when re-training a machine learning model. Instead, a scheduled execution of Scheduled

triggerthe proactive mechanism can be a trade-off between optimal performance and low

3.2 proactive caching 46

cost. Here, the frequency of the execution has to be carefully considered to keep the
performance degradation bounded. Time To Live (TTL)-based cache eviction poli-
cies can be seen as a special case of scheduled triggering since each content item
is assigned to a timer that determines when the content is removed from the cache.
Recent works in this area address how cache networks can be optimized by analyt-
ically deriving optimized TTL-based eviction policies [BHC+15; BGS+14]. Besides System

metrics as a
trigger

a continuous and a scheduled execution, a third option is using an intermediate
metric which is continuously monitored and triggers the execution if it exceeded or
undershot a specified threshold. This metric can either be a native system metric or
a composed metric considering multiple native metrics. A mix of scheduled trigger-
ing and metric-based execution can also be reasonable if the metric-based execution
can be expected to rarely happen but is essential to prevent a severe performance
depletion.

3.2.1.3 Popularity-based Caching

Chowdhury and Makaroff investigate popularity growth patterns in YouTube and,
thereby, distinguish between YouTube categories [CM13]. For their analysis, they use
a dataset of videos uploaded within two days and monitored the view count of these
videos for the following five months. They found that YouTube categories exhibit View growth

patterndifferent view growth patterns regarding maximum popularity as well as popularity
evolution over time. Furthermore, they successfully applied time series clustering to
understand growth pattern for different categories. One of their findings is that early
video popularity is unsuitable for predicting future popularity.

The findings of the authors motivate our category-aware caching mechanism, Pro-
Cache, proposed in Chapter 5 and confirm that content belonging to different YouTube
categories are likely to profit from different caching strategies and storage size. A re- Storage

Divisioninglated storage division-based approach is presented by Shafiq et al. [SKL16]. They
divide the cache storage into multiple adaptive segments for images, video, audio,
compressed, and misc. A simple approach that is designed to optimize the cache
performance for content of different popularity is Adaptive Replacement Cache as
introduced in Section 2.2.1.2. When using Adaptive Replacement Cache (ARC), the
cache storage is split into two cache divisions where each has its own ghost list
that tracks recently evicted content. The first cache division is a probationary cache,
which stores content that is requested for the first time. If new content has to be
cached and the probationary division is full, the oldest content is evicted in a First
In - First Out (FIFO)-manner and the new content is stored. In this case, the ID of
the evicted item is stored in the probationary part’s ghost list. The ghost lists are lim-
ited in the number of items and cannot exceed the size of the corresponding cache
division. A cache hit in the probationary part causes the content to be moved inside
the Least Recently Used (LRU) cache division, assuming that it will be requested
again soon. In case the LRU cache evicts content, the content ID is stored in the LRU
cache’s ghost list. If the requested content is stored in the probationary part but its
ID is already present in its ghost list, this indicates that the probationary part is too
small. Therefore, its size needs to be increased. Consequently, the LRU cache’s size
needs to be decreased to not exceed the available storage space. Similarly, in case
content is moved from the probationary to the LRU cache and is present in the LRU

3.2 proactive caching 47

cache’s ghost list, the LRU cache is increased and its probationary part decreased in
size [Eva14; MM04].

3.2.1.4 Anticipative Caching

Chatzieleftheriou et al. [CKK17] use a recommender system in a way that increases
the CHR. To this end, a user’s content search is answered such that content items Content

consolidationwhich are of interest to many users are ranked higher and are recommended to the
user. Thereby, the user may not get the content perfectly matching his interest but
similar content. The divergence between the most suitable and the recommended
content is measured and can be bound by a maximum tolerable distortion.

Announcement-
based

Bai et al. [BJS13] discuss caching mechanisms using information from OSNs for
content published on Facebook and Yahoo. Their proposed approach is denoted as
SOCR (Social On- line Cache Refreshing) and refreshed cache content in an online
manner each time a user requests his news feed. A related approach for VoD services
is proposed by Claeys et al. [CBV+15]. They use all users’ current playback position
t anticipate which video segments are going to be requested in the near future to
cache them in advance.

Kaafar et al. [KBD13] propose a proactive caching approach for CDNs. Therefore, Popularity
predictionvideo candidates are determined based on either using a content-based recommen-

dation for cold items with only a few requests or Collaborative Filtering for warm
items. However, they do not propose a specific mechanism nor an evaluation of their
proposal.

3.2.1.5 Locality-sensitive Caching

In scenarios with a location-bound content demand, locality-sensitive caching helps
to offload source and the backhaul network. Here, clients can retrieve content from Local

popularitya nearby cache server instead of the source or a potentially far away cache. Besides,
the local cache can adapt to the content popularity distribution of the specific area
it serves. Golrezaei et al. [GSD+12] study this scenario empirically, while Dernbach
et al. [DTK+16] propose an analytical performance model. Besides spatial-correlated
content popularity, also for globally popular content, the distance from the cache to
the users’ location is an important metric to consider. A higher distance does not only Source

selectioncreate a higher delay that correlates with the user-perceived QoE but also uses more
network resources and path capacity. Though, it can be reasonable to select a more
distant cache for delivery in case the bandwidth of the nearby cache is significantly
lower. This scenario is studied, e.g., by Bhat et al. [BRZ+17].

3.2.2 Discussion of Selected and Representative Work

Shafiq et al. [SKL16] propose a content-aware caching replacement approach based
on the insights gained from a CDN workload analysis. Motivated by the temporal Content-

aware
caching

dynamics for different content types, e.g., video, images, and compressed files, the
authors divide the cache storage among different category types in a dynamic fash-
ion. They allocate more storage to content types that generally contribute more to the
cache performance. They propose to measure this performance using the CHR for
content of equal size and the BHR for content of different sizes. To estimate a con-

3.2 proactive caching 48

tent type’s performance contribution, they use a time series prediction model, i.e.,
Autoregressive Integrated Moving Average. The derived model is regularly updated
because a continuous update would make the storage allocation unstable. Their find-
ings motivate the category-aware storage-splitting approach we propose for Pro-
Cache. An approach that focuses on video popularity is proposed by Hasslinger
et al. [HNH14]. They compare LRU with statistic-based caching strategies for Zipf-
distributed popularity. They propose Score-gated LRU, defining a score for each
object by its popularity. Thereby, the items in the cache are kept constant as long as
content popularity distributions do not change. This is beneficial over LRU which al-
ways loads every newly requested object into the cache, if not present already. Using
score-gated LRU, an object is only inserted in the cache if its score surpasses the low-
est score of all objects in the cache. By implementing a variant of score-gated LRU,
the authors achieve about 10% hit rate increase compared with LRU. However, it is
questionable how the proposed score can be efficiently computed and how it per-
forms on real-world workloads which exhibit quite diverse popularity distributions
depending on a videos category [CM13] and age [HNH14].

A very different approach compared to the approaches mentioned before is pre-
sented by Chatzieleftheriou et al. [CKK17]. They propose using recommender sys- Anticipative

cachingtems as a traffic engineering tool. Specifically, they shape the demand of their users
by recommending content that is of interest to a large number of users instead of
only a few. Thereby, the cacheability of the requests arriving at the cache is increased
and, consequently the CHR. To balance the user- and cache-centric objectives, a max-
imum distortion is defined, limiting the deviation of the user’s ideal content and the
recommended one. We refrain from adopting this idea in the design of ProCache

since it most likely decreases the overall user satisfaction which we consider as the
most important long-term factor for a VoD service’s success. However, in cases of
network congestions this might be a suitable temporary solution and superior to
low-quality video delivery or stalling playbacks. An announcement-based caching
approach for VoD content is presented by Claeys et al. [CBV+15]. By respecting
the temporal structure of video segment requests, as well as the chance that a user
watches multiple episodes of a series consecutively, announcements are created to
inform the caching policy in advance. The evaluation is based on a dataset from
2010 containing 108,392 requests to 5,644 unique videos, which are assumed to be
50 minutes long, using 1 Mbit/s. Simulations are conducted using a realistic net-
work topology and assuming an exponential distribution of video session durations.
Thereby, the authors consider that most videos are only watched partially [KH14]. By
considering announcements of the videos a user is going to watch in the near feature,
the CHR is increased by 11% compared with LRU. In contrast to the paper proposed,
the authors consider episodes of a VoD portal dedicated to TV series which results
in a small and homogeneous content catalog compared with YouTube. Furthermore,
videos offered by the most popular VoD services tend to be much shorter and, hence,
the positive effect of segment announcement is limited or might even negatively im-
pact the performance. Baştuğ et al. [BBD14; BBD16] design an analytical model to
estimate the performance of caching at small cell base stations in cellular networks.
In a further work, they discuss the trade-offs on deploying cache-equipped small cell
networks [BBK+15].

Next, we discuss approaches that proactively cache by considering cache and user
locations. Dernbach et al. [DTK+16] propose a model which is able to capture the

3.2 proactive caching 49

overlap between intra- and inter-regional user preferences. This allows giving guid- Location-
aware
caching

ance to the question of whether a content provider should fill globally popular con-
tent into its caches or, in addition, also consider region-specific content popularity.
Golrezaei et al. [GSD+12] investigate the potential of prefetching at femtocells for co-
operative caching in mobile networks to relieve the backhaul network. For their sim-
ulative evaluation, they use the superposition of the two most active four-hour time
intervals contained in a YouTube trace recorded in 2008 at a US university campus.
Therefore, their evaluation results are hard to compare with a country-wide or global
workload. Bhat et al. [BRZ+17] propose a mechanism denoted as Software-defined
Networking (SDN)-assisted Adaptive Bitrate Streaming (SABR). It is based on an
enhanced DASH manifest and an SDN-assisted control plane that monitors network
conditions. The DASH manifest is extended by providing multiple locations of the
video segments together with the available bandwidth of the delivery path. Hence,
the client stays in control of the decision from which source to download the respec-
tive DASH segment. An SDN control application evaluates this bandwidth informa-
tion. The proposed approach can efficiently react to network congestions. However,
we find the general cache performance also in the absence of congestion more im-
portant and, thus focus on it in the design of ProCache. Summers et al. [SBE+16]
analyze Netflix’s workloads showing chains of sequential requests. Here, the authors
present prefetching algorithms that reduce hard disk and main memory utilization,
thereby not focusing on individual users.

3.2.3 Summary

In the related work discussed before, we have seen that content-aware caching is
generally performance-increasing. While Shafiq et al. [SKL16] have shown this for
different file types such as video, images, and compressed files, ProCache adapts
this idea for VoD content categories. Thereby, we focus on one of the largest sin-
gle sources of Internet traffic, namely YouTube and its specific set of subcategories.
Proactively caching by using video popularity forecasts is an interesting and promis-
ing idea considering historic and a priori known popularity distributions. However,
a simple score [HNH14] used for recent content is unlikely to work efficiently on
real-world workloads. First, it is generally hard to conduct popularity predictions
for recent contents with only a few requests [Pin+13]. Hence, it is questionable how
efficient a popularity prediction approach is for real-world workloads. Furthermore,
a single score function is not flexible enough to accurately model the differences in
video popularity concerning video categories. Depending on the video category, the
distribution of the time till a video reaches its popularity peak and the percentage of
total views over time differ significantly [CM13]. Thus, in the design of ProCache,
we emphasize different content categories by flexibly reacting to their different and
changing popularity distributions. We refrain from changing the content presented
to the user in favor of a higher cache performance [CKK17] a maximum user sat-
isfaction is essential for the long-term success of a VoD platform. While we find
announcement-based caching a good approach for VoD portals with small content
catalogs and long playback durations, it is unlikely to perform well for typical VoD
services such as YouTube, Vimeo, or Dailymotion. The primary reason for this is that
their content is short and watched only partially. Hence, announcements are less

3.2 proactive caching 50

predictive and, therefore are likely to have limited or negative effects on the cache
performance since it occupies storage that can be used for actually requested con-
tent. The same applies to approaches that leverage a subsequent request behavior
as observed for Netflix [SBE+16]. Furthermore, we decide to evaluate ProCache us-
ing a real-world user request trace and, thereby to follow an empirical approach. In
contrast to analytical approaches [BBD14; BBD16; DTK+16], this guarantees realistic
content popularity time patterns and workload which is generally hard to model
analytically (cf. Section A.5).

Table 4 provides a comprehensive overview of the contributions of the distinct
works as well as their efficiency metrics and research area-implied properties. We
see that the related work does not focus on collaboration of different admission and
eviction strategies and at the same time acknowledge that different types of video
content, i.e., music or sport can profit from disjunct caching strategies. In Chapter 5,
we aim to close this gap by the ProCache mechanism presented.

3.2 proactive caching 51

Ba
nd

w
id

th
Sa

vi
ng

H
it

Ra
te

W
rit

e
O

pe
ra

tio
ns

Tr
ig

ge
r

St
or

ag
e

Si
ze

Va
ria

tio
n

Se
gm

en
te

d
Vi

de
os

M
ul

tip
le

Q
ua

lit
ie

s

Ev
al

ua
tio

n
D

at
a C

on
te

nt
Ty

pe

C
on

tr
ib

ut
io

n
A

pp
ro

ac
h

Ef
fic

ie
nc

y
R

es
ea

rc
h

ar
ea

im
pl

ie
d

D
es

cr
ip

ti
on

Content

Sh
afi

q
et

al
.

[S
K

L1
6
]

+
+

+
C

on
ti

nu
ou

s
−

−
−

C
D

N
Tr

ac
e

M
ix

ed
Th

e
ca

ch
e

st
or

ag
e

is
di

vi
de

d
am

on
g

di
ff

er
en

t
co

nt
en

t
ty

pe
s,

e.
g.

,i
m

ag
es

,v
id

eo
s,

an
d

au
di

o

H
as

sl
in

ge
r

et
al

.
[H

N
H

1
4

]
−

+
−

C
on

ti
nu

ou
s

+
−

−
Sy

nt
h.

R
eq

.
N

/A
C

on
te

nt
is

ev
ic

te
d

us
in

g
a

po
pu

la
ri

ty
sc

or
e

to
ke

ep
th

e
ca

ch
ed

co
nt

en
ts

ta
ti

c
if

th
e

po
pu

la
ri

ty
do

es
no

t
ch

an
ge

.

Pr
o

C
a

c
h

e

[K
PR

+1
8
]

+
+

+
C

on
ti

nu
ou

s
+

+
−

R
eq

.T
ra

ce
Yo

uT
ub

e
Th

e
ca

ch
e

st
or

ag
e

is
se

gm
en

te
d

ac
co

rd
in

g
to

co
nt

en
t

ca
te

go
ri

es
an

d
th

ei
r

si
ze

ad
ap

ts
to

th
e

co
nt

en
t

po
pu

la
ri

ty
dy

na
m

ic
al

ly
.

Anticipative

C
ha

tz
ie

le
ft

he
ri

ou
et

al
.[

C
K

K
1

7
]

−
+

−
C

on
te

nt
Si

m
ila

ri
ty

+
−

−
Sy

nt
h.

R
eq

.
N

/A
C

ac
he

-a
w

ar
e

re
co

m
m

en
da

ti
on

of
co

nt
en

t
si

m
-

ila
r

to
th

e
us

er
’s

in
te

re
st

s
bu

t
in

te
re

st
in

g
to

m
an

y
ot

he
r

us
er

s.

C
la

ey
s

et
al

.
[C

BV
+1

5
]

+
+

−
C

on
ti

nu
ou

s
−

+
−

R
eq

.T
ra

ce
N

/A
C

on
te

nt
ne

ed
ed

by
m

os
t

cl
ie

nt
s

so
on

is
pr

e-
fe

rr
ed

to
be

ke
pt

in
th

e
ca

ch
e

du
ri

ng
ev

ic
ti

on
.

Ba
st

ug
et

al
.

[B
BD

1
4

]
+

+
−

N
/A

+
−

−
N

um
er

ic
al

N
/A

A
n

an
al

yt
ic

al
m

od
el

is
de

si
gn

ed
to

es
ti

m
at

e
th

e
pe

rf
or

m
an

ce
of

pr
oa

ct
iv

e
ca

ch
in

g
at

sm
al

l
ba

se
st

at
io

ns
.

Locality

D
er

nb
ac

h
et

al
.

[D
T

K
+1

6
]

+
+

−
Sc

he
du

le
d

+
−

−
M

ov
ie

Le
ns

N
/A

A
co

m
pr

eh
en

si
ve

an
al

yt
ic

al
fr

am
ew

or
k

fo
r

st
ud

yi
ng

th
e

im
pa

ct
of

lo
ca

lit
y-

aw
ar

e
pr

oa
c-

ti
ve

ca
ch

in
g

is
pr

op
os

ed
.

G
ol

re
za

ei
et

al
.

[G
SD

+1
2
]

−
−

−
N

/A
−

−
−

R
eq

.T
ra

ce
Yo

uT
ub

e
D

is
tr

ib
ut

ed
ed

ge
ca

ch
es

he
lp

to
se

rv
e

ne
ar

by
cl

ie
nt

s
by

st
or

in
g

pr
om

is
in

g
pr

ef
et

ch
ca

nd
i-

da
te

vi
de

os
.

Bh
at

et
al

.
[B

R
Z

+1
7
]

−
+

−
N

et
w

or
k

Lo
ad

−
+

+
Sy

nt
h.

R
eq

.
N

/A
D

A
SH

m
an

if
es

ts
ar

e
ex

te
nd

ed
by

ne
tw

or
k

ba
nd

w
id

th
pr

ed
ic

ti
on

s
fo

r
m

ul
ti

pl
e

ca
ch

es
st

or
in

g
th

e
co

nt
en

t

Ta
bl

e
4
:C

la
ss

ifi
ca

ti
on

of
pr

oa
ct

iv
e

ca
ch

in
g

m
ec

ha
ni

sm
s:

de
si

gn
go

al
s,

ke
y

fe
at

ur
es

(s
up

po
rt

ed
/o

pt
im

iz
ed

pe
r

de
si

gn
(+

)
or

un
aw

ar
e/

no
td

is
cu

ss
ed

/u
nc

le
ar

(−
))

3.3 sdn-based multicast approaches for video-on-demand 52

3.3 sdn-based multicast approaches for video-on-demand

We want to provide a brief understanding of the major differences between tradi-
tional Internet Protocol (IP) multicast and SDN-based multicast in the context of
OTT VoD content delivery since it is essential to understand the future works pre-
sented in this section. ISPs often use network layer multicast for their own internal
IPTV services, for efficient content delivery [LLW+11]. In contrast to this, OTT con-
tent providers operate on the application layer and can only rely on the Internet
routing mechanisms. IP multicast does not meet the requirements of OTT delivery, IP multicast

not suitable
for OTT
content

and hence is not available for this scenario [DLL+00]. The resources for managing
multicast groups render traditional IP multicast for OTT services unlikely to scale,
because each router needs to provide multicast capabilities. However, the advent of
SDN allows revisiting network management concepts. This includes multicast which SDN enables

multicast of
OTT content

becomes more practical and easier to manage since an SDN-enabled switch is by de-
fault able to apply multicast mechanisms as a centralized SDN control application.
Hence, the need for multicast-specific hardware is eliminated and each switch in the
network capable of supporting multicast. Recently, SDN has found a broad adaption
by network equipment vendors and network providers [JKM+13]. Though, SDN net-
work architectures are centrally controlled. Thus, the deployment will most likely
be per network operator, e.g., ISP-wide and not capture multiple ISPs and content
provider. Thereby, each stakeholder stays in control of its network. However, ISP-
controlled SDN networks open the possibility for SDN-enabled multicast of OTT
content by ISP/CDN collaboration without the drawback of traditional IP multicast.
An extensive overview of SDN-based multicast approaches and its specific use in an
OTT content delivery scenario inside ISP networks can be found in the Ph.D. thesis
of Julius Rückert [Rüc16] in Section 4.1. Before we review the related work in the
area of SDN-based OTT VoD delivery, we define a taxonomy. This taxonomy is used
to categorize the related work with respect to their design choices.

3.3.1 Taxonomy

Figure 14 depicts the taxonomy of SDN-based multicast for OTT VoD used in this
thesis. On the taxonomy tree’s first level, we see the Optimization Goals, the Client
Aggregation, as well as the Content Selection method used, the Playback Start time, and
the Cooperation type. The manifestations of each of the aforementioned nodes are
discussed in the following.

3.3.1.1 Optimization Goals

The most obvious property of multicast is that it avoids redundant transmissions of
the same data. Hence, multicast saved bandwidth in scenarios where the same con- Saving

bandwidthtent is requested by multiple users connected to the same network. Assuming a geo-
graphically equally distributed demand, the bandwidth reduction is especially high
at the network’s core and the path to the content origin, while the last hop cannot
profit from the bandwidth reduction since it constitutes the latest point of multicast
stream duplication, i.e., one duplicate stream per requesting user. The bandwidth
saved, when using multicast, can be used by other applications as well as by serving
the content in a higher quality which fewer interruptions. Thereby, the QoE is likely QoE

3.3 sdn-based multicast approaches for video-on-demand 53

Figure 14: Taxonomy of SDN-based OTT VoD streaming

to be increased as potential network bottlenecks can be resolved in many cases, de-
pending on the network topology, the geographically request distribution, and the
connection path to the content source(es). More information on QoE in the context
of video streaming can be found in Section 2.3.1.

The number of multicast flow entries and their changes state practical limitations
of each SDN-enabled system [KRE+15], as the Ternary Content-Addressable Mem-
ory (TCAM) required for accessing these entries is a costly and limited resource on
an SDN-enabled hardware switch. Therefore, a low resource footprint is desirable Low resource

consumptionwhen using SDN-enabled hardware switches. Also, the management overhead, i.e.,
the SDN flow entry changes are limited as well and have to be within the capabilities
of current hardware devices. Without respecting these limitations, an SDN-based sys-
tem is not considered practicable especially in the context of other SDN applications
running in parallel.

3.3.1.2 Client Aggregation

In the following, client aggregation mechanisms for aggregating clients are proposed.
The scenario assumes that many clients request segmented videos, e.g., DASH from
a limited content catalog.

Batching [DSS96] aims for aggregation of streams delivering the same content
into one multicast group. Hence, clients are likely to wait until the next batching Batching

time window starts. Thereby, batching has a fixed maximum startup latency, i.e.,
the size of the batching time window. Letting users wait for more than a few sec-
onds, until the playback starts, is impractical since it decreases the user-perceived
QoE [HSB+13]. Different patching schemes are proposed which vary in their main
objectives. MQLF [DSS94] schedules the segments requested by most clients first.
Thereby, the maximum bandwidth can be saved at the cost of fairness, since requests
to unpopular content are unlikely to be served. FCFS [DSS94] gives emphasis to the
maximum waiting time and schedules the segment with the oldest pending request
first and thereby more emphasis on fairness. More evolved schemes exist, e.g., in
[AWY96b], [DF02], and [TV97], but are left out because they are of less relevance for
this thesis.

To eliminate the major drawback of batching, patching [HCS98] reduces the initial
waiting time till a video plays back. This is achieved by additional video delivery Patching

streams to overcome the gap, i.e. the patching window, between a user’s current

3.3 sdn-based multicast approaches for video-on-demand 54

playback position and the playback position of the existing multicast group(s) for
the requested content. Some works have adapted patching to different scenarios,
More evolved schemes exist, e.g., Pyramid Broadcasting [VI95; AWY96a], Skyscraper
Broadcasting [HS97; EV98], Disk-conserving Broadcasting [GKT02] as well as ap-
proaches using more than two download channels, such as Controlled multicast [GT99]
and Catching and Selective catching [GZT99], but are left out because they are of less
relevance for this thesis.

Deadline-oriented approaches give the highest priority to the video segments that
are needed most recently to avoid playback stalling. Thereby, fairness is ensured by Deadline-

orientednot letting certain video players starve. However, this comes at the cost of throughput
in certain scenarios. For example, if segment A has a deadline earlier than segment
B and segment A is scheduled to be multicasted. Assuming that no further resources
for multicasting are available, not segment B might not be delivered even though
much more clients are requesting it.

3.3.1.3 Content Selection

Much more on-demand content exists compared to IPTV channels, e.g., about 1.2
billion5 videos on YouTube. As the number of multicast groups is limited on a hard-
ware switch, not all of these videos can be delivered by network-based multicast.
As VoD popularity is Zipf-distributed, only a small fraction of the content catalog
is popular and, therefore, efficient to be delivered by multicast. Selecting videos for
multicast is challenging as popularity changes dynamically based on, e.g., video age
and daytime [CKR+07].

Assuming that the video popularity distribution does not change rapidly, the cur-
rent popularity can serve as an indication of which videos to consider for multicast.
For content with slowly changing popularity distributions, e.g., Music content, this Popularity

is likely to be a suitable approach. However, it is not able to anticipate the effect of
popularity changes in the near future. A video might, e.g., have a decreasing pop-
ularity and can be assumed to be irrelevant for multicast within the next time. To
detect such trends and consider them in the decision on which content to multicast,
a prediction is required. Thereby, videos becoming more popular can be selected for Prediction

multicast at an early stage. In addition, a prediction may consider that a new Mu-
sic video is released at a given time and thousands of people are waiting to watch
it as soon as it becomes available. A predictive approach allows considering such
information in advance.

3.3.1.4 Playback Start

When aggregating clients into a multicast group, they may be required to wait until
a new multicast stream for the requested video is created and they get delivered
the requested content. This has the drawback of letting clients wait, which renders Scheduled

them likely to quit the service with a bad impression. Hence, an immediate playback
start is preferable. This can be achieved by serving the clients with an intermediate Immediately

multicast group to patch the gap between the client and a potentially existing multi-
cast group. However, this assumes that the client’s video buffer can store the content

5http://tubularinsights.com/youtube-changes-33-percent-a-year/ [Accessed: November 19,
2018]

http://tubularinsights.com/youtube-changes-33-percent-a-year/

3.3 sdn-based multicast approaches for video-on-demand 55

that constitutes this gap and join an existing multicast group afterward. Another ap-
proach would be to rely on unicast for a fast playback start, which is also preferable
in the context of many videos being watched only partially in common VoD services
like YouTube [KH14].

3.3.1.5 Cooperation

Content Delivery Networks (CDNs) like Akamai6, Open Connect7, and Google Global
Cache8 help to deliver content globally. However, CDNs are often not allowed to
operate inside ISPs because they fear CDNs as unpredictable and hard to manage
traffic sources [HH11]. Therefore, CDNs are often not present within ISP networks
and cannot help to optimize the network usage there. In the past, ISPs cached by- Non-

cooperativepassing content from outside their network on the path to one of their customers.
Nowadays, this has become inefficient since there is a trend to encrypted HTTPS
connections. ISP/CDN cooperation is likely to solve this problem, e.g., by allowing
group encryption schemes [DC06] to support a secure multicast transmission to the
clients. Such a scheme prevents the ISP from reading the content transferred from ISP/CDN

cooperationthe content source to the clients and at the same time allows efficient ISP-internal
multicast.

3.3.2 Discussion of Selected and Representative Work

Only a few mechanisms exist that consider SDN for multicast video streaming. Rück- SDN-based
multicast for
VoD

ert et al. [RBH+16] proposes a mechanism called Software-defined Multicast. They
design a one-to-many service which is used between CDNs and ISP to allow ISP-
internal multicast of OTT live video content. To this end, the ISP offers a control
Application Programming Interface (API) to the CDN. Thereby, the CDN informs
the ISP about video streams that can be delivered using multicast. In a next step, this
stream is sent from the CDN to the ISP and forwarded within the ISP network to the
clients by using SDN-enabled switches. The Software-defined Multicast (SDM) con-
troller manages the ISP-internal multicast groups. It maintains the required network-
layer multicast trees which need to be established inside the ISP network. Therefore,
the shortest-path tree is computed by using a variant of Dijkstra’s algorithm. This
tree consists of the paths on which the video stream is forwarded. Each multicast
group is assigned to a unique IPv6 multicast address of the ISP which is used by
the CDN to send the video segments which are multicasted within the ISP network.
After computing the multicast tree, the SDM controller translates the tree topology
to the corresponding SDN flow entries and forwards them to the SDN controller.
These flow entries are responsible for forwarding the multicast groups’ data through
the data plane. One subtask of the forwarding is the video stream duplication, e.g.,
at the latest possible point in the network to each of the group’s clients. Besides, the
SDM controller maintains the multicast tree, e.g., when client join or leave and trig-
gers the necessary flow entry changes by notifying the SDN controller. The VoDCast

mechanism proposed in this thesis is based on the concept of SDM. However, SDM

6https://www.akamai.com/ [Accessed: November 19, 2018]
7https://openconnect.netflix.com [Accessed: November 19, 2018]
8https://peering.google.com [Accessed: November 19, 2018]

https://www.akamai.com/
https://openconnect.netflix.com
https://peering.google.com

3.3 sdn-based multicast approaches for video-on-demand 56

focuses on live streaming only while VoDCast addresses the particular challenges
to design an SDN-based OTT VoD delivery mechanism.

Yang et al. [YYR+15] propose an SDN-based Multimedia Multicast Streaming
Framework denoted as SDM2Cast. They highlight the scalability of their approach
and its flexibility as they use Scalable Video Coding (SVC). Their evaluation is based
on a prototypical implementation using three different video quality layers, 16 Open-
Flow switches, and 60 client devices. During the evaluation, each client requests a
pre-defined content quality. In the author’s experiments, SDM2Cast reduces the con-
sumed bandwidth by 50% compared with IP multicast using a single video quality.
However, SDM2Cast is not evaluated using a realistic ISP workload and scenario.

In the following, we present scheduling mechanisms designed for VoD content
delivery. Dan et al. [DSS96] propose a fixed batching time-window in which requests
for the same video are aggregated, resulting in a separate multicast group for each
video at the end of each time-window. Consequently, most client requests cannot Batching

be handled immediately and are queued. Two policies are proposed that schedule
videos from this queue, either prioritizing popularity or waiting time for multicast
delivery. Popularity-based scheduling has the drawback of high waiting times for
users that request less popular videos. The higher the waiting time, the higher is the
probability of a user leaving the streaming service, which is undesired. Prioritizing
requests with longer waiting times has the drawback of many groups serving only
a small number of users. A combination of both of these policies is proposed by
Aggarwal et al. [AWY96b], taking waiting time and video popularity into account.
Overall, the main drawback of batching is the additionally introduced waiting time
for users till they are delivered with the first video segment. However, a fast playback
is essential for the user experience. Furthermore, many video sessions only last a
few seconds. Therefore, it is considered unreasonable to deliver the first segments by
multicast as it would cause a lot of costly join and leave events.

Hua et al. [HCS98] present two patching approaches taking care of the limited
buffer space B, denoted in the number of playback minutes. The first scheme, i.e., Patching

Greedy Patching does not create new groups after a certain network-wide group
limit is met, respecting limited network resources. A client immediately joins an ex-
isting group to receive the next B minutes of the video to fill its buffer. Compared
to batching this approach’s benefit is that clients receive segments earlier, i.e., before
they are needed for playback. However, the drawback is that the first received seg-
ments are unlikely to belong to the video start and occupy the client buffer until the
video player consumes them. This decreases the probability of receiving more recent
segments by multicast. The second approach by Hua et al. requires each client to re-
ceive two multicasts in play rate simultaneously. One is an existing multicast group
like in the previous approach. The other one is temporary to receive the gap be-
tween video start and the playback position of the existing multicast. This decreases
the waiting time existing in the first approach. However, it is only reasonable to
join both multicast groups if the playback distance between the temporary multicast
group and the already existing one is smaller than buffer space B. Therefore, this
improvement is limited and comes at the cost of temporarily doubling the number
of multicast groups which are a limited resource.

Eager et al. [EVZ01] propose two approaches focusing on minimal waiting time
for popular content. Both approaches use a parameter n for the maximal number of
groups a client can join. In the first approach, a client receives all segments with a Deadline-

oriented

3.3 sdn-based multicast approaches for video-on-demand 57

playback position of maximal x seconds away. The parameter x can be configured.
If a client can receive more than n segments simultaneously, only the n groups
which deliver the segments needed earliest for playback are joined. This can lead to
a fragmented reception of segments and requires a complex scheduler. According to
the authors, this is impractical to implement. Therefore, a more practical approach
is proposed, delivering a video stream by at least one multicast group and other
clients can join it. Similar to the first approach of [HCS98], each new client creates a
temporary multicast group to minimize its waiting time and additionally joins the
most recently created multicast group for this video, streaming segments starting
from playback position p. If a temporary multicast group reaches position p− 1 the
client leaves it and stays a member of the previously existing multicast group only.
This leave only happens, if no other client joined the temporary multicast group in
the meantime. If there is another client in the group, the client which created the
group has to stay in the group till the last member leaves this group. This approach
neglects per-group costs and is likely to require more bandwidth caused by receiving
segments twice. To this end, mobile devices with limited resources, e.g., mobile data
volume are unlikely to use such a system.

Aggarwal et al. [ACG+09] propose two deadline-oriented schedulers. In the first
scheduling approach, no new groups are created if the maximum number of groups,
similar to the first approach of [HCS98], is reached. If a group becomes free, a seg-
ment which is needed for playback first, by most of the clients, is scheduled. Each
client who requested this segment joins the multicast group and receives the segment.
In case no group is free and a segment reaches its deadline, it is never scheduled
causing a playback interruption. In the second approach, the number of groups is
unlimited. Therefore, it outperforms the first approach measured by required band-
width and initial waiting time as the first segment’s deadline is set to the current
time. However, most videos, e.g., on YouTube, are not watched fully. Therefore, issu-
ing requests for all video segments seems unrealistic.

A comprehensive survey of traditional VoD multicast mechanisms can be found
in the survey paper of Ma et al. [MS02] and a survey of broadcasting schemes for
VoD is presented by Hu et al. [Hu01]. Other approaches, which are not in the focus
of this thesis, as they discuss multicast in specific application domains, e.g., in com-
bination with other delivery techniques are briefly described in the following. Feng
et al. [HC16] propose a client caching-enabled adaptive multicast delivery scheme
and Jayasundara et al. [JG13] and Ramesh et al. [RRG01] propose a joint approach
of caching and multicast for ISPs. Multicast schemes for VoD focusing on broadcast
delivery or the wireless channel [SC17; JL17; YWX17; THD04; RW16; RW13] are not
discussed in detail. Farhad et al. [FAK09] propose client-assisted patching for VoD
in enterprise networks. Griwodz et al. [Gri00] present an optimization for patching
denoted as Multilevel Patching [GLZ+00] and consider the application of patching in
conjunction with content caching [GZL+00]. Also, works focusing on client-assisted
P2P multicast are proposed [HBY04; CLN04]. Jang et al. [JL17] design a batching-like
scheme considering adaptive modulation and coding of the wireless channel. Yuan
et al. [YWX17] present an algorithmic approach to minimize initial stalling of a video
playback in wireless networks by combining fast broadcasting [JT98] with unicast.

3.3 sdn-based multicast approaches for video-on-demand 58

3.3.3 Summary

The results presented by SDM2Cast [YYR+15] are a proof-of-concept and show the
general feasibility of SDN-based multicast. However, the scenario and workload used
are unrealistic and do not allow any conclusions regarding the cost and performance
when applied to a real-world workload. A careful and thorough analysis of SDN-
based multicast is provided by DynSDM [RBH+16] and ASDM [BRV+15] which con-
duct comprehensive evaluations to assess their systems’ performance. However, they
focus on live video streaming and do not address the OTT VoD case. VoDCast closes
this gap by addressing the particular requirements of SDN-based multicast for the
VoD scenario. To do so, clients need to be served by a common multicast group. Sev-
eral techniques such as batching [DSS96], patching [HCS98], and deadline-oriented
approaches [EVZ01] have been discussed in the related work. Batching requires the
users to wait until the next batching time interval starts. This is not desirable since
the initial stalling time is increased and, thereby the QoE is decreased. Patching
improves batching by a faster playback start since an additional multicast group is
created to provide a patch between the user’s playback position and an already ex-
isting multicast group. However, this is not cost-efficient since a low of videos exist
on current VoD services such as YouTube, Vimeo, and Dailymotion. The available
resources do not support such a large number of distinct multicast groups. Further,
this is not efficient since the popularity exhibits a large long-tail of unpopular con-
tent (cf. Section A.5) which is inefficient to multicast. Hence, an efficient content
selection is missing which we address in the design of ProCache. Furthermore, we
evaluate the resource requirements of our mechanism carefully since they are lim-
ited in real-world deployments which is often neglected in the related work [DSS96;
YYR+15].

We see that only a few mechanisms exist that consider SDN for the delivery of VoD
using multicast. The existing mechanisms mostly focus on live content or are proofs-
of-concept at an early stage. Also, the scheduling approaches reviewed do not con-
sider the characteristics of VoD-specific user behavior, e.g., partial viewing [KH14]
and Zipf-like popularity distribution [GHM13; ACG+09; GAL+07] of a large content
catalog. So far, none of the existing works explores the potential of VoD for OTT
video streaming under realistic workloads. To address this relevant scenario, we pro-
pose the VoDCast mechanism in Chapter 6. We deduce that the related work does
either not consider the user’s need for a fast video start or does neglect that the num-
ber of multicast groups is a limited resource. For a realistic evaluation, the number
of groups and group changes have to be discussed.

Table 5 provides a synopsis of the related work. It provides a comprehensive
overview of the contributions of the distinct works as well as their efficiency met-
rics and research area-implied properties.

3.3 sdn-based multicast approaches for video-on-demand 59

Tr
af

fic
Re

du
ct

io
n

In
iti

al
St

al
lin

g

Re
so

ur
ce

Li
m

ita
tio

ns

Vi
de

o
D

el
iv

er
y

O
TT

Su
pp

or
t

Re
al

-w
or

ld
W

or
kl

oa
d

Sc
en

ar
io

C
on

tr
ib

ut
io

n
A

pp
ro

ac
h

Ef
fic

ie
nc

y
R

es
ea

rc
h

ar
ea

im
pl

ie
d

D
es

cr
ip

ti
on

LiveStreaming

SDN-basedMulticast

SD
M
2

C
a

s
t

[Y
Y

R
+1

5
]

+
−

−
SV

C
−

−
A

pr
ot

ot
yp

e
of

th
e

pr
op

os
ed

fr
am

ew
or

k
is

ev
al

ua
te

d
as

a
pr

oo
f

of
co

nc
ep

tu
si

ng
1

6
sw

it
ch

es
,3

vi
de

o
qu

al
it

y
la

ye
r,

an
d

6
0

te
rm

i-
na

ld
ev

ic
es

.

A
SD

M
[B

RV
+1

5
]

+
−

+
−

+
−

Th
e

tr
ad

e-
of

f
be

tw
ee

n
ba

nd
w

id
th

an
d

ne
tw

or
k

st
at

e
is

in
ve

st
i-

ga
te

d
us

in
g

un
ic

as
t

as
a

fa
ll-

ba
ck

so
lu

ti
on

w
he

n
m

ul
ti

ca
st

ca
n-

no
t

be
us

ed
,e

.g
.,

du
e

re
so

ur
ce

de
pl

et
io

n.

D
y

n
SD

M
[R

BH
+1

6
]

+
−

+
−

+
−

D
yn

SD
M

ex
te

nd
s

SD
M

by
em

ph
as

iz
in

g
IS

P-
in

te
rn

al
tr

af
fic

an
d

se
rv

ic
e

m
an

ag
em

en
t

pr
oc

ed
ur

es
,e

.g
.,

lo
ad

ba
la

nc
in

g
an

d
us

in
g

un
ic

as
t

as
a

fa
ll-

ba
ck

so
lu

ti
on

if
SD

N
sw

it
ch

ca
pa

ci
ti

es
ar

e
ex

-
ha

us
te

d.

VoDStreaming

Scheduling

Ba
t

c
h

i
n

g

[D
SS

9
6
]

+
−

−
−

−
−

O
ne

m
ul

ti
ca

st
gr

ou
p

se
rv

es
re

qu
es

ts
w

it
hi

n
a

sp
ec

ifi
ed

ti
m

e
in

-
te

rv
al

.N
ew

re
qu

es
ti

ng
cl

ie
nt

s
ha

ve
to

w
ai

t
fo

r
th

e
be

gi
nn

in
g

of
th

e
ne

xt
ti

m
e

in
te

rv
al

.

Pa
t

c
h

i
n

g

[H
C

S9
8
]

+
+

+
−

−
−

C
lie

nt
s

im
m

ed
ia

te
ly

jo
in

an
ex

is
ti

ng
m

ul
ti

ca
st

gr
ou

p.
A

dd
it

io
n-

al
ly

,a
m

ul
ti

ca
st

gr
ou

p
is

cr
ea

te
d

to
pa

tc
h

th
e

di
ff

er
en

ce
be

tw
ee

n
th

e
cl

ie
nt

’s
an

d
th

e
ex

is
ti

ng
m

ul
ti

ca
st

gr
ou

p’
s

pl
ay

ba
ck

po
si

ti
on

.

D
ea

dl
in

e-
or

ie
nt

ed
[A

C
G

+0
9
]

+
−

+
Se

gm
en

te
d

−
+

Tw
o

ED
F-

sc
he

du
le

rs
ar

e
pr

op
os

ed
th

at
m

ax
im

iz
e

th
e

w
ai

ti
ng

ti
m

e
ti

ll
a

vi
de

o
se

gm
en

ti
s

de
liv

er
ed

to
ag

gr
eg

at
e

a
hi

gh
nu

m
be

r
of

in
te

re
st

ed
cl

ie
nt

s.

VoD

SDN

Vo
D

C
a

s
t

[K
H

H
1

7
]

+
+

+
Se

gm
en

te
d

+
+

Vo
D

C
a

s
t

us
es

SD
M

to
m

ul
ti

ca
st

Vo
D

co
nt

en
t

in
O

TT
sc

en
ar

io
s.

Th
er

eb
y,

IS
P-

C
D

N
co

lla
bo

ra
ti

on
,e

nc
ry

pt
ed

tr
af

fic
,a

nd
re

so
ur

ce
lim

it
at

io
ns

ar
e

co
ns

id
er

ed
.

Ta
bl

e
5

:C
la

ss
ifi

ca
ti

on
of

se
le

ct
ed

SD
N

-b
as

ed
vi

de
o

st
re

am
in

g
m

ec
ha

ni
sm

s:
de

si
gn

go
al

s,
ke

y
fe

at
ur

es
(s

up
po

rt
ed

/o
pt

im
iz

ed
pe

r
de

si
gn

(+
)

or
un

aw
ar

e/
no

t
di

sc
us

se
d/

un
cl

ea
r

(−
))

4
P R I VA C Y- P R E S E RV I N G M O B I L E V I D E O P R E F E T C H I N G W I T H
V F E T C H

In our review of the related work (cf. Section 3.1), we identified a gap in privacy-
preserving and content-oriented prefetching mechanisms. This chapter strives to

close this gap by presenting a novel privacy-preserving and personalized prefetch-
ing mechanism for video content on mobile devices. We denote this mechanism as
vFetch. To achieve efficient prefetching, we have to accurately model the user inter-
ests. However, in current recommender systems, this is mostly done by Collaborative
Filtering (CF), which models user interests by the user-behavior similarity to other
users. Hence, content that is interesting to similar users is recommended to the user
for which the recommendation is conducted. vFetch differs as it does not rely on
a database that contains many users’ video watch histories. Instead, we rely on the
video content properties and model the user’s interest by differentiating content that
is watched and not watched by the user. Thereby, vFetch does not depend on other
user’s data. Furthermore, it models the user interests locally as only the data of one
user needs to be considered. Thus, vFetch is privacy-preserving and designed to op-
erate on user terminals where the data is kept and processed at the user’s premises.
A further important aspect of prefetching is efficient scheduling of the video con-
tent download as the content needs to be fetched timely to avoid downloading it
by using a potentially low-quality cellular Internet connection. Furthermore, down-
load scheduling has a strong effect on the mobile device’s battery. Downloading
via Wi-Fi is preferable since the energy costs of 4G networks are about 20-times
higher [HQG+12]. This is likely to contribute to offload cellular data networks dur-
ing peak hours, and thereby reduces their transit costs.

The vision of vFetch was first presented in [KH14]. A prototype showing the tech-
nical feasibility in a simple scenario was demonstrated in [KRB+14]. How vFetch

and mobile network operators can benefit reciprocally was proposed in [KBR+15].
Later on, vFetch’s core mechanism and a user study analysis were presented in
[KLR+17]. Furthermore, a number of student theses contributed to the publications
mentioned above, and the mechanism presented in the course of this chapter [Lin16;
Kos15].

In Section 4.1, we provide a general overview of prefetching and its benefits. These
make prefetching especially valuable in a set of use cases that we discuss in Sec-
tion 4.2. As we observe a lack of suitable, current, public datasets, we conduct a user Chapter

outlinestudy to gain insights into users’ video watching behavior on YouTube. vFetch’s
system design and major conceptual components are discussed in Section 4.5. The
evaluation of vFetch is presented in Section 4.6. The data collected in the scope
of the user study allows us to evaluate vFetch using a real-world workload. This
chapter is summarized and discussed in Section 4.7.

60

4.1 conceptual overview 61

4.1 conceptual overview

Before we detail the use case scenarios and the mechanism design of vFetch, we
want to convey a conceptual understanding of the approach. To this end, Figure 15

compares the transmission flow using traditional video streaming with the trans-
mission flow of prefetching. Using video streaming, the video content is transferred

Transmission
Flow

Mobile Terminal

Local Storage

Video PlayerCellular
Connection

Content Source

Buffer

Wi-Fi
Connection

Prefetching

Traditional
Streaming

Figure 15: Video transmission flow of prefetching compared with video streaming

from a content source either by a cellular or a Wi-Fi connection to a mobile termi-
nal. Here, small amounts of the content are stored in the video player’s buffer to
compensate for bandwidth variation and jitter. Though, this might not be sufficient
to guarantee a fast video playback start and continuous video playback. Reasons for
this are unstable connections and fluctuating or low bandwidth. This can be circum-
vented by content prefetching. Here, the video content is downloaded and stored
locally in advance. In case a prefetched video is requested, the video player’s buffer
is filled from the locally stored video content; thus, playback impairments of tradi-
tional video streaming can be avoided.

From the abstract point of view, vFetch might appear very similar to downloading
a video before watching it. In fact, the transmission path of the video content is
the same. The major difference at a conceptual view is that using prefetching, the
video content is selected from a large content set and downloaded automatically
without user involvement and before the user wants to watch the video. Hence,
the mechanism is transparent to the user and does not burden him with a manual
content selection. Thereby, the content download is scheduled in a way that avoids
costly conditions such as cellular connectivity and low battery levels. An additional
difference to manual content selection is that the user can watch prefetched videos
in a high quality even in situations where the cellular bandwidth would not even
allow video streaming in its lowest supported quality.

4.2 use cases

Prefetching video content in advance to mobile terminals has a set of scenarios where
it is useful concerning different objectives. In the following, we present three major
use case scenarios where vFetch can contribute.

1. Varying Connectivity: Video streaming requires a continuous Internet connec-
tion. In some situations, this is not given, e.g., when commuting by subway
or train [KFH17] which becomes an increasingly relevant scenario as a grow-

4.3 user study design and analysis 62

ing number of people travel to work. It is estimated that about 82% of com-
muters use their smartphone [Kel13] and a majority streams videos [JLT+16].
Thus, public transportation is a relevant case where people are likely to watch
videos. Also in the area of self-driving cars, optimizing mobile connectivity is
likely to stay challenging [Rüc17]. In this context, prefetched content has the
advantage that the mobile connectivity is not required to playback prefetched
videos. Therefore, vFetch can allow video playback in scenarios where tradi-
tional video streaming is impossible.

2. Low Bandwidth: In cases where mobile connectivity is given, the bandwidth
might vary strongly. This can have two major reasons: i) The mobile resources,
e.g., spectrum and access network bandwidth, are shared resources that tend
to become scarce when many people use them, ii) Mobile data tariffs are often
limited and allow, after exceeding the mobile traffic volume limit, only a limited
speed that is insufficient for video streaming.

3. Limited Energy: Watching high-quality videos makes heavily use of the mo-
bile transceiver which can drain be battery quickly [Gro+13]. Though, energy
is a scarce and limited resource on mobile devices. Prefetching can avoid the
energy-demanding cellular connection and instead give preference to down-
load the video content via battery-sparing Wi-Fi or even while charging the
device.

While the three use cases have been presented separately, in reality, a combination
of them is most likely relevant. Which one is more or less relevant is highly user-
specific. Hence, general statements about which use case is more or less important
are hard to deduce.

4.3 user study design and analysis

We designed and implemented an Android application denoted as SocialMonitor1

to collect real-world user data of YouTube users in the scope of a user study. In
this section, we use the results of this user study to deduce helpful insights for
vFetch’s design as well as its evaluation. We handed out the SocialMonitor appli-
cation to our participants starting from November 2014. In the following summer
and winter terms, we acquired additional participants by asking students in the
scope of lectures and supervised bachelor and master theses to participate. After
the SocialMonitor is installed and opened for the first time, it informs about which
information is collected and for which purpose. In case the participant does not
agree with this privacy consent, no data is collected. Furthermore, the application
anonymizes all privacy-sensitive information directly on the device using a strong
cryptographic hash function. Hence, only anonymized data is sent from the device
to a collection server that regularly receives and stores the data of all participants. In
addition to their agreement to the privacy consent, the SocialMonitor requests basic
demographic information from the participants, which we cannot match with the
previously described user request data. By doing so, we can tell that the majority of

1https://play.google.com/store/apps/details?id=de.tudarmstadt.ps.

mobilesocialprefetcher [Accessed: November 19, 2018]

https://play.google.com/store/apps/details?id=de.tudarmstadt.ps.mobilesocialprefetcher
https://play.google.com/store/apps/details?id=de.tudarmstadt.ps.mobilesocialprefetcher

4.3 user study design and analysis 63

our participants live in Germany, India, and France. Further, 58% of the participants
are male and 42% are female. They have an average age of 24.5 years with a standard
deviation of 10.2 years.

Social
Monitor

Data Collector

YouTube
Crawler

Data Aggregator

Server

Traces

Stores

SocialMonitor
Video Player

V
id

eo
 P

re
fe

tc
he

r

Video Candidate
Predictor

Playback
 Events

Structural
Data

New
Videos

YouTube
Data API

Figure 16: Conceptual architecture of the SocialMonitor Android app

Figure 16 exhibits the conceptual architecture of the SocialMonitor. In the follow-
ing, we introduce the SocialMonitor’s main functional components. The Data Collec-
tor regularly retrieves information about recently watched YouTube videos as well
as newly subscribed YouTube channels and canceled subscriptions. To accomplish
these tasks, we crawl the list of subscribed channels and the watch history of the
participants using the YouTube Data Application Programming Interface (API) v3

2.
The retrieved information is passed to the Data Aggregator, which filters, anonymizes,
and stores the data in a local database on the device. A YouTube user’s watch his-
tory can contain only one entry per video even if it has been watched multiple times.
Thus, one important filtering task is to detect if a video has been watched twice with
a different timestamp or if the watch events have been crawled and stored already
by a previous crawl. This methodology detects if a video has been watched again
in the current crawling interval. The SocialMonitor uploads the participant’s data to
the Traces Server every hour, if the device is connected over Wi-Fi. In the case that
no Wi-Fi is available, the data is stored at most three days before it is sent using
the device’s cellular connection. Hence, Wi-Fi connectivity becoming available or un-
available triggers a mechanism transition (cf. Section 2.6). By using a YouTube user’s
watch history, it cannot be determined on which device a video was watched. There-
fore, the Social Monitor collects all videos watched while the user is logged-in using,
e.g., a mobile device, a browser, or a smart TV. However, this information is not nec-
essary to derive insights and determine user-specific prefetching policies in general.
Furthermore, the main share of YouTube requests comes from mobile devices3. In
addition to the previously described components, the SocialMonitor provides a cus-
tom video player. We encouraged the participants to use YouTube’s website instead
of the YouTube application on their smartphones, allowing to choose the SocialMoni-
tor’s video player. Thereby, further information about initial buffering times, pausing,
fast-forward, screen rotations as well as if a video was watched on the smartphone,

2https://developers.google.com/youtube/v3/ [Accessed: November 19, 2018]
3https://www.youtube.com/yt/press/statistics.html [Accessed: November 19, 2018]

https://developers.google.com/youtube/v3/
https://www.youtube.com/yt/press/statistics.html

4.3 user study design and analysis 64

was determined. However, only a minority of the participants used this video player.
Accordingly, the playback-specific information is not available for most video play-
backs.

Some participants participated only for a short time or did not use YouTube
actively. Therefore, we filtered out some participants for our further analysis. We
consider only participants that participated for at least two consecutive weeks and
watched more than one video per day on average. In addition, we removed one par-
ticipant for whom more than 10% of the watched videos have been removed from
YouTube mostly because of copyright infringement. This leaves us with 27 partici-
pants. Figure 17 depicts the participant’s watch events and thereby indicates their
participation duration Note that the duration and the number of participants sur-
pass the related work which reports about 10-15 users observed during 10 days -
8 weeks [DZW+14; WRT+15; WSS+16].

Table 6 shows relevant statistics of our participants. We can see that the partici-
pants are quite diverse in participation duration, the number of the subscribed chan-
nels (#Subscriptions), and the number of channels from which they requested videos
(#Channels watched). The average participation duration is 145.8 days (median). Dur-
ing this time, videos were watched on 123 days (median). The videos are provided by
464.5 different channels (median) with a large standard deviation of 763.9. The mean
number of subscribed channels per participant is 23.9. Further, 11.8% of the videos
provided by channels the participants have subscribed to were watched, while the
maximum share is 70.8% for one participant. The row %Watched Subs shows that only
a minority of 10% (median) of the videos from subscribed channels is watched. The
rows #Un-/Subscribe events show how often users un-/subscribed channels during
the user study.

4.3.1 Dataset Analysis

In the following, we focus our analysis on user behavior relevant for prefetching.
Table 7 depicts the results of our descriptive analysis. The table’s values refer to
a daily scale and provide an overview of the participants’ behavior. On average, 9.7
videos are provided to the users by subscriptions while the median is only 5. Overall,
the participants watch 8.1 videos from 5 channels (mean). However, they watch only
16.7 of the videos offered from subscriptions on average and 83.3 from other sources.
Interestingly, the mean values of these metrics indicate that at least half of the users

Metric Mean Median StdDev Minimum Maximum

Participation (days) 219.5 145.8 193.4 26.2 639.8

#Days with views 151.7 123 129.2 22 449

#Subscriptions 23.9 10 43.2 0 172

#Channels watched 882.6 464.5 763.9 8 2,410

%Watched Subs. 11.8% 5.3% 17.1% 0% 70.8%

#Subscribe events 24 11 43.4 0 173

#Unsubscribe events 23.9 10 43.2 0 172

Table 6: Statistics of the user study participants

4.3 user study design and analysis 65

2015 03 02

2015 05 01

2015 06 30

2015 08 29

2015 10 28

2015 12 27

2016 02 25

2016 04 25

2016 06 24

2016 08 23

Date

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

P
ar

tic
ip

an
t I

D

Figure 17: Video watch events of the user study’s participants

do not watch videos from subscribed channels at all. The watch time shows that the
distribution is shifted to the left since the median is 74.6 minutes while the mean is
severely higher with 172.7 minutes. Please note that we do not have the watch time
per video available. Thus, we calculated the Watch time as the sum of the duration of
the videos watched. However, the maximum value exceeds the minutes of the day
indicating that this user did not watch the videos entirely but skipped videos, which
is a typical behavior for YouTube users observed before [KH14].

4.3.1.1 Subscriptions

It is a valid assumption that most users request popular content, next to content of
individual interest. However, in our dataset, only 15 channels have been subscribed
by three users and only two channels by four. This acknowledges the need to address
content belonging to the long-tail of the video popularity distribution. Figure 18

depicts the CDF of the share of watched videos from subscribed channels. Here we
see that from about 20% of the subscribed channels only 34% or less of the uploaded
videos are watched. Note that the participants of our user study did not watch most
videos from their subscriptions. Surprisingly, only for about 7% of the subscribed
channels, the participants are interested enough to watch all videos. Further, for 19%
of subscribed channels, no video was watched. Hence, we conclude that a user’s
channel subscription status alone is not an effective feature for deciding whether
to prefetch a video. We argue that channel affinity cannot be expressed binary, i.e.,
subscribed or not, but the ratio of videos watched from a subscribed channel is more
informative. This ratio is promising to determine if a video should be prefetched. Not

4.3 user study design and analysis 66

Metric Mean Median StdDev Minimum Maximum

Subs. videos offered 9.7 5 69.0 0 6,293

Number of views 10.5 8.1 12.2 2.9 69

#Subscription views 3.6 0.7 10.1 0.1 48.32

#Channels watched 7.2 5 8.5 0 80

%Subs. watched 16.7% 0% 28.0% 0% 100%

%Others watched 83.3% 100% 28.0% 0% 100%

Watch time (min.) 172.7 74.6 269.3 0.15 3,644

Table 7: Participant statistics on a daily basis

that this ratio can continuously fluctuate and, hence cannot be adequately described
by descriptive statistics.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Share of videos watched from channel

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 18: CDF of videos watched from subscribed channels

4.3.1.2 Video Age

We analyze the video age, i.e., the time between the video was uploaded and the
time it was watched by the participants to constrain the potentially large number of
videos that come into consideration for prefetching. Figure 19 depicts the distribution
of the watched videos’ age measured in days. In the figure, each bar corresponds to
the requests of one participant. The x-axis depicts the participant IDs ordered by
the number of their mean daily views. Thus, users 2, 23, and 9 have watched most
YouTube videos among the participants. While there is a tendency to watch videos
younger than three months, for most participants, the median age is between 102

and 103 days. Surprisingly, this indicates that most videos older than one month are
watched and, therefore not the most recent ones.

YouTube video requests can have a variety of reasons, e.g., a new video on a sub-
scribed channel, a search for an ephemeral interest, or a share on Facebook. Since
the user has already expressed interest in a YouTube channel by subscribing to it,
we further looked into the age of videos from subscribed channels. Figure 20 depicts
the participant’s watch events similarly as Figure 19 but contains only video watch
events that belong to videos from subscribed channels. Note that the unit of the
y-axis is hours instead of days. The reason for this is that the video age is lower com-
pared to the general age of all videos watched. The maximum median value of 104

days refers roughly to 400 days. The number of depicted devices in Figure 20 is lower

4.3 user study design and analysis 67

compared with Figure 19 because six participants in our study did not watch videos
from subscriptions at all. About half of the participants watch subscribed videos
with a median age of about 103 hours, i.e., 42 days. For seven participants, a median
of about four days is observed, demonstrating a diverse behavior. However, for dis-
tinct participants, the second and third quartile are narrow, which suggests a stable
per-user behavior. To investigate this further, we divide the participants’ standard
deviation by their mean. This results in values smaller than nine for all participants
except participants 3, 4, 5, and 6 which range between 38 and 80. Hence, the ratio of
the standard deviation and the mean is quite similar among the participants. Sum-
marizing, we conclude that videos from subscriptions have to be prefetched within
the first 7 hours after their upload to not miss more than 25% of videos requested,
e.g., by participants 3, 4, 5, and 6 which are among the most active YouTube users in
this study.

2 23 9 17 16 19 26 14 22 25 13 7 21 15 24 27 11 10 20 8 12 18 1 6 5 3 4

Device

100

101

102

103

D
el

ay
 in

 D
ay

s

Week

Month

Figure 19: Age of all videos watched for distinct users (days)

13 24 23 17 7 22 11 1 14 15 8 21 27 20 19 12 10 6 4 3 5

Device

100

101

102

103

104

105

D
el

ay
 in

 H
ou

rs

Day

Week

Month

Figure 20: Age of subscription videos watched per users (hours)

4.3.1.3 Video Origin

A user’s video request can have multiple causes, as mentioned before. From the user
data at hand, we can determine if a video belongs to a subscribed channel or not.
However, we observed a substantial number of video views to channels the users

4.3 user study design and analysis 68

have not subscribed to but regularly request. Therefore, we deduce that the partic-
ipants have a non-ephemeral interest in these channels. In the following, we refer
to such YouTube channels as pseudo subscriptions. Overall, we distinguish between
three different video categories regarding their origins: 1) The video is published on
a YouTube channel that a user has subscribed to. 2) The video comes from a chan-
nel that the user regularly watches videos from but has not subscribed to. 3) The
video does not belong to the previous two categories and, therefore is considered as
a random view and may come from a website embedding, a YouTube search, or a
recommendation on the YouTube landing page.

In general, an additional video source is the related video list of a video which
might motivate the user to watch another video. We deliberately neglected this cat-
egory since it cannot help prefetching in advance but only very shortly before the
related video is watched. Distinguishing category 1 from the other two categories is
trivial as we know a user’s subscribed channels. To distinguish between categories
2 and 3, we set the following two criteria for a match with category 2: First, the
user has watched more than one videos of the channel. Second, the user has at least
watched 80% of the videos published on this channel. Hence, the first video watched
from a channel does not render the channel to a pseudo subscription. Note that the
channel may not stay a pseudo subscription forever. Thus, videos from this channel
may change to match category 3. Similarly, a category 3 video can also become a
category 2 video.

Figure 21: Share of videos requested per subscribed (green) and pseudo subscribed channels
(blue), stacked per user and ordered by the users’ average number of requests

Figure 21 depicts the share of videos belonging to the previously introduced
source categories. Each bar belongs to one participant and the x-axis depicts the
mean daily requests of the respective participant. Here, the share of videos from
subscriptions is colored in green. The blue share belongs to videos from pseudo
subscriptions. The remainder of requests do not belong to subscriptions or pseudo
subscriptions and, thereby explain the gap to 1. Note that subscriptions and pseudo
subscriptions cannot explain the majority of requests, which, therefore seem too un-
predictable for a prefetching mechanism. For completeness, we provide a figure in
the style of Figure 21 with, e.g., videos coming from the related video list in the ap-
pendix in Section A.1. However, subscriptions are responsible for about 10% of views
for most participants with less than eight views per day. For participants watching

4.3 user study design and analysis 69

more than seven videos per day, a higher share of videos from subscriptions is de-
picted. Four participants that requested more than ten videos per day reach more
than 33% of their videos due to subscriptions. For the heaviest YouTube user among
our participants, about 70% of the video requests can be explained by subscriptions.
Videos can only be prefetched if user interest can be estimated in advance. Thus, we
conclude that the bars shown in Figure 21 are the individual participant’s maximum
prefetching potential. This potential is very diverse and ranges between 3% and 77%.

E
ntertainm

ent

P
eople&

B
logs

G
am

ing

E
ducation

M
usic

C
om

edy

T
ravel&

E
vents

H
ow

to&
S

tyle

S
cience&

T
echnology

N
ew

s&
P

olitics

A
utos&

V
ehicles

N
onprofits&

A
ctivism

S
ports

P
ets&

A
nim

als

S
how

s

M
ovies

Video Category

100

101

S
ha

re
 W

at
ch

ed
 (

%
)

Figure 22: Watched subscriptions (%) by YouTube video category, the y-axis is log-scaled

A further interesting observation is that the participant’s likelihood of requesting
a video depends on its category. Figure 22 shows for each YouTube category the
share of videos watched that are offered by subscribed channels. A YouTube cate-
gory can be chosen out of a set of categories by the video uploader. Since not all
participants watched content form all YouTube categories, the data is quite sparse.
The categories Entertainment, People&Blogs, Gaming, Education, Music, and Com-
edy show a large share of watched videos compared with the other categories. We
note that mostly videos from entertaining categories are requested and less from in-
formative categories. Hence, we argue that is important to consider the watch ratio
of different categories or even distinct channels for a prefetching mechanism to be
efficient.

4.3.1.4 Repeated Video Requests

Videos that are repeatedly watched are especially valuable for prefetching as they
increase the Cache Hit Rate (CHR) more than videos that are only watched once.
This motivates our next analysis on repeated requests to the same video. Figure 23

exhibits the request frequency of videos which have been requested more than once,
grouped by their YouTube category. On the one hand, videos belonging to Music
and Entertainment show a high re-watch behavior. One explanation for this is that

4.3 user study design and analysis 70

Music

Entertainment

People&Blogs

Education
Gaming

Comedy

Film
&Animation

Science&Technology

News&Politic
s
Sports

Howto&Style

Autos&Vehicles
Movies

Shows

Nonprofits
&Activism

Pets&Animals

Travel&Events
Trailers

Video Category

100

101

102

M
ed

ia
n

M
ul

tip
le

 R
eq

ue
st

 C
ou

nt

Figure 23: Videos requested more than once per YouTube category

these videos belong to entertaining categories. In contrast to this, informative video
categories, e.g., Travel&Events, News&Politics, and Shows exhibit rarely repeated re-
quests. This acknowledges our results from the previous Section (cf. Section 4.3.1.3),
where entertaining videos showed to be watched most often out of all videos of-
fered by subscribed channels. In Figure 23, music videos show the highest re-watch
behavior by a median of 13-times. This confirms that most requests on YouTube ad-
dress music videos [KKH17] with about 42%. Hence, we conclude that the prefetch-
ing system should not delete videos belonging to entertaining categories after they
have been watched. One way to achieve this is by a Least Recently Used (LRU)-
managed cache that stores prefetched videos and keeps repeatedly watched videos
in the cache.

0.00 0.02 0.04 0.06 0.08 0.10

Share of Videos Watched

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223
Hour

D
ev

ic
e

Figure 24: Views over the hours of the day

4.3.1.5 User Request Time

One important task of a prefetching mechanism is to timely prefetch content inter-
esting to the user. Therefore, it is essential to know, when a user typically watches
videos. Figure 24 depicts a heat map of our participant’s views. The x-axis depicts the

4.4 design decisions 71

hours of the day for the ten most active participants measured by their mean views
per day. The fields with the darkest colors, i.e., the hotspots range between 11%–17%
due to the robust coloring scheme. For all participants, we observe hours with an
increased likelihood of watching videos, e.g., 30% of views between 7 am and 10 am
for the participant depicted in the first row. We present similar additional heat maps
for distinct YouTube categories in the Appendix in Section A.2. To be aware of these
hotspots is especially important for efficient prefetch scheduling in case of users that
watch videos briefly after their upload.

4.4 design decisions

In the following, we derive requirements for a prefetching mechanism based on the
analysis conducted previously in this section.

D1) Videos older than one month should be removed from the candidate list, as it is unlikely
that the user watches them compared with younger videos

In the following, we assuming a video candidate list that defines which videos
should be prefetched. It is ordered according to the videos likelihood of being watched
by the user. A simple First In - First Out (FIFO)-based mechanism would emphasize
the oldest videos and prefetched them first. Though, this is not an efficient policy
since a large number of videos watched from subscribed channels is younger than
one month (cf. Section 4.3.1.2).

D2) The user’s affinity to a subscribed channel must be considered during the content selec-
tion for prefetching

The next simple mechanism would be Last In - First Out (LIFO)-based, which is
likely to show an increased prefetching efficiency compared with FIFO. However,
just prefetching the most recent videos does not consider the user’s various channel
interests as shown in Figure 18. Thus, not only recency and subscribe status but also
the channel affinity has to be considered when selecting content for prefetching. We
define this ratio as videos watched from channel

videos published by channel for a time interval starting with the first
request of the user for this channel.

D3) Pseudo subscriptions must be considered as relevant sources of video views

While our participants subscribed to channels, only 16.7% of the videos published
by these subscriptions are watched, as shown in Table 7. For the majority of the par-
ticipants, videos watched from not subscribed channels dominate. In Section 4.3.1.3,
we observed that a major share, i.e., up to 80% of videos are watched from a set of
non-subscribed channels. Therefore, we consider not just subscriptions but also other
channels from which the user regularly watched videos.

D4) Videos should be cached and kept in the cache after they were watched

We observed that, for some content, the participants seem to have a mid-term to
long-term interest, leading to repeated requests to music and entertainment videos as
shown in Section 4.3.1.4. Therefore, we deduce that videos should not be deleted after

4.5 system design 72

being watched but kept in a simple LRU-managed cache. This seems to contradict
the advice of Gouta et al. [Gou+15] to remove videos after they have been watched
from the local storage. Note that the authors did not consider music videos in their
analysis which belong to the most repeatedly watched video category on YouTube
as shown in Section 4.3.1.4.

D5) Videos must be prefetched timely after their upload and before the preferred times when
the user watches videos

To serve videos by prefetching, they have to be downloaded timely to the user termi-
nal. Based on the results of the analysis presented in Section 4.3.1.2 and 4.3.1.5, we
find this design choice essential for an efficient prefetching mechanism.

4.5 system design

This section discusses the design of vFetch. To this end, first, the high-level architec-
ture is presented. Second, a functional overview is given followed by an evaluation
and a discussion of the results.

For the design of vFetch, we consider only available technologies that are used
by the industry to a certain extent already. Specifically, we assume that the video re- Assumptions

and
requirements

quests a user has made, i.e., the user’s watch history can be monitored. Further, we
assume that video metadata, as well as channels a user has subscribed to and their
published videos, can be retrieved. This functionality is available by the YouTube
Data API. On the mobile terminal’s side, we require storage capabilities so that
vFetch can download videos to the device. Hence, we do not require a permanent
but a temporary Internet connection that allows downloading videos, i.e., Wi-Fi, 3G,
or 4G. The video player or the application which contains the video player that we
require on the user’s device is assumed to check if the requested content is available
at the local prefetch storage first, before requesting the content using the device’s
Internet connection. An implicit assumption we have is that an efficient prefetching
model can accurately capture a user’s video preferences.

4.5.1 Architectural Overview

We present vFetch’s conceptual architecture in Figure 25. The architecture consists
of two main components: the Data Manager and the Content Prefetcher. The Data Man- Data manager

ager is responsible for retrieving information about watched videos from the con-
nected Online Social Networks (OSNs) and platforms. The metadata and watched
videos are retrieved to provide a data foundation for identifying which properties
of a video are most interesting to a user. This Interest Model is used to rank the
prefetch candidate videos concerning the model’s estimated user interest per video.
Thereby, the user’s data is processed on a user-owned device and, therefore the user
privacy is preserved. To avoid a loss of information on YouTube’s side, vFetch is
envisioned to send back user viewing statistics to YouTube allowing to distinguish
between prefetched and actually watched videos as well as playback duration and
video quality information. In principle, the Data Manager of vFetch can operate on
any kind of user terminal, e.g., smartphones, or stationary last mile hardware such as

4.5 system design 73

Figure 25: Architecture of the vFetch prefetching mechanism

home routers and cloudlets. In the course of this thesis, we focus on the application
on a mobile terminal as the most relevant scenario.

A subset of the prefetch candidates with the highest estimated interest score is
passed to the Content Prefetcher module that downloads the video content. To this Content

prefetcherend, it needs to fulfill a set of tasks, such as decoding, downloading, and download
scheduling. Thereby, vFetch can emphasize downloading during hours when the
mobile terminal is connected to Wi-Fi and charging to avoid battery depletion and
draining the potentially limited mobile data plane.

4.5.2 Functional Overview

In the following, we provide details on the core functionalities of vFetch and the
interactions between the involved functional components. In essence, vFetch is un-
derstood as a middleware that can provide prefetching functionalities to a set of
OSNs and content portals.

4.5.2.1 Data Collector and Aggregator

An interface between the vFetch mechanism and the corresponding OSNs or con-
tent portals is required to retrieve information on available content. To this end,
vFetch implements a Data Collector module that has one distinct Connector module
per platform. Therefore, it uses the access permission of the user to the respective
platforms. This way, platform-specific APIs can be addressed, which can have differ-
ent concepts of, e.g., feeds and subscriptions. For example, YouTube allows the user
to subscribe to YouTube channels and shows the videos from these subscriptions on
a dedicated page. Facebook allows following persons and groups and presents the
content from these sources on the user’s Facebook feed. For vFetch, it is essential
to be aware of recently published or uploaded content, to allow timely prefetching.
Therefore, the Data Collector retrieves new information from the platform regularly.
This information consists of the following parts:

4.5 system design 74

1. Videos the user has watched in the past, i.e., the watch history

2. Recently published videos on channels that the user has subscribed to

3. Recently published videos on channels that the user has watched, including
pseudo subscriptions

4. Metadata of the videos: title, upload date, channel, category

The watch history allows monitoring which videos a user has watched. To identify
the source of a watched video, we additionally retrieve the channels a user has sub-
scribed and the videos uploaded on those channels. Further, the videos from chan-
nels the user has recently watched are retrieved. For all videos retrieved by the steps
before, the metadata is retrieved additionally, including the video’s title, its upload
date, the channel on which it is uploaded, and its YouTube category. The Data Aggre-
gator is responsible for translating the different formats retrieved from the different
platforms into a common data representation and to store it into a local database.
Furthermore, the Data Aggregator serves the Data Collector with the timestamp and
the entity of the most recently stored database entry. This makes it possible for the
Data Collector to retrieve new data incrementally and stop the retrieval process if
already stored information appears.

4.5.2.2 Predictor

The Predictor is responsible for estimating the probability that the user will watch
a video. To this end, it uses an Interest Model that needs to be regularly updated.
Recent videos retrieved by the Data Collector and stored by the Data Aggregator serve
as an input to the Predictor’s candidate list. The Interest Model scores each new video
observed on the user’s feed. On the example of YouTube, which we will use in the
following as the content platform, a set of different candidate videos can be retrieved,
as we list in the following:

1. Videos from Subscriptions: YouTube has a subscription feature which allows
users to get listed videos from subscribed channels, which they are supposedly
interested in.

2. Videos from Pseudo Subscriptions: We define a pseudo subscription as a chan-
nel that the user has not subscribed to but regularly watches videos from. Two
criteria have to be met: At least two videos must have been viewed from the
channel and at least 80% of the videos published on the channel since the first
video was watched by the user have to be watched as well. We describe these
80% as the pseudo subscription threshold.

3. Related videos: YouTube lists related videos on a video’s web page which can
be expected to be of similar content.

4. Playlist videos: Users can create or subscribe to playlists on YouTube containing
typically music or video sequences of a common topic and order, e.g., a lecture.

5. Watch later list videos: Users can add videos which they do not want to watch
right away add to a list called the watch later list. Hence, the user expresses
interest in watching the video later on by adding it to this list.

4.5 system design 75

The participants of our user study rarely watched videos from the watch later
list or playlists. Further, the related video list of a currently played video becomes
available too late for prefetching in advance. Thus, we exclude videos originating
from these content sources from the Prefetch Candidate list. Acknowledging the de-
sign decisions D2 and D3 (cf. Section 4.4), we monitor videos from subscriptions
and pseudo subscriptions as promising prefetch candidates. In addition, we filter
videos older than 30 days from the candidates since they are less likely of being
watched. Thereby, we acknowledge D1 (cf. Section 4.4). To determine the user’s affin-
ity to a channel, the channel affinity score is computed. We define it as the ratio of
videos watched from channel
videos published by channel for a time span starting with the first request of the user for
this channel. Accordingly, a user needs to request as lest the three most recent videos
uploaded to render a channel to a pseudo subscription. The previously introduced
channel affinity ratio is used as a user interest estimate for the videos published
on it. Depending on the users watching behavior, the average number of watched
videos per day, defined as d, is allowed to be prefetched. We also evaluated smaller
and larger values but the average number of views per day showed the best CHR.
The d video IDs with the highest estimated user interest are passed to the Content
Prefetcher. In case two or more videos have the same estimated popularity, the most
recent videos are emphasized.

4.5.2.3 Content Prefetcher

The Content Prefetcher comprises the necessary functionalities to download the video
content. This module determines when vFetch downloads videos by keeping track
of the user’s diurnal connectivity patterns. Thereby, a download can be postponed
either Wi-Fi becomes available or the user is predicted to watch videos soon. In the
latter case, the Content Prefetcher does not wait until a Wi-Fi connection becomes
available. Though, only videos with a high-interest score are considered for being
prefetched via a 4G or 3G connection. To determine when a user is most likely to
watch videos, we feed the previous video watch times into a clustering algorithm. For
this purpose, we decided to use the clustering algorithm DBSCAN [EKS+96] because
it shows a decent clustering performance4. Additionally, it is density based which fits
our use case as we are seeking for time intervals in which many videos are watched,
i.e., the density of the watch events is high. By identifying the periods when the user
is most likely to watch videos, the Download Scheduler schedules the video download
in advance, preferably during off-peak hours or when Wi-Fi is available. For a set Download

Schedulerof our participants, we provide a heat map indicating the video watch behavior per
hour of the day in Section 4.3.1.5. Note that it is not optimal to download all d
videos at the first best moment when Wi-Fi becomes available. By doing so, potential
later published videos would be excluded from prefetching them on the same day.
Therefore, we distribute the allowed number of videos to download d during the
times before the user’s watch clusters have been observed. The time interval of four
hours before the estimated user watch time is split into sub-intervals of half an hour.

From these eight sub-intervals, the one with the highest probability of having a
Wi-Fi connection at this time is chosen to execute the download. Once an interval is
selected, the Download Scheduler assigns up to three videos to be prefetched to this

4http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

[Accessed: November 19, 2018]

http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

4.6 evaluation 76

interval. Thus, vFetch can prefetch up to three videos per half an hour. We chose
half an hour time intervals since they are by any connection suitable to download
three YouTube videos, giving each video 10 minutes. The overall number of videos to
prefetch is determined by the mean number of videos the user watches per day over
the preceding, at most, 28 days. Thereby, downloading unnecessarily many videos
is avoided. The prefetched videos are stored in an LRU-managed cache. By doing
so, we address design decision D4 (cf. Section 4.4). This supports vFetch to benefit
from, e.g., music videos which are likely to be repeatedly watched.

The Download Client downloads the actual video content and handles connection
interruptions. Also, it chooses the video’s quality since usually a set of qualities
are available. On many mobile devices, a decent video quality can be achieved by
720p with 30Hz which we choose as the target video quality. In case this quality is
unavailable, the Download Client selects the next lowest quality. The Decoder module
is helping the Download Client to find the video’s URI, e.g., of the corresponding mp4

file belonging to a certain video ID and quality.

4.6 evaluation

This section presents the evaluation of the vFetch mechanism. The evaluation’s ob-
jective is to provide a proof of concept of the designed mechanism and to quantify
key performance indicators in relevant scenarios. To this end, vFetch is implemented
as a prototype to demonstrate the general technical feasibility. In the following, first,
the general evaluation methodology is described. Second, the evaluation of vFetch’s
general efficiency in scenarios of variable mobile device storage capacity is investi-
gated in Section 4.6.2. Third, we vary the number of past days from which we con-
sider videos as prefetch candidates in Section 4.6.3. In the fourth part of the evalua-
tion, we investigate the storage overhead caused by vFetch in terms of the number
of stored and watched or not watched videos in Section 4.6.4.

4.6.1 Methodology

We evaluate vFetch by implementing it within a discrete event simulator. This has
two benefits. First, it facilitates us to use the real-world user traces collected during
our user study in Section 4.3. Thereby, we can guarantee that the users are not influ-
enced by, e.g., using a dedicated application with a different look and feel. Note that
due to legal restrictions, we cannot allow our SocialMonitor application to download
videos although this is technically possible as demonstrated in the scope of a demon-
strator [KRB+14]. During the simulation, we keep track of the past and the current
simulation time to use only information which is available at the simulation time
and, hence, no information from the future. Second, a simulator supports the evalua-
tion of a set of different resource and parameter configurations. This is not simple to
realize by deploying vFetch as an Android app, since resources are not configurable
and parameters need to be fixed. Evaluating vFetch by simulations makes it possi-
ble to assume an array of storage and parameter configurations for each participant
of the user study.

Since prefetching strives for perfect prediction, all approaches have to be evaluated
by an efficiency metric. A common prefetching efficiency metric is the ratio between

4.6 evaluation 77

correctly predicted videos and all predicted videos (cf. Equation 1). However, the
precision can be easily tweaked by prefetching only a few videos, e.g., one. In case
this single video is requested, the precision would be 100%. Thus, besides the preci-
sion, a further metric is needed which expresses the value of the methods. For this
purpose, the recall (cf. Equation 2) is commonly used.

Since both metrics: precision and recall are important to consider in the evaluation
of vFetch, we use a metric that combines them, the F1-measure (cf. Equation 3). The
F1-measure is the harmonic mean of the precision and the recall and, hence, a robust
metric for the quality of the prefetching.

precision =
|watched contents|∩ |prefetched contents|

|prefetched contents|
(1)

recall =
|watched contents|∩ |prefetched contents|

|prefetched contents|
(2)

F1-measure = 2× precision× recall
precision + recall

(3)

4.6.2 Storage Size and Caching

The storage capacity of a mobile device is expected to influence vFetch’s perfor-
mance since larger storage capacities can store more videos for a longer time. To this
end, we investigate the impact of different storage sizes on vFetch’s F1-Measure as
well as the caching performance given by the Byte Hit Rate (BHR). We decide to
use an array of storage sizes that cover a range of mobile devices, including storage-
restricted smartwatches and smartphones with large storage capacities. The storage
sizes used for the evaluation are {0.05, 0.1, 0.5, 1, 5, 10, 50, 100} GB. It is important to
note that a large storage capacity does not imply that more videos are prefetched as
this number depends on the user’s mean number of daily videos watched. Figure 26

depicts the impact of different storage sizes on vFetch’s performance. The first row
shows the results for videos from predictable sources, i.e., subscriptions and pseudo
subscriptions. Note that to count as a pseudo subscription, a user must watch more
than one video and overall more than 80% of the channel videos uploaded since the
first video of this channel was watched. Following Li et al. [LSW+12], 80% is a suit-
able value for the pseudo subscription threshold to assume the user being interested
in a YouTube channel.

In the second row, we see the results considering all videos watched, also from
unpredictable sources. In addition, we distinguish between two cases: prefetching
and prefetching in combination with request-based caching, i.e., watched videos are
stored in an LRU-managed cache additionally to the prefetched videos. For each row,
the figure exhibits the F1-measure and the BHR). For these experiments, we observe
precision and recall to be similar. This is also indicated by the similarity between F1-
measure and BHR, because the BHR represents the precision considering repeated
requests. From Figure 26’s first row, we deduce that given a fixed storage size, intro-
ducing caching additionally to prefetching severely decreases the F1-measure and

4.6 evaluation 78

Figure 26: Performance impact of storage size, top: videos watched from predictable sources,
bottom: all videos watched

the BHR for predictable videos. Caching combined with prefetching increases the
performance metrics 2.8-times on average if we consider all requested videos. How-
ever, the absolute values of the F1-measure and the BHR are severely lower com-
pared to the case where we consider only requests from predictable sources. This
finding shows that predictability contains more valuable information, which is used
by prefetching, than the mere object requests, which drive the LRU cache. Overall, for
the mixture of predictable and ephemeral user interests, we measure that prefetching
combined with caching results in the best performance. Therefore, we deduce that a
differentiation based on predictability of the user interests leads to an adapted use
of prefetching and caching. However, we argue that prefetching systems should be
evaluated w.r.t. predictable video sources, as shown in the first row. Other sources,
e.g., ephemeral user interests or random browsing are hard to predict and, hence,
would skew a performance evaluation. vFetch achieves BHRs of up to 58% for very
large caches of 100 GB and about 23% for caches with 1 GB. However, both metrics
strongly spread among the participants, as the distance between second and third
quartile indicates. We leave out the box plots for the sake of clarity but report on our
observations. For example, the third quartile for 5 GB cache storage is 52% while the
median is only 18.3%. For some participants, the whiskers reach even 100% for cache
size > 5 GB.

Since the BHR reflects the precision of vFetch considering repeated requests,
the gap to 1, i.e., 1 − BHR indicates the number of videos downloaded but not

4.6 evaluation 79

watched. Figure 26 shows the average BHR for all participants and their common
95% confidence intervals. Additionally, to the exhibited results, we evaluated the
same configuration while omitting pseudo subscriptions. Interestingly, the results
significantly differ as the median BHR was almost 0. Thus, we deduce that pseudo
subscriptions are the dominant source of videos for many participants. Summariz-
ing, we demonstrated that vFetch outperforms existing prefetching mechanisms
since vFetch shows a BHR between 0.3% and 14%, while the related work shows 6
0.03% [WSS+16; CL09; LSW+12] when applied to YouTube as demonstrated by Wilk
et al. [WSS+16]. vFetch shows high-performance measures for storage sizes > 5 GB,
depending on the users. While few users show BHRs > 90% for 5 GB, on average
half of the prefetched videos are watched at 50 GB storage size.

4.6.3 Watch History

The watch history is a list of videos the user has watched in the past and is ordered
by the watch time. It can be defined as a Time To Live (TTL) cache, i.e., the video
watch time is refreshed upon a request. In case a video is not requested again, it
remains on this list for a maximum lifetime denoted watch history threshold. We
seek to adapt to the potentially dynamic user request behavior, e.g., during public
holidays or vacations by using this threshold. Furthermore, vFetch determines the
number of daily prefetches based on the watch history by using the average num-
ber of requested videos per day within this time interval. Accordingly, if the user
requests fewer videos, fewer videos are prefetched.

Figure 27 exhibits the influence of the watch history threshold on vFetch’s F1-
measure and CHR. Here, we decided to investigate two distinct cases. The figure’s
first column shows the results for 1 GB cache size and the second column in the
case of 50 GB. In addition, we depict both cases: pure prefetching and request-based
caching combined with prefetching. When increasing the watch history threshold,
we observe diminishing returns on the F1-measures and the CHRs. The results indi-
cate that no optimal value for all users exists. However, we suggest a window of two
weeks to balance performance and length of the watch history. Please note that for
window sizes greater or equal than two weeks, prefetching surpasses request-based
caching in combination with prefetching in terms of, both, CHR and F1-measure
when comparing their performance with each other.

4.6.4 Storage Overhead

In the following, we investigate the storage overhead of vFetch. We measure this
overhead by evaluating the share of bytes fetched and watched by a user as well
as the prefetched and not watched bytes. Figure 28 depicts the results for the case
of 50 GB storage. The participant IDs denote the x-axis, and the y-axis depicts the
share of downloaded video data. Here, 100% represents the total prefetched bytes.
Values higher than 100% are possible if videos are repeatedly watched. We see that
the participants 23, 25, and 18 have watched videos multiple times.

Besides, we observe for half of the participants that the overhead in terms of
bytes from prefetched but not watched videos is below 80%. We consider an over-
head 6 80% as reasonable for a prefetching system, i.e., 15 of prefetched bytes are

4.6 evaluation 80

1 2 3 7 14 28 560.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1
-M

ea
su

re

1 GB

Prefetching Only Req.-based Caching + Prefetching
1 2 3 7 14 28 560.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 50 GB

1 2 3 7 14 28 56
Watch History Threshold (Days)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ca
ch

e
Hi

t R
at

e

1 2 3 7 14 28 56
Watch History Threshold (Days)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 27: Performance impact of watch history threshold

consumed. Wi-Fi is about 23-times less power demanding than Long Term Evolu-
tion (LTE) [HQG+12]. Since vFetch has an average overhead of 80%, it is about four
times more energy efficient compared with streaming the videos over LTE. For ten
participants, the share of fetched & watched bytes is below 10% and, hence, consid-
ered as not efficient. The share of vFetch’s prefetched & watched bytes is for three
users even higher than the prefetched & not watched share, i.e., the overhead is less
than 50%. Note that vFetch has a low average overhead of 70% compared with 82%
in case of CPSys [Gou+15].

4.7 summary and discussion 81

232518211426 1 2 7 4 3 6 19 8 152212 9 10 5 16132724111720
Device

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Sh
ar

e
of

 F
et

ch
ed

 D
at

a

Storage 50GB
Fetched&Watched
Fetched&NotWatched

Figure 28: Share of fetched data watched and not watched

4.7 summary and discussion

In this chapter, we first presented a thorough analysis of a user study focusing on
people’s YouTube usage behavior. From the insights learned, we derived require-
ments on the design of an efficient prefetching mechanism. Acknowledging these
requirements, we designed the privacy-preserving and content-oriented prefetching
mechanism vFetch and evaluated it using YouTube as an example. To the best of
the author’s knowledge, vFetch is the first mechanism that combines cellular net-
work offload, an accurate user interest model and, at the same time, does not require
revealing personal data to a third party. To achieve the latter point, vFetch runs
locally on the user’s device and learns the user’s watching behavior, interests, and
the mobile terminal’s connectivity pattern. Thereby, vFetch differs from content rec-
ommender systems that store multiple users’ data outside the user’s device, e.g.,
in a cloud to correlate the user behavior of a vast amount of users. Instead, the
proposed mechanism relies solely on content features, channel crawling, and locally
available information. Thereby, vFetch outperforms existing works considering Byte
Hit Rate (BHR) and overhead. vFetch adapts to changing user interests by contin-
uously monitoring the user’s behavior. Further, the number of videos to prefetch
is tailed to the user’s watching habits, to allow timely prefetching. vFetch already
adapts to the number of videos watched and the time when videos are watched.
Similarly, the Download Scheduler considers the user’s daily connectivity pattern to
identify efficient time intervals to download video content. While we investigated
vFetch as a stand-alone-application in this chapter, it can be extended to work in
cooperation with the mobile network operator to further decrease mobile network
load. In case the mobile network operator supports cooperating with vFetch, a mech-
anism transition (cf. Section 2.6) from the stand-alone mechanism to the cooperative
mechanism is triggered. We describe how this cooperative mechanism is envisioned
in the appendix in Section A.3.

We demonstrated that using pseudo subscriptions as a source of prefetching can-
didates results in a significant performance increase compared to using videos from
subscribed channels. Our trace-based evaluation shows the sensitivity of vFetch to

4.7 summary and discussion 82

key parameters such as the watch history lifetime, different cache sizes, and the
performance impact of request caching in addition to prefetching. vFetch achieves
an average CHR of 54% on a 50 GB storage. The trend of storage costs decreasing
faster than bandwidth costs [ER15] are expected to make vFetch more beneficial
in the future. Furthermore, assuming more storage to become available on modern
smartphones5,6, is expected to further decrease the storage footprint of vFetch on
modern mobile devices. We observe diverse results for different users, indicating that
prefetching is efficient for only a subset of our participants, i.e., where predictability
can be leveraged. The average overhead of the prefetching system of 70% when ap-
plied to all users remains below the overhead of 82% from the comparable related
work in [Gou+15].

5The iPhone X is available with 256 GB storage: https://goo.gl/neFV4z [Accessed: November 19,
2018]

6Smartphones with 512 GB storage: https://goo.gl/NjsooB [Accessed: November 19, 2018]

https://goo.gl/neFV4z
https://goo.gl/NjsooB

5
E F F I C I E N T A N D P R O A C T I V E N E T W O R K C A C H I N G W I T H
P R O C A C H E

This chapter presents the design, discussion, and evaluation of a novel proac-
tive caching mechanism for Video-on-Demand (VoD) content that adapts to a

continuously varying content popularity distribution, i.e., the fluctuating number of
requests to videos. This is caused by, e.g., changing user interests, heterogeneous
content popularity life cycles, and new content being published [FBA11]. The term
”proactive”, in the context of ProCache, refers to the flexible storage allocation for
content of specific categories which our mechanism continuously adapts by consider-
ing the current content popularity distribution. We denote the proposed mechanism
as ProCache. This mechanism aims at improving the cache performance and reduc-
ing the transmission latency for individual caches and cache hierarchies. Thereby,
network traffic can be kept local, and the amount of potentially costly transit traffic
is reduced. Besides, the Quality of Experience (QoE) is positively influenced by a
decreased latency that facilitates a fast video playback start and high video quality.

Several scientific publications present parts of ProCache, that jointly build the
foundation for this chapter. The general functionality and its application on typical
topological cache hierarchies used by Content Delivery Networks (CDNs) are pre-
sented in [KPR+18]. While the mechanism presented in this paper focuses on video
content in general, we address the dominant content category on YouTube, namely
music [CM13; CDL08b] in [KKH17] and proposed a Deep Neural Network (DNN)-
based extension in [KWR+18].

Furthermore, a number of student theses contributed to the publications men-
tioned above and parts of ProCache as presented in the course of this chapter [Pfa17;
Wer17; Kru16].

The remainder of this chapter is structured as follows. In Section 5.1, we provide a Chapter
outlinegeneral overview of proactive caching and its benefits. These benefits make proactive

caching especially valuable for a set of use cases, that we discuss in Section 5.2. Sec-
tion 5.3 discusses ProCache’s system design and key functional components. In Sec-
tion 5.4, we evaluate ProCache using a real-world YouTube request trace collected
in a large European mobile network. This chapter is summarized and discussed in
Section 5.5.

5.1 conceptual overview

We highlight the two key properties of ProCache by comparing it to traditional
reactive caching, i.e., Least Recently Used (LRU) which is a simple and common
eviction policy that shows decent caching performance for video content in the lit-
erature [SKL16; LAO+14]. The first property is ProCache’s ability to emphasize
popular content by preventing it from a premature eviction.

The performance-increasing effect of cache divisioning, which we leverage in the
design of ProCache, has been demonstrated already by Adaptive Replacement

83

5.1 conceptual overview 84

Cache (ARC) (cf. Section 3.2.1.3) and Segmented Least Recently Used (SLRU) (cf.
Section 2.2.1.2). However, they either consider just two cache divisions or a fixed-
size cache size allocation. An inherent limitation of reactive caching and a fixed cache
storage allocation is the dynamic character of a real-world workload, where the num-
ber of content belonging to a category is likely to change continuously. Therefore, a
fixed cache division scheme cannot adapt to growing popularity of a category or
the decreasing number of popular content in the respective categories. To this end,
ProCache introduces dynamic cache storage allocation as a key concept. This makes
it possible for cache divisions to extend if they contribute to a higher extent to the
cache performance, while cache divisions that experience decreasing popularity can
shrink.

...Division 1 Division 2 Division N

Traditional Cache Storage Allocation ProCache Storage Allocation

A C D E EDF

Reactive eviction of
popular content

B F

Flexible cache
storage divisioning

Neglects different content
popularity distributions

Emphasizing popular
content

A CB

Figure 29: Traditional vs. ProCache’s cache management

Figure 29 gives an example that considers six video contents. The color of the
cached items indicates their popularity. The red content belongs to the most popu-
lar content. Orange indicates the content of medium popularity and blue indicates
unpopular content from the popularity distribution’s long tail. Traditionally, caches
consist only of one storage division responsible for the entirety of cached content.
ProCache differs from this by splitting the cache storage into multiple cache divi-
sions. As indicated by the black arrows, new content enters the left and is evicted on
the right end of the respective cache division. On the left side, the figure depicts the
traditional cache. We see that content A is the most recently requested content at this
time, while the content B, C, D as well as E are less popular. However, since they have
been requested recently, they have pushed the general popular content F close to its
eviction. While this behavior enables the cache to anticipate rapid changes in the con-
tent popularity distribution quickly, e.g., flash crowds, it tends to penalize content F
disproportionately. A more desirable behavior is to evict less popular content first.
This motivates the cache division concept of ProCache. Thereby, content categories
that show different popularity distributions, e.g., very popular, popular, and unpop-
ular content, are stored separately. In the example given by Figure 29, ProCache

protects content A and F from being evicted by an ephemeral popularity increase of
less popular content. Note, the cache allocation does not necessarily correspond to
the long-term popularity of content but can also orient on content categories if they
show distinct popularity dynamics.

The sketched example uses LRU to compare ProCache for simplicity. However,
state-of-the-art cache admission strategies prevent content from being cached upon
the first request. This property is known as scan resistance [MM04] and realized, e.g.,
by a cache-on-second-hit admission policy (ref. Section 2.2.1.1). The balance between
agility and scan resistance is a challenging task in the design of caching strategies;

5.2 use cases 85

however, the sketched example is also valid for scenarios where unpopular content
is requested more than once since it can still pollute the cache with low-popularity
content and, thereby decrease overall performance. Hence, ProCache is expected to
show superior performance over simple cache-on-second-hit admission policies as
well.

5.2 use cases

In the following, we discuss in which use case scenarios ProCache can operate.
Either the CDN or the Internet Service Provider (ISP) commonly accomplishes the
task of video content caching. Figure 30 depicts the location of ProCache for these
two use cases.

The first use case addresses how CDNs can use ProCache. Thereby, the CDN can
operate its cache appliances either outside or inside of broadband access ISPs while
we consider caching outside of the ISP as the most common and regular case since
large ISP hesitate to allow CDNs operating inside their network [HH11]. In this case,
ProCache can be used instead of traditional caching mechanisms.

The second use case is operating ProCache inside an ISP. In this use case, the
ISP can provide own caching appliances for either its own video services or offer
its caching resources to external entities by a pay-per-use payment model. Since
encrypted content transmissions are the default in today’s Internet, the ISP cannot
cache bypassing content transferred from the CDN to the ISP’s customers. How-
ever, an ISP can still use caching for its own content or cooperate with the content
provider to either allow the CDN using ProCache as a service to the CDN or to
collaborate and, hence trust each other. Here, they can transfer the content provider
traffic by encrypted transmissions to the ISP’s cache appliances to cache it there in
unencrypted form. The encryption endpoint for the user would be the cache appli-
ance. Thereby the CDN allows the ISP to cache its content transparently. Hence, a
collaboration requires privacy consents and appropriate technical measures of trust
such as cryptographic certificates as well as strong encryption schemes.

C
as

e
1:

 C
D

N

Users

Users

Broadband
Access ISP

CDN PoP

OTT Video
Content Provider

OTT Video
Content Provider

ProCache

CDN PoP

ProCache

Broadband
Access ISP

C
as

e
2:

 IS
P

 C
or

e

Figure 30: Two major use cases of ProCache, arrows indicate video content transmissions

5.3 system design 86

5.3 system design

This section discusses the system design of ProCache. Therefore, we first present
ProCache’s high-level architecture and its two key components. Second, we pro-
vide a functional overview followed by an evaluation and a discussion of the re-
sults. In the course of this chapter, we propose and discuss two workload-oriented
application scenarios of ProCache. The first scenario addresses a mixed workload
covering requests to various categories. In the second scenario, we emphasize using
ProCache for music content specifically, since this is the dominant YouTube video
category regarding requests [KKH17; CDL08b].

For the design of ProCache, we consider only available technologies that are
used by the industry to a certain extent already. Specifically, we require computa- Assumptions

and
requirements

tional capacities at the cache storage servers, to facilitate executing ProCache. Fur-
ther, we require the YouTube category of a video, as a specific metadata available
by the YouTube Data Application Programming Interface (API)1. In addition, we
assume videos to be segmented, which is given in reality by HTTP Adaptive Stream-
ing (HAS)-approaches such as Dynamic Adaptive Streaming over HTTP (DASH) (cf.
Section 2.3.1). A common approach in the related work is to consider just one video
quality being available. This increases the comparability in contrast to an arbitrary-
or platform-depending number of video qualities, which can quickly reach more
than 100 [KZS15]. We follow the same approach in this thesis. Therefore, we con-
sider just one video quality and the associated video bitrate in the evaluation, which
is either 1080p with 30 Hz or, if this is not available, the closest lower video quality.

Cache Entity

Cache Storage

Cache Manager Request Monitor

Storage Manager

Content
Provider

Users User Interface

Request Handler

Popularity Monitor

Metadata & Category Distribution Database

Content Classifier

Feature Extraction

Content Recommender

Division
1

Division
2

Division
3

DSAS

C1

Division
N

Video Content

Info/Control Data

Recommendation Policy

1

2

3

4

5

6

7 8

9

C2 CN

Figure 31: Architecture of ProCache (inspired by [MAS+17])

5.3.1 Architectural Overview

We present ProCache’s conceptual architecture in Figure 31. It comprises two main
components: the Cache Manager and the Request Monitor. Both modules are encap-
sulated within the Cache Entity that communicates with the Users and the Content
Provider. Below, we detail the work-flow and the key tasks of the involved modules:

1https://developers.google.com/youtube/v3/ [Accessed: November 19, 2018]

https://developers.google.com/youtube/v3/

5.3 system design 87

1. The user requests are received by the User Interface, represented, e.g., by an
Hypertext Transfer Protocol (HTTP) server offering a Representational State
Transfer (REST) interface. Furthermore, the User Interface takes care of deliver-
ing requested video content to the clients.

2. The User Interface parses user requests and sends them to the Cache Manager.

3. Here, the Request Handler sub-module informs the Request Monitor about every
incoming request.

4. The Request Handler retrieves the requested content by either fetching it from
the Cache Storage or, if not present, downloads the content from the Content
Provider. Besides, the Request Handler stores all request for a content that is
currently fetched from the Content Provider so that only one request is sent to
the Content Provider. As soon as the content is received, the waiting clients get
served the content and it is stored at the Cache Storage. Besides, the Request
Handler retrieves the video category from the Content Provider, e.g., YouTube.

5. The content request is passed to the Storage Manager as well. It decides to in-
crease or decrease a cache division’s size based on the popularity of all divi-
sions’ content and the used Division Size Adaptation Strategy (DSAS) (cf. Sec-
tion 5.3.2.2). We use the YouTube video categories as a basis for the divisions.

6. The Storage Manager can optionally get assistance from the Request Monitor’s
Content Recommender. Here, content that is predicted to be popular in the near
future is used by the Storage Manager to prevent it from being evicted.

7. To this end, predefined content classes and their request patterns are monitored.
The class C1 – CN could refer to a YouTube category or a specific concept, i.e.,
features such as genre or mood of a music video.

8. To determine these features, a Content Classifier is required that extracts expres-
sive features from the video which makes a classification possible.

9. Depending on the Recommendation Policy used, the Popularity Monitor’s time
series, the content classifications, or both can be used.

10. The Database module is used to store the video request time series traced by
the Popularity Monitor as well as the video classification results.

5.3.2 Functional Overview

In the following, we provide details on the core functionalities of ProCache and the
interactions between its major modules. In essence, ProCache is understood as a
network application that can provide cache management functionalities to a set of
VoD streaming platforms, e.g., YouTube, Vimeo, or Dailymotion.

5.3.2.1 Cache Manager

The Cache Manager is responsible for three key properties of ProCache. First, Pro-
Cache has to be aware of video content categories in order to differentiate the con-
tent and handle it individually. Second, it supports to use distinct caching policies

5.3 system design 88

per content category and, thereby considers content category heterogeneity. Third,
the amount of storage used per category must be size-adaptive, facilitating to adapt
to fluctuating demand. In the following, we discuss each of ProCache’s key proper-
ties mentioned above separately.

Content Category Awareness

Content-awareness is achieved by dividing the cache’s storage into separate divisions
that are responsible for one distinct content category. Besides, ProCache uses one
probationary cache division similar to ARC and SLRU (cf. Section 2.2.1.2) because it
has already shown to increase the cache performance. The probationary division is
dedicated to content that is requested for the first time, independent of its category.
Thereby, we prevent content that is rarely requested once from being cached into the
category-specific cache divisions. To prevent the probationary division from consum-
ing too much memory compared with the other divisions, we limit its size by the
number of overall Bytes stored in the other cache divisions. Thus, it can not occupy
the entire cache storage. However, in general, this division is expected to be rather
small compared with the other divisions. This is a reasonably large share which con-
siders the long-tail in the VoD content popularity distribution. In case a video in the
probationary division causes a cache hit by being requested for the second time, it
is moved into a category-specific division, which is allowed to use a more sophis-
ticated eviction policy, e.g., LRU, ARC, or a Time To Live (TTL)-based eviction. An
additional advantage of the probationary cache division is that it supports retrieving
the video content category slower than it takes for ProCache to answer the request.
Consequently, the video category is already at hand when the item is requested for
the second time and can be moved to one of the category cache divisions. Since CDNs
and content providers analyze their content, category descriptions often readily ex-
ist as part of the video’s metadata. In this work, we focus on the publicly available
YouTube video categories which associate a video with one out of 15 categories, e.g.,
Music, News, Entertainment, Sports, etc. We found that more fine-grained categories
or semantic wikidata IDs2 are less useful since only a fraction of YouTube requests
belong to one out of several million of these categories.

Support of Distinct Caching Policies

ProCache supports the assignment of eviction policies to each division individually.
We observe that many YouTube categories are responsible for only a small fraction
of the overall request workload [KKH17; CDL08b] such that we decide to pool cate-
gories with relatively low request shares. Additionally to the probationary division,
we create four cache divisions for the most popular categories: Music (42.5%), Enter-
tainment (10.1%), People & Blogs (8.7%), Comedy (7.8%), and a fifth cache division
to aggregate the remaining categories that are smaller than 7.5% as miscellaneous
(30.8%). The values in brackets denote the share of requests towards the respective
category [KKH17].

5.3 system design 89

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour of the Day

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Re

qu
es

t S
ha

re

Music
Entertainment

People
Comedy

MISC

Figure 32: Popularity per category and hour of the day

Size-adaptive Cache Divisions

Assigning an equal amount of cache storage per category is unlikely to be the optimal
storage distribution since we already know that, e.g., much more music is requested
than news. Figure 32 shows that the category popularity distribution varies over the
course of the day. Additionally, Figure 33 depicts the popularity distribution of the
most popular YouTube categories. We observe a large long-tail for all categories. We
note that music and entertainment have more popular content in general compared
with people or comedy and the least popular content is observed in the comedy cat-
egory. However, on the right side, we observe very different maximum view counts.
We see that entertainment, misc, and music cover more popular content compared
with people or comedy. As we observe different changes in the popularity dynamics
of the different content categories over the course of the day, we consider a dynamic
variation of category cache division sizes.

100 101 102 103 104

Views (log)

1.00

0.70

0.80

0.90

C
C

D
F

 (
lo

g) Category
Music
Entertainment

People
Comedy

MISC

Figure 33: Non-normalized CCDF of the video content ranks, y-axis scaled linearly

2https://www.wikidata.org [Accessed: November 19, 2018]

https://www.wikidata.org

5.3 system design 90

0 10 20 30 40 50 60 70
Inter Request Time (Seconds)

10 5

10 4

10 3

10 2

10 1

100

C
C

D
F

Category
Comedy
Entertainment

MISC
Music

People

Figure 34: CCDF of the IRT for the most popular YouTube categories and the Misc category,
y-axis scaled logarithmically

Figure 34 exhibits the Inter-Request Time’s empirical distribution. We can see that
popular YouTube categories, such as music, exhibit comparably low Inter-Request
Times (IRTs). This means that their content is requested frequently. However, less
popular categories show IRTs that are up to three times higher. Hence, these cate-
gories are dominated by content of low popularity which belongs to the popularity
distribution’s long tail. We can see that the popular categories have a smaller IRT
as a consequence of more requests to these categories which do not have propor-
tionally more items in their content catalog. This indicates a higher cacheability (cf.
Section 3.2) for more popular categories. ProCache is flexible to adapt to diurnal
popularity dynamics by adapting the size of its cache divisions according to the
number of hits in their respective ghost lists. A ghost list contains the IDs (hashes) of
evicted video segments from a given cache division over a pre-defined time interval.
We propose a time-limited ghost list, which saves not only the ID of the evicted video
segment of the cache division but also the time when the ID has entered the ghost
list. When the IDs in these lists exceed the specified TTL threshold, they are evicted.
We decided to set this value to four hours to keep track of evicted content within a
reasonably large share of a day, e.g., the morning and the evening. Thereby it is guar-
anteed that ghost lists cannot grow indefinitely. Figure 35 depicts an exemplary state
of the cache division storage allocation of ProCache. The blocks within the cache
divisions represent video segments. The numbered block in the corresponding cache
division’s ghost list represents IDs of evicted video segments from this division. For
example, the ghost list belonging to the category music can only contain IDs of this
category that have been cached and evicted previously.

5.3.2.2 Division Size Adaptation Strategy (DSAS)

One of ProCache’s key tasks is cache size adaptation over time if the belonging cat-
egory popularity dynamics require it, e.g., the category gains or loses popularity. To
this end, a transition of the amount of allocated storage per category needs to be con-
ducted. However, since the cache storage is limited, increasing a cache division’s size
requires decreasing the other divisions. We define the term Division Size Adaptation
Strategy (DSAS) as a policy that defines the trigger for storage size re-allocation and
determines which cache division to decrease in this case. As it is not trivial to answer
how the optimal DSAS looks like, we propose and discuss four different heuristics:

5.3 system design 91

Probationary

G
ho

st
 L

is
t E

nt
rie

s
w

ith
 T

TL
 V

al
ue

s
Ca

ch
e

D
iv

is
io

ns

Music Entert. People Comedy MISC
FIFO LRU TTL LFU LFUDA RAND

3

2

5

2

1

7

4

1

634

3

1

2

4

3

Figure 35: Example cache space assignment, numbers indicate the ghost list entry TTLs

Smallest Ghost List (SGL)

The cache division that has the smallest ghost list is decreased in size. Thereby, a
comparably small ghost list indicates a too large category division because the ghost
list is rarely used. Hence, it is likely that unpopular content is cached, i.e., content
that exhibits a lower cacheability than the content of the division that is increased.
This policy is likely to perform well in scenarios with a workload that has a rather
short long tail, i.e., a comparably small amount of unpopular content since a large
amount of unpopular content would quickly fill the ghost list and reduce the cache
division size.

Largest Ghost List (LGL)

The cache division that has the largest ghost list is decreased in size. The underlying
assumption is that a large ghost list indicates that video segments cached in this
cache division are evicted more often than video segments cached in divisions with
small ghost lists. This means that the corresponding cache division generates fewer
hits than cache divisions with small ghost lists. This policy is expected to perform
well in case of a large number of content that is rarely requested, e.g., just once or
twice for some of the content categories.

Relative Smallest Ghost List (RSGL)

This DSAS decreases the cache division associated to the smallest ghost list relative
to the division size. Thereby, not the absolute ghost list size is compared with the
length of other ghost lists but the ratio of the ghost list size divided by the size of the
cache division. Note, this emphasizes large cache divisions and, thereby introduces
unfairness. However, it emphasizes the overall request workload heterogeneity. This
policy is suitable for workloads of different content catalog sizes per content category
as it considered the relative proportions between cache division and ghost list size.

Relative Largest Ghost List (RLGL)

The cache division that has the largest ghost list relative to its division size is de-
creased. Similar to Largest Ghost List, this relative measure considers that a cache
division larger than another one is allowed to have a larger ghost list because it is
responsible for serving more video segments. If requests for a more diverse content
catalog arrive at one cache division compared to another, it is intuitive that video

5.3 system design 92

Input: ID of cache division to increase: Si
Input: Minimum cache division size: M
Output: ID of a cache division to reduce: Sr

1 if Si 6= Probationary then
2 Sr = Probationary
3 else
4 Sr = MISC
5 end
6 foreach cacheDivision s do
7 if s 6= Si then
8 if s >M then
9 ∆current = s.ghostList.size

s.size

10 ∆candidate =
Sr.ghostList.size

Sr.size
11 if ∆candidate < ∆current then
12 Sr = s

13 end
14 end
15 end
16 end
17 return Sr

Algorithm 1: Division Size Adaptation Strategy (DSAS): RLGL

segments get evicted more often, resulting in a large ghost list since also the number
of content belonging to the popularity distribution’s long-tail increases.

To determine which DSAS results in the highest performance, we conducted a
set of experiments. Therefore, a cache with 10 TB storage was investigated. We con-
sider only one category division in addition to the probationary cache division and
a misc division pooling all other categories. The most popular categories: Music, En-
tertainment, and People & Blogs performed best with RLGL, which we use in the
following. Note that less popular categories like Sports and Comedy showed the best
performance with Smallest Ghost List, but overall RLGL performs best. We observed
that DSASs often led to a convergence of smaller cache divisions to a tiny size. As a
division with a size close to zero is unlikely to ensure meaningful measurements of
relative ghost list size, which we need, we introduce a minimum cache division size
M. The used DSAS is given in Algorithm 1.

Here, it takes the ID of the cache division to be increased Si and the minimum
cache division size M as an input. In case the ID does not refer to the probationary
division, the probationary division is set as the default cache division to be decreased
Sr; otherwise, the MISC category is selected. Next, it uses the ratio of the ghost list
size to the cache division size of the current category s as well as the ratio of the
ghost list size compared to the division size of Sr to decide on the category to be
reduced next, i.e., setting the new Sr. Thereby, the division with the relatively largest
ghost list is selected (in line 11 and 12).

5.3 system design 93

5.3.3 Supporting Music Video Content

In this section, we introduce and discuss the design of ProCache’s Request Monitor
on the example of music videos. This module can be used by the Cache Manager
(cf. Section 5.3.2.1) to get recommendations on content that should not be evicted
from the cache as it is forecasted to stay or become popular. Since music videos
are responsible for the major workload share of YouTube, we target this category
specifically.

5.3.3.1 Content Classifier

The user Request Handler informs the Request Monitor upon every video request. Here,
the videos are classified w.r.t. categories that are not available in the video’s metadata.
Since music can be described well by genre and mood, we use these two classes. For
popular music content, genre and mood can be retrieved from the music website
last.fm3. However, for recent or less popular content, this information is unlikely to
be available. To this end, we need to extract features that serve as input for i) a genre
classifier and ii) a mood classifier. These classifiers ensure that all music videos can
be labeled.

5.3.3.2 Music Feature Extraction

We extract a music video’s audio features for two reasons. First, we can train a
classifier with known genre and mood using these features. Second, they serve as
an input for the classifier for content where genre and mood are not retrievable.

Genre and Mood Retrieval from last.fm

The accuracy of the classifier we want to train depends on correct and descriptive
music features together with a known label. To this end, we need a training dataset.
We use a dataset that contains over 10 million requests to YouTube caused by 700k
users. For each music video in this dataset, we use the title to request the tags anno-
tated to this track by last.fm users. On last.fm, users can assign labels to a music track
indicating, e.g., mood and genre of a song, but may also refer to the song’s topic as
they are free to choose a label. To search for our video titles on last.fm, we clean
the video titles that we retrieved from YouTube in a previous step. To this end, we
remove strings like ”official clip”, ”officiel”, and similar strings from the track titles.
Besides, if a hyphen surrounded by spaces occurs in the title, the preceding part is
assumed to be the artist, while the latter part is considered to be the title. Using these
cleaned titles, all tags associated with them are retrieved from fast.fm4. Thereby, we
retrieved tags for 13,553 tracks. Overall, these are 30% of the 44,704 tracks consid-
ered. This acknowledges our claim that not for every music tracks genre and mood
can be retrieved. However, we need to have a mood and a genre label for all music
tracks. Therefore, low-level audio features are derived and a genre and a mood clas-
sifier are trained on these features in conjunction with the dominant genre or mood
information obtained from last.fm, i.e., the training dataset.

3http://www.last.fm [Accessed: November 19, 2018]
4We access the last.fm API (http://www.last.fm/de/api) using the python library pylast (https:

//code.google.com/archive/p/pylast/) [Accessed: November 19, 2018]

http://www.last.fm
http://www.last.fm/de/api
https://code.google.com/archive/p/pylast/
https://code.google.com/archive/p/pylast/

5.3 system design 94

Happy Sad Angry Relaxed

happy sad angry relaxed

energetic nostalgia aggressive calm

positive depressive banger downtempo

fun bittersweet passion chillout

cheerful sentimental quirky dreamy

humorous melancholic annoying longing

feel good dramatic gangsta rap spiritual

Table 8: Subset of associations between Thayer’s mood model and last.fm tags

The freedom of users to assign tags to tracks on last.fm leads to a large variety
of tags. To counter this, only tags assigned by at least 50 users are considered to Deriving

moodavoid rarely used and less representative tags. The remaining tags are mapped to a
smaller set of moods and genres. For the mood set, we choose to map each tag to
one out of four quadrants of Thayer’s mood model [Tha90] (cf. Section 2.4.3), a well-
known psychological mood model[LMS+10; SBI14; YLC06]. The four quadrants of
this model are: happy, sad, angry, and relaxed. For each of the most often used tags,
a quadrant of the Thayer mood model is assigned following the mapping depicted
in Table 8. For example, the tags: angry, aggressive, and banger are assigned to the
quadrant: angry. Following this procedure, we generate a dataset of tracks and labels,
which we consider as the ground truth.

To derive the genre of a music track, we follow a similar approach as for deriv-
ing the mood. Following the approach proposed by Huang et al. [HLW+14], we use Deriving

genrethe following set of genre classes: rock, classical, pop, blues, jazz, country, disco,
hip hop, metal, and reggae. Last.fm reveals that besides these genres, many songs
in our dataset belong to the genres chanson, dance, electronic, and soul, which are
not reflected in the aforementioned set of genre classes. To this end, we also con-
sider these genre classes as well. To counter the noisy variety of genres in the tags
that we retrieved from last.fm, we consolidate specific genres, as listed exemplary
below. Thereby, we aggregate similar genres such as hip-hop and rap or reggae and
reggaeton which are usually hard to distinguish from each other.

• Metal: metal, heavy metal

• Rap: hip-hop, hiphop, rap

• Reggae: reggae, reggaeton

• Rock: rock, classic rock

• Soul: soul, rnb

For example, tracks with the dominant labels hip hop, hiphop, and rap are consid-
ered as rap. For each track, the genre label assigned by most last.fm users, i.e., the
dominant label is chosen. Following this approach, the genre is determined for 9,029

music video’s tracks. The number of videos per genre is highly heterogeneous, e.g.,
Pop with 2,004 and Blues with 55 samples, as shown in Table 9.

5.3 system design 95

Pop Rock Rap Electronic Soul Chanson Reggae Dance Metal Jazz Disco Classic Country Blues

2,004 1,633 1,397 970 784 543 520 467 197 159 142 96 62 55

22% 18% 15% 11% 9% 6% 6% 5% 2% 2% 2% 1% 1% 1%

Table 9: Absolute and relative occurrence of samples per genre in the dataset

5.3.3.3 Audio Feature Extraction

The last step to generate a training dataset for our envisioned classifiers is to derive
low-level audio features. In the following, we introduce the methodology used to
extract these features. A set of frameworks for audio feature extraction are proposed
as discussed in Section 2.4.3. We choose the Matlab package MIRtoolbox [LTE08]
because it supports deriving a large set of audio features from an audio signal, e.g.,
the Mel Frequency Cepstral Coefficients values, tempo, spectral entropy, timbre, and
pitch. In addition, statistical values of these features are offered such as the mean
and the standard deviation. Overall, MIRtoolbox provides us with 392 features for
each track. We use a representative sample of 30 seconds of each music video as
input. This is a common procedure [LMS+10; TTK+08; SDP12]. The sample is taken
from seconds 30 to 60 for tracks with a duration greater than 60 seconds. Thereby, we
avoid the often not representative intro. For videos that have a duration of 60 seconds
or less, we use the first 30 seconds. Following this procedure, we could retrieve the
low-level audio features for 37,732 tracks. To reduce the number of features carrying
similar information, sets of highly correlating features are determined. For each of
this set, only the feature with the lowest entropy is used because it is most predictive.
Thereby, we exclude correlating features that have the same or equal values for most
tracks. This leaves us with 317 from the originally 392 features.

5.3.3.4 Genre and Mood Classification

This section discusses the design and performance of the genre and mood classifiers
used by ProCache’s Content Classifier. Using the previously created training dataset
comprising the low-level audio features derived by MIRtoolBox and the determined
genre or mood label, audio samples are used for training and testing of the classifiers.
In a first step, the features are normalized, i.e., scaled to a value between 0 and 1,
which is a common requirement for most machine learning algorithms. With the goal
to avoid using less predictive and unnecessary many features, the classifier is trained
on an iteratively increasing number of features, thereby following a common subset
heuristic. If an audio feature can increase the classification accuracy, we add it to the
feature set used; otherwise, it is discarded. However, the classification accuracy did
not increase significantly by doing so. Therefore, all the 317 features are kept.

Based on the literature presented (cf. Section 2.4.3), a Support Vector Machine
(SVM) is chosen as the classification model. Several combinations of parameters are
tested to find the optimal SVM model and training parameter configuration. This
includes the penalty parameter of the error term C, that defines how resistant the
training is to overfitting, different kernels, i.e., linear, radial, polynomial, and sig-
moid as well as the kernel coefficient γ which shapes the kernel function. We train
the SVM model using 10-fold cross-validation to achieve a robust measure of classifi-

5.3 system design 96

Figure 36: Confusion matrix of the mood
classifier’s precision

Mood Precision Recall F1-score

Angry 0.50 0.60 0.55

Happy 0.82 0.77 0.79

Relaxed 0.63 0.73 0.68

Sad 0.53 0.47 0.50

Average 0.70 0.69 0.69

Table 10: Mood classifier performance met-
rics

cation accuracy. The python library scikit-learn5 is used for training, cross-validation,
and grid-search for hyper-parameter optimization as well as class balancing. Class
balancing is especially necessary since the number of samples per class in the dataset
vary, i.e., the dataset is unbalanced (cf. Table 9). Therefore, classes are weighted in-
versely proportional to their occurrence in the dataset to balance their influence and,
thereby achieve a high classification accuracy for each class. Following this proce-
dure, two classifiers are trained which can determine a track’s mood and genre
based on its low-level audio features. Note that the dataset used in this paper is
significantly larger than the ones stated in the related work. The achieved accuracy
of the mood classifier is 64% by using a radial basis function (RBF) kernel and a test
set size of 10%. Figure 36 shows that the accuracy differs for each class. This figure
shows a confusion matrix that indicates how many percents of the known labels,
i.e., the true labels are classified correctly. For example, the category angry is easily
mistaken for happy, while happy and relaxed music can be identified with a high
accuracy of about 82% and 63%. Table 10 shows the achieved precision, recall, and
F1-score per mood class.

Note that an SVM with a radial base function (rbf) kernel that we use for the mood
classification outperforms the best results reported by Laurier et al. [LMS+10] and,
thereby shows similar results to the approach of Rho et al. [RHH09]. One explanation
for this is that the training data that we use is severely larger than in the related work.
Furthermore, the approach presented by Laurier et al. [LMS+10] performs only 1.6
— 6.7% worse, depending on the hyperparameter settings chosen for the SVM. Note,
this is a decent accuracy compared to a random classifier, which would result in
25% precision and a majority class classifier which would always predict happy and
thereby achieve 40% precision.

The results for the genre classification show high precision values of up to 70%
for the classes hip hop, pop, and electronic. On the other hand, blues and country,
the two smallest categories, comprising about 50 samples in the training dataset,
performed with 0% and are, therefore, usually misclassified. Still, overall the genre
classifier shows an average precision of 50%, which is high for a classification task
with that many classes. Here, a majority class classifier which would always predict

5http://scikit-learn.org [Accessed: November 19, 2018]

http://scikit-learn.org

5.3 system design 97

pop would result in 22% precision and a random classifier only in 7%. A detailed
listing of precision, recall, and F1-measure is depicted in Table 11 for genres and in
Table 10 for moods. The confusion matrix for all genres is depicted in Figure 37.

Genre Precision Recall F1-score

Blues 0.00 0.00 0.00

Chanson 0.24 0.43 0.31

Classical 0.30 0.60 0.40

Country 0.00 0.00 0.00

Dance 0.20 0.43 0.27

Disco 0.29 0.48 0.36

Electronic 0.42 0.48 0.45

Hip hop 0.70 0.68 0.69

Jazz 0.14 0.26 0.19

Metal 0.23 0.48 0.31

Pop 0.63 0.34 0.44

Reggae 0.43 0.49 0.46

Rock 0.56 0.42 0.48

Soul 0.36 0.33 0.35

Average 0.50 0.44 0.45

Table 11: Performance statistics of the genre classifier

5.3.3.5 Popularity Monitor

The popularity monitor is a vital component of the Request Monitor (cf. Section 5.3.2.1).
Its task is to monitor the distribution of pre-specified classes as well as all requests
concerning their YouTube content categories over the course of a specified time in-
terval, e.g., a day, a week, or a longer duration. While the YouTube categories can be
retrieved from the YouTube Data API, the specific classes can refer to a more precise
concept, e.g., genre and mood. To this end, the popularity monitor received this infor-
mation from the Content Classifier module. Thereby, insights of the time-dependent
content popularity concerning the video categories and the content classes can be
deduced.

In the following, we emphasize the use of the popularity monitor for the case of
music video caching. Music taste is observed to shift by the hours of the day, e.g.,
activating music during sports activities and relaxing music in the evening [GS15].
To validate this observation, the distributions of mood and genre over the course of
the day are investigated. Figure 38 visualizes the distributions for a) genre and b)
mood. Surprisingly, we observe only small variations for many of the genres over
the course of the day. This observation holds true for all 14 days captured in the
trace. While the popularity of most categories is relatively static, hip-hop and pop
music exhibit more variation. While both genres vary in popularity, their summed
share stays stable around 60%. One explanation for this is that the same users tend
to request content from both genres.

5.3 system design 98

Figure 37: Confusion matrix of the genre classifier

5.3.3.6 Content Recommender

The Content Recommender’s task is to estimate content that is going to be popular in
the near future. This information is provided to the Storage Manager upon request.
To do so, the Content Recommender gets input from the popularity monitor and the
Content Classifier. This includes genre and mood from the Content Classifier as well as
content popularity time series. Therefore, we choose the popularity monitor classes
C1: all videos, C2: genre, and C3: mood. Depending on the Recommendation Policy
used, this information is used to conduct a popularity estimation on a per-video
basis. A Recommendation Policy defines the actual mechanism used for the recommen-
dation. The recommendation policies which we propose in this section determine
which videos are emphasized in caching. Next, we present and discuss a set of rec-
ommendation policies suitable for music video popularity estimation.

Two main types of recommendation approaches can be distinguished: content-
based and user group-based also known as Collaborative Filtering (CF). The content-
based approaches rely on content-related information. The user group-based ap-
proaches require a detailed history of many users to work properly. Therefore, user
behavior-based recommenders are more resource-demanding and require detailed
user history information from many users. Hence, they are, in contrast to content-
based approaches, not privacy-preserving. Independent of which of both approaches
is used, the output is an ordered list of music video IDs, that are likely to be interest-
ing for the users and, hence are suitable for proactive caching.

In the following, we propose three content-based recommendation policies: Pop-
ularity, Genre, and Mood as well as one user behavior-based Recommendation Policy:
Aggregated Similarity Measure

Popularity

The popularity policy uses the popularity monitors observation for C1, i.e., the pop-
ularity of all video content. It provides a simple policy by recommending the most
popular videos from the recent past. This approach can be implemented easily and is

5.3 system design 99

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour of the day

0

20

40

60

80

100

P
e
rc

e
n
t

blues
chanson
classical
country
dance
disco
electronic
hiphop
jazz
metal
pop
reggae
rock
soul

(a) Genre

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour of the day

0

20

40

60

80

100

P
e
rc

e
n
t angry

happy
relaxed
sad

(b) Mood

Figure 38: Genre and mood popularity per hour of the day

likely to result in a reasonable performance for the near future. However, the content
recommended by this policy can soon become stale depending on the dynamics of
new videos being added to the content catalog. Deriving popular video candidates
from the past might not be representative for the future, e.g., because the watching
behavior correlates with a certain time or hour of the day.

Genre and Mood

Recommending potential stall content is the main drawback of the popularity policy.
This can be countered by leveraging seasonal or reoccurring popularity patterns. To
this end, we propose time-aware caching. The underlying assumption is that specific
music features, e.g., mood and genre correlate with time of the day, as shown in Sec-
tion 5.3.3.5. Thus, a Recommendation Policy that emphasizes music videos matching
the most popular genre or mood of the current hour of the day is likely to be more ac-
curate. This policy class the available storage for proactive caching as an input. Based
on this, it provides a list of video IDs whose genre or mood match the popularity
distribution of the near future, e.g., the next hour proportionally. For the contained
mood or genre classes, the most popular content is recommended. We propose two

5.4 evaluation 100

specific recommendation policies that follow the procedure mentioned above: i) genre
and ii) mood depending on which music features the policy’s time-awareness orients.

Aggregated Similarity Measure

The Aggregated Similarity Measure policy uses a user-item-matrix containing an entry
for every video a user has watched. The Popularity Monitor provides this information.
If a video has been requested at least twice, the number of requests for this user is
added to the matrix. Using this matrix makes it possible to determine similar users
for a given user that share the user’s interest. In the following, we refer to these
similar users as neighbors. The Jaccard similarity coefficient defines the similarity
between a user and its neighbors. For user a and b, the Jaccard index is determined
by Equation 4. In the following, we refer to A and B as the videos watched by the
users a and b respectively.

J(A,B) =
|A∩B|
|A∪B| =

|A∩B|
|A|+ |B|− |A∪B| (4)

We identify the neighbors of a user by a high Jaccard index since both have
watched a large share of the same videos. In a next step, the videos that have been
watched by the neighbors but not yet by the user are determined. Their watch count
is weighted by the similarity between the user and the neighbor that has watched
this video. Finally, this value is taken as a score and the videos with the highest score
are recommended to a user.

To adapt the similarity measure policy for our in-network caching scenario, we
propose the aggregated user similarity measure as a policy. Therefore, we take for
each user a list of tuples, i.e., (video ID, score). For all users, these lists are concate-
nated and in case an entry occurs multiple times in the resulting list, their scores are
summed. The resulting list can be perceived as an aggregated similarity measure
over all users. Thereby, this metric is suitable to recommend videos for a group of
users.

5.4 evaluation

This section presents the evaluation of ProCache and discusses the results of our
experiments. We present the evaluation methodology in Section 5.4.1. Section 5.4.2
provides an analysis of key aspects of the trace, addressing content properties and
user behavior. In Section 5.4.3, we introduce the evaluation metrics used to assess
performance and costs of ProCache. Section 5.4.4 presents performance measure-
ments on traditional caching strategies and identifies a benchmark used in the rest
of the evaluation. In Section 5.4.5 we evaluate ProCache on a mixed-category work-
load using dynamic storage allocation for different cache divisions. Additionally, we
evaluate ProCache’s music-specific work-flow in Section 5.4.6.

5.4.1 Methodology

We evaluate ProCache using a large real-world dataset described in the next sec-
tion. Thereby, we avoid weaknesses of synthetically generated traces such as neglect-
ing Inter-Request Time correlations and heterogeneous video popularity life cycles.

5.4 evaluation 101

Due to the large number of data requests and content catalog size, we decide to
evaluate ProCache by a set of simulation experiments. Thereby, proactive caching
is either used for all requests or only the requests towards the content of a specific
category, i.e., music. In the proactively managed storage area, videos are placed on
a regular basis. In the case that not the entire Cache Storage is managed proactively,
the remainder is managed traditionally by LRU since it is the most popular caching
policy and, therefore ensures high comparability. We conduct experiments for caches
of different size to study its influence on the ProCache’s performance. Furthermore,
the music-specific content recommendation policies proposed in Section 5.3.3.6 are
evaluated.

To consider typical cache hierarchies as used by CDNs, we study ProCache’s
performance on a set of hierarchies that we introduced in Section 2.2.2. In these
experiments, we split the overall storage equally among the caches comprised by the
hierarchy. Furthermore, for cache hierarchies, we model the delay in our simulation
in a way that the Round-Trip Time for the longest path does not exceed 50 ms as
observed for real-world CDNs6. To this end, we equally distribute the 50 ms delay
among the links between the caches. For the example hierarchies in Figure 5, this
results in an 8 ms latency for hierarchy 1 and a 12 ms latency for hierarchy 3 per
inter-cache connection. In addition, we assign video streaming clients uniform at
random to one of the leaf caches to introduce variance into our simulations and to
avoid being biased by an unintended beneficial association of clients to caches.

5.4.2 Dataset Analysis

We use a real-world trace that consists of over 10 million video requests to YouTube
videos to evaluate ProCache. Its content catalog comprises more than 1.6 million
videos. The trace was recorded in 2014 by a large European ISP containing only
anonymized request information from unencrypted HTTP GET requests. At this
time, it is estimated that this captured about 50% of all YouTube requests within
this ISP ’s network. In a later step, we retrieved the corresponding video category
from the YouTube Data API7 by using the video ID. The video creator chooses this
category from a limited set of 15 available categories [CLD13] during the video up-
load process. Table 12 depicts an artificial but exemplary trace record.

Furthermore, we retrieved8 the average bit rate of the videos for a resolution of
1080p and 30 Hz leading to a workload that sums up to 2.11 PB. It is a common
approach to consider just one video quality aiming to not bias the results by an
arbitrary number of video qualities, that can easily reach more than a hundred rep-
resentations [KZS15].

5.4.2.1 Content Analysis

The trace contains YouTube video IDs which are used to enrich the dataset by meta-
data provided by the YouTube Data API. This metadata provides information about
the video’s release date, the category assigned by the uploader, as well as the video
title. In a first step, we determine the YouTube category for all requests. While ana-

6https://www.cdnperf.com/ [Accessed: November 19, 2018]
7https://developers.google.com/youtube/v3/ [Accessed: November 19, 2018]
8https://youtube-dl.org/ [Accessed: November 19, 2018]

https://www.cdnperf.com/
https://developers.google.com/youtube/v3/
https://youtube-dl.org/

5.4 evaluation 102

Property Example Description

index 1 Unique identifier for each record

requestTime 1397426400.07611 Request time, as Unix timestamp

userId 752210 Requesting user

videoId WCt17N9fEOM The YouTube video identifier

sessionDuration 17.639936 The duration of the TCP session

duration 273 Video duration in seconds

uploaded 2016-02-11T09:23:17.000Z The video’s publishing date

uploader etit darmstadt YouTube user who uploaded the video

category Education The category of the requested video

Table 12: Example record of the trace used for the evaluation

lyzing we the category distribution, we found music to be the most popular category
measured in terms of requests in the trace. It causes about 42% of all requests. In
a previous analysis from Li et al. [Li+13], they found 37% of the YouTube requests
belonging to music. One explanation for this is an increasing trend towards music
video watching on YouTube. Figure 39 exhibits the results of our analysis, depicting
the relative share of requests belonging to the ten most popular YouTube categories.
Categories of minor popularity that exhibit a request share smaller < 1% are summa-
rized in the category Others, which comprises: Movies, Trailers, Shows, Nonprofit,
Animals, Travel, Tech, and Education. In the figure, we find that Music is more than
four times larger than the second largest category: Entertainment, which shows just
10.03%. Another interesting finding is that about 35% of the YouTube channels ap-
pearing in the dataset have uploaded videos belonging to the category music. Thus,
we deduce a dominant role of music content on YouTube.

Music

42.16

Entertainment
10.03

People

8.62

Comedy

7.74

Film

7.48

Games

6.33

Howto

5.12

Others

4.66 Sports

3.81 Autos
2.60

News1.46

Figure 39: Relative request shares to different YouTube categories; categories showing less
than 1% of all requests are aggregated to the category Others.

5.4 evaluation 103

5.4.2.2 User Analysis

The network load caused by YouTube videos served to the users varies over the
course of the day. Figure 40 exhibits the network load for the first week covered by
our trace dataset. For the sake of clarity, we depict the relative number of requests
in non-overlapping 10-minutes intervals. We see, that on weekdays, the traffic peeks
short after noon, probably because of people watching videos during their lunch
break and afterward return to work. At 5 pm, the workload shows a second peak,
probably because work has ended and people are watching videos while commuting
back to their homes. The request load stays high but slowly decreases until around
5 am. Weekend days show a distinctly different pattern compared with weekdays. On
weekends, the users get active later during the day and request more videos overall.
We cannot observe any dedicated peaks. Instead, the traffic stays high between 11 am
and midnight. Overall, the user activity pattern shows a shift in time about 2-3 hours,
as they start requesting later and stay active for later hours.

00:00:00 04:00:00 08:00:00 12:00:00 16:00:00 20:00:0000:00:00 04:00:00 08:00:00 12:00:00 16:00:00 20:00:0000:00:00 04:00:00 08:00:00 12:00:00 16:00:00 20:00:0000:00:00 04:00:00 08:00:00 12:00:00 16:00:00 20:00:00

Time

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 n
um

be
r o

f r
eq

ue
st

s

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

Figure 40: Normalized request count observed for each weekday per hour of the day

5.4.3 Evaluation Metrics

To evaluate the performance and cost of ProCache and other caching strategies, we
use the following performance and cost metrics.

5.4.3.1 Cache Hit Rate

The Cache Hit Rate (CHR) is the ratio of cache hits of a caching system, which can
consist of a single cache or multiple caches that form a cache hierarchy. Thereby, the
CHR defines the ratio of the number of contents delivered by the cache to the overall
number of requests N to the cache. Equation 5 depicts the formula of the CHR. Here,
1hi evaluates either to 1 in case of a hit or to 0 in case of a miss. This metric is the
most established metric and ensures for an easy comparison of the results. The CHR

5.4 evaluation 104

serves as a measure of content source offload since a higher hit rate implies fewer
requests to the origin server and, hence less network load.

CHR =
1

N

N∑
i=1

1hi (5)

5.4.3.2 Startup Delay

A drawback of considering the CHR for the entire hierarchy is that it obfuscates
where the hit occurs. However, this is important since it influences the video’s QoE
(cf. Section 2.3.1). The further away the cache is that delivers the first segments of a
video, the larger is the video’s initial stalling time. In the following experiments, we
measure the average latency A. It can be estimated as the average of the path latency
up to the serving cache weighted by the hit rate at that cache. We denote the average
latency between clients and caches of level m as Lm where level m = 1 corresponds
to the content origin and level m = M to the leaf nodes. Figure 41 depicts a simple
example of a cache chain. Hm is the hit rate of level m. Therefore, the average latency
A can be estimated as follows:

A = L3H3 + L2(1−H3)H2 + L1(1−H3)(1−H2)

where H3 + (1−H3) + (1−H3)(1−H2) = 1

1 32L1 L2 L3
Client

H1 H2 H3

Ln: Avg. link latency

Hn: Hit rate at level n

Figure 41: Cache delay model, on the example of a simple cache chain

5.4.3.3 Write Operations

The disk utilization if often a major performance bottleneck during the hours when
most videos are requested, i.e., peak hours. Especially insert and delete operations
take much time compared with read operations and, furthermore, lead to deteriora-
tion of Hard Disk Drives (HDDs) as well as Solid-State-Drives (SSDs). During the last
years, the price gap between SSDs and HDDs has closed [Hac15]. This makes SSDs
attractive as storage for caches. However, one drawback when using SSDs is the wear
out. SSDs as NAND flash devices consist of storage cells, which store bits by assign-
ing two different voltage levels, one representing a 1 and the other one representing
a 0. These cells are limited in the number of times this value can change [Bas15].
Thus, the number of write operations is an important cost metric considering the
lifetime of SSDs. Read operations are far less costly and strongly correlate with the
CHR. Hence, we focus on write operations as the sum of insert operations i and
delete operations d in a cache hierarchy. In our evaluation, we determine this cost W
as given by the equation below. Due to the large magnitude of this metric, we decide
to compute the logarithm to the base 10 of the actual values.

5.4 evaluation 105

Category Music Entertainment People Comedy Misc

Content Catalog Size 354,991 111,859 116,198 47,444 338,400

Demand in TB 1.008,19 192,82 185,57 153,10 569,99

Demand in #Requests 2.1 ∗ 108 4.1 ∗ 107 3.9 ∗ 107 3.2 ∗ 107 1.2 ∗ 108

Table 13: Content catalog size and number of requested video segments for the four most
popular categories and misc

W = log10

M∑
m

Km∑
k

(im,k + dm,k) for caches k ∈ [1,Km] on levels m ∈ [1,M]

5.4.4 Best Caching Strategy per Content Category

In a first set of experiments, we aim to figure out what the best state-of-the-art strat-
egy for content caching is. Thereby, we evaluate each the four largest YouTube cat-
egories separately. To this end, we use a distinct division covering the entire Cache
Storage and is only exposed to requests addressing this content category. For this
experiment, we consider a single cache hierarchy with a 1 TB large cache. Figure 42

LC
E

NHIT
1

NHIT
2

Pro
b 0.7

5

Pro
b 0

.8

Admission Strategy

ARC

LFU

LFUDA

LRU

SLRU

Ev
ic

tio
n

St
ra

te
gy

32.82 33.51 33.32 32.73 32.95

17.69 25.95 27.47 19.22 18.25

32.10 32.28 32.10 31.96 32.05

26.81 31.32 32.21 27.57 27.54

31.85 32.86 32.15 31.84 31.80

Music

LC
E

NHIT
1

NHIT
2

Pro
b 0.7

5

Pro
b 0

.8

Admission Strategy

35.63 35.60 34.06 34.94 35.12

17.21 25.18 26.63 19.58 19.15

32.67 32.84 32.57 32.33 32.39

36.20 35.52 33.73 34.84 34.78

37.75 35.73 32.87 36.37 36.94

Entertainment

LC
E

NHIT
1

NHIT
2

Pro
b 0.7

5

Pro
b 0

.8

Admission Strategy

35.50 35.34 33.30 34.45 35.24

15.16 22.33 23.70 15.01 15.10

31.33 31.74 31.32 30.95 31.01

36.45 35.30 32.97 34.99 35.20

37.91 35.46 32.18 36.30 36.76

People

LC
E

NHIT
1

NHIT
2

Pro
b 0.7

5

Pro
b 0

.8

Admission Strategy

66.16 65.16 63.72 65.32 65.80

49.72 56.72 57.79 51.02 50.27

65.19 64.90 64.17 64.88 64.80

64.61 64.56 63.72 63.50 63.90

65.71 63.25 61.17 64.41 64.79

Comedy

0

15

30

45

60

CHR

Figure 42: CHR for individual categories using a single cache hierarchy with 1 TB storage

depicts the results for the four most popular YouTube categories. For Music, ARC
in combination with NHIT1 (cf. Section 2.2.1.1) performs best with only small differ-
ences to ARC in combination with NHIT2. For both categories, Entertainment and
People&Blogs, the combination: SLRU and LCE show clearly superior CHRs. For the
Comedy category, we observe higher CHRs than the other top four categories. One
explanation for this is that Comedy has a much smaller content catalog size. Table 13

depicts the number of videos in the categories content catalog as well as the number
of requested video segments. We see that the Comedy category shows a similar num-
ber of requests to a content catalog that is less than half the size of People&Blogs and
Entertainment. In general, we observe that Least Frequently Used (LFU) shows a sig-
nificantly lower CHR than all other strategies. As shown in Figure 34, the IRT for the
chosen categories is small. This indicates a high peakiness of the content popularity
in a short time span to which LFU is not able to adapt timely if new content gains
in popularity as it still prefers outdated content that was popular in the past. Re-

5.4 evaluation 106

markably, SLRU and ARC outperform LRU independent of the admission strategy
used. This demonstrates that LRU is in many cases a non-optimal choice, though
for some admission strategies the performance differences are only marginal. The
superiority of SLRU and ARC can be explained by the probationary cache divisions
implemented in, both, SLRU and ARC as introduced in Figure 2.2.1.2. We deduce
that ARC, SLRU, and LFU with Dynamic Aging (LFUDA) are most likely to show
the best CHR for many video categories. Accordingly, we choose them as a bench-
mark for ProCache in our further analysis for experiments comprising multiple
categories.

5.4.5 Multiple Cache Divisions for Mixed-Content Workloads

In the following, we evaluate the performance of ProCache by comparing its per-
formance metrics in different scenarios with the empirical performance of the best
caching strategy among the strategies introduced in the related work. To this end,
we conducted a series of simulations and compute the average CHR, the number
of write operations (#Writes), and the average latency (ØLatency) metrics as de-
scribed in Section 5.4.3. We show our results in Table 14 for a set scenarios with
different topologies and varying Cache Storage size. In the table, we show the perfor-
mance metrics of ProCache as well as the best alternative caching strategy, i.e., the
combination of admission and eviction policy achieving the highest CHR. Figure 14

shows, both, the performance and cost metrics of the best strategy as well as for Pro-
Cache. Additionally, we show the relative improvement achieved by ProCache for
the ease of comparability. Note that positive values (green) denote a superiority of
ProCache while negative values (red) indicate ProCache’s inferiority. We observe
that for cache sizes up to 1 TB, the best eviction policy turns out to be ARC combined
with NHIT2 or Leave a Copy Down (LCD). For larger cache sizes, SLRU and LFUDA
in combination with Leave Copy Everywhere (LCE) result in the highest CHR. Fur-
thermore, we observe that ProCache performs poorly at small cache sizes of 1 GB
for all hierarchies with a CHR degradation between 53% and 0.53%. However, larger
or equal 10 GB, ProCache consistently increases the CHR up to 18%. Interestingly,
we observe a hierarchy-dependent optimum cache size of either 10 GB (H1), 100 GB
(H2), or 1 TB (H3, H4). In addition, ProCache decreases the latency to the clients
and decreases the number of write operations at the caches slightly. Hence, we de-
duce that ProCache moves popular content closer to the clients than state-of-the-art
caching strategies. We see the highest reduction in latency and write operations for
cache sizes larger than the one with the highest CHR, though not the largest cache
size considered. ProCache shows the largest performance increasing effect for small
and mid-size caches when used in combination with NHIT2. Therefore, we conclude
that ProCache is able to increase the CHR and simultaneously lowers the latency
and the number of disk write operations in most of the considered scenarios.

5.4.5.1 Cache Layer Performance

In the next set of experiments, we provide more insights on the performance in
different cache layers over time. For the sake of simplicity, we chose hierarchy 3

(tree) for these experiments. The reason for this is that ProCache exhibits for this
hierarchy the highest CHR improvement and, additionally, decreases latency, and

5.4 evaluation 107

Pr
o

C
a

c
h

e
as

Ev
ic

ti
on

Po
lic

y
Be

st
C

ac
hi

ng
St

ra
te

gy
w

/o
Pr

o
C

a
c

h
e

Im
pr

ov
em

en
t

by
Pr

o
C

a
c

h
e

(%
)

H
ie

ra
rc

hy
St

or
ag

e
Si

ze
A

dm
is

si
on

C
H

R
#W

ri
te

s
Ø

La
te

nc
y

A
dm

is
si

on
Ev

ic
ti

on
C

H
R

#W
ri

te
s

Ø
La

te
nc

y
C

H
R

La
te

nc
y

#W
ri

te
s

1
1

G
B

N
H

IT
1

0
.1

0
5

.2
9

3
8
.7

9
N

H
IT

2
A

R
C

0
.2

2
5

.0
3

3
8
.7

3
-5

2
.8

3
-0

.1
5

-5
.2

4

1
1

0
G

B
N

H
IT

2
0

.9
1

5
.0

2
3

8
.0

9
LC

D
A

R
C

0
.7

7
3

.3
0

3
8
.4

7
1
8
.3

9
0
.9

9
-5

2
.0

3

1
1

0
0

G
B

LC
D

2
.9

5
3

.6
9

3
6
.8

5
LC

D
A

R
C

2
.9

3
3

.9
8

3
7
.3

0
0
.3

8
1

.1
9

7
.1

3

1
1

T
B

N
H

IT
2

8
.0

4
4

.9
6

3
4
.0

8
N

H
IT

2
A

R
C

7
.9

4
.9

5
3

4
.6

0
1
.9

2
1

.5
1

-0
.0

5

1
1

0
TB

N
H

IT
1

1
9

.4
9

5
.1

1
2

8
.1

4
N

H
IT

1
SL

R
U

1
9
.2

2
5

.2
1

2
8
.9

2
1
.3

6
2

.6
8

1
.7

9

1
1

0
0

TB
LC

E
3

2
.6

7
5

.2
6

2
0
.9

1
LC

E
LF

U
D

A
3

2
.6

2
5

.3
9

2
2
.7

2
0
.1

7
9

.9
8

2
.4

1

1
1

PB
LC

E
4

1
.1

9
4

.7
0

1
6
.8

0
LC

E
LF

U
4

0
.5

1
5

.0
4

1
9
.0

0
1
.6

5
1
1

.5
4

6
.8

1

2
1

G
B

N
H

IT
1

0
.2

5
5

.1
0

4
7
.8

8
N

H
IT

2
A

R
C

0
.4

3
4

.8
3

4
7
.7

9
-4

2
.9

2
-0

.1
9

-5
.6

1

2
1

0
G

B
N

H
IT

1
1

.6
3

5
.0

9
4

7
.0

5
N

H
IT

2
A

R
C

R
C

1
.4

6
4

.8
2

4
7
.8

0
1
1
.4

8
0
.7

4
-5

.6
4

2
1

0
0

G
B

N
H

IT
2

6
.4

0
4

.7
5

4
4
.4

4
N

H
IT

2
A

R
C

5
.6

4
4

.8
0

4
5
.3

0
1
3
.3

6
1
.9

0
0

.8
7

2
1

T
B

N
H

IT
2

1
5

.2
5

4
.7

7
4

0
.3

4
N

H
IT

2
SL

R
U

1
4
.8

0
4

.8
7

4
0
.9

0
3
.0

7
1

.3
8

2
.0

2

2
1

0
TB

N
H

IT
1

3
9

.6
2

4
.9

4
2

8
.3

3
LC

E
SL

R
U

3
6
.4

4
5

.5
0

3
0
.5

4
8
.7

4
7

.2
5

1
0

.2
5

2
1

0
0

TB
LC

E
6

0
.0

0
5

.0
1

1
8
.8

8
LC

E
LF

U
D

A
5

6
.1

0
5

.1
6

2
1
.1

5
6
.9

4
1
0

.7
1

2
.8

9

2
1

PB
LC

E
6

3
.3

3
4

.5
2

1
7
.8

6
LC

E
LR

U
6

2
.2

5
4

.8
4

1
8
.2

6
1
.7

4
2

.1
9

6
.5

5

3
1

G
B

LC
D

0
.1

7
2

.2
2

4
3
.1

2
N

H
IT

2
A

R
C

0
.3

3
4

.9
7

4
3
.0

3
-4

8
.6

6
-0

.2
1

5
5

.2
9

3
1

0
G

B
N

H
IT

2
1

.2
4

4
.9

6
4

2
.2

6
LC

D
A

R
C

1
.2

3
3

.5
9

4
2
.5

9
0
.8

8
0

.7
7

-3
8
.3

3

3
1

0
0

G
B

LC
D

4
.8

1
3

.8
6

4
0
.4

9
LC

D
A

R
C

4
.4

2
4

.1
3

4
0
.9

7
8
.8

0
1

.1
9

6
.4

9

3
1

T
B

N
H

IT
2

1
3

.0
6

4
.9

0
3

6
.7

5
N

H
IT

2
A

R
C

1
1
.5

2
4

.9
0

3
7
.2

7
1
3
.3

8
1
.3

9
0

.1
0

3
1

0
TB

N
H

IT
1

3
0

.1
5

5
.0

7
2

7
.6

3
LC

E
SL

R
U

2
8
.3

3
5

.6
0

2
9
.0

6
6
.4

1
4

.9
3

9
.5

9

3
1

0
0

TB
LC

E
4

7
.8

7
5

.2
0

2
0
.5

4
LC

E
LF

U
D

A
4

5
.6

5
5

.3
1

2
0
.9

5
4
.8

6
1

.9
4

2
.0

2

3
1

PB
LC

E
5

4
.8

3
4

.9
0

1
6
.3

4
LC

E
LF

U
D

A
5

4
.4

6
4

.9
7

1
6
.6

7
0
.6

7
1

.9
9

1
.3

2

4
1

G
B

PR
O

B0
.7

5
0
.9

6
5

.4
2

4
7
.1

8
N

H
IT

2
A

R
C

0
.9

8
5

.5
1

4
7
.5

4
-0

.5
3

0
.7

3
1

.5
4

4
1

0
G

B
N

H
IT

2
3

.7
6

5
.4

5
4

5
.3

3
N

H
IT

2
A

R
C

3
.6

4
5

.4
9

4
6
.2

7
3
.3

0
2

.0
0

0
.8

5

4
1

0
0

G
B

N
H

IT
1

1
0

.8
5

5
.2

6
4

1
.4

7
N

H
IT

2
A

R
C

1
0
.3

8
5

.4
5

4
3
.0

2
4
.5

0
3

.6
1

3
.5

0

4
1

T
B

N
H

IT
2

2
4

.9
8

5
.4

1
3

6
.8

4
N

H
IT

2
A

R
C

2
2
.3

7
5

.4
1

3
7
.2

8
1
1
.6

8
1
.1

9
0

.0
3

4
1

0
TB

N
H

IT
1

4
7

.4
3

5
.5

2
2

5
.1

6
LC

E
SL

R
U

4
6
.6

0
6

.0
5

2
5
.6

8
1
.7

6
2

.0
2

8
.8

7

4
1

0
0

TB
LC

E
6

7
.4

1
5

.5
6

1
5
.6

8
LC

E
LF

U
D

A
6

7
.0

9
5

.6
2

1
5
.9

2
0
.4

8
1

.5
5

1
.0

5

4
1

PB
LC

E
7

1
.5

6
5

.5
6

1
3
.8

4
LC

E
LF

U
D

A
7

1
.5

6
5

.5
6

1
3
.8

4
0
.0

0
0

.0
1

0
.0

8

Ta
bl

e
1

4
:P

er
fo

rm
an

ce
co

m
pa

ri
so

n
be

tw
ee

n
Pr

o
C

a
c

h
e

an
d

th
e

be
st

pe
rf

or
m

in
g

ca
ch

in
g

st
ra

te
gy

in
te

rm
s

of
C

H
R

w
it

ho
ut

Pr
o

C
a

c
h

e
.T

he
si

ze
is

th
e

su
m

of
al

lc
ac

he
si

ze
s

of
a

gi
ve

n
hi

er
ar

ch
y.

Th
e

nu
m

be
r

of
w

ri
te

op
er

at
io

ns
is

de
no

te
d

lo
ga

ri
th

m
ic

al
ly

,i
.e

.,
5
,
1
0
5

5.4 evaluation 108

disk write operations. Figure 43 shows two CHR time series, one for ProCache

and one for ARC (bottom). The two graphs at the figure’s top show the relative
gain achieved by ProProCache in comparison to ARC at the edge cache and the leaf
caches. We compare ProCache’s best caching strategy to the best traditional strategy,
i.e., ARC for this scenario. In the figure, the edge cache is denoted as E1 and the leaf
caches are denoted as L1 — L4. Note that the shade per line indicates the variance
of our measurements over repeated simulations, which is generally low. In general,
we observe a gain, i.e., CHR of ProCache

CHR of ARC − 1 for the entire observed time interval. This
gain is more than 30% for leaf caches, observed on Sunday noon. Also for non-peak
hours, the gain ranges around 8%, except for the night hours when the gain drops
to 1%. ProCache tends to have a higher CHR on average for all days and is able
to exploit the traffic peaks exceptionally well. Additionally, serving more content
from the leaf caches is beneficial for the user-perceived latency, as they can serve
video segments faster due to their smaller geographical distance to users. Overall,
ProCache outperforms ARC which is especially visible at the peak-hours at noon.

5.4 evaluation 109

0

5

10

15

20

25

Pr
oC

ac
he

 H
it

Ra
te

E1 L1 L2 L3 L4

0
10
20
30 Leaf Gain

Mon Tu
e

Wed Th
u Fri Sa

t
Su

n
Mon

0

5

10

15

20

25

AR
C

 H
it

Ra
te

E1 L1 L2 L3 L4

0
2
4
6
8

Pr
oC

ac
he

 G
ai

n
(%

)

Edge Gain

Pr
oC

ac
he

 G
ai

n
(%

)

Figure 43: Top: Gain of ProCache compared to ARC, Bottom: CHR for edge (E) and leaf (L)
caches of the tree hierarchy, 1 TB storage

5.4 evaluation 110

5.4.5.2 Adaptivity over Time

One of ProCache’s features is its adaptability to category-specific cache divisions
over time. In the following, we investigate ProCache’s resource allocation over the
course of the two weeks captured by our request trace. Furthermore, we show how
ProCache adapts to an increase of the entire Cache Storage size. To this end, we
conduct an experiment where we increase the cache size from initially 1 TB to 10 TB.

Mon Tu
e

Wed Th
u Fri Sa

t
Su

n
Mon

103

104

105

106
Si

ze
 (M

B)

Cache Division
Prob
Misc
Music

Entertainment
People
Comedy

(a) Cache division size evolution

Mon Tu
e

Wed Th
u Fri Sa

t
Su

n
Mon

101

102

103

104

105

106

#H
as

h
Va

lu
es

Ghost List
Prob
Misc
Music

Entertainment
People
Comedy

(b) Ghost list size evolution

Figure 44: Cache division and corresponding ghost list size for a leaf cache in hierarchy 3

(tree) with 1 TB storage; Cache Storage is increased from 1 TB to 10 TB on Saturday

Cache Division Size Variation

Figure 44 a) shows a time series of the cache division sizes for each content category
of a leaf cache from the tree hierarchy (i.e., hierarchy 3 in Figure 5) in a scenario with
1 TB storage being allocated to the entire cache hierarchy. We observe an initial warm-
up phase until the cache division sizes converge to a stable configuration with low
variation after half a day. The cache size allocation per category exhibits a diurnal
oscillation pattern which shows that ProCache’s flexible storage allocation is indeed
exploited.

In the given scenario, ProCache’s advantage is twofold: First, it discovers the
appropriate division size upon a cold start. Second, it adapts to cache size changes,
e.g., in combination with a pay-per-use storage cost model, energy saving algorithms
for caches [SBI+11], or because of a permanent increase of the available resources. In
our experiment, we perform such a cache size increase on Friday. After just one
day after, ProCache reaches a stable configuration again with a small variation in

5.4 evaluation 111

cache division size on Saturday and Sunday. Note, the probationary cache division
fills most quickly with content that is only requested once. However, the music and
misc division immediately increase as well. On Sunday noon, ProCache’s DSAS
decreases the probationary division’s size in favor of other category divisions that
are still allowed to grow as they increasingly contribute to ProCache’s performance.
We can see this on the example of the music division and the misc division which
grow on Sunday morning while the probationary division shrinks simultaneously.

Ghost List Size Variation

Besides the cache storage, also the ghost list varies in size. In the following, we
investigate their behavior. Figure 44 b) depicts the ghost list size for every cache
division in the same scenario as before. We see that the ghost list size ramps up and
starts converging quickly. Remember that each content that is being evicted from a
cache division contributes to the growth of its respective ghost list. This happens
soon for the probationary division and later for the other divisions, e.g., on Monday
morning for the music ghost list. Furthermore, we observe the probationary ghost list
shrinking overnight because many video segments exceed the maximum TTL value
and, thus are evicted. In case the Cache Storage is increased, the ghost lists do not
increase anymore soon after the increase but shrink slightly due to the TTL-based
eviction (cf. Section 5.3.2.1). However, as soon as the entire Cache Storage is filled
again, content starts being evicted and the ghost lists start growing. For example, the
music ghost list begins to increase as soon as the music division size converges, as
shown in Figure 44 b). We deduce that ProCache converges to a stable configuration
in terms of Cache Storage division sizes and also ghost list sizes with low variation
after a short consolidation time.

5.4.5.3 Eviction Policies

In the previous experiments depicted in Table 14, we have seen that SLRU, ARC,
or ProCache always achieve the highest CHR among all conducted experiments.
Thus, these eviction policies seem to have a much higher impact on the CHR than
the admission policy. To this end, we provide a full overview of the performance
of these three eviction policies. Therefore, we evaluate them on all four hierarchies
and evaluate their CHRs. In this analysis, we omit to show the belonging admission
strategy, for the sake of comprehensibility, and, instead, emphasize the differences in
CHR between the three eviction policies.

Table 15 depicts our results. We see that for hierarchy 1, SLRU, ARC, and Pro-
Cache show a similar performance while ProCache outperforms SLRU and ARC
slightly for all cache sizes except for the case of the smallest cache size of 1 GB.
When only comparing SLRU and ARC, ARC tends to outperform SLRU slightly up
to 100 GB of storage. The main difference when comparing SLRU and ARC is that
when using ARC, the probationary cache segment can adapt its size. Therefore, we
deduce that this adaptability is responsible for the different performance in case
of different cache sizes. For increasing cache sizes, ProCache’s cache division size
adaptation contributes less to the overall performance and seems to show diminish-
ing returns. Hence, for 100 TB and 1 PB, the CHRs of all three eviction policies are
similar. Overall, ProCache shows similarly or higher CHRs compared with SLRU

5.4 evaluation 112

Hierarchy Total Size SLRU ARC ProCache

1 1 GB 0.20 0.22 0.10

1 10 GB 0.66 0.77 0.91

1 100 GB 2.35 2.93 2.95

1 1 TB 7.73 7.89 8.04

1 10 TB 19.22 18.60 19.49

1 100 TB 32.08 32.16 32.67

1 1 PB 39.35 39.38 41.18

2 1 GB 0.40 0.43 0.25

2 10 GB 1.22 1.46 1.63

2 100 GB 4.54 5.64 6.40

2 1 TB 14.80 14.78 15.25

2 10 TB 36.44 34.03 39.62

2 100 TB 55.48 55.57 59.99

2 1 PB 62.22 62.21 63.33

3 1 GB 0.31 0.33 0.17

3 10 GB 1.00 1.23 1.24

3 100 GB 3.47 4.42 4.81

3 1 TB 11.42 11.52 13.06

3 10 TB 28.33 26.88 30.15

3 100 TB 45.38 45.48 47.87

3 1 PB 53.80 53.76 54.83

4 1 GB 0.81 0.97 0.96

4 10 GB 2.65 3.64 3.76

4 100 GB 8.60 10.38 10.85

4 1 TB 21.65 22.37 24.98

4 10 TB 46.60 44.64 47.43

4 100 TB 66.73 66.82 67.42

4 1 PB 71.56 71.56 71.56

Table 15: CHR comparison between SLRU, ARC, and ProCache

and ARC for all cache sizes larger or equal to 10 GB. ProCache achieves the highest
CHRs up to 71.56% for hierarchy 4 and hierarchy 2.

5.4 evaluation 113

5.4.6 Music-specific Support by a dedicated Division

In the previous part of the evaluation, we have seen how ProCache can increase the
efficiency by emphasizing multiple YouTube categories. In contrast to this, in this
section, we emphasize the evaluation of ProCache for music specifically since this
is the dominant source of traffic on YouTube. To this end, we evaluate ProCache and
its popularity prediction policies introduced in Section 5.3.3.6. Each policy results in
a list of videos from which the top videos are chosen to fill the music division. In
our experiments, we vary the size of the entire cache as well as the size of the cache
division dedicated to music video content. Traditional LRU reactively manages the
remainder of the Cache Storage.

In our evaluation, we consider the users that show a constantly high demand.
This is determined by the popularity monitor which traces all users’ requests. While
the evaluation is conducted on the entire trace, the Content Recommender and its
Recommendation Policy are served by the requests of the high-demanding users since
their stable and high demand allow for a high predictability9.

5.4.6.1 Single Cache Scenario

In the following, we conduct a series of experiments and, thereby vary the cache
size between 100 and 1,500 videos. The cache storage division size is varied between
5% and 25% of the entire Cache Storage to investigate the influence of the ratio be-
tween the music division and the LRU division responsible for all requests towards
non-music videos. We evaluated the prediction policies: popularity, genre, mood and
aggregated similarity as introduced in Section 5.3.3.6. In our experiments, we found
that the popularity policy achieves the highest performance. Thus, we detail its per-
formance in the following and provide the evaluation results of the other policies
in the Appendix in Section A.4. Note that the popularity policy requires the lowest
computational complexity among the policies considered and, therefore is the most
reasonable choice.

Figure 45 exhibits the resulting CHR for the popularity policy. The figure’s x-axis
denotes the cache size variation and the legend indicates the share of the music
division. In the figure, the blue line represents a cache that is entirely managed by
LRU, i.e., 0% storage assigned to the music division. As depicted in the figure, the
greater the music division, the higher is the resulting CHR. Increasing the proactive
share in 5% steps shows a small positive effect after each step, converging at a CHR
of 28% and a cache size of 1,500 videos.

9These users have requested at least two videos per day for seven days within the two weeks’ trace
are considered by the Recommendation Policy. This leaves us with 5,351 users that constitute 1,64% of all
users comprised by the trace which are responsible for 15.6% of the total video requests. On average,
each of these users watches seven videos per day.

5.4 evaluation 114

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

Cache Size (Items)

0

5

10

15

20

25

30

C
ac

he
 H

it
R

a
te

 (
C

H
R

)
0%

5%

10%

15%

20%

Proactive Cache Share

25%

Figure 45: CHR for different cache sizes and proactively managed cache division. A larger
proactive cache share increases the CHR.

5.4.6.2 Multi-Cache Scenario

In a further experiment, we investigate a setup comprising five distributed caches,
e.g., placed in the metropolitan areas of a country. In our experiments, one-fifth
of the clients is assigned uniformly at random to each cache to reflect the affinity
between clients and cache servers based on geographical closeness. For each of the
three policies, the CHR differences compared to a scenario where LRU manages the
entire cache are evaluated to investigate the effect of proactive caching using the
average CHR of all five caches. Figure 46 depicts the results of the popularity policy

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

Cache Size (Items)

Policy = popularity
Proactive Cache Share

5%
10%
15%

20%
25%

-4

-3

-2

-1

0

1

2

3

4

Ca
ch

e
Hi

t R
at

e
(C

HR
)

Figure 46: Relative cache performance compared with LRU

which achieved the highest performance. We show the results of the other policies in
the appendix in Section A.4. For small cache sizes, ProCache can increase the CHR
by up to 4% using the popularity policy. For cache sizes between 600 and 1,100, this

5.5 summary and discussion 115

policy has a positive effect of up to 0.8% if we consider smaller music division sizes.
For mid-sized caches, ProCache is able to decrease the CHR when the proactively
managed share of the cache is chosen too large, e.g., 25%. However, a proactive cache
share of 5% always increases the performance, even slightly for mid-sized caches.
Comparing the three policies, it can be seen that the popularity policy is superior to
genre and aggregated similarity. Overall, the maximum CHR, with 55.1%, is achieved
by the popularity policy with a proactive cache share of 20% and a cache size of 1,500

items. ProCache’s popularity policy achieves the highest gain measured by CHR
with a cache size of 200 videos and a music division size of 25%. In case the cache is
entirely LRU-managed, it achieves a CHR of just 8.9%. When combined with a music
division, it achieves a CHR of 12.8%. Summarizing, the performance of ProCache

for music content depends on the cache size, the number of users served by the
cache, and the size of the music division relative to the entire storage available.

5.5 summary and discussion

In this section, we designed and evaluated a novel proactive caching mechanism
denoted as ProCache. Using a two-week real-world trace from a national ISP, we
first studied the performance of traditional combinations of admission and eviction
policies. We have seen that SLRU and ARC achieved the highest CHR among the tra-
ditional cache eviction policies while the admission policy is less influential. Hence,
we used SLRU and ARC as a benchmark for ProCache. In a set of experiments, we
provided insights about YouTube category popularity distributions and ProCache’s
CHR when leveraging those content categories. Furthermore, we discussed the per-
formance of ProCache on different cache hierarchies and cache sizes to provide
insights about the individual CHRs. We demonstrated that ProCache results in a
superior CHR for cache sizes larger than 10 GB for all cache hierarchies considered.
Additionally, in most experiments, ProCache could lower the user-perceived latency
and the number of cache insert and delete operations.

Additionally, we proposed and evaluated a music-specific design of ProCache.
To this end, we present recommendation policies based on music-specific features
using popularity, genre, and mood as well as their time-dependent distributions
over the course of the day. We demonstrated ProCache’s benefit for large caches
with many users being served. However, also caches smaller than 500 can benefit
from ProCache. For storage sizes ranging between 500 - 1,000 items, ProCache

showed a limited positive effect.

6
S D N - E N A B L E D M U LT I C A S T F O R V I D E O - O N - D E M A N D W I T H
V O D C A S T

In our review of the related work (cf. Section 3.3), we identified a lack of mul-
ticast mechanisms for Over-the-Top (OTT) Video-on-Demand (VoD) content de-

livery that efficiently use Software-defined Networking (SDN) as an enabling tech-
nology. This chapter strives to counter this lack by presenting an innovative SDN-
enabled multicast mechanism for OTT VoD. Hence, the proposed mechanism uses
a cross-layering approach that makes it possible to coordinate closely between the
control application and the network layer. We denote this mechanism as VoDCast

which aims at efficiently reducing the network load such that it consequently re-
duces transit costs and Quality of Experience (QoE)-decreasing network congestion
events (cf. Section 3.3.1.1). VoDCast was first presented in [KHH17]. Furthermore,
a number of student theses contributed to the publication mentioned above and the
sub-mechanisms presented in the course of this chapter [Hac16; Kli17].

In Section 6.1, we provide a general overview of multicast applied to the VoD sce-
nario and its benefits. These make multicast of VoD especially valuable in a set of Chapter

outlineuse cases, which we discuss in Section 6.2. VoDCast’s system design and major con-
ceptual components are introduced and discussed in Section 6.3. The evaluation of
VoDCast is presented in Section 6.4. We evaluate VoDCast using a real-world trace
collected by a large, European mobile network operator. This chapter is summarized
and discussed in Section 6.5.

6.1 conceptual overview

Before we detail the envisioned use case scenarios and the mechanism-design of
VoDCast, we want to convey a conceptual understanding of the approach. For a
popular video, it is likely to observe thousands of video streams, being delivered to
customers within a single Internet Service Provider (ISP). Some of these customers
watch this popular video with a small difference in their playback positions. In this
case, there is a potential for multicast to reduce the link utilization and, therefore
network load efficiently as described in the following.

Assuming the playback of a distinct video, the clients are likely to demand dif-
ferent video segments which they need for their current video playback. However,
video segments that have not yet been requested by them can be delivered using
multicast to all clients that currently playback the video. Figure 47 depicts an exem-
plary snapshot of three clients and their video buffers. Note that the three clients
started their playback consecutively at time 0:00h, 0:05h, and 0:15h respectively. In
our example, one exemplary multicast group is triggered by the request of client 1

for a popular video. We decided to exclude the first video segment from being de-
livered using multicast since many videos are only played for a short time till the
user requests the next one as indicated by Figure 48. Thereby, we keep the number
of costly system changes low. In Figure 47, we see the current unicast and multicast

116

6.2 use cases 117

Content
Source

Video playback buffer of client 1

Playback start: 0:00h

Video playback buffer of client 2

Playback start: 0:05h

Video playback buffer of client 3

Playback start: 0:15h

Delivered by multicast

1 2 3 41 2 3 41 2 3 4

Delivered by unicastSystem snapshot at time 0:15h

n Currently watched segment

Multicast of
segment 3

Unicast patching
of segment 1 for

client 3

1

Figure 47: Conceptual overview of VoDCast’s unicast patching

transmissions as well as the clients’ buffer states at time 0:15. Since each video seg-
ment is assumed to be 5 seconds long, client 1 playbacks video segment 3 already.
Client 2 started the video playback at time 0:05. At this time client 2 needed segment
1, but the multicast group delivered segment 2. Therefore, client 2 had to request the
first segment using unicast, however, buffers already the second segment delivered
by the multicast group. Hence, the content is buffered ahead of time, as we see in the
case of client 2 and client 3. All video segments that are not delivered by a multicast
group need to be requested using unicast, to stream the video without stalling. This
approach is similar to patching (cf. Section 3.3.1.2), but has the advantage of a lower
network resource utilization, since not every client stream causes the creation of an
additional multicast group in case only one client requests the video at a given time.
Instead, we propose an efficient popularity-based approach which we will explain
later. Furthermore, stalling events, as possible in batching or Earliest Deadline First
(cf. Section 3.3.1.2), are less likely to occur using a unicast patching approach. The
reason for this is that the client does not have to wait for the mechanism but can
request the missing video segment autonomously as soon as it anticipates that the
next segment to playback will not be in its buffer on time.

10-1 100 101 102 103 104

Seconds

0.0
0.2
0.4
0.6
0.8
1.0

P
(X
∙
x
)

Figure 48: CDF of the video session duration in the YouTube request trace

6.2 use cases

Streaming popular VoD content using multicast is beneficial to a set of scenarios
where it can be used with one common objective: Decreasing network load and,
thereby potential transit costs and network congestion events. Customers of VoD
streaming services almost equally blame the video streaming service, the ISP, and
the Content Delivery Network (CDN) on poor viewing experience while the ISP is

6.2 use cases 118

considered to be responsible for a low-quality video stream most often [Con15]. For
both, ISPs and CDNs, VoDCast can reduce the network load and, thereby resolve
and prevent network congestions that negatively affect the users’ QoE. In the fol-
lowing, we present three primary use case scenarios shown in Figure 49 in which
VoDCast can contribute by the benefits mentioned before.

C
as

e
1:

E

ye
ba

ll
IS

P

Users

Users

Broadband
Access ISP

OTT Video
Content Provider

OTT Video
Content Provider

VoDCast

CDN PoP

C
as

e
2:

C

D
N

C
as

e
3:

Tr

an
sp

or
t

CDN PoP
Broadband
Access ISP

VoDCast

VoDCast
API

Users
Broadband
Access ISP

OTT Video
Content Provider

VoDCastVoDCastVoDCast
API

Transport ISP

Figure 49: Three major use cases of VoDCast

The first use case is an ISP scenario where IPTV services are often offered together
or in combination with the broadband access tariff. This comprises live streams as
well as VoD. VoDCast can help ISPs to decrease the video traffic caused by their
streaming services and, thereby consume less network capacity. Thereby, ISPs trans-
fer the same amount of video traffic but require fewer network resources which helps
to save Capital Expenditure (CAPEX).

The second use case considers a CDN scenario that delivers OTT VoD content to
ISP customers. Thus, each content is delivered by a separate unicast transmission per
user. By using VoDCast instead, the large amount of traffic caused by, e.g., YouTube
can be decreased and, thereby also the required resources of the CDN and the ISP.
Since the traffic is streamed from outside of the ISP network, transit costs are likely
charged. As VoDCast reduces the network load, it also lowers transit costs for this
use case. Furthermore, the QoE is likely to be increased especially during peak hours
as observed for video demand [Cis17c] because of a lower risk of network congestion.

The third use case considers a multi-ISP scenario that extends the second use case
over more than one ISP since the content transmission often passes multiple ISPs, e.g.,
a tier-1 ISP that connects the content source’s ISP with the ISP whose customers are
requesting videos. Here, an inter-ISP collaboration is beneficial for all involved ISPs
because of the already introduced reasons for single ISPs. Though, the coordination-
effort and also the business models of ISPs of different size and connectivity might
lead a cooperation to be more or less likely. A large ISP selling transit to a set of
smaller ISPs might be more interested in maximizing its revenue by maximizing
the traffic it transports and, hence can charge. However, for smaller ISPs and ISPs
of equal size, this motivation does not exist since they are likely to have a peering
agreement free of charges.

6.3 system design 119

6.3 system design

This section discusses the design of the VoDCast mechanism. Therefore, we first
introduce VoDCast’s high-level architecture and its key components. Second, we
provide a functional overview of VoDCast’s components.

For the design of VoDCast, we consider only available technologies that are used
by the industry to a certain extent already, such as SDN-enabled switches and group
encryption schemes. Similar to Section 5.3, we assume videos to be segmented, which Assumptions

and
requirements

is given by today’s HTTP Adaptive Streaming (HAS)-approaches, e.g., Dynamic
Adaptive Streaming over HTTP (DASH) (cf. Section 2.3.1). Further, we consider only
one video quality because this ensures increased comparability in contrast to an
arbitrary- or platform-depending set of video qualities, which can reach more than
100 quality levels [KZS15]. The chosen quality is either 1080p with 30 Hz or, if this
is not available, the closest lower video quality. A further assumption we make is
that ISPs and CDNs have a common interest to collaborate (cf. Section 6.2) to achieve
high service quality and to lower their costs. The related work indicates an interest
in CDN-ISP collaborations [Wic17; AFA17; WKB+17; AFA16].

6.3.1 Architectural Overview

VoDCast Service

OpenFlow
Switches

Peering Node

Statistic Server

Network
Monitor

Topology
Database

Network Operating System /
OpenFlow Controller

C
D

N
 S

er
vi

ce
 A

P
I

A
pp

lic
at

io
n

La
ye

r
C

on
tr

ol

La
ye

r
In

fr
as

tr
uc

tu
re

La

ye
r

Coordination

Playback
Statistics

Multicast
Candidates

Video
Request

Information

SDM Service

SDM Control
Application

Group
Management

Figure 50: VoDCast Network Architecture based on [ONF14b]

An overview of VoDCast’s conceptual architecture and their relationships is given
in Figure 50 following the Open Network Foundation (ONF) SDN reference archi-
tecture [ONF14b]. On the application layer, we see the VoDCast service and the
Software-defined Multicast (SDM) service. The SDM service is responsible for SDN-

6.3 system design 120

based multicast group management and the installation of the necessary SDN flow
entries at the switches. The VoDCast service offers a CDN Service Application Pro-
gramming Interface (API) to external CDNs. This can be used to coordinate between
the ISP and CDNs on which videos to deliver by ISP-internal multicast. This coor-
dination task is performed by the Peering Node which checks if enough capacity for
SDN flow entries is available at the ISP’s switches before allowing a video to be mul-
ticasted. In contrast to unicast, when multicast is used, client playback information
is no longer available at the CDN. Thus, the Peering Node informs the CDNs about
client playback statistics. In case VoDCast is used for ISP-internal VoD services or
unencrypted OTT VoD traffic, the Peering Node does not depend on the CDN. In this
case, the Statistic Server monitors incoming video streams, identified, e.g., by their
Internet Protocol (IP) ranges and, hence can deduce which videos are currently pop-
ular. In both cases, a CDN cooperation and a stand-alone-operation, the VoDCast

service informs the SDM service of video candidates suitable for being delivered
using multicast. The SDM service takes care of multicast group management and
implements the necessary multicast flow entry into the SDN switches with the help
of the network operating system, e.g., an OpenFlow controller. This controller is also
aware of the network topology, the current traffic, and flow rules in its topology. In
case the available SDN flow entries are depleted on the hardware switches, the con-
troller would notify the SDM service which would instruct the Peering Node not to
accept any more videos for being multicasted.

6.3.2 Functional Overview

In the following, we provide details on VoDCast’s key functionalities and the in-
teractions between its major components. In essence, VoDCast is understood as a
cross-layer network application that provides managed access to ISP-internal multi-
cast to an external entity, e.g., a CDN or another ISP.

To the best of the author’s knowledge, so far, none of the existing works explores
the potential of VoD streams with a small playback distance and Zipf-distributed
popularity where only a few videos exhibit high popularity. Consequently, one chal-
lenge for VoDCast is to determine candidate videos for multicast out of a large num-
ber of available videos. This candidate set can be determined in cooperation with the
serving CDN that knows which videos are currently popular. For this cooperation,
VoDCast exposes a CDN Service API to the cooperating CDN to get informed about
which videos to multicast. However, VoDCast does not depend on the CDN’s coop-
eration. VoDCast is able to collect popularity information of the videos requested
by the ISP’s customers, in the case videos are delivered unencrypted. Hence, a con-
tent selection mechanism transition (cf. Section 2.6) between a cooperative selection
and a stand-alone selection is possible. Though, we assume the stand-alone selection
mechanism to be much less efficient than a selection based on a CDN cooperation
since there is a tendency to encrypt every transmission.

In the following sections, we first introduce VoDCast’s CDN Service API (cf. Sec-
tion 6.3.2.1). Second, we present the two system operation modes, i.e., operation
in coordination with the CDN (cf. Section 6.3.2.2) or independently, in the case of
unencrypted content transmissions (cf. Section 6.3.2.2). Section 6.3.2.4 details the
minor changes that VoDCast requires on the streaming client’s side. Since VoD-

6.3 system design 121

Cast is highly configurable, we reason our system parameter value selection in Sec-
tion 6.3.2.5.

6.3.2.1 CDN Service API

CDNs continually monitor which content is requested from which ISPs to optimize
system performance for load balancing, caching, and accounting reasons (cf. Sec-
tion 2.2). Hence, for CDNs, it is transparent if multiple clients from one ISP network
watch the same video. In case such a video is frequently requested and many close-
in-time video sessions exist, the CDN can signal to VoDCast’s CDN Service API to
prefer this video being delivered via multicast within the ISP network. After the CDN
and the ISP have agreed on a set of videos to deliver by VoDCast, they are deliv-
ered via Hypertext Transfer Protocol Secure (HTTPS) from the CDN to the ISP. Here,
video segments are received and forwarded by the ISP using User Datagram Proto-
col in the case of multicast or using Transmission Control Protocol (TCP)/Hypertext
Transfer Protocol (HTTP) in the traditional case of unicast. Note that to apply mul-
ticast, the ISP cannot support an end-to-end encryption scheme between the CDN
and the ISP’s customers. A naive solution is to break the encryption entirely and
rely only on unencrypted communication within the ISP as a trusted party. How-
ever, trusting an ISP, in this scenario, is desirable to be avoided by CDNs since this
allows not just the users but also the ISP to see the requested content unencrypted.
Furthermore, when the transmission leaves the ISP and enters a company or home
network, the transmission cannot be considered to be confidential anymore by any
means. We propose using a CDN-supporting multicast-compatible group encryption
scheme [DC06] as a solution. Here, the CDN loses information about playback behav-
ior of distinct clients as available on unicast transmissions. To compensate for this,
VoDCast informs the CDN about users’ joins and leaves using a multicast group ID,
shared between the CDN and the ISP for each multicast group respectively. Client
statistics, only visible to the ISP, are forwarded to the CDN in conjunction with this
ID. Thereby the CDN is provided with information about client playbacks, e.g., play-
back interruptions, pausing, and quitting. Since this information can be provided
upon a user event in form of a previously agreed numerical format, we consider
the overhead for this feedback information to be low. Ideally, the data is collected
at the ISP and sent to the CDN in aggregated and compressed form overnight to
minimize its traffic demand, though, this might not be an ideal solution for the CDN
when it wants to monitor its users in real-time. Thus, a batch-processing and trans-
mission approach sending the data compressed every minute is likely to be a good
compromise.

6.3.2.2 ISP CDN Cooperation

The CDN Service API is offered by the Peering Node which is the key component of
VoDCast. Figure 50 depicts one Peering Node. In practice, multiple Peering Nodes and
their associated SDN controllers [HRR+17b] can be placed at the edge of the ISP
network, as in reality, an incremental deployment of VoDCast is more likely. For the
sake of simplicity, we focus on the case of a single Peering Node as the smallest deploy-
ment scenario. The Peering Node’s task is to coordinate the ISP and the CDN or the
content provider about which videos to stream via ISP-internal multicast. Thereby,
the CDN and the ISP can agree to multicast not just entire videos but distinct video

6.3 system design 122

segments. This is useful to exclude the beginning of a video from multicast since it is
likely that a user quits the video playback or jumps to another video. In the YouTube
trace used (see Section 5.4.2), this behavior is observed mostly within the first 20

seconds of a video stream. Therefore, it is decided to deliver the first Tunicast = 20s

always as unicast which excludes 39% of all video sessions in the trace. This is ben-
eficial since the overhead introduced by frequent multicast group churn, i.e., group
creation and modification can be largely reduced. In addition, this helps to keep the
initial stalling time small, because the additional delay caused by a group creation
and join is avoided. Thereby, the QoE is likely to increase (cf. Section 2.3.1). If a client
joins a group later on, the playback is not interrupted, because some segments have
been buffered already.

If the CDN and the ISP have negotiated on a video to be selected for multicast,
the Peering Node triggers the creation of a multicast group by notifying the SDM
controller. If the multicast group becomes empty at any time, it is removed. Thereby,
situations in which all group members leave before the video ends the group can be
removed early and, thereby resources are saved. In addition, to the explicit leave of a
client, a keep-alive message1 ensures that even clients whose system has crashed are
removed from their respective multicast groups timely. Each multicast group uses
an underlying multicast tree for the content distribution within the ISP network. In
case a client joins or leaves, this tree needs to be recomputed. In a next step, the new
tree is compared with the established one to determine the switches, i.e., nodes in
the graph, which need to be updated by installing, altering, or deleting flow entries.

6.3.2.3 ISP-based Multicast Streaming

In the following, we discuss VoDCast in the case of ISP-internal VoD services and
situations of non-cooperative CDNs. In these two scenarios, VoDCast can operate
solely on popularity statistics of observed video streams. For content that is delivered
by a CDN, this is only possible to a certain extent, i.e., for unencrypted content
transmissions. VoDCast monitors video requests to collect popularity statistics at the
Statistic Server. Video popularity distributions are highly dynamic for VoD services
like YouTube [CKR+07]. Therefore, the Statistic Server maintains a computationally
efficient sliding window w that contains the requested videos and their numbers of
requests from the last Pt minutes. The top Pk percent of the most popular videos
in w are considered for multicast delivery. Thereby, videos from the short tail of the
video popularity’s Zipf distribution are selected. As shown in Figure 50, the Peering
Node is connected to the Statistic Server. In case it determines a video suitable for
multicast delivery, a multicast group that delivers the video content is created as
soon as the first client request for this video is observed by the Peering Node. In
the considered ISP-only scenario, the Peering Node takes care of identifying client
requests to the same video. This can be implemented by matching CDN destination
IP address ranges and analyzing the HTTP GET messages to retrieve the video ID.
The decision whether a new group for a popular video is created depends on two
conditions: i) if a group G for this video already exists and ii) if one exists, its current
playback position P(G), i.e., the segment that the multicast group currently delivers.
We provide an example in Figure 51. A video playback P1 of a popular video is

1Similarly to the reports sent when using the Internet Group Management Protocol in traditional
IP multicast: https://tools.ietf.org/html/rfc3376 [Accessed: November 19, 2018]

https://tools.ietf.org/html/rfc3376

6.3 system design 123

Time
relative
to P1

P1

P2

P3

Unicast

Unicast

Unicast

Multicast Group A

Multicast Group A

Multicast Group B

Tcreate

Tunicast

Figure 51: Example of three video sessions P1, P2, and P3

started by a client. While delivering the first Tunicast seconds via unicast, the Peering
Node triggers the creation of multicast group GA which serves segments for P1. After
x 6 Tcreate seconds, a second playback P2 of the video starts. Since the playback
difference between P2 and P(GA) is smaller than the minimum time Tcreate (i.e., the
minimum playback distance between two multicast groups), P2 is served by GA.
P3, however, shows a playback distance between to P(GA) that is larger than Tcreate.
Therefore, VoDCast does not serve P3 by GA. In this case, a new multicast group
GB is created serving P3, which becomes the group owner of GB. At the one side,
this design prevents clients from joining multicast groups that are too far away from
their current playback position and, thereby from filling their buffers with segments
which are less likely to be watched compared with segments close to the client’s
playback position. On the other side, several multicast groups per video can exist
simultaneously. However, only the most popular videos are considered for multicast
and only video duration

Tcreate
groups per video can exist. Hence, the number of multicast

groups per video has an upper bound.

6.3.2.4 Video Streaming Client

The term client refers to the video player on the user device. This player receives,
buffers, and playbacks video segments. To receive video segments using multicast,
we assume that the client is able to receive segments using both HTTP/TCP and
User Datagram Protocol. Furthermore, the client must signal the Peering Node if the
player is closed to be removed from multicast groups the client was part of. A client
can join a maximal number of n = available bandwidth

video bitrate multicast groups simultaneously.
In the following, we consider an example where a client joins three groups A, B, and
C that deliver streams for the same video. The groups deliver the video’s segments
starting from different playback positions denoted by the video segment number, i.e.,
segment 10 from A, 15 from B, and 22 from C. In this example, the client leaves group
A after receiving segment 14 since segment 15 is received from group B. Group B is
left after segment 21 is received since group C delivers segment 22 and all remaining
segments. Finally, the client remains a member of C until the client stops its playback
and the buffer is filled or it has received all video segments. In case of a video with
multiple groups being available and the client can receive more segments than it can
buffer, the client leaves the multicast group that delivers segments farthest from its
playback position. Therefore, the client prefers groups which deliver segments close

6.3 system design 124

to its playback position. If no group delivers a particular segment, it is requested
via unicast immediately before it is needed to avoid a playback interruption. The
first video segment of a video is always delivered via unicast to minimize the initial
stalling until the playback starts. Thereby, the number of SDM group changes is
kept small as short streaming sessions are excluded from multicast delivery. In this
work, the clients receive segments of 5 seconds length and adapt the video quality
similar to the YouTube Android application, which has been observed to switch to
1080p after playing about 20 seconds in 480p. We do not consider any further quality
adaptations.

Using VoDCast, the video buffer is filled quickly by downloading one segment
after another till the buffer is at least filled with Tunicast segments. This is an important
behavior as some related works ignore the impracticality of letting users wait for a
playback start more than a few seconds, which decreases the user experience (cf.
Section 2.3.1). For the second segment, the video is allowed to be received from
multicast groups.

6.3.2.5 System Parameters

Symbol Definition Default

Sseg Video segment size 5 s

Tunicast Video start unicast interval 20 s

Tcreate Minimum group creation interval 30 s

Tjoin Maximum join playback interval 120 s

Tres Minimum residence interval 60 s

Cbuff Client buffer space 50 MB

Ct Client throughput 30 Mbps

Pt Popularity time window 20 m

Pk Top k% of popular videos 10%

Table 16: Overview of VoDCast’s system parameters

In the following, we provide a complete overview of VoDCast’s system parame-
ters. Table 16 lists them together with brief descriptions and default values.

Minimum Group Creation Interval

In case a multicast group already exists for a requested video, the minimum group
creation interval Tcreate defines if the client joins the existing group or a newly created
one. If the existing group’s playback position is close to the video start, new clients
will join the existing group. We define this closeness by the parameter Tcreate. A high
value can cause the client buffer being entirely filled by segments very distant from
the user’s playback position. As a consequence, the buffer space is occupied for
segments closer to the client’s current playback position. Therefore, the maximum
value also depends on the buffer size and the video bitrate. Ideally, the amount of
storage required to store Tcreate seconds of video content should be smaller than the
available buffer space Cbuff, i.e. Tcreate 6

Sseg×bitrate(Sseg)

Cbuff
. Thereby, it is ensured that

6.3 system design 125

buffered video segments are consumed before the buffer is full. On the one side,
large values are likely to result in a larger share of the video content being delivered
via unicast, in the case the buffer is filled with segments not directly consumed by
the client, where the currently needed segments have to be requested via unicast.
On the other side, small values lead to an increased number of multicast groups
and group changes. We consider Tcreate between 10 s and 60 s as a reasonable value
since it does not use the entire client buffer but supports efficient multicast of video
segments needed later on during the playback. In the following, we use Tcreate = 30s

as the default value.

Maximum Join Playback Interval

The maximum join playback distance Tjoin defines the maximum allowed difference
between the client’s and the group’s playback position measured in seconds. It de-
fines whether a client joins an already existing group. This parameter prevents the
buffer from being filled with segments too far away from the client’s playback posi-
tion. Tjoin should be chosen depending on the expected average playback duration of
the VoD content. By default, we set this parameter equal to the median of the play-
back session durations observed in our request trace (i.e., djoin = 120s). This allows
a client to join in groups that are at most 2 minutes away from its playback position
and prevents downloading segments which are unlikely to be watched. Note that a
small Tjoin reduces the number of opportunities a client can join a group.

Minimum Residence Time

The minimum residence time Tres defines the time interval a client is able to re-
ceive segments from a group. In case the remaining group playback time is shorter
than Tres, a client will not join. This prevents clients from short group stays and,
thereby reduces the multicast management overhead. A larger value reduces group
join opportunities. Thus, this parameter defines a trade-off between performance
and resource consumption. We consider Tres to be set appropriately in a range be-
tween 40-120 seconds since the average YouTube video length is reported to be about
4.5 minutes long while the shortest observed video was 40 s and the longest almost
10 minutes long2. In the following, we set Tres = 60s to exclude videos shorter than
1 minute.

Popularity Time Window

The popularity time window Pt defines the size of the sliding window for which
popularity statistics are stored. It is used to continuously estimate which videos
are most efficiently delivered using multicast. The reasoning behind this estimation
is that video popularity changes over the course of the day and the video’s live
time [CDL08a]. Accordingly, a time window that is chosen too small results in an
unstable set of videos, even for short time intervals. Choosing a too large value for Pt
stabilizes the set of videos but also leads to a decision that is more oriented towards
the past, giving low emphasis to recent popularity changes. In the following, we
consider 20 minutes as a reasonably large time interval to observe a representative
sample of multiple requests to popular content [CE17] (cf. Figure 34).

2https://www.minimatters.com/youtube-best-video-length/ [Accessed: November 19, 2018]

https://www.minimatters.com/youtube-best-video-length/

6.4 evaluation 126

Hot Stream Ratio

The number of videos traced within Pt is usually still high using our YouTube trace
(cf. Section 5.4.2). Hence, we introduce a hot stream ratio that determines the percent-
age of the most popular videos observed in Pt which are considered for multicast.
We denote the hot stream ratio as Pk.

6.4 evaluation

This section presents the evaluation of the VoDCast mechanism. We present the
methodology used, including workload and network model in Section 6.4.1. The
results of VoDCast’s SDN flow entry changes and flow entry state are discussed in
Section 6.4.2. Section 6.4.3 presents VoDCast’s effect on network load.

Figure 52: Used ISP core topology, with some aggregation nodes

6.4.1 Methodology

For the evaluation, the same YouTube request trace dataset introduced in Section 5.4.2
is used. Since VoDCast’s performance depends on the ISP network topology, we
chose a simplified version of a representative real-world topology from the Deutsche
Telekom as described by Betker et al. [BGK+14]. Figure 52 depicts the inner and
outer core nodes of the topology as well as exemplary aggregation nodes. The inner
core is shown in red and is fully meshed. The inner core nodes are connected to
nine outer core nodes (4-12), depicted in red. Each outer core node is connected to
two different inner core nodes. These nodes are distributed over an entire coun-
try and connected by fiber-optical links. Overall, 900 aggregation nodes exist in
the topology [BGK+14]. They logically connect to one of the outer core nodes. In
the scenario considered, these 912 nodes are equipped with SDN-enabled hardware
switches. Current standardization efforts show the interest in applying SDN to fixed
and mobile networks, as initiatives such as the ONF Wireless and Mobile Working
Group (WMWG) [Ope13] indicate. We assume VoDCast to be installed on outer core
nodes which are connected to CDNs. The delay between an aggregation node and

6.4 evaluation 127

a client is considered to be between 20-30 ms following the real-world measurement
results of to Kaup et al. [KMB+15], where two Round-Trip Time clusters are observed
between 20 and 30 ms for a 4G network. Following these results, in the conducted
trace-driven simulations, the clients are directly connected to the aggregation nodes
with a delay of 30 ms. The delay between aggregation nodes and close-by CDNs is
assumed to range between 40-70 ms according to Casas et al. [CFS14] and CDNPerf3.
Assuming a conservative scenario, the delay between CDNs and clients is modeled
uniformly distributed with 115 ms.

In the following, we discuss the simulative evaluation of VoDCast, including our
novel two-stage evaluation, the simulation setup, and the multicast tree construction
procedure.

Stage 1: Multicast Group Simulation

Figure 53 exhibits our two-stage evaluation methodology. Here, the user request
trace serves as an input for the Multicast Group Simulation, which is based on the
discrete event simulator Omnet++4. The simulation produces a trace of multicast
group events, i.e., join, leave, remove, and add (cf. Section 6.3.2.2). Therefore, for
each of the videos contained in the trace, a multicast group is created on the first
client request for this video and all subsequent requests which are at least Tcreate

seconds from the previous group creation time away. By coupling the group cre-
ation to the client requests and not just creating a new group every Tcreate sec-
onds, multicast groups are only created if there is an actual demand. The Multicast
Group Simulation’s trace comprises group changes denoted by tuples of the format:
(time, multicast operation, group ID, group members).

Stage 2: Tree Construction & Flow Entry Inference

The Tree Construction & Flow Entry Inference module takes the output of the first stage
as an input. Here, in a first step, the users contained in the trace are, uniformly at ran-
dom, assigned to an aggregation node of the used topology (cf. Figure 52) for each
simulation run. Thereby, it is ensured that the measurements are not a result of an
ideal assignment of users with similar video consumption to the same aggregation
nodes which would introduce a bias leading to unrealistically high bandwidth reduc-
tion. During the simulation, a group’s multicast tree is recomputed upon each group
change. This makes it possible to derive the bandwidth used during the simulation
per link using the videos’ bitrates. Finally, as each node represents an SDN-enabled
hardware switch, statistics about SDN flow entries and their changes can be derived
on a per switch basis, which we will detail in the next section.

6.4.2 Flow Entry State and Changes

The number of multicast flow entries and their changes state practical limitations
of SDN-enabled switches [KRE+15]. The reason for this is that the Ternary Content-
Addressable Memory (TCAM) required for accessing these entries is limited in size.
Therefore, we measure the rate of flow entry changes and the number of flow entries

3https://www.cdnperf.com/ [Accessed: November 19, 2018]
4https://omnetpp.org/ [Accessed: November 19, 2018]

https://www.cdnperf.com/
https://omnetpp.org/

6.4 evaluation 128

User Request Traces

time videoId userId watched duration

001 221 7 120 180

...

SDN Flow Entry State per Switch

SDN Flow Entry Changes per Switch

Multicast Group
Simulation

Bandwidth Utilization per Link

Tree Construction
 & Flow Entry

Inference

Multicast Group Changes

time operation groupId members

005 add group 1 [32]

...

S
ta

ge
 1

S
ta

ge
 2

Figure 53: Two-stage simulation architecture using a request trace as an input

stored per switch. By doing so, we show that both metrics are bounded at a low level
and, hence, that VoDCast is practicable.

During the simulation, several multicast events occur. On a regular time interval, a
snapshot SPt is taken, containing a batch of these events. For each SPt, the number of
groups, flow entries and flow entry changes per switch, as well as the bandwidth per
link, are measured. In each snapshot, the network is modeled as a graph consisting
of nodes, e.g., u, v ∈ V connected by edges (u, v) ∈ E. We distinguish two node types:
switches S ⊂ V and clients C ⊂ V . The number of flow entries F installed during
a snapshot is determined as follows: We assume a multicast group g ∈ GSPt of a
particular snapshot and a set of switches SSPt,g holding flow entries for the multicast
tree of this group. These tree nodes consist of clients c ∈ CSPt,g and switches s ∈
SSPt,g . Each used switch s needs exactly one SDN flow entry per group to determine
where the incoming multicast packets have to be forwarded to. We define the number
of installed flow entries F(SPt) with Equation 6. Relying on this equation, we define
the flow entry changes FC(SPt) by comparing the installed flow entries at SPt−1 and
the current snapshot SPt with Equation 7.

F(SPt) =
∑

∀g∈GSPt

|SSPt,g | (6)

FCSP = |(f ∈ FSPt , f /∈ FSPt−1)∪ (f ∈ FSPt−1 , f /∈ FSPt)| (7)

Figure 54 and Figure 55 depict the number of rules and their changes per minute
for three different classes of switches:

• switch 12 which is an intermediate node between the CDN and all clients,

• switches 2 and 3 which are directly connected to switch 12,

• and all other switches 4 - 11.

6.4 evaluation 129

Nodes 4-11

Core Switch

0

5

10

15

20

25

30

#
F
lo

w
 E

n
tr

ie
s

Nodes 2-3

Core Switch

0

20

40

60

80

100

Nodes 12

Core Switch

0
20

40
60
80

100
120
140
160

Pk

5% 10% 50%

Figure 54: Maximum number of flow entries per minute

Nodes 4-11

Core Switch

0
20
40
60
80

100
120
140
160
180

#
F
lo

w
 E

n
tr

y
 C

h
a
n
g

e
s

Nodes 2-3

Core Switch

0

100

200

300

400

500

600

Nodes 12

Core Switch

0

200

400

600

800

1000

Pk

5% 10% 50%

Figure 55: Maximum number of flow entry changes per minute

Switch 1 is not considered in the evaluation because none of the shortest paths
from the CDN to the clients relies on it, as only one Peering Node is considered. An
additional Peering Node placed on any outer core node except the nodes 11, 12, and
13 would also involve inner core node 1, and consequently improve load distribution.
Figure 54 shows the maximal number of SDN flow entries, e.g., OpenFlow rules, for-
warding network traffic for all core switches. By using VoDCast, the median of the
maximum number of flows installed on the switch per minute is below 30 for all
switches and different configurations of Pk. Here, 2, 3, and 12 are an exception since
we observe less than 100 installed flow entries during the two weeks’ evaluation.
Even with the highest hot stream ratio Pk = 50, the 75-percentile is 84 for switch
12 and, hence bound at a low level. We see the highest number of flow entries at
switch 12 with 160 entries. This is about two magnitudes lower than the number of
flow entries supported by current hardware switches, offering space for up to 60k
flow entries [KRE+15]. Note that the nodes in our topologies refer to the point of
presence where typically multiple switches are installed. Figure 55 depicts the maxi-
mum numbers of flow entry changes per minute, e.g., OpenFlow rule modifications
and removals sent to a single switch. The figure shows that the flow entry changes
caused by VoDCast are well within the capabilities of nowadays hardware switches
which supports up to 32k flow entry changes [KRE+15] per minute. The mean of all
core switches, except 2, 3, and 12 is about 10 changes per minute. For the highest
configuration Pk = 50, no values larger than 912 are observed. A deployment with
more than one Peering Node would further reduce the load on switch 12, 2, and 3.

6.4 evaluation 130

6.4.3 Bandwidth Utilization

In the following, we explain how we determine the bandwidth utilization of VoD-
Cast. Thus we first compute the bandwidth demand of one video segment s ∈ S(u,v)
sent over an edge (u, v) ∈ E. The consumed bandwidth depends on their duration
Sseg and the bitrate rs,q of the used quality level q. Equation 8 defines how the
bandwidth of all segments on one link (u, v) is calculated.

B(S(u,v)) =
∑
s∈S

(Sseg ∗ rs,q) (8)

To calculate the bandwidth of group Gj, we sum the bandwidth over all used edges
(u, v) ∈ EGj . The segments delivered to this group are defined as s ∈ SGj . Conse-
quently, the bandwidth consumed by group Gj is defined by Equation 9.

BGj =
∑

∀(u,v)∈EGj

B(u, v) =
∑
s∈SGj

(Sseg ∗ rs,q ∗ |EGj |) (9)

Following this methodology, we compute the bandwidth consumed over all groups
for each 30-minute interval between 9 am and 11:30 pm for 14 days. We left out the
night hours intentionally because there is only few network traffic and the benefit
of using VoDCast is limited. Compared with unicast, VoDCast has the potential to
reduce costs for ISPs and CDNs as the traffic load variance, as well as the overall
network load, can be efficiently reduced. To do so, only a low number of flow entries
and flow entry changes is required. The share of unicast and multicast caused by
VoDCast compared to the highest unicast load per hour of the day, for different
configurations, is depicted in Table 17. Here, we depict the hot stream ratio Pk, the
bandwidth reduction ∆µ, and the reduction of unicast traffic’s standard deviation ∆σ.
∆µ shows the link utilization reduction achieved by VoDCast. It is defined as the
difference between the link utilization using VoDCast and in a pure unicast scenario
without VoDCast. In the table, ∆σ represents the reduction in standard deviation for
the unicast achieved by VoDCast. We see that the bandwidth reduction and variance
decrease with increasing size of Pk, up to 3.9% and 6.1% reduction of the standard
deviation. However, the increase flattens when we increase Pk from 10% to 50%.

Hot stream ratio (Pk): 0.01% 1% 5% 10% 50%

V-MC
mean 0 1.9 4.4 8.1 8.7

median 0 2 4 8 9

std. dev. 0 0.7 1.3 1.6 1.9

V-UC
mean 68.7 67.6 64.5 59.9 59.1

median 76.5 76 71 65 65

std. dev. 22.5 21.4 19.3 16.6 15.9

Bandwidth Reduction (∆µ) 1.9 2.2 2.8 3.7 3.9

Std. Dev. Reduction (∆σ) 0 0.6 2.7 5.4 6.1

Table 17: VoDCast’s Multicast (V-MC) and Unicast (V-UC) traffic and the achieved band-
width reduction measured by volume (∆µ) and std. dev. (∆σ)

6.5 summary and discussion 131

6.5 summary and discussion

In this chapter, we designed and evaluated a novel multicast mechanism for OTT
VoD delivery, denoted as VoDCast. It is highly configurable and delivers streams
with small playback differences partially via multicast. Thereby, it considers efficient
client buffer management by preventing video segments too far from the client’s
playback position from being buffered. This acknowledges that most video streams
on YouTube are only watched partially. Furthermore, VoDCast supports the coop-
eration with CDNs by offering a CDN Service API but can also be operated by the
ISP only in case of ISP-internal VoD services or unencrypted OTT VoD traffic. The
results presented rely on a real-world YouTube workload over two weeks and show
the impact of realistically chosen key parameter settings on the achievable band-
width reduction. By using VoDCast, the ISP’s network load is reduced by 3.9%
and its standard deviation decreased about 6% compared to unicast. This indicates
VoDCast’s potential to lower transit costs and reduce network congestions that can
negatively impact the QoE. While 3.9% might sound like a minor improvement, VoD-
Cast’s third use case presented in Section 6.2 is likely to increase the saved traffic
among multiple ISPs even more than for the single ISP case considered in this chap-
ter’s evaluation. This is because the most popular videos tend to be popular in many
ISP networks within a country and the typical market share of one ISP is typically
not larger than 40%, e.g., for mobile networks in Germany5 or in the US6. Hence,
using VoDCast results in a considerable large amount of saved traffic considering
the large forecasted growth of video traffic. Assuming CDN transit costs between
0.02-0.13$7 per GB, depending on the geographic region, and a VoD data traffic vol-
ume of 509 Exabytes [Cis17a], the overall traffic costs for VoD traffic are expected
to sum up to 10.2-66.2 billion$ by the year 2021. Hence, VoDCast can save between
0.4-2.6 billion dollars while introducing only a low resource footprint as shown in
Section 6.4.2. We demonstrate VoDCast’s practicability by showing the resource uti-
lization in terms of SDN flow entry state and changes that stay well within the limits
of current SDN-enabled hardware switches and at a low level.

5https://www.smartweb.de/mobilfunk-report-deutschland-q1-2017 [Accessed: November 19,
2018]

6https://www.statista.com/statistics/199359 [Accessed: November 19, 2018]
7https://www.rackspace.com/cloud/cdn-content-delivery-network [Accessed: November 19,

2018]

https://www.smartweb.de/mobilfunk-report-deutschland-q1-2017
https://www.statista.com/statistics/199359
https://www.rackspace.com/cloud/cdn-content-delivery-network

7
S U M M A RY, C O N C L U S I O N S , A N D O U T L O O K

In the following, we provide a summary of the thesis, conclude each of our con-
tributions by addressing the research questions separately and highlight promising
directions for future work.

7.1 summary

Video-on-Demand content started to dominate the Internet traffic during the last
decade. This strong growth trend has not stopped yet since additional services and
use cases, as well as higher qualities, become available at a rapid pace. For example,
the advent of 4k and 360° videos are just beginning to become mainstream. Hence,
the amount of Video-on-Demand (VoD) traffic is expected to increase further. In par-
allel to this rapidly growing amount of video transmissions, the required network
resources and costs rise. As a result, the delivery of Over-the-Top (OTT) VoD is, al-
ready today, challenging for network operators and content providers. The strong
traffic growth that is forecasted requires novel and efficient approaches that either
enhance the performance of the existing caching infrastructure of Content Delivery
Networks (CDNs) or involve the user device as an active contributor in the con-
tent delivery process. We identified three key research areas in this thesis which
are considered essential to achieve this goal. Within these research areas, we found
proactivity and efficiency to be essential requirements.

The first area considers individual user interests and how they can be used to
prefetch videos on their mobile terminals in advance. Thereby, the negative conse-
quences for a user’s Quality of Experience (QoE), when watching videos using a
potentially low-quality mobile Internet connection, are mitigated. Furthermore, this
saves energy at the mobile terminals since Wi-Fi offloading is about 20-times less
energy demanding than streaming a video over a 4G Internet connection [HQG+12].
Determining video content for prefetching is challenging since on User-generated
Content (UGC) VoD platforms, such as YouTube, a vast amount of content exists and
intuitive approaches like prefetching from a user’s subscribed channels [KLR+17],
taking videos recommended by YouTube’s landing page [WSS+16], and selecting
videos that are popular [WRT+15] results in a poor performance. Therefore, in the
first area, the research goal is to support prefetching for individual users on their
mobile terminals by learning the user’s interests locally on the user’s device.

The second area focuses on a network-centric perspective that takes in-network
caching and different content popularity distributions into consideration. At the mo-
ment, caching by CDNs makes video streaming globally scalable since it delivers con-
tent from servers close to the users and, thereby keeps traffic local and provides low
latency for the users. The importance of efficient caching mechanisms will gain in im-
portance driven by an increasing amount of video streaming [Cis17c] and the advent
of edge caching. Proactive caching has shown to outperform reactive approaches in
general [Gou+15; HNH14; KWR+18]. Hence, the goal for the second research area

132

7.2 contributions 133

is to support proactive caching for VoD to lower the Internet Service Provider (ISP)
and CDN network traffic by considering the distinct popularity distributions of video
content categories.

The third area addresses using ISP-internal multicast for popular VoD content in
cooperation with the CDN. While multicast is already used for ISP-owned streaming
services [LLW+11], it is not yet available for OTT content. The reason for this is that
traditional IP multicast requires multicast routers on the delivery path [DLL+00]
which are costly and limited in the number of supported multicast groups. This
makes IP multicast unscalable for OTT content. However, the broad adoption of
Software-defined Networking (SDN) enables scalable multicast, next to other net-
work services. SDN-based multicast has been proposed for OTT live video streaming
already [Rüc16] but has not yet adapted for the OTT VoD case. Here, popular con-
tent is typically watched thousands of times per day. Hence, many people watch the
same video with only minor differences in their playback positions which offers a
potential for multicasting parts of these videos to multiple clients. Thus, in the third
area, the research goal is to support multicast for popular VoD content to lower the
ISP’s network traffic while adapting to a dynamic Zipf-distributed content popular-
ity [GHM13; ACG+09; GAL+07] and keeping costs, regarding SDN flow entries and
flow entry changes, low.

By reviewing the related work, we identified a lack of specific efficient and proac-
tive delivery mechanisms for OTT VoD. Thereby, we derived a set of research area-
specific research questions. These research questions are the focal points in the de-
sign and the evaluation of the three contributions towards this research questions as
shown in the course of this thesis.

7.2 contributions

This thesis presented three contributions which address the common design goal of
proactive and efficient VoD content delivery. The design and evaluation of our pro-
posed mechanisms were guided by the research questions identified in Section 1.2.
In cases where we could not deduce a direct answer to the research questions, trade-
offs were identified that allow us to configure the proposed mechanisms to meet the
specific requirements of the application scenario.

7.2.1 vFetch

The first contribution is the design of vFetch, a privacy-preserving prefetching mech-
anism for mobile devices that we presented in Chapter 4. It focuses explicitly on OTT
VoD services such as YouTube. vFetch learns the user interest towards different con-
tent channels and uses these insights to prefetch content on a user terminal. To do
so, it continually monitors the user behavior and the mobile connectivity pattern of
the device to allow for efficient and resource-saving download scheduling. Thereby,
vFetch illustrates how personalized prefetching saves the mobile data volume and
alleviates mobile networks by offloading mobile networks from peak-hour traffic. In
the following, we will briefly present how vFetch answered the research questions
identified in Chapter 1.2 in the course of its design and evaluation:

7.2 contributions 134

RQ 1.1: How accurate can video requests of different users be predicted, considering user
interests?

To answer this questions, we analyzed users’ request behavior over several months.
We found that the channel on which a video is presented to the user has a significant
impact on a video’s likelihood to be watched. To this end, we modeled the user
interests as the ratio of videos watched in the past to get a prediction of the likelihood
that the user watches content from this channel in the future.

In the course of the user behavior analysis, we observed that only a minority of
video views is caused by videos published on channels that the user has subscribed.
Thus, we proposed the concept of pseudo subscriptions, i.e., channels from which a
user watches many videos. Pseudo subscriptions are a key contributor to vFetch’s
superior performance. In our experiments, we investigate the influence of the mobile
device’s storage capacity on prefetching accuracy measured in precision, recall, and
F1-measure.

In the assessment of vFetch, we found that precision and recall were on the same
level which indicates a robust and accurate detection of prefetching candidates. How-
ever, the level of accuracy was found to depend on the storage size available and is
quite heterogeneous for different users. On the largest storage considered, the mean
slightly exceeded 60% while for storage larger than 5 GB, some users exhibit a very
high F1-measure close to 1. The reason for this is the difficulty of predicting when
precisely a user watches a video. Therefore, a larger storage helps to compensate for
this uncertainty and stabilized vFetch’s performance.

RQ 1.2: Which Cache Hit Rate (CHR) gain can be achieved by considering content properties
for content access prediction?

In addition to vFetch’s accuracy, we evaluated its Byte Hit Rate (BHR) as a more
precise measure of the CHR that considers different video file sizes. In our experi-
ments, we observe hit rates of about 10% for cache sizes between 50 MB and 500 MB.
For larger cache sizes, the BHR increases almost parallel to the available storage
and reaches up to 60% among our users. Similar to the accuracy measurements, we
observe distinct users with BHRs close to 100%.

RQ 1.3: How much of a user’s mobile video traffic can be saved using a predictive prefetching
model?

To answer this question thoroughly, we enhanced vFetch’s prefetching with request-
based caching on the same storage area managed by Least Recently Used (LRU).
We observed that request-based caching can further increase vFetch’s performance
for all cache sizes. Since many YouTube video requests are caused by ephemeral in-
terests that are generally hard to predict, we distinguished two cases. The first case
considers only videos from predictable sources, e.g., known channels, the watch later
list, and playlists of the user. Here, we see that the BHR cannot benefit from addi-
tional request-based caching and there is no significant performance change. Thus,
we deduce that vFetch efficiently prefetches content when considering the content
sources mentioned above. In the second case, we considered all videos watched by
the user, i.e., also random views, e.g., from ephemeral interests. In this case, request-
based caching increases the BHR and also the F1-measure significantly. In the first

7.2 contributions 135

case, caching in combination with prefetching leads to a maximum BHR of about
60% while in the second case we achieve a 15% BHR. Therefore, prefetching in com-
bination with request-based caching is desirable since videos from sources that are
not predictable are, in many cases, requested multiple times. Overall, vFetch’s per-
formance is considerably larger than for related approaches evaluated on YouTube
which achieve a BHR lower than 0.03% as demonstrated by Wilk et al. [WSS+16].

7.2.2 ProCache

The second contribution focuses on proactive in-network caching. To this end, we
present the design of the ProCache mechanism in Chapter 5. The mechanism splits
the cache storage by considering separate content categories. Here, the available stor-
age is allocated to these category-based cache divisions based on their contribution
to the overall cache efficiency. We propose a general work-flow that emphasizes mul-
tiple categories of a mixed content workload in addition to a work-flow tailored for
music video content which is the dominant traffic source on YouTube. Thereby, Pro-
Cache shows how content-awareness can contribute to efficient in-network caching.
In the following, we will briefly present how ProCache answered the research ques-
tions identified in Chapter 1.2 in the course of its design and evaluation:

RQ 2.1: How can proactivity be used to enhance caching performance?

We answered this question in the course of the design of ProCache by investigating
proactivity in two different components, i.e., the Storage Manager and the Content
Recommender. The Storage Manager proactively manages the cache storage by allocat-
ing storage to category-specific divisions. To this end, we proposed a set of different
Division Size Adaptation Strategy (DSAS). In our experiments, we evaluated these
DSASs and found Relative Largest Ghost List (RLGL) to achieve the highest CHR. In
case the entire cache storage is occupied and new content has to be cached, RLGL
reduces the storage used by the cache division that exhibits the largest ghost list rel-
ative to its currently used storage to allow storing the new item in the cache division
that corresponds to its YouTube category. Thereby, ProCache continuously adapts to
changing content popularity dynamics and content catalog sizes proactively. In our
design, the Storage Manager can also use the Request Monitor’s Content Recommender
to get a content popularity estimate. This is a further proactive sub-mechanism that
we designed for the category of music videos as they are the largest source of re-
quests on YouTube. The Content Recommender relies on a Recommendation Policy that
allows estimating which content is going to be or to stay popular. The resulting set
of contents is used to place them proactively on the cache and exclude them from the
eviction policy. Accordingly, a particular part of the cache storage is filled proactively
instead of reactively as common in traditional caching approaches.

RQ 2.2: Which prediction policies show the highest performance regarding the CHR?

We presented a set of prediction policies to answer this question for the work-flow
of ProCache that emphasizes music videos. We focused on music as the largest
source of requests on YouTube and to design and evaluate a music-specific solution
instead of a generic approach. To this end, we trained a genre and a mood classifier

7.2 contributions 136

to provide the prediction mechanism with characteristic music features. We used
these features to investigate and exploit their dynamic popularity distributions over
the course of the day. The respective prediction policies were denoted as Genre and
Mood. Furthermore, we evaluated a policy based on user similarity recommendation
and a popularity policy that uses the currently popular content as an estimate for
the near future. Among these policies, the popularity-based one achieved the highest
performance measured in CHR. Here, the maximum achieved CHR was 55.1% in
case 20% of the cache storage is managed proactively and the remainder of the cache
is managed reactively. When comparing ProCache’s music-specific work-flow with
LRU, we observe that ProCache can increase the CHR of small caches with up to
4% improvement. Considering the vast amount of forecasted video traffic, this may
result in a multi-billion dollars benefit if deployed widely as shown in the exemplary
calculation in Section 6.5.

RQ 2.3: How does cache storage size contribute to the CHR gain of proactive caching?

To answer this questions, we conducted experiments with cache sizes up to 1 PB of
storage. We observed diminishing returns on increasing cache sizes for ProCache as
well as for other caching strategies. For cache sizes larger or equal 10 GB, ProCache

results in a larger or equal CHR than Segmented Least Recently Used (SLRU) and
Adaptive Replacement Cache (ARC), which we used as benchmarks because of their
high performance. However, the performance gain of ProCache decreases for large
cache sizes while it can still reduce the number of write operations on the cache
and decrease the transmission latency. Depending on the cache hierarchy used, Pro-
Cache achieved 12%–18% higher CHRs than the next-best caching strategy. Hence,
mid-size caches, of 1 GB - 1 TB, contribute the most to ProCache’s performance de-
pending on the cache hierarchy.

7.2.3 VoDCast

The third contribution targets the application of multicast for VoD scenarios. Many
users request popular VoD content with only small differences in their request time
which offers a potential for multicast. To this end, we presented the design of VoDCast
in Chapter 6, which uses this potential to multicast parts of popular videos. Thereby,
VoDCast illustrates how ISPs can collaborate with CDNs to coordinate on popu-
lar content to be delivered using VoDCast. Furthermore, we addressed Software-
defined Networking as the underlying technology. In the following, we briefly present
how VoDCast answered the research questions identified in Chapter 1.2 in the
course of its design and evaluation:

RQ 3.1: How much does multicast lower the traffic volume caused by VoD content within
ISP networks?

We conducted a series of experiments to answer this question. VoDCast’s most in-
fluential parameter regarding traffic reduction is the hot stream ratio which defines
how much of the most popular and most recent content is considered for multicast.
We found that the traffic reduction potential has an upper bound at 3.9% with a
reduction of the standard deviation of 6.1% when compared to unicast. Given the

7.3 outlook 137

vast amount of traffic that video streaming causes in today’s network, this is a large
number that allows reducing transit costs and load within ISP networks. Consider-
ing recent transit costs and forecasted VoD traffic volume, VoDCast may reduce the
overall traffic costs by up to 66.2 billion dollars by the year 2021 (cf. Section 6.5).

RQ 3.2: How can VoD multicast be realized using SDN?

SDN is an enabling technology for multicasting OTT content. To this end, we pro-
posed the design of the CDN Service Application Programming Interface (API) that
allows ISPs and CDNs to negotiate on videos to deliver by ISP-internal multicast. In
our experiments, we rely on a simple version of Software-defined Multicast (SDM),
which was originally proposed for live video streaming. However, to adopt this ap-
proach to be useful for VoD content, suitable videos for multicast need to be deter-
mined. VoDCast supports two ways to achieve this. First, in a collaborative scenario
between CDN and ISP, the CDN can propose content using VoDCast’s service API.
Second, in case of an ISP-internal VoD service, VoDCast’s Statistics Server contin-
uously traces the content popularity. Thereby, suitable content is identified that is
transferred using SDM to the demanding clients.

RQ 3.3: Which VoD content should be selected for being delivered by multicast to decrease
the data traffic volume?

Multicast for VoD content is only reasonable for popular content to leverage simul-
taneous streams with small playback position differences. We propose to rely on the
CDN’s recommendation for this task since it knows best which content is demanded
by multiple users of the respective ISP. Alternatively, VoDCast can use its Statis-
tics Server to determine popular content. We determine this content by tracing video
requests by a sliding window approach over time. From the content observed, the
most popular share is considered for multicast as defined by the hot stream ratio.
We evaluated different values for the hot stream ratio and found 10% of the most
popular content within a 30 minutes’ time interval to result in a reasonable perfor-
mance while larger values showed diminishing returns. Thereby, a significant traffic
and cost reduction, considering burstable billing, is achieved.

7.3 outlook

In the following, we name a set of research directions which can further complement
the mechanisms proposed in the course of this thesis. We designed and evaluated
vFetch, ProCache, and VoDCast by separate software architectures. However, the
reproducibility and integrability of all three mechanisms can benefit by porting them
into a common network evaluation architecture, e.g., the one proposed by Frömmgen
et al. [FSK+18]. Furthermore, we designed and studied the three mechanisms on the
relevant example of YouTube. As an extension, it is desirable to have an analytical
model which supports estimating a mechanism’s performance from traffic monitor-
ing [BRB+16; KHR+18] given parameters that characterize the workload, the content
catalog, and the popularity distributions. Thereby, the parameter configuration of
the presented mechanisms can be adapted automatically to different application sce-

7.3 outlook 138

narios but also for highly dynamic environments that require a timely mechanism
adaptation.

Concerning privacy-preserving mobile prefetching, it is promising to evaluate how
machine learning methods such as Natural Language Processing and face recogni-
tion could contribute to vFetch’s performance. Statistical analysis and rule-based vFetch

decision logic are important to explain how behavioral threads can be leveraged re-
garding prefetching. Though, machine learning is a promising approach to identify
and learn such rules and patterns automatically. However, considering the advent
of deep-learning-supporting chips on smartphones1, this is likely to become com-
putationally efficient on smartphones, e.g., overnight when charging. Furthermore,
textual features such as the video title can be used to determine a user’s topic inter-
ests and, thus can further increase the performance of vFetch. Therefore, Natural
Language Processing (NLP) techniques can be used to determine video topics, e.g.,
by its title or audio transcript to conduct an estimate if the video’s content is within
the user’s interests. Face recognition makes it possible to determine which persons
appear in a video. This information is promising considering vFetch’s Interest Model
as it is likely not solely to depend on the video’s topic but also on the user’s interest
towards distinct persons. Furthermore, the number of YouTube actors depicted in a
video has been shown to make it more attractive for many users and, hence popular
as shown in a previous work by the author [KLS+18]. Regarding vFetch’s schedul-
ing mechanism, it is a promising direction to include the mobile operator in this
process. By signaling the availability of network capacities, vFetch can contribute
even more in offloading mobile networks. Additionally, high download rates can be
achieved which saves energy. Users can be additionally motivated to cooperate, e.g.,
by an increased high-speed data volume. A detailed concept on how vFetch can be
extended for this purpose is given in one of the author’s publications [KBR+15] and
vFetch’s extended architecture is presented in the appendix in Section A.3.

ProCache can be extended in a way that supports cache strategy transitions for
different workloads than the YouTube trace used in this thesis. Furthermore, this ex- ProCache

tension would enable ProCache to adapt to highly dynamic and rapidly changing
workloads by adapting its parameters, e.g., the cache division’s ghost list Time To
Live (TTL) values or the maximum size of the probationary cache division. In ad-
dition, workload-aware mechanism transitions (cf. Section 2.6) of the admission and
eviction policies for distinct cache divisions, based on content popularity distribution
and available storage, are a further direction of research. In this thesis, ProCache

has been evaluated regarding its CHR, transmission delay, and the number of write
operations. This set of metrics can benefit from being extended by a QoE estimate. To
this end, an application-specific set of different video qualities has to be considered
in conjunction with quality adaption strategies as they have shown to significantly
influence the QoE [SFR+17], depending on scenario and workload. In addition to
the content category or music specific features, other modalities are interesting to
be evaluated for their potential to identify suitable categories for cache division. By
creating an embedding with the help of a Deep Neural Network (DNN), a set of
clusters that refer to content with similar properties can be derived and guide the
cache division. Therefore, multiple modalities come into consideration in the case
of music for which DNNs have been proposed already, but not yet applied for this

1https://www.androidpit.com/machine-learning-and-ai-on-smartphones

https://www.androidpit.com/machine-learning-and-ai-on-smartphones

7.3 outlook 139

use case. Guidance on the training of DNNs can be found in works focusing on au-
dio [VDS13], text [ESH15; MCC+13], as well as multi-modal approaches that consider
image data [SS12; NKK+11].

For SDN-based streaming of OTT VoD content, we considered the first step in an
incremental deployment with just one VoDCast-supporting node in the network. It VoDCast

is promising to evaluate how multiple VoDCast nodes can contribute to the mech-
anism’s performance. Furthermore, the trade-off between SDN flow entries used by
VoDCast in the presence of other SDN applications can be modeled as a reinforce-
ment learning problem, similar to KhudaBukhsh et al. [KRF+17], that tries to balance
cost and benefit of multiple concurrent SDN applications. This is promising to effi-
ciently manage VoDCast’s usage in highly dynamic scenarios where the cost and
the benefit of distinct SDN applications and their number vary dynamically. Besides,
VoDCast can benefit from extensions that support SDN flow entry load balancing
among the switches within the ISP network [BRV+15; RBH+16] to distribute the state
caused by the mechanism and load-balance traffic. In addition, it is promising to
extend VoDCast by a soft-transition meta-mechanism that determines the optimal
system parameters during runtime [PKW+17]. Thereby, the system can be flexibly
adapted for workloads of different content catalog size and popularity dynamics as
well as network environments with varying loss and failure rates [HRR+17a]. Fur-
thermore, an analysis of predictive methods for identification of videos which will be
most popular in the near future and, therefore suitable to be delivered via multicast,
will further decrease the bandwidth utilization achievable by using VoDCast.

B I B L I O G R A P H Y

[ACG+09] V. Aggarwal, R. Caldebank, V. Gopalakrishnan, R. Jana, K. K. Ramakr-
ishnan, and F. Yu. “The Effectiveness of Intelligent Scheduling for Multi-
cast Video-on-Demand.” In: ACM International Conference on Multimedia
(MM). 2009 (cit. on pp. 6, 57–59, 133).

[ACS03] I. Arsovski, T. Chandler, and A. Sheikholeslami. “A Ternary Content-
addressable Memory (TCAM) based on 4T Static Storage and including
a Current-race Sensing Scheme.” In: IEEE Journal of Solid-State Circuits
38.1 (2003), pp. 155–158 (cit. on p. 32).

[ADA+13] A. Arvidsson, M. Du, A. Aurelius, and M. Kihl. “Analysis of User De-
mand Patterns and Locality for YouTube Traffic.” In: IEEE International
Teletraffic Congress (ITC). 2013, pp. 1–9 (cit. on p. 18).

[AFA16] A. Ahmad, A. Floris, and L. Atzori. “QoE-aware Service Delivery: A
Joint-venture Approach for Content and Network Providers.” In: IEEE
International Conference on Quality of Multimedia Experience (QoMEX).
2016, pp. 1–6 (cit. on pp. 21, 119).

[AFA17] A. Ahmad, A. Floris, and L. Atzori. “OTT-ISP Joint Service Manage-
ment: A Customer Lifetime Value based Approach.” In: IFIP/IEEE Sym-
posium on Integrated Network and Service Management (IM). 2017, pp. 1017–
1022 (cit. on p. 119).

[AJC+12] V. K. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang. “Vivisecting YouTube:
An Active Measurement Study.” In: IEEE International Conference on
Computer Communications (INFOCOM). 2012, pp. 2521–2525 (cit. on pp. 2,
43).

[AMM+03] K. Andreev, B. Maggs, A. Meyerson, and R. Sitaraman. “Designing
Overlay Multicast Networks for Streaming.” In: ACM Symposium on
Parallel Algorithms and Architectures (SPAA). 2003, pp. 149–158 (cit. on
p. 12).

[AS10] A. Abhari and M. Soraya. “Workload Generation for YouTube.” In: Mul-
timedia Tools and Applications 46 (2010), pp. 91–118 (cit. on pp. 18, 182,
183).

[ASK+10] B. Ager, F. Schneider, J. Kim, and A. Feldmann. “Revisiting Cacheabil-
ity in Times of User Generated Content.” In: IEEE International Con-
ference on Computer Communications (INFOCOM). 2010, pp. 1–6 (cit. on
p. 44).

[AV07] D. Arthur and S. Vassilvitskii. “k-means++: The Advantages of Careful
Seeding.” In: ACM-SIAM Symposium on Discrete Algorithms. Society for
Industrial and Applied Mathematics. 2007, pp. 1027–1035 (cit. on p. 26).

140

Bibliography 141

[AWY96a] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. “A Permutation-based Pyramid
Broadcasting Scheme for Video-on-Demand Systems.” In: IEEE Interna-
tional Conference on Multimedia Computing and Systems (ICMCS). 1996,
pp. 118–126 (cit. on p. 54).

[AWY96b] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. “On optimal Batching Policies
for Video-on-Demand Storage Servers.” In: IEEE International Confer-
ence on Multimedia Computing and Systems (ICMCS). 1996, pp. 253–258

(cit. on pp. 53, 56).

[Bas15] D. K. Base. Hard Drive - Why Do Solid State Devices (SSD) Wear Out. 2015.
url: https://goo.gl/VMqkkZ (cit. on pp. 45, 104).

[BBD+13] K. Brunnström, S. A. Beker, K. De Moor, A. Dooms, S. Egger, M.-N.
Garcia, T. Hossfeld, S. Jumisko-Pyykkö, C. Keimel, M.-C. Larabi, et al.
“Qualinet White Paper on Definitions of Quality of Experience.” In:
(2013) (cit. on p. 20).

[BBD14] E. Bastug, M. Bennis, and M. Debbah. “Living on the Edge: The Role of
Proactive Caching in 5G Wireless Networks.” In: IEEE Communications
Magazine 52.8 (2014), pp. 82–89 (cit. on pp. 4, 43, 48, 50, 51).

[BBD16] E. Baştuğ, M. Bennis, and M. Debbah. “Proactive Caching in 5G Small
Cell Networks.” In: Towards 5G: Applications, Requirements and Candidate
Technologies (2016), pp. 78–98 (cit. on pp. 48, 50).

[BBK+15] E. Baştuǧ, M. Bennis, M. Kountouris, and M. Debbah. “Cache-enabled
Small Cell Networks: Modeling and Tradeoffs.” In: EURASIP Journal
on Wireless Communications and Networking 2015.1 (2015), p. 41 (cit. on
p. 48).

[BBS14] Z. S. Bischof, F. E. Bustamante, and R. Stanojevic. “Need, Want, Can
afford: Broadband Markets and the Behavior of Users.” In: ACM SIG-
COMM Internet Measurement Conference (IMC). 2014, pp. 73–86 (cit. on
p. 2).

[BFS+84] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and
Regression Trees. CRC press, 1984 (cit. on p. 24).

[BGK+14] A. Betker, I. Gamrath, D. Kosiankowski, C. Lange, H. Lehmann, F.
Pfeuffer, F. Simon, and A. Werner. “Comprehensive Topology and Traf-
fic Model of a Nationwide Telecommunication Network.” In: Journal of
Optical Communications and Networking 6.11 (2014), pp. 1038–1047 (cit.
on pp. 10, 11, 126).

[BGS+14] D. S. Berger, P. Gland, S. Singla, and F. Ciucu. “Exact Analysis of TTL
Cache Networks.” In: Elsevier Performance Evaluation 79 (2014), pp. 2–23

(cit. on p. 46).

[BHC+15] D. S. Berger, S. Henningsen, F. Ciucu, and J. B. Schmitt. “Maximizing
Cache Hit Ratios by Variance Reduction.” In: ACM SIGMETRICS Per-
formance Evaluation Review 43.2 (2015), pp. 57–59 (cit. on p. 46).

[BIV+13] T. Broxton, Y. Interian, J. Vaver, and M. Wattenhofer. “Catching a Viral
Video.” In: Journal of Intelligent Information Systems 40.2 (2013), pp. 241–
259 (cit. on pp. 38, 40).

https://goo.gl/VMqkkZ

Bibliography 142

[BJS13] X. Bai, F. Junqueira, and A. Silberstein. “Cache Refreshing for Online
Social News Feeds.” In: ACM International Conference on Information and
Knowledge Management (CIKM). 2013 (cit. on p. 47).

[BNP+15] N. Baranasuriya, V. Navda, V. N. Padmanabhan, and S. Gilbert. “QProbe:
Locating the Bottleneck in Cellular Communication.” In: ACM Inter-
national Conference on Emerging Networking Experiments and Technologies
(CoNEXT). 2015, p. 33 (cit. on p. 45).

[BPV08] R. Buyya, M. Pathan, and A. Vakali. Content Delivery Networks. Vol. 9.
Springer Science & Business Media, 2008 (cit. on p. 13).

[BRB+16] Z. Bozakov, A. Rizk, D. Bhat, and M. Zink. “Measurement-based Flow
Characterization in Centrally Controlled Networks.” In: IEEE Interna-
tional Conference on Computer Communications (INFOCOM). 2016, pp. 1–
9 (cit. on p. 137).

[BRV+15] J. Blendin, J. Rückert, T. Volk, and D. Hausheer. “Adaptive Software De-
fined Multicast.” In: IEEE Conference on Network Softwarization (NetSoft).
2015, pp. 1–9 (cit. on pp. 58, 59, 139).

[BRZ+17] D. Bhat, A. Rizk, M. Zink, and R. Steinmetz. “Network Assisted Con-
tent Distribution for Adaptive Bitrate Video Streaming.” In: ACM Mul-
timedia Systems Conference (MMSys). 2017, pp. 62–75 (cit. on pp. 44, 47,
49, 51).

[BSR+06] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Steinmetz. “Heuris-
tics for QoS-aware web service composition.” In: IEEE International Con-
ference on Web Services (ICWS). 2006, pp. 72–82 (cit. on p. 20).

[CBV+15] M. Claeys, N. Bouten, D. D. Vleeschauwer, W. V. Leekwijck, S. La-
tré, and F. D. Turck. “An Announcement-based Caching Approach for
Video-on-Demand Streaming.” In: ACM International Conference on Net-
work and Service Management (CNSM). 2015, pp. 310–317 (cit. on pp. 47,
48, 51).

[CDF+14a] P. Casas, A. D’Alconzo, P. Fiadino, A. Bär, and A. Finamore. “On the
Analysis of QoE-based Performance Degradation in YouTube Traffic.”
In: IEEE International Conference on Network and Service Management (CNSM).
2014, pp. 1–9 (cit. on p. 2).

[CDF+14b] P. Casas, A. D’Alconzo, P. Fiadino, A. Bär, A. Finamore, and T. Zseby.
“When YouTube does not work—Analysis of QoE-relevant Degradation
in Google CDN Traffic.” In: IEEE Transactions on Network and Service
Management (TNSM) 11.4 (2014), pp. 441–457 (cit. on p. 2).

[CDL08a] X. Cheng, C. Dale, and J. Liu. “Statistics and Social Network of YouTube
Videos.” In: IEEE International Workshop on Quality of Service (IWQoS).
2008 (cit. on p. 125).

[CDL08b] X. Cheng, C. Dale, and J. Liu. “Statistics and Social Network of YouTube
Videos.” In: International Workshop on Quality of Service (IWQoS). 2008,
pp. 229–238 (cit. on pp. 83, 86, 88).

[CE17] N. Carlsson and D. Eager. “Ephemeral Content Popularity at the Edge
and Implications for on-demand Caching.” In: IEEE Transactions on Par-
allel and Distributed Systems 28.6 (2017), pp. 1621–1634 (cit. on p. 125).

Bibliography 143

[CFS14] P. Casas, P. Fiadino, and A. Sackl. “YouTube in the Move: Understand-
ing the Performance of YouTube in Cellular Networks.” In: IFIP Wireless
Days (WD). 2014 (cit. on p. 127).

[Cho+17] K. Choi et al. “Transfer Learning for Music Classification and Regres-
sion Tasks.” In: International Society of Music Information Retrieval (IS-
MIR). 2017 (cit. on p. 27).

[Cis17a] Cisco. Cisco Visual Networking Index: Forecast and Methodology, 2016-2021.
Tech. rep. Cisco, 2017 (cit. on p. 131).

[Cis17b] Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update. Tech. rep. Cisco, 2017 (cit. on p. 14).

[Cis17c] Cisco Systems, Inc. Cisco Visual Networking Index: Global Mobile Data
Traffic Forecast Update, 2016–2021. Tech. rep. 2017 (cit. on pp. 1, 19, 118,
132).

[Cis17d] Cisco Systems, Inc. The Zettabyte Era: Trends and Analysis. Tech. rep. 2017

(cit. on pp. 1, 13).

[CKK17] L. E. Chatzieleftheriou, M. Karaliopoulos, and I. Koutsopoulos. “Caching-
aware Recommendations: Nudging User Preferences towards Better
Caching Performance.” In: IEEE International Conference on Computer
Communications (INFOCOM). 2017, pp. 1–9 (cit. on pp. 47–49, 51).

[CKR+07] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. “I Tube, You
Tube, Everybody Tubes: Analyzing the World’s Largest User Generated
Content Video System.” In: ACM SIGCOMM Internet Measurement Con-
ference (IMC). 2007, pp. 1–14 (cit. on pp. 6, 54, 122).

[CKS02] I. Cidon, S. Kutten, and R. Soffer. “Optimal Allocation of Electronic
Content.” In: Computer Networks 40.2 (2002), pp. 205–218 (cit. on p. 43).

[CL09] X. Cheng and J. Liu. “NetTube: Exploring Social Networks for Peer-to-
Peer Short Video Sharing.” In: IEEE International Conference on Computer
Communications (INFOCOM). Apr. 2009 (cit. on pp. 39, 42, 79).

[Cla16] D. D. Clark. “The Contingent Internet.” In: Daedalus 145.1 (2016). MIT
Press, pp. 9–17 (cit. on p. 2).

[CLD13] X. Cheng, J. Liu, and C. Dale. “Understanding the Characteristics of
Internet short Video Sharing: A YouTube-based Measurement Study.”
In: IEEE Transactions on Multimedia 15.5 (2013), pp. 1184–1194 (cit. on
p. 101).

[CLN04] Y. Cui, B. Li, and K. Nahrstedt. “oStream: Asynchronous Streaming
Multicast in Application-layer Overlay Networks.” In: IEEE Journal on
Selected Areas in Communications (JSAC) 22.1 (2004), pp. 91–106 (cit. on
p. 57).

[CM13] S. A. Chowdhury and D. J. Makaroff. “Popularity Growth Patterns of
YouTube Videos-A Category-based Study.” In: International Conference
on Web Information Systems and Technologies (WEBIST). 2013, pp. 233–242

(cit. on pp. 46, 48, 49, 83, 183, 184).

Bibliography 144

[CMG09] M. Cha, A. Mislove, and K. P. Gummadi. “A Measurement-driven Anal-
ysis of Information Propagation in the Flickr Social Network.” In: ACM
International Conference on World Wide Web (WWW). 2009, pp. 721–730

(cit. on p. 38).

[CMM+14] X. Cheng, F. Mehrdad, X. Ma, C. Zhang, and J. Liu. “Understanding
the YouTube Partners and their Data: Measurement and Analysis.” In:
IEEE China Communications 11.12 (2014), pp. 26–34 (cit. on pp. 18, 182,
183).

[Coh03] B. Cohen. “Incentives build Robustness in BitTorrent.” In: Workshop on
Economics of Peer-to-Peer Systems. Vol. 6. 2003, pp. 68–72 (cit. on p. 39).

[Con15] Conviva Inc. How Consumers Judge their Viewing Experience - The Business
Implications of Sub-par OTT Service. 2015 (cit. on p. 118).

[Con16] Conviva Inc. The Secret Life of Streamers: Devices, Content, Location, and
Quality. 2016 (cit. on pp. 1, 2).

[Cos+17] Y. M. Costa et al. “An Evaluation of Convolutional Neural Networks for
Music Classification using Spectrograms.” In: Applied Soft Computing 52

(2017), pp. 28–38 (cit. on p. 27).

[CSZ10] O. Chapelle, B. Scholkopf, and A. Zien. Semi-supervised Learning. Vol. 1.
The MIT Press, 2010 (cit. on p. 23).

[CTW02] H. Che, Y. Tung, and Z. Wang. “Hierarchical Web Caching Systems:
Modeling, Design and Experimental Results.” In: IEEE Journal on Se-
lected Areas in Communications (JSAC) 20.7 (2002), pp. 1305–1314 (cit. on
pp. 15, 17, 18, 43).

[CV95] C. Cortes and V. Vapnik. “Support-vector networks.” In: Machine learn-
ing 20.3 (1995), pp. 273–297 (cit. on p. 24).

[DA99] J. Dilley and M. Arlitt. “Improving Proxy Cache Performance: Analysis
of Three Replacement Policies.” In: IEEE Internet Computing 3.6 (1999),
pp. 44–50 (cit. on p. 16).

[DC06] Y. Duan and J. Canny. “How to Construct Multicast Cryptosystems
Provably Secure Against Adaptive Chosen Ciphertext Attack.” In: Cryp-
tographers’ Track at the RSA Conference. 2006, pp. 244–261 (cit. on pp. 55,
121).

[Dee89] S. Deering. Host Extensions for IP Multicasting. RFC1112. 1989. url: https:
//www.ietf.org/rfc/rfc1112.txt (cit. on p. 12).

[DF02] N. L. Da Fonseca and R. D. A. Façanha. “The Look-ahead-maximize-
batch Batching Policy.” In: IEEE Transactions on Multimedia 4.1 (2002),
pp. 114–120 (cit. on p. 53).

[DHL+12] J. Dai, Z. Hu, B. Li, J. Liu, and B. Li. “Collaborative Hierarchical Caching
with Dynamic Request Routing for Massive Content Distribution.” In:
IEEE International Conference on Computer Communications (INFOCOM).
2012, pp. 2444–2452 (cit. on p. 17).

https://www.ietf.org/rfc/rfc1112.txt
https://www.ietf.org/rfc/rfc1112.txt

Bibliography 145

[DKA+15] M. Du, M. Kihl, A. Arvidsson, C. Lagerstedt, and A. Gawler. “Analysis
of Prefetching Schemes for TV-on-demand Service.” In: International
Conference on Digital Telecommunications (ICDT). 2015, pp. 310–315 (cit.
on p. 4).

[DLL+00] C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen. “Deploy-
ment Issues for the IP Multicast Service and Architecture.” In: IEEE
Network 14.1 (2000), pp. 78–88 (cit. on pp. 5, 12, 52, 133).

[Dom12] P. Domingos. “A Few Useful Things to Know About Machine Learn-
ing.” In: Communications of the ACM 55.10 (2012), pp. 78–87 (cit. on
p. 23).

[DRC10] R. Doverspike, K. Ramakrishnan, and C. Chase. “Structural Overview
of ISP Networks.” In: Guide to Reliable Internet Services and Applications.
Ed. by C. R. Kalmanek, S. Misra, and Y. R. Yang. Computer Communi-
cations and Networks. Springer, 2010, pp. 19–93 (cit. on pp. 2, 10).

[DSA+11] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan,
and H. Zhang. “Understanding the Impact of Video Quality on User En-
gagement.” In: ACM SIGCOMM Computer Communication Review 41.4
(2011), pp. 362–373 (cit. on p. 19).

[DSS94] A. Dan, D. Sitaram, and P. Shahabuddin. “Scheduling Policies for an
On-demand Video Server with Batching.” In: ACM International Confer-
ence on Multimedia (MM). 1994, pp. 15–23 (cit. on p. 53).

[DSS96] A. Dan, D. Sitaram, and P. Shahabuddin. “Dynamic Batching Policies
for an On-Demand Video Server.” In: Springer International Publishing,
Multimedia Systems (1996), pp. 112–121 (cit. on pp. 6, 53, 56, 58, 59).

[DTK+16] S. Dernbach, N. Taft, J. Kurose, U. Weinsberg, C. Diot, and A. Ashkan.
“Cache Content-selection Policies for Streaming Video Services.” In:
IEEE International Conference on Computer Communications (INFOCOM).
2016, pp. 1–9 (cit. on pp. 44, 47, 48, 50, 51).

[DZW+14] N. Do, Y. Zhao, S.-T. Wang, C.-H. Hsu, and N. Venkatasubramanian.
“Optimizing Offline Access to Social Network Content on Mobile De-
vices.” In: IEEE International Conference on Computer Communications (IN-
FOCOM). 2014, pp. 1950–1958 (cit. on pp. 40, 42, 64).

[EGH+11] J. Erman, A. Gerber, M. Hajiaghayi, D. Pei, S. Sen, and O. Spatscheck.
“To Cache or Not to Cache: The 3G Case.” In: IEEE Internet Computing
15.2 (2011), pp. 27–34 (cit. on p. 43).

[EKS+96] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. “A Density-based Algo-
rithm for Discovering Clusters in Large Spatial Databases With Noise.”
In: KDD. Vol. 96. 34. 1996, pp. 226–231 (cit. on p. 75).

[ELT09] T. Eerola, O. Lartillot, and P. Toiviainen. “Prediction of Multidimen-
sional Emotional Ratings in Music from Audio Using Multivariate Re-
gression Models.” In: International Society for Music Information Retrieval
Conference (ISMIR). 2009 (cit. on p. 29).

[ER15] S.-E. Elayoubi and J. Roberts. “Performance and Cost Effectiveness of
Caching in Mobile Access Networks.” In: ACM Conference on Information-
Centric Networking (ICN). 2015, pp. 79–88 (cit. on pp. 43, 44, 82).

Bibliography 146

[Eri13] Ericsson ConsumerLab. TV and Media - Identifying the Needs of Tomor-
row’s Video Consumers. Tech. rep. 2013 (cit. on p. 1).

[Eri14] Ericsson ConsumerLab. TV and Media 2014 - Changing Consumer Needs
are Creating a New Media Landscape. Tech. rep. 2014 (cit. on p. 20).

[Eri15] Ericsson ConsumerLab. TV and Media 2015 - The Empowered TV and
Media Consumer’s Influence. Tech. rep. 2015 (cit. on p. 1).

[Eri17] Ericsson AB. Ericsson Mobility Report. June 2017 (cit. on p. 1).

[ES98] W. Effelsberg and R. Steinmetz. Video Compression Techniques: An Intro-
duction. dpunkt-Verlag, 1998 (cit. on p. 1).

[ESH15] A. M. Elkahky, Y. Song, and X. He. “A Multi-view Deep Learning
Approach or Cross Domain User Modeling in Recommendation Sys-
tems.” In: ACM International Conference on World Wide Web (WWW).
2015, pp. 278–288 (cit. on p. 139).

[EV98] D. L. Eager and M. K. Vernon. “Dynamic Skyscraper Broadcasts for
Video-on-Demand.” In: International Workshop on Multimedia Information
Systems (MIS). Springer. 1998, pp. 18–32 (cit. on p. 54).

[Eva14] D. Evans. Flash! (Modern File Systems), CS4414. 2014. url: http://www.
rust-class.org/class-17-flash.html (cit. on pp. 17, 47).

[EVZ01] D. Eager, M. Vernon, and J. Zahorjan. “Minimizing Bandwidth Require-
ments for on-demand Data Delivery.” In: IEEE Transactions on Knowl-
edge and Data Engineering (TKDE) 13.5 (2001), pp. 742–757 (cit. on pp. 56,
58).

[FAK09] S. Farhad, M. M. Akbar, and M. H. Kabir. “Multicast Video-on-Demand
Service in an Enterprise Network with Client-assisted Patching.” In:
Multimedia Tools and Applications 43.1 (2009), pp. 63–90 (cit. on p. 57).

[FBA11] F. Figueiredo, F. Benevenuto, and J. M. Almeida. “The Tube over Time:
Characterizing Popularity Growth of Youtube Videos.” In: Proceedings
of the Fourth ACM International Conference on Web Search and Data Mining.
2011 (cit. on p. 83).

[FCL17] H. Feng, Z. Chen, and H. Liu. “Design and Optimization for VoD Ser-
vices with Adaptive Multicast and Client Caching.” In: IEEE Communi-
cations Letters 21.7 (2017), pp. 1621–1624 (cit. on p. 8).

[FHK+16] A. Frömmgen, M. Hassan, R. Kluge, M. Mousavi, M. Mühlhäuser, S.
Müller, M. Schnee, M. Stein, and M. Weckesser. Mechanism Transitions:
A New Paradigm for a Highly Adaptive Internet. 2016 (cit. on p. 32).

[FMG+13] A. Finamore, M. Mellia, Z. Gilani, K. Papagiannaki, V. Erramilli, and Y.
Grunenberger. “Is there a Case for Mobile Phone Content Pre-staging?”
In: ACM International Conference on Emerging Networking Experiments and
Technologies (CoNEXT). 2013, pp. 321–326 (cit. on pp. 40–43).

[FPL+13] B. Frank, I. Poese, Y. Lin, G. Smaragdakis, A. Feldmann, B. Maggs, J.
Rake, S. Uhlig, and R. Weber. “Pushing CDN-ISP Collaboration to the
Limit.” In: ACM SIGCOMM Computer Communication Review 43.3 (2013),
pp. 34–44 (cit. on p. 19).

http://www.rust-class.org/class-17-flash.html
http://www.rust-class.org/class-17-flash.html

Bibliography 147

[FSK+18] A. Frömmgen, D. Stohr, B. Koldehofe, and A. Rizk. “Don’t Repeat Your-
self: Seamless Execution and Analysis of Extensive Network Experi-
ments.” In: arXiv preprint arXiv:1802.03455 (2018) (cit. on p. 137).

[Fur98] B. Furht. Handbook of Multimedia Computing. Vol. 5. CRC Press, 1998 (cit.
on p. 13).

[GAL+07] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. “YouTube Traffic Characteriza-
tion: A View from the Edge.” In: ACM SIGCOMM Internet Measurement
Conference (IMC). 2007, pp. 15–28 (cit. on pp. 6, 18, 58, 133, 182, 183).

[GEF16] S. Grover, R. Ensafi, and N. Feamster. “A Case Study of Traffic Demand
Response to Broadband Service-Plan Upgrades.” In: International Con-
ference on Passive and Active Network Measurement (PAM). Springer. 2016,
pp. 124–135 (cit. on p. 2).

[GHM13] F. Guillemin, T. Houdoin, and S. Moteau. “Volatility of YouTube Con-
tent in Orange Networks and Consequences.” In: IEEE International
Conference on Communications (ICC). 2013, pp. 2381–2385 (cit. on pp. 6,
58, 133, 182, 183).

[GKT02] L. Gao, J. Kurose, and D. Towsley. “Efficient Schemes for Broadcasting
Popular Videos.” In: Multimedia Systems 8.4 (2002), pp. 284–294 (cit. on
p. 54).

[GLM16] M. Garetto, E. Leonardi, and V. Martina. “A Unified Approach to the
Performance Analysis of Caching Systems.” In: ACM Transactions on
Modeling and Performance Evaluation of Computing Systems (ToMPECS)
1.3 (2016), p. 12 (cit. on p. 18).

[GLZ+00] C. Griwodz, M. Liepert, M. Zink, and R. Steinmetz. “Tune to Lambda
Patching.” In: ACM SIGMETRICS Performance Evaluation Review 27.4
(2000), pp. 20–26 (cit. on p. 57).

[GMM+13] D. Grois, D. Marpe, A. Mulayoff, B. Itzhaky, and O. Hadar. “Perfor-
mance Comparison of H.265/MPEG-HEVC, VP9, and H.264/MPEG-
AVC Encoders.” In: IEEE Picture Coding Symposium (PCS). 2013, pp. 394–
397 (cit. on p. 1).

[Gou+15] A. Gouta et al. “CPSys: A System for Mobile Video Prefetching.” In:
IEEE International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS). 2015, pp. 188–197

(cit. on pp. 5, 37, 40–42, 72, 80, 82, 132).

[GPN13] N. Gautam, H. Petander, and J. Noel. “A Comparison of the Cost and
Energy Efficiency of Prefetching and Streaming of Mobile Video.” In:
ACM Workshop on Mobile Video (MoVid). 2013, pp. 7–12 (cit. on pp. 35,
36, 39, 41–43).

[Gri00] C. Griwodz. “Wide-area True Video-on-Demand by a Decentralized
Cache-based Distribution Infrastructure.” PhD thesis. Technische Uni-
versität, 2000 (cit. on p. 57).

[Gri17] S. Grizzle. Three Streaming Video Challenges We Still Face Today, and How
to Solve Them. http://StreamingMedia.com. Oct. 2017. url: https://
goo.gl/BrZxmg (cit. on p. 2).

https://goo.gl/BrZxmg
https://goo.gl/BrZxmg

Bibliography 148

[Gro+13] C. Gross et al. “EnerSim: An Energy Consumption Model for Large-
scale Overlay Simulators.” In: IEEE Conference on Local Computer Net-
works (LCN). 2013 (cit. on pp. 35, 62).

[GS15] M. Gillhofer and M. Schedl. “Iron Maiden while Jogging, Debussy for
Dinner?” In: International Conference on Multimedia Modeling (MMM).
Springer LNCS, 2015 (cit. on pp. 27, 29, 97).

[GSD+12] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch, and G.
Caire. “Femtocaching: Wireless Video Content Delivery through Dis-
tributed Caching Helpers.” In: IEEE International Conference on Computer
Communications (INFOCOM). 2012, pp. 1107–1115 (cit. on pp. 4, 5, 43, 47,
49, 51).

[GT99] L. Gao and D. Towsley. “Supplying Instantaneous Video-on-Demand
Services using Controlled Multicast.” In: IEEE International Conference
on Multimedia Computing and Systems (ICMCS). Vol. 2. 1999, pp. 117–121

(cit. on p. 54).

[GZL+00] C. Griwodz, M. Zink, M. Liepert, G. On, and R. Steinmetz. “Multicast
for Savings in Cache-based Video Distribution.” In: Multimedia Com-
puting and Networking. Vol. 3969. International Society for Optics and
Photonics. 2000, pp. 26–36 (cit. on p. 57).

[GZT99] L. Gao, Z.-L. Zhang, and D. Towsley. “Catching and Selective Catch-
ing: Efficient Latency Reduction Techniques for Delivering Continuous
Multimedia Streams.” In: ACM International Conference on Multimedia
(MM). 1999, pp. 203–206 (cit. on p. 54).

[Hac15] M. Hachman. Notebook Hard Drives are Dead: How SSDs will Dominate
Mobile PC Storage by 2018. 2015. url: https://goo.gl/4FmLCi (cit. on
pp. 45, 104).

[Hac16] S. Hacker. “Simultaneous Partial Delivery of Video-on-Demand Streams.”
In: Master Thesis, Technische Universität Darmstadt, PS-D-0028. May
2016 (cit. on p. 116).

[HB96] J. Hawkinson and T. Bates. Guidelines for Creation, Selection, and Regis-
tration of an Autonomous System (AS). RFC 1930. Mar. 1996. url: https:
//tools.ietf.org/html/rfc1930 (cit. on p. 10).

[HBY04] M. M. Hefeeda, B. K. Bhargava, and D. K. Yau. “A Hybrid Architecture
for Cost-effective on-demand Media Streaming.” In: Elsevier Computer
Networks 44.3 (2004), pp. 353–382 (cit. on p. 57).

[HC16] J.-P. Hong and W. Choi. “User Prefix Caching for Average Playback
Delay Reduction in Wireless Video Streaming.” In: IEEE Transactions on
Wireless Communications 15.1 (2016), pp. 377–388 (cit. on p. 57).

[HC99] H. Holbrook and D. Cheriton. “IP Multicast Channels: EXPRESS Sup-
port for Large-scale Single-source Applications.” In: ACM SIGCOMM
Computer Communication Review 29.4 (1999), pp. 65–78 (cit. on p. 12).

[HCS98] K. A. Hua, Y. Cai, and S. Sheu. “Patching: A Multicast Technique for
True Video-on-Demand Services.” In: ACM International Conference on
Multimedia (MM). 6. 1998 (cit. on pp. 6, 53, 56–59).

https://goo.gl/4FmLCi
https://tools.ietf.org/html/rfc1930
https://tools.ietf.org/html/rfc1930

Bibliography 149

[HFG+12] B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin, and D. Watson.
“Informed Mobile Prefetching.” In: ACM International Conference on Mo-
bile Systems, Applications, and Services (MobiSys). 2012, pp. 155–168 (cit.
on pp. 35, 37, 43).

[HG08] Q. Huynh-Thu and M. Ghanbari. “Temporal Aspect of Perceived Qual-
ity in Mobile Video Broadcasting.” In: IEEE Transactions on Broadcasting
54.3 (2008), pp. 641–651 (cit. on pp. 19, 21).

[HGC+15] X. Hu, J. Gong, G. Cheng, and C. Fan. “Enhancing in-network Caching
by Coupling Cache Placement, Replacement and Location.” In: IEEE
International Conference on Communications (ICC). 2015, pp. 5672–5678

(cit. on p. 18).

[HH11] G. Haßlinger and F. Hartleb. “Content Delivery and Caching from a
Network Provider’s Perspective.” In: Computer Networks 55.18 (2011),
pp. 3991–4006 (cit. on pp. 5, 12, 14, 43, 55, 85).

[HHK+12] B. Han, P. Hui, V. A. Kumar, M. V. Marathe, J. Shao, and A. Srinivasan.
“Mobile Data Offloading through Opportunistic Communications and
Social Participation.” In: IEEE Transactions on Mobile Computing 11.5
(2012), pp. 821–834 (cit. on p. 43).

[HHS+17] T. Hoßfeld, P. E. Heegaard, L. Skorin-Kapov, and M. Varela. “No Silver
Bullet: QoE Metrics, QoE Fairness, and User Diversity in the Context
of QoE Management.” In: IEEE International Conference on Quality of
Multimedia Experience (QoMEX). 2017, pp. 1–6 (cit. on p. 21).

[HK07] M. J. Halvey and M. T. Keane. “Exploring Social Dynamics in Online
Media Sharing.” In: ACM International Conference on World Wide Web
(WWW). 2007, pp. 1273–1274 (cit. on p. 18).

[HLL+07] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross. “A Measurement
Study of a Large-scale P2P IPTV System.” In: IEEE Transactions on Mul-
timedia 9.8 (2007), pp. 1672–1687 (cit. on p. 43).

[HLW+14] Y. Huang, S. Lin, H. Wu, and Y. Li. “Music Genre Classification based
on Local Feature Selection using a Self-adaptive Harmony Search Al-
gorithm.” In: Data & Knowledge Engineering 92 (2014), pp. 60–76 (cit. on
pp. 29, 94).

[HMS66] E. B. Hunt, J. Marin, and P. J. Stone. Experiments in Induction. 1966 (cit.
on p. 24).

[HNH14] G. Hasslinger, K. Ntougias, and F. Hasslinger. “A New Class of Web
Caching Strategies for Content Delivery.” In: IEEE International Telecom-
munications Network Strategy and Planning Symposium (Networks). 2014,
pp. 1–7 (cit. on pp. 5, 48, 49, 51, 132).

[HQG+12] J. Huang, F. Qian, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck. “A
Close Examination of Performance and Power Characteristics of 4G
LTE Networks.” In: ACM Conference on Mobile Systems, Applications, and
Services (MobiSys). 2012 (cit. on pp. 4, 35, 60, 80, 132).

[HRJ+10] B.-J. Han, S. Rho, S. Jun, and E. Hwang. “Music Emotion Classification
and Context-based Music Recommendation.” In: Springer Multimedia
Tools and Applications 47.3 (2010), pp. 433–460 (cit. on pp. 28, 29).

Bibliography 150

[HRR+17a] R. Hark, N. Richerzhagen, B. Richerzhagen, A. Rizk, and R. Steinmetz.
“Towards an Adaptive Selection of Loss Estimation Techniques in Software-
defined Networks.” In: IEEE/IFIP Networking Conference (IFIP Network-
ing). 2017, pp. 1–9 (cit. on p. 139).

[HRR+17b] R. Hark, A. Rizk, N. Richerzhagen, B. Richerzhagen, and R. Steinmetz.
“Isolated in-band communication for distributed SDN controllers.” In:
IEEE/IFIP Networking Conference (IFIP Networking). 2017, pp. 1–2 (cit. on
p. 121).

[HS97] K. A. Hua and S. Sheu. “Skyscraper Broadcasting: A new Broadcasting
Scheme for Metropolitan Video-on-Demand Systems.” In: ACM SIG-
COMM Computer Communication Review. Vol. 27. 4. 1997, pp. 89–100

(cit. on p. 54).

[HSB+13] T. Hoßfeld, R. Schatz, E. Biersack, and L. Plissonneau. “Internet Video
Delivery in YouTube: From Traffic Measurements to Quality of Expe-
rience.” In: Data Traffic Monitoring and Analysis. Ed. by E. Biersack, C.
Callegari, and M. Matijasevic. Vol. 7754. Lecture Notes in Computer
Science. Springer, 2013, pp. 264–301 (cit. on pp. 2, 19, 20, 53).

[HSH+11] T. Hoßfeld, M. Seufert, M. Hirth, T. Zinner, P. Tran-Gia, and R. Schatz.
“Quantification of YouTube QoE via Crowdsourcing.” In: IEEE Interna-
tional Symposium on Multimedia (ISM). 2011, pp. 494–499 (cit. on p. 21).

[HSK14] T. Hoßfeld, R. Schatz, and U. R. Krieger. “QoE of YouTube Video Stream-
ing for Current Internet Transport Protocols.” In: Measurement, Mod-
elling, and Evaluation of Computing Systems and Dependability and Fault
Tolerance. Vol. 8376. Lecture Notes in Computer Science. Springer, 2014,
pp. 136–150 (cit. on p. 39).

[HSS+15] T. Hossfeld, M. Seufert, C. Sieber, T. Zinner, and P. Tran-Gia. “Identi-
fying QoE Optimal Adaptation of HTTP Adaptive Streaming based on
Subjective Studies.” In: Elsevier Computer Networks 81 (2015), pp. 320–
332 (cit. on p. 22).

[Hu01] A. Hu. “Video-on-Demand Broadcasting Protocols: A Comprehensive
Study.” In: IEEE International Conference on Computer Communications
(INFOCOM). Vol. 1. 2001, pp. 508–517 (cit. on p. 57).

[Hud17] T. Huddleston, Jr. Netflix Has More U.S. Subscribers Than Cable TV. Ed.
by Time Inc. https://goo.gl/Hg6oP6. June 2017 (cit. on p. 1).

[Ine16] IneoQuest Technologies, Inc. Tech’s Newest Epidemic: Buffer Rage. 2016.
url: https://goo.gl/goH39t (cit. on p. 2).

[JG13] C. Jayasundara and V. Gopalakrishnan. “Facilitating Multicast in VoD
Systems by Content Pre-placement and Multistage Batching.” In: IEEE
International Conference on Communication Systems and Networks (COM-
SNETS). 2013, pp. 1–10 (cit. on p. 57).

[JKM+13] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, and M. Zhu. “B4: Experience with a Globally-
deployed Software Defined WAN.” In: ACM SIGCOMM Computer Com-
munication Review 43.4 (2013), pp. 3–14 (cit. on pp. 5, 52).

https://goo.gl/goH39t

Bibliography 151

[JL17] S.-y. Jang and C. Y. Lee. “Batching with Reneging and AMC for VoD
Streaming Service over Wireless Networks.” In: Wireless Personal Com-
munications 97.3 (2017), pp. 4211–4227 (cit. on p. 57).

[JLT+16] F. Jiang, Z. Liu, K. Thilakarathna, Z. Li, Y. Ji, and A. Seneviratne. “Trans-
fetch: A Viewing Behavior Driven Video Distribution Framework in
Public Transport.” In: IEEE Conference on Local Computer Networks (LCN).
IEEE. 2016, pp. 147–155 (cit. on p. 62).

[JT98] L.-S. Juhn and L.-M. Tseng. “Fast Data Broadcasting and Receiving
Scheme for Popular Video Service.” In: IEEE Transactions on Broadcast-
ing 44.1 (1998), pp. 100–105 (cit. on p. 57).

[KBD13] M. Kaafar, S. Berkovsky, and B. Donnet. “On the Potential of Recom-
mendation Technologies for Efficient Content Delivery Networks.” In:
ACM SIGCOMM Comput. Commun. Rev. 43.3 (2013), pp. 74–77 (cit. on
p. 47).

[KBR+15] C. Koch, N. Bui, J. Rückert, G. Fioravantti, F. Michelinakis, S. Wilk, J.
Widmer, and D. Hausheer. “Media Download Optimization through
Prefetching and Resource Allocation in Mobile Networks.” In: ACM
Multimedia Systems Conference (MMSys). 2015, pp. 85–88 (cit. on pp. 7,
60, 138).

[KC10] H. J. Kim and S. G. Choi. “A study on a QoS/QoE Correlation Model
for QoE Evaluation on IPTV Service.” In: IEEE International Conference
on Advanced Communication Technology (ICACT). Vol. 2. 2010, pp. 1377–
1382 (cit. on p. 20).

[KE93] D. Kotz and C. Ellis. “Practical Prefetching Techniques for Multiproces-
sor File Systems.” In: Distributed and Parallel Databases 1.1 (1993), pp. 33–
51 (cit. on p. 34).

[Kel13] D. Kelleher. “95.6% of Commuters in the US put Company Data at Risk
over Free Public Wi-Fi.” In: Tech. Rep. (2013) (cit. on p. 62).

[KFH17] F. Kaup, F. Fischer, and D. Hausheer. “Measuring and Predicting Cel-
lular Network Quality on Trains.” In: IEEE International Conference on
Networked Systems (NetSys). 2017, pp. 1–8 (cit. on p. 61).

[KH14] C. Koch and D. Hausheer. “Optimizing Mobile Prefetching by Lever-
aging Usage Patterns and Social Information.” In: IEEE International
Conference on Network Protocols (ICNP). 2014, pp. 293–295 (cit. on pp. 15,
48, 55, 58, 60, 65).

[KHH17] C. Koch, S. Hacker, and D. Hausheer. “VoDCast: Efficient SDN-based
Multicast for Video on Demand.” In: IEEE International Symposium on
a World of Wireless and Multimedia Networks (WoWMoM). 2017, pp. 1–6

(cit. on pp. 59, 116).

[KHR+18] S. Kar, R. Hark, A. Rizk, and R. Steinmetz. “Towards Optimal Place-
ment of Monitoring Units in Time-Varying Networks Under Central-
ized Control.” In: Springer International Conference on Measurement, Mod-
elling and Evaluation of Computing Systems (MMB). 2018, pp. 99–112 (cit.
on p. 137).

Bibliography 152

[Kim15] E. Kim. Everything You Wanted to Know about the Kernel Trick (But Were
Too Afraid to Ask). 2015. url: http://www.eric-kim.net/eric-kim-
net/posts/1/kernel_trick_blog_ekim_12_20_2017.pdf (cit. on p. 25).

[Kis17] Kissmetrics. How Loading Time Affects Your Bottom Line. 2017. url: https:
//blog.%20kissmetrics.com/loading-time/ (cit. on pp. 4, 13).

[KKH17] C. Koch, G. Krupii, and D. Hausheer. “Proactive Caching of Music
Videos based on Audio Features, Mood, and Genre.” In: ACM Multime-
dia Systems Conference (MMSys). 2017, pp. 100–111 (cit. on pp. 70, 83, 86,
88, 180).

[Kli17] K. Kliinnglills. “Video-on-Demand Optimization for Internet Service
Provider.” In: Master Thesis, Technische Universität Darmstadt, KOM-
M-0602. July 2017 (cit. on p. 116).

[KLL+08] H. J. Kim, D. H. Lee, J. M. Lee, K. H. Lee, W. Lyu, and S. G. Choi. “The
QoE Evaluation Method through the QoS-QoE Correlation Model.” In:
IEEE International Conference on Networked Computing and Advanced In-
formation Management (NCM). Vol. 2. 2008, pp. 719–725 (cit. on p. 20).

[KLR+17] C. Koch, B. Lins, A. Rizk, R. Steinmetz, and D. Hausheer. “vFetch:
Video Prefetching using Pseudo Subscriptions and User Channel Affin-
ity in YouTube.” In: IEEE International Conference on Network and Service
Management (CNSM). 2017, pp. 1–9 (cit. on pp. 4, 42, 60, 132).

[KLS+18] C. Koch, M. Lode, D. Stohr, A. Rizk, and R. Steinmetz. “Collaborations
on YouTube: From Unsupervised Detection to the Impact on Video and
Channel Popularity.” In: arXiv preprint arXiv:1805.01887 (2018), pp. 1–
28 (cit. on p. 138).

[KLW94] R. Karedla, J. S. Love, and B. G. Wherry. “Caching Strategies to Improve
Disk System Performance.” In: Computer 27.3 (1994), pp. 38–46 (cit. on
p. 16).

[KMB+15] F. Kaup, F. Michelinakis, N. Bui, J. Widmer, K. Wac, and D. Hausheer.
“Behind the NAT - A Measurement based Evaluation of Cellular Ser-
vice Quality.” In: IEEE International Conference on Network and Service
Management (CNSM). 2015, pp. 228–236 (cit. on p. 127).

[KMS+] R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain, A. Krishnamurthy,
T. Anderson, and J. Gao. “Moving beyond end-to-end Path Information
to Optimize CDN Performance.” In: ACM SIGCOMM Conference on In-
ternet Measurement (IMC), pp. 190–201 (cit. on p. 19).

[KMS05] H.-G. Kim, N. Moreau, and T. Sikora. MPEG-7 Audio and Beyond: Audio
Content Indexing and Retrieval. John Wiley & Sons, 2005 (cit. on p. 27).

[Kos15] J. Koschier. “Prädiktives Cachen von Videos bereitgestellt auf Sozialen
Plattformen.” In: Bachelor Thesis, Technische Universität Darmstadt,
PS-S-0017. Nov. 2015 (cit. on p. 60).

[KPR+18] C. Koch, J. Pfannmüller, A. Rizk, D. Hausheer, and R. Steinmetz. “Category-
aware Hierarchical Caching for Video-on-Demand Content on YouTube.”
In: ACM Multimedia Systems Conference (MMSys). 2018, pp. 1–12 (cit. on
pp. 7, 15, 51, 83).

http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick_blog_ekim_12_20_2017.pdf
http://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick_blog_ekim_12_20_2017.pdf
https://blog.%20kissmetrics.com/loading-time/
https://blog.%20kissmetrics.com/loading-time/

Bibliography 153

[KRB+14] C. Koch, J. Rückert, N. Bui, F. Michelinakis, G. Fioravantti, J. Wid-
mer, and D. Hausheer. “Demo: Mobile Social Prefetcher using Social
and Network Information.” In: IEEE International Workshop on Computer-
Aided Modeling Analysis and Design of Communication Links and Networks
(CAMAD). 2014, pp. 1–10 (cit. on pp. 7, 60, 76).

[KRE+15] D. Kreutz, F. M. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig. “Software-Defined Networking: A Com-
prehensive Survey.” In: Proceedings of the IEEE 103.1 (2015), pp. 14–76

(cit. on pp. 5, 30, 53, 127, 129).

[KRF+17] W. R. KhudaBukhsh, A. Rizk, A. Frömmgen, and H. Koeppl. “Optimiz-
ing Stochastic Scheduling in Fork-join Queueing Models: Bounds and
Applications.” In: IEEE International Conference on Computer Communica-
tions (INFOCOM). 2017, pp. 1–9 (cit. on p. 139).

[Kru16] G. Krupii. “Developing a Proactive Caching Mechanism for Music Con-
tent.” In: Master Thesis, Technische Universität Darmstadt, PS-D-0032.
May 2016 (cit. on p. 83).

[KS13] S. S. Krishnan and R. K. Sitaraman. “Video Stream Quality Impacts
Viewer Behavior: Inferring Causality Using Quasi-experimental Designs.”
In: IEEE/ACM Transactions on Networking 21.6 (2013), pp. 2001–2014 (cit.
on p. 21).

[KS92] J. J. Kistler and M. Satyanarayanan. “Disconnected Operation in the
Coda File System.” In: ACM Trans. Comput. Syst. 10.1 (Feb. 1992), pp. 3–
25 (cit. on p. 34).

[KWR+18] C. Koch, S. Werner, A. Rizk, and R. Steinmetz. “MIRA: Proactive Music
Video Caching using ConvNet-based Classification and Multivariate
Popularity Prediction.” In: IEEE International Symposium on the Model-
ing, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). 2018, pp. 1–7 (cit. on pp. 5, 83, 132).

[KZG13] D. Krishnappa, M. Zink, and C. Griwodz. “What Should you Cache?: A
Global Analysis on YouTube Related Video Caching.” In: ACM SIGMM
Workshop on Network and Operating Systems Support for Digital Audio and
Video (NOSSDAV). 2013, pp. 31–36 (cit. on pp. 36, 43).

[KZK+12] S. Khemmarat, R. Zhou, D. K. Krishnappa, L. Gao, and M. Zink. “Watch-
ing User Generated Videos with Prefetching.” In: Elsevier Image Commu-
nication 27.4 (2012), pp. 343–359 (cit. on pp. 38–40, 42).

[KZS15] D. K. Krishnappa, M. Zink, and R. Sitaraman. “Optimizing the Video
Transcoding Workflow in Content Delivery Networks.” In: ACM Multi-
media Systems Conference (MMSys). 2015 (cit. on pp. 86, 101, 119).

[LAO+14] J.-P. Laulajainen, Â. Arvidsson, T. Ojala, J. Seppänen, and M. Du. “Study
of YouTube Demand Patterns in mixed Public and Campus WiFi Net-
work.” In: IEEE International Wireless Communications and Mobile Com-
puting Conference (IWCMC). 2014 (cit. on p. 83).

[Lau+10] C. Laurier et al. “Indexing Music by Mood: Design and Integration
of an Automatic Content-based Annotator.” In: Multimedia Tools and
Applications 48.1 (2010), pp. 161–184 (cit. on p. 27).

Bibliography 154

[LBW+09] W. Liang, J. Bi, R. Wu, Z. Li, and C. Li. “On Characterizing PPStream:
Measurement and Analysis of P2P IPTV under Large-scale Broadcast-
ing.” In: IEEE Global Communications Conference (GLOBECOM). 2009 (cit.
on p. 43).

[LC06] J. LeBrun and C.-N. Chuah. “Bluetooth Content Distribution Stations
on Public Transit.” In: ACM International Workshop on Decentralized Re-
source Sharing in Mobile Computing and Networking. 2006, pp. 63–65 (cit.
on p. 43).

[LCS06] N. Laoutaris, H. Che, and I. Stavrakakis. “The LCD Interconnection of
LRU Caches and its Analysis.” In: Elsevier Performance Evaluation 63.7
(2006), pp. 609–634 (cit. on p. 15).

[Led15] S. Lederer. “Optimal Adaptive Streaming Formats MPEG-DASH & HLS
Segment Length.” In: (2015). url: https://bitmovin.com/mpeg-dash-
hls-segment-length/ (cit. on pp. 21, 22).

[Lei09] T. Leighton. “Improving Performance on the Internet.” In: Communica-
tions of the ACM 52.2 (2009), pp. 44–51 (cit. on p. 19).

[Li+13] J. Li et al. “YouTube Traffic Content Analysis in the Perspective of Clip
Category and Duration.” In: IEEE International Conference on the Network
of the Future (NOF). 2013 (cit. on p. 102).

[Lin16] B. Lins. “Textual and Content based Video Prefetching for Mobile De-
vices.” In: Bachelor Thesis, Technische Universität Darmstadt, PS-S-
0023. Dec. 2016 (cit. on p. 60).

[LLW+11] Y. Liu, Z. Liu, X. Wu, J. Wang, and C. C.-Y. Yang. “IPTV System Design:
An ISP’s Perspective.” In: IEEE International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC). 2011, pp. 234–
240 (cit. on pp. 2, 5, 12, 14, 43, 52, 133).

[LLX+12] H. Li, J. Liu, K. Xu, and S. Wen. “Understanding Video Propagation in
Online Social Networks.” In: IEEE International Workshop on Quality of
Service (IWQoS). 2012, pp. 1–9 (cit. on pp. 18, 183).

[LMS+10] C. Laurier, O. Meyers, J. Serrà, M. Blech, P. Herrera, and X. Serra.
“Indexing Music by Mood: Design and Integration of an Automatic
Content-based Annotator.” In: Multimedia Tools and Applications 48.1
(2010), pp. 161–184 (cit. on pp. 28, 29, 94–96).

[Log00] B. Logan. “Mel Frequency Cepstral Coefficients for Music Modeling.”
In: International Society for Music Information Retrieval Conference (ISMIR).
2000 (cit. on p. 27).

[LPB+15] A. Lareida, G. Petropoulos, V. Burger, M. Seufert, S. Soursos, and B.
Stiller. “Augmenting Home Routers for Socially-aware Traffic Manage-
ment.” In: IEEE Conference on Local Computer Networks (LCN). 2015, pp. 347–
355 (cit. on pp. 5, 43).

[LRD+13] G. M. Lee, S. Rallapalli, W. Dong, Y.-C. Chen, L. Qiu, and Y. Zhang.
“Mobile video delivery via human movement.” In: Sensor, Mesh and
Ad Hoc Communications and Networks (SECON), 2013 10th Annual IEEE
Communications Society Conference on. 2013, pp. 406–414 (cit. on p. 43).

https://bitmovin.com/mpeg-dash-hls-segment-length/
https://bitmovin.com/mpeg-dash-hls-segment-length/

Bibliography 155

[LSS04] N. Laoutaris, S. Syntila, and I. Stavrakakis. “Meta Algorithms for Hier-
archical Web Caches.” In: IEEE International Conference on Performance,
Computing, and Communications (IPCCC). 2004, pp. 445–452 (cit. on pp. 15–
17).

[LSW+12] Z. Li, H. Shen, H. Wang, G. Liu, and J. Li. “SocialTube: P2P-assisted
Video Sharing in Online Social Networks.” In: IEEE International Con-
ference on Computer Communications (INFOCOM). 2012, pp. 2886–2890

(cit. on pp. 39, 42, 43, 77, 79).

[LTE08] O. Lartillot, P. Toiviainen, and T. Eerola. “A Matlab Toolbox for Music
Information Retrieval.” In: Studies in Classification, Data Analysis, and
Knowledge Organization. Springer, 2008, pp. 261–268 (cit. on pp. 27, 95).

[LWL+13] H. Li, H. Wang, J. Liu, and K. Xu. “Video Requests from Online Social
Networks: Characterization, Analysis and Generation.” In: IEEE Inter-
national Conference on Computer Communications (INFOCOM). 2013 (cit.
on pp. 38, 183).

[LWY+12] H. H. Liu, Y. Wang, Y. R. Yang, H. Wang, and C. Tian. “Optimizing Cost
and Performance for Content Multihoming.” In: ACM SIGCOMM 2012.
2012, pp. 371–382 (cit. on p. 19).

[LWY93] A. Leff, J. L. Wolf, and P. S. Yu. “Replication Algorithms in a Remote
Caching Architecture.” In: IEEE Transactions on Parallel and Distributed
Systems 4.11 (1993), pp. 1185–1204 (cit. on p. 43).

[Lyn15] J. Lynch. New Study Says by 2025, Half of Consumers Under 32 Won’t Pay
for Cable - Resistance is futile: The ’cord-nevers’ cannot be stopped. Ed. by
Adweek Inc. https://goo.gl/RnY6Yz. Oct. 2015 (cit. on p. 1).

[MAC+14] A. Mansy, M. Ammar, J. Chandrashekar, and A. Sheth. “Characterizing
Client Behavior of Commercial Mobile Video Streaming Services.” In:
ACM Workshop on Mobile Video Delivery. 2014, p. 8 (cit. on p. 36).

[MAS+17] S. Müller, O. Atan, M. van der Schaar, and A. Klein. “Context-aware
Proactive Content Caching with Service Differentiation in Wireless Net-
works.” In: IEEE Transactions on Wireless Communications 16.2 (2017),
pp. 1024–1036 (cit. on p. 86).

[MCC+13] T. Mikolov, K. Chen, G. Corrado, and J. Dean. “Efficient Estimation of
Word Representations in Vector Space.” In: arXiv preprint arXiv:1301.3781
(2013) (cit. on p. 139).

[MGL14] V. Martina, M. Garetto, and E. Leonardi. “A Unified Approach to the
Performance Analysis of Caching Systems.” In: IEEE International Con-
ference on Computer Communications (INFOCOM). 2014 (cit. on p. 18).

[MGP+18] L. Maggi, L. Gkatzikis, G. Paschos, and J. Leguay. “Adapting Caching
to Audience Retention Rate.” In: Computer Communications 116 (2018),
pp. 159–171 (cit. on p. 15).

[MH10] A. J. Mashhadi and P. Hui. “Proactive Caching for Hybrid Urban Mo-
bile Networks.” In: University College London, Tech. Rep (2010). url: https:
//goo.gl/rtRGGy (cit. on p. 43).

https://goo.gl/rtRGGy
https://goo.gl/rtRGGy

Bibliography 156

[Mil16] K. Miller. “Adaptation Algorithms for HTTP-based Video Streaming.”
PhD thesis. 2016 (cit. on p. 22).

[MM04] N. Megiddo and D. S. Modha. “Outperforming LRU with an Adaptive
Replacement Cache Algorithm.” In: IEEE Computer 37.4 (2004), pp. 58–
65 (cit. on pp. 16, 17, 47, 84).

[MMF+05] D. McEnnis, C. McKay, I. Fujinaga, and P. Depalle. “jAudio: An Fea-
ture Extraction Library.” In: International Society for Music Information
Retrieval Conference (ISMIR). 2005, pp. 600–603 (cit. on p. 27).

[MS02] H. Ma and K. G. Shin. “Multicast Video-on-Demand Services.” In: ACM
SIGCOMM Computer Communication Review 32.1 (2002), pp. 31–43 (cit.
on p. 57).

[MS15] B. M. Maggs and R. K. Sitaraman. “Algorithmic Nuggets in Content
Delivery.” In: ACM SIGCOMM Computer Communication Review 45.3
(2015), pp. 52–66 (cit. on pp. 4, 13, 14, 16).

[Ng09] A. Ng. CS229: Machine Learning, Autumn 2009. 2009. url: http : / /

robotics.stanford.edu/~ang/courses.html (cit. on p. 23).

[NKK+11] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng. “Multi-
modal Deep Learning.” In: International Conference on Machine Learning
(ICML). 2011, pp. 689–696 (cit. on p. 139).

[NLB12] B. Niven-Jenkins, F. Le Faucheur, and N. Bitar. “Content Distribution
Network Interconnection (CDNI) Problem Statement.” In: RFC 6707
(2012) (cit. on p. 14).

[NLH15] L. Nobach, Y. Le Louédec, and D. Hausheer. “Evaluating Device-to-
Device Content Delivery Potential on a Mobile ISP’s Dataset.” In: IEEE
International Conference on Network and Service Management (CNSM). 2015,
pp. 301–309 (cit. on p. 43).

[NN08] A. J. Nicholson and B. D. Noble. “BreadCrumbs: Forecasting Mobile
Connectivity.” In: ACM International Conference on Mobile Computing and
Networking (MobiCom). 2008, pp. 46–57 (cit. on p. 37).

[Nor14] W. B. Norton. The Internet Peering Playbook: Connecting to the Core of the
Internet. 2nd ed. DrPeering Press, 2014 (cit. on p. 12).

[NSS10] E. Nygren, R. Sitaraman, and J. Sun. “The Akamai Network: A Plat-
form for High-performance Internet Applications.” In: ACM SIGOPS
Operating Systems Review 44.3 (2010), pp. 2–19 (cit. on p. 19).

[ONF14b] SDN Architecture. Tech. rep. ONF TR-502. Open Networking Founda-
tion, 2014. url: https://goo.gl/ubM6U6 (cit. on p. 119).

[Ope09] Open Networking Foundation. OpenFlow Switch Specification - Version
1.0.0. Dec. 2009. url: https://goo.gl/iPzGp1 (cit. on p. 32).

[Ope13] Open Networking Foundation. Wireless and Mobile Working Group (WMWG).
2013. url: https://goo.gl/6eozk9 (cit. on p. 126).

[Ope15] Open Networking Foundation. OpenFlow Switch Specification - Version
1.5.1. Mar. 2015. url: https://goo.gl/7UELBj (cit. on pp. 31, 32).

http://robotics.stanford.edu/~ang/courses.html
http://robotics.stanford.edu/~ang/courses.html
https://goo.gl/ubM6U6
https://goo.gl/iPzGp1
https://goo.gl/6eozk9
https://goo.gl/7UELBj

Bibliography 157

[PB03] S. Podlipnig and L. Böszörmenyi. “A Survey of Web Cache Replace-
ment Strategies.” In: ACM Computing Surveys (CSUR) 35.4 (2003), pp. 374–
398 (cit. on p. 43).

[PCO16] C. Pleşca, V. Charvillat, and W. T. Ooi. “Multimedia Prefetching with
Optimal Markovian Policies.” In: Elsevier Journal of Network and Com-
puter Applications 69 (2016), pp. 40–53 (cit. on pp. 39, 40, 42).

[Pfa17] J. Pfannmüller. “Comparison of Caching Strategies for Different Con-
tent Types.” In: Bachelor Thesis, Technische Universität Darmstadt, KOM-
B-0600. June 2017 (cit. on p. 83).

[PHZ12] A. Pathak, Y. C. Hu, and M. Zhang. “Where is the Energy Spent In-
side My App?: Fine Grained Energy Accounting on Smartphones with
Eprof.” In: ACM European Conference on Computer Systems (EuroSys).
New York, NY, USA, 2012, pp. 29–42 (cit. on p. 35).

[Pin+13] H. Pinto et al. “Using Early View Patterns to Predict the Popularity of
YouTube Videos.” In: ACM International Conference on Web Search and
Data Mining. 2013, pp. 365–374 (cit. on p. 49).

[PKW+17] M. Pfannemüller, C. Krupitzer, M. Weckesser, and C. Becker. “A Dy-
namic Software Product Line Approach for Adaptation Planning in
Autonomic Computing Systems.” In: IEEE International Conference on
Autonomic Computing (ICAC). 2017, pp. 247–254 (cit. on p. 139).

[PM00] D. Pelleg and A. Moore. “X-means: Extending K-means with Efficient
Estimation of the Number of Clusters.” In: International Conference on
Machine Learning (ICML). Morgan Kaufmann, 2000, pp. 727–734 (cit. on
p. 26).

[PPW+15] T. Paul, D. Puscher, S. Wilk, and T. Strufe. “Systematic, Large-scale
Analysis on the Feasibility of Media Prefetching in Online Social Net-
works.” In: IEEE Consumer Communications and Networking Conference
(CCNC). 2015, pp. 755–760 (cit. on pp. 39, 40).

[QD06] Y. Qi and M. Dai. “The Effect of Frame Freezing and Frame Skipping
on Video Quality.” In: IEEE International Conference on Intelligent Infor-
mation Hiding and Multimedia Signal Processing (IIH-MSP). 2006, pp. 423–
426 (cit. on p. 19).

[QQH+12] F. Qian, K. S. Quah, J. Huang, J. Erman, A. Gerber, Z. Mao, S. Sen, and
O. Spatscheck. “Web Caching on Smartphones: Ideal vs. Reality.” In:
ACM Conference on Mobile Systems, Applications, and Services (MobiSys).
2012, pp. 127–140 (cit. on p. 43).

[QWB+09] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs. “Cut-
ting the Electric Bill for Internet-scale Systems.” In: ACM SIGCOMM
Computer Communication Review. Vol. 39. 4. 2009, pp. 123–134 (cit. on
p. 19).

[QWG+10] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck. “TOP:
Tail Optimization Protocol For Cellular Radio Resource Allocation.”
In: IEEE International Conference on Network Protocols (ICNP). Oct. 2010,
pp. 285–294 (cit. on p. 35).

Bibliography 158

[RBC+11] T. Rodrigues, F. Benevenuto, M. Cha, K. Gummadi, and V. Almeida.
“On Word-of-mouth Based Discovery of the Web.” In: ACM SIGCOMM
Internet Measurement Conference (IMC). New York, NY, USA, 2011, pp. 381–
396 (cit. on p. 38).

[RBH+16] J. Rückert, J. Blendin, R. Hark, and D. Hausheer. “Flexible, Efficient,
and Scalable Software-Defined Over-the-Top Multicast for ISP Environ-
ments With DynSdm.” In: IEEE Transactions on Network and Service Man-
agement 13.4 (Dec. 2016), pp. 754–767 (cit. on pp. 5, 6, 55, 58, 59, 139).

[RCW16] F. M. Ramos, J. Crowcroft, and I. H. White. “Blending Photons with
Electrons to Reduce the Energy Footprint of IPTV Networks.” In: IEEE/I-
FIP Networking Conference (Networking). 2016, pp. 288–296 (cit. on p. 12).

[RDH+13] B. A. Ramanan, L. M. Drabeck, M. Haner, N. Nithi, T. E. Klein, and C.
Sawkar. “Cacheability Analysis of HTTP Traffic in an Operational LTE
Network.” In: IEEE Wireless Telecommunications Symposium (WTS). 2013,
pp. 1–8 (cit. on pp. 4, 44).

[Rec08] Recommendation ITU-T P. 10/G. 100. “Vocabulary for Performance
and Quality of Service, Amendment 2: New Definitions for Inclusion.”
In: (2008) (cit. on p. 20).

[RHH09] S. Rho, B.-j. Han, and E. Hwang. “SVR-based Music Mood Classifi-
cation and Context-based Music Recommendation.” In: ACM Interna-
tional Conference on Multimedia (MM). 2009 (cit. on pp. 28, 29, 96).

[Ric17] B. Richerzhagen. “Mechanism Transitions in Publish/Subscribe Systems-
Adaptive Event Brokering for Location-based Mobile Social Applica-
tions.” PhD thesis. Technische Universität, 2017 (cit. on p. 32).

[RRG01] S. Ramesh, I. Rhee, and K. Guo. “Multicast with Cache (Mcache): An
Adaptive Zero-delay Video-on-Demand Service.” In: IEEE Transactions
on Circuits and Systems for Video Technology 11.3 (2001), pp. 440–456 (cit.
on p. 57).

[RS13] J. Roberts and N. Sbihi. “Exploring the Memory-Bandwidth Tradeoff in
an Information-centric Network.” In: IEEE International Teletraffic Congress
(ITC). 2013, pp. 1–9 (cit. on pp. 14, 43).

[RSB99] P. Rodriguez, C. Spanner, and E. W. Biersack. “Web Caching Architec-
tures: Hierarchical and Distributed Caching.” In: International Workshop
on Web Caching and Content Distribution (WCW). Vol. 99. 1999 (cit. on
p. 17).

[Rüc16] J. Rückert. Large-scale Live Video Streaming Over the Internet-Efficient and
Flexible Content Delivery Using Network and Application-Layer Mechanisms.
Verlag Dr. Hut, 2016 (cit. on pp. 3, 5, 52, 133).

[Rüc17] T. Rückelt. “Connecting Vehicles to the Internet-Strategic Data Trans-
mission for Mobile Nodes using Heterogeneous Wireless Networks.”
PhD thesis. Technische Universität, 2017 (cit. on p. 62).

[RW13] M. S. Rahman and A. B. Wagner. “Multicasting for Wireless Video-on-
Demand.” In: IEEE Annual Allerton Conference on Communication, Con-
trol, and Computing (Allerton). 2013, pp. 690–697 (cit. on p. 57).

Bibliography 159

[RW16] M. S. Rahman and A. B. Wagner. “A Downlink Scheduler for Multicas-
ting Wireless Video-on-Demand.” In: IEEE Transactions on Mobile Com-
puting 15.12 (2016), pp. 2921–2938 (cit. on p. 57).

[RZS17] A. Rizk, M. Zink, and R. Sitaraman. “Model-based Design and Analysis
of Cache Hierarchies.” 2017 (cit. on p. 18).

[San15a] Sandvine. Global Internet Phenomena Report - Asia Pacific and Europe. 2015

(cit. on p. 1).

[San15b] Sandvine. Global Internet Phenomena Report - Latin America and North
America. 2015 (cit. on p. 1).

[Sar12] H. Sarkissian. “The Business Case for Caching in 4G LTE Networks.”
In: LSI-Wireless Technical Report (2012) (cit. on p. 43).

[SBE+16] J. Summers, T. Brecht, D. Eager, and A. Gutarin. “Characterizing the
Workload of a Netflix Streaming Video Server.” In: IEEE International
Symposium on Workload Characterization (IISWC). 2016, pp. 100–111 (cit.
on pp. 5, 49, 50).

[SBH13] M. Seufert, V. Burger, and T. Hoßfeld. “HORST-Home Router Sharing
based on Trust.” In: IEEE International Conference on Network and Service
Management (CNSM). 2013, pp. 402–405 (cit. on pp. 5, 43).

[SBI+11] N. Sharma, S. K. Barker, D. E. Irwin, and P. J. Shenoy. “Blink: Manag-
ing Server Clusters on Intermittent Power.” In: ACM International Con-
ference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 2011, pp. 185–198 (cit. on p. 110).

[SBI14] M. Schedl, G. Breitschopf, and B. Ionescu. “Mobile Music Genius: Reg-
gae at the Beach, Metal on a Friday Night?” In: ACM International Con-
ference on Multimedia Retrieval (ICMR). 2014 (cit. on p. 94).

[SC08] I. Steinwart and A. Christmann. Support Vector Machines. Springer Sci-
ence & Business Media, 2008 (cit. on p. 24).

[SC17] H. Song and W. Choi. “Multicast Transmission for Asynchronous Data
Requests.” In: IEEE Transactions on Vehicular Technology (2017) (cit. on
p. 57).

[SCF+03] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. “Real-time
Transport Protocol.” In: RFC1899 (2003) (cit. on p. 21).

[SDP12] Y. Song, S. Dixon, and M. Pearce. “Evaluation of Musical Features for
Emotion Classification.” In: International Society for Music Information
Retrieval Conference (ISMIR). 2012 (cit. on pp. 28, 29, 95).

[SES+15] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hobfeld, and P. Tran-Gia.
“A Survey on Quality of Experience of HTTP Adaptive Streaming.” In:
IEEE Communications Surveys & Tutorials 17.1 (2015), pp. 469–492 (cit. on
pp. 20, 21).

[SFF+16] D. Stohr, A. Frömmgen, J. Fornoff, M. Zink, A. Buchmann, and W. Ef-
felsberg. “QoE Analysis of DASH Cross-Layer Dependencies by Exten-
sive Network Emulation.” In: ACM SIGCOMM Workshop on QoE-based
Analysis and Management of Data Communication Networks (Internet-QoE).
2016, pp. 25–30 (cit. on pp. 2, 13, 20, 45).

Bibliography 160

[SFR+17] D. Stohr, A. Frömmgen, A. Rizk, M. Zink, R. Steinmetz, and W. Ef-
felsberg. “Where are the Sweet Spots?: A Systematic Approach to Re-
producible DASH Player Comparisons.” In: ACM Multimedia Systems
Conference (MMSys). 2017, pp. 1113–1121 (cit. on p. 138).

[SH00] P. Sarkar and J. H. Hartman. “Hint-based Cooperative Caching.” In:
ACM Transactions on Computer Systems (TOCS) 18.4 (2000), pp. 387–419

(cit. on p. 18).

[SHK+15] R. Steinmetz, M. Holloway, B. Koldehofe, B. Richerzhagen, and N. Richerzha-
gen. “Towards Future Internet Communications–Role of Scalable Adap-
tive Mechanisms.” In: ACADEMIA EUROPAEA (2015), p. 59 (cit. on
p. 32).

[Sit13] R. Sitaraman. “Network Performance: Does It Really Matter to Users
and by How Much?” In: IEEE International Conference on Communication
Systems and Networks (COMSNETS). 2013 (cit. on pp. 19, 21).

[SKL+14] R. K. Sitaraman, M. Kasbekar, W. Lichtenstein, and M. Jain. “Over-
lay Networks: An Akamai Perspective.” In: Advanced Content Delivery,
Streaming, and Cloud Services 51.4 (2014), pp. 305–328 (cit. on pp. 4, 13,
17).

[SKL16] M. Z. Shafiq, A. R. Khakpour, and A. X. Liu. “Characterizing Caching
Workload of a Large Commercial Content Delivery Network.” In: IEEE
International Conference on Computer Communications (INFOCOM). 2016,
pp. 1–9 (cit. on pp. 46, 47, 49, 51, 83).

[SL91] S. R. Safavian and D. Landgrebe. “A Survey of Decision Tree Classifier
Methodology.” In: IEEE Transactions on Systems, Man, and Cybernetics
21.3 (1991), pp. 660–674 (cit. on p. 24).

[SME17] Y. Sani, A. Mauthe, and C. Edwards. “On the Trajectory of Video Qual-
ity Transition in HTTP Adaptive Video Streaming.” In: Springer Multi-
media Systems (2017), pp. 1–14 (cit. on p. 20).

[Smi82] A. J. Smith. “Cache Memories.” In: ACM Comput. Surv. 14.3 (Sept. 1982),
pp. 473–530 (cit. on p. 34).

[SMM+11] S. Scellato, C. Mascolo, M. Musolesi, and J. Crowcroft. “Track Globally,
Deliver Locally: Improving Content Delivery Networks by Tracking Ge-
ographic Social Cascades.” In: ACM International Conference on World
Wide Web (WWW). 2011, pp. 457–466 (cit. on p. 38).

[SRM+09] E. Sun, I. Rosenn, C. Marlow, and T. M. Lento. “Gesundheit! Model-
ing Contagion through Facebook News Feed.” In: International AAAI
Conference on Web and Social Media (ICWSM). 2009 (cit. on p. 38).

[SS12] N. Srivastava and R. Salakhutdinov. “Learning Representations for Mul-
timodal Data with Deep Belief Nets.” In: International Conference on Ma-
chine Learning (ICML). Vol. 79. 2012 (cit. on p. 139).

[SSF08] M. Saxena, U. Sharan, and S. Fahmy. “Analyzing Video Services in Web
2.0: A Global Perspective.” In: ACM SIGMM Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV). 2008,
pp. 39–44 (cit. on p. 34).

Bibliography 161

[SSX+13] S. Sedhain, S. Sanner, L. Xie, R. Kidd, K.-N. Tran, and P. Christen. “So-
cial Affinity Filtering: Recommendation through Fine-grained Analysis
of User Interactions and Activities.” In: ACM Conference on Online Social
Networks (COSN). 2013, pp. 51–62 (cit. on pp. 38, 40).

[Ste12] R. Steinmetz. Multimedia: Computing Communications & Applications. Pear-
son Education India, 2012 (cit. on pp. 2, 14).

[Ste92] J. Steuer. “Defining Virtual Reality: Dimensions Determining Telepres-
ence.” In: Journal of communication 42.4 (1992), pp. 73–93 (cit. on p. 2).

[Ste96] R. Steinmetz. “Human Perception of Jitter and Media Synchroniza-
tion.” In: IEEE Journal on Selected Areas in Communications 14.1 (1996),
pp. 61–72 (cit. on pp. 13, 20).

[Stu13] B. L. Sturm. “The GTZAN Dataset: Its Contents, its Faults, their Effects
on Evaluation, and its Future Use.” In: arXiv preprint arXiv:1306.1461
(2013) (cit. on p. 27).

[SW05] R. Steinmetz and K. Wehrle. “What Is This “Peer-to-Peer” About?” In:
Peer-to-Peer Systems and Applications. Springer, 2005, pp. 9–16 (cit. on
p. 39).

[SW97] R. Steinmetz and L. Wolf. “Quality of Service: Where are we?” In: Build-
ing QoS into Distributed Systems. Springer, 1997, pp. 210–221 (cit. on
p. 20).

[TC02] G. Tzanetakis and P. Cook. “Musical Genre Classification of Audio Sig-
nals.” In: IEEE Transactions on Speech and Audio Processing 10.5 (July
2002), pp. 293–302 (cit. on p. 27).

[TCZ+13] F. P. Tso, L. Cui, L. Zhang, W. Jia, D. Yao, J. Teng, and D. Xuan. “Drag-
onNet: A Robust Mobile Internet Service System for Long-distance
Trains.” In: IEEE Transactions on Mobile Computing 12.11 (2013), pp. 2206–
2218 (cit. on p. 43).

[Tha90] R. Thayer. The Biopsychology of Mood and Arousal. Oxford University
Press, 1990 (cit. on pp. 27, 94).

[THD04] M. A. Tantaoui, K. A. Hua, and T. T. Do. “BroadCatch: A Periodic
Broadcast Technique for Heterogeneous Video-on-Demand.” In: IEEE
Transactions on Broadcasting 50.3 (2004), pp. 289–301 (cit. on p. 57).

[TMB+13] M. Taghizadeh, K. Micinski, S. Biswas, C. Ofria, and E. Torng. “Dis-
tributed Cooperative Caching in Social Wireless Networks.” In: IEEE
Transactions on Mobile Computing 12.6 (2013), pp. 1037–1053 (cit. on p. 43).

[TMF+14] S. Tombaz, P. Monti, F. Farias, M. Fiorani, L. Wosinska, and J. Zan-
der. “Is Backhaul becoming a Bottleneck for Green Wireless Access
Networks?” In: IEEE International Conference on Communications (ICC).
2014, pp. 4029–4035 (cit. on p. 45).

[TPS+16] A. G. Tasiopoulos, I. Psaras, V. Sourlas, and G. Pavlou. “Tube Stream-
ing: Modelling Collaborative Media Streaming in Urban Railway Net-
works.” In: IEEE/IFIP Networking Conference (IFIP Networking). 2016, pp. 359–
367 (cit. on p. 43).

Bibliography 162

[TTK+08] K. Trohidis, G. Tsoumakas, G. Kalliris, and I. P. Vlahavas. “Multi-Label
Classification of Music into Emotions.” In: International Society for Music
Information Retrieval Conference (ISMIR). 2008 (cit. on pp. 28, 29, 95).

[TV97] A. K. Tsiolis and M. K. Vernon. “Group-guaranteed Channel Capac-
ity in Multimedia Storage Servers.” In: ACM SIGMETRICS Performance
Evaluation Review. Vol. 25. 1. 1997, pp. 285–297 (cit. on p. 53).

[VDS13] A. Van den Oord, S. Dieleman, and B. Schrauwen. “Deep Content-
based Music Recommendation.” In: Advances in Neural Information Pro-
cessing Systems (NIPS). 2013, pp. 2643–2651 (cit. on p. 139).

[VI95] S. Viswanathan and T. Imielinski. “Pyramid Broadcasting for Video-on-
Demand Service.” In: Multimedia Computing and Networking. Vol. 2417.
International Society for Optics and Photonics. 1995, pp. 66–78 (cit. on
p. 54).

[VP03] A. Vakali and G. Pallis. “Content Delivery Networks: Status and Trends.”
In: IEEE Internet Computing 7.6 (2003), pp. 68–74 (cit. on pp. 13, 14).

[Wan+13] Z. Wang et al. “The Analysis and Comparison of Vital Acoustic Fea-
tures in Content-Based Classification of Music Genre.” In: IEEE Inter-
national Conference on Information Technology and Applications (ITA). 2013,
pp. 404–408 (cit. on p. 27).

[Wer17] S. Werner. “Investigating Machine Learning Methods for Proactive Net-
work Caching of Music Content.” In: Bachelor Thesis, Technische Uni-
versität Darmstadt, KOM-B-0593. Oct. 2017 (cit. on p. 83).

[Wic17] M. Wichtlhuber. On Collaborative Mechanisms for Content Distribution.
Verlag Dr. Hut, 2017 (cit. on p. 119).

[Wik16] Wikipedia, The Free Encyclopedia. Transition (computer science). 2016.
url: https : / / en . wikipedia . org / wiki / Transition _ (computer _

science) (cit. on p. 32).

[WKB+17] M. Wichtlhuber, J. Kessler, S. Bücker, I. Poese, J. Blendin, C. Koch, and
D. Hausheer. “SoDA: Enabling CDN-ISP Collaboration with Software
Defined Anycast.” In: IFIP International Conference on Networking (NET-
WORKING). 2017, pp. 1–9 (cit. on p. 119).

[WRT+15] S. Wilk, J. Rückert, T. Thräm, C. Koch, W. Effelsberg, and D. Hausheer.
“The Potential of Social-aware Multimedia Prefetching on Mobile De-
vices.” In: IEEE International Conference on Networked Systems (NetSys).
2015, pp. 1–5 (cit. on pp. 3, 4, 39, 40, 64, 132).

[WSS+16] S. Wilk, D. Schreiber, D. Stohr, and W. Effelsberg. “On the Effective-
ness of Video Prefetching Relying on Recommender Systems for Mo-
bile Devices.” In: IEEE Annual Consumer Communications & Networking
Conference (CCNC). 2016, pp. 429–434 (cit. on pp. 3, 4, 64, 79, 132, 135).

[WSY11] Z. Wang, L. Sun, and S. Yang. “Prefetching Strategy in Peer-Assisted
Social Video Streaming.” In: ACM Conference on Multimedia (MM). 2011,
pp. 1233–1236 (cit. on pp. 38–40, 42).

https://en.wikipedia.org/wiki/Transition_(computer_science)
https://en.wikipedia.org/wiki/Transition_(computer_science)

Bibliography 163

[YLC06] Y.-H. Yang, C.-C. Liu, and H. H. Chen. “Music Emotion Classification:
A Fuzzy Approach.” In: ACM International Conference on Multimedia
(MM). 2006 (cit. on pp. 28, 29, 94).

[YLS+08] Y.-H. Yang, Y.-C. Lin, Y.-F. Su, and H. H. Chen. “A Regression Approach
to Music Emotion Recognition.” In: IEEE Transactions on Audio, Speech,
and Language Processing 16.2 (2008), pp. 448–457 (cit. on pp. 28, 29).

[YLZ+09] H. Yin, X. Liu, T. Zhan, V. Sekar, and F. Qiu. “Design and Deployment
of a Hybrid CDN-P2P System for Live Video Streaming: Experiences
with LiveSky.” In: ACM International Conference on Multimedia (MM).
2009 (cit. on p. 43).

[YWX17] J. Yuan, X. Wang, and L. Xiao. “Hybrid Video Transmission Scheme
for Minimizing Maximum Waiting Time in Video-on-Demand (VOD)
System.” In: IEEE International Conference on Multimedia and Image Pro-
cessing (ICMIP). 2017, pp. 225–229 (cit. on p. 57).

[YYR+15] J. Yang, E. Yang, Y. Ran, and S. Chen. “SDM2 Cast An OpenFlow-Based,
Software-Defined Scalable Multimedia Multicast Streaming Framework.”
In: IEEE Internet Computing 19.4 (2015), pp. 36–44 (cit. on pp. 5, 6, 56,
58, 59).

[ZAC+13] M. Zhao, P. Aditya, A. Chen, Y. Lin, A. Haeberlen, P. Druschel, B.
Maggs, B. Wishon, and M. Ponec. “Peer-Assisted Content Distribution
in Akamai NetSession.” In: ACM SIGCOMM Internet Measurement Con-
ference (IMC). 2013 (cit. on p. 35).

[ZDW+13] Y. Zhao, N. Do, S.-T. Wang, C.-H. Hsu, and N. Venkatasubramanian.
“O2SM: Enabling Efficient Offline Access to Online Social Media and
Social Networks.” In: ACM/IFIP/USENIX International Conference on Dis-
tributed Systems Platforms and Open Distributed Processing. 2013, pp. 445–
465 (cit. on pp. 38, 40, 42).

[ZHA+10] T. Zinner, O. Hohlfeld, O. Abboud, and T. Hoßfeld. “Impact of Frame
Rate and Resolution on Objective QoE Metrics.” In: IEEE International
Conference on Quality of Multimedia Experience (QoMEX). 2010 (cit. on
p. 21).

[Zha14] S. Zhang. Optimizing Mobile Backhaul: Breaking the 4G Bottleneck. 2014.
url: https://www.telecomasia.net/pdf/Huawei_OptimizingMobileBackhaul-
0902.pdf (cit. on p. 45).

[ZLL13] G. Zhang, Y. Li, and T. Lin. Caching in Information Centric Networking: A
Survey. Vol. 57. 16. Elsevier Computer Networks, 2013, pp. 3128–3141

(cit. on pp. 15, 43).

[ZSG+09] M. Zink, K. Suh, Y. Gu, and J. Kurose. “Characteristics of YouTube
Network Traffic at a Campus Network–Measurements, Models, and
Implications.” In: Elsevier Computer Networks 53.4 (2009), pp. 501–514

(cit. on p. 18).

https://www.telecomasia.net/pdf/Huawei_OptimizingMobileBackhaul-0902.pdf
https://www.telecomasia.net/pdf/Huawei_OptimizingMobileBackhaul-0902.pdf

Bibliography 164

[ZTQ+10] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L.
Yang. “Accurate Online Power Estimation and Automatic Battery Be-
havior Based Power Model Generation for Smartphones.” In: IEEE/ACM/I-
FIP International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS). 2010, pp. 105–114 (cit. on p. 35).

[ZW17] C. Zhan and Z. Wen. “Content Cache Placement for Scalable Video
in Heterogeneous Wireless Network.” In: IEEE Communications Letters
21.12 (2017), pp. 2714–2717 (cit. on p. 43).

All web pages cited in this thesis have been checked in October 2018. However, due to
the dynamic nature of the World Wide Web, the long-term availability of websites cannot be
guaranteed.

L I S T O F F I G U R E S

Figure 1 Relevant areas of flexible and efficient OTT VoD delivery (based
on [Rüc16]) . 3

Figure 2 Coexistence of the three proposed contributions: VoDCast,
ProCache, and vFetch . 9

Figure 3 Typical ISP network topology: Star-/tree-like and meshed net-
work parts [BGK+14] . 11

Figure 4 Typical ISP data dissemination using unicast (left) and IP mul-
ticast (right) . 13

Figure 5 Overview of typical topology components in CDN cache hier-
archies [RZS17] . 18

Figure 6 Taxonomy of QoE influence factors in HAS [SES+15] 21

Figure 7 DASH example with three video qualities and fluctuating client
bandwidth based on [HSS+15]. Dashed vertical lines mark
quality adaptations. 22

Figure 8 Left: A dataset in R2, not linearly separable. Right: The same
dataset transformed into R3 by the kernel function z(x1, x2) =
x21 + x

2
2. [Kim15] . 25

Figure 9 Thayer’s mood model [YLS+08] 28

Figure 10 Major components of an OpenFlow-supporting network . . . 30

Figure 11 Conceptual components of an OpenFlow flow entry 31

Figure 12 Taxonomy of mobile video prefetching mechanisms 35

Figure 13 Taxonomy of proactive video caching 44

Figure 14 Taxonomy of SDN-based OTT VoD streaming 53

Figure 15 Video transmission flow of prefetching compared with video
streaming . 61

Figure 16 Conceptual architecture of the SocialMonitor Android app . . 63

Figure 17 Video watch events of the user study’s participants 65

Figure 18 CDF of videos watched from subscribed channels 66

Figure 19 Age of all videos watched for distinct users (days) 67

Figure 20 Age of subscription videos watched per users (hours) 67

Figure 21 Share of videos requested per subscribed (green) and pseudo
subscribed channels (blue), stacked per user and ordered by
the users’ average number of requests 68

Figure 22 Watched subscriptions (%) by YouTube video category, the y-
axis is log-scaled . 69

Figure 23 Videos requested more than once per YouTube category . . . 70

Figure 24 Views over the hours of the day 70

Figure 25 Architecture of the vFetch prefetching mechanism 73

Figure 26 Performance impact of storage size, top: videos watched from
predictable sources, bottom: all videos watched 78

Figure 27 Performance impact of watch history threshold 80

Figure 28 Share of fetched data watched and not watched 81

Figure 29 Traditional vs. ProCache’s cache management 84

165

Figure 30 Two major use cases of ProCache, arrows indicate video con-
tent transmissions . 85

Figure 31 Architecture of ProCache (inspired by [MAS+17]) 86

Figure 32 Popularity per category and hour of the day 89

Figure 33 Non-normalized CCDF of the video content ranks, y-axis scaled
linearly . 89

Figure 34 CCDF of the IRT for the most popular YouTube categories and
the Misc category, y-axis scaled logarithmically 90

Figure 35 Example cache space assignment, numbers indicate the ghost
list entry TTLs . 91

Figure 36 Confusion matrix of the mood classifier’s precision 96

Figure 37 Confusion matrix of the genre classifier 98

Figure 38 Genre and mood popularity per hour of the day 99

Figure 39 Relative request shares to different YouTube categories; cate-
gories showing less than 1% of all requests are aggregated to
the category Others. 102

Figure 40 Normalized request count observed for each weekday per hour
of the day . 103

Figure 41 Cache delay model, on the example of a simple cache chain . 104

Figure 42 CHR for individual categories using a single cache hierarchy
with 1 TB storage . 105

Figure 43 Top: Gain of ProCache compared to ARC, Bottom: CHR for
edge (E) and leaf (L) caches of the tree hierarchy, 1 TB storage 109

Figure 44 Cache division and corresponding ghost list size for a leaf
cache in hierarchy 3 (tree) with 1 TB storage; Cache Storage is
increased from 1 TB to 10 TB on Saturday 110

Figure 45 CHR for different cache sizes and proactively managed cache
division. A larger proactive cache share increases the CHR. . 114

Figure 46 Relative cache performance compared with LRU 114

Figure 47 Conceptual overview of VoDCast’s unicast patching 117

Figure 48 CDF of the video session duration in the YouTube request trace 117

Figure 49 Three major use cases of VoDCast 118

Figure 50 VoDCast Network Architecture based on [ONF14b] 119

Figure 51 Example of three video sessions P1, P2, and P3 123

Figure 52 Used ISP core topology, with some aggregation nodes 126

Figure 53 Two-stage simulation architecture using a request trace as an
input . 128

Figure 54 Maximum number of flow entries per minute 129

Figure 55 Maximum number of flow entry changes per minute 129

Figure 56 Watched subscriptions(%) by YouTube video category 173

Figure 57 Share of watched videos per hour of the day and the four most
popular YouTube video categories 174

Figure 58 Views over the hours of the day, one line represents one user 175

Figure 59 Views over the hours of the day and per participant for the
category Music . 175

Figure 60 Views over the hours of the day and per participant for the
category Entertainment . 176

Figure 61 Views over the hours of the day and per participant for the
category People&Blogs . 176

Figure 62 Views over the hours of the day and per participant for the
category Gaming . 177

Figure 63 vFetch architecture extended with the Network module 178

Figure 64 Relative cache performance compared with Least Recently Used
(LRU) . 181

Figure 65 Popularity observed in traces from [GKM+13] 182

Figure 66 Video ranks and views for different YouTube categories [CM13]184

Figure 67 YouTube tail fitting for different distributions [CKR+09] . . . 185

Figure 68 Ranking over video session frequency [CHK+12] 186

L I S T O F TA B L E S

Table 1 Music feature extraction frameworks 27

Table 2 Music mood classification approaches and the best perform-
ing algorithm per paper . 29

Table 3 Classification of prefetching mechanisms 42

Table 4 Classification of proactive caching mechanisms 51

Table 5 Classification of SDN-based video streaming mechanisms . . 59

Table 6 Statistics of the user study participants 64

Table 7 Participant statistics on a daily basis 66

Table 8 Subset of associations between Thayer’s mood model and last.fm
tags . 94

Table 9 Absolute and relative occurrence of samples per genre in the
dataset . 95

Table 10 Mood classifier performance metrics 96

Table 11 Performance statistics of the genre classifier 97

Table 12 Example record of the trace used for the evaluation 102

Table 13 Content catalog size and number of requested video segments
for the four most popular categories and misc 105

Table 14 Performance comparison between ProCache and the best per-
forming caching strategy in terms of CHR without ProCache.
The size is the sum of all cache sizes of a given hierarchy.
The number of write operations is denoted logarithmically,
i.e., 5 , 105 . 107

Table 15 CHR comparison between SLRU, ARC, and ProCache 112

Table 16 Overview of VoDCast’s system parameters 124

Table 17 VoDCast’s Multicast (V-MC) and Unicast (V-UC) traffic and
the achieved bandwidth reduction measured by volume (∆µ)
and std. dev. (∆σ) . 130

Table 18 Zipf parameter β in the literature, recursive means that the
videos related to a video were also crawled recursively 183

168

L I S T O F D E F I N I T I O N S

Definition 1 Internet Service Provider . 10

Definition 2 Content Delivery Network . 13

Definition 3 Over-the-Top . 14

Definition 4 Caching Strategy . 15

Definition 5 Adaptive Video Streaming . 20

Definition 6 Quality of Experience . 20

Definition 7 Machine Learning . 23

Definition 8 Software-defined Networking 30

169

L I S T O F A C R O N Y M S

ABR Adaptive Bitrate Streaming

ANN Artificial Neural Network

API Application Programming Interface

ARC Adaptive Replacement Cache

ARIMA Autoregressive Integrated Moving Average

ASes Autonomous Systems

ASN Autonomous System Number

BG Border Gateway

BHR Byte Hit Rate

BNG Broadband Network Gateway

CAPEX Capital Expenditure

CAGR Cumulative Average Growth Rate

CAM Content-Addressable Memory

CBR Constant Bitrate

CCDF Complementary Cumulative Distribution Function

CDN Content Delivery Network

CF Collaborative Filtering

CHR Cache Hit Rate

DASH Dynamic Adaptive Streaming over HTTP

DBSCAN Density-based Spatial Clustering of Applications with Noise

DNN Deep Neural Network

DSAS Division Size Adaptation Strategy

DSL Digital Subscriber Line

EDF Earliest Deadline First

EGP Exterior Gateway Protocol

EPC Evolved Packet Core

FIFO First In - First Out

GGC Google Global Cache

HAS HTTP Adaptive Streaming

HDD Hard Disk Drive

170

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ICN Information-centric Networking

IGMP Internet Group Management Protocol

IP Internet Protocol

IPTV IP Television

IRT Inter-Request Time

ISP Internet Service Provider

LCE Leave Copy Everywhere

LCD Leave a Copy Down

LER Label Edge Router

LFU Least Frequently Used

LFUDA LFU with Dynamic Aging

LGL Largest Ghost List

LIFO Last In - First Out

LRU Least Recently Used

LTE Long Term Evolution

LSR Label Switching Router

MAN Metropolitan Area Network

MCD Move Copy Down

MFCC Mel Frequency Cepstral Coefficients

MMS Microsoft Media Server Protocol

MPEG Moving Picture Experts Group

MPLS Multiprotocol Label Switching

NLP Natural Language Processing

OLS Ordinary Least Squares

OSN Online Social Network

OTT Over-the-Top

P2P Peer-to-Peer

PDN Packet Data Network

PGW PDN Gateway

PPPoE Point-to-Point Protocol over Ethernet

QoE Quality of Experience

QoS Quality of Service

RMSE Root Mean Square Error

REST Representational State Transfer

RLGL Relative Largest Ghost List

RSGL Relative Smallest Ghost List

RTP Real-time Transport Protocol

RTT Round-Trip Time

SDM Software-defined Multicast

SDN Software-defined Networking

SGL Smallest Ghost List

SGW Serving Gateway

SLRU Segmented Least Recently Used

SRAM Static Random-Access Memory

SSD Solid-State-Drive

SVC Scalable Video Coding

SVM Support Vector Machine

TCAM Ternary Content-Addressable Memory

TCP Transmission Control Protocol

TTL Time To Live

UDP User Datagram Protocol

UGC User-generated Content

VoD Video-on-Demand

A
A P P E N D I X

The appendix provides further information, analysis, and evaluation results on
the three contributions of this thesis.

a.1 details of the video origin presented in the prefetching user

study

This section provides complementary information to the request sources of distinct
users as presented in the cope of the vFetch user study (cf. Section 4.3.1). Therefore,
we present Figure 56 which is depicted in a similar style as Figure 21. Additionally,
we can see video sources that we consider as less useful for a mobile long-term
prefetching mechanism such as vFetch. However, it is interesting to see that videos
coming from the related video list of an already watched video are responsible for
around 10% of all user requests, depending on the individual user. Furthermore, we
observe that videos coming from playlists care not visible and, hence unlikely to
serve as a valuable source for prefetching candidates. For two users, we observe a
large share of videos to come from the watch later list. However, they mostly origin
from subscribed channels and are, thus considered in vFetch’s evaluation. Overall,
subscriptions and related videos are found to be responsible for most of the users’
video requests. Still, for most users, about 60% of the videos come from unknown
sources as discussed in Section 4.3.1.

2.9

3.14

3.51

4.54

4.99

5.27

5.31

5.47

5.88

6.1

6.46

6.53

7.08

7.47

7.96

8.38

8.86

9.65

9.91

10.45

10.78

12.21

13.19

13.2

13.61

21.98

68.86

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sh
ar

e
of

 V
id

eo
 R

eq
ue

st
s

Watch Later
Playlist
Subscriptions
Pseudo Subscriptions
Related

Figure 56: Watched subscriptions(%) by YouTube video category

a.2 user request time affinity considering daytime

In this section, we provide more insights into the user’s time affinity concerning mul-
tiple categories. In contrast to Figure 24 presented in Section 4.3.1.4, we depict each

173

of the 27 participants. Note that not every participant of the user study presented in
Section 4.3 watched videos from all categories.

0.015 0.030 0.045 0.060 0.075

Share of Videos Watched

12am
1am

2am
3am

4am
5am

6am
7am

8am
9am

10am
11am

12pm
1pm

2pm
3pm

4pm
5pm

6pm
7pm

8pm
9pm

10pm
11pm

Hour

Music

Entertainment

Gaming

People&BlogsYT
_C

at
eg

or
y 0.02 0.01 0.01 0.01 0.00 0.01 0.01 0.04 0.04 0.04 0.07 0.09 0.08 0.07 0.07 0.07 0.08 0.07 0.05 0.03 0.03 0.04 0.03 0.02

0.04 0.02 0.01 0.01 0.00 0.00 0.00 0.01 0.02 0.02 0.03 0.07 0.06 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.06

0.07 0.05 0.02 0.01 0.01 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.05 0.05 0.04 0.05 0.06 0.07 0.06 0.07 0.07 0.07 0.07 0.06

0.04 0.02 0.01 0.01 0.01 0.01 0.01 0.03 0.06 0.06 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.07 0.05 0.05

Figure 57: Share of watched videos per hour of the day and the four most popular YouTube
video categories

Figure 57 shows the aggregated distribution of videos watched over the course
of the day. We limit our analysis to the four most popular YouTube categories for
our participants, i.e., Music, Entertainment, Gaming, and People&Blogs. We see that
Music videos are requested more during noon compared to Entertainment which
is almost constantly popular at noon until the late evening. For our participants,
Gaming videos are requested late, mostly in the evening hours and stay popular until
midnight. The category Poeple&Blogs is popular all over the day, starting at 7 am and
ending at midnight which a peak at 9 pm. Note that the heat maps which we show
in this section are robustly colored to make differences more evident. Consequently,
high values are aggregated to a common color, i.e., every value larger than 0.075

is colored in the same dark purple. The largest popularity values observed in this
figure range about 8% of the overall watched videos per hour of the day and are,
thus quite small.

In addition to the previous figure, we depict all users on an individual row and
aggregate all categories in Figure 58. We can see that there are clear hotspots that
represent up to 20% of the overall watched videos. Though, most of the hours of
the day when users watch videos seem to belong together or to two clusters, i.e.,
the morning and the evening hours. However, some users watch videos during the
entire day without a clear pattern.

In a further analysis, we depict the individual request shares per user, concern-
ing the four most popular YouTube categories among the user study participants,
individually. Figure 59 depicts the user’s video watch events for the category Music.
Similarly, Figure 60 exhibits Entertainment, Figure 61 shows People&Blogs, and Fig-
ure 62 shows the watch events for the YouTube category Gaming. Note that the heat
color indicates the share of videos watched per category, which usually results in a
quite low number of total views.

0.00 0.04 0.08 0.12 0.16 0.20

Share of Videos Watched

12am
1am

2am
3am

4am
5am

6am
7am

8am
9am

10am
11am

12pm
1pm

2pm
3pm

4pm
5pm

6pm
7pm

8pm
9pm

10pm
11pm

Hour

Figure 58: Views over the hours of the day, one line represents one user

0.00 0.05 0.10 0.15 0.20 0.25

Share of Videos Watched

12am
1am

2am
3am

4am
5am

6am
7am

8am
9am

10am
11am

12pm
1pm

2pm
3pm

4pm
5pm

6pm
7pm

8pm
9pm

10pm
11pm

Hour

De
vi

ce

Figure 59: Views over the hours of the day and per participant for the category Music

0.00 0.04 0.08 0.12 0.16 0.20

Share of Videos Watched

12am
1am

2am
3am

4am
5am

6am
7am

8am
9am

10am
11am

12pm
1pm

2pm
3pm

4pm
5pm

6pm
7pm

8pm
9pm

10pm
11pm

Hour

De
vi

ce

Figure 60: Views over the hours of the day and per participant for the category Entertainment

0.00 0.05 0.10 0.15 0.20 0.25

Share of Videos Watched

12am
1am

2am
3am

4am
5am

6am
7am

8am
9am

10am
11am

12pm
1pm

2pm
3pm

4pm
5pm

6pm
7pm

8pm
9pm

10pm
11pm

Hour

De
vi

ce

Figure 61: Views over the hours of the day and per participant for the category People&Blogs

0.00 0.05 0.10 0.15 0.20 0.25

Share of Videos Watched

12am
1am

2am
3am

4am
5am

6am
7am

8am
9am

10am
11am

12pm
1pm

2pm
3pm

4pm
5pm

6pm
7pm

8pm
9pm

10pm
11pm

Hour

De
vi

ce

Figure 62: Views over the hours of the day and per participant for the category Gaming

a.3 extending vfetch for mobile network operator cooperation

In this section, we describe how the design of vFetch as presented in Section 4.5.1
can be extended to cooperate with the mobile network operator to which the mobile
user terminal is connected. The extended architecture is depicted in Figure 63.

Figure 63: vFetch architecture extended with the Network module

The intuition is that the mobile network operator predicts the resource capacities
and needs to give guidance on when to prefetch or smoothen the network load
caused by video streaming. The Network module comprises three sub-mechanisms
that we discuss in the following:

1. The Bandwidth Optimizer dynamically adapts the bandwidth allocated to a
mobile terminal in case a content is not prefetched but streamed using the cel-
lular connection. Thereby, it can compensate for fluctuating transmissions from
the content source and provide a stable bandwidth to the user. To this end, the
potentially fluctuating content stream from the source is delivered in a steady
manner to the terminal, e.g., by a leaky bucket approach. This helps saving
network resources since heavily fluctuating traffic demands are smoothened.
To this end, it takes the forecasted throughput of the mobile terminal as an
input, as well as the content-specific Quality of Experience (QoE) constraints
and feedback from the terminal’s video player.

2. The Bandwidth Predictor feeds the Bandwidth Optimizer with the throughput
forecasts mentioned before. Therefore, it uses statistical information about the
terminal’s mobility trace and the available bandwidth in a given cellular net-
work cell. We envision two typed of prediction mechanisms. First, short-term
predictions are conducted by using time series forecasting such as Autoregres-
sive Integrated Moving Average as proposed by Bui et al. [BW14]. Thereby, the
prediction-frequency should be adaptive to the user’s movement speed. Sec-
ond, medium-term predictions are conducted using statistical models as pro-
posed by Bui et al. [BMW14]. These predictions consider the degradation of ac-
curacy of information over time considering the user’s movement but also the

network cell congestion which is likely to change over the course of the course
of the day. By combining the two prediction mechanisms introduced before,
the Bandwidth Predictor can give guidance to vFetch’s Download Scheduler
when prefetching on a cellular connection is efficient since enough bandwidth
is available to download content quickly and, hence to save energy.

3. By Passive Monitoring of the available bandwidths for the network cells that
are managed by the mobile network operator, long-term statistics can be col-
lected that support the Bandwidth Predictor’s medium-term bandwidth predic-
tions.

a.4 evaluation of further proactive caching policies

In Section 5.4.6.1 and Section 5.4.6.2, we depicted only the results of the popularity
policy (cf. Section 5.3.3.6) since it achieved the best results in our evaluation com-
pared with other policies. To detail the differences, we exhibit the results of the
policies genre and aggregated similarity in addition to popularity in Figure 64. Note
that for the sake of clarity we do not show the results of the mood policy since it
always performs worse than genre [KKH17] but follows a similar approach. We ob-
serve that the performance curves, for the policies popularity, genre and aggregated
similarity, behave similar wile popularity is in any cache size scenario the superior
policy. Genre and Aggregated Similarity show more similar performance results than
Popularity. However, all policies show a clear performance drop for cache sizes for
cache sizes between 600 and 1,000 items. In the case of Aggregated Similarity, the
performance is decreased even for cache sizes up to 1,500 items, depending on the
proactive cache share used.

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

Cache Size (Items)

-4

-3

-2

-1

0

1

2

3

4

Policy = genre
Proactive Cache Share

5%
10%
15%

20%
25%

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

Cache Size (Items)

Policy = aggr. similarity
Proactive Cache Share

5%
10%
15%

20%
25%

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

Cache Size (Items)

Policy = popularity
Proactive Cache Share

5%
10%
15%

20%
25%

Ca
ch

e
Hi

t R
at

e
(C

HR
)

-4

-3

-2

-1

0

1

2

3

4

Ca
ch

e
Hi

t R
at

e
(C

HR
)

-4

-3

-2

-1

0

1

2

3

4

Ca
ch

e
Hi

t R
at

e
(C

HR
)

Figure 64: Relative cache performance compared with LRU

a.5 video popularity models

A lot of conducted studies try to find a fitting model that accurately describes real-
world video popularity characteristics. This section provides a brief overview and
compares their outcomes according to the changes over time. A common approach,
discovered when analyzing web server loads, is the Pareto rule [AW97], which de-
scribes that 20% of a server’s files are responsible for 80% of all requests. Nowadays,
this rule is only partially applicable for Video-on-Demand (VoD) requests [GAL+07],
because Pareto is not skewed enough as observed by Guillemin et al. [GKM+13].
Figure 65 depicts their results and indicates that only for specific popularity ranks
Pareto is a suitable popularity model.Proceedings of the 2013 25th International Teletraffic Congress (ITC)

obviously change, depending on the duration of measurement
windows and the location where measurements are performed.
When ex < 1, the range [rmin, rmax] is necessarily finite. By
using the Marquardt-Levenberg nonlinear least-squares regres­
sion algorithm (implemented in Gnuplot), we found that the
file popularity curve can be well approximated by a truncated
Pareto function in the range [10, 1000] and with coefficients

A = 0.006217, ex = 0.68198.

The same approximation holds also for the file popularity
distribution observed in Lyon, in Paris and by all probes.

We now emphasize the fact that the Pareto approximation
holds only for a small proportion of the file population. In
Figure 2, we have displayed the complete popularity curve for
files viewed in Bordeaux during the two weeks. There were
453 345 downloads; the latter can be decomposed into the three
following segments:

• Heavy hitters: Files with rank less than rmin, which
are massively viewed by end-users. Their popularity
is higher than that estimated by the Pareto approxima­
tion. Their number is small but they represent a huge
amount of transferred data (the 10 most popular files
give rise to 32.6 TB of traffic, 23.3 % of global traffic
in Bordeaux). This unbalanced contribution of files has
been already observed in [11] and corresponds more
or less to the well-known Pareto rule (20 % of a pop­
ulation owns 80 % of the resources) but for YouTube
files, this rule is much sharper (a tiny proportion of
files contributes to the majority of volume);

• Pareto class: Beyond heavy hitters, there is a sub­
population of files which are viewed a significant
number of times and for which a Pareto approximation
(in the sense of Equation (1)) holds. The need for this
approximation may appear artificial at first glance but,
as we shall see in next section, such an approximation
can be used to estimate cache performance;

• Noise: As shown in Table I, 33 % of files are viewed
only once, thus showing a high volatility of YouTube
requests in a commercial environment. When consid­
ering the problem of caching, these files may appear
as a noise; in fact, they enter a cache if no filtering is
performed and a standard LRU management policy is
implemented for replacing content in the cache3.

III. MATHEMATICAL MODEL

In view of the empirical observations made in the previous
section, we develop in the following a mathematical model
to estimate the file and byte hit ratios of a cache fed with a
file arrival process with two components, namely regular files
with a Zipf popularity distribution and noise files irrelevant for
caching.

3lt is proved in [12] that filtering requests improves the hit ratio by allowing
files to enter the cache only after a fixed number of requests, but degrades the
byte hit ratio since heavy hitters can enter the cache only after a fixed number
of times. This observation incites us not to filter out requests since the byte
hit ratio is actually the most relevant metric to estimate the gain in terms of
bandwidth savings.

0.1
'--'-�---"-��"'-������ po"'pu7IaCC:r it�y -=----_---.--.,

0.0001

1e-05

10 100

Pareto a�prOXlmatlon -

. j . validity·o:f-the Pareto ki(apprQximation

1000 10000 100000 1e+06

Fig. 2. Complete file popularity curve of YouTube video files in Bordeaux.

A. Model description

Consider a cache server whose replacement policy is
LRU [13], [14]. The objects contained in that cache may come
from either:

• a "persistent" class P: Requests addressed to objects
within P build up a stationary Poisson process in time
with rate A (requests/sec.). The request rate for object
numbered r in class P is therefore Aq r, where q r
is the stationary popularity of object rEP (objects
are ranked in decreasing order of popularity), with

LrEP q r = 1;

• a "non-persistent" class N considered as a noise: All
requests addressed to objects within N form a Poisson
process with rate AN; any object n E N is assumed
to be requested just once within time interval [0, +00[.

Following the discussion of section II-C, the number of heavy
hitters is small enough as to consider it as negligible with
respect to the cache capacity. Their hit ratio is close to 1 (see
section IV) and their impact on the hit ratio of objects in class
P is neglected.

First assume that the cache capacity C is measured as a
number of objects (or files). We then denote by Mr the proba­
bility ("conditional object miss probability") that a request for
object rEP is not satisfied; we also write

(2)

for the average conditional object miss probability, when
averaged over all objects of class P. Recall that by definition
any request for an object n E N is not satisfied and has
therefore miss probability equal to 1.

The popularity distribution attached to P will be assumed
to be Zipf with exponent parameter ex E] 0, 1[, that is,

AN q r = ---;- , 1::; r ::; N,
r

(3)

where N is the total number of objects ("catalog size") in class
P and AN is the associated normalizing constant.

978-0-9836283-7-8 © 2013 ITC

Figure 65: Popularity observed in traces from [GKM+13]

Zipf’s Law

Zipf’s Law is a popular specialized power-law model which allows assigning de-
creasing request probabilities z(r) to each video according to their popularity rank
r ∈ {1, ...,N}, whereas β > 0 can influence the shape and α > 0 is a normalization
constant [HNH16]:

z(r) = αr−β; α = z(1) = 1/

N∑
r=1

z(r) (10)

To determine, if the current popularity is Zipf-distributed, we need to draw the or-
dered video rank versus the view count on a log-log scale. The primary parameter of
the Zipf model is the shaping parameter β. In Table 18 currently used and measured
values of β from the literature are presented.

Unfortunately, many papers that use a Zipf distributed content popularity model
in their simulations do not mention their source nor provide reasons why they
have chosen a specific value for β. By considering the age of the publications in
Table 18, the more recent request traces, e.g., [AS10] and [GHM13] tend to have
slightly higher values than 0.5, which indicates, that YouTube’s video popularity
distribution becomes more skewed over time. However, a set of studies [BMA+11;
CKR+09; CMM+14] note that the Zipf model by itself is not the best fitting solution

Source β R² Trace-based? Description

[GAL+07] 0.56 0.97 yes collected from an edge/campus network

[AS10] 0.63 0.71 yes collected from recursive crawling of popular videos

[AS10] 0.8 0.98 yes collected from recursive crawling most popular videos

[Di 15] 0.4-1 - no used for simulation

[HGK+15] 1 - no used for simulation

[KPH13] 0.7, 2 - no used for simulation

[SP06] 0.2 - no used for simulation

[CCC12] 0.729, 0.5-5 - no used for simulation (variation showed no effect)

[GJM+12] 0.5-1.5 - no used for proposing model

[AD12] 0.8 - no used for simulation (taken from [CKR+09])

[GHM13] 0.69-1 not given yes collected from Orange networks in France

[HNH16] 0.5-1 not given yes collected from different web content requests

Table 18: Zipf parameter β in the literature, recursive means that the videos related to a video
were also crawled recursively

for every case. Generally, many works observed power-law behavior or even Zipf
without mentioning further details. For example [LLX+12] and [LWL+13] observe
a power-law popularity distribution while monitoring video requests coming from
Online Social Networks (OSNs). Cheng et al. [CMM+14] even observe a Zipf distri-
bution on the daily requests measured by a YouTube partner.

Weibull Distribution

Another common and flexible popularity distribution model is named, after its in-
ventor, Weibull. It has a set of parameters that lead to great flexibility in the curve’s
shape. Below, we exhibit the Weibull distribution function with the scale parameter
λ > 0 and the shape parameter k > 0:

f(x) =

1− e−(λx)k x > 0

0 x < 0
(11)

As we can see in Figure 66, a Weibull distribution fits better for real-world traces such
as from Chowdhury et al. [CM13], because of the heavy long tail which covers unpop-
ular videos. YouTube has 15 different categories, e.g., Music, Entertainment, Sports,
or News. The authors discover YouTube category-dependent popularity preferences.
A further interesting finding is that videos from the Sports and News category have a
higher popularity than others for the first couple of days after publication. In longer
observation intervals, Music videos surpass all other categories regarding popular-
ity. Also Cha et al. [CKR+09] stress, that exact popularity distributions appear to be
category-dependent. From a YouTube’s partners perspective, the observed re-watch
rates for entertaining channels, e.g., Music or Games differ from other categories
due to the attractiveness of their content [CMM+14]. Further on, the crawled traffic
traces from Abhari et al. [AS10], which are related videos of the most popular ones
(collected 2-3 times a week), do not fit a Zipf distribution very well, as we can see in
Table 18 (R2 = 0.71). Therefore, they computed the Weibull parameters for their data

(a) News (b) Music (c) Entertainment

(d) Film (e) People (f) Comedy
Figure 7: Number of views against rank for categories

Figure 8: Selected CCDF of total views

5 TOWARDS A WORKLOAD
GENERATOR

5.1 Predicting Popularity

As an approach to predict future popularity of videos,
Pearson’s correlation coefficient (Equation 2) is cal-
culated between the added views4 at different snap-

4Added views is the number of views on a particular day

shots of the measurement period.

rxy =
n∑xiyi− (∑xi)(∑yi)√

n∑x2
i − (∑xi)2

√
n∑y2

i − (∑yi)2
(2)

A high correlation coefficient between early views
and and the rest of the period implies that prediction
of future views of individual videos is achievable (Sz-
abo and Huberman, 2010). We got very encouraging
results for some of the categories including Sports,
Travel, Howto, Tech and Games.5

However, for other categories like Film, News,
Entertainment the coefficients are very poor, indi-
cating the significant changes in the set of popular
videos. Music shows a bit different characteristics
though, if we take first 10 days as our first snapshot.

5.2 Time-Series Clustering

This category variation led us to model the growth
patterns differently. Three-phase characterization
(Borghol et al., 2011), does not work for the cate-
gory specific modeling, as the number of videos that
are at or before their peak phases in a particular day
are very different between first few days and last few
days in our measurement period. We thus decided to
investigate whether the growth patterns of videos in

5Sports is 0.99 for the first day’s views and the rest of
the measurement period

Figure 66: Video ranks and views for different YouTube categories [CM13]

which fit significantly better with low coefficients of variation (COV), a metric which
is defined as σµ and determines the relative standard deviation.

Other Approaches

Besides Zipf and Weibull distributions, other approaches have been proposed. Borghol
et al. [BMA+11] split the content popularity evolution into three conceptual phases:
before, at, and after the content popularity peak. Hence, each of the phases can be
modeled by its distinct distribution which makes the overall distribution more flex-
ible and agile. The authors use different log-normal or power-law distributions for
the tail and a beta distribution for the body. The formula for the density function
with the parameters µ and σ is:

f(x) =

 1√
2πσx

exp
(
−

(ln(x)−µ)2

2σ2

)
x < 0

0 x > 0
(12)

Note that log-normal and power-law distributions have similar shapes [Mit04], so
it is often difficult to differentiate which distribution fits best. To determine this,
Borghol et al. applied the Log Likelihood Ratio test (LLR). Their results show that the
log-normal distribution fits better for the tails of their empirical data. For the body,
they used a beta distribution. The reason for this decision is that it fits best to their
empirical data, after trying out a set of distributions. This may lead to an overfitting
problem since other trace datasets may have other underlying distributions which
better fit their data. Therefore, it is hard to determine a common approach without
focusing too much on the given traces.

Cha et al. [CKR+09] study popularity distributions using User-generated Content
(UGC) traces. Besides YouTube, they also analyze a similar Korean service called
Daum1. While testing against the Pareto rule, for both platforms they observed that
around 10% of the most popular videos account for nearly 80% of views. Figure 67

depicts the best distribution which most accurately models the video popularity in
their traces, i.e., a power-law distribution with an exponential cutoff. The authors1364 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 5, OCTOBER 2009

Fig. 6. Ranks versus views plot for YouTube Sci videos.

TABLE III
POTENTIAL GAIN FROM THE LONG TAIL WHEN ASSUMING THE UNDERLYING

VIDEO POPULARITY FOLLOWS A ZIPF DISTRIBUTION

deed, we are able to observe this in our traces. Fig. 6(b) shows
the popularity distributions of the Sci videos of different ages.
Videos aged one day are clearly less curved in the tail than older
ones.

If Zipf was the natural shape and the decaying tail was due to
removable bottlenecks (e.g., post-filters), then in a system with
no bottleneck, the videos in the curved region would gain the
deserved views. This offers users a better chance to discover
rare niche videos, and also offers copyright holders and compa-
nies like YouTube and Daum potential business opportunities.
To estimate the potential benefit from removal of such bottle-
necks, we calculate the ratio of aggregated additional views in
the best-fit Zipf curve against the existing total views. Table III
shows the estimated benefits for the four UGC video categories.
YouTube Ent and Sci show great opportunities in the Long Tail
economics (42%–45% potential improvement), due to the large
number of videos that can benefit. In Daum Travel and Food, in
contrast, the total number of videos is smaller, and so the ben-
efit is reduced. When the number of videos is small, the ineffi-
ciencies of the system (due to filtering effects) are smaller since
information can be found easier.

However, Zipf may not be the natural shape and the true dis-
tribution may lie between the empirical plot and Zipf. In this
case, improvements from removing bottlenecks (e.g., post-fil-
ters) will not be as large, and the gains listed in Table III may be
an overestimate. For most of our UGC data, goodness-of-fit sug-
gests Zipf with an exponential cutoff as the best fit, rather than
a log-normal. This makes a stronger case for filtering effects
rather than a natural shape. While Zipf as well as power-law is
scale-free in nature, exponential is a distribution that is scaled
or limited in size. Therefore, the two (i.e., scale-free and scaled
distributions) will rarely appear coherently and naturally as a
single mechanism. Rather, a more likely explanation is that the
underlying mechanism is Zipf and the exponential cutoff reveals

filtering effects in the system which decays the tail. Neverthe-
less, revealing the true mechanism that generates the decaying
tail calls for further in-depth studies.

V. POPULARITY EVOLUTION OVER TIME

As opposed to standard VoD systems where the content pop-
ularity fluctuation is rather predictable (via strategic marketing
campaigns of movies), UGC video popularity can be ephemeral
and has unpredictable behavior. Similarly, as opposed to the
early days of TV when everyone watched the same program
at the same time, such temporal correlation is diluted in UGC.
Viewing patterns fluctuate based on how people get directed to
such content through RSS feeds, web reviews, blogs, e-mails,
or other recommendation web sites. To better understand this
temporal pattern, we analyze the UGC video popularity evolu-
tion over time. Our analysis is conducted from two different an-
gles. We first analyze whether requests concentrate on young or
old videos. We then investigate how quickly popularity ranks
change for videos of different ages, and further test if the future
popularity of a video can be predicted. For this analysis, we use
the daily trace of YouTube Sci videos.

A. Popularity Distribution Versus Age

To examine the age distribution of requested videos, we first
group videos by age (binned every five days) and count the total
volume of requests for each age group. More videos belonged
to younger age groups than older ones. Fig. 7(a) displays the
maximum, median, and the average requests per age group. We
only consider videos that are requested at least once during the
trace period. The vertical axis is in log-scale. For videos newer
than one month, we see a slight increase in the average re-
quests, which indicates viewers are mildly more interested in
new videos. However, this trend is not very pronounced in the
plot of maximum requests. Some old videos also receive signif-
icant requests. In fact, our trace showed that 80% of videos re-
quested on a given day are older than one month and this traffic
accounts for 72% of the total requests. The plot becomes noisy
for age groups older than one year, due to the small number of
videos. In summary, if we exclude the very new videos, users’
preference (or the request rate) seems relatively insensitive to
the video’s age, amongst those videos that were watched within

Figure 67: YouTube tail fitting for different distributions [CKR+09]

discuss if the underlying distribution can be modeled as a Zipf distribution with
a bottleneck or if it is a curved log-normal distribution. According to the authors,
one reason for Zipf is that its distributions are “overwhelmingly prevalent in the
real world” [CKR+09]. The authors explain the bottleneck with a sort of information
filtering which prevents the users from finding rare niche videos.

1http://www.daum.net/ [Accessed: November 19, 2018]

http://www.daum.net/

Carlinet et al. [CHK+12] observe a related heavy-tailed popularity distribution
with a smaller cutoff while collecting session traces from Dailymotion2. Figure 68

exhibits this distribution. Similar as in [BMA+11], they categorized videos, not in
different phases, but in patterns, such as bursty or long-span, where bursty videos
are exhibit generally a higher ranking than long-span ones.

8000,....----------r---------,r--------r----------r------,
-- Long span, steady popularity

7000 . - . - . Bursty popularity
- - - Average span, steady popularity

Fig. 6. Videos ranking over video session frequency

6000
c
o

~ 5000
Q..
o
~ 4000
Q.)

ro
~ 3000
:::J
o

2000

-' - . -" - . - - . - - ~ -----:.. -:=---

1000
.",,"

0""
o 2000 4000 6000

Video rank
8000 10000

Fig. 7. Number of active days (with at least one session)

quested until it has been uploaded, and it is expected that
even popular video will not be requested forever.

We propose to investigate how the popularity of videos
evolves with time. As the popularity evolution of very rarely
requested videos is trivial, we limit ourselves to the first 10,000
most popular videos.

Figure 7 shows this number for each video, the number of
active days where at least one session contained that video,
as a function of the video rank. First, an upper limit function
appears: this limit is indeed driven by the number of sessions,
which is an upper bound for the number of active days. Then,
we can use this figure to split videos into two categories:

• Some videos are of the same order of magnitude than
the upper limit, which means that the average number of
sessions per day is low but covers a lot of days. We say
these videos admits a long span pattern. We classify as long
span the videos with a number of days greater than half
the upper limit (the constant can be adjusted), and observe
7106 of them among the 10000 most popular. For instance,
Figure 8a displays a typical popular long span pattern: the
number of sessions per day is noisy, but relatively steady.

• The other videos exhibit some temporal concentration:

- some can be highly, but shortly popular (like a video
promoted for a shot duration on the front page of a
popular site). We call that a bursty pattern. Figure 8b
displays a typical bursty video;

- others may have been uploaded and/or removed during
the dataset, resulting in a shorter range than expected. We
call that type average span pattern. Figure 8c displays a
typical average span video.

We made the distinction between bursty and average span

Fig. 9. Cumulated population for each pattern

patterns by monitoring the ratio of the active days where the
activity was greater than 10% of the maximal activity. This
allows to clearly separate the two kinds of patterns, into 1468
bursty patterns and 1426 average span patterns.

Still, it is possible that long span and average span patterns
belong to the same family, separated by the finite duration
of the dataset. A longer dataset is needed for answering that
question, which we leave for future work. We assume the two
patterns are distinct, but are aware that the distinction may be
artificial.

At last, we should note that there is a correlation between
ranking and patterns. Figure 9 shows the cumulated population
for each pattern. In particular, one should note that the bursty
pattern is typically found among the most popular videos: it
represents roughly one half of the 2000 most popular videos,
while less popular videos are mostly long or average span
ones. This correlation between pattern and popularity should
be taken into account if one plans to design a request generator
that aims at mimicking real-life requests.

C. Correlations with previous modeling aspects

If one wants to jointly use the models presented in this
paper, it is important to consider all possible correlations that
may exist. For instance, is the Markov chain, or the popularity
pattern, impacted by the time of the day? Is the Markov
chain impacted by the popularity pattern? We investigated the
question, and found some small correlations here and there,
but in the end, most correlation can be neglected in a first
approximation (except for the pattern/ranking correlation we
just saw).

VI. RELATED WORK

The vast majority of the literature investigating UGC sys­
tems is dedicated to YouTube due to its popularity and lifes­
pan. To our knowledge, this paper reports the first extensive
study that is relative to DailyMotion.

Our approach to finding session durations is similar to that
of Gill et al. [8] but we end up in choosing a 60 min threshold
rather than a 40 min (for 2008 traces of YouTube). Also, [8]
used a simple ON/OFF model for users within a session, while
we crafted a more detailed Markov model. Another approach

617

Figure 68: Ranking over video session frequency [CHK+12]

2http://www.dailymotion.com [Accessed: November 19, 2018]

http://www.dailymotion.com

B
A U T H O R ’ S P U B L I C AT I O N S

b.1 main publications

[KBR+15] C. Koch, N. Bui, J. Rückert, G. Fioravantti, F. Michelinakis, S. Wilk, J.
Widmer, and D. Hausheer. “Media Download Optimization through
Prefetching and Resource Allocation in Mobile Networks.” In: ACM
Multimedia Systems Conference (MMSys). 2015, pp. 85–88.

[KH14] C. Koch and D. Hausheer. “Optimizing Mobile Prefetching by Lever-
aging Usage Patterns and Social Information.” In: IEEE International
Conference on Network Protocols (ICNP). 2014, pp. 293–295.

[KHH17] C. Koch, S. Hacker, and D. Hausheer. “VoDCast: Efficient SDN-based
Multicast for Video on Demand.” In: IEEE International Symposium on a
World of Wireless and Multimedia Networks (WoWMoM). 2017, pp. 1–6.

[KKH17] C. Koch, G. Krupii, and D. Hausheer. “Proactive Caching of Music
Videos based on Audio Features, Mood, and Genre.” In: ACM Multime-
dia Systems Conference (MMSys). 2017, pp. 100–111.

[KLR+17] C. Koch, B. Lins, A. Rizk, R. Steinmetz, and D. Hausheer. “vFetch:
Video Prefetching using Pseudo Subscriptions and User Channel Affin-
ity in YouTube.” In: IEEE International Conference on Network and Service
Management (CNSM). 2017, pp. 1–9.

[KLS+18b] C. Koch, M. Lode, D. Stohr, A. Rizk, and R. Steinmetz. “Collaborations
on YouTube: From Unsupervised Detection to the Impact on Video and
Channel Popularity.” In: ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM) 14.4 (Oct. 2018), pp. 1–23.

[KPR+18] C. Koch, J. Pfannmüller, A. Rizk, D. Hausheer, and R. Steinmetz. “Category-
aware Hierarchical Caching for Video-on-Demand Content on YouTube.”
In: ACM Multimedia Systems Conference (MMSys). 2018, pp. 1–12.

[KWR+18] C. Koch, S. Werner, A. Rizk, and R. Steinmetz. “MIRA: Proactive Music
Video Caching using ConvNet-based Classification and Multivariate
Popularity Prediction.” In: IEEE International Symposium on the Model-
ing, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). 2018, pp. 1–7.

b.2 co-authored publications

[CVM+15] C. G. Cordero, E. Vasilomanolakis, N. Milanov, C. Koch, D. Hausheer,
and M. Mühlhäuser. “ID2T: A DIY Dataset Creation Toolkit for Intru-
sion Detection Systems.” In: IEEE Conference on Communications and Net-
work Security (CNS). 2015, pp. 739–740.

187

[Gou+15] A. Gouta et al. “CPSys: A System for Mobile Video Prefetching.” In:
IEEE International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS). 2015, pp. 188–197.

[WKB+17] M. Wichtlhuber, J. Kessler, S. Bücker, I. Poese, J. Blendin, C. Koch, and
D. Hausheer. “SoDA: Enabling CDN-ISP Collaboration with Software
Defined Anycast.” In: IFIP International Conference on Networking (NET-
WORKING). 2017, pp. 1–9.

[WRT+15] S. Wilk, J. Rückert, T. Thräm, C. Koch, W. Effelsberg, and D. Hausheer.
“The Potential of Social-aware Multimedia Prefetching on Mobile De-
vices.” In: IEEE International Conference on Networked Systems (NetSys).
2015, pp. 1–5.

b.3 demo papers

[KRB+14] C. Koch, J. Rückert, N. Bui, F. Michelinakis, G. Fioravantti, J. Wid-
mer, and D. Hausheer. “Demo: Mobile Social Prefetcher using Social
and Network Information.” In: IEEE International Workshop on Computer-
Aided Modeling Analysis and Design of Communication Links and Networks
(CAMAD). 2014, pp. 1–10.

b.4 technical reports

[KLS+18a] C. Koch, M. Lode, D. Stohr, A. Rizk, and R. Steinmetz. “Collaborations
on YouTube: From Unsupervised Detection to the Impact on Video and
Channel Popularity.” In: arXiv preprint arXiv:1805.01887 (2018), pp. 1–
28.

[LÖK+18] M. Lode, M. Örtl, C. Koch, A. Rizk, and R. Steinmetz. “Detection and
Analysis of Content Creator Collaborations in YouTube Videos using
Face-and Speaker-Recognition.” In: arXiv preprint arXiv:1807.02020 (2018),
pp. 1–12.

C
C U R R I C U L U M V I TÆ

personal information

Name Christian Koch

Date of Birth April 5, 1988

Place of Birth Mühlhausen, Germany

Nationality German

education

01/2014–10/2018 Technische Universität Darmstadt
Doctoral candidate at the department of Electrical Engineering
and Information Technology

10/2008–11/2013 Technische Universität Darmstadt
Master of Science in IT Security

10/2008–11/2013 Technische Universität Darmstadt
Master of Science in Computer Science

professional experience

05/2017–09/2018 Technische Universität Darmstadt
Department of Electrical Engineering and Information Technology
Research assistant at Multimedia Communications Lab (KOM)

01/2014–04/2017 Technische Universität Darmstadt
Department of Electrical Engineering and Information Technology
Research assistant at Peer-to-Peer Systems Engineering (PS),
affiliated with Multimedia Communications Lab (KOM)

awards and honors

05/2017 Student Travel Grant from the ACM SIGMM - the Special Inter-
est Group on Multimedia, awarded by ACM Multimedia Systems
Conference (MMSys) 2017

Christian Koch, Ganna Kruppi, David Hausheer: Proactive Caching
of Music Videos based on Audio Features, Mood, and Genre

12/2017 Student Travel Grant from the Selection Committee of the IEEE
International Conference on Network and Service Management
(CNSM) 2017

189

Christian Koch, Benedikt Lins, Amr Rizk, Ralf Steinmetz, David
Hausheer: vFetch: Video Prefetching using Pseudo Subscriptions and
User Channel Affinity in YouTube

03/2018 KuVS Award from the Selection Committee of the ”KuVS: Fach-
gruppe “Kommunikation und Verteilte Systeme (KuVS)” 2017

Moritz Lode: "Detection and Analysis of Content Creator Collabo-
rations in YouTube Videos using Face Recognition", Bachelor The-
sis under the supervision of Christian Koch

scientific activities

Reviewer IFIP Int. Conf. on Networking (NETWORKING): 2014, 2015, 2016, 2017

IFIP Int. Conf. on Autonomous Infrastructure, Mgmt. and Security (AIMS):
2014, 2015, 2016, 2017

IFIP/IEEE Int. Symp. on Integrated Network Mgmt. (IM): 2015, 2017

IEEE Int. Conf.on Computer Communications (INFOCOM): 2019

IEEE Conf. on Network Softwarization (NetSoft): 2015, 2017

IEEE Conf. on Local Computer Networks (LCN): 2015, 2016

IFIP Int. Conf. on Network and Service Mgmt. (CNSM): 2015, 2016, 2017

IEEE Conf. on Cloud Comp. (CloudCom): 2015

IEEE/IFIP Network Operations and Mgmt. Symp. (NOMS): 2016

ACM Int. Symp. on Mob. Ad Hoc Networking & Comp. (MobiHoc): 2016

ACM Multimedia Systems Conference (MMSys): 2018

ACM Multimedia (MM): 2017, 2018

ACM Int. Conf. on Cloud Comp. and Services Science (CLOSER): 2018

scientific activities

Organization Student Member of IEEE Communications Society since 2014

Student Member of ACM Community since 2014

teaching activities

Lectures “P2P Systems and Applications”: Lecture and exercise presentation, gen-
eral organization (SoSe14, SoSe15, SoSe16)

“Software Defined Networking”: Lecture and exercise presentation, orga-
nization, exam design and coordination (WiSe14/15, WiSe15/16, WiSe16/17)

“Communication Networks I”: Lecture and exercise presentation, organi-
zation, exam design and coordination (SoSe17, SoSe18)

Seminars “Internet Scale Multimedia Distribution and Monitoring":
Supervisor (WiSe14/15)

“Software Defined Networking”: Supervisor (SoSe14, SoSe15, SoSe16)

Labs “SmartNets Lab"/“Praktikum Intelligente Netzwerke”:
Organization, task definition, supervisor (WiSe15/16)

“Bachelor Students Traineeship / Bachelor-Praktikum (FB20)”:
Supervisor of four-person student group over six months (WiSe16)

“Advanced Topics in Communication Networks”:
Supervisor (SoSe14, WiSe14/15, SoSe15, WiSe15/16, SoSe16, WiSe16/17)

“Multimedia Communications Lab”: Supervisor (SoSe15, WiSe17/18, SoSe18)

supervised student theses

KOM-B-0626 Arne-Tobias Rak, Transitions of Quality Adaptation Mechanisms in 360°
Video Streaming. Bachelor thesis, Technische Universität Darmstadt,
August 2018.

KOM-M-0640 Joel Koschier, Designing a Machine Learning based Prefetch System for
YouTube Videos on Mobile Device. Master thesis, Technische Universität
Darmstadt, August 2018.

KOM-B-0594 André Daube, Improvement of Costs and QoE of Composed Live Video
Streams by Combined Multicast and Caching Approaches. Bachelor thesis,
Technische Universität Darmstadt, July 2017.

KOM-M-0602 Kliinnglills Kliinnglills, A Comprehensive Evaluation of Video-on-Demand
Multicast on YouTube. Master thesis, Technische Universität Darm-
stadt, July 2017.

KOM-B-0593 Stefan Werner, Investigating Machine Learning Methods for Proactive
Network Caching of Music Content. Bachelor thesis, Technische Uni-
versität Darmstadt, December 2017.

KOM-B-0592 Nils Mäser, Alleviating Mobile Video Streaming from Dead Zones by Preload-
ing Video Segments. Bachelor thesis, Technische Universität Darmstadt,
February 2018.

PS-D-0044 Markus Schanz Synthetic Workload Generation for Online Video Plat-
forms. Master thesis, Technische Universität Darmstadt, June 2017.

PS-D-0038 Sudeep Duggal Recommending Video-on-Demand for Prefetching in Con-
tent Delivery Networks. Master thesis, Technische Universität Darm-
stadt, January 2017.

PS-D-0036 Simon Schindel Cache-aided DASH in 5G Networks using HTTP/2 Server
Push. Master thesis, Technische Universität Darmstadt, November
2016.

PS-D-0032 Ganna Krupii Developing a Proactive Caching Mechanism for Music Con-
tent. Master thesis, Technische Universität Darmstadt, May 2016.

PS-D-0028 Stefan Hacker Simultaneous Partial Delivery of Video-on-Demand Streams.
Master thesis, Technische Universität Darmstadt, May 2016.

PS-S-0026 Moritz Lode Detection and Analysis of Content Creator Collaborations
in Youtube Videos using Face Recognition. Bachelor thesis, Technische
Universität Darmstadt, June 2016.

PS-S-0024 Johannes Pfannmüller Vergleichen von Caching-Strategien in Netzen für
unterschiedliche Typen von Inhalten. Bachelor thesis, Technische Univer-
sität Darmstadt, June 2016.

PS-S-0023 Benedikt Lins Textual and Content based Video Prefetching for Mobile De-
vices. Bachelor thesis, Technische Universität Darmstadt, December
2016.

PS-S-0017 Joel Koschier Prädiktives Cachen von Videos bereitgestellt auf Sozialen
Plattformen. Bachelor thesis, Technische Universität Darmstadt, Novem-
ber 2015.

PS-S-0016 Julio Klappich GPU-basierte Optimierung von Maximum Influencer Al-
gorithmen in sozialen Netzwerken. Bachelor thesis, Technische Univer-
sität Darmstadt, January 2016.

D
E R K L Ä R U N G L A U T P R O M O T I O N S O R D N U N G

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der
schriftlichen Version übereinstimmt.

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion
versucht wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule,
Disserationsthema und Ergebnis dieses Versuchs mitzuteilen.

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter
Verwendung der angegebenen Quellen verfasst wurde.

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 26. Juni 2018

colophon

This document was typeset using the typographical look-and-feel classicthesis

developed by André Miede. classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/wiki/Home

The YouTube symbol used in Section 4.3, Section 4.5, and Section A.3 is provided by
Aha-Soft and is licensed under the Attribution 3.0 Unported (CC BY 3.0) license. It
is available at:

The YouTube logo used in Section A.3 is provided by YouTube and available at:

https://commons.wikimedia.org/wiki/File:Logo_of_YouTube_(2015-2017).svg

The Facebook logo used in Section A.3 is provided by Facebook and available at:

https://commons.wikimedia.org/wiki/File:F_icon.svg

The Twitter logo used in Section A.3 is provided by Twitter and available at:

https://seeklogo.com/vector-logo/305546/twitter

All plots were generated using a custom plotting platform mainly based on the
Python library matplotlib (http://matplotlib.org/) and Seaborn (https://seaborn.
pydata.org/).

Final Version as of November 19, 2018 (classicthesis 1.0.0).

https://bitbucket.org/amiede/classicthesis/wiki/Home
https://commons.wikimedia.org/wiki/File:Logo_of_YouTube_(2015-2017).svg
https://commons.wikimedia.org/wiki/File:F_icon.svg
https://seeklogo.com/vector-logo/305546/twitter
http://matplotlib.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/

	Abstract
	Kurzfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Research Goals
	1.3 Methodology
	1.4 Contributions
	1.5 Thesis Organization

	2 Background
	2.1 Internet Service Provider
	2.1.1 ISP Network Architecture
	2.1.2 Transit and Peering Agreements
	2.1.3 OTT IP Multicast

	2.2 Content Delivery Networks
	2.2.1 Video Caching
	2.2.1.1 Admission Policies
	2.2.1.2 Eviction Policies

	2.2.2 Cache Hierarchies
	2.2.3 Video Popularity

	2.3 Over-the-Top Video-on-Demand Streaming
	2.3.1 Adaptive Video Streaming

	2.4 Machine Learning
	2.4.1 Supervised Learning
	2.4.1.1 Classification
	2.4.1.2 Regression

	2.4.2 Unsupervised Learning
	2.4.2.1 Clustering

	2.4.3 Music Classification

	2.5 Software-defined Networking
	2.5.1 OpenFlow
	2.5.2 SDN in Hardware

	2.6 Multi-Mechanisms Transitions

	3 Related Work
	3.1 Mobile Video Prefetching
	3.1.1 Taxonomy
	3.1.1.1 Optimization Goals
	3.1.1.2 Candidate Source
	3.1.1.3 Candidate Selection
	3.1.1.4 Download Scheduling
	3.1.1.5 Caching

	3.1.2 Discussion of Selected and Representative Work
	3.1.3 Summary

	3.2 Proactive Caching
	3.2.1 Taxonomy
	3.2.1.1 Optimization Goals
	3.2.1.2 Proactivity Trigger
	3.2.1.3 Popularity-based Caching
	3.2.1.4 Anticipative Caching
	3.2.1.5 Locality-sensitive Caching

	3.2.2 Discussion of Selected and Representative Work
	3.2.3 Summary

	3.3 SDN-based Multicast Approaches for Video-on-Demand
	3.3.1 Taxonomy
	3.3.1.1 Optimization Goals
	3.3.1.2 Client Aggregation
	3.3.1.3 Content Selection
	3.3.1.4 Playback Start
	3.3.1.5 Cooperation

	3.3.2 Discussion of Selected and Representative Work
	3.3.3 Summary

	4 Privacy-preserving Mobile Video Prefetching with vFetch
	4.1 Conceptual Overview
	4.2 Use Cases
	4.3 User Study Design and Analysis
	4.3.1 Dataset Analysis
	4.3.1.1 Subscriptions
	4.3.1.2 Video Age
	4.3.1.3 Video Origin
	4.3.1.4 Repeated Video Requests
	4.3.1.5 User Request Time

	4.4 Design Decisions
	4.5 System Design
	4.5.1 Architectural Overview
	4.5.2 Functional Overview
	4.5.2.1 Data Collector and Aggregator
	4.5.2.2 Predictor
	4.5.2.3 Content Prefetcher

	4.6 Evaluation
	4.6.1 Methodology
	4.6.2 Storage Size and Caching
	4.6.3 Watch History
	4.6.4 Storage Overhead

	4.7 Summary and Discussion

	5 Efficient and Proactive Network Caching with ProCache
	5.1 Conceptual Overview
	5.2 Use Cases
	5.3 System Design
	5.3.1 Architectural Overview
	5.3.2 Functional Overview
	5.3.2.1 Cache Manager
	5.3.2.2 Division Size Adaptation Strategy (DSAS)

	5.3.3 Supporting Music Video Content
	5.3.3.1 Content Classifier
	5.3.3.2 Music Feature Extraction
	5.3.3.3 Audio Feature Extraction
	5.3.3.4 Genre and Mood Classification
	5.3.3.5 Popularity Monitor
	5.3.3.6 Content Recommender

	5.4 Evaluation
	5.4.1 Methodology
	5.4.2 Dataset Analysis
	5.4.2.1 Content Analysis
	5.4.2.2 User Analysis

	5.4.3 Evaluation Metrics
	5.4.3.1 Cache Hit Rate
	5.4.3.2 Startup Delay
	5.4.3.3 Write Operations

	5.4.4 Best Caching Strategy per Content Category
	5.4.5 Multiple Cache Divisions for Mixed-Content Workloads
	5.4.5.1 Cache Layer Performance
	5.4.5.2 Adaptivity over Time
	5.4.5.3 Eviction Policies

	5.4.6 Music-specific Support by a dedicated Division
	5.4.6.1 Single Cache Scenario
	5.4.6.2 Multi-Cache Scenario

	5.5 Summary and Discussion

	6 SDN-enabled Multicast for Video-on-Demand with VoDCast
	6.1 Conceptual Overview
	6.2 Use Cases
	6.3 System Design
	6.3.1 Architectural Overview
	6.3.2 Functional Overview
	6.3.2.1 CDN Service API
	6.3.2.2 ISP CDN Cooperation
	6.3.2.3 ISP-based Multicast Streaming
	6.3.2.4 Video Streaming Client
	6.3.2.5 System Parameters

	6.4 Evaluation
	6.4.1 Methodology
	6.4.2 Flow Entry State and Changes
	6.4.3 Bandwidth Utilization

	6.5 Summary and Discussion

	7 Summary, Conclusions, and Outlook
	7.1 Summary
	7.2 Contributions
	7.2.1 vFetch
	7.2.2 ProCache
	7.2.3 VoDCast

	7.3 Outlook

	Bibliography
	List of Figures
	List of Tables
	List of Definitions
	List of Acronyms
	A Appendix
	A.1 Details of the Video Origin presented in the Prefetching User Study
	A.2 User Request Time Affinity Considering Daytime
	A.3 Extending vFetch for Mobile Network Operator Cooperation
	A.4 Evaluation of further Proactive Caching Policies
	A.5 Video Popularity Models

	B Author's Publications
	B.1 Main Publications
	B.2 Co-authored Publications
	B.3 Demo Papers
	B.4 Technical Reports

	C Curriculum Vitæ
	D Erklärung laut Promotionsordnung
	Colophon

