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ABSTRACT 

System-on-chips (SoCs) are complex entities consisting of multiple hardware and software 

components. This complexity presents challenges in their design, verification, and 

validation. Traditional verification processes often test hardware models in isolation until 

late in the development cycle. As a result, cooperation between hardware and software 

development is also limited, slowing down bug detection and fixing. 

This thesis aims to develop, implement, and evaluate a co-simulation-based pre-

validation methodology to address these challenges. The approach allows for the early 

integration of hardware and software, serving as a natural intermediate step between 

traditional hardware model verification and full system validation. The co-simulation 

employs a QEMU CPU emulator linked to a register-transfer level (RTL) hardware 

model. This setup enables the execution of software components, such as device drivers, 

on the target instruction set architecture (ISA) alongside cycle-accurate RTL hardware 

models. 

The thesis focuses on two primary applications of co-simulation. Firstly, it allows 

software unit tests to be run in conjunction with hardware models, facilitating early 

communication between device drivers, low-level software, and hardware components. 

Secondly, it offers an environment for using software in functional hardware verification. 

A significant advantage of this approach is the early detection of integration errors. 

Software unit tests can be executed at the IP block level with actual hardware models, a 

task previously only possible with costly system-level prototypes. This enables earlier 

collaboration between software and hardware development teams and smoothens the 

transition to traditional system-level validation techniques. 

 

Key words: co-simulation, QEMU, virtual platform. 
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tietoliikennetekniikan tutkinto-ohjelma. Diplomityö, 63 p. 

 

 

TIIVISTELMÄ 

Järjestelmäpiirit (SoC) ovat monimutkaisia kokonaisuuksia, jotka koostuvat useista 

laitteisto- ja ohjelmistokomponenteista. Tämä monimutkaisuus asettaa haasteita niiden 

suunnittelulle, varmennukselle ja validoinnille. Perinteiset varmennusprosessit testaavat 

usein laitteistomalleja eristyksissä kehityssyklin loppuvaiheeseen saakka. Tämän myötä 

myös yhteistyö laitteisto- ja ohjelmistokehityksen välillä on vähäistä, mikä hidastaa 

virheiden tunnistamista ja korjausta. 

Tämän diplomityön tavoitteena on kehittää, toteuttaa ja arvioida laitteisto-ohjelmisto-

yhteissimulointiin perustuva esivalidointimenetelmä näiden haasteiden ratkaisemiseksi. 

Menetelmä mahdollistaa laitteiston ja ohjelmiston varhaisen integroinnin, toimien 

luonnollisena välietappina perinteisen laitteistomallin varmennuksen ja koko 

järjestelmän validoinnin välillä. Yhteissimulointi käyttää QEMU suoritinemulaattoria, 

joka on yhdistetty rekisterinsiirtotason (RTL) laitteistomalliin. Tämä mahdollistaa 

ohjelmistokomponenttien, kuten laiteajureiden, suorittamisen kohdejärjestelmän 

käskysarja-arkkitehtuurilla (ISA) yhdessä kellosyklitarkkojen RTL laitteistomallien 

kanssa. 

Työ keskittyy kahteen yhteissimulaation pääsovellukseen. Ensinnäkin se mahdollistaa 

ohjelmiston yksikkötestien suorittamisen laitteistomallien kanssa, varmistaen 

kommunikaation laiteajurien, matalan tason ohjelmiston ja laitteistokomponenttien 

välillä. Toiseksi se tarjoaa ympäristön ohjelmiston käyttämiseen toiminnallisessa 

laitteiston varmennuksessa. 

Merkittävä etu tästä lähestymistavasta on integraatiovirheiden varhainen 

havaitseminen. Ohjelmiston yksikkötestejä voidaan suorittaa jo IP-lohkon tasolla oikeilla 

laitteistomalleilla, mikä on aiemmin ollut mahdollista vain kalliilla järjestelmätason 

prototyypeillä. Tämä mahdollistaa aikaisemman ohjelmisto- ja laitteistokehitystiimien 

välisen yhteistyön ja helpottaa siirtymistä perinteisiin järjestelmätason 

validointimenetelmiin. 

 

Avainsanat: yhteissimulointi, QEMU, virtuaalialusta. 
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1 INTRODUCTION 

System-on-chips (SoCs) integrate various hardware (HW) and software (SW) components onto 

a single chip to provide complete system functionality. As SoCs become increasingly complex, 

verifying their correct functionality is crucial yet challenging [1], accounting for almost 70% 

of the total chip design effort and expenses [2].  

The design of a complex application-specific integrated circuit (ASIC) SoC involves 

creating models of the system at different levels of abstraction. As the design progresses, these 

models are transformed and refined until all the details required for silicon manufacturing are 

available. This progression through different models representing increasing levels of 

implementation detail is referred to as the SoC design flow. A critical step in this design flow 

is partitioning system functionality between hardware and software components [3], as depicted 

in Figure 1. 

Following the architecture partitioning, corresponding teams can proceed to design hardware 

components and code software elements. Integration is where new software meets the new 

hardware, and their interoperability can be validated. Early integration benefits from finding 

integration difficulties earlier in the SoC development process and allows for software usage in 

hardware configuration during functional hardware verification phases. [4] 

 

 
Figure 1. Hardware and software partitioning and integration 

 

The complexity of verifying and validating modern SoCs arises from the complicated 

interplay between hardware components and layers of software. SoCs integrate third-party and 

legacy intellectual property (IP) blocks alongside new internal IPs into a coherent architecture. 

Each IP block undergoes verification in isolation by teams specializing in verification. These 

blocks must work collectively at the system level, requiring extensive integration testing. 

Conversely, software development often lags behind hardware creation, resulting in late-stage 

integration and delayed bug identification. [1] 

Traditional verification approaches rely heavily on testing hardware models in isolation until 

late in the development cycle before integrating hardware and software [5]. Verification teams 

use their own methods, like Universal Verification Methodology (UVM). This siloed approach 

delays the discovery of integration issues and necessitates duplicate efforts between teams. 

Earlier integration of software and hardware models could alleviate this problem. 

The primary goal of this thesis is to develop and assess a co-simulation approach for early 

SoC pre-validation, an intermediate step between standalone hardware verification and full SoC 

validation. This involves executing software on a virtual Central Processing Unit (CPU) 

emulator while simulating the rest of the system as register-transfer level (RTL) hardware 

models. The aim is to integrate and start testing of hardware and software together earlier in the 

design flow, a concept known as "shift-left." 
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The traditional waterfall model postpones integration until hardware prototypes or emulators 

are available due to logic simulation performance limitations [1]. This late integration shrinks 

the time available for software development. It also leads to extensive validation overhead from 

discovering bugs arising from untested interactions between hardware and software 

components. Another drawback concerning traditional prototyping methods is vendor lock-in 

to expensive commercial virtual platforms. In contrast, the pre-validation approach developed 

in this thesis utilizes an open-source Quick Emulator (QEMU) [6] for software execution and 

standard RTL simulators, avoiding vendor lock-in to any specific tools.  

Custom extensions to QEMU, developed by Nokia, facilitate communication between 

software executing on QEMU and external hardware models in RTL simulation, creating a full 

SoC virtual platform. The aim of the co-simulation architecture is to allow early integration and 

testing of production software in conjunction with the RTL hardware model, pre-validating 

their interplay before the traditional validation activities take place.  

The objective of this thesis is to enable early-stage software integration and testing with RTL 

hardware models, aiming for earlier hardware and software integration testing to reduce 

validation overhead in later stages and pre-emptively identify potential integration issues.  

The second chapter focuses on introducing the basic building blocks of a typical system-on-

chip (SoC), including the CPU, memories, IP blocks, interconnects, and software stack 

components like device drivers and operating systems, and shows that by combining the 

different elements, a complete system is formed. 

The 3rd chapter will build upon the 2nd chapter and give an overview of hardware 

verification, software testing, and system-level validation techniques used to ensure correct SoC 

functionality. It emphasizes the functional verification of hardware models and the challenges 

of verifying complex hardware and software interactions before the availability of prototypes. 

The 4th chapter delves into the components enabling the co-simulation environment, 

including the QEMU emulator to run the software, the TSS Server to facilitate transaction-tevel 

modeling (TLM) communication, and the integration of RTL hardware models. It discusses the 

potential benefits of this virtual platform approach for early integration, along with an analysis 

of associated implementation challenges. 

The 5th chapter demonstrates the two key use cases for the co-simulation architecture: 

software unit testing and the method for software-driven functional verification. To obtain 

perspective on the utilization of co-simulation for pre-validation, the performance and realism 

of execution are discussed. 

The 6th chapter discusses potential future work and offers an analysis of completed work, 

while the 7th chapter concludes the thesis with a summary. 
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2 SYSTEM-ON-CHIP ARCHITECTURE 

A System-on-Chip (SoC) is an integrated circuit that integrates the main components of a 

computer into a single chip. Microprocessors, predecessors of SoCs, combined just the Central 

Processing Unit with its execution and control units. Improvements in VLSI technology now 

allow placing the CPU, primary memory, and input/output devices on the same chip. [7] 

 SoCs are used in many embedded and mobile applications, such as smartphones, tablets, 

IoT devices, and automotive electronics. An SoC combines pre-designed hardware blocks with 

well-defined functionality known as "intellectual properties" or "IPs," which can be augmented 

with accompanying software. The SoC design philosophy aims to accelerate the development 

by configuring the IPs for the target SoC use case (UC). Fast system design is facilitated through 

standardized communication interfaces between the IPs, thereby enabling rapid design 

iteration. [8]  

 

 

2.1 Hardware on a SoC 

Figure 2 provides a high-level overview of the main components of a typical System-on-Chip 

(SoC). The components can be logically divided into four categories: control, communication, 

computation, and storage [9]. Or equivalently to - CPU, interconnects, IP blocks, and memory. 

IP blocks can be further grouped into subsystems that contain multiple IP blocks, as seen in the 

filter subsystem in Figure 2. These subsystems can then be integrated at the top level of the SoC 

architecture alongside the other major components like CPU and interconnects.  

The CPU provides the main computing power and acts as a central controller controlling 

other components. Memories hold data and instructions close to the CPU. IP blocks provide 

application-specific functionality, such as a filter subsystem containing digital signal processing 

(DSP) IP for signal processing. Interconnects like high-speed and slower peripheral buses tie 

everything together and facilitate communication between the hardware components. [7] 

In Figure 2, one of the IP blocks is the interrupt controller, which works closely with the 

CPU. It forwards interrupt lines from other IP blocks to the CPU. In multicore systems, 

interrupts can be statically routed to a particular core or dynamically routed based on the 

availability of a non-interrupted core. IP blocks like Arm’s Generic Interrupt Controller (GIC) 

can implement this functionality. [7] 
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Figure 2. Example SoC Hardware Architecture. 

 

 

2.1.1 Central Processing Unit 

The central processing unit (CPU) runs all the software one instruction at a time and controls 

the entire system’s behavior. The fundamental job of the CPU is to execute instructions from 

software programs by fetching instructions from memory, decoding them, executing the 

operations specified, and writing results back to registers or memory. The CPU runs the 

operating system and applications software on the SoC by scheduling processes and threads. 

Through device drivers and the OS, the CPU also manages all the other hardware components 

in the SoC, like peripherals, memory controllers, and accelerators. CPUs provide a consistent 

instruction set architecture abstraction to software programmers so that code can be written in 

programming languages like C/C++ and other languages targeting the CPU’s Instruction Set 

Architecture (ISA). [7] 

Arm and RISC-V are popular CPU architectures used in SoCs. The CPU defines the 

instruction set architecture (ISA) and programmer’s model, such as registers, execution modes, 

memory access, and interrupts. An ISA is a set of instructions a specific processor family can 

execute. SoCs today often utilize a multi-core architecture integrating 2, 4, 8, or more identical 

CPU cores on one chip. Multi-core CPUs provide greater processing power, throughput, energy 

efficiency, and flexibility through parallel execution. CPU cores can be packaged with caches, 

memory management units, debug components, and other logic as reusable IP blocks that 

system integrators can integrate into SoCs. [7] 

 

 

2.1.2 Memory 

Memory is a critical component of any SoC, often occupying over 50% of the chip area. 

Different memory technologies serve distinct needs for speed, density, and non-volatility. Static 

random access memory (SRAM), built from cross-coupled inverters, offers fast access times, 

making it ideal for caches, register files, and local scratchpad memories. SRAM retains data 

while powered on but is less dense than other memories. [7] 
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A SoC utilizes denser dynamic RAM (DRAM) for more extensive primary storage needs. 

DRAM stores data as charge in capacitors, necessitating periodic refresh cycles. Slower than 

SRAM, DRAM acts as the main system memory, with sophisticated controllers to maximize 

throughput. Non-volatile memories like read-only memory (ROM) retain data while the system 

power is off. [7] 

The memory has a massive impact on overall SoC performance and efficiency. Various 

memory technologies are strategically deployed across the SoC to balance speed, density, 

leakage power, and reliability requirements. The processor or DSP IPs rely heavily on fast 

SRAM caches close by and DRAM controllers to access larger main memory. [7] 

 

 

2.1.3 Special Purpose IP Blocks 

In addition to processor and memory components, any SoC has a collection of specialized IP 

blocks that provide connectivity, acceleration, control, and sensing capabilities. These IP blocks 

are integrated alongside the processor and memory to create a complete SoC. Interface IP 

blocks like USB, Ethernet, and PCIe enable the SoC to connect with peripheral devices, 

networks, and high-speed expansion slots. Display interfaces like HDMI and DVI connect the 

SoC to external monitors and TVs. Interface IP is selected based on required peripherals and 

performance. [7] 

Various controller IP blocks handle critical SoC management tasks like interrupts, direct 

memory access (DMA) transfers, DRAM access, and power management. Interrupt controllers 

route external events to the CPU cores. DMA controllers offload heavy data transfers, relieving 

the main CPUs from handling these low-level duties. [7] 

To accelerate the processing of workloads like signal processing, graphics, and vision, SoCs 

integrate specialized hardware accelerator IP blocks [7]. Digital signal processors (DSPs) 

efficiently implement signal processing algorithms like Fast Fourier Transforms (FFT), finite 

impulse response filters (FIR), and Viterbi decoders for digital communications systems [10]. 

Hardware accelerators exploit parallelism and custom architectures to massively outperform 

CPU-based software execution [7]. Analog interface IP blocks like ADCs and DACs are 

required for any SoC to interact with real-world analogue components, which convert between 

digital signals and analogue voltages [7]. 

 

 

2.1.4 Interconnections 

Interconnects are responsible for routing data between on-chip blocks, ensuring that all system 

components, such as CPUs, hardware accelerators, memory controllers, and I/O interfaces, 

cooperate. Interconnections can be divided into two types: shared buses, which connect 

multiple devices to a single communication pathway, and point-to-point buses, which form 

dedicated lines of communication between two blocks. [9] 

In any bus system, the devices attached play one of two roles. They are either bus masters, 

which can initiate transactions, or bus slaves, designed to only respond to transactions. The 

main CPU is a typical example of a bus master. However, peripherals supporting DMA can 

also serve as bus masters. A dedicated DMA controller facilitates communication, particularly 

in systems where devices cannot initiate transactions. This controller can perform DMA 

transactions on behalf of bus slaves, ensuring that data is transmitted as intended. [7] 
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Bus-based interconnects may become restrictive in complicated SoCs. The architecture of 

Network-on-chips (NoCs) can be leveraged to address this issue. NoCs are state-of-the-art on-

chip communication architectures that have become standard in high-performance SoCs. 

Instead of the conventional bus methodology, NoCs use packetized communication, sending 

data between routing switches via dedicated interconnect links. Parts of a SoC may continue to 

use local traditional interconnects linked to the NoC through bridges. [7] 

The AMBA, or the Advanced Microcontroller Bus Architecture, is an example of bus 

architecture that is widely used. Developed by ARM, this architecture offers multiple variants 

for varying needs. These include the APB (Advanced Peripheral Bus), AHB (Advanced High-

performance Bus), and the AXI (AMBA Advanced Extensible Interface). Each of these variants 

has slightly different characteristics, with some performing better in bandwidth, others in speed, 

and others being able to operate in multiple clock domains. Despite being ARM’s architecture, 

AMBA buses are also used in SoCs that do not include an ARM CPU. AXI4-Stream, for 

instance, is AMBA’s version of point-to-point connect, operating equivalently to a standard 

AXI4 bus in one direction, excluding the address bus. [7] 

By using bridges between interconnect buses, hierarchical communication can be facilitated 

between IP blocks and the main CPU by forwarding transactions from one bus to another. This 

is made by bridges acting as both a master on the originating bus and a slave on the destination 

bus. For example, IP blocks that do not require high performance, like universal asynchronous 

receiver/transmitter (UART), can be placed lower in the bus architecture and utilize buses like 

AMBA APB instead of AXI. Bridges use addresses for determining the destination slave. 

Bridges asymmetrically connect buses, often allowing forwarding only in one direction, but 

they can also serve as masters and slaves, offering greater flexibility. [9] 

Figure 3 provides an overview of how the main components, including the main CPU and 

memory, interface directly with the high-performance NoC. Complementing this direct 

connection are bridges that are connected to the primary NoC. These bridges forward 

transactions to subsystems and the IP blocks within them. The illustration also depicts the use 

of a point-to-point bus. It functions similarly to a shared bus, consisting of a master and a slave, 

but without an address space. This design choice reduces transaction routing overhead, making 

the data transfer resemble an infinite data stream. Point-to-point interfaces, such as AXI4-

Stream, are essential in parts of an SoC, like the main data path, where high performance is 

needed, and communication addressing is not required. [7] 
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Figure 3. Example SoC Interconnects. 

 

 

2.2 Software on a SoC 

The software components in a SoC deliver the control programs, protocols, and applications 

that enable the system functionality. The software determines the use cases, features, and 

ultimate end-user experience the SoC platform provides. The software in an embedded SoC can 

be logically divided into several layers based on the level of abstraction [9]. Figure 4 depicts a 

scenario at a high level in which a CPU and IP block are connected to an on-chip bus. An 

operating system with the IP block-specific device driver and API runs on the CPU. Typically, 

each IP block has its IP-specific device driver and possible API layers. These software 

components part of a particular hardware IP block can be considered software IPs [3]. 

 

 
Figure 4. Example SoC Software Components. 

 

Hardware IP blocks communicate with the CPU through reserved memory-mapped 

addresses. The CPU writes and reads these addresses to transfer data to and from the IP block’s 

Control and Status Registers (CSR). The bus interface connects to the block’s internal register 
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bank, making it appear to the CPU as memory. The IP blocks’ bus interface handles 

communication protocols and data transfer to and from the on-chip bus. [9] 

The CPU also has an interface to connect to the on-chip bus. This interface includes hardware 

and firmware, allowing the software on the CPU to access the bus. A device driver acts as the 

interface between the software API on the CPU and the CPU’s hardware connection. The driver 

wraps the hardware transactions into software function calls. [9] 

IP blocks’ software API hides the lower-level details of the device driver [9]. An API may 

implement a complicated IP block configuration behind a single function call. For example, a 

DSP IP’s API could implement a function that allows the configuration of the IP with a specific 

sample rate, which would otherwise require hundreds of manual register writes/reads.  

 

 

2.2.1 Device Driver 

Device drivers are one firmware component operating at the lowest level of software on the 

CPU. Device drivers enable communication between IP block devices and higher-level 

software layers. When an application or protocol wishes to access a device or when a device 

wishes to send a message to higher software layers, the device driver is responsible for 

facilitating the communication. When the device driver wishes to communicate with the device, 

the device register interface is utilized. Alternatively, when a device has something to say to 

the device driver, it can raise the interrupt line, which is routed through the interrupt controller 

to the CPU. [11] 

The hardware side exposes addressable control and status registers (CSR) that software can 

read and write. The ability to access registers by device drivers can be used to configure the 

device, read status information, or instruct the device to start some functionality by writing to 

command registers. For some kinds of devices, registers may also act as data buffers. For 

example, a UART driver may  configure baud rate and transfer parameters to control registers 

and transmits data by writing to a data register. [11]   

 Hardware also generates interrupt signals to notify software of events like data ready or 

errors. During the device operation, some event might occur that needs to be solved by the 

software. For example, an IP block can manage real-world events like sending and receiving 

data packets in communication devices. UART driver might receive data by reading a register 

when the hardware interrupts upon data reception. The IP block may have buffers to store 

packets, but there’s a limit to how many they can hold. Packets need to be processed quickly; 

otherwise, if buffers fill up, it could cause issues. [11] 

 Interrupts can be divided into vectored and non-vectored interrupts. When a non-vectored 

interrupt occurs, the CPU always goes to a standard interrupt service routine (ISR). An interrupt 

handler, or ISR, is a software code the CPU executes in response to an interrupt. This ISR 

checks each device to identify the interrupt source. If multiple devices cause interrupts, they 

are addressed sequentially within the same ISR. In the case of a vectored interrupt, the CPU is 

directly informed of the interrupt and its source. As a result, vectored interrupts are more 

responsive than their non-vectored. The CPU, interrupt controller, and devices are the hardware 

components involved in interrupt handling. [11] 

When an interrupt occurs, its signal is sent to the interrupt controller(s) either through the 

system bus or specific interrupt lines, like in Figure 4. In ARM architecture separate interrupt 

lines connected from each IP to the interrupt controller form a shared peripheral interrupt (SPI) 

vector [12]. Typically, each device only sends an interrupt request to the controller via one line 

or the system bus. This means that all interrupts from a particular device converge on a single 
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line. Such an arrangement simplifies hardware design. To identify the source of the interrupt, 

the interrupt service routine must check the CSRs - seen in Figure 4.  

 

 

2.2.2 Real-Time Operating System 

The operating system (OS) is an optional software component in an embedded system. It is not 

required for all embedded devices. The OS can run on any processor architecture it has been 

ported to. The OS sits on top of the hardware or device drivers in the software stack. [13] 

The OS in an embedded SoC provides an abstraction layer between hardware and software 

and manages hardware and software resources. By running device drivers and hiding hardware 

implementation details, the OS facilitates the development of software and applications that 

operate on top of the operating system. [13] 

The kernel is the core component of the OS that contains key functionality to manage 

resources through process, memory, and I/O system management. Process management refers 

to how the OS handles scheduling, switching between, and tracking multiple processes or tasks 

running on the SoC. This includes managing interrupts and errors triggered by different sources. 

Memory management refers to how the OS allocates memory space between processes. This 

ensures security for critical system regions and efficient utilization. I/O system management 

refers to how the OS manages sharing I/O devices between processes, including access control 

and allocation. [13] 

Compared to general-purpose operating systems, real-time operating system (RTOS) better 

meets the needs of an embedded system, where timing and determinism are important [13]. The 

main distinction is that tasks executed on RTOS are guaranteed to meet their execution 

deadlines, making them predictable or deterministic [13]. RTOS are typically lighter and faster, 

making them ideal for resource-limited environments [13]. Standard operating systems used in 

embedded SoCs include FreeRTOS, Zephyr, and Linux [11]. 

 

 

2.2.3 Application Programming Interface 

At the highest application level, user programs invoke OS application programming interfaces 

(APIs) to utilize underlying drivers and hardware without needing to directly access registers 

or handle interrupts. An application may invoke transmit/receive API functions for the UART, 

causing lower-level drivers to, for instance, write data to the UART IP and then instruct it to 

begin transmission with a certain baud rate determined by another write operation. This enables 

portable application software that is isolated from the specifics of the SoC hardware 

implementation. [11] 
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3 SOC TEST METHODOLOGIES 

The design of a complex ASIC SoC involves creating models of the system at different levels 

of abstraction. As the design progresses, these models are transformed and refined until all the 

details required for silicon manufacturing are available. This progression through different 

models representing increasing levels of implementation detail is referred to as the SoC design 

flow. Effective use of Electronic Design Automation (EDA) tools is crucial to manage the 

complexity inherent in SoC designs. EDA tools automate the translation of models from one 

level of abstraction to the next. [7] 

At the highest level, the system model captures the desired functionality and specifications. 

Lower-level models increase implementation detail as the design progresses while preserving 

consistent functionality. Verification at each stage ensures conformity with the preceding 

higher-level model. The final physical model contains complete information on how to 

manufacture the physical silicon chip. This multi-level design flow enables complex SoC 

implementation through stepwise refinement. [7] 

To avoid potentially catastrophic and costly errors in complex SoC, complete and rigorous 

verification, software testing, and validation are required throughout the SoC design flow, 

accounting for over half of the total effort and cost of SoC design projects [1]. Finding and 

correcting bugs late in the product development cycle or after a product has been manufactured 

can cause massive financial costs [1]. Most of the hardware verification is performed on RTL 

hardware models written in hardware description languages (HDLs) such as VHDL and 

SystemVerilog, where hardware behavior is represented by bit and cycle-accurately modeling 

combinational and sequential logic of digital circuits [7].  

Modern SoCs integrate many hardware components and software elements. Verifying these 

elements individually and collectively as an integrated system is crucial to ensure correct 

functionality. Various verification methods are employed, including simulation, emulation, 

FPGA prototyping, and formal verification techniques pre-silicon. Once the actual silicon is 

produced, further post-silicon testing and validation is carried out. [1] 

Verification and validation are critical yet distinct phases that ensure the final product’s 

quality, functionality, and performance. Verification is a quality assurance process to ensure 

that each development phase’s outcomes meet the conditions and requirements initially 

specified for that phase. It focuses on the "building the product right" aspect, ensuring the 

system or component is designed and developed correctly at each life cycle step. The objective 

is to confirm that the system or component satisfies standards, practices, and conventions 

throughout its development, operation, and maintenance. [14] 

Validation is evaluating a system or component at different stages or at the end of the 

development process to determine if it meets the specified requirements. This process aims to 

confirm that the system "solves the right problem" and fulfills its intended use and user needs. 

It provides evidence that the design, software, or hardware satisfies all allocated requirements 

after each life cycle activity. [14] 

In System-on-Chip development, verification ensures that each hardware IP and subsystem 

within the SoC meets the design specifications and functional requirements. Various 

techniques, such as simulation, formal methods, and hardware emulation, confirm that the 

individual blocks and their interconnections are correctly implemented. The verification 

process also includes checking compliance with industry standards and practices at each 

development phase. Here, the focus is on confirming the design’s correctness, completeness, 

and consistency before it goes into fabrication. [5] 
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SoC Validation takes a more comprehensive approach, focusing on whether the SoC meets 

the end-user’s needs and the system-level requirements. This process involves testing the SoC 

in an environment that closely mimics its final application to validate its functionality, 

performance, and reliability. Validation ensures that the components of the entire SoC system, 

with complex hardware/software use-case scenarios, satisfy the intended application and user 

expectations. [15] 

So, while verification of an SoC ensures that each component and its interconnections are 

correctly implemented according to design specifications, validation ensures that the entire chip 

meets the system-level requirements and is fit for its intended purpose. Verification occurs 

throughout the development phases, whereas validation is generally performed towards the end 

or post-fabrication to confirm that the SoC meets all specified requirements and user needs. 

 

 

3.1 Platforms 

Before manufacturing the physical hardware, the verification platform runs a design 

description, expressed with HDLs, to ensure it works as expected. These design representations 

can be run on a variety of platforms. There are four primary techniques for executing a hardware 

design: logic simulation, simulation acceleration, emulation, and hardware prototyping. Each 

technique offers unique debugging options with varying advantages and drawbacks. These 

methods range in speed and debugging capabilities from the slowest and most flexible to the 

fastest but less flexible. [4] 

 

 

3.1.1 Logic Simulator 

Logic simulation, the main platform to execute and perform RTL verification, uses software 

simulators running on workstations to simulate the behavior of the hardware design. Logic 

simulators are event-driven, tracking signal values and queueing future events. They can use 

interpreted code for flexibility but slower speed or compiled code for faster execution but longer 

compile times. Simulation generally provides a flexible environment with good debugging 

capabilities but slower overall execution speed. [4] 

 

 

3.1.2 Simulation Acceleration 

The second type is simulation acceleration or co-emulation [16], which involves mapping the 

synthesizable portions of a design into custom hardware optimized for parallel execution. This 

takes advantage of the parallelism in HDLs. The remaining portions of testbench used for 

verification still run in a software simulator. The overall performance depends on the percentage 

of the design that can be accelerated. This approach removes events from the software simulator 

for faster evaluation in hardware. [4] 

 

 

3.1.3 Emulator 

The third type is emulation, which maps the entire design into a hardware platform like an field-

programmable gate array (FPGA) for maximum performance [4]. FPGA can be viewed as a 
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larger silicon chip programmed to function similarly to a smaller silicon chip, with the 

advantage that the functionalities can be rewritten compared to ASIC. Since there is no constant 

connection to the workstation, the emulator can run at full speed without waiting for 

communication. Emulation provides the fastest execution but historically less flexibility for 

debugging [4]. However, modern hardware emulators have good debugging capabilities and 

RTL design visibility close to logic simulators [16]. 

 

 

3.1.4 Hardware Prototype 

The fourth type is hardware prototyping, which constructs physical custom hardware or 

reusable prototyping boards to create a realistic hardware version of the final system. This 

allows engineers to have a working prototype available sooner by making trade-offs in 

requirements like performance and packaging. A common technique is using FPGAs instead of 

final ASICs for faster availability. In summary, the options range from pure software simulation 

to realistic hardware prototyping, with trade-offs in speed, debugging, flexibility, and cost. If a 

SoC design is too large for any of the available FPGAs and emulators, the only method to 

perform system-level verification may be to create an ASIC prototype of the SoC. [4]  

 

 

3.2 Functional Hardware Verification 

Functional pre-silicon verification is the main verification activity during and after hardware 

development and implementation. It is a continuous process that increases in maturity and 

complexity as the design evolves. [1] 

Most industrial SoC designs include a mix of legacy and new IPs created in-house or from 

third-party providers. An IP verification team (in-house or third-party) verifies the IP in a 

standalone environment to ensure it functions appropriately on its own. IPs are then integrated 

into an evolving SoC model, and system-level verification is performed to ensure the IPs work 

correctly together. [1] 

IPs are delivered to the SoC team as hard IPs (physical layouts) or soft IPs (RTL or netlists). 

More verification is required for hard IPs. Traditionally, IP verification involves testing the IP 

in isolation to build a robust portfolio of reusable IPs. Recently, there has been a push towards 

"right-sized verification" to test only target SoC use cases. So, IP verification should focus on 

IP use cases tied to SoC use cases. [1] 

Rather than attempt exhaustive verification, a focus on verifying key intended use cases of 

the product helps direct verification efforts toward the most critical scenarios. Use cases usually 

exercise complex interactions between hardware, firmware, and software tailored to meet the 

target device’s performance, power consumption, and functional requirements. 

SoC integration verification involves system-level simulation and defining use cases. The 

Purpose of the use case is to describe SoC configuration as if it would be initialized and 

configured in the actual product. Many use cases require hardware and software co-execution, 

which is infeasible in simulation. That is why complete use case tests are deferred until 

emulation and FPGA prototyping when the design matures, and faster execution speed is 

available. Verifying use cases end-to-end uncovers integration issues that may be missed by 

verifying components in isolation. [1] 
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Simulation is the primary methodology used to verify complex system-on-chip (SoC) 

designs in today’s industry. The simulation-based verification process involves test generation, 

results checking, and coverage collection to verify the functionality thoroughly. [1] 

 

 

3.2.1 Quality Measurement 

One of the most critical aspects of functional verification is assessing its effectiveness or 

"goodness." This measurement is typically conducted using functional coverage metrics. 

Functional coverage allows to track what portions of the design’s functionality have been 

exercised by the verification. A quantitative assessment of how well the design intent has been 

verified can be done by mapping the verification plan to specific cover points and cover groups 

in SystemVerilog’s (SV) functional coverage language. It is essential to remember that there is 

never absolute certainty that the design is error-free; only a certain level of trust that the 

behavior is as expected can be achieved, or the design can be shown not to operate following 

the requirements. [5] 

Functional coverage is not the only metric, however. While not a substitute for functional 

coverage, code coverage provides a complementary view by ensuring that every line of code, 

condition, and state has been exercised. The two together can be used to assess the verification 

status. [5]  

 

 

3.2.2 Typical Test Environment 

Driving test stimuli to the design is central to functional verification. The method of stimulus 

generation can vary depending on the complexity of the design and the verification 

requirements. Constrained-random test generation has become an industry standard for this 

purpose. It allows writing constraints that guide the random generation of test stimuli, ensuring 

that tests are random and meaningful. Constrained-random testing is beneficial for exercising 

edge cases that directed tests might not cover. [5] 

In the context of System-on-Chip designs, test stimuli often need to be driven to multiple 

IPs and their interconnections. The Universal Verification Methodology (UVM) offers a 

structured approach to operating test environment [18]. By separating test generation from the 

simulation environment, UVM enables higher reusability and flexibility in driving test stimuli 

to complex SoC designs. This separation is crucial when IPs come from various sources or 

when some are legacy components, as it enables more straightforward integration and less 

duplicate work. When an IP block is embedded in a subsystem, existing UVM tests can be 

reused at the subsystem level with minimal changes. [5] 

The UVM is a standardized approach for creating reusable verification components and 

environments. It defines a base class library and set of APIs in SystemVerilog that enable 

modular, scalable verification environments. The main goals of UVM are to improve 

verification IP (VIP) interoperability across tools and teams, reduce rewrite costs for new 

projects, and enable easier reuse of verification components. It provides a methodology to 

create modular verification environments using packages, components, sequences, and other 

testbench elements. Environments are structured into modules like agents and scoreboards. [17] 

In the UVM framework, VIPs are reusable and modular components that facilitate efficient 

and effective stimulus generation for the Device Under Test (DUT) [18]. For instance, the AXI 

VIP is invaluable for verifying complex AXI protocols in SoC designs [19]. The architecture 
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of such VIPs includes several essential UVM components like the sequencer, driver, and 

monitor, all encapsulated within an agent [17].  

In functional verification, the testbench and Device Under Test (DUT) are two main entities 

that interact through multiple VIPs, as illustrated in the example Figure 5. The testbench 

employs three different AXI agents for specific roles in this example. The first AXI Stream 

agent feeds the test input stimulus into an AXI VIP interface connected to one end of DUT’s 

point-to-point interconnect. The second AXI Master Agent is responsible for the runtime 

configuration of the hardware by writing to CSRs and configuring the DUT and the internal IP 

blocks to suit specific use cases. The third AXI Stream Agent receives input from the opposite 

end of the DUT’s point-to-point interconnect. This agent also compares the DUT output to 

reference data to determine a pass/fail status and whether the DUT behaves as expected. 

The AXI VIP interface simplifies the process of stimulus generation by managing low-level 

operations and facilitating communication with the DUT via its AXI bus. The VIPs play a dual 

role in a self-checking testbench setup. First, they drive a sequence of transactions based on the 

functional specifications of the DUT, which may include various use cases, boundary 

conditions, and stress scenarios. Second, they monitor the DUT outputs, comparing them to 

expected or "golden" reference data. 

A VIP serves an essential function by translating high-level test stimuli into pin- and cycle-

accurate signals through bus function models (BFMs). Similarly, BFMs convert the DUT’s 

output back into transaction-level data for analysis. If a mismatch is detected, debugging can 

proceed at the signal or pin level, enhancing the efficiency of the verification. 

The primary advantage of a self-checking testbench is its ability to autonomously identify 

mismatches between the expected behavior and the DUT’s output. When a mismatch is 

detected, the testbench provides immediate feedback, often specifying the input conditions and 

the nature of the discrepancy. This feature significantly accelerates debugging, making it more 

reliable than manual checks. [3] 

 

 
Figure 5. Example VIP Usage in a Testbench. 
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3.2.3 DUT Configuration with UVM 

The UVM defines a standardized testbench structure with pre-determined phases coordinating 

the testbench components. One key phase is the configure phase, which programs the device 

under test (DUT) for the specific test case. For example, the test case may target one of the 

SoC’s use cases. During the configure phase, the testbench uses agents like an AXI master in 

the middle of Figure 5 to write register and memory values that set up the DUT for the desired 

functionality [17], which would, in a complete SoC be done by the software running on CPU 

as discussed in section 2.2. 

The following main phase then stimulates the DUT with transaction sequences tailored for 

the test case, simulating real-world stimuli generated by components such as an AXI stream 

agent. Monitor components like another AXI stream agent on the read interface concurrently 

capture outputs. In this way, the UVM methodology structures the testbench first to configure 

the DUT to the test mode, then apply stimuli and monitor outputs accordingly. The phased 

approach coordinates components and enables configuration, stimulus, and checking 

capabilities for comprehensive verification. [17] 

The UVM Register Abstraction Layer (RAL) provides a standardized model for representing 

and accessing registers and memories in a DUT. The RAL creates register and memory objects 

to manipulate DUT’s register values, including methods for reading and writing. The RAL 

model manages all the details of driving the necessary cycles on the actual interfaces.  

A key capability of the RAL is enabling backdoor accesses that bypass the physical 

interfaces and access the DUT’s registers directly. For example, the peek() and poke() methods 

instantly read and write register values without consuming simulation cycles. This backdoor 

access is handy for fast configuration during the configure phase of a UVM testbench. Testcases 

can call backdoor methods to set the DUT registers and memories in zero time before the 

stimulus for functional verification begins. [17] 

Backdoor accesses also enable monitoring by peeking at register values anytime without 

interfering with regular operation. Testcases can peek at status or result registers to monitor the 

DUT state during long stimulus sequences. In summary, the backdoor capabilities of the UVM 

RAL enable high-speed configuration and monitoring of the DUT state. [17] 

 

 

3.2.4 SystemVerilog DPI-C 

The SystemVerilog Direct Programming Interface (DPI-C) enables interlanguage 

communication between C and SystemVerilog. With DPI-C, C function calls can be done 

directly from the SystemVerilog environment and vice versa. When a C-program, including 

DPI-C header file, is compiled into a shared library, it can be loaded into an RTL-simulator. 

[20] 

Functions implemented in C can be declared in SystemVerilog code using import "DPI-C" 

declarations, which are then referred to as imported tasks and functions. Conversely, tasks and 

functions implemented in SystemVerilog can be declared using export "DPI-C" and are then 

callable from C. [20] 

In SystemVerilog, the imported or exported functions can be declared anywhere where 

typical SystemVerilog functions can be, such as in a package. Both imported and exported 

functions have somewhat limited argument types, including types like void, byte, shortint, int, 

longint, real, and shortreal. The SystemVerilog functions to be called from C are declared as 

"extern" in C. In addition, the DPI-C header file must be included in the compilation. There is 
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a separation between pure and context functions. If a C function is imported to call exported 

SV functions or access SV data objects, it should be imported as a context function. [20] 

The extensibility of testbenches using SystemVerilog’s DPI-C capabilities is limited only by 

the user’s imagination. It can be used, for instance, to extend the UVM framework’s ability to 

communicate with SystemC [21] or to connect a design’s reference model directly to the UVM 

environment [22], [23]. 

 

 

3.2.5 Challenges in Verification 

The complex interactions between different IPs and the system-level behavior that results from 

these interactions make SoC verification a complicated process. More critically, low-level 

software is becoming increasingly crucial in hardware IPs’ runtime configuration and 

functioning [24]. Because of this operational dependency, software availability also affects SoC 

integration testing. In the historical development waterfall, the software is tested only after the 

hardware is complete [1]; hence, actual software cannot be used for runtime configuration of 

hardware during functional verification.  

Hardware-software co-verification is often necessary to capture the complete system 

behavior. This co-verification is generally not feasible in pure logic simulation due to 

performance limitations and is usually deferred to later stages of validation involving emulation 

or prototyping [5]. This necessitates the development of an environment that permits software 

development and execution on early hardware models, preferably already at the IP level. 

 

 

3.3 Software Testing 

Ensuring thorough and accurate testing of embedded software is crucial. Given the complexity 

of the system in which embedded software operates, flaws may expose to significant risks or 

financial losses in the event of any delays [25]. SoCs usually use CPUs with unique instruction 

set architectures (ISAs), like ARM [7], which differ from those in personal computers where 

software development commonly occurs. This makes testing embedded software more 

challenging compared to testing general-purpose software. Completing software testing as an 

independent task is essential before integrating new hardware and software for a seamless 

combination. Although there are various test methodologies and testing levels in software 

testing[26], like there is in hardware verification, this thesis will narrow its focus to unit testing, 

the most basic level of software testing. 

A software unit test (UT) is a code designed to validate a specific behavior or functionality 

within the software under development. Typically developed parallel with the production code, 

unit tests are not included in the final software product. These tests create an isolated 

environment for executing a certain action on a code unit and verifying the result. The objective 

is to keep these tests short, simple, and independent of each other to avoid test coupling. [26] 

Unit testing forms the foundation of a multi-level verification process, serving as an early 

stage for identifying issues. Detecting bugs at the unit testing stage is particularly cost-effective 

and sets the stage for subsequent testing levels, ensuring system reliability. [26] 

A framework provides a structured environment and tools for writing, running, and reporting 

unit tests. It offers a foundation upon which individual tests can be built and executed, 

streamlining the process of verifying code functionality and quality. One prominent example 
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of a unit testing framework is Google Test [27], designed for C++ programming and can be 

applied, for example, to software API layer testing. 

Thorough software testing necessitates having sufficiently mature hardware models and 

prototypes to run on. The sooner the device driver can be tested alongside the actual hardware 

model it is intended to control, the better.  Hardware/software co-verification is vital since the 

complete functionality depends on the intricate interaction between hardware and software 

elements [11]. Therefore, comprehensive unit testing of software cannot be performed before 

actual hardware or hardware models are available. 

 

 

3.4 System-Level Validation 

Validation activities in SoC development can be divided into pre-silicon and post-silicon stages. 

In the pre-silicon phase, designers have the advantage of extensive monitoring and control of 

the design. In contrast, the post-silicon step provides limited observability, complicating the 

process of error identification. As the project transitions from the pre-silicon to the post-silicon 

stage, the complexity and realism of potential errors increase, leading to higher costs for bug 

detection in the later stages. Therefore, early identification and resolution of problems are 

essential. These validation activities aim to ensure successful software and hardware 

integration, confirming that the SoC is functional and aligns with its intended purpose. [1] 

 

 

3.4.1 Pre-silicon Validation 

Emulation and FPGA prototyping are technically part of pre-silicon verification, but they form 

an essential bridge to post-silicon verification/validation. The RTL model is mapped to a 

reconfigurable architecture like an FPGA or emulator that runs hundreds to thousands of times 

faster than RTL simulation. This enables executing hardware/software use cases like booting 

an OS in hours. However, this speed comes at the cost of reduced controllability and 

observability compared to logic simulation. [1] 

In simulation, any internal signal can be observed at any time. In FPGA prototyping, 

observability is limited to a few thousand internal signals that must be selected before 

generating the FPGA bitstream. Reconfiguring observability requires time-consuming 

bitstream recompilation. Thus, emulation and FPGA prototyping are used when the design is 

relatively mature, with stable functionality and debug observability. [1] 

Recent pre-silicon validation platforms address observability and speed limitations [16], 

[28]. The primary distinction between emulation and FPGA prototyping is that emulators may 

have debugging capabilities comparable to simulators, but FPGAs have severely limited 

debugging capabilities [16]. On both platforms, a significant improvement in execution speed 

relative to simulation enables complete validation of complex hardware/software use cases [1]. 

 

 

3.4.2 Post-silicon Validation 

Post-silicon validation involves testing an actual silicon chip, physical hardware, instead of a 

hardware model, like the RTL description. Before mass production, samples of silicon chips 

are debugged in the lab to validate the chip, focusing on functionality, timing, power, 
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performance, electrical characteristics, and physical stress effects. It is the final validation 

before starting mass production of the chip. [1] 

Running tests at the target clock speed allows executing long use cases like booting an OS 

in seconds and exercising power management and security features. However, controlling and 

observing silicon execution is far more complicated than RTL simulation or FPGA/emulation 

models. Also, changing observability in silicon is impossible. [1] 

Overall, post-silicon validation enables running complex software use cases to validate the 

design entirely. However, controllability and observability are severely limited compared to 

RTL verification. It is a critical yet challenging phase before releasing to high-volume 

manufacturing. [1] 

 

 

3.5 Pre-validation 

The purpose of pre-validation is to serve as an intermediate step between traditional validation 

methods such as hardware emulation and FPGA prototyping and the actual hardware-software 

(HW/SW) integration. Traditional validation activities are crucial for ensuring the reliability 

and functionality of a SoC design before it enters mass production. However, relying solely on 

conventional validation can introduce significant time and resource overheads. This is because, 

as most of the verification is completed and the first prototypes are created to run software on, 

the hardware is relatively mature at this point, making future changes to the hardware 

improbable. Challenges arise as the software meets the real hardware for the first time, 

necessitating extensive debugging to identify and correct hidden bugs during standalone 

hardware or software testing. 

Three scenarios illustrate the influence of various validation strategies on project schedules. 

Figure 6 outlines a project timeline without an emulator or FPGA prototyping. In this case, 

HW/SW integration begins only after the physical chip is manufactured, allowing for only post-

silicon validation. This method comes with considerable risks, including the complexity of 

debugging due to limited visibility into the physical chip. In worst-case scenarios, this approach 

could necessitate the re-spin of the project due to a functional bug in hardware [5]. 

 

 
Figure 6. Project schedule with post-silicon validation. 

 

The second approach, shown in Figure 7, incorporates traditional pre-silicon validation 

methods, such as emulation and FPGA prototyping. This enables a left-shift in the project 

schedule, accelerating time-to-market. However, employing these pre-silicon validation 

methods requires that the top-level architecture of the SoC be finalized and that the HW and 

SW are relatively mature. This restricts the flexibility to make design changes and compresses 



 27 

the development time of both HW and SW components. A major issue with traditional pre-

silicon validation, such as emulators, is that software and hardware are created independently 

and still meet at an unfortunate late stage of SoC development. A preferable way would be to 

integrate real software with early hardware models, involving collaboration among software 

developers, hardware designers, and verification engineers, improving system awareness and 

communication.     

 

 
Figure 7. Project schedule with pre-silicon validation. 

 

In contrast, Figure 8 presents a project schedule that leverages pre-validation. This allows 

for HW/SW integration to begin already at the IP block level, utilizing early HW and SW 

models. This results in a further left-shift in the project timeline, enabling an even quicker time-

to-market. This allows for earlier detection of bugs and faster maturation of HW and SW, 

reducing the time spent on their development, allowing earlier traditional validation methods 

to occur, and thus allowing for earlier fabrication of the physical chip. The time spent on 

conventional pre- and post-silicon validation is also reduced, as most common bugs are already 

identified during the pre-validation phase. This allows engineers to focus on more complex 

validation scenarios with a mature HW and SW base. 

 

 
Figure 8. Project schedule with pre-validation. 

 

Pre-validating an SoC by co-simulating HW and SW facilitates the early identification of 

potential issues and makes subsequent validation efforts more efficient. The practice aligns well 

with the “shift-left” approach, where testing and validation activities occur earlier in the 

development lifecycle. This proactive strategy results in quicker issue identification and 

resolution, reducing time-to-market, and lowering overall costs. 

Performing pre-validation at the IP or subsystem level offers several advantages. One of the 

key benefits is the reduced compile time, especially when compared to hardware emulators. 
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While emulators can accommodate large designs, their slow compile times often negate their 

ability to process billions of cycles quickly, particularly for smaller designs [5]. Simulation-

based pre-validation can be more productive in such cases, allowing quicker design iterations, 

including compilation, execution, and debugging. 

 

 

3.6 Existing Solutions for Pre-silicon HW/SW Integration 

Co-simulation is when two or more separate programs work together to create a complete 

simulation result. Each part of co-simulation specializes in a particular aspect of the system 

being studied, and by working together, they offer a more comprehensive understanding of the 

entire system. Co-simulation allows earlier HW/SW integration pre-validation, also known as 

co-verification. HW/SW co-verification, typically not performed until system-level validation, 

verifies the correct execution of embedded system software on the hardware design. [4] 

Co-verification for pre-silicon validation can be achieved through multiple approaches, 

differentiated mainly by how the hardware and microprocessor are modeled and what execution 

engine is used. A comprehensive co-verification environment should offer the ability to control 

software and hardware and monitor the system. The concept extends to "virtual prototyping" 

and "physical prototyping" if the hardware is not the final fabricated chip. Virtual prototyping 

refers to simulating the hardware design as a software program, allowing to test how the 

software interacts with the hardware even before the hardware is physically built. Essentially, 

any method that verifies the software on a representation of the hardware that is not the final 

product qualifies as co-verification [4], meaning that pre-silicon validation involving both 

hardware and software can also be considered a form of co-verification.  

Compared to real hardware, co-simulation gives access to all internal signals and registers 

of the simulated hardware block. Even with the physical ASIC in hand, co-simulation can 

replicate the problems encountered with the actual chip, making it easier to identify the root 

cause of failure [11]. However, simulating hardware has the inherent limitation of becoming 

increasingly slow as the number of events and state changes to track grows exponentially with 

the design size [8]. 

Several approaches for early hardware/software integration and co-simulation have been 

proposed. These approaches aim to facilitate early integration, reduce verification overhead, 

and uncover pre-silicon bugs. Co-simulation of a system’s hardware and software components 

creates a virtual platform (VP), which can be used even before implementing the hardware’s 

RTL description if a behavioral system model is used to model the hardware [5].  

Most approaches presented in the literature utilize emulation or virtualization to speed up 

co-simulation, which allows the use of the host machine’s resources to run the guest system. 

The most frequent method for building a virtual platform and achieving high speed is to use the 

open-source CPU emulator QEMU to simulate software execution behavior [29]. SystemC is 

typically used for hardware modeling because it can describe both TLM and RTL models [30]. 

The transaction level is the most useful abstraction level for communication between software 

and hardware since it is precise enough to check functioning while not considering all the 

specifics that a gate level would, therefore achieving better performance [31]. 

A core challenge is the timing accuracy difference between software and hardware models. 

Software simulators focus on functional accuracy, while hardware models require cycle or RTL 

precision. This difference requires synchronization mechanisms between simulators. Another 

significant limitation is the long simulation run times caused by the number of triggered events, 

which grows exponentially with design size. [32] 
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3.6.1 QEMU 

Quick Emulator (QEMU) is a versatile CPU emulator that allows the execution of applications 

and binaries compiled for different instruction sets. One of the technologies behind QEMU’s 

functionality is dynamic binary translation (DBT), which is why it performs well. In DBT, the 

tiny code generator (TCG) translates target instructions into a machine-independent 

intermediate language called TCG ops. These are then compiled for the host architecture at 

runtime. This method of dynamic translation enables QEMU to support multiple Instruction Set 

Architectures (ISAs), such as ARM and RISC-V. [6] 

QEMU can emulate ARM CPUs and their tightly coupled Generic Interrupt Controllers 

(GIC). This capability is particularly beneficial for simulating complex hardware systems that 

rely on ARM architecture. QEMU supports debugging with GNU debugger (GDB), allowing 

software to be debugged in the same manner as with a low-level debug facility such as joint test 

action group (JTAG) on actual hardware. In addition to CPU and GIC, QEMU can emulate 

various types of physical host hardware, such as disk drives, network cards, and audio 

interfaces. For network connectivity, QEMU can emulate network cards that share the host’s 

network through network address translation [6] 

 

 

3.6.2 Virtual Platforms 

AMD, previously Xilinx, provides a customized version of QEMU that models the ARM-based 

processing system in their products to execute ARM instructions without needing real 

hardware. AMD’s Vitis emulation platforms utilize QEMU to emulate ARM cores and co-

simulate them with RTL or SystemC models of other on-chip components. [33] 

Previous work demonstrated usage of Xilinx QEMU to emulate the ARM cores of the Zynq 

SoC and SystemC models for programmable logic [30]. Communication between QEMU and 

SystemC uses a custom library with remote-port protocol over transmission control protocol 

(TCP) sockets [30]. An open-source SystemC-TLM bridge [34] is used between the simulators 

and enables communication over AXI interfaces. This methodology boots Linux on the 

simulated SoC in minutes while maintaining accuracy for verification [30]. A UVM testbench 

architecture also applies constrained random stimulus to hardware and software interfaces, 

including TCP/IP configuration [30]. The approach enables pre-silicon verification and 

debugging of tightly coupled hardware/software SoC design of Zynq FPGA SoC [30].  

VPSim is one of the virtual platforms developed for early hardware/software integration of 

embedded systems, which integrates QEMU into SystemC, providing CPU and peripheral 

models as TLM modules while leveraging QEMU’s dynamic binary translation for speed [35]. 

Another virtual platform, QBox or “QEMU in box,” integrates the QEMU into the SystemC 

simulation environment as a standard SystemC module to facilitate transaction-level interfacing 

to external hardware components [29]. QBox allows QEMU’s efficient simulation of complex 

IPs like CPUs in the SystemC virtual platform simulation context. Comparing QBox to an 

alternative approach called QEMU-SC [36], where QEMU runs the simulation and SystemC 

models are incorporated as peripherals, QBox is better suited for heterogeneous multicore 

simulation [29]. QBox is utilized, for example, in Nvidia’s NVDLA to simulate its hardware 

model in SystemC while running software on a QEMU ARM processor model [37]. 
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It is demonstrated that by connecting QEMU to SystemC hardware models and enabling 

simulating software like drivers and applications on QEMU’s virtual ARM machine alongside 

SystemC or RTL hardware models, hardware architecture and software of a GPU SoC can be 

rapidly explored and verified [38]. Alternatively, by connecting QEMU running server software 

with a logic simulator and linking the virtual machine’s (VM) virtual PCIe/NIC devices to 

simulation bridges with identical interfaces as the hardware platform, enables full-system 

simulation of actual server software and bit-accurate hardware without modifications, providing 

rapid iteration, full visibility, and the ability to simulate complex systems [39]. 

Techniques to integrate heterogeneous VPs built with different languages/simulators are 

proposed to enable full system validation of independently developed software. Inter-process 

communication via shared memory exchanges data between QEMU and commercial ARM Fast 

Model (AFM) accelerated VPs. The shared memory-based techniques facilitated the creation 

of full system VP by combining subsystem VPs for software validation. [40] 

An alternative to QEMU is to use an instruction set simulator (ISS) to model the architecture 

of the target CPU. Integrating an ISS to logic simulation using the SystemVerilog DPI is 

proposed. ISS is a program that interprets machine code, such as ARM, on a host machine’s 

x86 processor. Combining the software debugger provided a virtual prototype for early software 

testing, easier hardware bug reproduction, and rapid iteration. The DPI integration enabled 

effective co-verification by linking logic simulation to a C/C++ ISS and existing software tools. 

[41] 

A virtual prototyping platform based on open virtual platforms (OVP) ISS processor model 

and SystemC with TLM showcased benefits in concurrent hardware and software co-design 

and co-verification of Multiprocessor SoCs. The processor model enabled early software 

development before completing RTL. The platform allowed to explore architectures, 

facilitating hardware/software co-design, early software testing, architecture optimization, and 

functional verification. [42] 

In addition to open-source virtual platforms, commercial solutions may also leverage QEMU 

for co-simulation. For example, Aldec provides a QEMU bridge that connects their Riviera-

PRO RTL simulator to QEMU. This facilitates the co-simulation of SoC designs by running 

software on QEMU while the programmable logic is simulated in Riviera-PRO. [43] 

Veloce Hycon from Siemens EDA is another commercial virtual platform that enables early 

software verification and validation alongside hardware models. It integrates configurable 

virtual platforms built using abstraction techniques like ARM Fast Models (AFMs), QEMU, 

and SystemC TLM with RTL simulation and emulation engines. Hycon has the advantage of 

mapping hardware models to emulator while employing higher-level models to represent the 

CPU, considerably improving speed compared to simulation-based or complete hardware 

emulation execution. [28] 

In contrast, Synopsys also offers a hybrid prototyping solution that combines Virtualizer 

virtual prototyping with HAPS FPGA-based prototyping. One of the key features is the high-

performance HAPS Universal Multi-Resource Bus, which transfers data between the virtual 

and FPGA-based environments. The hybrid approach leverages strengths from both virtual and 

FPGA-based prototyping, offering efficient debug capabilities through the Virtualizer 

environment and high-performance, cycle-accurate execution through FPGA-based 

prototyping. [44] 

Cadence also offers a Hybrid solution that combines high-performance transaction-level 

models running on the Cadence Virtual System Platform (VSP) with register-transfer level 

(RTL) models running on the Palladium platform, promising software execution speeds that 

outperform standalone emulation and, in some cases, FPGA prototypes. [45] 
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3.6.3 Host Execution Techniques 

Another approach for early software/hardware integration is host execution techniques, in 

which the software targeted for another ISA is run on the host machine’s ISA. They cannot 

execute software with the target instruction set, resulting in a lack of accuracy and real-world 

system feel compared to target ISA execution, for example, in QEMU-based approaches. One 

method presented is based on Accellera Portable Test and Stimulus Standard (PSS) and Zephyr 

RTOS to co-develop IP hardware and associated software drivers. The approach is 

demonstrated on a DMA IP example, developing a modular driver package and IP-level tests. 

Reuse at the SoC level avoids rewriting drivers and simplifies system test creation. [24] 

Another paper discussing host execution methods enables hardware/software co-verification 

by integrating software execution with UVM components. A custom DPI library maps software 

reads/writes to UVM transactions that drive VIP sequence items. A host execution library 

intercepts software memory accesses and redirects them through DPI to the UVM environment, 

which facilitates running unmodified software while leveraging UVM features like constrained 

random stimulus and coverage metrics. The technique avoid expensive instruction set 

simulators (ISS) or virtual platforms. The methodology successfully uncovered hardware bugs 

from result comparison and hardware/software interaction issues. [46] 

Another work specifically interested in hardware verification and developing alternative 

methods to UVM enables hardware/software co-verification of designs with a Very High-Speed 

Integrated Circuit Hardware Description Language (VHDL) RTL model and software 

component on a host with open-source tools to avoid licensing restrictions. The VHDL “virtual 

device” model in GHDL simulator communicates with software over Unix pipes. This 

facilitates complete system testing before hardware availability. A fault injection platform case 

study achieved high code coverage, demonstrating the virtual device concept provides effective 

co-verification with free tools. [47] 

 

 

3.6.4 Summary 

In summary, various effective approaches for early hardware and software integration and co-

verification have been proposed in the literature and provided by EDA vendors. Key benefits 

include enabling early software development and collaboration among hardware/software 

teams, finding hardware/software interaction bugs pre-silicon, exploring architectures, and 

reusing tests across simulation and prototyping. Interest in using software to drive the DUT 

instead of traditional UVM tests is also shown.  
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4 CO-SIMULATION ARCHITECTURE 

This chapter introduces the components of the co-simulation architecture developed for pre-

validation. The entire SoC hardware model, including the CPU, could theoretically be simulated 

in a logic simulator, but this would be extremely slow and impractical because the CPU is often 

the most complex block in a SoC, dominating simulation performance. To accelerate the 

simulation, the developed methodology replaces the CPU, with a faster model to run the 

software stack on. This method of replacing the main processor with a quicker representation 

is consistent with the numerous approaches discussed in section 3.6. 

Nokia’s Target SoC Simulator (TSS) provides a patched version of QEMU with back-end 

modifications that allow adding a custom TSS-bridge virtual device to QEMU, enabling 

transaction-level communication between the QEMU and external hardware models with an 

easy C-language interface. The TSS-bridge device interacts with the hardware model through 

a TSS server acting as the interface between QEMU and the hardware model(s). The co-

simulation architecture involves three key entities shown in Figure 9: QEMU to execute the 

SoC software, TSS Server to function as a link, and a logic simulator for the RTL-description 

hardware models. The Table 1 below provides an overview of the co-simulation components 

shown in Figure 9.  

 

Table 1. Co-simulation components 

Component Description 

QEMU Emulator for ARM Cortex-A55 CPU and related components. Patched 

by Nokia’s TSS to include a TSS-bridge for transaction-level 

communication. 

TSS-bridge Virtual device in QEMU enabling transaction-level communication with 

external hardware models via the TSS server. 

TSS-server Interface between QEMU and external hardware models. Routes 

transaction objects to destination endpoints. 

RTL-simulator Logic simulator for all hardware of SoC except the CPU, which is 

emulated by QEMU.  

TSS-endpoint C program connecting RTL simulator to TSS server’s shared memory 

channel. Enables transaction-based communication. 

TSS-transaction Objects created by endpoints to specify parameters like target address and 

operation type. Routed by TSS-server to matching endpoints. 
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Figure 9. Co-simulation Architecture. 

 

 

4.1 QEMU 

QEMU aims to emulate the ARM Cortex-A55 CPU and other closely related components like 

memory and interrupt controller to run the target software stack fast in the co-simulation 

environment. Compared to the basic upstream QEMU, the key difference is a patch provided 

by Nokia’s Target SoC Simulator (TSS), which includes a TSS-bridge device to enable TLM 

communication with external components in the simulation environment through TSS-server. 

In co-simulation, the QEMU is configured to boot up with the unmodified binaries of the 

target software, including the Linux OS, device drivers, API layers, and software test servers 

to facilitate communication between API and external applications. A startup script configures 

the QEMU environment appropriately by loading the correct kernel, root filesystem, CPU 

parameters, memory size, and TSS-bridge devices. The script also enables port forwarding from 

the guest machine (QEMU) to the host machine, allowing the host access to QEMU through 

secure shell (SSH). This allows communication with the software from the host machine. 
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This architecture allows the running of unmodified software on QEMU as if running on the 

actual silicon while integrating external hardware models through the tss-bridge device. The 

software running inside QEMU is fully unaware of the simulation environment and is not 

affected by the communication mechanisms implemented in TSS. Because of QEMU’s 

dynamic binary translation, software execution achieves excellent performance, booting a full 

Linux OS in a couple of minutes. 

The advantage of the TSS-based server architecture, which is not utilized in this thesis, is 

that for SoC architectures with multiple processors, multiple QEMU instances can be launched 

to emulate each CPU. In the co-simulation architecture of this thesis, only one instance of 

QEMU is launched for the Cortex-A55 CPU. However, in theory, for a SoC with an ARM A55 

as the primary application processor and an ARM M3 utilized internally in an RTL subsystem, 

two QEMU instances would be defined for the A55 and M3, each of which would execute the 

relevant software. The remaining SoC hardware outside these processors would run in the RTL 

co-simulation. 

This approach would provide an efficient simulation environment for complex SoCs 

containing multiple CPU architectures tailored to separate roles. Each processor’s software 

could run on its corresponding instance of QEMU, which would synchronize with the RTL 

simulator via TSS to co-simulate the heterogeneous multicore SoC in its entirety. 

 

 

4.1.1 TSS-bridge 

The TSS-bridge device enables routing transactions from the QEMU to external hardware 

models through the TSS server. QEMU handles some address ranges internally, like those used 

for booting Linux and loading programs. For an address space to be visible to TSS, a TSS-

bridge device must be declared when launching QEMU. The bridge devices are mapped into 

the simulated system bus, so accesses to those ranges are forwarded externally. The bridge 

device also provides interrupt generation and synchronization support with hardware models. 

TSS-bridge transparently converts QEMU software register accesses into TSS transactions 

and forwards them to the TSS Server and further to the hardware model at the endpoint. The 

tss-bridge is initialized with a specific address range during QEMU startup. Any software 

register access to addresses within this range is captured by the bridge device and forwarded as 

TSS transactions to the server. 

Multiple non-contiguous bridge devices can be declared in simulated system bus, allowing 

flexibility in routing different address regions. A single large bridge device can cover the entire 

SoC I/O space for a full SoC simulation, making all IPs reachable through transactions to 

addresses within that range. The memory regions bridge devices claim must match address 

ranges declared in TSS endpoint models. In the co-simulation architecture of this thesis, a single 

bridge device covers the entire address space of the SoC’s RTL hardware models. 

 

 

4.1.2 Co-simulation Device Tree 

QEMU relies on a device tree blob (DTB) file that describes the hardware configuration to boot 

with proper configuration [6]. A device tree is a systematic approach to representing hardware 

[48]. It consists of device tree source (DTS), and device tree include (DTSI) files [48]. When 

these source files are compiled, they produce a device tree blob (DTB) [48]. The DTB describes 
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the hardware configuration and can be loaded by software such as QEMU and Linux to 

recognize the system’s devices without hardcoding. 

The device tree enables automatic device discovery and configuration during system boot. 

Nodes in the device tree source files are defined for hardware IPs and other devices in the 

system, like CPU cores, memory, and interrupt controller. These nodes contain compatible IDs, 

register addresses, interrupts, and other properties. The kernel matches nodes to device drivers 

based on compatible strings during boot. When a match is found, the kernel calls the driver’s 

probe callback, passing resources like register addresses from the matching node. The driver 

then initializes the device based on this information. In this manner, the device tree allows the 

configuration of devices without hardcoding addresses in drivers. [49] 

To enable co-simulation, DTS files were created to describe configurations with different 

combinations of IP blocks and subsystems included. As shown in Figure 10, the process starts 

by decompiling the SoC DTB to obtain the DTS file. This DTS file is broken down into smaller 

DTSI files, representing various hardware IPs and subsystem nodes. These DTSI files can be 

included in different DTS files to suit the specific requirements of co-simulation scenarios, be 

it IP-block level testing, subsystem testing, or full SoC testing to register the drivers similarly 

to the physical chip. This device tree-based approach allows booting the same software stack 

on physical hardware and in a virtual simulation environment. Only minor changes are needed 

in the device tree sources to include simulation IP block nodes. 

QEMU provides a feature to extract the initial DTB using the -dumpdtb switch. This switch 

allows obtaining a compiled version of the device tree containing all QEMU’s internal virtual 

devices [6], the starting point for further customization. Once the initial DTB is obtained, it can 

be decompiled back into its textual DTS presentation using a device tree compiler (DTC) [50]. 

This decompilation allows for the editing and inclusion of additional hardware nodes presented 

in DTSI files. 

 

 
Figure 10. Device Tree Setup Flow. 

 

With a DTS presentation of the QEMU virtual hardware, DTSI files corresponding to 

individual simulated RTL IP blocks are integrated into the decompiled DTS file. These DTSI 
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files contain nodes that describe the IP blocks and their configurations, like register addresses 

and interrupts. Including these DTSI files enables the creation of custom hardware 

configurations depending on the simulation or testing requirements. 

Figure 11 presents an example DTS for co-simulation that includes a subsystem defined in 

a separate DTSI file. The “cosimulation.dts”-file presents the structure of what a dumped 

QEMU device tree might look like after including a DTSI file, serving as the root description 

for the hardware system. The root node of the device tree is denoted by “/”, within which 

multiple child nodes and properties are defined [48]. The model property is set to 

"linux,dummy-virt," indicating the system’s model used by QEMU [6]. It also shows “cpus” 

and “memory” nodes, which must be present in every device tree’s root node [48]. For clarity, 

other QEMU’s virtual devices are omitted from the example root node. 

 

  
Figure 11. Co-simulation Device Tree Example. 

 

Addressing in the device tree is managed through #address-cells and #size-cells properties, 

which can be used in a device node that has child nodes. Detailed descriptions [48] for 

properties can be found in Table 2. In this example, both are set to one 32-bit cell, which means 

that each address and size specified in the reg property of a child node will consist of one 32-

bit value. The cpus node defines the CPU configuration of the system, specifying that the CPU 

is of type ARM Cortex-A55. The reg property within the cpu@0 node indicates that this is the 
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first CPU instance. The memory node specifies that the system has 1GB (0x40000000 in 

hexadecimal) of memory starting at the address 0x50000000. [48] 

The subsystem DTSI, on the other hand, first defined the node name for the subsystem, 

“subsystemname”. The compatible field now contains the value “simple-bus”, which indicates 

that this subsystem acts as an internal I/O bus, and child nodes on the bus can be directly 

accessed [48]. The subsystem node has two child instances of an example IP block, 

ipblockname0 and ipblockname1. The compatible property for both is set to "ipblockname," 

indicating the type of IP block, which the drivers use to probe devices accordingly [48]. Each 

instance has a unique base address and size defined by the reg property. An additional instance 

property differentiates between the two instances with values "0" and "1," respectively. The 

interrupts property specifies each IP block’s interrupt numbers and types [48]. 

 

Table 2. Example device tree properties 

Property Description 

/dts-v1/; Specifies the DTS version. 

model Defines the model of the SoC or system. 

compatible Indicates the compatible hardware or system for the given node. 

#address-cells 

Specifies the number of 32-bit cells used to represent the base address in 

the reg property. 

#size-cells 

Specifies the number of 32-bit cells used to represent the size in the reg 

property. 

device_type Specifies the type of device (e.g., "cpu" or "memory"). 

reg Specifies the base address and size of the memory region or device. 

cpus Node that contains CPU definitions. 

cpu@0 

Specifies the first CPU instance and its properties. (e.g., ARM Cortex-

A55). 

memory Specifies the memory available on the system. 

/include/ Includes another DTSI file. 

ipblockname0 Node specifies the first instance of an IP block. 

ipblockname1 Node specifies the second instance of an IP block. 

instance 

Additional property to differentiate between multiple instances of the 

same IP block. 

interrupts 

Specifies the interrupt numbers and types associated with the device. 

(e.g., <0x200 0x04> defines the interrupt number as 512 and active high 

level-sensitivity). 

 

After incorporating the necessary DTSI files, the modified co-simulation DTS file is 

recompiled back into a DTB file with DTC, as seen in Figure 10. This new DTB file now 

contains the updated hardware configuration for co-simulation, including the added IP blocks 

that will be run on RTL simulation. At QEMU startup, the DTB file is loaded using the -dtb 

switch. This provides QEMU with the device tree describing the virtual hardware, including 

any TSS endpoints to be co-simulated. QEMU and Linux then initialize based on this hardware 

description without hard-coded dependencies [49]. 
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4.2 TSS-server 

The TSS-server acts as the interface facilitating communication between the QEMU and 

external hardware models in the developed co-simulation architecture. It leverages a 

transaction-based approach using TSS transactions to enable interaction between different 

simulation endpoints by routing transaction objects to their destination endpoints. 

In a TSS architecture, there is a possibility to use multiple endpoints representing different 

hardware models and the QEMU running the software stack. Each endpoint runs as a separate 

Linux process and declares TSS objects called endpoints to announce its ability to respond to 

transactions targeting a given address range. 

To initiate communication, endpoints create TSS transaction objects specifying parameters 

like the target address, data, and read/write operation. The endpoint then posts the transaction 

using the TssPostTransaction() API call. The TSS Server scans all declared endpoints to find a 

matching address range and queues the transaction to that endpoint’s priority queue. 

The receiving endpoint is notified of the incoming transaction and handles it accordingly, 

performing reads or writes. It then indicates transaction completion, so the initiator can resume. 

This transaction workflow facilitates inter-process communication between different 

simulation endpoints. 

The TSS Server manages transactions between QEMU and hardware models, enabling 

hardware-software co-simulation in which software runs normally as in actual silicon while 

models achieve full observability. The transaction-based communication model makes adding 

new simulation endpoints straightforward and is the optimal solution for early integration 

testing [32].  

The co-simulation environment enables full system simulation comparable to previous work 

[40]. QEMU, TSS Server, and RTL simulation communication occur via shared memory using 

standard C-language APIs. This architecture allows each component, like QEMU, TSS, and the 

RTL simulator, to execute concurrently on separate threads. QEMU efficiently emulates the 

target CPU through dynamic binary translation. Meanwhile, the RTL simulator provides cycle-

accurate hardware modeling. 

The shared memory communication path and multi-threaded execution produce a high-

performance environment for the co-simulation of multiple simulation entities. The modular, 

server-based shared memory architecture also simplifies integrating new simulation endpoints 

and provides better performance than approaches involving inter-process communication 

through TCP/IP sockets [51]. In the co-simulation architecture of this thesis, only one endpoint 

is defined for the simulated RTL model, and one QEMU instance is used for the Cortex-A55 

CPU. 

 

 

4.3 RTL-Simulation 

The logic simulator simulates the RTL models of all hardware components except the main 

CPU, which the TSS QEMU instance replaces in SoC-level simulation. Common commercial 

logic simulators were used to simulate the RTL models. Integrating the compiled C endpoint 

program with these simulators is straightforward through standard SystemVerilog DPI-C 

capabilities. 

Figure 12 represents a side-by-side comparison of two distinct scenarios. The left-hand side 

illustrates a SoC RTL simulation setup where the main CPU is modeled in RTL and simulated. 

The right-hand side represents the co-simulation setup where the main CPU RTL model is 
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replaced by an AXI VIP master interface connected to the QEMU virtual platform, thereby 

enabling TSS transactions originating from software execution to propagate into the RTL 

simulation as if they were coming from the actual CPU model. At IP level co-simulation, if the 

IP-block’s connectivity is implemented with the AXI standard, the AXI VIP interface would 

be directly connected to the IP’s bus, bypassing any higher-level bus architectures and bus 

bridges. If it were a different bus standard, the AXI VIP could be simply replaced with another 

VIP available in the UVM environment. 

In addition to the CPU, QEMU also emulates tightly coupled components like the GIC and 

memories. The RTL simulation monitors the GIC’s shared peripheral interrupt signals and 

propagates changes to the virtual GIC in QEMU for accurate interrupt handling. In this manner, 

QEMU realistically emulates key components to run the software while the remaining hardware 

models are in RTL simulation. 

The RTL simulation environment was mostly unchanged compared to a typical UVM 

verification setup. The key differences were the addition of DPI-C code to enable the C endpoint 

and the integration of this endpoint with UVM components. The C endpoint is an intermediary 

between the TSS server and SystemVerilog testbench to facilitate co-simulation. Mainstream 

commercial simulators were utilized successfully by integrating the C endpoint program, 

demonstrating the approach is portable across common logic simulation tools. 

 

 
Figure 12. SoC level RTL DUT vs. SoC level co-simulation DUT. 

 

 

4.3.1 TSS-endpoint 

The C endpoint program developed in this thesis work serves three key functions to enable 

hardware-software co-simulation. First, it initializes the TSS endpoint and connects it to the 

shared memory communication channel provided by the TSS server. Establishing this endpoint 

allows the RTL simulation to participate in the transaction-based communication of the TSS 

framework, receiving transactions originating from software execution on QEMU. 

Second, the C program propagates these incoming TSS transactions into the UVM testbench. 

The program contains logic to map TSS read and write transactions to appropriate 

SystemVerilog DPI calls. These DPI calls trigger AXI bus transactions or UVM register access, 

depending on the desired behavior. In this manner, the C code acts as an intermediary between 

TSS transactions and the UVM environment. 

Third, the C endpoint program incorporates networking code to communicate with Robot 

Framework (RobotFW) over a TCP socket. This interface allows RobotFW to send control 

commands like "break" to control the RTL-simulator part of the co-simulation. When the C 
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program receives these string-based commands, it executes suitable actions, such as ending the 

co-simulation and allowing the UVM test to continue freely. 

While the implemented socket-based networking approach enables proof-of-concept 

RobotFW integration, it has limitations. The required use of predetermined ports may cause 

conflicts in multi-user environments. A more robust containerized architecture could avoid 

these issues by isolating the environment. However, the current solution demonstrates the 

feasibility of integrating external test frameworks like RobotFW via the C endpoint to 

coordinate hardware-software co-simulation scenarios. 

In summary, this thesis’s custom C endpoint program bridges TSS transactions originating 

from QEMU software execution, UVM testbench components, and the external RobotFW test 

framework. It is mainly responsible for integrating RTL models through the SystemVerilog 

testbench into TSS QEMU for hardware-software co-simulation. 

  

 

4.3.2 Co-simulation SystemVerilog Package 

To allow communication between the UVM testbench and C code, the implemented C endpoint 

program requires SystemVerilog functions, which are defined in a package and included in the 

UVM testbench compilation. This package contains the necessary functionality to create the 

TSS endpoint from the SystemVerilog environment and to propagate TSS transactions from the 

C endpoint into the SystemVerilog environment and finally to the RTL DUT. For instance, 

functions to perform read and write operations from the C program are defined as exported 

DPI-C functions callable from C. Meanwhile, functions to initialize the TSS endpoint are 

imported from C to be called from the SystemVerilog. 

A key responsibility of the package is implementing the tss_tick_loop() task shown in Figure 

13. This loop facilitates continuous communication between the RTL model and the TSS server. 

The tick loop starts two concurrent threads: one that checks for incoming TSS transactions by 

calling the C function tss_dpi_tick() and another that monitors RTL interrupt signals and 

forwards any changes to QEMU. In between tss_dpi_tick() calls, the loop can break out of the 

loop or advance RTL simulation time, allowing design changes to be propagated. 

 

 
Figure 13. SystemVerilog co-simulation loop. 
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4.4 Co-simulation Startup 

A series of steps unfold to start the co-simulation environment, as shown in Figure 14.  

 

 
Figure 14. Co-simulation startup. 

 

First, the TSS server is launched, setting up shared memory for communication among the 

server, endpoint, and bridge. Once the server is up and running, the hardware’s RTL simulation 

and a UVM test are initiated. The UVM test goes on until it reaches the point where the UVM 

environment and RTL model are ready enough to receive incoming transactions, typically in 

the configuration phase. At this point, a C-function tss_dpi_init() is called from the UVM test 

through DPI-C to establish a TSS endpoint for the RTL-modeled hardware and to connect it to 

the shared memory.  

Figure 15 shows the imported function declaration in the SV package and the function 

defined on the C-program side below, which gives a name for the RTL model and then creates 

an endpoint corresponding to the address and size defined in the QEMU TSS-bridge device 

definition. The base address and memory size are given as command line arguments to the 

UVM test, enabling the user to define endpoints with different size and address easily. In the 

case of subsystem co-simulation in Figure 11, for instance, the base address and size would be 

0x90000000 and 0x4000, respectively, to cover only the subsystem address range. By limiting 

the endpoint only to cover the active logic, transactions to other areas not covered by the newly 

generated endpoint would be routed to a dummy memory model to avoid access to non-

simulated destinations. Handling register accesses to non-simulated address ranges is an issue 

that has also been covered in the literature [52].  

 

 
Figure 15. TSS-Endpoint initialization function. 

 

After initializing the C endpoint, it can receive transactions from the TSS Server through 

shared memory. As a final startup step, QEMU boots up, loaded with the software binaries and 

a TSS-bridge device mapped to the same shared memory region. QEMU is launched with a 
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separate script that defines key parameters like the target kernel, filesystem images, and 

devicetree relative to the RTL hardware models, as presented in Section 4.1.2.  

At this stage, all the simulation components are connected to the shared memory facilitated 

by the TSS Server. To complete the co-simulation startup, the tss_tick_loop() task is called 

from the UVM test. This is when the RTL model is ready to handle incoming register access 

transactions and propagate interrupts to the QEMU virtual machine. 

In summary, the tss_dpi_init() function establishes the TSS endpoint for the RTL model, 

while the tss_tick_loop() enables continuous communication between the endpoint and the TSS 

Server. Once the QEMU and RTL simulation endpoint are connected to shared memory, and 

the tick loop begins, co-simulation can begin with QEMU software execution interacting with 

RTL hardware models. 

 

 

4.5 Communication  

To enable accurate co-simulation, the communication between the software execution on 

QEMU and the RTL hardware models must be sufficiently realistic compared to how it would 

be between components on a real physical chip. This communication between the simulators 

involves register accesses, interrupts, and synchronization. 

First, there must be synchronization mechanisms and options for simulation time 

advancement. Second, register accesses from software executing on the virtual CPU in QEMU 

must be communicated to the RTL model and back to QEMU for the hardware to interface with 

QEMU appropriately. Thirdly, interrupts enable the RTL model to notify software of events 

and mimic real-world asynchronous interactions. 

 

 

4.5.1 Synchronization 

The QEMU emulator and RTL simulator utilize shared memory allocated by the TSS server for 

inter-process communication (IPC). Synchronization between the software execution in QEMU 

and hardware simulation is handled through two primary modes in this thesis: lockstep and free 

running. Due to the high-level CPU model in QEMU, neither of these techniques is clock 

accurate. Early integration and software testing use cases do not require cycle-level precision 

since register-accurate TLM communication is ideal for early integration. The lockstep and 

free-running modes provide adequate functional synchronization without exact cycle matching. 

In lock-step mode, the RTL simulator blocks and waits for the next pending transaction from 

QEMU before advancing simulation time. It processes one transaction at a time in order without 

overlap. This mode captures each hardware-software interaction in the bus waveform as a 

sequence of back-to-back transactions with no idle cycles. 

Conversely, free-running mode allows the RTL simulator to continuously advance 

simulation time independently. It periodically polls the shared memory for pending transactions 

from QEMU using the same tss_dpi_tick() function. If no transactions are queued, the simulator 

simulates a predefined number of clock cycles before polling again. As shown in Figure 13, the 

free-running mode can be easily implemented on top of the lock-step mode by simply adding 

some delay between calls to the tss_dpi_tick() function that polls for transactions. The delay 

enables the RTL simulator to advance time in between the polling calls. 

In addition to lockstep and free-running, a third synchronization option would be exporting 

a SystemVerilog function that the C endpoint calls periodically to advance the RTL simulator, 
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which would allow more precise control over the RTL time progression. Advancing the RTL 

model time in fixed increments based on QEMU’s instruction count could improve consistency 

but still lack cycle accuracy. QEMU’s instruction counting also brings negative side effects, 

like slowing down the QEMU and limiting multi-core QEMU execution to one host thread [6] 

and is therefore not utilized in this thesis. This method would also require single-threaded 

QEMU CPU execution, reducing performance. While better than completely independent 

models, strict cycle-level synchronization is still not feasible using current QEMU instruction 

counting features. 

 

 

4.5.2 Register and Memory Access Transactions 

When software running on the virtual CPU in QEMU needs to access a register in the RTL 

DUT, the request is forwarded through the TSS-bridge to the TSS-server. The TSS-server then 

propagates the transaction to the TSS endpoint connected to the RTL simulation environment. 

In the RTL simulation, a continuous tick loop implemented in SystemVerilog polls the TSS-

endpoint for incoming transactions using the imported C function tss_dpi_tick(). Figure 16 

below shows the procedure when the imported C-function tss_dpi_tick() is called in the 

tss_tick_loop() shown in Figure 13. 

 

 
Figure 16. TSS register access procedure. 

 

The tss_dpi_tick() first fetches the transaction details using the TssGetTransaction() API and 

inspects the flags to determine whether it is a read or write operation. For write transactions, 

tss_dpi_tick() calls the SystemVerilog function tss_dpi_write(), which is exported to be callable 
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from C code. The key parameters, including the target address, data value, and access size are 

passed as an argument to tss_dpi_write() function. This function handles the write using either 

AXI bus transactions to accurately model cycle timing or direct UVM backdoor access for fast 

writes without advancing simulation time. On the SystemVerilog package, all inputs and 

outputs of these functions are defined as C-equivalent uint64_t datatypes for convenience. 

The AXI4 VIP used for register accesses supports write strobe for partial writes. The strobe 

signal has one bit for each byte in the transfer [53]. The tss_dpi_write() function specifies 

WSTRB based on the size of register access to only modify certain bytes of a register during 

the write. For example, writing the 2nd byte of a 32-bit register would use a WSTRB mask of 

0b0010. In this manner, the access size and correct write strobe value can be used to perform 

partial register writes through the AXI bus. 

For read transactions, tss_dpi_tick() similarly calls the exported SystemVerilog function 

tss_dpi_read(), passing the target address and access size. The tss_dpi_read() performs the read 

operation using AXI transactions or fast backdoor peeks and returns the read data value. The 

tss_dpi_tick() receives this return value on the C side and updates the value field of the original 

TSS transaction object accordingly.  

When using UVM RAL for fast register accesses, the target register is first located using the 

get_reg_by_offset() method, which returns a handle to the register at that address [17]. Read 

and write transactions can then be done with the peek() and poke() UVM register methods. If 

no register match is found, the access may target an RAL memory model instead. In that case, 

get_mem_by_offset() finds the memory at that address range [17]. Since memories occupy 

multiple locations, the correct index into the memory must be calculated based on the 

transaction target address, memory base address, and memory element size. With the memory 

handle and index, peek() and poke() perform the access to the memory index corresponding to 

the target address. 

After handling the transaction, tss_dpi_tick() concludes it using the 

TssTargetEndTransaction() API. This makes the updated transaction, now containing any read 

data, available to return to the TSS-server and the software execution in QEMU. The software 

is unaware of the underlying propagation steps. The sequence diagram in Figure 17 illustrates 

the access interactions between the TSS-server and the entities inside the RTL simulator. 

A key benefit of the presented register access methodology is that it facilitates integrating 

different types of transaction-level verification IP (VIP) models into the SystemVerilog 

package, depending on needs. Since communication with the QEMU software execution occurs 

using abstract TLM transactions, any interface with a compatible VIP can be easily 

incorporated. For instance, in addition to the AXI VIP demonstrated, an AMBA AHB VIP 

could be seamlessly integrated by simply swapping the used VIP sequences in the  

SystemVerilog package code. 

 



 45 

 
Figure 17. Register Access fork sequence diagram. 

 

 

4.5.3 Interrupts 

The interrupt monitoring is handled by the tss_check_irqs() function shown in Figure 18, which 

is continuously called in the tss_tick_loop(). It checks the status of each interrupt bit in the 

Generic Interrupt Controller’s Shared Peripheral Interrupt lines from the RTL model. If any 

interrupts have risen, the interrupt number is passed to the C endpoint via tss_post_irq(irq) 

shown in Figure 19 to notify the QEMU model. 

 

 
Figure 18. Interrupts monitoring SystemVerilog task. 

 



 46 

 
Figure 19. Interrupt post C-function. 

 

Handling interrupts in a co-simulation environment involving a virtual CPU is crucial for 

mimicking real-world scenarios, especially during software unit testing. Although interrupts 

are not essential during use case configuration, where the goal is simply to forward software 

register accesses to RTL registers and memories, they are required for accurately simulating 

how a system responds to various interrupt conditions to perform software unit testing. For 

instance, if an interrupt line from an IP block rises due to an error condition, this change is 

communicated to a specialized TSS interrupt address space via the C-language program. The 

handling of interrupts involves multiple layers, from the RTL simulation to the virtual CPU and 

GIC running in QEMU.  

The key aspects of the tss_post_irq() function in Figure 19 are the address space, value, and 

offset used in the TSS transaction to convey the interrupt. The address space is a dedicated 

range in TSS allocated for interrupts. The value "1" indicates an active level interrupt has risen. 

The offset specifies the interrupt number, using TSS_IRQ_START as an offset due to how 

interrupts are generated in QEMU. This offset transformation maps the interrupt line number 

from the RTL model to the corresponding offset expected by QEMU’s GIC model. 

The procedure is illustrated with a sequence diagram in Figure 20. The sequence starts with 

the activation of the interrupt monitor, which is started simultaneously with the register access 

loop shown in Figure 13. IP blocks in RTL simulation generate SPIs, which the GIC normally 

passes to one of the CPU cores. The monitor continuously checks the state of these interrupt 

lines through a loop that fetches the current state of the GIC SPI vector from the RTL shown in 

Figure 18. If there’s a change in any of the interrupt lines detected by the irq_rose() function, 

the raised interrupt number is passed to the C-language endpoint with tss_post_irq() function. 

A TSS transaction targeted at the interrupt address space is initiated by the tss_post_irq() and 

sent to the TSS server. Finally, this triggers the qemu_irq_raise(irq) function within QEMU, 

prompting the device driver to react to the interrupt with its ISR. 

This flow tries to ensure that interrupts are handled in a manner that mimics the behavior of 

a real system. The C-language program, SystemVerilog DPI-C package, and UVM Testbench 

work to monitor, detect, and propagate changes in interrupt lines, thereby providing a robust 

mechanism for handling interrupts in a co-simulation environment. 
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Figure 20. Interrupt monitor fork sequence diagram. 

 

 

4.6 Robot Framework 

Robot Framework (RobotFW) is an existing test automation tool [54] utilized extensively in 

later validation stages on hardware emulators and sample chips at Nokia. Although RobotFW 

is not a contribution of this thesis, incorporating it into the co-simulation was, as it allows 

communication with the RTL simulation via the same TSS-endpoint C-program and controls 

the software stack running on CPU. QEMU provides port forwarding that map guest ports to 

the host machine. This allows RobotFW on the host to connect to exposed ports and 

communicate with the software stack inside QEMU using extensible markup language remote 

procedure calls (XML-RPC). XML-RPC is a remote procedure call technique that allows 

function calls to be made across a network [55]. 

RobotFW integration enables continuity in the validation process by reusing the same 

system-level test cases across simulation, emulation, and final prototypes. RobotFW test cases 

developed for traditional pre-silicon and post-silicon testing environments can be executed in 

the co-simulation environment with only minor changes to communicate with TSS QEMU 

instead of traditional environments. 

RobotFW with software API communication abstracts low-level details of hardware 

configuration into high-level reusable test cases described by system parameters, like the 

number of carriers and bandwidth for a telecommunication IP instead of low-level register 

values and addresses. This facilitates the configuration of realistic use case scenarios with easily 

machine-readable data format provided by JavaScript object notation (JSON) [56]. The 

software APIs subsequently interact with device drivers to initiate the necessary register 

accesses to place the hardware into the desired state, which could be used to replace traditional 

UVM-based register configuration.  
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One of the integration tasks during the thesis was enabling RobotFW communication with 

the RTL simulation environment. A custom API was developed to allow RobotFW to send 

commands over a TCP socket to the same DPI-C bridge, which handles the TSS-endpoint 

functionality in the logic simulator. RobotFW communicates directly with the RTL simulation 

environment when it is blocked in the SystemVerilog tss_tick_loop(), waiting to complete 

register accesses. A TCP socket connection allows RobotFW to send control commands like 

"break" to terminate the tick loop. This enables RobotFW to first use the software stack to 

configure the RTL hardware mode, then break out of the tick loop to proceed with UVM’s 

stimulus generation and results checking. The implementation also utilizes a RobotFW listener 

that forwards log messages over a socket to the C endpoint. These logs are printed in the 

simulation environment for visibility into RobotFW execution. 

 

 

4.7 Challenges and Advantages of Co-simulation 

While co-simulation presents promising benefits for the early integration of hardware and 

software, it brings its own technical challenges that must be considered. Simulation speed is a 

known limitation, as RTL simulation becomes extremely slow as the design size and number 

of events increase. Co-simulation performance depends on the scope of simulated components. 

Focusing on IP blocks rather than full SoCs can improve simulation speed. 

Precise synchronization between software execution and RTL models remains difficult. The 

current lockstep and free-running synchronization modes are functionally adequate but do not 

provide the full cycle accuracy required for final system validation. This difference in cycle 

accuracy must be accepted when utilizing co-simulation for pre-validation rather than final 

system validation.  

Debugging the co-simulation architecture may require understanding across the software, 

UVM, RTL, and C environments. Interactions between several simulation elements may 

require more debugging than pure RTL simulation or commercial platform because all entities 

must be carefully configured. In contrast to an actual sample chip, co-simulation provides 

greater visibility and debugging possibilities and a faster compilation time than an RTL 

emulator. Hardware engineers can fully utilize logic simulator features like examining internal 

signals and waveforms. In QEMU, software engineers can use GDB to monitor the target kernel 

and drivers and step through code with breakpoints. This enables both teams to debug using 

domain-specific tools while interacting across the hardware-software boundary. 

The co-simulation architecture handles all register access sizes from one byte to 64 bits 

without difficulties. However, challenges arise for 128-bit accesses despite AXI4 supporting 

128-bit transactions natively. This is because QEMU emulates the ARM processor’s external 

bus as 64-bits wide. So, 128-bit load/store instructions are done in 64-bit chunks – first the 

lower half, then the upper half—consequently, a single 128-bit software access results in two 

64-bit TSS transactions. For simple memory locations, this does not cause issues. But for 

registers that can change value between reads, it introduces errors. For example, reading the 

lower 64 bits first could trigger a value change, causing the upper 64-bit read to retrieve an 

incorrect value. A workaround could be to monitor all transactions coming to known 128-bit 

wide registers and combine the separate transactions in tss_dpi_tick() before sending them to 

RTL. But this approach assumes all accesses in a specific address range are 128-bit, otherwise 

causing errors. 

However, despite these challenges, co-simulation delivers valuable benefits that make it 

highly worthwhile for early pre-silicon hardware and software integration. Co-simulation 
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enables early software testing and driver validation at the IP and subsystem levels, which is not 

feasible without SoC-level prototypes. This allows bugs to be caught and fixed earlier. 

Hardware and software issues can be uncovered pre-silicon before traditional methods for 

system prototyping. Finding bugs earlier reduces validation time and effort in later stages. 

Unified configuration between simulation, emulation, and prototypes is possible using a central 

software framework like Robot Framework. This way, stimulus generation can be consistent 

across verification and testing platforms. 

Using RobotFW tests, actual low-level software may be used instead of testbench sequences, 

enhancing realism in DUT configuration. Proven-to-work UVM environments enable test and 

VIP reuse from IP to SoC level in co-simulation. This avoids duplication and takes advantage 

of the standardized UVM framework. Also, integrating co-simulation components into existing 

UVM environments is relatively straightforward using standard interfaces like DPI-C, 

facilitating easier adoption.  

In summary, co-simulation presents challenges and opportunities in the early integration of 

hardware and software in SoC design. While it poses challenges such as reduced simulation 

speed, synchronization, and debugging complexities, the methodology offers unquestionable 

advantages. These include earlier bug detection and the possibility of unified configuration 

across hardware execution platforms.  
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5 PRE-VALIDATION METHODOLOGY EVALUATION 

This chapter will evaluate the pre-validation methodology utilizing the co-simulation 

environment. It covers the startup process to initialize the co-simulation components and make 

the hardware models visible to the software. User interaction techniques for manual testing and 

executing software unit tests are explained. Finally, the methodology for leveraging production 

software instead of UVM to configure the simulated hardware DUT is discussed. 

 

 

5.1 Environment Startup 

As discussed in 4.4, the co-simulation environment is launched by initializing the TSS Server, 

RTL simulator, and QEMU virtual platform components. Once QEMU finishes booting the 

Linux kernel, device drivers begin probing the hardware nodes defined in the devicetree, as 

explained in 4.1.2. This automated configuration process allows the software stack on QEMU 

to interact with the simulated RTL hardware models via TSS transactions already during system 

initialization. Because of QEMU’s speed, the operating system and software are up and running 

within a few minutes of executing the TSS startup script. 

For example, a device driver may read the device ID during probing to confirm the presence 

of hardware. Such transactions will be forwarded to the RTL simulation through TSS. In this 

manner, the Linux software stack can communicate with the underlying RTL models as the OS 

boots up and discovers devices enabled by the devicetree-driven probing process.  

With Linux and drivers initialized, the user can interact with the software stack and hardware 

models through the command line. Software tests targeting specific devices can then be 

executed on QEMU to stimulate the RTL hardware models further. The initialized drivers allow 

user-space applications to communicate with the simulated hardware components. 

 

 

5.2 User Interaction and Test Execution 

In the pre-validation workflow, the user has several options for initiating tests and interacting 

with the simulation environment. For instance, the user can access registers manually by 

employing the devmem utility, which allows to read or write physical memory locations from 

the Linux command line [57]. This allows immediate, direct register reads and writes, providing 

a straightforward way to verify that a specific hardware register or memory location behaves as 

expected. 

During initial co-simulation development, the devmem tool was utilized to validate register 

communication before advancing to more complex software testing. Devmem enables 

interactively reading and writing registers from the Linux command line to test register accesses 

with different widths. Partial accesses are done by leveraging AXI write strobe signals to update 

bytes within a register selectively. 

For example, Figure 21 shows a scenario with a 4-byte register starting at address 

0x90000000. The user first writes the register to all zeros using devmem, then updates only the 

2nd byte to 0xFF using an 8-bit write. This is followed by 16-bit writes to bytes 3-4. Finally, 

reading the full 32-bit register in Linux prints the expected written values. 
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Figure 21. Register access example with devmem. 

 

Figure 22 depicts the AXI bus waveforms in the RTL simulator during this workflow. The 

WSTRB signals indicate the partial accesses, first targeting just byte 2, then bytes 3-4. This 

simple workflow was used to verify the register accesses. The devmem provides an interactive 

way to test register communication between the RTL model and the OS running in QEMU  

before integrating drivers and higher software layers. Before integrating drivers and higher 

software layers, it was utilized during initial co-simulation development to check the right 

behavior of the RTL model and the OS running in QEMU. 

 

 
Figure 22. Register access to RTL simulation waveforms. 

 

After verifying connectivity with devmem register accesses, more advanced software testing 

can commence on the co-simulation platform. One option is executing software unit tests that 

target IP block-specific software and hardware components. These tests stimulate the RTL 

models through register and memory operations initiated from the software stack running in 

QEMU. The unit tests are launched from the Linux command line inside QEMU. 

Another possibility is utilizing RobotFW tests launched from the host machine to configure 

the hardware models into specific use cases defined in JSON files. RobotFW orchestrates 

register writes through the software stack based on the high-level configuration parameters 

provided in JSON files. 
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In both cases, the transactions originating from software ultimately propagate to the RTL 

simulator via the TSS Server, similarly to the devmem accesses.  

 

 

5.3 Software Unit Testing 

The same software unit tests that are previously designed to run on an emulator-based 

commercial virtual platform, and physical prototypes can be executed on a virtual CPU 

connected to a SoC- or IP-level UVM testbench in the co-simulation environment. Unit tests 

are important in verifying the functionality of the lower API layers of the SoC software stack 

and device drivers. By executing unit tests at the IP level early on and validating that the drivers 

are properly designed in connection with the RTL hardware models, the validation of the entire 

SoC may be completed more efficiently. 

The unit tests exercise basic functionality like register reads and writes between the CPU 

and IP blocks. For example, a test may read an IP’s ID register or enable interrupts to validate 

the hardware communication. They also provide higher-level software testing, allowing for 

configuring the IP using the software API with specific parameters and then testing whether the 

RTL design has achieved its intended state by reading CSRs. 

A key milestone achieved was successfully running unit tests that trigger interrupts from an 

IP block, which are then handled correctly in the software stack. Such realistic tests validating 

interrupt propagation have not been previously possible for software teams without a 

commercial full SoC prototype or physical sample chips available. The ability to validate 

register addressing and interrupt behavior provides confidence in the hardware/software 

integration before the availability of traditional validation environments.  

Additional delays between register accesses were sometimes needed when running unit tests 

to allow the RTL simulation time to propagate and trigger interrupts. Alternatively, free-

running synchronization mode continuously advances the RTL simulator, ensuring interrupts 

will eventually propagate without inserting explicit delays. 

Executing software unit tests at the IP level revealed an acceptable speed of approximately 

30 register accesses per second when using AXI bus transactions as depicted in Table 3. The 

trends highlight the advantages of testing at the IP level compared to the SoC level and utilizing 

UVM backdoor accesses when possible. The IP-level AXI VIP transactions were 

approximately 30 times faster than the SoC-level AXI VIP in experiments with a single, quite 

large IP block. However, this performance may vary based on the size of the IP block being 

tested. Smaller IPs would likely enable even faster transaction speeds. Meanwhile, the UVM 

backdoor accesses provided a significant 3000x speedup at the SoC level by bypassing 

transaction delays. 

 

Table 3. Register access performance 

Design size and 

access method 

IP - AXI4 VIP SoC - AXI4 

VIP 

SoC - UVM Backdoor 

transactions/s 

(approx.) 

30 1 3000 

cycles/transaction 7 239 0 

 

At the SoC level, QEMU replaces the actual CPU RTL model. To reach a destination IP 

block, register access transactions done by software must traverse the entire SoC architecture 

through all the bus bridges and interconnects. In contrast, at the IP block level, QEMU can 
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shortcut much of the SoC infrastructure by connecting directly to the peripheral bus attached to 

the IP. Transactions reach the destination IP significantly faster because they bypass all higher-

level interconnects and bus bridges, requiring significantly fewer simulation cycles. 

The performance difference is partly due to simulation complexity when going from IP to 

SoC-level, but also significantly impacted by where QEMU is integrated into the co-simulation 

architecture. Bypassing upper SoC infrastructure provides major performance increase if the 

goal is IP-level software testing. This reinforces the benefits of modular co-simulation focused 

on individual IPs or subsystems versus full SoC when utilizing transaction-level 

communication. These results demonstrate the benefits of testing at the IP rather than SoC level 

when using more accurate bus transactions. They also highlight the potential utility of selective 

UVM backdoor accesses to accelerate specific operations during co-simulation and pre-

validation. 

To maximize performance when running software unit tests, debugging features in the RTL 

simulator were disabled to provide the fastest simulation runtimes. Logging and waveform 

visibility were limited to the minimum. With debug options enabled for RTL simulation, 

performance would be slower. However, some visibility is sacrificed for speed. A trade-off 

between debuggability and simulation performance must be balanced based on the verification 

objectives. 

Another performance evaluation was performed by first executing unit tests using 

conventional pre-silicon testing techniques with mocked device drivers in native QEMU and 

with actual drivers in a commercial emulator accelerated SoC-level prototype, as detailed in 

Table 4. The same unit tests were executed with actual device drivers in co-simulation with 

AXI VIP, co-simulation with a TSS RAM as a dummy HW model, and co-simulation with the 

UVM backdoor scenarios listed in Table 5. Both co-simulation unit tests are run at the SoC-

level testbench. This explains the significant difference in execution performance when the 

backdoor was used instead of AXI VIP, which can perform approximately one register access 

per second.  

 

Table 4. Traditional pre-silicon software testing environments 

Testing Environment Driver Type HW Model Type Execution Time 

Native QEMU Mocked drivers N/A 18ms 

Commercial prototype Actual drivers RTL emulated 102ms 

 

Table 5. TSS-based software testing environments 

Testing Environment Driver Type HW Model Type Execution Time 

TSS QEMU Actual drivers Dummy memory 139ms 

Co-simulation: AXI 

VIP 

Actual drivers RTL simulated 399646ms 

Co-simulation: UVM 

Backdoor 

Actual drivers RTL simulated 158ms 

 

In the case of mocked drivers, the dd command was used to create a device like 

/dev/ipblockname0, acting as a simplified representation of an actual device driver and serving 

as a Linux file that can be read from or written to, allowing higher-level software to interact 

with this file as if it were an actual device. However, it’s worth noting that this is a very 

simplified form of a device driver mock, and it won’t capture the complexities or specific 

behaviors of an actual device driver when interacting with actual hardware. However, it is 
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included in the table to illustrate the execution speed of specific unit tests on the native QEMU 

for comparison. 

The table shows that the commercial SoC-level platform with hardware emulation performs 

orders of magnitude better, over 5000 times faster than the co-simulation technique at the SoC 

level. TSS supports the definition of RAM memory for a certain address range, which the TSS 

QEMU option utilizes to use actual device drivers but to read or write a dummy memory model 

instead of an RTL endpoint. This metric is provided in the table to compare the performance of 

TSS QEMU to native QEMU with mocked driver file accesses. It shows that the additional TSS 

layer and driver software execution degrade performance slightly when compared to native 

QEMU but enable the use of actual device drivers, which is an advantage over native mocked 

driver QEMU execution. 

The UVM backdoor approach provides speed by not advancing simulation time between 

operations, leading the RTL model to not respond and propagate state changes between accesses 

if no extra delays between transactions are applied. Still, backdoor writes provide a more 

realistic testing environment for early unit tests than mocked drivers, which just manipulate 

memory structures rather than accessing actual hardware and utilizing the device driver code. 

For instance, the RTL model can model different behaviors for several types of registers, such 

as read-only (RO), write-only (WO), and write-one-to-clear (W1C), which are aspects not 

typically captured when conducting native Linux unit testing with file accesses. The 

performance decrease is minor when moving from dummy hardware to co-simulation with 

backdoor accesses, while the benefit is that the actual RTL model is being exercised. 

It was demonstrated the unit tests could run at a satisfactory speed, enabling early and 

iterative driver and low-level software testing in conjunction with real hardware models. Real 

device driver code may be tested even when utilizing a dummy HW model through TSS, an 

improvement over earlier native execution approach. This highlights the advantages of 

performing unit tests with TSS or in the developed co-simulation environment, which provides 

a closer approximation to real-world hardware behaviors without having access to an SoC-level 

prototyping platform. 

 

 

5.4 DUT Configuration with Software 

In functional verification, SoC configurations have traditionally relied solely on UVM 

configuration sequences based on reference values obtained from modeling or engineers’ 

interpretation of specifications. In the real-world operating environment of a SoC, this 

configuration is done by the corresponding software that comes with IP blocks. This approach 

delays the use of software-based configuration until SoC-level validation is done. Utilizing 

software during the functional verification phase provides an alternative to the typical UVM-

based configuration, which might be useful for both software and hardware teams since 

integration issues could be detected and fixed more quickly. This methodology aligns with the 

"failing fast" principle, facilitating quicker debugging cycles for both software and hardware 

components. 

Compared to hardware emulation, the shorter compilation times for simulators make it faster 

to spot errors, such as incompatibilities between software and hardware versions in register 

addressing. This shorter feedback loop might be utilized before the compilation of the emulation 

database would be ready, checking for common errors, inspecting, and correcting them with 

the high debuggability of RTL simulation, and then proceeding to the hardware emulator with 

fixed hardware and software. The objective is not to replace proven UVM techniques required 
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for early hardware verification but to supplement them by providing an alternative approach 

that enables earlier software-based configuration through high-level parameters, thereby 

creating a unified approach to stimulus generation across simulation, emulation, and sample 

testing. 

The co-simulation environment demonstrated in this thesis work enables forwarding all 

software configuration register accesses to the underlying RTL hardware models. This enables 

the use of the software stack to configure the DUT for certain use cases. While the equivalence 

of this method compared to traditional UVM-based configuration was not an objective of this 

thesis, the environment shows the feasibility of leveraging software for DUT configuration.  

In addition to the DUT, the numerous UVM agents utilized in the RTL verification 

environment must be configured based on the unique use case, which is not possible via 

production software calls. Future work should study strategies to synchronize UVM component 

setup with software-driven DUT configuration to enable comprehensive co-simulation 

scenarios. This process should be straightforward if only the DUT configuration is replaced in 

each test class with the software method while preserving the previous UVM configuration for 

all testbench entities. Overall, the environment provides a basis for exploring software-based 

SoC configuration at a deeper level. 

 

 

5.4.1 Robot Framework Test Execution 

Having the co-simulation architecture up and running, the sequence diagram in Figure 23 

illustrates the process of executing a Robot Framework test at a high level, omitting the TSS 

entities for clarity. 

 

 
Figure 23. Software-driven DUT configuration. 
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The JSON files given to Robot tests describe essential parameters for an SoC use case, such 

as the number of carrier signals and their bandwidth. Previous work at Nokia relied on direct 

register addresses and corresponding values for configuration [58]. While the prior work 

demonstrated that it is possible to use machine-readable data formats to represent configuration 

parameters as address-value pairs and configure them to the DUT using the existing UVM 

framework, this thesis advances that approach by leveraging real high-level parameters 

described in JSON files already used in validation testing to enable a more accurate and unified 

approach with emulation and sample testing. The RobotFW thus becomes a tool for unified 

stimulus generation across different stages of testing—RTL simulation, hardware emulation, 

and sample testing. 

 

 

5.4.2 Dynamic Register Access Configuration 

Controlled by UVM test arguments in unit testing, RobotFW could provide a dynamic 

technique to control the register access mechanism during a simulation. By exploiting the UVM 

backdoor mechanism, it is feasible to conduct register reads or writes quicker than bus 

transactions. Current Robot Framework integration employs sockets for basic communication 

with the C endpoint program, including tick-loop termination. This API could be expanded to 

enable more advanced capabilities like dynamically switching between regular bus transactions 

and UVM backdoor accesses. For instance, if the only objective is to write specific values to a 

large memory area without interest in the RTL model’s detailed behavior, the AXI VIP 

transactions could be safely replaced with UVM backdoor operations, resulting in significantly 

faster register accesses, as demonstrated in Table 3. 

Given the RTL simulation’s speed limitation, this may be beneficial in certain scenarios. 

Robot tests contain many keywords for which the use case parameter JSON file is given as a 

parameter. For instance, a certain RobotFW keyword may invoke a software API function, 

which results in hundreds or thousands of transactions to a large memory array within an IP 

block. Enabling backdoor accesses before calling this keyword in the robot test and turning it 

off after doing the multiple memory writes before continuing to subsequent keywords, which 

may need a more realistic bus-based approach, would boost the configuration phase 

performance, allowing rapidly writing the memory array without each access consuming 

simulation cycles.  

Incorporating RobotFW into conventionally relatively static UVM tests would provide 

dynamic control of the test flow outside of the RTL simulation by enabling backdoor mode 

before keywords that access large register or memory areas and reverting to bus-based accesses 

for subsequent API calls requiring more accuracy. This strategy would selectively utilize quick 

backdoor accesses to prevent needless bus delays during bulk configurations, balancing 

between the modes based on the precision demands of each keyword and API call. 
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6 DISCUSSION 

The primary objective of this thesis was to develop and evaluate a co-simulation environment 

that would allow earlier integration of hardware and software in System-on-Chips. While the 

basic concept and idea behind the architecture of this thesis are not novel in comparison to the 

several QEMU-based virtual platforms presented in 3.6.2, the developed environment aligns 

well with these approaches, providing a vendor-independent environment for Nokia to start 

hardware and software integration significantly earlier via an architecture based on the open-

source QEMU emulator supplemented with Nokia’s proprietary patch and logic simulator. In 

accomplishing this, the thesis significantly exceeds the objectives by enabling not just early 

integration and register access communication but also the correct handling of interrupts in 

early software unit testing, something that has previously been unachievable at Nokia until SoC-

level prototypes like commercial prototype or physical sample chip. 

Nokia’s TSS communication architecture, like previous work [40], provides an efficient 

shared memory C language interface between software execution on virtual CPUs and hardware 

models. This avoids the additional abstraction layer required when using higher-level modeling 

languages like SystemC, used primarily in other approaches in the literature. A standard 

SystemVerilog DPI-C interface facilitates the integration of the C endpoint into current UVM 

environments. Register access transactions for read and write operations are implemented using 

approaches similar to those presented in the literature [46]. The generalized TLM interface 

enables seamless integration of verification IP models depending on the target IP’s bus 

interface. 

While earlier efforts at Nokia relied on direct register addresses for configuration [58], this 

thesis takes a leap forward. It leverages high-level parameters described in JSON files, which 

are already used in validation testing, enabling a more unified and accurate approach that aligns 

with emulation and sample testing. This advancement enhances the "shift-left" approach, 

allowing issues to be identified and addressed when changes are less expensive, thereby 

boosting overall efficiency. 

The most notable outcome of this thesis is the ability to run software unit tests and validate 

correct interrupt and register behavior in the early stages of the design cycle at IP block level. 

This feature is especially significant because it provides a level of confidence in early hardware 

and software integration that was previously unattainable at Nokia due to the need to wait until 

SoC level RTL architecture was completed. Because the developed environment is vendor-

independent, IP teams can comfortably launch SW unit tests in co-simulation without worrying 

about licensing restrictions associated with commercial platforms. 

While the main use case demonstrated in this thesis focused on software unit testing, the 

environment also shows promise for leveraging production software in functional RTL 

hardware verification. By passing software register accesses to RTL models, an approach was 

proposed that allows DUTs to be configured for particular use cases. This area has the potential 

for future development of integrating software-driven configurations into UVM testbenches. 

While co-simulation presents its own set of challenges, such as the potential for the RTL 

simulator to slow down as design complexity increases, the benefits of early integration largely 

outweigh these limitations. Future work should explore methods for accelerating co-simulation 

speed, automating test execution, and further leveraging SystemVerilog functional coverage to 

assess software-driven tests versus traditional UVM stimuli. Co-simulation speed and test 

iteration performance would be improved by replacing the RTL simulator with an emulator by 

using a synthesizable AXI bridge [59] and implementing a co-simulation checkpointing [60] 

mechanism. 
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In summary, this thesis explored a co-simulation approach using QEMU and Nokia’s TSS 

along with RTL models to enable early hardware and software integration. The environment 

has successfully demonstrated a co-simulation approach that enables early hardware and 

software integration, facilitating the successful execution of software unit tests and low-level 

software validation alongside RTL hardware models, thereby allowing stronger collaboration 

between hardware, software, and verification teams earlier in the design cycle. 
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7 SUMMARY 

The key objective of this thesis was to develop and evaluate a co-simulation methodology used 

for the pre-validation of SoCs. Pre-validation facilitates earlier integration of hardware and 

software models compared to traditional validation methods. Shifting left on integration 

attempts to reduce validation effort by identifying problems earlier when changes are less 

expensive and easier to do. 

The co-simulation architecture presented enables unmodified software execution with target 

ISA on QEMU alongside RTL hardware models. Custom extensions to QEMU provided by 

Nokia’s TSS facilitate transaction-level communication with external hardware models like the 

RTL simulator. The TSS Server manages these transactions using shared memory IPC, 

avoiding networking overheads. The QEMU-based method is consistent with several similar 

methodologies in literature and commercial products. 

A custom C endpoint program was developed to bridge TSS transactions between the UVM 

testbench and the TSS Server. This program integrates with commercial RTL simulators using 

standard interfaces such as SystemVerilog DPI-C. The C endpoint also included a socket-based 

API to allow the Robot Framework to control the co-simulation environment. 

The significant outcome of this thesis was that the developed co-simulation approach 

demonstrated the successful execution of software unit tests against RTL models, which do not 

require the availability of conventional validation prototypes. Most notably, also interrupt 

handling in addition to other basic functionalities tested in unit tests were validated between 

software and hardware, providing confidence in the integration, which had previously been 

postponed until SoC-level prototypes. Furthermore, the environment demonstrated the viability 

of forwarding software register accesses to RTL DUTs, laying the foundation for future 

software-driven use case configuration during functional hardware verification. 

While the method has known limitations, such as logic simulation performance and the 

complexity of debugging hardware and software systems, it facilitates shifting left on 

integration to identify the issues earlier. This framework can potentially increase collaboration 

between software, hardware, and verification teams earlier in the SoC development cycle. 

In conclusion, this thesis provides a QEMU- and RTL-simulator-based co-simulation 

architecture that enables early software and RTL hardware model integration. The co-

simulation was found to have potential future utility, allowing for earlier integration, and 

reducing subsequent traditional validation integration challenges. 
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