2,073 research outputs found

    Efficient Simulation of Structural Faults for the Reliability Evaluation at System-Level

    Get PDF
    In recent technology nodes, reliability is considered a part of the standard design ¿ow at all levels of embedded system design. While techniques that use only low-level models at gate- and register transfer-level offer high accuracy, they are too inefficient to consider the overall application of the embedded system. Multi-level models with high abstraction are essential to efficiently evaluate the impact of physical defects on the system. This paper provides a methodology that leverages state-of-the-art techniques for efficient fault simulation of structural faults together with transaction-level modeling. This way it is possible to accurately evaluate the impact of the faults on the entire hardware/software system. A case study of a system consisting of hardware and software for image compression and data encryption is presented and the method is compared to a standard gate/RT mixed-level approac

    Test exploration and validation using transaction level models

    Get PDF
    The complexity of the test infrastructure and test strategies in systems-on-chip approaches the complexity of the functional design space. This paper presents test design space exploration and validation of test strategies and schedules using transaction level models (TLMs). Since many aspects of testing involve the transfer of a significant amount of test stimuli and responses, the communication-centric view of TLMs suits this purpose exceptionally wel

    Towards lightweight and high-performance hardware transactional memory

    Get PDF
    Conventional lock-based synchronization serializes accesses to critical sections guarded by the same lock. Using multiple locks brings the possibility of a deadlock or a livelock in the program, making parallel programming a difficult task. Transactional Memory (TM) is a promising paradigm for parallel programming, offering an alternative to lock-based synchronization. TM eliminates the risk of deadlocks and livelocks, while it provides the desirable semantics of Atomicity, Consistency, and Isolation of critical sections. TM speculatively executes a series of memory accesses as a single, atomic, transaction. The speculative changes of a transaction are kept private until the transaction commits. If a transaction can break the atomicity or cause a deadlock or livelock, the TM system aborts the transaction and rolls back the speculative changes. To be effective, a TM implementation should provide high performance and scalability. While implementations of TM in pure software (STM) do not provide desirable performance, Hardware TM (HTM) implementations introduce much smaller overhead and have relatively good scalability, due to their better control of hardware resources. However, many HTM systems support only the transactions that fit limited hardware resources (for example, private caches), and fall back to software mechanisms if hardware limits are reached. These HTM systems, called best-effort HTMs, are not desirable since they force a programmer to think in terms of hardware limits, to use both HTM and STM, and to manage concurrent transactions in HTM and STM. In contrast with best-effort HTMs, unbounded HTM systems support overflowed transactions, that do not fit into private caches. Unbounded HTM systems often require complex protocols or expensive hardware mechanisms for conflict detection between overflowed transactions. In addition, an execution with overflowed transactions is often much slower than an execution that has only regular transactions. This is typically due to restrictive or approximative conflict management mechanism used for overflowed transactions. In this thesis, we study hardware implementations of transactional memory, and make three main contributions. First, we improve the general performance of HTM systems by proposing a scalable protocol for conflict management. The protocol has precise conflict detection, in contrast with often-employed inexact Bloom-filter-based conflict detection, which often falsely report conflicts between transactions. Second, we propose a best-effort HTM that utilizes the new scalable conflict detection protocol, termed EazyHTM. EazyHTM allows parallel commits for all non-conflicting transactions, and generally simplifies transaction commits. Finally, we propose an unbounded HTM that extends and improves the initial protocol for conflict management, and we name it EcoTM. EcoTM features precise conflict detection, and it efficiently supports large as well as small and short transactions. The key idea of EcoTM is to leverage an observation that very few locations are actually conflicting, even if applications have high contention. In EcoTM, each core locally detects if a cache line is non-conflicting, and conflict detection mechanism is invoked only for the few potentially conflicting cache lines.La Sincronización tradicional basada en los cerrojos de exclusión mutua (locks) serializa los accesos a las secciones críticas protegidas este cerrojo. La utilización de varios cerrojos en forma concurrente y/o paralela aumenta la posibilidad de entrar en abrazo mortal (deadlock) o en un bloqueo activo (livelock) en el programa, está es una de las razones por lo cual programar en forma paralela resulta ser mucho mas dificultoso que programar en forma secuencial. La memoria transaccional (TM) es un paradigma prometedor para la programación paralela, que ofrece una alternativa a los cerrojos. La memoria transaccional tiene muchas ventajas desde el punto de vista tanto práctico como teórico. TM elimina el riesgo de bloqueo mutuo y de bloqueo activo, mientras que proporciona una semántica de atomicidad, coherencia, aislamiento con características similares a las secciones críticas. TM ejecuta especulativamente una serie de accesos a la memoria como una transacción atómica. Los cambios especulativos de la transacción se mantienen privados hasta que se confirma la transacción. Si una transacción entra en conflicto con otra transacción o sea que alguna de ellas escribe en una dirección que la otra leyó o escribió, o se entra en un abrazo mortal o en un bloqueo activo, el sistema de TM aborta la transacción y revierte los cambios especulativos. Para ser eficaz, una implementación de TM debe proporcionar un alto rendimiento y escalabilidad. Las implementaciones de TM en el software (STM) no proporcionan este desempeño deseable, en cambio, las mplementaciones de TM en hardware (HTM) tienen mejor desempeño y una escalabilidad relativamente buena, debido a su mejor control de los recursos de hardware y que la resolución de los conflictos así el mantenimiento y gestión de los datos se hace en hardware. Sin embargo, muchos de los sistemas de HTM están limitados a los recursos de hardware disponibles, por ejemplo el tamaño de las caches privadas, y dependen de mecanismos de software para cuando esos límites son sobrepasados. Estos sistemas HTM, llamados best-effort HTM no son deseables, ya que obligan al programador a pensar en términos de los límites existentes en el hardware que se esta utilizando, así como en el sistema de STM que se llama cuando los recursos son sobrepasados. Además, tiene que resolver que transacciones hardware y software se ejecuten concurrentemente. En cambio, los sistemas de HTM ilimitados soportan un numero de operaciones ilimitadas o sea no están restringidos a límites impuestos artificialmente por el hardware, como ser el tamaño de las caches o buffers internos. Los sistemas HTM ilimitados por lo general requieren protocolos complejos o mecanismos muy costosos para la detección de conflictos y el mantenimiento de versiones de los datos entre las transacciones. Por otra parte, la ejecución de transacciones es a menudo mucho más lenta que en una ejecución sobre un sistema de HTM que este limitado. Esto es debido al que los mecanismos utilizados en el HTM limitado trabaja con conjuntos de datos relativamente pequeños que caben o están muy cerca del núcleo del procesador. En esta tesis estudiamos implementaciones de TM en hardware. Presentaremos tres contribuciones principales: Primero, mejoramos el rendimiento general de los sistemas, al proponer un protocolo escalable para la gestión de conflictos. El protocolo detecta los conflictos de forma precisa, en contraste con otras técnicas basadas en filtros Bloom, que pueden reportar conflictos falsos entre las transacciones. Segundo, proponemos un best-effort HTM que utiliza el nuevo protocolo escalable detección de conflictos, denominado EazyHTM. EazyHTM permite la ejecución completamente paralela de todas las transacciones sin conflictos, y por lo general simplifica la ejecución. Por último, proponemos una extensión y mejora del protocolo inicial para la gestión de conflictos, que llamaremos EcoTM. EcoTM cuenta con detección de conflictos precisa, eficiente y es compatible tanto con transacciones grandes como con pequeñas. La idea clave de EcoTM es aprovechar la observación que en muy pocas ubicaciones de memoria aparecen los conflictos entre las transacciones, incluso en aplicaciones tienen muchos conflictos. En EcoTM, cada núcleo detecta localmente si la línea es conflictiva, además existe un mecanismo de detección de conflictos detallado que solo se activa para las pocas líneas de memoria que son potencialmente conflictivas

    Main memory latency simulation: the missing link

    Get PDF
    The community accepted the need for a detailed simulation of main memory. Currently, the CPU simulators are usually coupled with the cycle-accurate main memory simulators. However, coupling CPU and memory simulators is not a straight-forward task because some pieces of the circuitry between the last level cache and the memory DIMMs could be easily overlooked and therefore not accounted for. In this paper, we take an approach to quantify the missing cycles in the main memory simulation. To that end, we execute a memory intensive microbenchmark to validate a simulation infrastructure based on ZSim and DRAMsim2 modeling an Intel Sandy Bridge E5-2670 system. We execute the same microbenchmark on a real Sandy Bridge E5-2670 machine identifying a missing 20 ns in the simulator measurements. This is a huge difference that, in the system under study, corresponds to one-third of the overall main memory latency. We propose multiple schemes to add an extra delay in the simulation model to account for the missing cycles. Furthermore, we validate the proposals using the SPEC CPU2006 benchmarks. Finally, we repeat the main memory latency measurements on seven mainstream and emerging computing platforms. Our results show that latency between the Last Level Cache (LLC) and the main memory ranges between tens and hundreds of nanoseconds, so we emphasize on properly adjust and validate these parameters in system simulators before any measurements are performed. Overall, we believe this study would improve main memory simulation leading to the better overall system analysis and explorations performed in the computer architecture community.This work was supported by the Collaboration Agreement between Samsung Electronics Co. Ltd. and BSC, Spanish Ministry of Science and Technology (project TIN2015-65316-P), Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272) and the Severo Ochoa Programme (SEV-2015-0493) of the Spanish Government.Peer ReviewedPostprint (author's final draft

    Multilevel simulation-based co-design of next generation HPC microprocessors

    Get PDF
    This paper demonstrates the combined use of three simulation tools in support of a co-design methodology for an HPC-focused System-on-a-Chip (SoC) design. The simulation tools make different trade-offs between simulation speed, accuracy and model abstraction level, and are shown to be complementary. We apply the MUSA trace-based simulator for the initial sizing of vector register length, system-level cache (SLC) size and memory bandwidth. It has proven to be very efficient at pruning the design space, as its models enable sufficient accuracy without having to resort to highly detailed simulations. Then we apply gem5, a cycle-accurate micro-architecture simulator, for a more refined analysis of the performance potential of our reference SoC architecture, with models able to capture detailed hardware behavior at the cost of simulation speed. Furthermore, we study the network-on-chip (NoC) topology and IP placements using both gem5 for representative small- to medium-scale configurations and SESAM/VPSim, a transaction-level emulator for larger scale systems with good simulation speed and sufficient architectural details. Overall, we consider several system design concerns, such as processor subsystem sizing and NoC settings. We apply the selected simulation tools, focusing on different levels of abstraction, to study several configurations with various design concerns and evaluate them to guide architectural design and optimization decisions. Performance analysis is carried out with a number of representative benchmarks. The obtained numerical results provide guidance and hints to designers regarding SIMD instruction width, SLC sizing, memory bandwidth as well as the best placement of memory controllers and NoC form factor. Thus, we provide critical insights for efficient design of future HPC microprocessors.This work has been performed in the context of the European Processor Initiative (EPI) project, which has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement № 826647. A special thanks to Amir Charif and Arief Wicaksana for their invaluable contributions to the SESAM/VPSim tool in the initial phases of the EPI project.Peer ReviewedPostprint (author's final draft

    MPSoCBench : um framework para avaliação de ferramentas e metodologias para sistemas multiprocessados em chip

    Get PDF
    Orientador: Rodolfo Jardim de AzevedoTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Recentes metodologias e ferramentas de projetos de sistemas multiprocessados em chip (MPSoC) aumentam a produtividade por meio da utilização de plataformas baseadas em simuladores, antes de definir os últimos detalhes da arquitetura. No entanto, a simulação só é eficiente quando utiliza ferramentas de modelagem que suportem a descrição do comportamento do sistema em um elevado nível de abstração. A escassez de plataformas virtuais de MPSoCs que integrem hardware e software escaláveis nos motivou a desenvolver o MPSoCBench, que consiste de um conjunto escalável de MPSoCs incluindo quatro modelos de processadores (PowerPC, MIPS, SPARC e ARM), organizado em plataformas com 1, 2, 4, 8, 16, 32 e 64 núcleos, cross-compiladores, IPs, interconexões, 17 aplicações paralelas e estimativa de consumo de energia para os principais componentes (processadores, roteadores, memória principal e caches). Uma importante demanda em projetos MPSoC é atender às restrições de consumo de energia o mais cedo possível. Considerando que o desempenho do processador está diretamente relacionado ao consumo, há um crescente interesse em explorar o trade-off entre consumo de energia e desempenho, tendo em conta o domínio da aplicação alvo. Técnicas de escalabilidade dinâmica de freqüência e voltagem fundamentam-se em gerenciar o nível de tensão e frequência da CPU, permitindo que o sistema alcance apenas o desempenho suficiente para processar a carga de trabalho, reduzindo, consequentemente, o consumo de energia. Para explorar a eficiência energética e desempenho, foram adicionados recursos ao MPSoCBench, visando explorar escalabilidade dinâmica de voltaegem e frequência (DVFS) e foram validados três mecanismos com base na estimativa dinâmica de energia e taxa de uso de CPUAbstract: Recent design methodologies and tools aim at enhancing the design productivity by providing a software development platform before the definition of the final Multiprocessor System on Chip (MPSoC) architecture details. However, simulation can only be efficiently performed when using a modeling and simulation engine that supports system behavior description at a high abstraction level. The lack of MPSoC virtual platform prototyping integrating both scalable hardware and software in order to create and evaluate new methodologies and tools motivated us to develop the MPSoCBench, a scalable set of MPSoCs including four different ISAs (PowerPC, MIPS, SPARC, and ARM) organized in platforms with 1, 2, 4, 8, 16, 32, and 64 cores, cross-compilers, IPs, interconnections, 17 parallel version of software from well-known benchmarks, and power consumption estimation for main components (processors, routers, memory, and caches). An important demand in MPSoC designs is the addressing of energy consumption constraints as early as possible. Whereas processor performance comes with a high power cost, there is an increasing interest in exploring the trade-off between power and performance, taking into account the target application domain. Dynamic Voltage and Frequency Scaling techniques adaptively scale the voltage and frequency levels of the CPU allowing it to reach just enough performance to process the system workload while meeting throughput constraints, and thereby, reducing the energy consumption. To explore this wide design space for energy efficiency and performance, both for hardware and software components, we provided MPSoCBench features to explore dynamic voltage and frequency scalability (DVFS) and evaluated three mechanisms based on energy estimation and CPU usage rateDoutoradoCiência da ComputaçãoDoutora em Ciência da Computaçã

    Pre-validation of SoC via hardware and software co-simulation

    Get PDF
    Abstract. System-on-chips (SoCs) are complex entities consisting of multiple hardware and software components. This complexity presents challenges in their design, verification, and validation. Traditional verification processes often test hardware models in isolation until late in the development cycle. As a result, cooperation between hardware and software development is also limited, slowing down bug detection and fixing. This thesis aims to develop, implement, and evaluate a co-simulation-based pre-validation methodology to address these challenges. The approach allows for the early integration of hardware and software, serving as a natural intermediate step between traditional hardware model verification and full system validation. The co-simulation employs a QEMU CPU emulator linked to a register-transfer level (RTL) hardware model. This setup enables the execution of software components, such as device drivers, on the target instruction set architecture (ISA) alongside cycle-accurate RTL hardware models. The thesis focuses on two primary applications of co-simulation. Firstly, it allows software unit tests to be run in conjunction with hardware models, facilitating early communication between device drivers, low-level software, and hardware components. Secondly, it offers an environment for using software in functional hardware verification. A significant advantage of this approach is the early detection of integration errors. Software unit tests can be executed at the IP block level with actual hardware models, a task previously only possible with costly system-level prototypes. This enables earlier collaboration between software and hardware development teams and smoothens the transition to traditional system-level validation techniques.Järjestelmäpiirin esivalidointi laitteiston ja ohjelmiston yhteissimulaatiolla. Tiivistelmä. Järjestelmäpiirit (SoC) ovat monimutkaisia kokonaisuuksia, jotka koostuvat useista laitteisto- ja ohjelmistokomponenteista. Tämä monimutkaisuus asettaa haasteita niiden suunnittelulle, varmennukselle ja validoinnille. Perinteiset varmennusprosessit testaavat usein laitteistomalleja eristyksissä kehityssyklin loppuvaiheeseen saakka. Tämän myötä myös yhteistyö laitteisto- ja ohjelmistokehityksen välillä on vähäistä, mikä hidastaa virheiden tunnistamista ja korjausta. Tämän diplomityön tavoitteena on kehittää, toteuttaa ja arvioida laitteisto-ohjelmisto-yhteissimulointiin perustuva esivalidointimenetelmä näiden haasteiden ratkaisemiseksi. Menetelmä mahdollistaa laitteiston ja ohjelmiston varhaisen integroinnin, toimien luonnollisena välietappina perinteisen laitteistomallin varmennuksen ja koko järjestelmän validoinnin välillä. Yhteissimulointi käyttää QEMU suoritinemulaattoria, joka on yhdistetty rekisterinsiirtotason (RTL) laitteistomalliin. Tämä mahdollistaa ohjelmistokomponenttien, kuten laiteajureiden, suorittamisen kohdejärjestelmän käskysarja-arkkitehtuurilla (ISA) yhdessä kellosyklitarkkojen RTL laitteistomallien kanssa. Työ keskittyy kahteen yhteissimulaation pääsovellukseen. Ensinnäkin se mahdollistaa ohjelmiston yksikkötestien suorittamisen laitteistomallien kanssa, varmistaen kommunikaation laiteajurien, matalan tason ohjelmiston ja laitteistokomponenttien välillä. Toiseksi se tarjoaa ympäristön ohjelmiston käyttämiseen toiminnallisessa laitteiston varmennuksessa. Merkittävä etu tästä lähestymistavasta on integraatiovirheiden varhainen havaitseminen. Ohjelmiston yksikkötestejä voidaan suorittaa jo IP-lohkon tasolla oikeilla laitteistomalleilla, mikä on aiemmin ollut mahdollista vain kalliilla järjestelmätason prototyypeillä. Tämä mahdollistaa aikaisemman ohjelmisto- ja laitteistokehitystiimien välisen yhteistyön ja helpottaa siirtymistä perinteisiin järjestelmätason validointimenetelmiin

    Co-simulation techniques based on virtual platforms for SoC design and verification in power electronics applications

    Get PDF
    En las últimas décadas, la inversión en el ámbito energético ha aumentado considerablemente. Actualmente, existen numerosas empresas que están desarrollando equipos como convertidores de potencia o máquinas eléctricas con sistemas de control de última generación. La tendencia actual es usar System-on-chips y Field Programmable Gate Arrays para implementar todo el sistema de control. Estos dispositivos facilitan el uso de algoritmos de control más complejos y eficientes, mejorando la eficiencia de los equipos y habilitando la integración de los sistemas renovables en la red eléctrica. Sin embargo, la complejidad de los sistemas de control también ha aumentado considerablemente y con ello la dificultad de su verificación. Los sistemas Hardware-in-the-loop (HIL) se han presentado como una solución para la verificación no destructiva de los equipos energéticos, evitando accidentes y pruebas de alto coste en bancos de ensayo. Los sistemas HIL simulan en tiempo real el comportamiento de la planta de potencia y su interfaz para realizar las pruebas con la placa de control en un entorno seguro. Esta tesis se centra en mejorar el proceso de verificación de los sistemas de control en aplicaciones de electrónica potencia. La contribución general es proporcionar una alternativa a al uso de los HIL para la verificación del hardware/software de la tarjeta de control. La alternativa se basa en la técnica de Software-in-the-loop (SIL) y trata de superar o abordar las limitaciones encontradas hasta la fecha en el SIL. Para mejorar las cualidades de SIL se ha desarrollado una herramienta software denominada COSIL que permite co-simular la implementación e integración final del sistema de control, sea software (CPU), hardware (FPGA) o una mezcla de software y hardware, al mismo tiempo que su interacción con la planta de potencia. Dicha plataforma puede trabajar en múltiples niveles de abstracción e incluye soporte para realizar co-simulación mixtas en distintos lenguajes como C o VHDL. A lo largo de la tesis se hace hincapié en mejorar una de las limitaciones de SIL, su baja velocidad de simulación. Se proponen diferentes soluciones como el uso de emuladores software, distintos niveles de abstracción del software y hardware, o relojes locales en los módulos de la FPGA. En especial se aporta un mecanismo de sincronizaron externa para el emulador software QEMU habilitando su emulación multi-core. Esta aportación habilita el uso de QEMU en plataformas virtuales de co-simulacion como COSIL. Toda la plataforma COSIL, incluido el uso de QEMU, se ha analizado bajo diferentes tipos de aplicaciones y bajo un proyecto industrial real. Su uso ha sido crítico para desarrollar y verificar el software y hardware del sistema de control de un convertidor de 400 kVA

    HPC memory systems: Implications of system simulation and checkpointing

    Get PDF
    The memory system is a significant contributor for most of the current challenges in computer architecture: application performance bottlenecks and operational costs in large data-centers as HPC supercomputers. With the advent of emerging memory technologies, the exploration for novel designs on the memory hierarchy for HPC systems is an open invitation for computer architecture researchers to improve and optimize current designs and deployments. System simulation is the preferred approach to perform architectural explorations due to the low cost to prototype hardware systems, acceptable performance estimates, and accurate energy consumption predictions. Despite the broad presence and extensive usage of system simulators, their validation is not standardized; either because the main purpose of the simulator is not meant to mimic real hardware, or because the design assumptions are too narrow on a particular computer architecture topic. This thesis provides the first steps for a systematic methodology to validate system simulators when compared to real systems. We unveil real-machine´s micro-architectural parameters through a set of specially crafted micro-benchmarks. The unveiled parameters are used to upgrade the simulation infrastructure in order to obtain higher accuracy in the simulation domain. To evaluate the accuracy on the simulation domain, we propose the retirement factor, an extension to a well-known application´s performance methodology. Our proposal provides a new metric to measure the impact simulator´s parameter-tuning when looking for the most accurate configuration. We further present the delay queue, a modification to the memory controller that imposes a configurable delay for all memory transactions that reach the main memory devices; evaluated using the retirement factor, the delay queue allows us to identify the sources of deviations between the simulator infrastructure and the real system. Memory accesses directly affect application performance, both in the real-world machine as well as in the simulation accuracy. From single-read access to a unique memory location up to simultaneous read/write operations to a single or multiple memory locations, HPC applications memory usage differs from workload to workload. A property that allows to glimpse on the application´s memory usage is the workload´s memory footprint. In this work, we found a link between HPC workload´s memory footprint and simulation performance. Actual trends on HPC data-center memory deployments and current HPC application’s memory footprint led us to envision an opportunity for emerging memory technologies to include them as part of the reliability support on HPC systems. Emerging memory technologies such as 3D-stacked DRAM are getting deployed in current HPC systems but in limited quantities in comparison with standard DRAM storage making them suitable to use for low memory footprint HPC applications. We exploit and evaluate this characteristic enabling a Checkpoint-Restart library to support a heterogeneous memory system deployed with an emerging memory technology. Our implementation imposes negligible overhead while offering a simple interface to allocate, manage, and migrate data sets between heterogeneous memory systems. Moreover, we showed that the usage of an emerging memory technology it is not a direct solution to performance bottlenecks; correct data placement and crafted code implementation are critical when comes to obtain the best computing performance. Overall, this thesis provides a technique for validating main memory system simulators when integrated in a simulation infrastructure and compared to real systems. In addition, we explored a link between the workload´s memory footprint and simulation performance on current HPC workloads. Finally, we enabled low memory footprint HPC applications with resilience support while transparently profiting from the usage of emerging memory deployments.El sistema de memoria es el mayor contribuidor de los desafíos actuales en el campo de la arquitectura de ordenadores como lo son los cuellos de botella en el rendimiento de las aplicaciones, así como los costos operativos en los grandes centros de datos. Con la llegada de tecnologías emergentes de memoria, existe una invitación para que los investigadores mejoren y optimicen las implementaciones actuales con novedosos diseños en la jerarquía de memoria. La simulación de los ordenadores es el enfoque preferido para realizar exploraciones de arquitectura debido al bajo costo que representan frente a la realización de prototipos físicos, arrojando estimaciones de rendimiento aceptables con predicciones precisas. A pesar del amplio uso de simuladores de ordenadores, su validación no está estandarizada ya sea porque el propósito principal del simulador no es imitar al sistema real o porque las suposiciones de diseño son demasiado específicas. Esta tesis proporciona los primeros pasos hacia una metodología sistemática para validar simuladores de ordenadores cuando son comparados con sistemas reales. Primero se descubren los parámetros de microarquitectura en la máquina real a través de un conjunto de micro-pruebas diseñadas para actualizar la infraestructura de simulación con el fin de mejorar la precisión en el dominio de la simulación. Para evaluar la precisión de la simulación, proponemos "el factor de retiro", una extensión a una conocida herramienta para medir el rendimiento de las aplicaciones, pero enfocada al impacto del ajuste de parámetros en el simulador. Además, presentamos "la cola de retardo", una modificación virtual al controlador de memoria que agrega un retraso configurable a todas las transacciones de memoria que alcanzan la memoria principal. Usando el factor de retiro, la cola de retraso nos permite identificar el origen de las desviaciones entre la infraestructura del simulador y el sistema real. Todos los accesos de memoria afectan directamente el rendimiento de la aplicación. Desde el acceso de lectura a una única localidad memoria hasta operaciones simultáneas de lectura/escritura a una o varias localidades de memoria, una propiedad que permite reflejar el uso de memoria de la aplicación es su "huella de memoria". En esta tesis encontramos un vínculo entre la huella de memoria de las aplicaciones de alto desempeño y su rendimiento en simulación. Las tecnologías de memoria emergentes se están implementando en sistemas de alto desempeño en cantidades limitadas en comparación con la memoria principal haciéndolas adecuadas para su uso en aplicaciones con baja huella de memoria. En este trabajo, habilitamos y evaluamos el uso de un sistema de memoria heterogéneo basado en un sistema emergente de memoria. Nuestra implementación agrega una carga despreciable al mismo tiempo que ofrece una interfaz simple para ubicar, administrar y migrar datos entre sistemas de memoria heterogéneos. Además, demostramos que el uso de una tecnología de memoria emergente no es una solución directa a los cuellos de botella en el desempeño. La implementación es fundamental a la hora de obtener el mejor rendimiento ya sea ubicando correctamente los datos, o bien diseñando código especializado. En general, esta tesis proporciona una técnica para validar los simuladores respecto al sistema de memoria principal cuando se integra en una infraestructura de simulación y se compara con sistemas reales. Además, exploramos un vínculo entre la huella de memoria de la carga de trabajo y el rendimiento de la simulación en cargas de trabajo de aplicaciones de alto desempeño. Finalmente, habilitamos aplicaciones de alto desempeño con soporte de resiliencia mientras que se benefician de manera transparente con el uso de un sistema de memoria emergente.Postprint (published version

    A Comparison of x86 Computer Architecture Simulators

    Get PDF
    The significance of computer architecture simulators in advancing computer architecture research is widely acknowledged. Computer architects have developed numerous simulators in the past few decades and their number continues to rise. This paper explores different simulation techniques and surveys many simulators. Comparing simulators with each other and validating their correctness has been a challenging task. In this paper, we compare and contrast x86 simulators in terms of flexibility, level of details, user friendliness and simulation models. In addition, we measure the experimental error and compare the speed of four contemporary x86 simulators: gem5, Sniper, Multi2sim and PTLsim. We also discuss the strengths and limitations of the different simulators. We believe that this paper provides insights into different simulation strategies and aims to help computer architects understand the differences among the existing simulation tools
    corecore