
Universidad
de Alcalá

PhD. Program in Electronics: Advanced Electronic
Systems. Intelligent Systems

Co-simulation techniques based on
virtual platforms for SoC design and

verification in power electronics
applications

PhD. Thesis Presented by

Edel Díaz Llerena

2022

Universidad
de Alcalá

PhD. Program in Electronics: Advanced Electronic
Systems. Intelligent Systems

Co-simulation techniques based on
virtual platforms for SoC design and

verification in power electronics
applications

PhD. Thesis Presented by

Edel Díaz Llerena

Advisors

Raúl Mateos Gil
Emilio José Bueno Peña

Alcalá de Henares, January 11th, 2022

Acknowledgements

Madre, padre, este trabajo, así como todo lo que he conseguido y conseguiré en mi
vida es vuestro. Gracias por enseñarme a vivir y a saber cómo conseguir cualquier cosa
que me proponga en la vida.

Miriam, gracias por levantarme cada vez que me he caído. Gracias por cuidarme y
guiarme. Gracias compartir cada segundo de tu vida conmigo. Te amo.

Hermano, mi eterna referencia. Gracias por enseñarme a aprender y a pensar.

Raúl y Emilio, gracias por creer en mí. Gracias por mostrarme lo que soy capaz de
hacer y enseñarme el camino para hacerlo.

ix

Abstract

In the last decades, investment in the energy sector has increased considerably. Nowa-
days, several companies are developing equipment such as power converters or electrical
machines with state-of-the-art control systems. The current trend is to use System-
on-chips and Field Programmable Gate Arrays devices to implement the whole control
system. These devices enable the use of more complex and efficient control algorithms,
improving the efficiency of the equipment and enabling the integration of renewable sys-
tems into the power grid. However, the complexity of control systems has also increased
considerably and the difficulty of their verification.

Hardware-in-the-loop (HIL) systems offer a solution for non-destructive verification
of energy equipment, avoiding accidents and expensive laboratory tests. HIL systems
simulate in real-time the behaviour of the power plant and its interface to perform the
tests with the control board in a safe environment.

This thesis focuses on improving the verification process of control systems in power
electronics applications. The overall contribution is to provide an alternative to using
HILs for control board hardware/software verification. The alternative is based on the
Software-in-the-loop (SIL) technique and attempts to overcome or address the limitations
found in SIL up to date.

To enhance the qualities of SIL, a software tool called COSIL has been developed to
co-simulate the final implementation and integration of the control system, be it software
(CPU), hardware (FPGA) or a mixture of software and hardware, as well as its interaction
with the power plant. This platform can work at multiple levels of abstraction and includes
support for mixed-language co-simulation such as C or VHDL.

Throughout the thesis, emphasis is placed on improving one of the limitations of SIL,
its low simulation speed. Different solutions are proposed, such as the use of software
emulators, different abstraction levels of software and hardware, or local clocks in the
FPGA modules. In particular, an external synchronisation mechanism is provided for
the QEMU software emulator enabling its multi-core emulation mode. This contribution
enables the use of QEMU in virtual co-simulation platforms such as COSIL.

The entire COSIL platform, including the use of QEMU, has been analysed under
different types of applications and an actual industrial project. Its use has been critical

xii Acknowledgements

to develop and verify the software and hardware of the control system of a 400 kVA
converter.

Contact: Edel Díaz Llerena <edel.diaz@uah.es>.

Keywords: HIL, SIL, co-simulation, QEMU, verification.

mailto:edel.diaz@uah.es

Contents

Abstract XI

Contents XIII

List of Figures XVII

List of Tables XXI

List of source code listings XXIII

List of Acronyms XXIII

List of Symbols XXIII

1. Introduction 1

1.1. Contributions . 5

1.2. Structure of the dissertation . 6

1.3. Publications and related . 6

2. State of the art 9

2.1. Co-simulation based on virtual platforms 9

2.1.1. Abstraction levels in simulation . 14

2.1.2. Co-simulation techniques . 15

2.1.3. Hardware/software co-verification 18

2.2. Digital electronics for controlling power electronic converters 22

2.2.1. Control system development . 24

2.2.2. Control system verification . 28

2.3. QEMU as a software emulator . 34

2.3.1. Multi-Threaded Tiny Code Generator 38

xiv CONTENTS

2.3.2. The notion of time in QEMU . 39

2.4. SystemC and TLM support . 42

3. QEMU External Synchronization Mechanism 47

3.1. Introduction . 47

3.2. QEMU machine linking . 48

3.3. Hardware/Software interactions . 49

3.4. Implementation of External Synchronization in QEMU using Multi-Thread
Tiny Code Generator. 55

3.4.1. Guest instruction counter . 55

3.4.2. Management of Synchronization Points 58

3.4.3. Location of the Synchronization Points 59

3.5. Summary . 61

4. COSIL: Co-simulation Software-in-the-loop 63

4.1. Introduction . 63

4.2. COSIL methodology . 64

4.3. Platform description . 65

4.3.1. SW domain . 68

4.3.2. HW domain . 69

4.3.3. PW domain . 70

4.3.4. Synchronization . 71

4.3.5. Debugging features . 76

4.4. Summary . 77

5. Performance analysis and test 79

5.1. Introduction . 79

5.2. QEMU external synchronisation mechanism 79

5.2.1. Overhead of virtual interactions in co-simulation 80

5.2.1.1. Definition of methodology 80

5.2.1.2. Results . 81

5.2.2. Overhead of physical interactions in co-Simulation 85

5.2.2.1. Definition of methodology 85

5.2.2.2. Results . 86

CONTENTS xv

5.2.2.3. Conclusions . 88

5.3. COSIL tests and performance analysis . 89

5.3.1. Power plant: back-to-back converter 90

5.3.2. Control algorithm . 91

5.3.3. HW/SW architecture of control system 91

5.3.4. Tests analysis . 92

5.3.5. COSIL performance and the use of abstraction levels 97

5.3.6. Synchronization results . 98

5.3.6.1. Conclusions . 100

6. Conclusions and future work 103

6.1. Thesis conclusions . 104

6.2. Future work . 107

Bibliography 111

List of Figures

2.1. Basic composition of a simulation environment [Figure adapted from Figure
2 in [PVL+17] and Figure 2.1 in [Fuj01]]. 10

2.2. The composition of a co-simulation based on two simulations. 12

2.3. Types of co-simulación. 12

2.4. Example of a virtual platform for the co-simulation of a motherboard. . . . 14

2.5. Levels of abstractions. 15

2.6. TLM-to-RTL transactor overview. 15

2.7. Example of conservative and optimistic asynchronous schedulings. [Mat06]. 17

2.8. Block diagram of the general setup of DES-based HW/SW co-simulation
virtual platform. 19

2.9. Main areas of power electronics and contributions of the thesis. 23

2.10. Basic power electronics system. 24

2.11. Typical controller block diagram in power applications. 29

2.12. Design and implementation flow of a control system in power electronics. . 29

2.13. Non-destructive tools for verification in power electronics: a) HIL; b) PIL/-
FIL; c) SIL. 32

2.14. Ejemplo de traduccion de TBs. 36

2.15. QEMU DBT flow. 37

2.16. QEMU-MTTCG internal architecture. 38

2.17. Ejemplo de traduccion de TBs. 39

2.18. Comparison between timing flows for two vCPUs: (a) single-thread mode;
(b) multi-thread mode. 41

2.19. Use of language in Electronic Design Automation tools [BDBK10] 42

2.20. Simplified SystemC simulation kernel [BDBK10]. 43

2.21. Example of temporal decoupling with quantum. 45

3.1. Interactions management by callbacks and dynamic linking. 50

xviii LIST OF FIGURES

3.2. Interrupt management: (a) real platform vs. (b) virtual platform cases. . . 55

3.3. Block diagram to define how to get instruction counter in the TB host
using prologue and epilogue. 57

3.4. Flow chart for the location of the synchronization point. 59

4.1. COSIL methodology flowchart. 65

4.2. COSIL main setup. 65

4.3. Internal architecture of COSIL. Details of SW, HW and PW modules. . . . 67

4.4. Example of syncronisation of a SW, HW and PW module using SW-QEMU. 73

4.5. Representation of Figure 4.4 from the point of view of DES SystemC. . . . 75

4.6. QEMU debug flow using code intrusive option. 77

5.1. Setup#3. QEMU-MTTCG inside a co-simulation virtual platform as soft-
ware (SW) emulator. 81

5.2. Results of the number of synchronization and host runtime in seconds (wall-
clock) for different setups of Tht and icountMax : (a) number of synchro-
nizations (N SYNC); (b) Wallclock. 82

5.3. Linux boot time (wallclock) for different scenarios: (a) boot Linux
time in different plat-forms; (b) Instruction Fetching profiling for
Setup#2:PetaLinux; (c) Instruction Fetching profiling for Setup#3:QEMU-
VP. 83

5.4. Wallclock time comparation for ParMiBench. Setup#2 QEMU-PetaLinux
vs. Setup#3 QEMU-VP. 84

5.5. Sync management as a function of vCPUs: (Top) instructions executed per
vCPU; (Bottom) synchronization executed per vCPU. 85

5.6. Linux + HW setup. QEMU-MTTCG inside a co-simulation virtual plat-
form as software simulator. ADC and PLL IP accelerators in hardware
simulator. 87

5.7. Linux + ADC + PLL micro-grid monitoring system results: (a) time con-
sumed to perform the co-simulation (wallclock) for different I/O rates in
PS-PL; (b) Instruction Fetching profiling for 25 MB/s I/O rate. 87

5.8. Co-simulation frame showing physical and virtual interactions. Example
of the number of IO and synchronization events for each interrupt at 40
KB/s IO rate. 88

5.9. Back-to-back converter 400KVA. 90

5.10. Electric scheme of the back-to-back converter. 90

5.11. HW/SW architecture of implemented control system. 92

LIST OF FIGURES xix

5.12. COSIL results. Start phase and voltage gap of 50%. 93

5.13. Results comparison. Model-based simulation (MIL - Simulink) versus
COSIL (SW+HW+PW) versus real test. Zoom at the gap of 50%. 95

5.14. Co-simulation results. Back-to-back converter start-up and PW module
status. 96

5.15. Synchronization results. Communication events between SW, HW and PW
modules. 99

List of Tables

1.1. EU energy goals for 2020 and 2030. 2

2.1. Comparison of most used software emulators. 21

2.2. Comparison of non-destructive tools for verification in power electronics. . 34

4.1. Comparison of non-destructive tools for verification in power electronics
with COSIL . 64

5.1. ParMiBench benchmarks descriptions with input configuration. 82

5.2. COSIL time results using different abstraction levels for the same design . 98

List of source code listings

3.1. Example of MMIO mapping and interrupts linking. Zynq-7000 machine.
file://hw/arm/arm_generic_fdt.c . 48

3.2. Example of MMIO definition for Zynq-7000 machine.
file://hw/arm/cosil_mmio.c . 51

3.3. Example of IRQ linking for Zynq-7000 machine. file://hw/arm/cosil_mmio.c 53
3.4. Getting instruction counter for each vCPU in prologue and epilogue.

file://include/exec/gen-icount.h. 56
3.5. Location of the synchronization point in QEMU source code. file://cpus.c . 60

Chapter 1

Introduction

"The main goal of this dissertation is on improving the
verification process of control systems in power

electronics applications."

In recent decades, the interest in energy management, control, generation and energy
efficiency has increased significantly. The commitment of countries and institutions to
generate and control clean energy1 are changing the energy system. Also, the interest of
companies to offer more energy-efficient equipment to a highly competitive market has
led to a growth in the number of energy-related projects.

In 2008, the European Union (EU) planned the EU’s energy pathway and its impact
on the climate by 2020 [Eur09]. This route aimed to reduce greenhouse gas emissions
by 20% and energy consumption by 20%, increasing equipment efficiency and minimising
energy generation and transport losses. A third goal was to increase energy production
from renewable sources by 20%. The same year Tesla Motors, founded in 2003, was the
fastest-growing car manufacturer in the market [Tes19] by launching its first full-electric
car with a range of up to 400 km.

In order to achieve the 2020 goals, from 2012 to 2020, the EU has funded a multitude
of public and private projects. Some examples are the Horizon 2020 project [Eur13], fo-
cusing on research and development with an initial budget of EUR 1.087 billion, and the
NER300 project [Eur12], focusing on renewable energy technologies and carbon capture
and storage, with an initial budget of EUR 2 billion. In the case of Horizon 2020, although
this project involves broader areas such as economic, social and territorial cohesion, com-
petitiveness for growth and employment and sustainable growth, which together account
for 86% of the total budget, a significant percentage of each of these areas have been kept
for EU energy development. For example, since 2014, funds from the EU combined with
national investment have amounted to EUR 5.3 billion annually [Eur19].

1Only products and equipment strictly comply with legally established production standards can be labelled as clean.
Regulation (European Union (EU)) 2018/848 of the European Parliament and the Council of 30 May 2018 on organic
production and labelling of organic products and repealing Council Regulation (EC) No 834/2007, art. 3.2

2 Chapter 1. Introduction

Another example of the interest in energy improvement is the goals set by the EU for
2030 [Eur19]. These goals aim to overhaul the automotive and energy market to reduce
greenhouse gas emissions by up to 40% and reduce CO2 emissions from passenger cars by
up to 37%. In addition, funding for climate conservation will be increased by 5% between
2021-2027, and the aim is to ensure that at least one-third of all energy consumed in the
EU comes from renewable energy sources. The goals for 2020 and 2030 proposed by the
EU are summarized in the Table below 1.1 [Eur18a,Eur18b].

Table 1.1: EU energy goals for 2020 and 2030.

 Greenhouse
gas

emissions

Renewable
Energy

Energy
efficiency

Inter-
connection

Climate in
EU-funded
programmes

CO2 from:

2020 -20% 20% 20% 10%
2014-2020

20%

2030 ≤ -40% ≤ 40% ≤ 32.5% 15%
2021-2027

25%

CARS
-37.5%

Vams -31%
Lorries -30%

As a consequence, many companies are developing equipment with advanced control

systems. These control systems make it possible to introduce more complex and efficient
control algorithms, improving the efficiency of converters or machines, and enabling the
integration of renewable systems into the power system. However, the complexity of
control systems has also increased, and therefore, their verification process.

The main goal of this dissertation is focussed on improving the verification process of
control systems in power electronics applications.

A control system is made up of one or more control boards. The control board processes
the sensor measurements with its processing unit and produces changes in the reference
of the power plant to meet the desired behaviour or setpoints [Soz17].

The increasing performance and resources of control boards have made it possible to
implement complex control systems to manage power plants. In recent years, devices such
as Microprocessors (µP), low-cost Digital Signal Processors (DSP), Field Programmable
Gate Array (FPGA), System-on-Chip (SoC), or a mixture of the above have been used
[BDD19]. The most widely used option for implementing the control platform is coupling
a processing unit, like a µP, a DSP or a SoC, with an FPGA. While the processing system
simplifies the implementation process of the control algorithms, the FPGA complies with
the interfaces, latency, throughput and reconfigurability requirements.

The emergence of Multi-Processor System-On-Chip (MPSoC) with homogeneous and
heterogeneous processor architectures has increased the difficulties of Hardware (HW) and
software Software (SW) modules and their verification [RAVPM15]. Companies such as
Xilinx, Intel, or ARM provide devices that integrate MPSoCs. These devices can combine

3

the flexibility of the software, such as Operating System (OS) or bare-metal applications,
with high-performance hardware designs, such as hardware accelerators and sophisticated
Intellectual Property module - Hardare accelerator (IP) modules. However, since it is
necessary to simulate the whole behaviour of the system to verify the platform, i.e.,
software and hardware, and their intercommunication, the verification of these devices is
intricated.

The integration process is based on merging the software and hardware modules, and
the final version of the source code is developed. The integration process is usually custom-
made and is precisely the stage where many source code bugs appear. Verification of the
integration, i.e., the full source code, is essential in this type of mixed software-hardware
application.

The most extended technique for testing software is debugging. The main drawback of
verifying control algorithms in power electronics is that they are implemented in real-time
systems. Consequently, it is not possible to stop the full control logic to apply typical
debugging techniques. This debugging could stop the execution of the controller, leaving
the power plant out of control.

Hardware-in-the-loop (HIL) systems have been presented as a solution for non-
destructive verification of power plants, avoiding high cost tests and accidents. HIL
systems emulate the behaviour of the power plant and its interface in real-time to per-
form the tests with the control board in a safe environment. However, the main drawbacks
of HILs are their high cost, and the test can only be done at a late development stage.
That is when the control platform is available, and it has been programmed. Also, the
control board is usually not a standard solution, and its interface is usually not compatible
with HIL equipment. This requires the development of an extra platform to communicate
the control board with the HIL system. Since the tests are performed on a real-time
platform, the debugging capabilities are reduced compared to software verification tools.

Another function of HILs or similar techniques is rapid prototyping. Here, instead
of emulating the power plant, the control board is emulated. Thus, it is possible to
auto-generate software and hardware modules and test them directly on a real plant.
Although this option is very attractive, it does not generate the final source code of the
control board, and it only tests specific hardware/software modules.

Different techniques based on modelling and simulation of the power plant and control
algorithms have been used as an alternative to HIL. One of these techniques is called
Software-in-the-loop (SIL). SIL simulation integrates compiled source code into a simu-
lation environment. Thus, SIL supports closed-loop verification of software or hardware
with the power plant. Their use allows verifying designs without having real boards, which
dramatically reduces costs and verification time. Nevertheless, the main limitations are
the low speed of this co-simulation. Therefore, it can run in real-time. Another limitation
is that the verified source code is usually simplified, which is not the same as the final

4 Chapter 1. Introduction

implementation.

SIL solutions are based on making virtual platforms. Virtual platforms are presented
as a perfect solution for evaluating whole systems and analysing hardware/software pro-
posals at the early development stage. These virtual platforms use hardware/software
co-simulation techniques profusely described in the literature [Fuj01,KKH19,WFMH20].
In those, the software and hardware designs can be combined at different levels of ab-
straction and with different timing accuracy.

Typically, three options have been used to speed up co-simulation. Since simulation
speed depends on the number of triggered events, an option is to use a higher abstraction
level, which requires fewer triggered events. This thesis develops a virtual platform that
allows using SystemC language to describe hardware, as in [MPNB12], and Transaction-
Level Modeling (TLM) to model communications [IEE11].

Another alternative is to parallelise the resources of the virtual platform, focusing on
the hardware or software simulators. In recent years, Moore’s Law has stagnated due to
the physical limitations of the current technology [DDC+19]. To continue offering higher
performance, the current trend consists of increasing the number of Central Processing
Unit (CPU)s. Thus, significant efforts to parallelise the software verification tool and
adapt them to new challenges have been described in the literature.

The last option is based on emulation or virtualisation. The emulation and virtual-
isation allow using the host hardware resources to run the whole guest system. Hence,
it can get quick emulations or achieve native performance. Therefore, most tools apply
techniques to emulate software behaviour rather than simulate it, decreasing debugging
features and increasing execution speed.

The synchronisation carried out in a co-simulation virtual platform is essential to
obtain correct results. Even though works have advanced in the parallelisation of the
software emulator, they have not addressed the synchronisation of the software emulator
with other applications (i.e., the hardware simulator).

This thesis presents a verification tool based on a co-simulation virtual platform. The
platform has been called Co-simulation Software-In-the-Loop (COSIL) and is based on
the Software-in-the-loop methodology. This co-simulation tool mixes the power plant
simulations with the final software (CPUs/SoC) and hardware (FPGA) of the control
board. Thus, it allows having a global vision of the system in the same environment. This
contribution reduces the development times because the code verified by co-simulation can
be installed directly on the board without any modification. Therefore, COSIL focuses on
verifying the full integration of the hardware/software source code. The power plant model
is now simulated with the whole control board implementation in the same workstation,
allowing a closed-loop verification. Then, it is presented as a HIL alternative.

In order to increase COSIL performance, a multi-core software emulator has been
used. However, currently the synchronisation between multi-core emulators and external

1.1 Contributions 5

simulators has not been addressed in the literature. This thesis analyses the current
software emulators in the market and presents an external synchronisation mechanism
for Quick Emulator (QEMU), the most compatible open-source software emulator. The
synchronisation mechanism modifies the original QEMU proposal of the Multi-Thread
translator (parallelised mode). The modifications enable parallelized-QEMU to emulate
multi-core embedded processors in hardware/software co-simulation virtual platforms.
The proposed mechanism does not introduce a substantial overhead in the QEMU speed,
and this novel solution allows running hardware/software co-simulation quickly.

The COSIL platform includes the QEMU emulator (open-source) and uses the contri-
butions of this thesis to synchronise QEMU, as a software emulator, with the hardware
and power plant simulators. COSIL is based on SystemC/C++ (open-source) to describe
the co-simulated virtual platform at multiple levels of abstraction. SystemC further-
more controls the advance of the co-simulation with its event-driven simulation kernel.
As COSIL is composed of open-source elements, COSIL presents itself as a more cost-
effective verification tool than HIL systems, among other advantages.

An industrial designs has been considered to evaluate the performance of COSIL.
That project implements the control system for a 400 kVA back-to-back converter based
on Zynq-7000 SoC+FPGA (dual-core Cortex A9+Artix-7). The converter acts as a grid
emulator to test photovoltaic converters. Therefore, it will have different setups, such as
voltage/current source or programmable load. All these functionalities have been verified
using the COSIL tool before being implemented on the real converter. COSIL allows
verifying any improvement to be included in the converter once it is manufactured and
installed. The COSIL performance analysis and tests are added using different detail
levels for both software and hardware.

Although the platform has been tested for this application, COSIL is a universal tool
that can be used to test any converter and even for other applications that are not in the
area of power electronics.

1.1. Contributions

The overall contribution of this thesis is to provide a HIL alternative for the verification
of control board designs in power electronics applications. The alternative is based on
the Software-in-the-loop technique and attempts to overcome or address the limitations
found in Software-in-the-loop for control system verification.

This overall contributions is made-up with a set of individuals contributions. They
will be describe in this thesis:

A software tool, called COSIL, has been developed. COSIL is a co-simulation virtual
platform focus on verifying the code integration of software/hardware designs imple-

6 Chapter 1. Introduction

mented in the control boards. This tool allows verifying the final software/hardware
code with the power plant simulation models. The tool allows mixing multiple levels
of abstraction, adapting the complexity of the co-simulation to the user’s needs.

An external synchronisation mechanism to use QEMU in the co-simulation virtual
platform as a multi-core software emulator. That allows speed up the execution of
hardware/software co-simulation in COSIL.

Multiple recommendations are presented to optimise the speed of co-simulation.

1.2. Structure of the dissertation

The following chapters illustrate the issues and contributions presented in this intro-
duction:

Chapter 2 - State of the art - The second chapter shows the state-of-the-art of thesis.
The chapter explains co-simulation techniques, design and verification of control
systems in power electronics, QEMU internals and details about SystemC.

Chapter 3 - QEMU External Synchronization Mechanism - The third chapter ex-
plains how to enable the QEMU external synchronisation with other simulators in
the parallel emulation mode.

Chapter 4 - COSIL: Co-simulation Software-In-the-Loop - That chapter presents the
COSIL platform and shows a performance study in an industrial project.

Chapter 5 - Test and results - The fifth chapter shows the results obtained to demon-
strate the feasibility of the contributions.

Chapter 6 - Conclusions - The sixth chapter exposes the thesis conclusion, discussions
and future works.

1.3. Publications and related

International journals

E. Díaz, R. Mateos, E. Bueno and R. Nieto, "Enabling Parallelized-QEMU for
Hardware/Software Co-Simulation Virtual Platforms," Electronics 2021, 10, 759.
https://doi.org/10.3390/electronics10060759

E. Díaz, R. Mateos and E. Bueno, "COSIL: a new co-simulation Software-in-the-
Loop tool for verification in Power Electronics," IEEE Transactions on Industrial
Informatics, 2021 [in process of revision].

1.3 Publications and related 7

International congress

E. Díaz, R. Mateos and E. Bueno, "Virtual Platform of FPGA based SoC for Power
Electronics Applications," 2019 IEEE 28th International Symposium on Industrial
Electronics (ISIE), 2019, pp. 1371-1376, doi: 10.1109/ISIE.2019.8781247.

E. Díaz, R. Mateos and E. Bueno, "Virtual Platform of FPGA based MPSoC
for Power Electronics Applications: OS simulation," IECON 2019 - 45th Annual
Conference of the IEEE Industrial Electronics Society, 2019, pp. 3118-3123, doi:
10.1109/IECON.2019.8927331.

E. Díaz, R. Mateos, J. Pavón and D. Calvo, "Versatile SoC architecture for in-
tegration of HW accelerators in power electronics applications," 2021 22nd IEEE
International Conference on Industrial Technology (ICIT), 2021, pp. 817-822, doi:
10.1109/ICIT46573.2021.9453471.

Collaborations

R. Nieto, R. Mateos, Á. Hernández and E. Díaz, "Dual-Core Architecture for PLC
Channel Estimator and ASCET Equalizer in a FBMC Transmultiplexer," 2019 24th
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), 2019, pp. 1342-1345, doi: 10.1109/ETFA.2019.8869476.

R. Nieto, E. Díaz, R. Mateos and Á. Hernández, "Evaluation of Software Inter-
Processor Synchronization Methods for the Zynq-UltraScale+ Architecture," 2020
XXXV Conference on Design of Circuits and Integrated Systems (DCIS), 2020, pp.
1-6, doi: 10.1109/DCIS51330.2020.9268616.

Research and others projects

University of Alcala, Norvento Distributed Energy, S.L. and IMDEA Centre for En-
ergy, "Microgrid-on-chip, battery inverter with integrated converter and microgrid
control." RETOS 2017 project, RTC-2017-6262-3.

University of Alcala and TOTYTRANS, S.L., "Development of a control system for
a 1.5MVA Back-to-back-converter." Ref UAH: 106/2018.

University of Alcala and CERE Certification Entity , "Development of advanced
functionalities in a test bench based on a 400KVA back to back converter." Ref
UAH: 194/2020.

University of Alcala and CERE Certification Entity, "Design of a 400kVA power
converter operating as grid-forming." Ref UAH: 5/2020.

8 Chapter 1. Introduction

University of Alcala and REPSOL S.A, "Provision of an E POWER QUALITY
converter capable of compensating for power failures of up to 15 minutes." Ref UAH:
77/2021.

Funding

This work has been supported in part by the Spanish Ministry of Science, Innovation,
and Universities through the RETOS 2017 project, RTC-2017-6262-3 and the INERCIA0
2018 project RTI2018-098865-B-C33.

Chapter 2

State of the art

The keywords: co-simulation, control systems in power
electronics, QEMU emulator and SystemC language.

This chapter presents state-of-the-art related to the subject of the thesis. It is intended
to give the reader a strong base and references for a good understanding. In particular,
co-simulation and co-verification techniques for digital devices such as system-on-chip
will be discussed. Then, it will show current methodologies and trends in implementing
digital devices for controlling electrical systems. Finally, details about the emulator and
the language used to achieve the goals of the thesis will be detailed.

2.1. Co-simulation based on virtual platforms

In the last decades, simulation has been the most used step to verify any design. This
is because it allows reducing design cycles drastically. The first academic source to show
the qualities of simulation is The Art of Simulation (1964) [VT64]. This paper explained
how to built and use an industrial plant simulator with multiple machines. Nowadays,
there are simulations in almost all engineering areas: digital systems, analogue systems,
thermodynamics, aerodynamics, energy, economics, etc. According to the last Aspencore
Embedded Market survey [Eva19], for years, multiple engineers have reported that the
simulation stage has been the most critical stage for the computer systems community,
followed by emulation.

A simulation represents the behaviour of a real system over time. Therefore, it allows
us to know how the systems work, even before the real system has been built. To simulate
a real system, it is necessary to make a model of the real system that represents its func-
tionality. Different degrees of detail can be achieved in a simulation, and the observability
of the model takes priority over the speed of the simulation. The most basic simulation
(see Figure 2.1) consists of a simulation model and a solver. The solver performs the
model calculations by obtaining the outputs as a function of the inputs for each iteration.

10 Chapter 2. State of the art

Time-
stepped

Event
driven

Discrete
models

Continuous
models

Simulation

Solver Model

Sequential Parallel

Arquitecture typeModelling type

Real system

Figure 2.1: Basic composition of a simulation environment [Figure adapted from Figure 2 in [PVL+17]
and Figure 2.1 in [Fuj01]].

According to the modelling of the real system and the architecture, different types of
solvers can be used to manage the models (see Figure 2.1) [PVL+17]. It can be classified
into two categories in function on modelling used: discrete models and continuous models.
Furthermore, the architecture can be sequential or parallel.

Continuous models are used for systems whose states change continuously over time.
They are usually described using differential or algebraic equations. Otherwise, the states
of a discrete model change only at specific instants. The process of converting a continuous
model to a discrete model is called discretisation. In a discretisation, the discretisation
frequency is used to define the minimum period to wait to update the model’s state. A
discretisation always implies discretisation errors. This is the same concept that is used
to convert digital signals to analogue and vice versa.

In the case of solvers for discrete models, there are two time-flow mechanisms: event-
driven and time-stepped. The time-flow mechanism defines how the states of each model
should change when time advances. On the one hand, the event-driven mechanism, also
called variable-step solver, updates the models only when "something interesting" happens.
That is when the state of the model changes. The instant at which the change of model
state occurs is called an event. The event is an abstraction used to model an instantaneous
change in the modelled system. For instance, a value change in a clock signal is an event.
Each event has a timestamp and a list of possible actions to be executed when that event
is simulated.

On the other hand, the time-stepped mechanism, also called fixed-step solver, period-
ically updates the states of the models, whether something interesting happens or not.
This could reduce simulation performance, especially in systems where the frequency with
which models change is low. Time-stepped solvers are often used in situations where, us-
ing an event-driven solver, the concentration of events is so high that it does not allow
the simulation to proceed at an adequate speed. In addition, they allow maintaining a
constant temporal accuracy in all models.

2.1 Co-simulation based on virtual platforms 11

Even-driven solvers are the basis of sequential Discrete Event Simulator (DES). A DES
incorporates a state machine that manages all events in the simulation. An example of
a DES state machine is shown in section 2.4. Usually, the state machine manages three
data structures.

The variables that describe the state of each model. A change in state variables
means a change in the state of the existing system resulting from processing an
event.

A list of events containing the events to be processed. This list can change dynami-
cally throughout the simulation, depending on the results of each model. If an event
is generated due to the last event, the DES incorporates it in the event list.

A global clock. This clock is used as a time axis for all models in the simulation.

From an architectural point of view (see Figure 2.1), a sequential solver employs an
inherently sequential algorithm to manage the events of all models. In sequential solvers,
synchronisation between all modules is relatively simple. However, its main drawback is
that simulations of large real systems are limited by their sequentially. The solution could
be to parallelise the sequential algorithm by creating a parallel solver. The main advan-
tage is that the execution time of the simulation is reduced by parallelising the resources.
However, the complexity of synchronisation in a parallel solver is considerable [Dom16].
Works such as [DLS17] has parallelised sequential DES simulators such as SystemC. Al-
though they have been shown to increase simulation performance, the complexity of the
synchronisation algorithms is proving to be an impediment to it usability. The option
of combined simulators with sequential and parallel solvers is desirable as it would allow
mixing the advantages of a simple synchronisation with the performance of a parallel
solver.

As with simulation, co-simulation is not a new concept. In the last three decades,
authors such as Becker [BST92], Fujimoto [Fuj01] or Fitzgerald [FLV14] have deeply
studied the background of co-simulation. Other authors such as [NBTN17] or [PVL+17]
have highlighted the usefulness of co-simulation in verifying the cyber-physical. The
concept of co-simulation is related to running multi-domain simulators simultaneously to
verify the whole system. In addition to the simulators, a master algorithm is needed. The
master algorithm configures, initialises and synchronises the simulators. It also manages
the information and event traffic between the simulators. Figure 2.2 shows an example
layout for a co-simulation using two simulators.

The distribution of simulators in a co-simulation depends on the type of application.
Currently, there are two approaches, mono-process and multi-process setup (see Figure
2.3).

A mono-process co-simulation, also called monolithic co-simulation, includes all sim-
ulators in the same process from the point of view of the operating system. The main

12 Chapter 2. State of the art

Co-simulation

Simulation#1 Master
Algorithm

Solver Model#1.1 Model#1.2

Simulation#2

Solver Model#2.1 Model#2.2

Figure 2.2: The composition of a co-simulation based on two simulations.

Mono-process

Parallel

Multi-process

Distributed

1 2
1 2

Simulation#1,2

Communication
overhead

3
3

1 2
Simulation#1

Communication
overhead

3

1 2Simulation#2 3

1 2
Simulation#1

Communication
overhead

3

1 2Simulation#2 3

Co-simulation

Sequential

Figure 2.3: Types of co-simulación.

drawback of this distribution is that the overall performance of the co-simulation is low.
Usually, it does not take advantage of the available host resources where the co-simulation
is running. Actually, using the host resources depends on how well the operating system
manages them. Nevertheless, this setup is the easiest to build and has the most debugging
features. This is because all modules and variables of the co-simulation can be accessed
from a single process. Another advantage is that it has minor penalties for communication
and synchronisation between simulators. Although it uses a single process, the simulators
and the designs of each simulator can be parallelised through threads. Therefore, we can
have a single-process parallel co-simulation.

In the case of multi-process co-simulation, each simulator uses its own process. There-
fore the workload of the co-simulation is parallelised. If all processes run on the same
host machine, it is called parallel co-simulation. If the processes run on different ma-
chines, such as servers, it is called distributed co-simulation. Besides the location, the
communication channel is the other main difference between parallel and distributed. In
the parallel case, it often uses communication mechanisms of the operating system it-
self, such as Inter-Process Communication (IPC) like sockets or shared memory. Because
communication via sockets is slow [DBK+16], some works have used shared memory to
synchronise both simulators. In the distributed case, machines typically communicate
via Transmission Control Protocol (TCP). This option allows specialising the simulation

2.1 Co-simulation based on virtual platforms 13

hardware to each simulator. The latest trend is to use the cloud-based simulations ap-
proach [NTB+18,RKK+19,HMUH19]. That is, using the high computational capacity of
the cloud to perform co-simulations. The main challenge here is to maintain a coherent
interface to connect simulators from multiple domains and vendors.

A primary aspect of any co-simulation is the execution speed. In real applications, it
depends on many factors. Some of them are the workload of the models, the performance
of the host or server used, or the penalties for communication between models.

When verifying complex digital systems such as microprocessors through simulation,
the main drawback of a simulator is the speed of execution. The workload required to
simulate complex devices is quite high. In order to increase the speed of simulation,
complex models such as microprocessor models are often simplified. This simplification
means that the simulated source code does not include all the details of the final code.
For these reasons, other alternatives have been demanded to verify the functionality of
microprocessors. Currently, one of the most attractive is to emulate the microprocessor.

An emulator is a software or hardware system that replicates the behaviour of the real
system. Emulation allows the behaviour of a system to be reproduced at the same speed as
the real system. This may involve simplifications of certain parts of the real system. Also,
it is usual to run the emulation using the host’s resources equivalent to the real system. In
this case, speed is prioritised over the observability of the design. Examples of emulators
are OpalRT (power systems)[OPA20], ZeBu Server by Synopsys (digital systems)[Syn21]
or microprocessor emulators such as QEMU (computer systems)[QEM].

The main difference between an emulator and a simulator resides in the speed with
which it reproduces the behaviour of the real system [McG02]. While the simulator focuses
on test and develop behaviour, an emulator focuses on achieving real-time execution. The
simulation speed depends on the level of detail analysed, while the emulation speed is as
close to reality as possible.

A digital system can be composed of multiple devices such as processors, peripherals,
memories, digital and analogue circuits, interfaces, etc. In order to be able to verify the
whole board at the same time and evaluate possible design alternatives, a good option is
to build a virtual platform. A virtual platform is software that represents the behaviour
of a real platform; it means the board.

The virtual platform can be composed of multiple specialised simulators or emulators.
For example, a virtual platform can be built to simulate a state-of-the-art memory model
using a Hardware Description Language (HDL) simulator for the memory and a software
emulator to represent the functionality of the processor accessing the memory. In such
a case, a co-simulation virtual platform is used. Another example is shown in Figure
2.4 where an acquisition system is verified on a motherboard. In that example, the
microprocessor uses the PCI Express interface to deliver the acquired data to a graphics
card. In addition, HDL designs are used in digital devices such as FPGAs to handle

14 Chapter 2. State of the art

the signals acquired in the analogue stage. As it can see, multiple domains are merged
in the same application. Although the co-simulation concept was initially intended to
run multiple simulators, its synchronisation techniques can also be used with emulators.
Thus it is possible to have a co-simulation virtual platform composed of simulators and
emulators.

Co-simulation Virtual platform

Analog
Simulator

Digital
simulator

PCI express
emulator

Microprocessor
emulator

Real platform

Analog side

PCI Express

Microprocessor

FPGA

Master
Algorithm

Figure 2.4: Example of a virtual platform for the co-simulation of a motherboard.

As it was mentioned, co-simulation can mix simulators and emulators from multiple
domains. Therefore, nowadays, it is easy to find hybrid co-simulations. The hybrid co-
simulations are complex as they mix different types of architectures, solvers and synchro-
nisation mechanisms in the same tool. Some of the main challenges have been presented
by multiple authors [BGL+15, PVL+17]: semantic adaptation, error validation, different
step size, events synchronisation or standardized interfaces, and others.

2.1.1. Abstraction levels in simulation

One of the most commonly used techniques to reduce time-consuming is to simplify
simulation models. Simplifying simulation models reduces the number of events and the
workload of each simulator. Simulation speed decreases with the number of triggered
events. Thus, co-simulation techniques have to deal with the abstraction levels of each
model.

On the one hand, if abstraction of the simulation model increases, a lower level of
detail and precision will be obtained, and therefore fewer events. On the other hand,
fewer events mean more simulation speed. Figure 2.5 summarises the mains abstraction
levels used in a hardware/software implementation flow.

Several works like [CYT11,CLP14,KYH16] have shown that the most appropriate level
to verify both software and hardware is the Transaction level, which is detailed enough
to check architectures temporarily but does not have all the details of Register-Transfer
Level (RTL). In this thesis we focus on the Transaction level to increase the speed of
the hardware and software co-simulation. However, the key to allowing flexibility in a
co-simulation tool is to allow the use of multiple levels of abstraction. That flexibility

2.1 Co-simulation based on virtual platforms 15

makes it easy to use design methodologies and to focus on simulation resources.

When multiple modules are described in different levels of abstraction, it is necessary
to include an adapter called the transactor. A transactor translates messages exchanged
between modules with different abstraction levels. This concept has been used for years by
multiple authors in the literature [BFP06,HLGD18]. Its main use focuses on translating
from Transaction-level Modeling (TLM) to Register-transfer level (RTL) and vice versa.
An example of a transactor adapting TLM designs to RTL can be seen in Figure 2.6.

Transaction level:
 - Architecture analysis
 - Early development SW
 - Temporal estimation

Algorithm description:
 - Matlab, C/C++
 - Finite State Machine
 - Model-in-the-loop

Register-Transfer Level:
 - Terminal level detail
 - Cycle accuracy
 - HW development

Functional level (UTF):
 - Functional design
 - Specifications

UTFAlgorithm

Gate level:
 - Implementation
 - Max detail level

TLM RTL Gate

High level Levels of abstraction
100000x 1xImpact of design changes throughout the flow

Low level

Figure 2.5: Levels of abstractions.

TLM
Model

RTL
Model

TLM-to-RTL
Transactor

RTL-to-TLM
Transactor

signals signals

function calls/events function calls/events

Figure 2.6: TLM-to-RTL transactor overview.

2.1.2. Co-simulation techniques

Co-simulation techniques are the art of orchestrating the execution of multiple simu-
lators. A co-simulation deals with the speed/precision trade-off. Therefore, it is up to
the user to choose the most appropriate option for each application. Orchestrate implies
timing and order aspects will be taken into account in the execution of the co-simulation.
Therefore, before presenting the different co-simulation techniques, it is necessary to define
which timing types exist in a simulation [Fuj01]:

16 Chapter 2. State of the art

Physical time: time of the real system.

Simulation time: abstraction used to model the time being simulated. In multi-
simulators setup, there is a global simulation time, i.e. the reference time for all
simulators, and multiple local simulation times to each simulator:

• Global simulation time: this is the time seen by all simulators. This time update
and advances each time all simulators are synchronised.

• Local simulation time: each simulator can advance at a different speed so each
simulator can have its own local time.

Wallclock time: time taken by the simulator to run the simulation.

It is possible to take 10 hours (wallclock time) to run a simulation of the interactions
carried out during 1 ms (physical time) between 100 neurons. However, if we are only
interested in the first interactions, we can stop the simulation when 1 ms (simulation
time) has been simulated from the beginning.

The next step is to define when the simulators synchronise time to achieve consis-
tent results. The co-simulation techniques used to come from previous work in the field of
parallelised-DES [Fuj01]. Remember that the master algorithm is in charge of synchronis-
ing the simulators. The master algorithm manages the progress of each simulator taking
into account the local simulation time of each simulator and global simulation time. In
some cases, it will have situations where the local simulation time of each simulator is
different. However, the timing notion between simulators should be the same when there
is an interaction between them, which avoids any causality problems.

Traditionally, the master algorithm has used two synchronisation schemes: synchronous
and asynchronous. In the synchronous one, the global time drives the simulation time,
and simulators have the same local time, which is a copy of the global time. This limits
the progress of each simulator to a regular time interval. Each simulator must handle
all events before the end of its available time interval. This ensures that each simulator
will not process an event before its local time. This scheme has high timing accuracy
and is appropriate for applications where simulators interaction is high. However, its
main drawback is the high message traffic between simulators when there are hardly any
interactions. Note that each stopping to send a message introduces a performance penalty
in the co-simulation. To reduce this penalty, some works such as [Mat06,DBK+16] have
proposed to group all simulators in a single-process architecture instead of using a multi-
process approach. The single-process architecture allows the use of shared memory to
send information easily from one simulator to another. Therefore their communication
penalty is minimised.

The asynchronous alternative is based on each simulator has its own local time, and
its time advance is variable. In this case, each simulator advances freely as long as the

2.1 Co-simulation based on virtual platforms 17

causality of the system is maintained. This avoids all unnecessary messages between
simulators. The asynchronous synchronisation scheme must perform forward scheduling
for each simulator. Its performance depends on the success of this scheduling. There are
two possible schedules: conservative or optimistic (see Figure 2.7).

Conservative asynchronous scheduling releases the progress of each simulator as long as
it is guaranteed that one simulator does not generate events that another simulator must
process. This method aims to identify how much time one simulator can advance without
impacting another simulator. This time is called look-ahead time. Its implementation is
usually based on periodic synchronisation points whose period coincides with the look-
ahead time. In this case, simulators run and stop at the synchronisation points to exchange
messages. This schedule is appropriate for simulators that interact periodically over a long
period. This is the case for control applications in power electronics, where the control
algorithms are often divided into software and hardware modules. These applications
are running periodically with a relatively low rate of interaction between software and
hardware.

1

1

2

2

43

4

5

3
Simulation#1

Simulation#2

Communication
overhead

1

1

2

2

43

4

5

3
Simulation#1

Simulation#2

Communication
overhead

1

1

2

2

43

4

5

3
Simulation#1

Simulation#2

Communication
overhead

6 4 5 6

rollback

checkpoint Acceleration

Acceleration

Multi-process co-
simulation based on

conservative
synchronization

Multi-process co-
simulation based on

optimistic
synchronization

Mono-process co-
simulation based on

conservative
synchronization

Figure 2.7: Example of conservative and optimistic asynchronous schedulings. [Mat06].

Optimistic asynchronous scheduling is based on letting each simulator run as far as
possible, saving simulators’ state in checkpoints. If an interaction requires some simulator
to return to a past state, the checkpoints can recover the simulator state. Checkpoints
ensure that there are no causality problems. The main drawback of this method is the
excessive memory consumption of constantly saving each simulator’s state. By contrast,
it is the fastest option in situations where there are not many interactions.

The reader may have noticed that in Figure 2.7 multiple simplifications have been

18 Chapter 2. State of the art

made to clarify the explanation. Note that the three synchronisation mechanisms shown
in the Figure are executed sequentially. However, as discussed in the previous section,
it is possible to have single-process and multi-process co-simulations. Therefore, it is
possible that the progress of each simulator is not sequential but also parallel. A second
simplification is that the duration of each interval in which the simulator is running is
fixed and limited. This is guaranteed for simulators using a fixed-step solver. However,
it may be the case that some simulators use a variable-step solver. In this case, it has a
hybrid co-simulation. Typically, the strategy to synchronise this type of co-simulation is
conservative. The most restrictive or slowest simulator is usually used as the master of
co-simulation [PVL+17].

Figure 2.7 also shows an example of single-process conservative synchronisation. The
communication penalties are reduced compared with the multi-process distribution.
Therefore a speed-up of the co-simulation performance is expected. However, the speed-
up depends on each evaluated model, the number of interactions between each simulator,
and the communication latency between each simulator.

2.1.3. Hardware/software co-verification

The term of co-verification has been defined many years ago and comes from the need
to verify embedded devices whose applications interact between software and hardware
[And05]. Embedded devices often mix processing blocks with hardware digital modules
such as SoC+FPGAs. The verification process of a SoC+FPGA can be done in multiple
ways. In most cases, verification usually includes a simulation stage that saves time and
reduces hardware/software bugs. However, it is possible to skip the simulation stage and
use systems that verify the software and hardware by emulation. Usually, such systems
perform a distributed co-simulation based on specialised emulators. Examples of such
equipment emulating software and hardware are Cadence Palladium, Mentor Veloce or
Synopsys Zebu [Meh18]. Their main drawback is their high cost.

This section will focus on SoC+FPGA co-verification carried out on the same host
workstation. In this setup, co-simulation tools are often used to verify software, hardware
and their interactions simultaneously. Co-verification tools use and synchronise multiple
simulators/emulators (e.g. software emulation with hardware simulation). If all tools
simulate, it is referred to as co-simulation. When at least one tool uses emulation, it
is often called co-emulation. To co-simulate or co-emulate an embedded device, it is
necessary to built a virtual platform that represents the functionality of the embedded
device or board and includes the software and hardware simulators or emulators.

The most used strategy to build a hardware/software co-simulation virtual platform
is based on a sequential Discrete-Event Simulator (DES) or simulation kernel. The DES
distributes the tasks between the software module (CPU-Processing System) and the
hardware design (FPGA fabric-Programmable Logic) [Fuj01, CYT11, WMLA16]. Each

2.1 Co-simulation based on virtual platforms 19

hardware/software can be seen as a module within the discrete event simulator. More-
over, each module can be made up of a simulator/emulator, and its synchronizations and
communications are carried out through messages. Both modules can be described at
different abstraction levels depending on the precision/speed trade-off that the user can
assume.

In a discrete event simulator, state changes occur only through events [Fuj01]. The
simulation run time increases with the number of triggered events. Therefore, a usual
approach to improve simulation speed is to use higher abstraction levels with fewer events.
As already mentioned, the best abstraction level to verify both software/hardware mixed
designs is the transaction level, which is detailed enough to check designs with timing
accuracy but does not consider all the details of RTL/gate-level that would slowdown the
co-simulation.

The most common approach to build a hardware/software virtual platform consists of
an open-source processor emulator (software) and a digital simulator (hardware). The
emulator reproduces the software execution behaviour, such as QEMU [DBK+16]. The
digital simulator verifies the behaviour of hardware modules. Some examples of digital
simulators are OSCI SystemC kernel, QuestaSim by MentorGraphics, or VCN by Syn-
opsys. SystemC enables modelling the hardware modules from the algorithm level to
Register-Transfer Level (RTL) and there is an open-source simulator.

In this approach, the processor emulator is divided into of an Instruction Set Simulator
(ISS), which interprets guest instructions and executes them on a host. It also involves a
Bus Functional Model (BFM), which models the external processor interface and its con-
nection with the surrounding hardware. Simultaneously, the hardware simulator behaves
as the simulation kernel to distribute the simulation events in hardware/software modules
(see Figure 2.8). Both software and hardware modules can introduce a high workload,
implying a very slow simulation for complex systems. However, its use is very suitable
during the early stages of the design flow.

HW simulator – Discrete-Event Simulator – kernel co-simulation

SW Module / SW Emulator
I/O access

BFMISS

HW Module / HW Designs

RTLC/C++

RTL RTL

IRQ

SYNC

Figure 2.8: Block diagram of the general setup of DES-based HW/SW co-simulation virtual platform.

FPGA-based SoC devices increase the complexity of hardware/software mixed designs
and, hence, their verification. Also, a trade-off between the timing accuracy and the

20 Chapter 2. State of the art

speed of the simulation is required. When software and hardware share information, it
is necessary to simulate the hardware design located in the FPGA to verify software
binaries. The reason is that the software results will largely depend on the hardware
results. For mixed hardware/software designs, the difference of timing accuracy between
two components is usually three or more orders of magnitude. A difference like this
requires increasing the global timing accuracy of co-simulation, increasing the number of
events to process.

SystemC, proposed as IEEE standard in 2011 and based on C++, has become the
most common languages to build hardware/software interfaces for co-simulation virtual
platforms. Some examples are QBox [DBK+16], COREMU [WLC+11], Simics by Wind
River Systems [MCE+02], or PetaLinux by Xilinx. These co-simulation virtual platforms
allow instantiating RTL modules modelled in SystemC and using the OSCI kernel (DES)
of SystemC as hardware simulator and kernel of co-simulation. However, the SystemC
kernel runs the simulation sequentially and has code limitations that prevent it from
parallelizing its kernel [Dom16, BMC16]. Therefore, it introduces a penalty on complex
FPGA-based SoC systems with multiple CPUs and RTL modules running in parallel.
Contributions to parallelize SystemC are presented in [BSS+11]. However, these contri-
butions have not yet been included in the SystemC Standard [IEE11]. Also, their use is
limited to the academic field.

To reduce long co-simulation run times, some tools such as PetaLinux or QBox have
delegated the responsibility to the software emulators they adopted. This way, they focus
on improving the interface, memory management, or ecosystem. Like COREMU, others
have chosen to create multiple modules to instantiate copies of the same software emulator
in different operating system threads and control their progress. However, they have not
presented a follow-up of the work, and their impact has been diminished.

Table 2.1 shows the current most commonly used open-source software (SW) emulators.
They are OVPsim, Unicorn, Gem5, and QEMU. The main reasons for their success are
their high portability to different architectures, and their updated repository and extensive
documentation. This has led companies such as ARM, Xilinx, or Synopsys to adopt them
for their products.

There are two critical factors to differentiate each emulator, the accuracy and the speed
at which it executes. Accuracy can be at the functional level, the target instruction level
or the target processor cycle level. Typically, the higher the level of detail, the slower the
speed of the emulator. However, the speed of the emulator is also affected by the quality
and type of engine used. If the engine uses virtualisation, the speed is usually higher.

OVPsim is a proprietary virtual platform emulator released by Imperas, which simu-
lates complex multiprocessor platforms with arbitrary local and shared-memory topologies
[Imp08,DXZ+13,LP15]. It offers open-source CPU models and free Application Program-
ming Interfaces (API) to build processor, peripheral, and platform models. OVPsim’s

2.1 Co-simulation based on virtual platforms 21

Table 2.1: Comparison of most used software emulators.

SW
Emulator License Engine Accurate Speed Platforms

Supported Refs

Simics
(WindRiver) Proprietary KVM:

Multi-thread Function • • • • ◦ • ◦ ◦ ◦ ◦ A

OVPSim
(Imperas)

Open
/Proprietary

DBT:
Single-thread Instruction • • ◦ ◦ ◦ • • • • ◦ B

QEMU-DBT Open DBT:
Single-thread Instruction • • • ◦ ◦ • • • • • C

QEMU-
KVM Open KVM:

Single-thread Instruction • • • • • • ◦ ◦ ◦ ◦ D

QEMU-
MTTCG Open DBT-Parallel:

Multi-thread Instruction • • • • ◦ • • • ◦ ◦ E

Gem5 Open DES:
Single-thread Cycle • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ F

Unicorn Open DBT:
Single-thread Function • • • ◦ ◦ • • • ◦ ◦ G

A: [MCE+02,CYT11]; B: [Imp08,CLP14,LP15]; C:[Bel05,LP15]; D: [Bel05,MB16]; E: [CBBC17]; F:
[BSS+11,BGOS12,MCJW17,AAKMK18]; G: [ND15,JWLA19].

main advantages are extensive documentation and support for different processor archi-
tectures. However, OVPsim does not allow building cycle-accurate models but rather
instruction-accurate models [CLP14]. Moreover, [CLP14] shows that OVPsim is slower
than QEMU. Also, it supports fewer target processors.

Gem5 is a microarchitecture simulator. Nevertheless, it supports a full-system mode,
which enables it to be used as an emulator. It provides cycle-accurate precision since it
is based on a DES. Therefore, its simulation speed is not as high as QEMU or OVPSim
because it does not take advantage of a Dynamic Binary Translation (DBT) engine or
the Kernel-based Virtual Machine (KVM) engine. Although the use of KVM is extended
to virtualize desktop machines [KDB+18], its use to verify embedded devices is not very
extended.

QEMU is currently the open-source instruction-accurate software emulator adapted
to the highest number of guest processors. Initially, it was created using a sequential
execution. However, the increase in the number of CPUs (or cores) has forced researchers
to look for alternatives such as the KVM engine or the Multi-Threaded Tiny Code Gen-
erator (MTTCG) engine. These options speed up emulations of multi-core platforms like
symmetric multi-processors operating systems [QEM], parallelizing the load of QEMU in
the host CPUs. Multiple works have been published describing its use to build high-
performance hardware/software co-simulation environments [CYT11, LP15, DBK+16].
Instruction-accurate is considered enough for functional verification of MPSoCs [CLP14].

As a simplified version of QEMU, Unicorn [ND15] improves the framework and flexibil-
ity of QEMU, thus making a safe software emulator. Nonetheless, it offers fewer features
than QEMU, and it has been ported to only a few hardware platforms. Its use is limited to

22 Chapter 2. State of the art

research purposes [JWLA19]. Two main approaches have been used to integrate QEMU
as software emulator into the co-simulation virtual platform: mono-process approach and
multi-process approach.

In the mono-process approach used in [DBK+16, CKCL18], QEMU is included as a
dynamic library in the virtual platform. Thus, the software emulator and the hard-
ware simulator run in the same process, allowing the synchronization and communication
mechanisms to be implemented as simple function calls.

The multi-process approach is based on the use of an inter-process communication
mechanism. The last versions of PetaLinux toolset by Xilinx include a new feature to
connect QEMU with an external simulation environment, such as SystemC. This ap-
proach integrates simulators (QEMU and SystemC-DES) as different OS processes, send-
ing transactions and synchronizes time through UNIX sockets. Such a solution provides
flexibility. Nevertheless, the main weakness is the limited simulation speed it provides.
This applies specifically to systems that present high Input/output acceses (I/O) rates
in which the interprocess communication overhead significantly reduces the co-simulation
speed. This is an important aspect when the synchronization message rate is high. An-
other disadvantage of the QEMU emulator is that the multi-host thread feature is not
supported, forcing the reduction of simulation speed and sequential execution. Therefore,
its use for the verification of target platforms running multi-core operating systems is
limited.

QBox or "QEMU in a box" [DBK+16] is an in-progress solution to develop a QEMU
version equipped with a TLM2.0 external interface to facilitate its integration in a hard-
ware simulation environment. This virtual platform allows co-simulation using SystemC,
and it provides shared libraries that contain QEMU-based CPU models. Currently, QBox
only supports three types of ARM CPUs. Although it is a desirable open-source solution
for heterogeneous architectures, currently, it does not support the multi-host thread for
fast OS simulations (similar to PetaLinux).

2.2. Digital electronics for controlling power electronic convert-
ers

In the last few decades, Power Electronics has acquired great prominence as a mul-
tidisciplinary technological and scientific area that studies the control and conversion of
energy flows using electronics as a reference. These areas include applications from micro-
electronics to large power systems, where the aim is usually to increase energy efficiency,
either by reducing consumption or avoiding unnecessary losses through the use of different
control techniques.

The background of power electronics has been widely studied and developed in the
last decades and is described by authors such as Mohan, Bose or Trzynadlowski, and

2.2 Digital electronics for controlling power electronic converters 23

others ([MUR09],[Bos97],[Trz10]). Currently, there are many research areas of interest
such as: smart grids, electrical machines, industrial drivers, power converters, renewable
sources, storage systems, energy transportation, automation technologies, control systems,
robotics, cloud computing or Internet-of-the-Things applied to industry [IEC19]. Figure
2.9 shows an example of the most popular areas of power electronics [Soz17]. The current
thesis focuses on making contributions both in embedded software and hardware design
and circuit simulation areas (highlighted in Figure 2.9 with grey sections).

Embedded
software and

hardware design

Power
systems

Electrical
machines

Signal
processing

Electronics,
solid-state
electronics

Circuit
theory

Circuit
simulation

Thermal
design

Electromagnetic

Analog and
digital control

PhD

PhD

Figure 2.9: Main areas of power electronics and contributions of the thesis.

The basic power system consists of a power circuit/equipment called the power plant,
which transfers the energy, and the control system, which measures and controls the power
plant. Figure 2.10 [Soz17] shows the diagram of a basic power system. The control system,
also called a controller, is based on real-time feedback/feedforward and measures the state
of the power plant using voltage and current sensors, both at the input and output. It
then processes the measurements and generates the necessary excitations or changes in
the plant to meet the desired control reference or set points. The control system is usually
implemented on the control board that includes all the digital and analogue circuits for
measuring, processing and driving the signals that control the power plant. Examples
of the power plant are converters, electrical machines, power generators, power loads or
power transmission networks.

24 Chapter 2. State of the art

Power
Electronics

Cirtuit

Digital
controller

Power input
u(t) i(t)

Power output
u(t) i(t)

Measurements
feedforward

Measurements
feedback

Control
signals

Reference
signals

Figure 2.10: Basic power electronics system.

2.2.1. Control system development

Control system designs for high power systems are considered critical systems that
must be reliable. In addition, such systems have certain particularities. Generally, the
following aspects must be taken into account [ELM14]:

Time accuracy. The frequency of the grid is usually in two ranges, 50 or 60 Hz.
One of the main goals of control techniques is to reduce the losses generated by har-
monics in the grid. The prominent harmonics are usually in the Hz to kHz range.
To detect these harmonics, it is necessary to sample the power plant at frequencies
below 1 MHz. Also, it is required to have processor units with clock frequencies in
the order of GHz in order to be able to process the measurements in real-time. The
synchronisation between the acquisition system and the processing unit is crucial to
meet the time requirements. Such synchronisation is usually imposed by the control
frequency with which the control algorithm was designed. Any fault of synchronisa-
tion or latency added to the control frequency can generate disturbances that make
the system unstable in a steady state.

Acquisition resolution. Power plant measurements must be transformed from an
analogue to a digital world using Analog-to-Digital Converter (ADC) devices. The
number of bits in these ADCs limits the accuracy of the sensors, constraining the
resolution that the control algorithm can have. Currently, ADCs of up to 20 bits are
commonly used. These higher numbers of bits can be obtained using sigma-delta.
As a consequence, the latency of ADC increase. In power electronics applications
the low latency in the acquisition system is vital. Therefore, most applications use
ADCs with a resolution between 10 and 14 bits.

Computing precision. Control algorithms are usually designed to operate at a pre-
cision limited by the control board, typically 16 or 32 bits (single-precision floating-

2.2 Digital electronics for controlling power electronic converters 25

point format). Therefore, the control board must be capable of meeting the precision
requirements of the control algorithm. Close attention must be paid to the quanti-
zation errors introduced and their impact on the algorithm control.

A high number of digital input and output. This type of system is distinguished by
having a high number of input/output (IO). A device can have hundreds of inputs
and outputs. They have to obtain real-time information from dozens of sensors and
generate excitations on dozens of drivers and relays driving the power plant.

Robustness to failure. One of the most important features is the ability of these sys-
tems to detect a fault and react before the fault causes damage to equipment or staff.
This usually includes monitoring the power supply, proper operating, temperature,
and any other faults that the control system may detect and, if possible, record.
Fault management should never be stopped and should be redundant.

To meet the above requirements, devices such as low-cost Microprocessors (µP), Digital
Signal Processors (DSPs), Field Programmable Gate Arrays (FPGAs), Systems-on-Chip
(SoC), or a mixture of the above, have been used [BDD19]. Today’s most commonly
used option is a mixed solution made up with a processing unit, it means a µP, a DSP
or a SoC, coupled to an FPGA. The processing unit run the software implementation
of control algorithms, and the FPGA implements the application-specific peripherals,
also called hardware accelerators. While the processing unit makes it easier the control
algorithm implementation, the FPGA complies with the interfaces, latency, throughput
and reconfigurability requirements.

FPGAs have been used extensively over the last decade in power electronics. Initially,
they were used as a hardware platform to implement peripherals in tandem systems based
on a DSP plus an FPGA. The DSP, usually floating-point, provided the necessary perfor-
mance to allow real-time execution of the control algorithms. At the same time, the FPGA
was used to implement the specific peripherals (Pulse-Width Modulation (PWM) gener-
ators, acquisition controllers, etc.) due to the limitations of the DSP. Some authors, such
as [ZYW+20], have used a DSP+FPGA system to perform predictive control of a Static
synchronous compensator (STATCOM). In [BCR+08], the authors use a DPS+FPGA
design to control a back-to-back converter for wind turbines. In [BHR+09], the authors
present an industrial interface for grid converters that is also based on a DPS+FPGA
design. The advantages of using DSP+FPGA tandem have also been demonstrated in
[MMB+13], where the authors use a DSP to include a current prediction algorithm applied
to multilevel converters.

The inclusion of hardware multipliers into FPGAs enabled their use in reconfigurable
computing applications [NI14] and the hardware implementation of control algorithms.
These hardware multipliers have evolved into complete DSP cells, which incorporate all
the necessary elements to implement the accumulative product or Multiply?accumulate

26 Chapter 2. State of the art

operation (MAC) operation, which is the fundamental operation to be performed in a
large number of discrete control techniques. Current FPGAs have many DSP cells, which
implies high parallelism to meet the most demanding timing requirements. Works such as
[MIN11] have pointed out that implementing control systems with switching frequencies
above 1 MHz can only be addressed by hardware implementation of the algorithms in
FPGAs.

As FPGAs grew in capability, it became possible to incorporate in a single device all
the resources needed to implement a microprocessor-based system as described above,
giving rise to the System-on-Chip or SoC concept. The first FPGA-based SoCs used to
include low-performance processors, which could be placed more in the category of mi-
crocontrollers. Since the computing performance was relatively low in most applications,
they were used as supervisors of the control system. In contrast, the control algorithm was
implemented in hardware using the logic resources of the FPGA [BIME13]. In this case,
the hardware implementation appears in the SoC architecture as specialised peripherals
that communicate with the processor.

The design of these hardware accelerators is a complex process that requires consider-
ing multiple factors that define their internal architecture. Some factors are the arithmetic
to be used (fixed point or floating point), the size of the internal datapath, the replication
of functional units (operators) that allow multiple operations to be carried out in parallel,
etc. The selection of these factors can directly impact the performance of the SoC (con-
sumption of logical resources, maximum operating frequency) and on the performance
of the control algorithm itself in terms of bandwidth [BC14] or stability [YMK14]. All
this turns the design of hardware implementations of algorithms on FPGAs into a com-
plex task, and it usually requires in-depth knowledge and experience in hardware design.
These are the main reasons that have delayed the adoption of this type of technology, as
pointed out by several authors [RAVPM15].

The introduction at the beginning of the 2010s of High-Kevel Synthesiser (HLS) has
contributed significantly to easing this situation. An HLS synthesiser (also called be-
havioural synthesiser) makes it possible to automatically generate the hardware designs
of the controller and its subsequent implementation in HDL languages (Hardware De-
scription Languages). HLS tools start from a behavioural description written in C/C++.
Then, a set of directives are added, defining the required architecture performance in
terms of high-level parameters such as maximum latency or minimum throughput. Some
of the most popular HLS tools are Vivado HLS by Xilinx, Catapult by Mentor or HLS
Coder by Matlab. The first work describing the use of HLS for the design of power con-
verter controllers dates back to 2013[NLB+13]. In [SMB+13], the implementation of a grid
synchronisation algorithm described in HLS is analysed, and a comparison is made with
its counterpart version in Very High Speed Integrated Circuit Hardware Description Lan-
guage (VHDL). The study concludes that HLS designs tend to be more resource-intensive

2.2 Digital electronics for controlling power electronic converters 27

than designs described in HDL (VHDL, Verilog). In addition, with HLS, there are lim-
itations concerning the latency obtained in the hardware design. However, other works
such as [KLG11,MFR20] conclude that HLS can achieve similar power consumption and
latency as if HDL languages had been used. There is no conclusion about the best option
between HLS or HDL because the result depends on the particularities of each design.
The success of the HLS tool depends on two factors: the quality and performance of the
synthesiser and directives optimisation or #pragmas that are given to the synthesiser.

The processors in FPGA-based SoCs have also been evolving, presenting more so-
phisticated architectures that offer better performance. The processors integrated with
FPGAs support two formats, depending on the method used for their implementation:
soft cores and hard cores [Nur07]. Soft cores use the FPGA logic for their implementa-
tion, so their performance is usually quite limited. For this reason, their use is usually
restricted to system management and supervision tasks or to implement control algo-
rithms with low timing constraints [JLU+14]. In hard cores, part of the silicon area is
reserved for implementing the processor, which allows it to achieve performance similar
to an Application-Specific Integrated Circuit (ASIC). The current trend is to also include
in silicon all the infrastructure necessary for the processor to operate (standard peripher-
als, cache subsystem, external memory controllers, etc.). The programmable logic part is
used to implement specific peripherals for the application or hardware accelerators. An
example is the Xilinx Zynq family (ARM Cortex-A9 dual-core + FPGA) [NI14]. These
are certainly high-performance processors, which even include vector computing units,
enabling the software implementation of more demanding control algorithms in terms of
execution times such as [TPD16]. Another example of the use of Zynq is [HWWR20],
where authors use this SoC to control a permanent magnet synchronous motor and analyse
its disturbances.

Multi-core SoC devices allow specializing the cores in specific tasks, achieving a bal-
ance between flexibility and efficiency. Such is the case of the work described in [PC14]
working with a dual-core SoC, in which one of the cores runs an embedded Linux, which
facilitates its connectivity with the external world. The other core runs the control algo-
rithm under a real-time operating system (Real-Time Operating System (RTOS)), much
lighter than Linux. The implementation of such distributions can be facilitated by multi-
core communication management libraries such as OpenAMP. One of the most significant
features of the last SoC families is the integration of MultiProcessor architecture or MP-
SoCs, which provides excellent flexibility, allowing the control algorithm to be distributed
among several microprocessors. An example of MPSoC is Zynq Ultrascale, including in
the same device four ARM Cortex A53 cores, two Cortex R5 real-time processors, and an
ARM Mali-400 GPU [ABG+16], which will allow the implementation of more challenging
control systems.

Although power control applications are not one of the main markets of SoCs and FP-

28 Chapter 2. State of the art

GAs (their market share is less than 5%), it has benefited from the development of these
devices. In recent years, investment in developing devices that enable realizing artificial
intelligence techniques such as machine learning or neural networks has been very signif-
icant. An example of this investment is the latest Xilinx family called Versal Adaptive
Compute Acceleration Platform (ACAP) [Xil20], whose development cost has been esti-
mated at over a billion dollars. Versal presents an evolution in heterogeneous computing
devices. The new SoC architecture incorporates a module called Artificial Intelligent en-
gines (AI) Engines. The AI engines are an array of Very Long Instruction Word (VLIW)
processor with 512-bit Single Instruction, Multiple Data vector units (SIMD) vector units
and memories. They also include DSPs in the FPGA fabric that support 58-bit and
single-precision floating-point operations, greatly increasing the resources available for
implementing control algorithms.

In [ZBW21], the authors present a state-of-the-art review of artificial intelligence in the
area of power electronics. The authors summarise state-of-the-art in three branches from
the application perspective: design (design time reduction, modelling and optimisation),
control (control tuning, estimation, fault-tolerant operation, modulation, energy man-
agement) and maintenance (system parameter identification, data processing, anomaly
detection, diagnostics, lifetime prediction). Although Versal ACAP has been developed
for other applications such as data centre, automotive or 5G, it is also a great device
to implement cloud/edge computing or machine learning solutions in power electronics
applications where the cost of the control system is not critical aspect. If the cost of the
control system is critical, System-on-Module (SoM) devices [Xil21a, Ins21] are expected
to become industry standard in the next decade. This approach integrates a SoC+FPGA
and memories on a single board module, reducing control board design and development
costs.

To conclude, the option of simulating the behaviour of the whole control system is
extremely interesting. It allows a significant reduction in the effort and time spent during
the development and verification of these systems. However, its heterogeneous setup,
where part of the functionality is implemented in software and part in hardware, requires
the use of different simulators that operate jointly (HW-SW co-simulation) to reproduce
the behaviour of the different parts of the system and the interaction between them
[CLP14, PVL+17]. In the simulation, the SoC interaction with the power plant to be
controlled must be added. Typically, the power plant behaviour is simulated using a
continuous-time simulator such as Matlab/Simulink.

2.2.2. Control system verification

The control system infrastructure has to acquire data from the sensors, analyse it,
detect possible faults, and drive devices like contactors or Insulated Gate Bipolar Tran-
sistor (IGBT) of the power plant. In addition, communication functionalities are usually

2.2 Digital electronics for controlling power electronic converters 29

integrated for monitoring. Thus, the usual architecture used for the implementation of
the control system is shown in Figure 2.11. In this architecture, the design is divided into
three stages: acquisition, controller execution and output/driver management. Typically,
the controller stage is further divided into multiple hardware modules and software mod-
ules. Therefore, such systems usually use multiple modules interconnected sequentially.
In other words, a failure in acquisition impacts the behaviour of the control algorithm
and can lead to incorrect behaviour of the plant. Thus, its verification is complex. The
modules and their interconnections must be taken into account to verify the operation of
the whole control system.

Communications

ADC DAC/
DriversFaults

Sensors
Inputs
PlantControl out

ref*
in

Net

Acquisition Digital
controller Drivers

Figure 2.11: Typical controller block diagram in power applications.

The verification of the control systems must be carried out under very controlled con-
ditions and is an essential step in developing the power plant. Usually, they control power
equipment operating at thousands of kilowatts. An unexpected control system failure can
cause irreparable damage to power equipment and presents a high risk to staff.

The most extended technique for testing software is debugging. The main drawback of
verifying control algorithms in power electronics is that they are implemented in real-time
systems. Consequently, it is not possible to stop the full control logic to apply debugging
techniques. This debugging could stop the execution of the controller, leaving the power
plant out of control.

Requeriments Definition

Code Generation

Processor-in-the-loop

Hardware-in-the-loop

Simulation Implementation

Design Realization

Installation/Calibration

Error
detected

Model-in-the-loop Code Verification

Software-in-the-loop

Non-destructive tools
for verification

Figure 2.12: Design and implementation flow of a control system in power electronics.

To reduce the risk of failure during the controller design and implementation, tech-
niques have been standardised to verify designs by simulation or emulation of the controller
and power plant gradually. The standardisation includes a design and implementation

30 Chapter 2. State of the art

methodology based on the V-Model used in hardware and software system development.
That methodology is described in ISO26262 as part of the IEC 61508 standard Functional
safety of electrical/electronic/programmable electronic safety-related systems [IEC10]. It
is an evolution of the classical waterfall model by performing a review at each stage and
allowing errors to be detected before reaching the final code version. Figure 2.12 shows
the design and development flow specialised for control systems in power applications.

This methodology is based on two main stages: simulation of the plant and the control
algorithm and implementation of the control system. In turn, each stage is divided into
multiple phases that help to develop the control system gradually. The jump from one
phase to another always involves verification, which allows detecting fails early. Whenever
an error is detected, the simulation stage must be repeated to check the impact of the
error and fix it.

The simulation stage involves the preliminary study, modelling the plant, modelling the
controller, and simulation of the whole system. Then again, in the implementation stage,
it programs the controller and the verification and installation of the control system is
performed. The verification process is usually based on the use of non-destructive systems.
It means, different systems that allow a closed-loop verification of the controller in safe
environments. These systems also help to debug the control system safely.

The initial phase of any design is based on the study of the necessary specifications
and theoretical approach. The duration of this phase depends on the difficulty of the used
control technique and the plant requirements. In this phase, no infrastructure is required,
and no code is developed.

Once the power plant and control system have been defined and studied, model-based
simulation tools are used to study the plant and simulate its behaviour with the con-
troller. This technique is called Model-in-the-Loop (MIL). The modelling of the power
plant and its reaction to specific excitations can be done theoretically. However, the huge
productivity of model-based simulation tools has made it the most widely used option.
Companies such as PSIM [PSI20] or Mathworks with Simulink [Mat20] have offered ma-
ture simulation environments that are widely used in the literature [Plu06]. Nowadays,
simulation is a necessary step in designing control algorithms to understand and verify
their performance and behaviour.

In the MIL phase, one of the most critical steps is the modelling of the plant. Multiple
techniques are associated with plant modelling to ensure that the plant model behaves
precisely like the real plant. However, the most commonly used option is to build the
plant model using predefined models from the simulation tool, which has been previously
verified. These predefined models are the main added value of this type of tools.

Once the MIL simulation of the whole system, power plant plus controller, has been
completed, the requirements to be taken into account for implementing the control system
are proposed. Only the simulation tool is needed for this phase. Until now, the phases are

2.2 Digital electronics for controlling power electronic converters 31

focused on the design. However, the following steps are focused on the implementation of
the controller on a control board.

When the control algorithm has been designed, it must be decided how it can be
implemented. That is, which parts will be implemented in software (CPU) and which
parts will be implemented in hardware (FPGA), taking into account the actual constraints
of the control board.

The next step is to program and implement the control system on the control board.
This step is often referred to as integration phase and is the most problematic step. Here
all the low-level details are taken into account. This is when all the problems of moving
from a theoretical system to a real system arise. The integration phase is the one that
often causes the most delays in project delivery. The integration of the whole system must
be well verified. Not only must be checked the correct implementation of the software
and hardware but also their communication and the timing requirements are met.

As mentioned before, when working with high powers, the verification of the control
system implementation is a dangerous step. Typically, the operation of the control board
is verified against a non-destructive emulation system to reduce risks (see Figure 2.11).

In literature, the most used non-destructive emulation system is based on Hardware-
in-the-loop (HIL) techniques (Figure 2.13a) [PMIG19, JHT+20]. The first HIL was a
flight simulator in 1910 made by Sanders "Teacher". Throughout the last century, they
have been used in countless industries such as defense, aerospace, energy, automotive and
transportation, maritime, etc. However, it was not until the 1990s that they became com-
mercially available. Its broad applicability has led to multiple definitions, and nowadays,
there is no standard definition of the system. It was not until 2019 that the term was
included in the IEEE taxonomy [IEE20]. Although more than a dozen of definitions can
be found, they all have in common that they describe a system that makes it possible to
represent the behaviour of a physical system in real-time. Hence, some authors refer to
HILs as emulators or real-time simulators.

In the area of power electronics, HIL systems use complex algorithms to represent the
physical models of the plant and require detailed hardware designs. HILs require precise
hardware designs that typically guarantee a simulation step in the order of microseconds
(e.g. for high-speed power switches). Thus, it allows to emulate the power plant and
interact with the control board in real-time. Such temporal constraints can only be
achieved by HIL systems using FPGAs. Furthermore, FPGAs also bring a great deal of
reconfigurability and flexibility to the verification process.

Currently, companies such as OPAL-RT, dSPACE or National Instruments have devel-
oped mature products capable of emulating the expected behaviour of the power plant.
Nevertheless, there are some constraints. The power plant must be built using pre-defined
models.

The main drawbacks of HILs are their high cost, and the test can only be done at a late

32 Chapter 2. State of the art

development stage. There are also limitations in the timing accuracy of the power plant
[KC08] and compatibility with the control board [BMV13]. Usually, the control board are
not standard solution and they interface must be compatible with HIL equipment. That
makes a slow integration.

Other drawbacks of the HIL reported by authors are that it works as a black box,
i.e. there is no detailed internal information about the emulated power plant [Ima14].
Also, the simulation speed is usually constant and does not allow for acceleration, slowing
down or pausing [Ima14]. It is in real-time, and this affects the debugging capability of
the control board.

International projects, such as ERIGrid [VRN+19], have proposed linking HILs from
different laboratories, sharing equipment costs. Other authors, such as [TIM+19], have
developed low-cost HILs called Embedded Real-Time Simulator (eRTS). eRTSs integrate
the power plant simulation model into SoC+FPGA devices. In this case, a C-equivalent
code of the discretised plant model is obtained. Later, it is compiled on the FPGA using
HLS tools to deal with the complexity of the simulation models emulated [BSD+20].
However, some authors such as [MOBD18] have concluded that HLS has limitations about
the size of the power plant that can be synthesised in the HIL. Then, its main limitation
is the capacity of the FPGA itself.

There are cheaper alternatives to the use of HILs that allow verification of controller
and power plant operation at the same time. The most commonly used in the literature
are Processor-in-the-loop (PIL), FPGA-in-the-loop (FIL) and Software-in-the-loop (SIL).

a) HIL

b) PIL/FIL

Interface

Interface

c) SIL

Control board

Control board

Workstation

Real-time
simiulator

Workstation

Processor/
FPGA

Figure 2.13: Non-destructive tools for verification in power electronics: a) HIL; b) PIL/FIL; c) SIL.

Some simulators allow connecting to the control board and share messages. This tech-
nique is called Processor-in-the-loop (PIL) or FPGA-in-the-loop (FIL) (Fig. (PIL/FIL)
(Fig. 2.13).

The PIL technique is used to communicate with a processor, while FIL communicates
with an FPGA. Both techniques are similar. Communication with the processor or FPGA
is performed, and the software/hardware module to be verified is installed. This module

2.2 Digital electronics for controlling power electronic converters 33

can be obtained using HLS tools, or it can be implemented manually. Once this code
has been installed on the control board, the simulation advances, generating the module
inputs. The input data is then sent, and the module is executed on the control board.
As a result, the outputs are sent to the simulator, which was waiting, continuing the
simulation. From the simulator’s point of view, the control board is a black box.

The first restriction of these systems is the simulation speed. The simulation speed is
limited by the slowest module, either the simulator (workstation), the processor (PIL) or
the FPGA (FIL). The speed will depend on the workload of each module and the latencies
of the communication channel between the simulator and the control board.

Both PIL and FIL are great options for verifying modules and provide a useful way
to make a preliminary study of the performance (resources and timing) of specific soft-
ware/hardware module on the final platform. Some works have taken advantage of these
types of techniques to implement onboard control quickly. In [GTF+19] authors verified
the performance of their control algorithm for a Doubly Fed Induction Generator, or
[CNVT12], where they analysed the performance of different controllers Linear Quadratic
Gaussian controllers to minimise the impact of wind turbulence on wind turbines.

To carry out the verification with PIL or FIL, the simulation tools usually provide all
the utilities or toolboxes that deal with the communication between the control board
and the simulator. Hence, it comes the second limitation: the compatibility. The control
board must have the communication channel supported by the simulator. This may
require the development of a different interface to the original one to communicate the
control board with the workstation. Then the simulated code is not the same as the final
version. Also, efforts are required to manage the temporal synchronisation between the
control board and the workstation. Without full synchronisation, no statements about
temporal conformity are possible.

Traditionally, Software-in-the-loop (SIL) systems (Fig. 2.13c) have simulated the
source code equivalent to the control algorithm and the plant on the same host (work-
station). The main feature of this technique is that the whole simulated system is on
the same verification tool. Thus, it has high visibility of the whole system, and it can
access any simulator or design from the same process. In addition, it allows working
with different levels of abstraction, adapting the code to the needs of the verification
and providing flexibility to changes. Many works have benefited from this technique
[CZCV13,TYH+19,RMdK19]. However, the workload of the simulator is so high that it
is often a slower option than PIL/FIL or HIL. Authors such as [DGK07] have defined the
main limitations of SIL. Some of them include synchronisation problems with the plant,
the scalability of the auto-generated code and the poor reusability of the code.

Table 2.2 compares the main features of HIL, PIL/FIL and SIL. This figure includes
concepts such as software/hardware debugging capability, source code and plant changes
flexibility, numerical and temporal accuracy of the power plant simulations, simulation

34 Chapter 2. State of the art

speed, compatibility with different manufacturers and interfaces, cost of simulation in-
frastructure, and reusability of the code verified in the simulation phase.

Table 2.2: Comparison of non-destructive tools for verification in power electronics.

. HIL PIL/FIL SIL
Tipe of verification Full-control board Specific SW/HW modules Specific SW/HW modules

Price (cheap) ◦ ◦ ◦ • ◦ ◦ • • •
Compatibility • ◦ ◦ • ◦ ◦ • • •

Verification speed • • • (real-time) • • ◦ • ◦ ◦
Timing Accuracy

(power plant) • ◦ ◦ • • ◦ • • •

Flexibility to
changes • • ◦ • ◦ ◦ • • •

Debug capabilities • ◦ ◦ • • ◦ • • •
Code re-usability • • • • ◦ ◦ • ◦ ◦

Except for HIL, all other techniques either do not verify the full system code or have to
add extra functionality to enable verification, like communication support. In addition,
universal translators are often used to generate code from simulation models. Therefore,
the auto-generated code is not easily translatable to executable code on board.

The SIL technique is presented as the most advantageous option. However, in order to
extend its use, its deficiencies need to be improved. These challenges focus on increasing
the simulation speed and testing the whole system (software and hardware simultaneously)
to offer a full re-usability.

Once the control system has been verified, the testing phase starts against the real
plant. All parts of the control system are gradually checked for correct operation, i.e.
sensors, safety devices, power plant elements, control board and control algorithm oper-
ation, both open and closed control loop, communication signals, etc., are verified. This
phase usually takes a long time as there are many devices and functionalities to install,
test and calibrate.

When the whole system has been verified, the final version of the source code is ob-
tained. Then, the final operation is checked by running the power plant at the nominal
design power. Any faults detected must be analysed and addressed through an in-depth
simulation analysis.

2.3. QEMU as a software emulator

QEMU (Quick-EMUlator) is an open-source fast processor emulator. It is a virtualisa-
tion platform that allows cross-platform execution of software applications like bare-metal
or operating systems. Initially, it was made using Dynamic Binary Translation (DBT),
based on Just-In-Time compilation (JIT) compilation, to achieve fast emulation speed

2.3 QEMU as a software emulator 35

[Bel05, QEM]. Dynamic binary translation enables running binary code generated for a
target (or a guest) processor (e.g., ARM-Zynq Board) on another host processor, which
has an entirely different instruction set (e.g., Intel i9). This means that it translates the
binary code associated to the target CPU into the instructions of the host CPU. Then, it
executes the translated instructions on the host CPU.

Since 2005, many features have been added to QEMU, such as peripheral support, sup-
port for different architectures, virtualisation and performance improvements. Nowadays,
QEMU offers multiple modes of operation:

User mode. It can run simple guest user-space processes in the host system, which
can have a different instruction set architecture than the guest system. In user mode,
QEMU emulates only the CPUs. It executes guest instructions, captures system calls,
and sends them to the host kernel. Therefore, it is possible to run x86 binaries on
ARM without emulating the full system.

Full-system mode. In this mode, QEMU emulates a complete system, including
peripherals. The QEMU’s default translation engine is DBT or parallelized-DBT,
called Multi-Threaded Tiny Code Generator (MTTCG).

Virtualisation. KVM and Xen hosting. In virtualisation, QEMU sets up and super-
vises the KVM and Xen engines to emulate the guest code. In this case, QEMU deals
with all virtualisation aspect that can not be emulated (peripherals or input/output
management). The guest code execution is a task of the host virtualisation support.
The virtualisation requires host hardware support to execute the guest code directly,
so it only works if the guest has the same instruction set architecture as the host.

QEMU supports a wide range of target processors (like x86, ARM, MIPS, or RISC),
PCI peripherals, serial ports, graphic cards, and more services. In 2012, Xilinx included
QEMU in its PetaLinux tool suite to verify embedded operating systems. It currently
supports emulation of MPSoCs Xilinx families as Zynq or Zynq UltraScale and Versal.
However, even though these families have multi-core microprocessors, QEMU uses a single
host-core for multi-CPU emulation due to the QEMU main loop limitations.

The contributions of this thesis have focused on enabling the use of QEMU with ex-
ternal simulators at the same time to build a co-simulation virtual platform. It has used
parallelised engine of QEMU to support the fast-emulation of MPSoCs systems. The
parallelised engine of QEMU is based on DBT, and therefore, it is crucial to understand
how the DBT engine works.

Figure 2.14 shows an example of the translation process using DBT. In QEMU source
code DBT is called Tiny Code Generator (TCG). In this case, we start from an ARM
guest architecture and emulate it on an x86 host. The guest instruction to be translated
and executed is wfe (wait for an event). In essence, the translation process consists of

36 Chapter 2. State of the art

two phases. First, it translates the guest code into an intermediate code (also called
micro-operations [Bel05]). Then, it translates the instructions from the intermediate code
to the host code. Finally, it executes the host instruction sequence.

Intermediate
code

Host code
MIPS

Host code
ARM

Guest code
ARM

Host code
x86

Guest code
x86

ld_i32 loc5,env,$0xffffffffffffffcc
movi_i32 tmp6,$0x1
sub_i32 loc5,loc5,tmp6
movi_i32 tmp6,$0x0
brcond_i32 loc5,tmp6,lt,$L0
st16_i32 loc5,env,$0xffffffffffffffcc

0x3e000150: e320f002 wfe

0x7f281e0beec0: movl -0x34(%r14), %ebp
0x7f281e0beec4: decl %ebp
0x7f281e0beec6: movl %ebp, 0x80(%rsp)
0x7f281e0beecd: testl %ebp, %ebp
0x7f281e0beecf: jl 0x7f281e0beefc
0x7f281e0beed5: movl 0x80(%rsp), %ebp
0x7f281e0beedc: movw %bp, -0x34(%r14)
0x7f281e0beee1: nop
0x7f281e0beee3: jmp 0x7f281e0beee8
0x7f281e0beee8: movl $0x3e000154, 0x3c(%r14)
0x7f281e0beef0: leaq -0xf6(%rip), %rax
0x7f281e0beef7: jmp 0x7f281e000018
0x7f281e0beefc: leaq -0x100(%rip), %rax
0x7f281e0bef03: jmp 0x7f281e000018

Tiny Code Generator

Guest code
MIPS

Figure 2.14: Ejemplo de traduccion de TBs.

In order to speed up the emulation, the guest CPU (also known as virtual CPU or
vCPU) instructions are organised in basic Translation Block (TB). A translation block
is a guest instruction sequence that executes without branches, except at the end of the
block. The end of the block is defined by a jump instruction (branch instructions or call
sequences) or a breakpoint detected in the guest code. Two sections are added to the
host TB in the translation process: the prologue and the epilogue. These sections are a
mechanism to access in execution time or runtime to QEMU internals variables. One of
these variables is the guest CPU instruction counter. Updating and reading this variable
at execution time makes it possible to limit the QEMU execution with a maximum number
of guest instructions executed.

An important aspect of QEMU is the use of TB caches, which considerably increases
its performance. These caches store the translated TBs allowing their use at the execution
phase without spent time in the translation phase. Also, the translated TBs can be linked
through called TB chains. When executing a TB that links to another TB via a chain,
both TBs are executed sequentially.

Figure 2.15 shows the simplified DBT loop of a guest CPU in QEMU. Each time a
new TB is read, it is checked if its translation already exists in the cache. If it does not
exist, it is translated. When the TB cache is full for simplicity sake, a flush is performed,

2.3 QEMU as a software emulator 37

and all TBs are deleted. If the TB exists in the cache, it is checked if it can be linked to
the previous TB. If so, a TB chain is created. The entire TB chain is then executed.

There are multiple conditions in which the process of executing the TB chain can be
ended [Bel05]. The most usual ones are:

When a self-modifying code guest event is detected. In this case, the TB is invali-
dated.

When an asynchronous interrupt is detected in the guest. This event causes the TB
chain to be broken. When the execution process is finished, it is checked if there is
any pending interrupt.

When an exception is detected in the guest. In such case, the whole TB is restored,
i.e. the TB is re-translated in a mode that saves the state of the guest CPU before
the exception.

Chain TB

Translate TB Flush

Execute TB
chain

Invalidate TB

Unchain TB

Restore TBCheck
interrupt

Is TB into
Cache?

Cache full

Remove all TBs
from Caches

Guest interrupt

yes

done
no

Figure 2.15: QEMU DBT flow.

The increase in the number of CPUs per chip has made obsolete the sequential emula-
tion of QEMU. In response, different works have provided solutions to parallelise QEMU
emulation. COREMU [WLC+11], and PQEMU [DCHC11] are the two most cited works
in the literature. COREMU uses private code caches, creating a cache for each guest
CPU. PQEMU’s authors use both private and shared code caches. Although they show
a speedup of around 4x, none of these papers addresses the problems of cross-ISA emu-
lation. Some of these problems are the difference in memory models or the semantics of
atomic operations. HQEMU [HHY+12] speeds up DBT by frequently translating guest
code into optimised host code. This translation is performed in parallel with code execu-
tion. In Pico [CBBC17], the authors present the basics of what will be the official project

38 Chapter 2. State of the art

to parallelise QEMU’s DBT. In this work, they studied the translations of atomic instruc-
tions across different instruction set architecture. They also present a new mechanism for
managing TB chains in caches, which increases the efficiency of TB lookup in multi-core
applications. This new TB reordering is based on the use of hash tables, named as QEMU
Hash Table (QHT) by the authors.

2.3.1. Multi-Threaded Tiny Code Generator

In response to the current trend of increasing the number of CPUs or cores per device,
a parallelized-DBT project was launched. The Multi-Threaded Tiny Code Generator
(MTTCG) project was included in QEMU 2.9. It allows the translator of QEMU to run
one host thread per guest CPU or virtual CPU or guest CPU (vCPU). Some platforms,
such as PetaLinux, use this feature to speed up the OS emulation [QEM]. MTTCG
incorporates some of the contributions presented in [CBBC17].

Currently, it is a work-in-progress project designed to provide multi-threading support
for the emulation of multi-core systems. Some changes were introduced in the translator
code to migrate from a single-thread solution (where vCPUs are executed sequentially in
a single host thread) to a one thread per vCPU solution. These changes mainly affect
the code dealing with the memory consistency, the execution of atomic instructions, the
management of the blocks translated by each vCPU, and dirty page tracking [DBK+16,
CBBC17]. Figure 2.16 shows the internal QEMU architecture using the MTTCG mode,
in which there is a direct assignment of each vCPUs to each thread in the host CPU. In
addition to the threads assigned to each vCPU, additional threads are also reserved for
memory management and the execution of the QEMU main loop.

HOST

GUEST
CPU#0 CPU#N

thread#2
vCPU#0

thread#N
vCPU#N

mem
RAM

thread#0
Memory Map:

DDR, RAM,
MMIO,

containers

thread#1
Main Loop:
peripherals,

internal
events

TB L2 cache

...

TB L1 cache TB L1 cache

Figure 2.16: QEMU-MTTCG internal architecture.

QEMU-MTTCG achieves high performance through the parallelisation of the high
emulation workload. In addition, to reduce the code translation operations, once a trans-

2.3 QEMU as a software emulator 39

lation block has been translated for a given vCPU, this translation can be reused by other
vCPUs in need to execute that piece of code. For this purpose, a cache hierarchy that
centralises all translation blocks translated for each vCPU has been added [CBBC17].

Figure 2.17 shows the flow of the QEMU-MTTCG translation-execution loop. Similar
to Figure 2.14, the guest code is packed into TBs. Then, each instruction is translated into
its equivalent host code. Once the TB is translated, it is stored in the caches. Like a real
multi-core processor, there are multiple caches. The level 1 cache is local to each vCPU,
and the level 2 cache is shared between all vCPUs. In the same cache, links (also called
chains) are created between the TBs [CBBC17]. These links allow TBs that have already
been translated to be executed sequentially. For each of the vCPUs, a thread executes
the TBs host, taking into account the links. Once each TB has been executed, the guest
instruction counter is incremented. Remember that the guest instruction counter is an
internal QEMU variable that is accessed in runtime. When the execution is finished, it
checks if the next block of TBs has been translated. If so, it reads it directly from the
cache. If not, the whole translation-execution process is repeated for the next TB of the
guest.

Translation Block
TB

TB cache L2TB cache L1
CPU#0 TB

translated
???

noyesPrologue

PC++

instruction
instruction
instruction
instruction

instruction

Guest code Host codeIntermediate code

instruction instruction
instruction

instructioninstruction
instruction

Epilogue

...

...

*p

Target binary code
CPU#0

instruction
instruction
instruction

instruction
instruction
instruction
instruction

instruction
instruction

instruction

instruction

...

instruction
CPU#N

CPU#1

...

jump
TB

TB

TB

TB

TB
link

TB
link

TB pointer

TB pointer

thread#N

thread#1

...

NEXT TB TRANSLATION

Traduction loop

thread#0
execute

jump
TB

TB

Figure 2.17: Ejemplo de traduccion de TBs.

Although this solution has allowed increasing the emulation performance on multi-core
systems, the notion of time remains an unsolved task. When the multi-thread mode is
selected, the QEMU instruction counter is automatically disabled. This thesis presents a
solution to obtain the software notion of time from the time of each vCPU.

2.3.2. The notion of time in QEMU

QEMU was not developed to model the CPU timing. Instead, it is an instruction-
accurate emulator made using a sequential execution. It is accepted that an instruction
accuracy is enough to perform a functional verification for most MPSoC applications.

40 Chapter 2. State of the art

In [KYH16], the authors presented a good summary of the options for temporally
modelling a processor. The options cited by the authors are: k-CPI simulation, analyti-
cal simulation, sampled simulation, statistical simulation, FPGA-accelerated simulation,
hybrid simulation and control-sensitive simulation. Although timing is a field of great
interest, few papers have offered solutions to obtain timing modelling of the CPUs in
QEMU. In [CYT11] a fast cycle-accurate instruction set simulator based on QEMU, is
presented. It models the processor pipeline to obtain cycle-accuracy. It uses a very basic
approach to model the data hazard. This is valid for the considered scalar processor
(ARM9). However, described techniques are difficult to extend to modern and more so-
phisticated processor. The work [KYH16] describes a QEMU-based simulator for modern
superscalar out-of-order processors. It models the cache controller and the branch pre-
dictor to achieve a cycle-approximate accuracy. In [LHL+16] the authors propose to mix
OVPSim with QEMU to get timing details of caches and Translation Lookaside Buffers
(TLBs). Previous papers only provide specific solutions that cannot be extended to all the
machines on the market. In addition, to obtain a cycle-accuracy, these solutions introduce
an extra overhead that reduces the emulation speed.

In QEMU and other platforms that integrate QEMU, such as QBox or PetaLinux, this
aspect has been simplified, using the number of guest instructions executed to measure
the elapsed time. In [KYH16], this option is referred to as k-CPI. Therefore, QEMU has
instruction-time accuracy. The number of instructions executed by QEMU is defined by
an internal guest instruction counter that is updated when an entire translation block is
executed on the host.

Let us consider the case of a processor with a single vCPU. The time advance can be
obtained by Equation 2.1 where cn is the number of cycles it takes to execute the n-th
instruction (MOV, AND, SUB, ADD, etc.). TCLK is the period of the CPU clock, and
kcache−n is a factor that considers the influence of cache misses or branch misprediction
for the in n-th instruction. N is the total number of executed instructions.

△ tCP U =
N∑

n=1
cn ∗ TCLK ∗ kcache−n ≈ TCLK ∗ CPI ∗ N (2.1)

This thesis focuses on adding a synchronisation mechanism to QEMU-MTTCG to
enable its use in fast hardware/software co-simulation virtual platforms. Since the plan is
to use these virtual platforms to validate MPSoC design for application fields that require
long simulation times, the simulation speed is a critical factor. Due to the limitations
mentioned above of cycle-accurate models and the high simulation speed requirement,
some simplifications have been applied to Equation 2.1. Firstly, the cache influence has
not to be taken into account, therefore kcache−n = 1. Also, the period of the CPU clock
(TCLK) is assumed to be constant. The number of cycles for n-th instruction (cn) can be
approximated by its average value (Cycles Per Instruction (CPI)). Although the CPI is

2.3 QEMU as a software emulator 41

obtained for a specific benchmark, it can be considered a reliable reference to characterise
the average performance of the processor. To use the CPI rate, we can assume the time
advance is proportional to the number of executed instruction N , with TCLK ∗ CPI being
a constant term.

QEMU only emulates CPUs concurrently when it uses KVM or MTTCG. Only one
thread is available in other setups to perform the translation sequentially using a round-
robin approach. In this case, QEMU uses only a variable to count the total number of
instructions executed by all vCPUs. In the MTTCG setup, since the vCPUs execute these
instructions in parallel instead of sequentially, the total number of executed instructions
are not proportional to the elapsed time, causing a timing error. Figure 2.18 depicts
this timing error for an example of dual-vCPUs running in single-thread mode (Figure
2.18a), compared with a correct operating in multi-thread mode (Figure 2.18b). Each
block represents the vCPU time elapsed for each iteration (A, A’, B, B’, ...), and the
red numbers represent the order in which the blocks are used to increment the total
software time. The arrows indicate which block is used to increment the software time at
each instant. Please note that in the single-thread, a timing error appears because, for
multi-vCPU emulation, the sum of each CPU time is not the total time of the software.

A B

SW TIME

vCPU#1

CvCPU#0

CPU0 CPU1
TOTAL

A’ A C’

A’ B’ C’ D’

A B

SW TIME

vCPU#1

CvCPU#0

CPU0 CPU1

t

A’ A B’ C’ B C D’

A’ B’ C’ D’

C D’

b) Multi-thread

a) Single-thread

TOTAL

1

1

2

2 3

3 4

4 5 6 7

7

65

TIMING
ERROR

t
1

1 3

2 5

2 3

4 7

6

4 5 6 7

Figure 2.18: Comparison between timing flows for two vCPUs: (a) single-thread mode; (b) multi-thread
mode.

Figure 2.18b shows the desired software timing flow when there are more than one
vCPU. The software emulator time (TOTAL in Figure 2.18) must be obtained from the
vCPU that has executed the highest number of instructions (in this case, vCPU#1).

42 Chapter 2. State of the art

2.4. SystemC and TLM support

SystemC is a trendy open-source C++ class library standard designed to describe
systems and hardware designs. Developed by Open SystemC Initiative (OSCI) in 1999,
approved as IEEE standard in 2005 and updated in 2011 [IEE11], it has become one of the
most popular modelling languages in the electronic system-level design flow. The OSCI
SystemC implementation has its event-driven simulator, also called the kernel. Therefore,
it can be used as a DES. Its DES can model time and simulate concurrency and all aspects
of hardware: modules, signal, ports and interfaces. Furthermore, it allows to model the
hardware with a high abstraction level, and as a result, the simulation speed can be
substantially enhanced.

Although SystemC is referred as a language in this book, strictly speaking, SystemC is
not a language, it is a C++ library. The concept of language comes because the standard
refers to it as a modelling language. However, the standard also clarifies that it is a C++
library.

The main advantage of SystemC is that it allows the use of a single language (C/C+)
in multiple phases of design. Thus, SystemC allows verification of the same system using
multiple levels of abstraction. Figure 2.19 shows a comparison of the usage of the most
common languages in the area of electronic design. As it can be seen, the two languages
that provide more flexibility are SystemC and SystemVerilog. SystemVerilog is used in
hardware design and offers compatibility with Verilog. The main advantage of SystemC
over SystemVerilog is that it allows working at a higher level of abstraction. Therefore,
it is a more attractive language for software engineers. Furthermore, using the same
language to verify software and hardware modules minimises code bugs in projects where
the interaction between software and hardware modules is high.

Requeriments

Arquitecture

HW/SW

Behavior
Functional
Verification

Testbench

RTL

Gates

Transistors

Verilog VHDL

VHDL

System
Verilog

Vera e
PSL

SystemC

Matlab
C/C++
Pyhon

Figure 2.19: Use of language in Electronic Design Automation tools [BDBK10]

2.4 SystemC and TLM support 43

The SystemC kernel (DES), also called SystemC’s schedule, divides the simulation into
multiple stages. The kernel algorithm can be seen in Figure 2.20 and is divided into in
three stages: elaborate, simulate and cleanup.

The elaborate step initialises the simulation resources as well as all the designs. The
simulate step runs the SystemC’s kernel. The SystemC kernel is based on an events
discrete loop. Each event has one or several sensitive processes and a timestamp. This
timestamp is rounded to the timing precision of the simulation. The events are ordered
in a global event queue. When the next event is triggered, the global simulation time is
updated with the event’s timestamp, and the sensible processes are executed. If there are
several events with the same timestamp, they are triggered as delta cycle events. When
all events and delta cycle events scheduled are processed, the simulation ends [BDBK10].
Finally, the cleanup step releases the reserved memory and saves the traced signals.

Are there
scheduled events?

Initialize designs

Elaborate simulation

YesNo

Order events in global
event queue

Trigger the first event

Make all sensitive
processes runnable

Are there
runnable proccesse?

Are there
runnable proccesse? Run the process

Trigger all immediate
notifications

Make all sensitive
processes

Trigger all delta
notifications

Make all sensitive
processes runnable

Yes

No

No

Yes

Cleanup
simulation

Advance global time

Delta cycle
loop

Global time
loop

Immediate
notifications loop

1 2 3 4 ... nEvent
queue

Process #1
Process #2
Process #3

Process #4
Process #5

List of sensitive
processes

Timestamp

STOP

Figure 2.20: Simplified SystemC simulation kernel [BDBK10].

By default, SystemC executes its event loop sequentially. However, the standard does
not limit its use to sequential execution. There are numerous obstacles to parallelising

44 Chapter 2. State of the art

SystemC [Dom16]. Nevertheless, much work has been done to make a Parallel-DES based
on SystemC. In [SLPH10], the authors proposed a conservative synchronous simulation
approach. In such case, the thread has to wait until other threads have completed the
same simulation cycle to continue. They introduce time barriers that impose a limita-
tion on performance. In [Moy13], the authors introduce more information in the event
queue about the start and end time of the process to let the scheduler freely spread it
across the time. In [DLS17, CSD20], the authors propose a guide to make a conserva-
tive asynchronous simulator, also called Out-of-Order Parallel Discrete Event Simulator
(OoO PDE). In an OoO PDES, each module is assigned a thread that executes freely
unless a causal relationship prohibits it. Since each module can own a local clock, the
concept is a great candidate for asynchronous co-simulations. Although it has been shown
an increment of simulation performance, the complexity of the proposed synchronisation
algorithms is an obstacle to its inclusion in the OSCI SystemC implementation.

The communication mechanism between the SystemC modules is one of its essential
features. SystemC relies on the TLM abstraction level to model communications. To
avoid possible confusion in the reader with the TLM abstraction level, from now on, we
will refer to the libraries that allow making a TLM communication in SystemC as TLM-
library. TLM-library is an API inside SystemC used to model the communication between
modules, exchanges messages as a single step rather than a sequence of cycle-level actions.
Its implementation within SystemC has been standardised by OSCI SystemC TLM-2.0
[Ayn09]. It uses direct function calls, like C++, for sending transactions between modules
in a structured form. Thus, it aims to reduce events number in the RTL communications
(at Register Transfer Level of abstraction), reducing communication overhead between
the modules.

The SystemC standard also defines two coding styles using TLM-2.0. It summarises
them into two types: loosely-timed coding style and approximately-timed coding style.
However, it does not limit operation to these two modes.

The implementation of Loosely-timed mode (LT) models is based on Blocking Transac-
tions (BT). Therefore, communications are blocking, what mean they block the execution
of Master modules (Initiator) until the Slave (Target) responds. From a timing point of
view, blocking transactions allow setting the beginning, and the end of each transaction
[IEE11]. In the blocking transactions mode, the synchronisation between the modules of
the simulation is based on Temporal Decoupling to synchronise the modules through a
global time slice limit called Quantum. Figure 2.21 show an example of temporal decou-
pling using Quantum time. When any execution of a module exceeds this time limit, it
waits for the rest of the modules to continue with the simulation. The temporal decou-
pling mechanism improves simulation performance by not synchronising all modules in
every clock cycles but only in multiples of Quantum. For high HW/SW interaction rates,
it requires having a Quantum time of at least the shortest time between two HW/SW

2.4 SystemC and TLM support 45

interactions. Small values of the Quantum generate many synchronisations and, there-
fore, slow down the simulation to exchange for more temporal precision. Otherwise, large
Quantum values increase the speed of the simulation, but temporal precision is lost in the
simulation [IEE11]. Choosing the correct Quantum value is the key to avoid inconsisten-
cies in the simulation. Works such as [DBK+16,Xil19] have used this type of solution to
link software simulators with hardware. However, the authors advise that the value of the
Quantum time depends on the type of application, and therefore there is no standardised
method to optimise its value.

Initiator Target

Local time
offset Quamtum = 1µs

+15 ns

+0 ns

return

return

+20 ns
+940 ns

+960 ns

+1010 ns
+995 ns

wait(10ns)

Time
consumed by
transaaction

+500 ns

+850 ns

+1000 ns

+120 ns

Time barrier

Local time
offset

Figure 2.21: Example of temporal decoupling with quantum.

The other coding style defined by the standard is Approximately-timed mode (AT).
This type of communication is more elaborated as it includes more timing details and
has a non-blocking transport interface. Therefore, its use is appropriate for architectural
exploration and performance analysis. AT provides timing points and multiple phases for
each transaction. Its main advantage is that it supports the integration of TLM models
with cycle-accurate models. However, it reduces the performance of the simulation by
incorporating more transactions in the communication process. An advantage is that
having more phases in the communication allows incorporating extra functionality. This
is the case in [Del17a], where the author relies on AT to develop his implementations of
non-memory-mapped protocols based on TLM.

Chapter 3

QEMU External Synchronization
Mechanism

Emulation increases the verification-cycle speed, but to
verify software and hardware co-designs, it is essential

to synchronise the emulator with the external world.

3.1. Introduction

QEMU is one of the most widely used emulators tools for research purposes and the
industrial field. However, QEMU support emulation of more architectures. Additionally,
from the two previously mentioned options, only QEMU is able to emulate the Xilinx
Zynq, UltraScale+ and Versal families, which integrate MPSoC and an FPGA fabric in
the same die.

Software code emulation allows verifying the same binary code that it will run on
the real platform. The need to emulate multicore embedded devices has motivated some
projects to advance in the parallelization of the translator engine of QEMU (Dynamic
Binary Translator - DBT). Consequently, a new parallel translation engine called Multi-
Thread Tiny Code Generator (MTTCG) has been developed by QEMU contributors.

However, in this new parallel mode, the synchronization of QEMU with an external
application (i.e., the hardware simulator) has not been resolved. This synchronization is
fundamental in order to include QEMU in a hardware/software co-simulation environ-
ment. It should be noted that this tool is highly valuable for the verification of mixed
hardware/software designs implemented in heterogeneous embedded devices such as MP-
SoCs + FPGAs.

The following chapter explains how to enable a synchronization mechanism between
QEMU and an external hardware simulator using the QEMU parallel emulation mode
(MTTCG). Then, it presents a contribution focus on adding QEMU to the co-simulation
virtual platform as a multi-core software emulator.

48 Chapter 3. QEMU External Synchronization Mechanism

In particular, the following proposals are presented:

A procedure to obtain the number of instructions executed by each processor in a
multi-core emulation. The notion of time for each virtual CPU can be calculated
from this instruction counter, providing an approximately timing processor model.

A method to break the main loop of QEMU and execute a synchronisation point with
the hardware simulator. This is critical as not to affect the main loop performance
and achieve fast emulations.

A method to manage the software timing notion from a hardware simulator point of
view in multi-core systems. The synchronisation between the external hardware sim-
ulator and the software emulator (QEMU) is essential to get a correct co-simulation.

The version of QEMU used as a starting point has been obtained from the Xilinx
QEMU repository [Xil18]. Xilinx has patched the official QEMU version 2.11.1 (2018) to
support Zynq-7000 and UltraScale emulation. Throughout this section, some simplified
examples of the source code are shown. However, the complete patched code has been
omitted for sake of clarity.

3.2. QEMU machine linking

The monitoring of accesses between software and hardware and interrupts that come
from the hardware is necessary to ensure synchronisation between QEMU and the external
hardware simulator.

In QEMU nomenclature, the machine represents the CPU chosen to emulate or guest
CPU or virtual CPU - vCPU. This CPU can be composed of multiple cores, and each
machine has its architecture defined in the internal QEMU source files.

The hardware accesses from software are detected by monitoring memory accesses. The
user must map the hardware memory range in the QEMU machine source files to monitor
them. Also, it is necessary to set up the virtual interrupts manager of the machine to
capture any interrupt from the hardware.

An example applied to Zynq-7000 is shown below. In this example, the 1GB memory
region reserved for access to the FPGA is mapped. Besides, the pointers to the variables
that model the interrupt signal are obtained.

Listing 3.1: Example of MMIO mapping and interrupts linking. Zynq-7000 machine.
file://hw/arm/arm_generic_fdt.c

1 #define BASE_ADDR 0x40000000ULL

2 #define SIZE_ADDR 0x7FFFFFFFULL

3 #define NUM_IRQS 16

4

3.3 Hardware/Software interactions 49

5 void COSIL_interactions_mmap(CPUState *cpu, void *fdt, unsigned long long base_addr, unsigned

long long size_addr, unsigned long long num_irqs){

6 FDTMachineInfo *fdti;

7 qemu_irq* irqs;

8 // Get interrupts (IRQs) from the Flattened Device Tree

9 fdti = fdt_generic_create_machine(fdt, NULL);

10 irqs = zynq_get_irqs(fdti);

11 fdt_init_destroy_fdti(fdti);

12 //Set MMIO and IRQs

13 COSIL_mmio_map(cpu->env_ptr, base_addr, size_addr);

14 COSIL_irq_map(cpu->env_ptr, irqs, num_irqs);

15 //Register MMIO callbacks

16 COSIL_register_rams();

17 }

18

19 static void arm_generic_fdt_7000_init(MachineState *machine){

20 //Machine definition

21 //...

22 arm_generic_fdt_init(machine);

23 //...

24 //Get and set MMIO and IRQs

25 COSIL_interactions_mmap(cpu, fdt, BASE_ADDR, SIZE_ADDR, NUM_IRQS)

26 }

27

28 static void arm_generic_fdt_7000_machine_init(MachineClass *mc){

29 mc->desc = "ARM device tree driven machine model for the Zynq-7000";

30 mc->init = arm_generic_fdt_7000_init;

31 mc->ignore_memory_transaction_failures = true;

32 mc->max_cpus = 2;

33 mc->default_cpus = 2;

34 }

35

36 DEFINE_MACHINE(ZYNQ7000_MACHINE_NAME, arm_generic_fdt_7000_machine_init)

3.3. Hardware/Software interactions

In order to use QEMU as a software emulator in a co-simulation environment, a syn-
chronization is required to enable it running jointly with a hardware simulator or other
external modules.

Hardware simulator and software emulator can be seen as modules that exchange mes-
sages in the simulation kernel. The messages can be defined based on their nature, mod-
elling physical or virtual interactions. Interaction represents the event in the simulation
where both modules have to exchange some information. On the one hand, the physical
interactions are those that come from real memory accesses between the hardware and
software or asynchronous interrupts generated from the hardware to the software. On the
other hand, virtual interactions send timing and status information between modules for
synchronisation or debugging purposes. Virtual interactions share the same concept as
null messages in literature [Fuj01].

It is essential to define an interface to communicate and synchronise the hardware

50 Chapter 3. QEMU External Synchronization Mechanism

simulator and the software emulator whenever there is some hardware/software commu-
nication. In every interaction, the state of each module and its time advance must be
shared between them. These interactions can be classified into three types:

Synchronisation points (virtual interactions).

Input/Output (I/O) accesses between the software emulator (processor) and hard-
ware simulator (physical interactions).

Asynchronous interrupts (physical interactions) to the processor.

The above interactions are modelled by function calls. This function calls link internal
QEMU functions to functions declared in the external simulator. The links are made by
dynamic linking. The function calls that have been developed in this thesis can be divided
into two types:

Function calls from QEMU to the hardware simulator (Synchronisation points and
IO accesses). These callbacks come from QEMU and execute a function in the
hardware simulator. Thus, an interaction pauses QEMU execution and allows an
external simulator to obtain state and timing information from QEMU and advance
coherently. These functions pause the QEMU execution until they return.

Function calls from the hardware simulator to QEMU (asynchronous interrupts).
These callbacks come from the external hardware simulator. In the particular case
of interrupts, QEMU is notified each time some interrupt signal changes of value.

Figure 3.1 shows the different types of callbacks. Also, it can see how they are linked
to the outside of QEMU through dynamic linking. In the following paragraphs, each of
the modules involved in the interactions is detailed.

QEMU events queue

interrupt ON, wait
… continue

Embedded Multi-Core

MMIO

sync()

clock

vCPU#0 vCPU#N

Callbacks:QEMU-MTTCG Dynamic library
SW callbacks API

write()

read()

Memory
vGIC

...
address
 data

HW simulator

Figure 3.1: Interactions management by callbacks and dynamic linking.

3.3 Hardware/Software interactions 51

The synchronisation points represent the instants in which the hardware/software mod-
ules are synchronised to prevent one simulator/emulator from lagging behind another.
They become essential when there are no input/output accesses or interrupts. Unlike
input/output accesses and interrupts, this type of interaction does not represent a real
physical interaction but is an internal mechanism to synchronise both simulators/emu-
lators. Synchronisation points are the most frequently generated interactions; therefore,
they should be as fast and light as possible. They also become a mechanism to control
the timing accuracy of the software emulator. The sync() callbacks are executed in the
hardware simulator and called from the translation execution loops of each vCPU (from
QEMU). The sync() function reads timing information. In essence, it reads the vCPU
local time sent from QEMU.

The monitoring of I/O accesses is based on using the QEMU QEMU Memory-mapped
Input/output Object (MMIO) object. The MMIO object has its methods that reproduce
the access to the assigned memory range. The MMIO methods receive arguments provid-
ing access/transaction attributes (address, size, data, and time). Then, it is notified the
hardware simulator about these events. The notification calls the functions write()/read()
which are executed in the external simulator. Here all transaction arguments are read,
and access to the hardware module is performed. The registration method of an MMIO
consists of three phases:

1. Type Instantiation: registration of one or more MMIOs (type_init() Line:56 and
type_register_static() Line:53).

2. Declaration of object class: instantiation of the functions that build the MMIO
(.class_init Line:45).

3. Definition of object class: execution of the functions that build the MMIO
(COSIL_memory_init() Line:23).

In Listing 3.2 is shown a simplified example of the source code used to instantiate an
MMIO. Here, it shows the MMIO methods that are automatically called (COSIL_read()
and COSIL_write()) when a I/O memory access are done by the processor to the hardware
simulator.

Listing 3.2: Example of MMIO definition for Zynq-7000 machine. file://hw/arm/cosil_mmio.c
1 //-----------------------CALLBACKS-------------------------------

2 static inline uint64_t COSIL_read(void *opaque, hwaddr addr, unsigned int len){

3 //Get address and clock

4 //Do bus access - read()

5 //return read value

6 return rd;

7 }

8 static inline void COSIL_write(void *opaque, hwaddr addr, uint64_t value, unsigned int len){

9 //Get address and clock

10 //Do bus access - write()

52 Chapter 3. QEMU External Synchronization Mechanism

11 return;

12 }

13 //-----------------------DECLARATION CALLBACKS-------------------------------

14 static const MemoryRegionOps COSIL_mem_ops[1] = {

15 {

16 .read = COSIL_read,

17 .write = COSIL_write,

18 .endianness = DEVICE_NATIVE_ENDIAN

19 },

20 };

21 //----------------------------------INIT MEMORY-------------------------------

22 struct COSILMemory *main_COSILdev = NULL;

23 static int COSIL_memory_init(SysBusDevice *dev){

24 struct COSILMemory *const s = FROM_SYSBUS(typeof(*s), dev);

25 //Definition of interrupts (IRQ)

26 //...

27 //Definition MMIO

28 s->info.name = "COSIL_memory";

29 // Set MMIO region

30 memory_region_init_io(&s->info.iomem, OBJECT(dev), COSIL_mem_ops, &s->info, s->info.name, s

->info.size);

31 // Add MemoryRegion to sysbus

32 sysbus_init_mmio(dev, &s->info.iomem);

33 // Save as gobal variable the main COSIL dev

34 main_COSILdev = s;

35 return 0;

36 }

37 //------------------------------ObjectClass constructor-------------------------------

38 static void COSIL_memory_class_init(ObjectClass *oc, void *data){

39 DeviceClass *const dc = DEVICE_CLASS(oc);

40 SysBusDeviceClass *const sbdc = SYS_BUS_DEVICE_CLASS(oc);// Main system bus

41 // @init: Callback function invoked when the #DeviceState.realized property is changed to %

true.

42 sbdc->init = COSIL_memory_init;

43 }

44 //----------------------------------TypeInfo---

45 static const TypeInfo COSIL_info = {

46 .name = TYPE_COSIL_MEMORY, //User Type. It include a copy of its parents ObjectClass

47 .parent = TYPE_SYS_BUS_DEVICE, //Type from wich this Type derives from.

48 .instance_size = sizeof(COSILMemory), //Size of the Object instance.

49 .class_init = COSIL_memory_class_init, //ObjectClass constuctor hook.

50 };

51 //-----------------------------------TypeImpl register----------------------------------

52 static void COSIL_register_types(void){

53 type_register_static(&COSIL_info);//TypeImpl

54 }

55 //----------------------------------TypeInfo register---------------------------------

56 type_init(COSIL_register_types)

QEMU uses event-driven architecture, which means that it processes the emulated
devices by means of events. These events are ordered in an event queue at runtime.
Usually, events are added to the event queue when some description file such as sockets,
pipes and other resources is ready to read or write. Another possible source of events is
any expired internal timer.

In the case of asynchronous interrupts, QEMU does not check if a hardware interrupt

3.3 Hardware/Software interactions 53

is pending for every translation block. When QEMU is notified that a new interrupt is
triggered, an event is generated and added to the QEMU events queue. This mechanism
can be seen in Figure 3.1 and is described in Listing 3.3.

The procedure for binding interrupts to the machine, notifying the QEMU evens queue
of an interrupt event, and updating the status of interrupts in the virtual Generic Interrupt
Controller (vGIC) is shown below. The registration method of an interrupt in QEMU
source code consists of three phases:

1. Setting up an immediate timer. The immediate timer is called bottom-halves (BH)
according to the QEMU nomenclature (qemu_bh_new() Line:53). This timer allows
adding an event to the QEMU event queue, avoiding overflowing the call stack. As an
argument, the handler that will be called when the timer ends is given (update_irq()
Line:12).

2. Definition of the handler that is executed when the interrupt event is attended (up-
date_irq() Line:53). When the interrupt event is attended, the update_irq() function
notifies the virtual GIC of the interrupt signals that changed in level. The current
clock of the running vCPU is then obtained, and a callback is sent with timing
data to the hardware simulator. Thus, it is notified in hardware simulator that the
interrupt has been attended (COSIL_irq_done_cb() Line:36).

3. Definition of the callback function to be executed from the hardware simulator
(COSIL_irq_done_cb() Line:2). This function schedules a bottom-halves or im-
mediate timer in the QEMU event queue. Therefore, an event is created that will be
attended as soon as possible.

Listing 3.3: Example of IRQ linking for Zynq-7000 machine. file://hw/arm/cosil_mmio.c
1 //------------------------CALLBACK FROM HARDWARE----------------------------------

2 static void COSIL_write_irq(struct COSIL_irq *qirq){

3 assert(main_COSILdev);

4 //Asign interrupt value to interrupt triggered

5 main_COSILdev->pending_irq[qirq->addr / 4] = qirq->data;

6 //Schedule a bottom half for IRQ in QEMU event queue

7 //Scheduling a bottom half interrupts the main loop and causes the

8 //execution of the callback that was passed to qemu_bh_new.

9 qemu_bh_schedule_COSIL_irq(main_COSILdev->irq_bh);

10 }

11 //----------INTERRUPT HANDLER CALLED WHEN AN INTERRUPT EVENT IS ATTENDED----------

12 static void update_irq(void *opaque){

13 uint64_t clk = 0;

14 struct TLMMemory *s = opaque;

15 int i;

16 // Update IRQ level

17 for (i = 0; i < s->nr_irq; i++) {

18 int regnr = i / 32;

19 int bitnr = i & 0x1f;

20 uint32_t data;

21 int level;

54 Chapter 3. QEMU External Synchronization Mechanism

22

23 data = s->pending_irq[regnr];

24 level = data & (1 << bitnr);

25 //file: /include/hw/irq.h - Generic IRQ/GPIO pin infrastructure.

26 qemu_set_irq(s->cpu_irq[i], level);//--> call to vGIC of the machine

27 }

28 //Get current Clock

29 if(use_icount){

30 clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);

31 }else if (use_multi_icount){

32 clk = edl_cpu_get_multi_icount(last_cpu);

33 }

34 last_sync_icount = clk;// global variable

35 // Notify to hardware simulator that interrupt event was attended and when

36 COSIL_irq_done_cb(COSIL_opaque, clk);

37 }

38

39 //----------------------------------INIT INTERRUPT-------------------------------

40 static int COSIL_memory_init(SysBusDevice *dev){

41 struct TLMMemory *const s = FROM_SYSBUS(typeof(*s), dev);

42 //

43 //...

44 //

45 // Set IRQS source from sysbus

46 if (s->nr_irq) { // from machine definition

47 for (i = 0; i < s->nr_irq; i++) {

48 // Request an IRQ source. The actual IRQ object may be populated later.

49 sysbus_init_irq(dev, &s->cpu_irq[i]);

50 }

51 }

52 // Set IRQ handler for IRQ event

53 s->irq_bh = qemu_bh_new(update_irq, s);

54 //

55 //...

56 //

57 // Save as gobal variable the main COSIL device

58 main_COSILdev = s;

59 return 0;

60 }

After the interrupt event is processed, the interrupt is sent to the virtual Generic
Interrupt Controller (vGIC). Once this happens, the vCPU is notified of an interrupt
exception [QEM]. Nevertheless, there is a delay between the moment when the hardware
triggers an interrupt and the moment when the vCPU is notified. This is caused by the
large number of events that QEMU must schedule and handle. To solve this issue and
avoid timing error, the solution proposed in this thesis blocks the hardware simulator
until the QEMU scheduler attends to the interrupt and the vGIC is notified. Figure 3.2
depicts the differences of interrupt management for the real platform versus the QEMU
case (Virtual board case), when an Interrupt ReQuest (IRQ) is triggered.

3.4 Implementation of External Synchronization in QEMU using Multi-Thread Tiny
Code Generator. 55

GIC IRQ_handler vGIC IRQ_handler
QEMU
latency

HW
stoppedIRQIRQ

a) Real platform b) Virtual platform

Figure 3.2: Interrupt management: (a) real platform vs. (b) virtual platform cases.

3.4. Implementation of External Synchronization in QEMU us-
ing Multi-Thread Tiny Code Generator.

Synchronization points allow the software emulator to send time and status messages
to the hardware simulator to maintain successful synchronization in the virtual platform.
This section explains the improvements made in QEMU-MTTCG during this thesis in
order to introduce the synchronization points.

To carry out this proposal, it is necessary to define three aspects. The first one defines
the required changes to obtain the state and timing data of each vCPU. That data must be
sent to the hardware simulator. Once the approximate temporal notion can be obtained
in MTTCG mode, the next step is to define the method to manage the synchronisation
points. Remember that the synchronisation points are virtual interactions and should be
as light and fast as possible. The last one explains the place in the QEMU source code
where the synchronisation points can be inserted safely. Each one of these three aspects
is described below.

3.4.1. Guest instruction counter

As discussed in Section 2.3.2, QEMU uses the k-CPI method to obtain its approximate
timing notion. It means it is based on obtaining a counter of the executed guest instruc-
tions. This mechanism updates an instruction counter per each vCPU in the execution
phase of the Translation Blocks (TB).

To obtain the guest instruction counter, QEMU includes a class called CPUState for
each vCPU. This structure contains information about the state of the vCPU and the
maximum number of instructions that the vCPU can execute sequentially. The maximum
number of instructions limits the vCPU advance, allowing QEMU to attend to other events
in its event queue. In the QEMU source code, this maximum number of instructions is
stored as the icountMax variable. icountMax is also called by QEMU developers as icount
budget.

During the translation phase, intermediate code (see Figure 2.14) are added at the
beginning and the end of each host TB. These codes made up what it is the prologue

56 Chapter 3. QEMU External Synchronization Mechanism

(P) and the epilogue (E) of the TB (see Figure 3.3). The prologue (P) accesses the
icountMax variable of each vCPU, located in its CPUState class and subtracts the size of
the TB in guest instructions units. To know the size of the TB, it is necessary to finish
the translation phase and runs the epilogue. The epilogue updates the prologue variable
setting the TB size.

During the execution phase, the prologue already containing the TB size information.
Thus, it can check before executing any TB whether the subtraction of icountMax less
TB size is 0 or less than 0. In this case, it does not execute the TB, it returns to the
main loop and rebuilds a new TB with the number of instructions that allows icountMax
to be 0.

The difference between the number of instructions executed before and after the exe-
cution phase is what makes it possible to obtain a counter of guest instructions from the
QEMU.

In the single thread case, this instruction counter is unique for all vCPUs. Its value is
the sum of the guest instructions executed by all the vCPUs. However, as seen in Section
2.3.2 this is not compatible with MTTCG mode.

To obtain the number of instructions executed by the vCPU in MTTCG mode, the
proposal presented in this thesis is based on the method applied in the single-thread case,
allowing compatibility with the original case. Figure 3.3 shows the mechanism to get a
guest instruction counter.

In the start phase of QEMU, a thread is created for each vCPU. This generates an
instruction counter in the CPUState class for each vCPU. As the CPUState pointer of
each vCPU can be accessed from the prologue, each vCPU updates its instruction counter
independently.

Listing 3.4 describes the intermediate code included in the prologue and epilogue of
each TB. In essence, it is enabled the access to guest instruction counter of each vCPU
from host code. Then, it is possible to obtain how many guest instructions have been
executed at runtime for each guest TB.

Listing 3.4: Getting instruction counter for each vCPU in prologue and epilogue.
file://include/exec/gen-icount.h.

1 static int icount_start_insn_idx; // global

2 //--------------------------------------PROLOGUE--------------------------------------

3 static inline void gen_tb_start(TranslationBlock *tb){

4 TCGv_i32 count, imm;

5

6 tcg_ctx->exitreq_label = gen_new_label();

7 // Init new local variable count

8 if (tb_cflags(tb) & CF_USE_ICOUNT || use_multi_icount) {// also enable fot MTTCG

9 count = tcg_temp_local_new_i32();

10 } else {

11 count = tcg_temp_new_i32();

12 }

3.4 Implementation of External Synchronization in QEMU using Multi-Thread Tiny
Code Generator. 57

vCPU#N

TB guest

imm = guest TB size

TBTBTBTBTB hostP E

icountMax -= imm

Update imm variable

TBTBTBTBTB hostP E

icountMax -= TB size
if (icountMax <= 0)
 exit TB and rebuilt

CPUState
class

Get guest counter

Get guest counter
Get Δ counter

Main loop

Translation phase

Execution phase
Get guest counter

Get Δ counter

exit TB

Figure 3.3: Block diagram to define how to get instruction counter in the TB host using prologue and
epilogue.

13

14 // Load counter for each vCPU from CPUState Class

15 tcg_gen_ld_i32(count, cpu_env,-ENV_OFFSET + offsetof(CPUState, icountMax.u32));

16

17 if (tb_cflags(tb) & CF_USE_ICOUNT || use_multi_icount) { // also enable fot MTTCG

18 imm = tcg_temp_new_i32();

19 // We emit a movi instruction with a dummy immediate argument. Keep the instrution index

20 // of the movi so that we later (when we know the actual insn count)

21 // can update the immediate argument with the actual instruction count.

22 icount_start_insn_idx = tcg_op_buf_count();

23 tcg_gen_movi_i32(imm, 0x00000000);

24 //Sub number of instuction of TB

25 tcg_gen_sub_i32(count, count, imm);

26 tcg_temp_free_i32(imm);

27 }

28

29 //if count is less than 0, goto: exitreq_label: END of TB chains

30 tcg_gen_brcondi_i32(TCG_COND_LT, count, 0, tcg_ctx->exitreq_label);

31

32 // Store counter for each vCPU to CPUState Class

33 if (tb_cflags(tb) & CF_USE_ICOUNT || use_multi_icount) {

34 tcg_gen_st16_i32(count, cpu_env,-ENV_OFFSET + offsetof(CPUState, icountMax.u16.low));

35 }

36 //Free mem

37 tcg_temp_free_i32(count);

38 }

39 //--------------------------------------EPILOGUE--------------------------------------

40 static inline void gen_tb_end(TranslationBlock *tb, int num_insns){

41 if (tb_cflags(tb) & CF_USE_ICOUNT || use_multi_icount) {

42 //Update the num_insn immediate parameter now that we know the actual insn count.

43 tcg_set_insn_param(icount_start_insn_idx, 1, num_insns);

58 Chapter 3. QEMU External Synchronization Mechanism

44 }

45 //

46 //...

47 }

Once it has an instruction counter for each vCPU, it is possible to obtain the increment
of the number of instructions executed. This increment is equivalent to the variable N in
the Equation 2.1. Thus, a temporal notion of each vCPU in MTTCG mode is provided.

Whenever QEMU executes a guest load/store instruction, an I/O access to a set MMIO
region may be generated. QEMU can not know when this will happen as it depends on
the guest code. When QEMU detects an I/O access in the translation phase, it stops
the current TB translation. It then restores the number of un-translated TB instructions
in the instruction budget, re-translates the TB again and exits to the main loop. Then,
this ensures that the instruction which generates an I/O must be at the end of the TB.
Therefore, in the execution phase, the main loop recovers control allowing QEMU to run
any I/O event [QEM].

3.4.2. Management of Synchronization Points

Given that each vCPU has its own instruction counter, the simulated time [Fuj01] of
each vCPU (local simulated time) can be obtained from Equation 2.1. The main factors
that determine the instruction execution speed of each vCPU are as follows:

Instructions shared between vCPUs. The synchronization in parallel execution of vC-
PUs is guaranteed by QEMU-MTTCG when an instruction affects multiple vCPUs.
As with parallel conservative simulation, the affected vCPUs are blocked until all
vCPUs reach the same simulation time. Otherwise, and for most of the instructions,
the instructions of each vCPU are executed as fast as possible [CBBC17].

The intrinsic complexity of the guest code is decisive in the execution speed of each
vCPU. A complex structure of the guest code means that QEMU will make more
translations and changes to the TB cache table. Therefore fewer executions will be
chained, decreasing the performance of the vCPU simulation.

The workload of the machine/OS on which QEMU runs. Therefore, the speed at
which QEMU executes its instructions can change in function on the host OS work-
load.

The above features produce time differences between the vCPUs. To guarantee that
a vCPU with less executed instruction does not update the notion of the time of the
software emulator (simulated time), the time values sent to the hardware simulator must
be monotonically increasing. Otherwise, it would generate an inconsistency in the time of
the hardware simulator. It should be noted that this condition also eliminates the influence

3.4 Implementation of External Synchronization in QEMU using Multi-Thread Tiny
Code Generator. 59

of the number of vCPUs on the total number of generated synchronization points. This
is because the number of synchronization points will depend only on the vCPU that has
executed the highest number of instructions, achieving the diagram described in Figure
2.18b.

Since multiple vCPUs can trigger synchronization points at very close instants, a
threshold has been introduced to control the minimum number of instructions that must
be executed before the next synchronization point happens.

For these reasons, the following expression (Equation 3.1) has been included as a
condition of to trigger a synchronization point where TSW is the time of the software
emulator and is equal to the maximum time of all vCPU; THW is the time of the hardware
simulator; Tht is the minimum time that the software emulator can freely advance in the
co-simulation virtual platform.

sync =

1 if TSW = max(TvCP Un) > THW + Tht

0 if ohterwise
(3.1)

3.4.3. Location of the Synchronization Points

The translation-execution loop performs a translation from the guest TBs to the host
TBs and its subsequent execution on the host. As the emulation progresses, synchroni-
sation points must be sent to the external hardware simulator. This allows the software
emulator and the hardware simulator to be synchronised. Synchronisation points are vir-
tual interactions and only send the local time notion of each vCPU. Figure 3.4 shows the
QEMU flow and where to introduce the synchronization point.

Translation/execution
loop vCPU thread

Exception
???

no

SYNC
TO HW

HW
SIMULATOR

Blocked callback

Mutex

yes

Figure 3.4: Flow chart for the location of the synchronization point.

When an internal/external event needs to break the translation-execution loop, an
exception is triggered. The exceptions force to store the state of the vCPU and break
the translation-execution-loop in a safe mode. Thus, it allows the remaining processes of
QEMU or peripherals to be updated before serving the exception. This is the right time
to send a synchronization message to the hardware simulator since the state of the vCPU

60 Chapter 3. QEMU External Synchronization Mechanism

is safe and does not change. It should be noted that in the multi-thread case, this point
can be reached at the same time by different vCPUs. For this reason, a mutex has been
introduced to serialize and protect simultaneous access to the synchronization point. The
exceptions of QEMU are triggered by multiple reasons, which are described in QEMU
documentation [QEM]:

Exceeding the maximum limit of executed instructions (icountMax). This exception
enables carrying out other pending tasks and processing events associated with the
management of the whole emulated system. The icountMax value is the maximum
limit of instructions executed in a translation-execution loop (in Equation 2.1, it
equals variable N) and is user-configurable.

An external interaction toward the vCPU. Which is any signal that is generated
outside vCPU flow and modifies its state (i.e., asynchronous interrupts).

Other exceptions generated by the guest code. Most of them are related to the guest
code, the QEMU management of the vCPUs, and the emulated peripherals.

The following code shows the location of the synchronisation points within the QEMU
source code. It can be seen that the synchronisation point is located after the translation
and execution of the guest TBs, and a mutex protects it.

Listing 3.5: Location of the synchronization point in QEMU source code. file://cpus.c
1 /* Multi-threaded TCG - Tiny Code Generator

2 * In the multi-threaded case each vCPU has its own thread. The TLS

3 * variable current_cpu can be used deep in the code to find the

4 * current CPUState for a given thread.

5 */

6 static void *qemu_tcg_cpu_thread_fn(void *arg){

7 //vCPU INITIALIZATION

8 //...

9 while (1) {

10 //...

11 //TRANSLATE & EXECUTE TBs

12 r = tcg_cpu_exec(current_cpu);

13 //...

14 //BREAK IF THERE IS SOME EXCEPTION

15 //...

16 //-------------- SYNCRHONIZATION POINT --------------

17 if (COSIL_sync && use_multi_icount) {//if it’s enabled

18 //MUTEX

19 qemu_mutex_lock(&SYNC_mutex);

20 //GET INSTRUCTION COUNTER (CLOCK) FOR current_cpu

21 int64_t vcpu_clock = qemu_clock_get_ns(QEMU_CLOCK_MULTI_VIRTUAL);

22 //MANAGEMENT OF SYNC POINT -- see 3.4.2 section

23 if(last_sync_icount < vcpu_clock && (vcpu_clock-last_sync_icount) >= (min_sync_icount)

{

24 //DO SYNC

25 COSIL_sync(COSIL_opaque, vcpu_clock, current_cpu->cpu_index, 0);

26 last_sync_icount = vcpu_clock;

27 last_sync_cpu = current_cpu;

3.5 Summary 61

28 }

29 //MUTEX

30 qemu_mutex_unlock(&SYNC_mutex);

31 }

32 //END TRANSLATION-EXECUTION LOOP

33 //...

34 }

35 return NULL;

36 }

In Listing 3.5-Line:21, it can be observed the condition described in Equation 3.1 to
execute a synchronisation. Note that Tht is represented by the configurable parameter
min_sync_icount.

3.5. Summary

This chapter presents a new proposal for integrating QEMU as a software emulator in
co-simulation a virtual platform based on SystemC. The integration enables fast MPSoC
+ FPGA verification using the MTTCG parallel execution mode of QEMU.

The new proposal is based on a synchronization mechanism between the QEMU and
an external hardware simulator. The synchronization mechanism sends messages to the
hardware simulator and uses the vCPU local time described for QEMU. Moreover, the
mechanism allows setting the timing accuracy of the software emulator with a low impact
on the co-simulation performance.

Throughout this chapter, internal details of the synchronisation mechanism have been
provided. It explains the method to obtain the timing notion of each emulated guest CPU
and the management of synchronisation points in QEMU. It also shows the secure location
in QEMU source code where the its execution can be blocked to send a synchronisation
point.

Chapter 4

COSIL: Co-simulation
Software-in-the-loop

Heterogeneous designs require to use of more flexible
tools for verification. COSIL is an open-source tool that

advances in this way.

4.1. Introduction

This chapter aims to provide a solution that allows verifying by co-simulation the
functionality of the control system and its interaction with the power plant applied to
power electronics applications. This solution is presented as an alternative to the use of
Hardware-in-the-loop verification platforms. The new verification tool is based on the
Software-in-the-loop methodology and virtual platforms to model SoC+FPGA devices
and their interactions with the power plant. Thus, the developed tool called COSIL runs
the software implemented in the SoC, the hardware designs in the FPGA, and the power
plant model simultaneously. COSIL allows working, in a progressive way, with multiple
levels of abstraction. It supports functional and temporal simulation techniques, from the
most abstract level (Algorithm level) to a level sufficiently detailed to validate hardware
designs in FPGAs (RTL − Register-Transfer Level).

COSIL aims to address the limitations found in Software-in-the-loop. As explained in
the Section 2.2.2, its main challenges focus on increasing simulation speed and testing the
implementation of the whole control system.

To increase co-simulation speed, COSIL takes advance of the high speed of software
emulators, among other improvements. Also, COSIL co-simulates the source code of the
final implementation without any modification that will run on the embedded processors
or the FPGA. Then, it improves the reusability of the source code used in the verification
cycle. Table 4.1 summarises the improvements COSIL offers to Software-in-the-loop.

64 Chapter 4. COSIL: Co-simulation Software-in-the-loop

Table 4.1: Comparison of non-destructive tools for verification in power electronics with COSIL

. HIL PIL/FIL SIL COSIL

Tipe of verification Full-control
board

Specific
SW/HW
modules

Specific
SW/HW
modules

Full-control
code

Price (cheap) ◦ ◦ ◦ • ◦ ◦ • • • • • •
Compatibility • ◦ ◦ • ◦ ◦ • • • • • •

Verification speed • • •
(real-time) • • ◦ • ◦ ◦ • • ◦

Timing Accuracy
(power plant) • ◦ ◦ • • ◦ • • • • • •

Flexibility to
changes • • ◦ • ◦ ◦ • • • • • •

Debug capabilities • ◦ ◦ • • ◦ • • • • • •
Code re-usability • • • • ◦ ◦ • ◦ ◦ • • •

The following explains how to use COSIL to verify the control system in power elec-
tronics applications. The internal details of COSIL are described. Also, it includes a
performance study and results using as a case study a work-in-progress industrial project.
The industrial application consists of a control system implemented in a SoC+FPGA
device to control a 400 kVA back-to-back (AC/DC/AC) converter.

4.2. COSIL methodology

The design and implementation flow using COSIL is described in Figure 4.1. COSIL is
based on the standard design and implementation methodology in power electronics (see
Section 2.2.2). First, the design requirements are defined, the power plant is modelled,
and the control algorithm is designed using a model-based simulation (Model-in-the-loop
- MIL - Simulink). This power plant model will also be used to simulate the power plant
(PW) in the COSIL tool.

Once the specification of the control algorithm are obtained, its implementation is
designed. Among others, this process determines where it will implement each part of the
control algorithm (only software, only hardware or a mix of software and hardware), and
the code is generated. COSIL enables the verification of not only the control algorithm
but also its integration, and therefore it verifies the whole software and/or hardware
infrastructure that makes up the control system. Once the software and hardware are
implemented, their operation and impact on the modelled power plant are verified by
co-simulation (HW+SW+PW).

The closed-loop link with the model of the power plant allows to use the MIL simulation
developed in design phase as a golden reference. Thus, it can be verified that the operation
of the final code is correct.

4.3 Platform description 65

Design contraints

Code Generation

Code Verification

Software-in-the-loop

Installation/Calibration

Error
detected

Model-in-the-loop

COSIL
HW+SW+PW

Closed loop

Design Implementation

Figure 4.1: COSIL methodology flowchart.

4.3. Platform description

The COSIL verification tool is based on a co-simulation virtual platform managed
by a sequential discrete event simulator. It is composed of three modules: power plant
simulator (PW − PoWer plant), software emulator (SW - SoC/µP/CPUs), and hardware
simulator (HW - FPGA). The simulators/emulator can be seen as modules within the
virtual platform, and their synchronisations and communications are performed through
messages (Figure 4.2).

SW emulator
QEMU

ISS+BFM

HW Simulator
SystemC/

VHDL/Verilog

PW (PoWer)
simulator
Simulink

TLM TLM

TLM

COSIL

DES
SystemC (C++)

SW
SoC/µS

.elf/.bin

.slx

HW
FPGA

.bit

Figure 4.2: COSIL main setup.

These modules are described in SystemC (C++), allowing system-level modelling. This
fact facilitates the development of systems in the virtual platform because all modules use
the same language, C/C++ code. Furthermore, the SystemC kernel (DES) synchronises
all modules. Thus, the environment works in a mono-process setup. It means that all

66 Chapter 4. COSIL: Co-simulation Software-in-the-loop

modules (SW, HW and Power plant (PW)) are executed in the same process from an oper-
ating system point of view. Therefore, it is unnecessary to use typical the communication
mechanisms found in multi-process applications such as Inter-Process Communication
(IPC). This avoids the simulation speed penalties introduced by IPC, replacing IPC with
simple function calls [DMB19].

Building full co-simulation in a single process makes easy to get a complete visibility
of the status of all simulators. Therefore, it simplifies debugging and tracing data from
any point in the power plant, hardware design or software application.

COSIL is based on the Transaction Level Modeling (TLM) abstraction level as a trade-
off between abstraction and accuracy. Therefore, the number of events generated in
the communication between modules is reduced. TLM reduces the effort of modelling
communication and increases the speed of simulation. It models the communication
between modules, performing messages like a memory read/write as a single step rather
than a sequence of cycle-level events [IEE11].

In COSIL, multiple levels of abstraction are allowed, and RTL designs can be mixed
with functional algorithms described in C/C++. At the most detailed abstraction level,
COSIL supports instruction-accurate timing for software and cycle-accurate timing for
hardware. The power plant timing accuracy depends on the discretisation frequency used
with the power plant simulator. Typically, the discretisation frequencies are limited by
the behaviour of faster devices such as IGBTs.

Considering the current design work methodologies in power electronics applications,
this thesis has used the leading verification tools in each field to improve productivity.
Thus, COSIL allows linking the designs with software tools such as Vitis, SDK, Petalinux,
Vivado by Xilinx, Eclipse, or Simulink by Mathworks to the SW, HW and PW modules.
Thus, it facilities the verification of the final implementation code, which is later installed
on the control board, with the power plant model from Simulink (see Figure 4.2).

When the main goal is to verify hardware modules described in VHDL/Verilog/Sys-
temC, the QuestaSim simulator can be used [Sie] as a backplane for the whole co-
simulation. QuestaSim is one of the most popular and commercially widespread mixed-
language DES, and it supports mixed description simulation where different modules can
be described using VHDL/Verilog/SystemC. Note that the use of RTL modules consid-
erably increases the simulation execution time.

The architecture of COSIL can be seen in Figure 4.3, which details the modules that
make up the platform. The communication channels that can be used between different
modules are detailed. Figure 4.3 will be used to explain COSIL internal details.

As mentioned above, COSIL performs a HW+SW+PW co-simulation mixing three
domains: the software domain, the hardware domain and the power plant domain. Each
domain can be made up of multiple modules.

4.3 Platform description 67

PW
Si

m
ul

in
k/

C+
+

PW
Si

m
ul

in
k/

C+
+

Lo
ca

l c
lo

ck
Lo

ca
l c

lo
ck

Em
be

dd
ed

Li

nu
x

M
ul

ti-
Co

re
/B

ar
em

et
al

M
M

IO

 In

str
uc

tio
n

co
un

te
r

In
te

rru
pt

io
n

M
an

ag
er

Sy
st

em
C

 c
od

e

TL
M

 M
an

ag
er

:
IO

 c
al

lb
ac

ks

re
ad

()
w

rit
e(

)

sy
nc

()

in
te

rru
pt

 O
N

, w
ai

t .
..

co
nt

in
ue

In
te

rru
pt

io
n

at
te

nd
ed

Cl
oc

k

A
dd

re
ss

, d
at

a

TL
M

vC
PU

#0
vC

PU
#N

C
al

lb
ac

ks
:

C
 c

od
e

Q
EM

U

D
yn

am
ic

 L
ib

ra
ry

TL
M

A
X

I-F
ul

l

Transactors

Transactors

Lo
ca

l c
lo

ck
Lo

ca
l c

lo
ck

Transactors

V
irt

ua
l I

O

SW
IS

S-
Q

EM
U

SW

M
an

ag
er

Si
m

ul
in

k/
C+

+

H
W

 w
ra

pp
er

s

SW

In
te

rru
pt

io
n

 fr
om

 H
W

PW
H

W

PW

Fi
gu

re
4.

3:
In

te
rn

al
ar

ch
ite

ct
ur

e
of

C
O

SI
L.

D
et

ai
ls

of
SW

,H
W

an
d

PW
m

od
ul

es
.

68 Chapter 4. COSIL: Co-simulation Software-in-the-loop

4.3.1. SW domain

Modelling the behaviour of a microprocessor is a complex task. The use of emulators
addresses this complex task. COSIL uses the QEMU tool (Quick EMUlator). Currently,
QEMU is the most compatible open-source software emulator on the market [QEM].
QEMU allows working with a multi-thread translator core. The use of parallelised em-
ulators helps to improve the performance of SIL systems. Therefore, both multi-core
operating systems and bare-metal applications can be verified. A virtual CPU (vCPU) is
created for each guest CPU to translate and execute the instructions.

The SW module can be seen as a chip based on an ISS (Instruction Set Simulator) and
a BFM (Bus Functional Model). The ISS reproduces the behaviour of the instructions
executed by the processor. Otherwise, the BFM reproduces the external interface of the
processor without providing any internal detail. The external interface is composed of
the buses that communicate the processor with the FPGA and the interrupt inputs [SG].
The BFM is implemented as a state machine controlled by an API. When the ISS detects
memory access, it accesses the BFM API to perform the access.

The ISS includes the processor emulator (QEMU). The ISS is also called SW-QEMU in
this book. It is possible to replace the ISS with a SystemC module (SW-SystemC) that
functionally represents the software behaviour. In literature, this option is also called
host Host-Compiled Simulation [Ger10]. Then, it eliminates the workload of QEMU and
achieves a faster simulation of the hardware architecture. In this case, it does not verify
the same software code, but only the code sections that it wants to verify.

QEMU includes some modules to detect situations where it is required to synchronise
its state with external simulators. These situations are typically interactions with the
hardware, such as input/output accesses, interrupts or synchronisation points (see Section
3.3). The input/output accesses are managed by the MMIO module (Memory Map Input
Output). The Interrupt Manager module manages the interrupt request coming from the
HW (FPGA). Finally, forced synchronisation points allow share timing notion between
SW, HW and PW and running the co-simulation in a synchronised way.

The software timing accuracy is configurable and relates to the maximum number of
guest instructions that can be executed before sharing the CPU status with the HW or
PW. The number of instructions executed by each vCPU is included in the CPU sta-
tus information, providing the software execution timing with instruction accuracy. The
Instruction counter block of the ISS-QEMU provides the time notion of the emulated ma-
chine. The timing and synchronisation details of QEMU have been described in Chapter
3.

The BFM decodes the accesses between software and hardware depending on the
communication bus used by each hardware peripheral. The following communication
mechanisms have been developed: TLM and Advanced Microcontroller Bus Architecture

4.3 Platform description 69

(AMBA) Advanced eXtensible Interface (AXI). The TLM [IEE11] is intended for designs
with a high abstraction level, while the AXI protocol [ARM] is intended for RTL modelled.

Between the ISS and the BFM, there is a submodule called SW Manager (Figure 4.3).
The SW Manager submodule include an API for the BFM. It manages the I/O accesses
between SW and HW and the synchronisation between ISS (QEMU) and the rest of the
modules (HW and PW). It is composed of callbacks (read/write/sync) called from QEMU.
The callbacks model the interactions or synchronisation. In addition, the callbacks get
state information of the vCPUs and the addresses and access data exchanged between
SW/HW. This block also manages the interrupts generated in the HW and applies them
to the SW emulator.

4.3.2. HW domain

Due to the different levels of abstraction that HW modules can present, a generic
module has been made to encapsulate each hardware design. This generic module is called
HW wrapper and includes blocks called transactors [BP07]. The transactors translate the
communication protocols between TLM/AXI depending on the level of abstraction.

Usually, the workload in RTL simulations is very high. A method to relieve this
workload is based on reducing the number of events and increasing the simulation speed
to raise the level of abstraction in designs. For this purpose, COSIL supports the use of
mixed abstraction levels designs.

In the early stages of the design cycle, where functional verification of the system is
carried out, code auto-generation tools such as Matlab Simulink Embedded Coder can
generate C++ code for the control algorithms. The latter option allows testing the influ-
ence and operation of these algorithms in the whole environment (SW, communications
and HW) quickly.

In the advanced design cycle, it is possible to integrate RTL modules generated from
HLS synthesis tools or code them directly in VHDL, Verilog or SystemC. Thus, the RTL
model tested in the virtual platform behaves identically to the one used in the final
implementation.

The current trend in power electronics is to use HLS tools to generate RTL models
from C code [BSD+20]. Following this trend, it is possible to take advantage of such
tools to generate RTL equivalent code in SystemC from the C description of the HW
design. The advantage of SystemC code is that it is a compiled language in contrast with
interpreted HDL languages (like VHDL or Verilog), reducing the workload and increasing
the co-simulation speed [DMB19].

Clock management in hardware modules is critical. In the power electronics area, the
control algorithm usually runs periodically depending on the acquisition frequency. It is
only at these times that the hardware modules work. When the hardware modules finish,

70 Chapter 4. COSIL: Co-simulation Software-in-the-loop

only events linked to the clock signal are attended. However, until the next acquisition
event, the hardware modules are idle. Thus, there are vast unnecessary events generated
by the global system clock. Local clocks are used in each HW Wrappers module to
suppress these additional events instead of a global clock for the whole system.

Local clocks offer the possibility to only wake up the clock signals of the HW module
during the time required to complete its task. Once it completes its task, it turns off
the local clock signal. The local clocks are enabled by any interaction with the hardware
design and stop when the maximum latency assigned to each hardware design elapses.

4.3.3. PW domain

The PW modules includes the power plant simulation models discretised and auto-
matically translated to equivalent C++ code. It has a local clock whose frequency is
the discretisation frequency. The integration of the power plant into the simulation en-
vironment is based on Matlab Simulink Embedded Coder. However, it can be based on
discretised equivalent models and coded in C++.

As in the HW designs, communications of PW with the HW/SW modules include
transactors. These transactors abstract the details of the interface between the HW/SW
and the power plant.

The interface between the control board and the power plant has been modelled by
immediate TLM channels specially developed for COSIL and called VirtualIO (Figure
4.3 - VirtualIO channels). These channels use double precision floating point to keep
compatibility with the native Matlab Simulink precision.

VirtualIO uses immediate TLM transactions. Immediate TLM transactions are also
called Direct Memory Interface (DMI)-TLM [IEE11]. DMI-TLM transactions are a type
of transaction that has no communication latency. In fact, it uses the slave memory
pointer to access directly to slave.

The requirements and libraries supported by Embedded Coder, as well as the limita-
tions and quantisation errors, have been well studied by Matlab [Mat21]. The quality
of discretisation depends on the optimisations that have been configured in Embedded
Coder. In addition, the result also depends on the version of the C/C++ code generator
used. Therefore, the discretisation error will depend on the model, library, frequency, and
even optimisation or program version used.

For the sake of simplicity, the Embedded Coder Quick Start interface has been used to
generate the PW modules in this thesis. Both regular and Simscape library models have
been transformed. No limitations have been found to get the C++ code equivalent to the
power plant.

After Embedded Coder Quick Start configures the model for basic code generation, it
is possible to do a fine-tune optimisation to adapt the generated code to the high-level

4.3 Platform description 71

code generation objectives. Some of these high-level objectives are execution efficiency,
Random Access Memory (RAM) efficiency, traceability or debugging. In this thesis, the
execution efficiency goal has been selected as the main goal is optimizing the co-simulation
speed.

4.3.4. Synchronization

COSIL relies on the SystemC kernel to synchronise SW, HW and PW modules. The
SystemC kernel is a sequential DES kernel, so it executes events chronologically in a se-
quential single-process architecture. COSIL uses a conservative asynchronous synchroni-
sation approach as a balance between timing accuracy and performance. Synchronisation
must be performed whenever there is an interaction between two different modules (SW,
HW or PW), i.e. when there is communication. However, the high number of synchroni-
sations between multiple modules could drastically reduce the co-simulation performance.

Temporal decoupling defined in TLM 2.0 has been used to implement synchronisation
in communications. This mechanism allows to reduce the number of synchronisations and
thus increase the performance of the co-simulation. However, it introduces a timing error
in the interactions. The use of temporal decoupling implies that each module has a local
time and it is released when the next temporal barriers are overcome. The period of these
barriers is called Quantum Time. It is the same concept that look-ahead time explained
in Section 2.1.2. If any module exceeds this barrier, it is blocked, waiting for the rest of
the modules to reach that time. It is recommended to check Section 2.4 for more details
about temporal decoupling.

The implementation of this type of synchronisation through temporal decoupling in-
volves using a SC_THREAD per module and using different time types. These types
are:

Global time. Simulation time (TSim). This is the time used to manage the global
events queue in the DES. Please do not confuse the TS parameter with the sampling
period typically used in the design of the control algorithm. In that section, it talks
about simulation times.

Local time (TSW , THW , TP W). This is the local time of each module. The local
time is updated with the global simulation time only when it passes Quantum time
barriers or when the SystemC kernel executes an event. Local times are not managed
by SystemC DES.

Focusing on the SW module, COSIL allows two options for software verification. The
timing of the SW module depends on the option chosen.

SW-SystemC (host-compiled simulator). Designed for quick verification. In this

72 Chapter 4. COSIL: Co-simulation Software-in-the-loop

case, the SW module time is managed by itself. Thus, from the DES point of view,
its management is similar to the HW and PW modules.

SW-QEMU (emulator). Designed for software source code emulation. Here the
advance of the SW module is managed externally to the DES. It is QEMU that
sends the temporal information of the vCPUs and allows to increase the time of the
SW module. Then, the SW local time increment is controlled by QEMU. If QEMU
stops, the co-simulation will be blocked because the rest of modules will stop in the
next Quantum time barrier.

A practical example of synchronisation in COSIL will be presented below. This exam-
ple aims to obtain the voltage measurement of the power grid using a SoC and an FPGA.
Even though in practice we can have multiple SW, HW or PW modules, to simplify the
example, it will be assumed that it has one SW module, one HW module and one PW
module. For this purpose, it is necessary to simulate the power grid in a PW module and
simulate an acquisition IP located in the FPGA with a HW simulator. The design, there-
fore, divides the functionality into three environments: CPU (bare-metal) application,
FPGA (Acquisition - ADC) and Power Plant (mains/power grid). If the mains voltage
value exceeds a specific limit, the ADC interrupts the bare-metal application to warn of
a fault. It can be seen the time advance of the co-simulation in Figure 4.4.

For this example, the HW module (Acquisition - ADC) spends 1.5 µs (latency) to read
data from the power grid at 200 kHz. This latency symbolises the time it takes to get data
from the sensors of the plant connected to the power grid. The PW module is executed at
1 MHz as this is the frequency that has been used to discretise the power plant. Both the
HW and PW modules are executed in a loop using the wait(time) sentence to indicate the
DES when they are going to be executed. For the sake of simplicity, the communication
between the HW and PW modules is latency-free. The global simulation time is denoted
as (TSim).

The choice of the Quantum time is critical. The Quantum must be chosen small enough
not to swamp the synchronisation behaviour of the co-simulation. In this example, a
Quantum time of 5 µs has been chosen to represent possible timing errors. This value has
been chosen as it is a multiple of the period of the PW module, the one which advances
the fastest. So every five PW executions, all the modules must be synchronised. Some
tips for selecting the Quantum time will be given at the end of this section.

Eight points are highlighted in Figure 4.4.

1. The SW manager starts in an idle state waiting for some interaction from QEMU.
When QEMU accesses the SW Manager, it sends its time notion. Then, an internal
variable of SW Manager called tswvar is increased. This variable accumulates the
time increments coming from QEMU (tswvar = tswvar−1 + ∆TQEMU). If after the
updating of tswvar, it exceeds the next Quantum time barrier, the SW module will

4.3 Platform description 73

PW
PW

PW
PW

SW

w
ai
t (
15
00
ns
)

vi
rt
ua

l

ph
ys
ic
al
: I
O

vi
rt
ua

l

vi
rt
ua

l
vi
rt
ua

l

vi
rt
ua

lQ
EM

U
SW

‐ M
an
ag
er

w
ai
t (
35
00
ns
)

w
ai
t (
10
00
ns
)

w
ai
t (
10
00
ns
)

w
ai
t (
10
00
ns
)

w
ai
t (
10
00
ns
)

w
ai
t (
10
00
ns
)

T S
W
=0
ns

T P
W
=1
00
0n

s

TH
W
=5
00
0n

s
TP

W
=5
00
0n

s

TS
W
=0
ns

T S
W
=0
ns

TS
W
=0
ns

TS
W
=5
35
0n

s

Δ
T

Q
EM

U
=1
00
0n

s

Δ
T

Q
EM

U
=1
00
0n

s

Δ
T

Q
EM

U
=1
50
0n

s

Δ
T

Q
EM

U
=1
85
0n

s

Δ
T

Q
EM

U
=5
00
ns

Δ
T

Q
EM

U
=1
00
0n

s

w
ai
t (
53
50
ns
)

TH
W
=1
50
0n

s

TH
W
=1
50
0n

s
TP

W
=3
00
0n

s

TS
W
=5
35
0n

s

TS
W
=5
35
0n

s

TS
W
=5
35
0n

s

w
ai
t (
35
00
ns
)

w
ai
t (
10
00
ns
)

w
ai
t (
10
00
ns
)

w
ai
t (
10
00
ns
)

w
ai
t (
10
00
ns
)

w
ai
t (
10
00
ns
)

T P
W
=6
00
0n

s

TH
W
=1
00
00
ns

TP
W
=1
00
00
ns

T H
W
=6
50
0n

s

w
ai
t (
54
00
ns
)

TS
W
=1
07
50
ns

Δ
T

Q
EM

U
=1
00
0n

s

Δ
T

Q
EM

U
=1
90
0n

s

Δ
T

Q
EM

U
=2
00
0n

s
vi
rt
ua

l

vi
rt
ua

l

Sy
st
em
C
 D
ES

w
ai
t (
10
00
ns
)

w
ai
t (
10
00
ns
)

w
ai
t (
10
00
ns
)

w
ai
t (
10
00
ns
)

w
ai
t (
10
00
ns
)

w
ai
t (
10
00
ns
)

T P
W
=1
10
00
ns

TH
W
=1
00
00
ns

TP
W
=1
00
00
ns

T H
W
=1
15
00
ns

w
ai
t (
15
00
ns
)

w
ai
t (
25
00
ns
)

TH
W
=1
25
00
ns

IR
Q

w
ai
t (
15
00
ns
)

Δ
T

Q
EM

U
=8
16
ns

ph
ys
ic
al
: I
RQ

T S
W
=1
07
50
ns

vi
rt
ua

l

In
it
m
od

ul
es

vi
rt
ua

l
TS

W
=1
07
50
ns

T S
W
=1
07
50
ns

T S
W
=1
07
50
ns

w
ai
t (
68
16
ns
)

Δ
T

Q
EM

U
=2
00
0n

s
Δ
T

Q
EM

U
=1
00
0n

s
Δ
T

Q
EM

U
=2
00
0n

s

Q
un

au
tm

ba
rr
ie
rs

Q
un

au
tm

ba
rr
ie
rs

Q
un

au
tm

ba
rr
ie
rs

1*
3*

4*
5* SW

H
W

PW
PW

H
W

PW
H
W

PW
PW

H
W

SW
PW

H
W

PW
PW

H
W

PW
SW

H
W

H
W
‐to
‐P
W

H
W
‐to
‐P
W

Sy
nc
 M

od
ul
es

Sy
nc
 M

od
ul
es

Q
un

au
tm

ba
rr
ie
rs

Q
un

au
tm

ba
rr
ie
rs

PW
H
W

SW

D
ES
 e
ve
nt

qu
eu
e

2*

6*
vi
rt
ua

l

IO

ev
en
t

8*
7*

SW
‐to
‐H

W
H
W
‐to
‐P
W

ts
w

 =
 1
00
0n

s
va
r

ts
w

 =
 2
00
0n

s
va
r

ts
w

 =
 3
50
0n

s
va
r

ts
w

 =
 5
35
0n

s
va
r

ts
w

=
50
0n

s
va
r

ts
w

 =
 1
50
0n

s
va
r

ts
w

 =
 3
40
0n

s
va
r

ts
w

 =
 5
40
0n

s
va
r

ts
w

 =
 1
00
0n

s
va
r

ts
w

 =
 1
81
6n

s
va
r

ts
w

 =
 3
81
6n

s
va
r

ts
w

 =
 4
81
6n

s
va
r

ts
w

 =
 6
81
6n

s
va
r

Fi
gu

re
4.

4:
Ex

am
pl

e
of

sy
nc

ro
ni

sa
tio

n
of

a
SW

,H
W

an
d

PW
m

od
ul

e
us

in
g

SW
-Q

EM
U

.

74 Chapter 4. COSIL: Co-simulation Software-in-the-loop

block until the global simulation time reaches the new TSW . The blocking is done
using the wait(time) sentence. When the rest of modules reach the accumulated
tswvar the SW Manager can continue and the SW local time is updated with tswvar.

Remember that there are two types of access: virtual or physical. Virtual accesses
depends on the guest emulated code and the operating system where QEMU is
executed, and they are limited by the icountMax and Tht parameters (see section
3.4.3). Physical accesses (IOs and Interrupt Request (IRQ)) are asynchronous and
instantaneous (it does not has latency in the QEMU-SW module communication).
In the example, an asynchronous IO access occurs. This access is blocking and stops
QEMU while the SW-manager manages the access.

2. An access is being performed from the HW module to the PW module. An example
of this type of access is a reading of the voltage and current sensors by the ADC
FPGA-controller. At this moment (TSim = 1500 ns) the PW was blocked with a
wait(1000 ns) sentence. Therefore, from the HW point of view, the PW module time
is TP W = 1000 ns. This generates a timing error of 500 ns in synchronisation.

3. There is access from the HW module to the PW module made by QEMU I/O access.
Same as case 2, the notion of time between SW, HW and PW is different. This
generates a timing error due to a relatively high Quantum time compared to the
faster module (PW).

4. The HW module detects an overvoltage in the power grid. Then, it sends an interrupt
to the SW module, which notifies QEMU to deal with the interrupt.

5. When QEMU has attended the interrupt event in its event queue, it returns its time
notion. This does not imply that the interrupt handler started to be executed.

6. QEMU runs on the host operating system. Therefore, the interaction between QEMU
and the SW Manager is not temporally deterministic. The time advance of QEMU
depends on the workload of the operating system where it is executed. However, its
time advance (∆TQEMU) is also limited by Th and icountMax.

7. In the DES event queue, only the global simulation time is taken into account. Here
all events to be processed in the co-simulation are reordered. At this point, although
TSW = 0ns, THW = 1500ns and TP W = 3000ns , the simulation time is assigned by
the last timestamp ot the executed event. Therefore, from the DES point of view,
these interactions are performed at time TSim = 3000ns.

8. When the Quantum barrier is overcome, all modules must be synchronised.

The bottom of Figure 4.4 shows how the SystemC DES event queue would be organised
for this example. Here, it can be seen how the kernel does not know any aspects of the
local time of each module but works with the global simulation time.

4.3 Platform description 75

TLSW TLSW TLSW

SW

HW

PW

Period hw module

Period power
plant module

Virtual interactions

Local offset time

read

max icount

Quantum time

read

THW

TSW

TPW

5000ns 10000ns 15000ns

read

IRQ

TS im TSim TSim

TSW=0ns
THW=1500ns
TPW=3000ns
TS=3000ns

Async IO
access

tswvar=3500ns
TSW=10750ns
THW=12500ns
TPW=12000ns
TS=12500ns

tswvar=12566ns

2*1*

Figure 4.5: Representation of Figure 4.4 from the point of view of DES SystemC.

As it has been shown, there are many cases where timing synchronisation errors appear,
i.e. when there is a communication between the modules at different times (TSW ̸= THW ̸=
TP W ̸= TSim). These situations usually happen in synchronization mechanism based on
temporal decoupling. Figure 4.5, again represents the example of the previous Figure 4.4.
In this case, it shows a timeline of how the simulation would look from DES perspective.
In the following, the timing errors that exist when the Quantum is not properly set can
be better observed.

1. An IO access is performed from QEMU. This happens at TSim = 3000ns. This is
the instant when the DES detects this event. The difference between the global time
and the local time of the modules provides the timing error.

SW Error: TSim − TSW = +3000 ns

Error HW: TSim − THW = −1500 ns

Error PW: TSim − TP W = 0 ns

2. Interrupt is triggered and sent to QEMU. This happens at TSim = 12500 ns since
this is the instant at which the HW module executes the event to trigger the IRQ.
In this case the timing errors are:

SW error: TSim − TSW = −1816 ns

76 Chapter 4. COSIL: Co-simulation Software-in-the-loop

HW error: TSim − THW = 0 ns

PW error: TSim − TP W = −500 ns

Note that the absolute value of all errors is less than the Quantum time (5000 ns).
Reducing the Quantum time makes it possible to eliminate these differences as all modules
will have to synchronise more times. However, too many synchronisations are also not
recommended as it drastically reduces the performance of the co-simulation.

To minimise these timing differences, the following tips are suggested:

All interactions should be performed in multiples of the fastest module. In Figure
4.4, this would be the PW module.

Some authors like [Emb10] has commented that Quantum time must be small enough
not to swamp the timing behaviour of the system. Around 10-50% of the smallest
would be a reasonable time to use as a Quantum time.

Please consider the required SW time precision taking into account HW and PW
modules. A high value of K-CPI will cause the SW to advance too fast and lose
timing resolution in the SW. A small value will result in slow progress, and more
instructions will have to be executed to advance the same amount of time.

4.3.5. Debugging features

Debugging the SW, HW or PW is highly desired for analysing system functionality.
COSIL mixes two environments, QEMU and SystemC. Therefore, it is critical to stop
both environments at the same time to perform step-by-step debugging.

Temporal decoupling implements blocking communications. When communication
takes place, the initiator is blocked until the target returns control to it. This is pre-
cisely the key to being able to block the progress of all modules and allow debugging.

In the case of co-simulation blocking from SystemC, the synchronisation between
QEMU and the SW-Manager module will cause the QEMU process to stop, blocking
all its threads. Remember that every N instructions QEMU sends a callback to SW-
Manager to transmit timing information by means of virtual interactions. If the local
time of the SW, managed by the SW-Manager, exceeds any Quantum barrier, the DES
will block the whole SW module, including QEMU.

When it wants to block the progress from QEMU, COSIL has two alternatives. The
less intrusive option is based on using QEMU’s debugging support. QEMU includes a
framework to link the gdb tool. In this case, when QEMU detects a breakpoint generated
by gdb, it generates an exception in the translation-execution loop. Then, a call function
is sent to SystemC (in SW module), in which a breakpoint was set up. This allows
blocking the advance of the HW and PW modules. Thus, all modules are stopped at the

4.4 Summary 77

same instant, allowing step-by-step debugging. However, working with gdb is currently
quite tedious.

Another easy but more intrusive approach is to add accesses to memory regions reserved
for debugging. Such accesses do not involve any latency. Like the accesses also produce
a call function to the SW module, it can fix a breakpoint similar to the gdb option. In
addition, using an API that accesses the reserved memory location, it is possible to trace
the software variables and see their progress during the simulation.

Figure 4.6 shows an example of the path that is taken to block the DES access when
it is accessed from QEMU using memory accesses.

int main(){
.. Other functionality

TRACE(data, dataID);
.. Other functionality

BREAK();
.. Other functionality
}

QEMU: vCPU source code

Embedded Multi-Core

MMIO

vCPU#0 vCPU#N Callbacks:

QEMU-MTTCG Dynamic library

SW-Manager

write()Memory

...
address
 data

write(){
if TRACE
 save data
if BREAK
 breakpoint
}

Logger

wr

Figure 4.6: QEMU debug flow using code intrusive option.

4.4. Summary

This chapter presents the verification SIL-based tool called COSIL as an alternative
to the HIL and PIL systems. Its functionality has been designed for power electronics
applications, although its use could be extended to control applications in general. This
tool is based on a co-simulation virtual platform that links the hardware and software
designs with the power plant, closing the control loop in the same workstation.

The presented tool allows verifying exactly the final HW/SW modules of the multi-
core SoC+FPGA based control board without using a HIL system. Thus, it helps to
reduce the errors that happened in the code writing phase and integration phase. This
new SIL-based alternative provides more debugging and abstraction capabilities in the
simulation and it reduces the verification costs

Throughout this chapter, it has been described how to use COSIL and its internal
architecture. It has also been explained how the SW, HW and PW domains are synchro-
nised.

Chapter 5

Performance analysis and test

...

5.1. Introduction

This chapter focuses on bringing together all the tests carried out to analyse the thesis
contributions. The tests have been grouped into two sections, which have the following
goals:

Analyse the impact on the performance of the proposed modifications in QEMU
source code. The proposal supports an external synchronisation with the hardware
simulator running in MTTCG mode.

Test the reliability, performance and synchronisation of the developed COSIL co-
simulation tool with a real power electronics application. Such a tool may include
QEMU as a software emulator. COSIL eases the verification process of the source
code integration of multi-core mixed software/hardware projects in closed-loop sim-
ulation.

The tests were performed on a workstation with an Intel Core i7-10750H processor and
16 GB of RAM.

5.2. QEMU external synchronisation mechanism

This thesis aims to integrate QEMU-MTTCG in a co-simulation virtual platform that
uses the SystemC kernel as Discrete Event Simulator manager and hardware simulator.
The presented external synchronization mechanism is essential to synchronize QEMU-
MTTCG as the software emulator with the hardware simulator. Within the virtual

80 Chapter 5. Performance analysis and test

platform, QEMU is integrated into the SystemC simulator as a dynamic library. Be-
sides, a TLM 2.0-based API has been developed to provide the necessary communication
infrastructure between QEMU and the hardware simulator.

This test and results section presents the influence of virtual interactions (synchroniza-
tion points) and physical interactions (Input/Output/interrupt).

A Symmetric Multi-Processing Linux (MPSoC Zynq7000-ARM Cortex-A9 dual-core)
has been considered as use case, such as in [AKS16], to test virtual and physical inter-
actions and using different setups. To analyse the performance of virtual interaction, it
will run the Linux boot and the ParMiBench benchmark [ILG10], which is specialized
in multi-core embedded devices. Then, to test physical interactions, a real project of a
hardware/software system will use it.

The simulation performance can be calculated as the ratio between the guest simula-
tion time considered by our virtual platform and the time consumed to run the simulation,
also known as wallclock time [Fuj01]. Since the co-simulation virtual platform is executed
under an operating system, the running time is not deterministic and can vary. There-
fore, each setup runs ten tests, and the average and variance of the host execution time
(wallclock time) have been calculated.

5.2.1. Overhead of virtual interactions in co-simulation

5.2.1.1. Definition of methodology

This section aims to define the methodology used to test and analyse the possible
impact on the QEMU performance of the contributions. In particular, it will analyse the
speed reduction exclusively due to synchronisations points or virtual interactions, which
means the number of synchronisations (N_SYNC) in the co-simulation environment. No
hardware modules were added to focus on the changes introduced in the software emulator
(QEMU). Furthermore, it is checked that the time of the hardware simulator is correctly
synchronised with the software emulator.

Three different setups have been considered using a Linux boot to compare the overhead
introduced:

Setup#1: Real hardware platform. Linux boot in the physical system (ZedBoard-
Zynq7000). This test shows the real execution time in the real platform and can be
used as a golden reference.

Setup#2: QEMU-PetaLinux. Linux boot using QEMU-MTTCG provided by PetaL-
inux. This setup shows the execution time using the QEMU version included
in PetaLinux without any modifications. This can be considered as the original
MTCCG implementation against which our solution will be compared.

5.2 QEMU external synchronisation mechanism 81

Setup#3: QEMU-VP. (QEMU for virtual platforms) Linux boot using the version
of QEMU-MTTCG patched with our external synchronization mechanism. In this
setup, QEMU is running from a SystemC-based virtual co-simulation (see Figure
5.1).

HW simulator – SystemC – kernel simulator

SW Module / SW Emulator

QEMU-MTTCG
Dynamic library

MPSoC Zynq-7000 – Dual core
Linux Boot

HW Module / HW Designs

EmptySYNC

Figure 5.1: Setup#3. QEMU-MTTCG inside a co-simulation virtual platform as software (SW)
emulator.

In previous setups, the number of synchronizations performed between the software
emulator and the SystemC simulator (hardware simulator) is evaluated. The results are
evaluated for different values of the Tht parameter (see Equation 3.1) and the maximum
limit of instructions executed by the QEMU translation-execution loop (icountMax, also
called icount budget). In addition, the overhead introduced by the number of synchro-
nizations on the simulation speed is analysed.

The ParMiBench benchmark was used in order to measure the overhead when exe-
cuting other types of applications different from a Linux boot. ParMiBench [ILG10] is
a benchmark specialized in multiprocessor-based embedded systems. It is a parallelized
version of MiBech [GRE+01] and specialized in the embedded devices. ParMiBench pro-
vides four categories: Automation and Industry Control, Network, Office, and Security.
In this case, for the Setup#2 the benchmark is executed by directly launching QEMU-
PetaLinux code source, which prevents the overhead added by the PetaLinux managing
scripts. Table 5.1 summarizes details on these applications and the inputs used for each
case.

5.2.1.2. Results

Multiple tests have been carried out using Setup#3, sweeping the Tht and icountMax
parameters. The number of synchronizations and the wallclock time consumed in a Linux
boot has been measured in each test. These test results are shown in Figure 5.2, using
a logarithmic scale for all the axes. As it can be observed in Figure 5.2a, the number of
synchronizations can be controlled by the icountMax and Tht parameters, as indicated by
Equation 3.1. It can be seen that the number of synchronizations increases exponentially
as Tht and icountMax parameters are diminished.

82 Chapter 5. Performance analysis and test

Table 5.1: ParMiBench benchmarks descriptions with input configuration.

Benchmark Categories Summary Configuration

basicmath Automation
It makes mathematical calculations such as
cubic function solving, angle conversions, and
integer square root.

Large data set: 1
Giga numbers.

bitcount Automation It measures the processor bit manipulation ca-
pability by counting the number of bits.

An input of long
type (31 bits with
1).

susan Automation It is an image recognition application, which
detects corners and edges.

PGM picture: 2.8
MB.

patricia Network It uses a sparse leaf nodes-based data struc-
ture used instead of a full-tree.

Text file containing
5000 IP ad-dresses.

dijkstra Network It computes the single-source and all-pairs
shortest paths in an adjacency matrix graph.

All-pairs: 160 x 160
matrix

stringsearch Office
It gets a specific word in several given phrases
by using case sensitive or insensitive compar-
ison algorithms.

Input data set size:
32 MB 1024 pat-
terns or keys of
length (m): 5

sha Security Iterative one-way hash function cryptographic
algorithm -P 2 (Dual-core)

Figure 5.2: Results of the number of synchronization and host runtime in seconds (wallclock) for
different setups of Tht and icountMax: (a) number of synchronizations (N SYNC); (b) Wallclock.

5.2 QEMU external synchronisation mechanism 83

Figure 5.2b shows that the icountMax parameter is the only one with a real impact
on the wallclock time (wallclock in seconds) of the software emulation. Thus, it can
be concluded that the value of the Tht parameter by itself does not influence the host
simulation time or wallclock time. Hence, it provides the user with a handy mechanism
to define the timing precision of the software emulator. The reason is that icountMax
forces the QEMU translation-execution loop to break when icountMax instructions are
executed. This stop breaks the chains between the TBs, decreasing the high performance
of the QEMU translator-execution loop, consequently slowing down its simulation speed
significantly.

It should be noted that icountMax represents the maximum limit of the software timing
precision. By default, its value in QEMU is 256. For compatibility reasons and based
on the study carried out in this work, this value must not be modified to preserve the
high performance of QEMU unless it is necessary to have higher timing precision for the
software emulator. In any case, icountMax is user-configurable in our virtual platform.

Figure 5.3a shows that the Linux boot execution times for Setup#2 (QEMU-
PetaLinux) and Setup#3 (QEMU-VP) with our modifications are similar. Thus, it is

Setup#1: Board Setup#2: QEMU-Petalinux Setup#3: QEMU-VP

20

40

60

80

100

W
or

ld
 c

lo
ck

 s
ec

on
ds

(a) Boot time of Linux in Zynq7000

b) Instruction Fetching
ELF object (Valgrind):

Setup#2: QEMU-Petalinux

QEMU: 80.68%

Others: 19.32%

c) Instruction Fetching
ELF object (Valgrind):

Setup#3: QEMU-VP

QEMU: 83.90%

SYNC
+

Kernel VP:
0.09%

Others: 16.01%

Figure 5.3: Linux boot time (wallclock) for different scenarios: (a) boot Linux time in different
plat-forms; (b) Instruction Fetching profiling for Setup#2:PetaLinux; (c) Instruction Fetching profiling

for Setup#3:QEMU-VP.

84 Chapter 5. Performance analysis and test

demonstrated that the changes made do not generate a significant overhead for virtual
interactions.

In Figure 5.3b and Figure 5.3c, it shows where it spents the CPU time using the
percentage of instruction executed during the simulation for Setup#2 (QEMU-PetaLinux)
and Setup#3 (QEMU-VP). The data were obtained using the Valgrind tool. As it can
be observed, the modifications introduced to allow the integration of QEMU-MTTCG on
our co-simulation virtual platform has a small impact on run time, and it does not exceed
0.1% of instructions executed.

Figure 5.4 shows the results running on the Linux platform of the execution time
obtained for each ParMiBench application. Tests have been done for Setup#2-QEMU-
PetaLinux and Setup#3-QEMU-VP. The figure shows the relative increment of the wall-
clock time for QEMU-VP when compared with the QEMU-PetaLinux. Consequently, a
result of x% means that QEMU-VP is x% slower than QEMU-PetaLinux. It is concluded
that under this type of applications, synchronisation points decrease performance by 5%
on average.

ParMiBench time results: Setup#2: QEMU-Pelinux vs. Setup#3: QEMU-VP

bas
ic

m
at

h

bitc
ount

su
sa

n

pat
ric

ia

dijk
st

ra

st
rin

gse
ar

ch sh
a

0

2

4

6

8

10

W
al

lc
lo

ck
 r

is
e

(%
)

Figure 5.4: Wallclock time comparation for ParMiBench. Setup#2 QEMU-PetaLinux vs. Setup#3
QEMU-VP.

Finally, Figure 5.5 shows the instructions and synchronizations executed by each vCPU
in the first 100 seconds (wallclock) of the Linux boot in Setup#3, and it reflects the
behaviour described by Equation 3.1. During the Zynq-7000 boot (start-up), CPU#0
behaves as the Master CPU; hence, vCPU#0 is the first to boot the system and later
wakes up vCPU#1. This behaviour can be seen in the first 10 seconds of Figure 5.5-top.
Figure 5.5-bottom shows what CPU has the preference to synchronize. When vCPU#0 is
the only active core, all synchronizations are generated by it. Once the vCPU#1 wakes up,

5.2 QEMU external synchronisation mechanism 85

and the number of instructions executed by vCPU#1 is more significant than vCPU#0,
the synchronizations are no longer managed by vCPU#0.

Figure 5.5: Sync management as a function of vCPUs: (Top) instructions executed per vCPU;
(Bottom) synchronization executed per vCPU.

5.2.2. Overhead of physical interactions in co-Simulation

5.2.2.1. Definition of methodology

This section aims to define the methodology used to test and analyse the possible
impact on the performance of QEMU of the contributions. In particular, it will analyse the
speed reduction exclusively due to physical interactions, which means the communication
between the software emulator and the hardware simulator, i.e., input/output (I/O) access
and interrupts. To remove the effect of virtual interactions in the co-simulation, both
icountMax and Tht remain constant. In detail, it has set 65536 and 10000 instructions to
icountMax and Tht respectively.

In order to analyse the impact of physical interactions, a Zynq (SoC+FPGA) based
design has been developed that periodically exchanges information between the software
simulator (CPU) and the hardware simulator (FPGA) through input/output accesses and
interrupts. In this project, the software emulator accesses to external hardware (periph-
erals) using a interrupt driven approach. Since the thesis focuses on power electronics
applications, a power grids monitoring system has been chosen as a case study.

86 Chapter 5. Performance analysis and test

Using that case study, a sweep of the number of I/Os per time unit has been carried
out, increasing the number of writes/reads executed for each interruption (every 100 µs).
Thus, it will test the influence on the simulation speed of I/O accesses and interrupts
between the software emulator and the hardware simulator.

As the influence is expected to be more significant as the number of I/O accesses
increases, profiling techniques have been used again to analyse the percentage of the
number of instructions executed at the maximum I/O rate of the sweep. In each test, one
second is simulated with a precision of 10 ns in the hardware simulator. The maximum
CPU I/O throughput estimated for the Zynq-7000 is 25 MB/s [Xil21b], for this reason,
tests have been performed up to this value.

Finally, the synchronisation of the system has been checked by tracing the interrupt
signals and synchronisation and I/O events. It also is checked that the interrupt period-
icity is kept, as well as when an interrupt is signalled, an I/O event is generated from
Linux.

5.2.2.2. Results

The description of the power grids monitoring system can be seen in Figure 5.6 and is
based on a mixed hardware/software solution. The hardware/software design is composed
of an embedded Linux (dual-core) that runs an application to obtain data about the power
grid state. It means the application accesses the FPGA or the hardware when it receives
an interrupt (IRQ) from the FPGA. This interrupt indicates that the data obtained by
the hardware is ready to be read.

The hardware design is made up of two hardware accelerators described at RTL level
and presents a middle-grade complexity. The first accelerator is a signal acquisition mod-
ule (IP-ADC). The IP-ADC provides the voltage and current sensors of the power grid.
The second hardware accelerator is called IP-PLL and receives the sensor data from
IP-ADC. Then, it calculates the frequency, phase, alpha-beta transformation, and Direct-
quadrature-zero transformation of the power grid. The IP-PLL uses a Sequence Detector
based on SOGI (Second-Order Generalized Integrator), plus a Phase-Locked Loop (PLL)
with Backward integration. It has been implemented using High-level synthesis tools, as
described in previous works [SMB+13]. When the PLL finishes performing its computa-
tion, it saves the results in a dual-port Block Random Access Memory (BRAM) memory.
Then, it generates the interrupt to the Linux application, which indicates that the data
can be read. Once Linux reads the power grid data from BRAM memory located in
hardware, it sends them via MODBUS (Ethernet) to an external supervisor. The FPGA
clock frequency is 100 MHz, and the hardware ADC and PLL accelerators run periodi-
cally, generating an interrupt every 100 µs. Both hardware accelerators consume 9.54%
of Slices, 14.55% of DSPs, and 1.78% of BRAMs memories from the FPGA (Zynq-7000).

5.2 QEMU external synchronisation mechanism 87

SystemC – kernel simulator

SW Module I/O access

QEMU-MTTCG
Dynamic library

MPSoC Zynq-7000 – Dual core
Linux Boot + APP Linux

HW Module

IRQ

SYNC
ADC PLL

100 MHz BRAM

Physical interaction Virtual interaction

SW Emulator HW Simulator Kernel co-simulation

Figure 5.6: Linux + HW setup. QEMU-MTTCG inside a co-simulation virtual platform as software
simulator. ADC and PLL IP accelerators in hardware simulator.

The results of multiple tests are shown in Figure 5.7a and, as it can be observed,
even though the input/output rate is increasing, there is no appreciable change in the
wallclock or running time of the co-simulation. This is because the workload of the
hardware simulator and QEMU is higher than the virtual and physical interactions, even
though it used the highest input/output rate supported by the real platform.

0 MB/s 6 MB/s 12 MB/s 18 MB/s 25 MB/s

320

330

340

350

360

W
al

l
cl

o
ck

 s
ec

o
n

d
s

a)IO rate betwent PS-PL.

b) Instruction Fetching

ELF object (Valgrind):

25 MB/s

SW:QEMU

37.54%

Others

5.32%

SYNC+IOs+IRQ

0.007%

HW:ADC+PLL

57.13%

Figure 5.7: Linux + ADC + PLL micro-grid monitoring system results: (a) time consumed to perform
the co-simulation (wallclock) for different I/O rates in PS-PL; (b) Instruction Fetching profiling for 25

MB/s I/O rate.

88 Chapter 5. Performance analysis and test

To check the overhead of the input/output accesses and interrupts on the host, profiler
tests have been used again. Taking the highest I/O rate (25 MB/s), Figure 5.7b shows that
most of the host instructions, which are executed by the virtual platform, are consumed
by the hardware simulator.

While, despite having a high in-put/output rate (25 MB/s), only 0.007% of instruc-
tions are dedicated to the management of the input/output/interrupt and the synchro-
nization between the software emulator and the hardware simulator. This shows that the
synchronization mechanism included in QEMU-MTTCG does not add any appreciable
workload for physical interactions compared to the workload of a real hardware/software
co-simulation.

Figure 5.8 shows a time frame of the co-simulation results with the input/output
events (physical interaction) and synchronization (virtual interaction) events. These are
generated in each periodic interruption (100 µs). One read access per 100 µs is executed,
which means a 32-bit access per interrupt (40 KB/s). The triangle represents the time
instant when an event is generated. The IO_EVENT signal indicates the start of an
input/output access event, and the SYNC_EVENT signal indicates a synchronization
event between the software emulator and the hardware simulator. It can be seen that for
each interrupt, Linux accesses the hardware through an input/output access. Therefore,
Linux detects the interruption, wakes up the Application, and executes read access to
hardware. The time from when the interrupt is triggered until Linux accesses the hardware
is the Linux response time. The large number of synchronization events that are seen
allows keeping the software emulator and hardware simulator in synchronised with a
timing precision of 1 µs.

INTERRUPT

IO_EVENT

SYNC_EVENT

Interrupt period 100us
Linux respond time

Sync HW/SW period

760900 us 761000 us

Figure 5.8: Co-simulation frame showing physical and virtual interactions. Example of the number of
IO and synchronization events for each interrupt at 40 KB/s IO rate.

5.2.2.3. Conclusions

A quantitative analysis of the proposal and real tests have been carried out to anal-
yse the possible overhead in co-simulation. These experiments test the impact of virtual
and physical interactions between software emulator and hardware simulator for multiple
setups. It has used a SMP Linux Boot study case, different typical software applica-
tions running under a SMP Linux platform and an FPGA-Linux co-simulation of a real
industrial application.

5.3 COSIL tests and performance analysis 89

The results shown in this section verify that the virtual interactions or synchronisation
points do not add any overhead to a Linux boot running in the QEMU-MTTCG mode. In
this case, it only increases the execution time by 5× when compared with the real platform.
Furthermore, the modification applied in our solution does not introduce a substantial
overhead (less than 10% and %5 on average) when running ParMiBench applications. This
should be considered acceptable for power electronics applications where the simulation
duration is typically around minutes.

The introduced external synchronisation mechanism allows obtaining the virtual CPU
that has executed the most instructions, taking this time as the software timing reference.
Moreover, the value of the Tht parameter by itself does not influence the host simulation
time or wallclock time. Therefore, icountMax parameter provides the user with a handy
mechanism to define the timing precision of the software emulator.

The results also show that physical interactions do not add any appreciable workload in
co-simulation. The workload of the HW modules is so high that the overhead of physical
interactions is not appreciable.

The results show that the new proposal allows using parallelized-QEMU in hardware/-
software co-simulation virtual platforms without any substantial overhead. It also allows
taking advantage of the parallelisation of the software emulator to reduce the execution
time of the co-simulation in real multi-core projects.

5.3. COSIL tests and performance analysis

Usually, the errors mainly happen during the code writing phase or the integration
of different modules that make up the whole control system. The COSIL tool has been
essential to verify all these functionalities and interactions with the control algorithms.
Also, it has considerably shortened the project start-up times, making it possible to find
possible errors quickly and without risk.

In order to evaluate COSIL in a work-in-progress industrial project, the validation of a
control system of a power electronics converter has been considered. The control system
includes control algorithms, hardware modules and interactions between the control board
and the converter. As previously indicated, this is a 400 kVA back-to-back converter
controlled by a Zynq-7000 SoC+FPGA (dual-core Cortex A9+Artix-7) based platform.
This converter acts as a grid emulator to test photovoltaic converters. Therefore, it must
work with different power setups, such as grid-forming, grid-following, and active/reactive
power source/load. Different faults in the grid, like balanced and unbalanced voltage dips,
must be tested in the grid-forming operating mode.

90 Chapter 5. Performance analysis and test

5.3.1. Power plant: back-to-back converter

Figure 5.9 shows a picture of the converter, and Figure 5.10 shows the electrical
schematic of the converter. This converter has two Voltage Source Converter (VSC).
VSC1 works as an active rectifier for this specific application, while VSC2 operates as an
inverter. Depending on the configuration, it will behave as a voltage source or as a cur-
rent source. VSC1 is connected to the grid via an L-filter. VSC2 has an LCL filter. The
second L corresponds to the leakage inductance of the isolation transformer connected to
the output. The Device Unter Test (DUT) is connected to the output of VSC2 through
the insulated transformer.

CONTROL
BOARD

L2

C

L1

VSC1 VSC2

Transformer

Figure 5.9: Back-to-back converter 400KVA.

VSC2
DC/AC

DUT

VSC1
AC/DCL1 L2

C

Transformer
Mains

Back-to-Back
400KVA

SPWMSPWM

UDC

i abc
N

egridabc

N
12 i abc21 i abc22

egridabc

DC+ -

Figure 5.10: Electric scheme of the back-to-back converter.

5.3 COSIL tests and performance analysis 91

5.3.2. Control algorithm

The control algorithm has been developed and verified in model-based simulation
jointly with the power plant. The VSC1 uses a classical control of an active rectifier.
It is based on two external loops for DC-bus voltage and reactive power control, and the
internal current control loops have been implemented on dq-axes. Therefore, the VSC1
control maintains the setpoints defined by the DC bus voltage and reactive power. As a
result, the PWM (Pulse-Width Modulation) references of VSC1 are obtained.

Concerning VSC2, the control algorithm is determined by its operation as a grid em-
ulator and the disturbances generated to the Device Under Test (DUT). Focusing on
the voltage-source operation, different types of control algorithms have been evaluated:
cascaded controllers (voltage controller + current controller), voltage-only controllers,
alpha-beta axis controllers, dq-axis controllers. COSIL has been a crucial tool to verify
the control solutions before testing the converter. As a consequence, the experimental
tests are speedy and safe.

5.3.3. HW/SW architecture of control system

The HW/SW architecture designed and implemented is shown in Figure 5.11. An
asymmetric multiprocessor architecture solution (based on OpenAMP) has been used for
the software. In OpenAMP architecture, the CPU#1 executes the control algorithm, and
the CPU#0 runs an Embedded Linux, which offers all the communication and control
services to the user.

In the HW (FPGA), the following modules have been implemented:

Input/output interface of the converter.

The whole acquisition stage (Figure 5.11 - ADC).

Generation of switching frequency of the IGBTs and control frequency using a pe-
riodic interrupt (Figure 5.11 - IRQ). The possibility of reconfiguring the control
sampling frequency and all associated frequencies is a desirable feature in a grid
emulator converter to which a wide variety of DUTs can be connected.

PLL (Phase-Locked Loop) to obtain the power grid phase and frequency. VSC1
and VSC2 use the PLL. The PLL is implemented in the FPGA because it allows to
reduce the workload in software (Figure 5.11 - PLL).

PWM generation. Different modulation techniques have been implemented. First,
a modulation technique for DNPC (Diode Neutral Point Clamped) converters with
zero sequence injection have been programmed as a default option. Subsequently,
ANPC (Active Neutral Point Clamped) techniques have been developed. The ANPC
modulation technique optimises IGBT losses. The modulation technique is selected

92 Chapter 5. Performance analysis and test

according to the working point, displacement power factor and amplitude modulation
index.

Control of faults produced by overvoltage or short circuit in the IGBTs (Figure 5.11
- Fault).

FPGA

IRQ PLL

ADC

PWM

Microprocessor
Dual-Core

Fault

AXI
BUS

CPU#0
Control

Fault
signals

Breakers

VSC1

VSC2

Sensors
e/i (abc)
UDC

Control
References

CPU#1
Linux

Ethernet

Open
AMP

Figure 5.11: HW/SW architecture of implemented control system.

5.3.4. Tests analysis

In order to verify the implemented HW/SW architecture, a co-simulation of three
seconds of the converter is carried out. The tests are performed using a full degree-of-
freedom (FDOF) controller (voltage-only controller) [GGS01].

Figure 5.12 shows the COSIL platform results for the co-simulation of three seconds.
In the first second, the DC bus voltage is raised to 900V. Then, 230V RMS - 50 Hz is
generated at the output of VSC2. From the instant (1.5s) and for 500 ms, a three-phase
voltage dip of 50% is performed without a ramp. This test has been repeated in the
MIL simulation (Power Plant+Control), COSIL (SW+HW+PW), and the back-to-back
converter. The source code of software and hardware used in COSIL and the real tests
are the same. The acquisition functionality of the control board has been used to read
the real signals.

As it can be seen, the implemented source code follows the control reference of VSC2
voltage. Figure 5.13 shows a zoom of the instant at which the gap is realised in MIL,
COSIL and real converter. Note that there are some differences between the simulations
and the actual results. These differences are due to the deviations between the plant
modelled in MIL and the real plant. In addition, the acquisition frequency in COSIL and
MIL is 200 kHz, while it is 80 kHz for the real power plant. This is an example of the
high accuracy of COSIL, which can verify the code functionality more accurately than

5.3 COSIL tests and performance analysis 93

even the real system. The reduction in frequency means that the real results do not show
the high-frequency ripples in the signal peaks observed in the MIL and COSIL case.

The differences between MIL and COSIL are mainly due to quantisation and discreti-
sation errors. Matlab works with double-precision floating-point by default. In contrast,
the implementation of software and hardware in the control board works with single-
precision floating-point. Furthermore, the power plant, which in MIL is simulated as a
continuous element, is discretised in COSIL. Despite these errors, it can be seen that the
results are practically similar, which demonstrates that the implementation of the soft-
ware and hardware is correct. Then, COSIL allows verifying exactly the final HW/SW
implementation of the multi-core SoC+FPGA boards without using HIL systems.

0 0.5 1 1.5 2 2.5 3

Time

0

500

1000

V
o
lt
s

a) COSIL: VSC1: DC BUS

UDC

0 0.5 1 1.5 2 2.5 3

Time

-500

0

500

V
o
lt
s

b) COSIL: VSC2: e
load

ea
load

eb
load

ec
load

eq
ref

Figure 5.12: COSIL results. Start phase and voltage gap of 50%.

Figure 5.14 shows the results obtained directly in QuestaSim during the start-up of
the converter. Here, it can be observed the status of the power plant and if the system
(SW+HW) can control the converter successfully. The showed waveforms are:

contactor. Contactor status. The contactor must open when the DC bus has been
preloaded. When it closes, it connects the converter directly to the power grid or
mains.

94 Chapter 5. Performance analysis and test

ea grid. The voltage level of the grid (230 Vrms). Phase A. Here it can be observed
that the PW module is correctly generating the electrical grid to which the device
under test (DUT) will be connected.

current i12a. Input current to VSC1. Initially, the DC bus preload can be observed.
In order to increase the speed of the DC bus precharge, the value of the resistors of
the precharge circuit is reduced. Once the precharge is done, it waits for a safe time
and starts switching the IGBTs of VSC1 to continue raising the DC voltage level.
At that point, it can be observed the current required to maintain the DC bus.

UDC BUS. DC voltage level of the bus. It is shown how the precharge is performed.
The precharge value raises the bus to 565 VDC. Later, when the modulation is
enabled in VSC1, it can be seen the DC bus follows the control references reaching
950VDC in 50VDC jumps.

UDC REF and ea load REF. Control references for the desired DC and AC voltage
values.

ea load. AC output voltage of VSC2. The output level is 0 until the SW decides
to enable VSC2 switching. The ea load REF reference introduces a jump from 0V
to 230Vrms. The aim is to check in the simulation that the programmed control
algorithm can achieve an immediate step from 0 to 230Vrms.

current i21a. Output current before the VSC2 filter. Here we can see how a purely
resistive load of 20 kW is supplied. The current starts to be generated when the
voltage level is present. That is when it begins to switch the IGBTs of VSC2.

The results in Figure 5.14 demonstrate the SW code and all the IPs to be implemented
on the FPGA (ADC, PWM, PLL, Faults) work properly.

5.3 COSIL tests and performance analysis 95

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

Time

-400

-200

0

200

400

V
o
lt
s

MIL simulation results [1.4 - 2.2 sec] 50% hole

ea
ref

ea
load

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

Time

-400

-200

0

200

400

V
o
lt
s

COSIL results [1.4 - 2.2 sec] 50% hole

ea
ref

ea
load

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

Time

-400

-200

0

200

400

V
o
lt
s

Converter experimental results [1.4 - 2.2 sec] 50% hole

ea
ref

ea
load

Figure 5.13: Results comparison. Model-based simulation (MIL - Simulink) versus COSIL
(SW+HW+PW) versus real test. Zoom at the gap of 50%.

96 Chapter 5. Performance analysis and test

0
0

0
0

 p
s

1
0

0
0

0
0

0
0

0
0

0
0

 p
s

2
0

0
0

0
0

0
0

0
0

0
0

 p
s

cu
rre

n
t i1

2
 a

U
D

C
 B

U
S

ea grid

contactor

e
a

 lo
a

d
 R

E
F

e
a

 lo
a

d

cu
rre

n
t i2

1
 a

U
D

C
 R

E
F

230 V
rm

s
0 V

rm
s

0V

600V
650V

700V
750V

800V
850V

900V
950V

230
V

rm
s

230.3
V

rm
s

31.8
A

rm
s

0 A
rm

s

0 V
rm

s

D
C

 P
re-charge

pre-charge done
close contactor

start V
S

C
1 P

W
M

start V
S

C
2 P

W
M

open

close

Figure
5.14:

C
o-sim

ulation
results.

Back-to-back
converter

start-up
and

PW
m

odule
status.

5.3 COSIL tests and performance analysis 97

5.3.5. COSIL performance and the use of abstraction levels

The performance of a verification tool is vital to its usability. The less time the tools
take to obtain the results of the simulations, the less time is consumed in the verification
phase of the project. In this section, a performance study of the COSIL platform using
the control system of the converter at different levels of abstraction has been carried
out. To analyse the impact on the co-simulation performance of each SW, HW and PW
module, the abstraction level of each module will be changed. Therefore, the co-simulation
execution time for each configuration will be analysed. Furthermore, the results will be
compared with the execution times that would be necessary to simulate each module
independently using other reference tools.

In COSIL, the power plant is simulated using the equivalent discretised Sys-
temC(C/C++) model. In order to focus on the performance and workload of software
and hardware, all the following tests will run the same SystemC PW module.

The software has been verified using three configurations. The first one is called SW-
SystemC. This configuration does not verify the same code used for the final implemen-
tation. It uses compiled code for the host processor, including the compiled code in a
SystemC process. Therefore, it uses a functional equivalent version. However, this option
is optimal for fast verification of the hardware on the FPGA, reducing the workload in-
troduced by the software emulator (QEMU). The second configuration uses QEMU and
emulates only a CPU running the control algorithm and the interaction with the hardware.
Finally, the last option has included a multi-threaded emulation verifying an asymmetric
OpenAMP (Linux-Baremetal dual-core) system.

From the hardware point of view, the IPs or hardware accelerators, shown in Figure
5.11, have been modelled in SystemC, working at the TLM abstraction level. As an
example of mixing abstraction levels, simulations have been carried out mixing the ADC
and PLL IPs modelled in SystemC (TLM level) with the PWM and Fault IPs modelled
in VHDL (RTL level).

Finally, the time spent simulating three seconds with the MIL simulation has been
analysed. In addition, a simulation of only the PWM IP has been performed in VHDL
to check the time it takes to perform a three-second simulation at the RTL level.

In all the following tests, three seconds of simulation has been performed. The software
has an timing resolution of 1000 instructions executed per core (dual-core). The timing
resolution on the hardware (FPGA) is cycle-accuracy (10 ns), and the timing resolution
of the power plant (PW) is the used discretized frequency (50 us).

Table 5.2 shows the different options and abstraction levels that have been simulated
and the simulation times consumed. It can be seen that the COSIL platform allows
simulating the behaviour of the whole system (HW+SW+PW) using mixing different
levels of abstraction. In these tests, times in the range 1.17 minutes (even faster than

98 Chapter 5. Performance analysis and test

the MIL simulation with Simulink) to 108.22 minutes have been obtained (simulating an
OpenAMP Linux+Baremetal system with IPs in SystemC and VHDL and the power plant
discretised in SystemC). This range of times is proof that the platform can be adapted
to users’ needs for abstraction and debugging. Note that just simulating 3 seconds in
VHDL of the PWM IP takes 73.8 minutes, while on our platform, we can co-simulate all
software and hardware (CPU+FPGA) plus the power plant in just 10 minutes more. It
is an example of the optimised performance of the platform.

Table 5.2: COSIL time results using different abstraction levels for the same design

SW HW PW Time Abstraction
level

− − MIL/Simulink 4.35 min • • • • •
− Only PWM in VHDL − 73.8 min ◦ ◦ ◦ ◦ ◦

SW-SystemC SystemC/C++ SystemC/C++ 1.17 min • • • • ◦
QEMU(single-core)

baremetal SystemC/C++ SystemC/C++ 11.65 min • • ◦ ◦ ◦

QEMU(single-core)
baremetal

ASC+ PLL* in
SystemC PWM+fault

in VHDL
SystemC/C++ 81.29 min • ◦ ◦ ◦ ◦

QEMU(dual-core)
OpenAMP SystemC/C++ SystemC/C++ 34.32 min ** • • ◦ ◦ ◦

EMU(dual-core)
OpenAMP

ASC+ PLL* in
SystemC PWM+fault

in VHDL
SystemC/C++ 108.32 min • ◦ ◦ ◦ ◦

*PLL in SystemC exported from Vivado HLS; ** The boot Linux time has not been take into account.

5.3.6. Synchronization results

Figure 5.15 shows the synchronisation results obtained with QuestaSim. The events
generated when any communication between QEMU and SystemC takes place are shown
here. The bottom figure is a zoom of a time interval in the upper figure. In this example,
it has chosen the minor period between the HW and PW modules as Quantum value.
Then, the value of Quantum is equal to the discretisation period of the power plant (1
µs).

The figure above shows that the I/O accesses from QEMU are performed when an
interrupt is detected. This interrupt is triggered every 16 acquisitions runs of the ADC
IP. In this Figure, it also can be seen the differences in the duration of the interrupts.
The differences in the duration of the high level interrupts dependent on the time it
takes QEMU to handle the interrupt. The period Tcontrol between each rising edge of the
interrupt is what sets the control frequency. This control frequency is used by the control
algorithm (bare-metal). When the bare-metal executes the interrupt, it accesses the HW
to turn off the interruption source.

5.3 COSIL tests and performance analysis 99

+
10

20

46
70

00
00

00
 p

s

S
W

: v
irt

ua
l s

yn
c

S
W

: I
O

 a
cc

es
s

S
W

: I
R

Q
 a

tte
nd

ed

H
W

: A
D

C

H
W

: I
R

Q

P
W

: p
ow

er
 p

la
nt

20
40

00
00

00
00

 p
s

20
50

00
00

00
00

 p
s

S
W

: v
irt

ua
l s

yn
c

S
W

: I
O

 a
cc

es
s

S
W

: I
R

Q
 a

tte
nd

ed

H
W

: A
D

C

H
W

: I
R

Q

P
W

: p
ow

er
 p

la
nt

T
co

n
tr

ol

m
ax

 i
co

u
n
t

T
PW

T
A
D

C

Lo
ca

l
of

fs
et

ti
m

e

Q
E
M

U
 I

R
Q

 l
at

en
cy

S
W

 G
IC

 t
im

e

Q
E
M

U
 I

R
Q

la

te
n
cy

R
ea

d
/w

ri
te

 a
cc

es
s

to
 A

D
C
 f

ro
m

 S
W

D
if
fe

re
n
ce

 t
im

e
ac

cu
ra

cy

T
q
u
an

tu
m

D
if
fe

re
n
ce

 t
im

e
ac

cu
ra

cy

Fi
gu

re
5.

15
:

Sy
nc

hr
on

iz
at

io
n

re
su

lts
.

C
om

m
un

ic
at

io
n

ev
en

ts
be

tw
ee

n
SW

,H
W

an
d

PW
m

od
ul

es
.

100 Chapter 5. Performance analysis and test

In the Figure above, the synchronisation between the SW, HW and PW modules can
be seen in more detail. Some comments are described below:

The icountMax parameter sets the maximum time that can be spent to send a virtual
interaction. This maximum time depends on the configured K-CPI value.

It can also be noticed that virtual interactions are not performed periodically. They
depend on the execution of QEMU.

When the SW module exceeds the Quantum barriers (which coincide with the PW
events), it waits until the rest of the modules have advanced the same amount of
time as the SW module. The difference between the time that it has to wait and the
time of the passed Quantum barrier is called Local offset time in the Figure.

When an interrupt is triggered, QEMU takes a time (latency) to notify the HW that
it has read it. It then sends the interrupt to the CPU’s interrupt controller so that
it can be addressed. The QEMU latency is the sum of the time it takes for QEMU
to handle an interrupt level change and the time it takes for the emulated CPU’s
interrupt controller to process the interrupt. Each time the value of the interrupt
signal changes, QEMU notifies SystemC when it has updated the level change.

When the CPU handler detects the interrupt, it triggers access to the ADC to read
the sensor data.

These results show that timing errors between simulation and module times are min-
imal when chosen an appropriate quantum time. Furthermore, it is observed that the
system is correctly synchronised by executing an interrupt every 16*TADC and reading
the ADC data from the bare-metal application.

5.3.6.1. Conclusions

This section presents a SIL-based verification tool called COSIL as an alternative to the
HIL and PIL/FIL systems. Its functionality and performance have been tested in power
electronics applications, although its use could be extended to any generic applications in
general. This tool is based on a co-simulation virtual platform that links the hardware and
software modules with the power plant, closing the control loop in the same workstation.

The presented tool allows verifying exactly the final HW/SW implementation and
integration of the multi-core SoC+FPGA without using a HIL system. Thus, it helps to
reduce the errors that happen during the code writing phase and integration phase. This
new SIL-based alternative reduces the verification costs and supports more debugging and
abstraction capabilities in the simulation.

The results show that the functionality of the system is the same as the MIL simulation
and corresponds to the real results of the equipment under test. It has been demonstrated

5.3 COSIL tests and performance analysis 101

that COSIL, working in a simulated environment, allows even more numerical and tem-
poral accuracy than the real platform.

Performance tests also show that COSIL allows working at multiple abstraction levels
depending on the user’s needs. For a real application, the execution times range from
minutes to hundreds of minutes. It has again been verified that the HW modules workload
is higher than that of the other modules. This suggests that more effort is needed to
parallelise the HW simulator to increase the co-simulation speed.

Finally, the synchronisation results show that the timing error in synchronisation can
be controlled by the Quantum time and icountMax parameters. It is found that the errors
between simulation and module times are minimal if the appropriate Quantum value is
chosen.

Although the performance of co-simulation using multi-threaded emulators has been
improved, SIL-based solutions, like the COSIL tool, can not currently achieve the real-
time execution of HIL systems for complex designs. However, it is a significantly cheaper
solution competing in performance and debugging features with MIL simulations.

Chapter 6

Conclusions and future work

Software-in-the-loop could democratise the verification
of critical systems.

The main goal of this thesis is to improve the verification process of control systems in
power applications. However, its use could be extended to control applications in general.

In order to improve it, a study of the current verification alternatives for control systems
has been carried out, and the most advantageous option has been chosen. Then, it presents
the verification SIL-based tool called COSIL as an alternative to the HIL and PIL/FIL
systems. COSIL is an open-source co-simulation virtual platform that links software
emulators with hardware and power simulators. Thus it can close the control loop in the
same workstation.

Thanks to COSIL, it is possible to verify software/hardware designs implemented in
MPSoC+FPGA devices. Multi-core operating systems and bare-metal applications in-
teracting with hardware designs on the FPGA can be verified. An advantage is that it
allows using multiple levels of abstraction and adjusting the complexity and performance
of the co-simulation to the user’s needs.

The execution speed of the verification tool has been a priority, so multi-core emulators
(QEMU) have been used, and a synchronisation mechanism between the QEMU and an
external hardware simulator has been provided. The mechanism gets its timing informa-
tion from the number of instructions executed by each CPU and decides when to send the
information to the external hardware. Results show that the proposed mechanism does
not have an impact on the performance of the QEMU.

To test the proposed solution, the implementation of a control system for a 400 kVA
back-to-back converter has been simulated using COSIL. This converter operates as a
grid emulator for testing photovoltaic converters. The implementation has been based
on a HW/SW architecture where the FPGA designs have been mixed with multi-core
OpenAMP Linux-Baremetal systems.

104 Chapter 6. Conclusions and future work

To conclude, the results demonstrate that COSIL is a useful tool for verifying critical
control systems. This new SIL-based alternative also reduces the verification costs and
supports more debugging and abstraction capabilities than HIL systems. The contribu-
tions aim to address the main limitations of SIL and offer greater code re-usability and
simulation speed, repositioning SIL as a competitive option to HIL systems and competing
in performance with MIL simulations.

6.1. Thesis conclusions

Co-simulation techniques

Co-simulation is not a novel concept. In fact, some authors have been working with it
for decades. With the rise of heterogeneous architectures and the mixing of software/hard-
ware designs, its use is becoming more common. It is essentially based on synchronising
specialised simulators or emulators to build a virtual platform that behaves like the real
platform.

A co-simulation tool has two main features: the synchronisation between the simulators
or emulators and the levels of abstraction it supports.

The wide range of simulators has resulted in a whole theory for managing the syn-
chronisation of simulators. There are solutions for synchronising simulations distributed
across multiple machines, parallel or sequential. This thesis has been based on using
a conservative asynchronous sequential co-simulation. This option is a trade-off between
speed and timing accuracy, allowing each simulator to advance freely until specific instants
in which everything must be synchronised. These instants are repeated periodically. This
solution is optimal for power applications, as it usually runs periodically the same control
algorithm.

The choice of a sequential co-simulation is a consequence of the base language used to
develop the co-simulation platform. This language is SystemC (C++). SystemC includes
a simulation kernel based on DES (Discrete Event Simulator). Although it allows the
development of hardware simulators with an open-source license, its main limitation is
execution speed. It was intended to simulate concurrent designs, but the execution of its
kernel is sequential. Although some authors have proposed promising ways to parallelise
the SystemC kernel, these have not yet been standardised.

Using SystemC also allows working at practically all levels of abstraction of the de-
sign/verification methodology in digital devices. This makes the verification process more
manageable and adapts the debugging requirements, speed and timing accuracy to the
user’s needs.

The timing errors in the synchronisation must always be limited. In our case, con-
servative asynchronous synchronisation allows modifying the frequency with which the

6.1 Thesis conclusions 105

simulators are updated. This option is helpful to adapt the timing accuracy.

The proposed software/hardware/power co-simulation solution is based on synchronis-
ing an emulator with a simulator: QEMU (Quick Emulator) with SystemC-DES. With
SystemC-DES simulator, it can simulate hardware and power modules. To guarantee syn-
chronisation between QEMU and SystemC-DES, it is necessary to implement a SystemC
module that advances according to the QEMU’s clock. This advance is limited and is
blocking so that the other SystemC modules can advance sequentially. The link between
QEMU and SystemC-DES allows SystemC and QEMU to be stopped at the same time.
This supports the step-by-step debugging of all modules.

In this solution, the timing errors of synchronisation between QEMU and SystemC-
DES depend on the maximum time allowed for each module to advance. Although this
time is customisable, it is constant for the duration of the co-simulation. Typically the
advance limit has been estimated for each design as it depends on the specifications of each
design. An attractive approach to reduce timing errors is to change this limit dynamically
depending on the number of executed events.

Software emulators

Emulation has become one of the most popular techniques used by engineers to verify
software. Not only does it allow testing the software functionality almost in real-time,
independently of the architecture, but it also enables the emulation of peripherals and
everything attached to the microprocessor. Another of its significant features is that it
allows verifying precisely the same code that runs later on the control board without any
modification.

Nowadays, there are many emulators available. The most famous is QEMU, perhaps
because it is open-source, and many companies have picked it up. QEMU is based on an
instruction-by-instruction translation of the guest code to run on a host. Its efficiency is
based on reusing the instruction blocks previously translated, so it can skip the translation
step and execute the instructions directly.

The parallelisation of QEMU’s TCG translation kernel has been a performance im-
provement. The considerable growth of QEMU in the last five years has made it a very
mature project. However, the complexity of its source code makes it a challenge to add
features. Perhaps the code distribution should be re-evaluated, and it may be simplified
its internal architecture to continue growing at a sustainable rate.

The most complex aspect of QEMU is its timing. Currently is not available the timing
models of all microprocessors, peripherals and memories across the market. This is a
drawback to include the software emulator in a co-simulation environment. The absence
of timing models of microprocessors has forced the search for original ways to obtain their
timing notion. Today it is still a field in need of growth.

106 Chapter 6. Conclusions and future work

Currently, counting the number of instructions executed by each CPU provides suffi-
cient timing accuracy to synchronise QEMU with an external stimulator. However, the
temporal modelling of the memories devices (like caches) could provide more resolution
with a minimum penalty in performance.

Verification in power electronics

In power electronics applications, power plants are composed of three parts: power
equipment (capacitors, inductors, diodes, IGBTs, motors...), sensors and protections (con-
tactors, relays, wiring) and a control system (control board). The control system is the
brain of the equipment and is becoming increasingly intelligent. Highly sophisticated
control algorithms are programmed in it.

More and more, control systems are embracing advances in other areas such as artificial
intelligence or telecommunications. An example is the trend to use MPSoCs+FPGAs to
develop the control algorithms and the equipment monitoring.

The verification of digital MPSoCs and FPGAs is a complex and time-consuming
process. The current trend to include heterogeneous chip architectures has made the
verification cycle even more complex and time-consuming. The current solution for man-
ufacturers is to simplify the design process by adding synthesisers. These synthesisers,
such as HLS, generate HDL code (VHDL, Verilog, SystemC) from C code. Thus, the use
of typical HDL digital design languages will gradually decrease and be replaced by those
typically used in the software.

Power equipment is costly and is called critical systems, i.e. it cannot fail. This is why
their verification is so important. A failure can lead to an explosion or damage to staff. A
solution is to use non-destructive equipment that emulates the behaviour of the plant and
allows the control system to be tested. Such equipment is called Hardware-in-the-loop.
However, the high features of Hardware-in-the-loop equipment make it expensive.

Software-in-the-loop could overcome the limitations of Hardware-in-the-loop. This
movement from a hardware world to a software world has two implications. First, it
increases verification times. It is difficult for a workstation to compete on speed with a
HIL equipment. HILs equipments often use racks of FPGAs. The second is increased
flexibility, debugging capabilities, reduced cost and reuse of the verified code.

Software-in-the-loop could provide low-cost tools to verify control systems efficiently
and democratise the verification of critical systems. This thesis aims to provide the basis
for this route.

In order for Software-in-the-loop to compete with Hardware-in-the-loop, it is necessary
to mix three domains: software (CPU), hardware (FPGA) and real-world (power plant).
Virtual co-simulation platforms are currently one of the potential solutions. These plat-
forms allow to emulate software, simulate hardware designs and simulate plant models.

6.2 Future work 107

The challenge is to synchronise the three domains without compromising the performance.

The most commonly used option to synchronise them is based on choosing a soft
synchronisation that allows fast co-simulations. A potential solution to the efficiency of
this co-simulation is the use of the cloud. This could distribute, parallelise and increase
the emulation speed at a relatively low cost.

6.2. Future work

A set of proposals for future work is shown below. Such future work attempts to
address the main limitations found in COSIL and QEMU throughout this thesis, as well
as to extend their features and introduce new branches of research.

Accelerate co-simulation speed

One of the disadvantages of COSIL is precisely its slow execution speed compared to
real-time systems. There are many works that have offered some solutions to increase the
speed of the simulation. In summary, three solutions have been proposed: 1. Parallelise
the SystemC kernel [DLS17,Del17b]. 2. Use of dynamic synchronisation in co-simulation
[Del17b]. 3. Use the high performance of cloud services to run distributed co-simulations.

The SystemC kernel can be used as a hardware simulator. The drawback is that the
current open-source OSCI implementation is sequential, while the hardware modules to
be verified are often parallel. Some useful works have managed to parallelise the SystemC
kernel [DLS17, VPSH14, VS16]. Applying the contributions of these works to COSIL
would be to go faster.

As has been discussed throughout this book, COSIL uses an asynchronous conservative
co-simulation. Its implementation is based on the use of the Quantum time limit. At
these time limits, all simulators must stop and synchronise. In the OSCI implementation
of the SystemC kernel, the Quantum is static. Throughout a co-simulation, there may
be times when there is much interaction between the simulators and high synchronisation
accuracy is required, and times when there is minimal interaction between the simulators.
In the latter case, the Quantum could be extended to avoid any penalties for unnecessary
synchronisation. A more lax solution called dynamic Quantum is proposed in [Del17b]. In
particular, this work proposes calculating the Quantum at the beginning of the simulation
by saving the timestamps of the first synchronisation events. Although this is an promising
solution, it would only be effective if the synchronisations were periodic. This is the case
for most power electronics control applications. It would be interesting to evaluate how
to modify Quantum to minimise the number of synchronisations in the co-simulation.

Lastly, the current trend of some companies like Amazon or Microsoft is to offer cloud
services. This means that users do not have to spend money on a high-performance

108 Chapter 6. Conclusions and future work

workstation but only worry about having a stable internet connection. The software tools
are executed on servers in the cloud, and the memory and computational capacity are
increased.

This option is exciting as, in addition to increasing the overall performance of the co-
simulation, it would allow it to be distributed by parallelising the simulators. Obviously,
this parallel distribution would have to manage the synchronisation between the simu-
lators correctly. By distributing or parallelising simulators, penalties for communication
between simulators will be encountered. However, as seen throughout this thesis, for
power electronics applications, the main workload is not provided from the communica-
tions or synchronisation between software/hardware/power domains; it is provided from
the emulation of the CPUs and the FPGA modules simulation.

Improve timing accuracy

CPU time modelling is one of the most complex tasks for an emulator. In fact, not
every emulator supports this feature.

The timing notion of QEMU from the number of executed instructions provides deter-
minism and approximate timing of the software progress. However, it is not sufficient for
detailed timing analysis of the software. Commonly, other simulators such as gem5 are
used to achieve cycle accuracy. Multiple works have provided solutions to increase the
accuracy of QEMU (see Section 2.3.2). All of them impact the performance of QEMU to
some degree. The penalties appear when using helper functions to stop the translation
and execution loop and add some functionality. How to reduce the impact of these helper
functions could be an interesting work.

In particular, the paper [KYH16] explains how to model the CPU timing by modelling
the instruction cache miss, data cache miss and branch misprediction. The authors claim
that they can achieve cycle accuracy with an 8% error in estimation at the cost of a
30% penalty in emulation speed. It would be interesting to analyse how to optimise this
modelling and apply it to the parallel mode of QEMU.

Develop a full open-source tool

Cost is a significant factor in the choice of using a particular software tool. This thesis
has been trying to provide a solution that does not depend on proprietary tools, thus
extending the use of COSIL. However, due to the limitations of the current open-source
simulators, it was necessary to use tools such as Matlab or Questasim to develop specific
modules and simulations of the platform.

Currently, the software emulator (QEMU) and the hardware simulator (OSCI SystemC
kernel) are open-source. However, the hardware simulator only support hardware module
written in the native language of its kernel, SystemC (C++). To verify mixed hardware

6.2 Future work 109

modules (e.g. VHDL+SystemC), it was necessary to use mixed simulators such as Ques-
taSim. It is expected that Vivado Simulator by Xilinx will support mixed simulations,
and the reason is that many of their hardware models are starting to be described in
SystemC. The current open-source mixed simulator performance evaluation is a pending
task to try to offer open-source solutions for mixed simulations.

Although there are companies that have tried to generate C code from the plant models,
the current performance of Simulink is hard to overcome. Its toolboxes have been on the
market for years and allow the generation of C/C++ code from almost all its components.
It would be useful to develop a C code library of basic discretised power electronics
elements. This would facilitate the generation of C/C++ code for a complex plant and
not depend on Simulink for that task.

Enable the use of QEMU multi-instance

As heterogeneous architectures use are on the rise, many MPSoCs include multiple
processors of different models. The UltraScale family from Xilinx is a good example.
QEMU can only emulate a CPU type per instance. To emulate UltraScale, two QEMU
processes must be launched in the OS. Thus, to emulate both processors simultaneously,
it is necessary to build an interface between the two QEMU instances [Xil19].

Multiple QEMU instances are not currently enabled in COSIL and are a desirable
feature to emulate the latest devices on the market. The standardisation of this interface
is vital to extend its use to all architectures and guest machines supported by QEMU.
A critical part that must addressed is the synchronisation between multiple instances of
QEMU.

Add more co-simulation features

This thesis provides the basis for the COSIL tool, but many desired features have not
be implemented.

These include memory accesses from hardware to software. These accesses are typically
done through Direct Memory Accesses (DMA). In the latest version of QEMU, an API
has been included to manage DMA accesses. It is necessary to study its limitations and
analyse how to access CPU memory from the hardware simulator.

Finally, it would be desirable to use typical software development platforms such as
Eclipse to include breakpoints in the code. This would avoid modifying the source code
with internal functions and would be more convenient to debug. The tracing of software
variables throughout an emulation is an exciting option to analyse its evolution. Currently,
it is available with COSIL by introducing sentences in the original source code. However,
it should be possible to do this without having to modify the source code. A possible
solution would be to create a memory address table where these variables are stored in

110 Chapter 6. Conclusions and future work

QEMU. This table should note the pointers to the cache memories in order to be able to
analyse their progress. In this way, an engine could be created to monitor the evolution
of the software variables within QEMU.

Bibliography

[AAKMK18] Anas Ahmad Abudaqa, Talal M. Al-Kharoubi, Muhamed F. Mudawar, and
Armin Kobilica. Simulation of ARM and x86 microprocessors using in-
order and out-of-order CPU models with Gem5 simulator. In 2018 5th
International Conference on Electrical and Electronic Engineering (ICEEE),
pages 317–322. IEEE, may 2018.

[ABG+16] Sagheer Ahmad, Vamsi Boppana, Ilya Ganusov, Vinod Kathail, Vidya Ra-
jagopalan, and Ralph Wittig. A 16-nm Multiprocessing System-on-Chip
Field-Programmable Gate Array Platform. IEEE Micro, 36(2):48–62, mar
2016.

[AKS16] Mohammad Alian, Daehoon Kim, and Nam Sung Kim. pd-gem5: Sim-
ulation Infrastructure for Parallel/Distributed Computer Systems. IEEE
Computer Architecture Letters, 15(1):41–44, jan 2016.

[And05] Jason R. Andrews. Co-verification of Hardware and Software for ARM SoC
Design. 2005.

[ARM] ARM. AMBA AXI and ACE Protocol Specification.

[Ayn09] J. Aynsley. OSCI TLM-2.0 language reference manual. Number July. 2009.

[BC14] Simone Buso and Tommaso Caldognetto. A non-linear wide bandwidth
digital current controller for DC-DC and DC-AC converters. In IECON
Proceedings (Industrial Electronics Conference), pages 1090–1096. IEEE, oct
2014.

[BCR+08] Emilio J. Bueno, Santiago Cóbreces, Francisco J. Rodríguez, Álvaro
Hernádez, and Felipe Espinosa. Design of a back-to-back NPC converter
interface for wind turbines with squirrel-cage induction generator. IEEE
Transactions on Energy Conversion, 23(3):932–945, sep 2008.

[BDBK10] David C. Black, Jack Donovan, Bill Bunton, and Anna Keist. SystemC:
From the Ground Up. Springer US, Boston, MA, 2010.

[BDD19] Blaabjerg, Dragicevic, and Davari. Applications of Power Electronics. Elec-
tronics, 8(4):465, apr 2019.

112 BIBLIOGRAPHY

[Bel05] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. USENIX
Annual Technical Conference. Proceedings of the 2005 Conference on, pages
41–46, 2005.

[BFP06] Nicola Bombieri, Franco Fummi, and Graziano Pravadelli. On the evaluation
of transactor-based verification for reusing TLM assertions and testbenches
at RTL. In Proceedings -Design, Automation and Test in Europe, DATE,
volume 1, pages 1–6. IEEE, 2006.

[BGL+15] David Broman, Lev Greenberg, Edward A. Leey, Michael Masin, Stavros
Tripakis, and Michael Wetter. Requirements for hybrid cosimulation stan-
dards. In Proceedings of the 18th International Conference on Hybrid Sys-
tems: Computation and Control, HSCC 2015, pages 179–188, New York,
NY, USA, apr 2015. ACM.

[BGOS12] Anastasiia Butko, Rafael Garibotti, Luciano Ost, and Gilles Sassatelli. Ac-
curacy evaluation of GEM5 simulator system. In 7th International Work-
shop on Reconfigurable and Communication-Centric Systems-on-Chip (Re-
CoSoC), pages 1–7. IEEE, jul 2012.

[BHR+09] Emilio J. Bueno, Álvaro Hernández, Francisco J. Rodríguez, Carlo Girón,
Raúl Mateos, and Santiago Cóbreces. A DSP- and FPGA-based industrial
control with high-speed communication interfaces for grid converters applied
to distributed power generation systems. IEEE Transactions on Industrial
Electronics, 56(3):654–669, mar 2009.

[BIME13] Imen Bahri, Lahoucine Idkhajine, Eric Monmasson, and Mohamed El Amine
Benkhelifa. Hardware/Software codesign guidelines for system on chip
FPGA-based sensorless AC drive applications. IEEE Transactions on In-
dustrial Informatics, 9(4):2165–2176, nov 2013.

[BMC16] Denis Becker, Matthieu Moy, and Jérôme Cornet. Parallel Simulation of
Loosely Timed SystemC/TLM Programs: Challenges Raised by an Indus-
trial Case Study. Electronics, 5(4):22, may 2016.

[BMV13] Andrea Benigni, Antonello Monti, and Ravinder Venugopal. Advancements
and challenges of a multi-platform real time simulation lab for power appli-
cations. In IECON Proceedings (Industrial Electronics Conference), pages
5358–5363. IEEE, nov 2013.

[Bos97] Bimal K. Bose. Power Electonics and Variable Frecuency Drives: Technol-
ogy and Applications. First edition, 1997.

[BP07] Felice Balarin and Roberto Passerone. Specification, synthesis, and simula-
tion of transactor processes. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 26(10):1749–1762, oct 2007.

BIBLIOGRAPHY 113

[BSD+20] Andrea Benigni, Thomas Strasser, Giovanni De Carne, Marco Liserre,
Marco Cupelli, and Antonello Monti. Real-Time Simulation-Based Test-
ing of Modern Energy Systems: A Review and Discussion. IEEE Industrial
Electronics Magazine, 14(2):28–39, jun 2020.

[BSS+11] Nathan Binkert, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muham-
mad Shoaib, Nilay Vaish, Mark D. Hill, David A. Wood, Bradford Beck-
mann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, and Tushar Krishna. The gem5 simulator. ACM
SIGARCH Computer Architecture News, 39(2):1, aug 2011.

[BST92] D. Becker, R.K. Singh, and S.G. Tell. An engineering environment for
hardware/software co-simulation. In [1992] Proceedings 29th ACM/IEEE
Design Automation Conference, pages 129–134. IEEE Comput. Soc. Press,
1992.

[CBBC17] Emilio G. Cota, Paolo Bonzini, Alex Bennee, and Luca P. Carloni. Cross-
ISA machine emulation for multicores. In CGO 2017 - Proceedings of the
2017 International Symposium on Code Generation and Optimization, pages
210–220. IEEE, feb 2017.

[CKCL18] I-Hua Chen, Chung-Ta King, Yao-Hua Chen, and Juin-Ming Lu. Full Sys-
tem Emulation of Embedded Heterogeneous Multicores Based on QEMU.
In 2018 IEEE 24th International Conference on Parallel and Distributed
Systems (ICPADS), pages 771–778. IEEE, dec 2018.

[CLP14] Filippo Cucchetto, Alessandro Lonardi, and Graziano Pravadelli. A com-
mon architecture for co-simulation of SystemC models in QEMU and OVP
virtual platforms. In 2014 22nd International Conference on Very Large
Scale Integration (VLSI-SoC), pages 1–6. IEEE, oct 2014.

[CNVT12] H. Camblong, S. Nourdine, I. Vechiu, and G. Tapia. Comparison of an island
wind turbine collective and individual pitch LQG controllers designed to
alleviate fatigue loads. IET Renewable Power Generation, 6(4):267, 2012.

[CSD20] Zhongqi Cheng, Tim Schmidt, and Rainer Dömer. SystemC coding guideline
for faster out-of-order parallel discrete event simulation. In Lecture Notes
in Electrical Engineering, volume 611, pages 99–114. 2020.

[CYT11] Ming Chao Chiang, Tse Chen Yeh, and Guo Fu Tseng. A QEMU and
SystemC-based cycle-accurate ISS for performance estimation on SoC de-
velopment. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 30(4):593–606, apr 2011.

[CZCV13] Chia-han Yang, Gulnara Zhabelova, Chen-Wei Yang, and Valeriy Vyatkin.
Cosimulation Environment for Event-Driven Distributed Controls of Smart

114 BIBLIOGRAPHY

Grid. IEEE Transactions on Industrial Informatics, 9(3):1423–1435, aug
2013.

[DBK+16] Guillaume Delbergue, Mark Burton, Frederic Konrad, Bertrand Le,
Christophe Jego, Bertrand Le Gal, and Christophe Jego. QBox : an in-
dustrial solution for virtual platform simulation using QEMU and SystemC
TLM-2 . 0, 2016.

[DCHC11] Jiun Hung Ding, Po Chun Chang, Wei Chung Hsu, and Yeh Ching Chung.
PQEMU: A parallel system emulator based on QEMU. In Proceedings of
the International Conference on Parallel and Distributed Systems - ICPADS,
pages 276–283. IEEE, dec 2011.

[DDC+19] Marc Duraton, Koen De Bosschere, Bart Coppens, Christian Gamrat, and
Madeleine Gray. HiPEAC Vision. 2019.

[Del17a] Guillaume Delbergue. Contribution à l’amélioration des plateformes
virtuelles SystemC/TLM : configuration, communication et parallélisme.
Theses, Université de Bordeaux, 2017.

[Del17b] Guilleaume Delbergue. Advances in SystemC/TLM Virtual Platforms: Con-
figuration, Communicacion and Parallelism. PhD thesis, University of Bor-
deaux, 2017.

[DGK07] Stephanie Demers, Praveen Gopalakrishnan, and Latha Kant. A Generic
Solution to Software-in-the-Loop. In MILCOM 2007 - IEEE Military Com-
munications Conference, pages 1–6. IEEE, oct 2007.

[DLS17] Rainer Dömer, Guantao Liu, and Tim Schmidt. Parallel simulation. In
Handbook of Hardware/Software Codesign, pages 533–564. Springer Nether-
lands, Dordrecht, 2017.

[DMB19] E. Diaz, R. Mateos, and E. Bueno. Virtual Platform of FPGA based SoC
for Power Electronics Applications. In 2019 IEEE 28th International Sym-
posium on Industrial Electronics (ISIE), pages 1371–1376. IEEE, jun 2019.

[Dom16] Rainer Domer. Seven Obstacles in the Way of Standard-Compliant Parallel
SystemC Simulation. IEEE Embedded Systems Letters, 8(4):81–84, dec 2016.

[DXZ+13] Dexue Zhang, Xiaoyang Zeng, Zongyan Wang, Weike Wang, and Xinhua
Chen. MCVP-NoC: Many-Core Virtual Platform with Networks-on-Chip
support. In 2013 IEEE 10th International Conference on ASIC, pages 1–4.
IEEE, oct 2013.

[ELM14] ELMG. Three Key Issues to Watch out for in the Digital Control of Power
Electronics. Technical report, 2014.

BIBLIOGRAPHY 115

[Emb10] Embecosm. Embecosm Guidelines for using TLM 2.0 temporal decoupling,
2010.

[Eur09] European Commission. Decision No 406/2009/EC of the European Parlia-
ment and of the Council of 23 April 2009, 2009.

[Eur12] European Commission. EU NER 300 programme, 2012.

[Eur13] European Commission. EU Horizon 2020, 2013.

[Eur18a] European Commission. Directive (EU) 2018/2001 of the European Parlia-
ment on the promotion of the use of energy from renewable sources, 2018.

[Eur18b] European Commission. Directive (EU) 2018/2002 of the European Parlia-
ment on energy efficiency, 2018.

[Eur19] European Commission. Fourth report on the State of the Energy Union,
2019.

[Eva19] Stephen Evanczuk. Embedded Markets Study. Technical report, Embedded,
2019.

[FLV14] John Fitzgerald, Peter Gorm Larsen, and Marcel Verhoef, editors. Collab-
orative Design for Embedded Systems. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014.

[Fuj01] Richard M. Fujimoto. Parallel and distributed simulation systems, volume 1.
1st edition, 2001.

[Ger10] Andreas Gerstlauer. Host-compiled simulation of multi-core platforms. In
Proceedings of the International Workshop on Rapid System Prototyping,
pages 1–6. IEEE, jun 2010.

[GGS01] Graham C. Goodwin, Stefan F. Graebe, and Mario E. Salgado. Control
System Design, volume 27. 2001.

[GRE+01] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. MiBench: A free, commercially representative embedded
benchmark suite. 2001 IEEE International Workshop on Workload Charac-
terization, WWC 2001, pages 3–14, 2001.

[GTF+19] Gustavo Figueiredo Gontijo, Thiago Cardoso Tricarico, Bruno Wanderley
Franca, Leonardo Francisco da Silva, Emanuel Leonardus van Emmerik,
and Mauricio Aredes. Robust Model Predictive Rotor Current Control of a
DFIG Connected to a Distorted and Unbalanced Grid Driven by a Direct
Matrix Converter. IEEE Transactions on Sustainable Energy, 10(3):1380–
1392, jul 2019.

116 BIBLIOGRAPHY

[HHY+12] Ding Yong Hong, Chun Chen Hsu, Pen Chung Yew, Jan Jan Wu, Wei Chung
Hsu, Pangfeng Liu, Chien Min Wang, and Yeh Ching Chung. HQEMU: A
multi-threaded and retargetable dynamic binary translator on multicores.
In Proceedings - International Symposium on Code Generation and Opti-
mization, CGO 2012, pages 104–113, New York, New York, USA, 2012.
ACM Press.

[HLGD18] Vladimir Herdt, Hoang M. Le, Daniel Grose, and Rolf Drechsler. Towards
fully automated TLM-to-RTL property refinement. In Proceedings of the
2018 Design, Automation and Test in Europe Conference and Exhibition,
DATE 2018, volume 2018-Janua, pages 1508–1511. IEEE, mar 2018.

[HMUH19] Muhammad Haseeb, Asad Waqar Malik, Anis Ur Rahman, and
Mian Muhammad Hamayun. Toward Distributed Heterogeneous Simulation
Using Internet of Things. IEEE Internet of Things Journal, 6(6):10472–
10482, dec 2019.

[HWWR20] Long He, Fengxiang Wang, Junxiao Wang, and Jose Rodriguez. Zynq Imple-
mented Luenberger Disturbance Observer Based Predictive Control Scheme
for PMSM Drives. IEEE Transactions on Power Electronics, 35(2):1770–
1778, feb 2020.

[IEC10] International, Electrotechnical, and Commission. IEC 61508 Edition 2.0
- Functional safety of electrical/electronic/programmable electronic safety-
related systems, 2010.

[IEC19] IECON. 45th Annual Conference of the IEEE Industrial Electronics Society.
Lisbon, 2019. IEEE.

[IEE11] Design Automation Standards IEEE Committee. Standard IEEE Standard
for Reference SystemC® Language Manual. 2011.

[IEE20] IEEE. Taxonomy, 2020.

[ILG10] Syed Muhammad Zeeshan Iqbal, Yuchen Liang, and Hakan Grahn.
ParMiBench - An Open-Source Benchmark for Embedded Multiprocessor
Systems. IEEE Computer Architecture Letters, 9(2):45–48, feb 2010.

[Ima14] M. Imani. Hardware-in-the-Loop simulation of servo drivers on an embedded
system. Master Thesis. PhD thesis, Royal Institute of Technology, Stock-
holm, Sweden, 2014.

[Imp08] Imperas. OVPsim, 2008.

[Ins21] National Instruments. CompactRIO System on Module, 2021.

BIBLIOGRAPHY 117

[JHT+20] Pouya Jamborsalamati, M. J. Hossain, Seyedfoad Taghizadeh, Georgios
Konstantinou, Moein Manbachi, and Payman Dehghanian. Enhancing
Power Grid Resilience through an IEC61850-Based EV-Assisted Load
Restoration. IEEE Transactions on Industrial Informatics, 16(3):1799–
1810, mar 2020.

[JLU+14] Óscar Jiménez, Óscar Lucia, Isidro Urriza, Luis A. Barragan, and Denis
Navarro. Analysis and implementation of FPGA-based online parametric
identification algorithms for resonant power converters. IEEE Transactions
on Industrial Informatics, 10(2):1144–1153, may 2014.

[JWLA19] Lukas Jünger, Jan Henrik Weinstock, Rainer Leupers, and Gerd Ascheid.
Fast SystemC Processor Models with Unicorn. In Proceedings of the Rapid
Simulation and Performance Evaluation: Methods and Tools on - RAPIDO
’19, pages 1–6, New York, New York, USA, 2019. ACM Press.

[KC08] P.J. King and D.G. Copp. Hardware in the loop for automotive vehicle
control systems development. In UKACC Control 2004 Mini Symposia,
volume 2004, pages 75–78. IEE, 2008.

[KDB+18] Ozgur Kilic, Spoorti Doddamani, Aprameya Bhat, Hardik Bagdi, and Kar-
tik Gopalan. Overcoming Virtualization Overheads for Large-vCPU Virtual
Machines. In 2018 IEEE 26th International Symposium on Modeling, Anal-
ysis, and Simulation of Computer and Telecommunication Systems (MAS-
COTS), pages 369–380. IEEE, sep 2018.

[KKH19] Minseong Kim, Seon Wook Kim, and Youngsun Han. EPSim-C: A Paral-
lel Epoch-Based Cycle-Accurate Microarchitecture Simulator Using Cloud
Computing. Electronics, 8(6):716, jun 2019.

[KLG11] Sudipta Kundu, Sorin Lerner, and Rajesh K. Gupta. High-Level Verification.
Springer New York, New York, NY, 2011.

[KYH16] Shin-haeng Kang, Donghoon Yoo, and Soonhoi Ha. TQSIM: A fast cycle-
approximate processor simulator based on QEMU. Journal of Systems Ar-
chitecture, 66-67:33–47, may 2016.

[LHL+16] Kilho Lee, Wookhyun Han, Jaewoo Lee, Hoon Sung Chwa, and Insik Shin.
Fast and accurate cycle estimation through hybrid instruction set simulation
for embedded systems. In Proceedings - Real-Time Systems Symposium,
volume 0, page 370. IEEE, nov 2016.

[LP15] Alessandro Lonardi and Graziano Pravadelli. On the co-simulation of sys-
temC with QEMU and OVP virtual platforms. In IFIP Advances in Infor-
mation and Communication Technology, volume 464, pages 110–128. 2015.

118 BIBLIOGRAPHY

[Mat06] Raúl Mateos. HW / SW simulation techniques for the design and verification
of SoC systems. PhD thesis, PHD Thesis, 2006.

[Mat20] MathWorks. MathWorks - Matlab Simulink, 2020.

[Mat21] MathWorks. SimScape Limitations - Simulink Embedded Coder, 2021.

[MB16] Fuentes Morales and Jose Luis Bismarck. Evaluating Gem5 and QEMU
Virtual Platforms for ARM Multicore Architectures. PhD thesis, Resultados
de la búsqueda Resultado web con enlaces al sitio web KTH Royal Institute
of Technology in Stockholm, 2016.

[MCE+02] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35(2):50–58, 2002.

[McG02] Ian McGregor. The relationship between simulation and emulation. In Win-
ter Simulation Conference Proceedings, volume 2, pages 1683–1688. IEEE,
2002.

[MCJW17] Christian Menard, Jeronimo Castrillon, Matthias Jung, and Norbert Wehn.
System simulation with gem5 and SystemC: The keystone for full interoper-
ability. In 2017 International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), pages 62–69. IEEE, jul
2017.

[Meh18] Ashok B. Mehta. ASIC/SoC Functional Design Verification. Springer In-
ternational Publishing, Cham, 2018.

[MFR20] Roberto Millón, Emmanuel Frati, and Enzo Rucci. A Comparative Study
between HLS and HDL on SoC for Image Processing Applications. Elektron,
4(2):100–106, 2020.

[MIN11] Eric Monmasson, Lahoucine Idkhajine, and Mohamed Wissem Naouar.
FPGA-based controllers. IEEE Industrial Electronics Magazine, 5(1):14–
26, mar 2011.

[MMB+13] Pedro Martin Sanchez, Osmell Machado, Emilio J. Bueno Pena, Francisco J.
Rodriguez, and Francisco Javier Meca. FPGA-based implementation of a
predictive current controller for power converters. IEEE Transactions on
Industrial Informatics, 9(3):1312–1321, aug 2013.

[MOBD18] Federico Montano, Tarek Ould-Bachir, and Jean Pierre David. An Evalua-
tion of a High-Level Synthesis Approach to the FPGA-Based Submicrosec-
ond Real-Time Simulation of Power Converters. IEEE Transactions on
Industrial Electronics, 65(1):636–644, jan 2018.

BIBLIOGRAPHY 119

[Moy13] Matthieu Moy. Parallel programming with SystemC for loosely timed mod-
els: A non-intrusive approach. In Proceedings -Design, Automation and
Test in Europe, DATE, pages 9–14, New Jersey, 2013. IEEE Conference
Publications.

[MPNB12] F. Mendoza, J. Pascal, P. Nenninger, and J. Becker. Framework for dynamic
verification of multi-domain virtual platforms in industrial automation. In
IEEE 10th International Conference on Industrial Informatics, pages 935–
940. IEEE, jul 2012.

[MUR09] Ned Mohan, Tore M. Undeland, and William P. Robbins. Power Electronics.
Converters, Applications, and Design. Third edition, 2009.

[NBTN17] Van Nguyen, Yvon Besanger, Quoc Tran, and Tung Nguyen. On Concep-
tual Structuration and Coupling Methods of Co-Simulation Frameworks in
Cyber-Physical Energy System Validation. Energies, 10(12):1977, nov 2017.

[ND15] Anh Quynh Nguyen and Hoang Vu Dang. Unicorn: Next Generation CPU
Emulator Framework. In Black Hat USA, 2015.

[NI14] Walid A. Najjar and Paolo Ienne. Reconfigurable computing. IEEE Micro,
34(1):4–6, jan 2014.

[NLB+13] Denis Navarro, Oscar Lucia, Luis A. Barragan, Isidro Urriza, and Oscar
Jimenez. High-Level Synthesis for Accelerating the FPGA Implementation
of Computationally Demanding Control Algorithms for Power Converters.
IEEE Transactions on Industrial Informatics, 9(3):1371–1379, aug 2013.

[NTB+18] Van Hoa Nguyen, Quoc Tuan Tran, Yvon Besanger, Tung Lam Nguyen,
Tran The Hoang, Cedric Boudinnet, Antoine Labonne, Thierry Bracon-
nier, and Herve Buttin. Cross-infrastructure holistic experiment design for
cyber-physical energy system validation. In International Conference on
Innovative Smart Grid Technologies, ISGT Asia 2018, pages 68–73. IEEE,
may 2018.

[Nur07] Jari Nurmi. Processor design: System-on-chip computing for ASICs and
FPGAs. Springer Netherlands, Dordrecht, 2007.

[OPA20] OPALRT. Real-Time simulation Real-Time Solutions OPAL-RT, 2020.

[PC14] Brennand Pierce and Gordon Cheng. Versatile modular electronics for rapid
design and development of humanoid robotic subsystems. In IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, AIM, pages
735–741. IEEE, jul 2014.

120 BIBLIOGRAPHY

[Plu06] A. R. Plummer. Model-in-the-Loop Testing. Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and Control Engineering,
220(3):183–199, may 2006.

[PMIG19] Ali Parizad, Sobhan Mohamadian, Mohamad Esmaeil Iranian, and Josep M.
Guerrero. Power System Real-Time Emulation: A Practical Virtual Instru-
mentation to Complete Electric Power System Modeling. IEEE Transac-
tions on Industrial Informatics, 15(2):889–900, feb 2019.

[PSI20] PSIM. Powersim: PSIM Electronic Simulation Software, 2020.

[PVL+17] Peter Palensky, Arjen A. Van Der Meer, Claudio David Lopez, Arun Joseph,
and Kaikai Pan. Cosimulation of Intelligent Power Systems: Fundamentals,
Software Architecture, Numerics, and Coupling. IEEE Industrial Electronics
Magazine, 11(1):34–50, mar 2017.

[QEM] QEMU. QEMU official web page.

[RAVPM15] Juan J. Rodriguez-Andina, Maria D. Valdes-Pena, and Maria J. Moure.
Advanced Features and Industrial Applications of FPGAS-A Review. IEEE
Transactions on Industrial Informatics, 11(4):853–864, aug 2015.

[RKK+19] Kasim Rehman, Orthodoxos Kipouridis, Stamatis Karnouskos, Oliver
Frendo, Helge Dickel, Jonas Lipps, and Nemrude Verzano. A Cloud-based
Development Environment using HLA and Kubernetes for the Co-simulation
of a Corporate Electric Vehicle Fleet. In Proceedings of the 2019 IEEE/SICE
International Symposium on System Integration, SII 2019, pages 47–54.
IEEE, jan 2019.

[RMdK19] Luiz Henrique Leite Rosa, Carlos Frederico Meschini Almeida, Danilo de
Souza Pereira, and Nelson Kagan. A Systemic Approach for Assessment of
Advanced Distribution Automation Functionalities. IEEE Transactions on
Power Delivery, 34(5):2008–2017, oct 2019.

[SG] L. Semeria and A. Ghosh. Methodology for hardware/software co-
verification in C/C++. In Proceedings 2000. Design Automation Confer-
ence. (IEEE Cat. No.00CH37106), pages 405–408. IEEE.

[Sie] Siemens. QuestaSim.

[SLPH10] Christoph Schumacher, Rainer Leupers, Dietmar Petras, and Andreas Hoff-
mann. parSC: Synchronous parallel SystemC simulation on multi-core host
architectures. In Embedded Systems Week 2010 - Proceedings of the 8th
IEEE/ACM/IFIP International Conference on Compilers, Architecture and
Synthesis for Embedded Systems, CODES+ISSS’2010, pages 241–246, New
York, New York, USA, 2010. ACM Press.

BIBLIOGRAPHY 121

[SMB+13] F. M. Sanchez, R. Mateos, E. J. Bueno, J. Mingo, and I. Sanz. Comparative
of HLS and HDL implementations of a grid synchronization algorithm. In
IECON Proceedings (Industrial Electronics Conference), pages 2232–2237.
IEEE, nov 2013.

[Soz17] Krzysztof Sozański. Digital Signal Processing in Power Electronics Control
Circuits. Second edition, 2017.

[Syn21] Synopsys. ZeBu Server 4, 2021.

[Tes19] Tesla. Tesla. Financials and Accounting, 2019.

[TIM+19] Daniel Tormo, Lahoucine Idkhajine, Eric Monmasson, Ricardo Vidal-
Albalate, and Ramon Blasco-Gimenez. Embedded real-time simulators for
electromechanical and power electronic systems using system-on-chip de-
vices. Mathematics and Computers in Simulation, 158:326–343, apr 2019.

[TPD16] Daniel Törtei Tertei, Jonathan Piat, and Michel Devy. FPGA design of
EKF block accelerator for 3D visual SLAM. Computers and Electrical En-
gineering, 55:1339–1351, oct 2016.

[Trz10] Andrzej M. Trzynadlowski. Introduction to Modern Power Electronics, vol-
ume 3. 2010.

[TYH+19] Ha Thi Nguyen, Guangya Yang, Arne Hejde Nielsen, Peter Hojgaard Jensen,
and Carlos F.M. Coimbra. Control parameterisation for POD via software-
in-the-loop simulation. The Journal of Engineering, 2019(18):4864–4868, jul
2019.

[VPSH14] N. Ventroux, J. Peeters, T. Sassolas, and James C. Hoe. Highly-parallel
special-purpose multicore architecture for SystemC/TLM simulations. In
Proceedings - International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation, SAMOS 2014, pages 250–257.
IEEE, jul 2014.

[VRN+19] Steffen Vogel, Vetrivel Subramaniam Rajkumar, Ha Thi Nguyen, Mar-
ija Stevic, Rishabh Bhandia, Kai Heussen, Peter Palensky, and Antonello
Monti. Improvements to the Co-simulation Interface for Geographically Dis-
tributed Real-time Simulation. In IECON 2019 - 45th Annual Conference of
the IEEE Industrial Electronics Society, pages 6655–6662. IEEE, oct 2019.

[VS16] Nicolas Ventroux and Tanguy Sassolas. A new parallel SystemC kernel
leveraging manycore architectures. In Proceedings of the 2016 Design, Au-
tomation and Test in Europe Conference and Exhibition, DATE 2016, pages
487–492, 2016.

[VT64] S. Vajda and K. D. Tocher. The Art of Simulation., volume 127. 1964.

122 BIBLIOGRAPHY

[WFMH20] You Wu, Lijun Fu, Fan Ma, and Xiaoliang Hao. Cyber-Physical Co-
Simulation of Shipboard Integrated Power System Based on Optimized
Event-Driven Synchronization. Electronics, 9(3):540, mar 2020.

[WLC+11] Zhaoguo Wang, Ran Liu, Yufei Chen, Xi Wu, Haibo Chen, Weihua Zhang,
and Binyu Zang. COREMU. ACM SIGPLAN Notices, 46(8):213, sep 2011.

[WMLA16] Jan Henrik Weinstock, Luis Gabriel Murillo, Rainer Leupers, and Gerd
Ascheid. Parallel SystemC Simulation for ESL Design. ACM Transactions
on Embedded Computing Systems, 16(1):1–25, oct 2016.

[Xil18] Xilinx. Xilinx QEMU Github, 2018.

[Xil19] Xilinx. PetaLinux Tools Documentation Reference Guide, 2019.

[Xil20] Xilinx. Versal: The First Adaptive Compute Acceleration Platform
(ACAP), 2020.

[Xil21a] Xilinx. Kria K26 SOM: The Ideal Platform for Vision AI at the Edge, 2021.

[Xil21b] Xilinx. Zynq-7000 SoC Technical Reference Manual - UG565, 2021.

[YMK14] Hassan Youness, Mohamed Moness, and Mahmoud Khaled. MPSoCs and
multicore microcontrollers for embedded PID control: A detailed study.
IEEE Transactions on Industrial Informatics, 10(4):2122–2134, nov 2014.

[ZBW21] Shuai Zhao, Frede Blaabjerg, and Huai Wang. An Overview of Artificial In-
telligence Applications for Power Electronics. IEEE Transactions on Power
Electronics, 36(4):4633–4658, apr 2021.

[ZYW+20] Yonglei Zhang, Xibo Yuan, Xiaojie Wu, Yalei Yuan, and Juan Zhou. Par-
allel Implementation of Model Predictive Control for Multilevel Cascaded
H-Bridge STATCOM With Linear Complexity. IEEE Transactions on In-
dustrial Electronics, 67(2):832–841, feb 2020.

	Abstract
	Contents
	List of Figures
	List of Tables
	List of source code listings
	List of Acronyms
	List of Symbols
	1 Introduction
	1.1 Contributions
	1.2 Structure of the dissertation
	1.3 Publications and related

	2 State of the art
	2.1 Co-simulation based on virtual platforms
	2.1.1 Abstraction levels in simulation
	2.1.2 Co-simulation techniques
	2.1.3 Hardware/software co-verification

	2.2 Digital electronics for controlling power electronic converters
	2.2.1 Control system development
	2.2.2 Control system verification

	2.3 QEMU as a software emulator
	2.3.1 Multi-Threaded Tiny Code Generator
	2.3.2 The notion of time in QEMU

	2.4 SystemC and TLM support

	3 QEMU External Synchronization Mechanism
	3.1 Introduction
	3.2 QEMU machine linking
	3.3 Hardware/Software interactions
	3.4 Implementation of External Synchronization in QEMU using Multi-Thread Tiny Code Generator.
	3.4.1 Guest instruction counter
	3.4.2 Management of Synchronization Points
	3.4.3 Location of the Synchronization Points

	3.5 Summary

	4 COSIL: Co-simulation Software-in-the-loop
	4.1 Introduction
	4.2 COSIL methodology
	4.3 Platform description
	4.3.1 SW domain
	4.3.2 HW domain
	4.3.3 PW domain
	4.3.4 Synchronization
	4.3.5 Debugging features

	4.4 Summary

	5 Performance analysis and test
	5.1 Introduction
	5.2 QEMU external synchronisation mechanism
	5.2.1 Overhead of virtual interactions in co-simulation
	5.2.1.1 Definition of methodology
	5.2.1.2 Results

	5.2.2 Overhead of physical interactions in co-Simulation
	5.2.2.1 Definition of methodology
	5.2.2.2 Results
	5.2.2.3 Conclusions

	5.3 COSIL tests and performance analysis
	5.3.1 Power plant: back-to-back converter
	5.3.2 Control algorithm
	5.3.3 HW/SW architecture of control system
	5.3.4 Tests analysis
	5.3.5 COSIL performance and the use of abstraction levels
	5.3.6 Synchronization results
	5.3.6.1 Conclusions

	6 Conclusions and future work
	6.1 Thesis conclusions
	6.2 Future work

	Bibliography

