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ABSTRACT
The community accepted the need for a detailed simulation of main
memory, and currently the CPU simulators are usually coupled
with the cycle-accurate main memory simulators. However, cou-
pling CPU and memory simulators is not straight-forward because
and some pieces of the circuitry between the last level cache and
the memory DIMMs could be easily overlooked and therefore not
accounted for.

In this paper, we take an approach to quantify the missing cy-
cles in the main memory simulation. To that end, we execute a
memory intensive microbenchmark to validate a simulation in-
frastructure based on ZSim and DRAMsim2 modeling Intel Sandy
Bridge E5-2670. We execute the same microbenchmark on a real
Sandy Bridge E5-2670 machine and identify missing 20ns in the sim-
ulator measurements. This is a huge difference that, in the system
under study, corresponds to one third of the overall main memory
latency. We also propose multiple schemes to add extra delay in the
simulation model to account for these missing cycles, and validate
the approaches with the SPEC CPU2006 benchmarks. Finally, we
repeat the main memory latency measurements on seven main-
stream and emerging compute platforms. Our results show that
latency between the LLC and the main memory ranges between
tens and hundreds of nanoseconds, so it is really important to prop-
erly adjust and validate this parameter in system simulators before
any measurements are performed. Overall, we believe this study
would improve main memory simulation leading to the better over-
all system analysis and explorations performed in the computer
architecture community.

CCS CONCEPTS
• Computer systems organization → Processors and memory
architectures; • Computing methodologies→Massively parallel
and high-performance simulations;
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Main memory, DRAM, Simulation, High Performance Computing.

1 INTRODUCTION
CPU and memory simulators are inseparable parts of today’s com-
puter architecture research; they are extensively used to prototype
hardware systems and to estimate performance and energy of a par-
ticular design. Initially, simulators were focused on the simulation
of the CPUs, and the memory systems were emulated with very
simple models, such as the fixed latency of the main memory access.
Work of Jacob et al. [5, 9], however showed that simplistic DRAM
modeling can lead to significant simulation errors. The authors
advocated for the detailed timing simulation of the main memory
and released DRAMsim [24] the first cycle-accurate DRAM simu-
lator, followed by DRAMsim2 [18]. The community accepted the
need for a detailed simulation of main memory, and currently the
CPU simulators are usually coupled with the cycle-accurate main
memory simulators such as the DRAMsim2 [18], Ramulator [10] or
NVMain [17].

The CPUs and main memory are clearly separate devices, with
different functionalities and typically manufactured by different
companies. However, decoupling their functionalities in total sys-
tem simulation is not straight-forward. In particular, the DRAM
DIMMs are passive devices managed by the memory controller
which is a part of the CPU. This functionality include scheduling,
reordering and queuing of the memory requests as well as the
detailed DRAM commands, such as PRECHARGE, ACTIVATE, READ,
WRITE, etc. Since the memory simulators mimic the functionality
of the main memory, they also simulate the functionality and the
timings of the memory controller, see Figure 1. CPU simulators, on
the other hand, typically perform functional and timing simulation
the memory request only until the Last Level Cache (LLC).

This means that by coupling CPU and a main memory simu-
lators, all the delays of the memory request of the bus-interface
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Figure 1: When CPU and memory simulators are coupled,
the timings of thememory request between the LLC and the
memory controller could be easily overlooked.

unit (BIU) between the LLC and the memory controller could be
easily overlooked, and therefore not accounted for, as we illustrate
in Figure 1. The BIU overhead is that of: (1) The request traversing
the NoC to the memory controller (longer for writes, due to the
data); (2) The request arbitrating for the right to be enqueued in
the memory controller’s request queue; (3) The request potentially
stalling if that queue is full; (4) At the end of a read request, the
multi-cycle cost of transferring the data over the NoC between the
core and the memory controller.

In this paper, we take an approach to quantify the missing cy-
cles in the main memory simulation. To that end, we execute a
memory intensive microbenchmark to validate a simulation infras-
tructure based on ZSim [19] and DRAMsim2 [24] modeling Intel
Sandy Bridge E5-2670. We execute the same microbenchmark on
a real Sandy Bridge E5-2670 machine and identify missing 20ns
in the simulator measurement. This is a huge difference that, in
the system under study, corresponds to one third of the overall
main memory latency. We also propose multiple schemes to add
extra delay in the simulation model to account for these missing cy-
cles. Then we execute applications from SPEC CPU2006 benchmark
suite to validate the approach of adding extra latency to achieve
better simulation accuracy. Finally, we quantify the LLC to memory
latency for various high-end and emerging platforms and we show
its significant range, between 30ns (POWER8) and 277ns (Knighths
Landing); therefore, it is really important to properly adjust and
validate this parameter in system simulators before any measure-
ments are performed. Overall, we believe that the issues address
in this paper would help researchers of the computer architecture
community to improve main memory system simulation.

The rest of the paper is organized as follows. Section 2 explains
simulation environment and evaluates main memory latency with
a microbenchmark for real and simulated systems. This section also
propose approaches to fix the deviation identified between real and
simulated main memory latency measurements. Section 3 details
the validation of the proposed approaches with SPEC CPU2006
benchmarks , while Section 4 discusses LLC tomainmemory latency
of various high-end and emerging High Performance Computing
(HPC) platforms. Section 5 analyzes the validation procedure of
state-of-the-art system and memory simulators . Finally, Section 6
presents the conclusions of the study.

Table 1: Cache parameters of the Sandy Bridge EP class pro-
cessor used in the study.

L1-D L2 L3

Size 32 KiB 256 KiB 20MiB
Latency (in CPU cycles) 4 8 28
Cache line size 64 B 64 B 64 B
Set associativity 8-way 8-way 20-way

2 MAIN MEMORY LATENCY EVALUATION
AND SIMULATION ENHANCEMENTS

In this section we detail the methodology used to model a targeted
system into a simulation infrastructure and we describe the mi-
crobenchmarks used to discover the main memory access latency.
The targeted system we aimed to model is an Intel Xeon E5-2670
Sandy Bridge-EP processor [7] operating at 3.0GHz. The main
memory comprises four 4GiB DIMMS devices [20] connected to
the processor using four DDR3-1600 channels. Each processor runs
eight cores where the hyper-threading feature has been disabled
like in most HPC systems [21].

2.1 Simulation environment
The simulator infrastructure we chose to use is an integration of
two simulators: ZSim [19] as CPU simulator and DRAMsim2 as
main memory simulator.

ZSim is a user-level, execution-driven CPU simulatorwidely used
in the computer architecture research community. Developed by
researchers fromMIT and Stanford University, ZSim is designed for
simulation of large-scale systems. However, ZSim was originally de-
veloped to simulate Intel Westmere architecture which is no longer
being used in HPC domain. One of the tasks that we had to perform
was to upgrade and validate ZSim for Intel Sandy Bridge processor.
The work to upgrade ZSim consisted in the following steps: First,
we adjusted the simulator by updating the instruction latencies
obtained trough the execution of CPU microbenchmarks [22] in the
real hardware; Second, we improved the micro-operation fusion
and we increased the number of entries in the Reorder Buffer (ROB)
from 128 (Westmere) to 168 (Sandy Bridge); Third, we configured
the cache hierarchy according to the Intel documentation [7] for a
Sandy Bridge EP Class, summarized in Table 1. Finally, we updated
the L3 caching mechanism implementing the hashing function
described in work by Maurice et al. [12].

ZSim is easily integrated with a main memory simulator such
as DRAMsim2 . DRAMsim2 is a cycle-accurate simulator validated
against Verilogmodels formemory devices.We configured DRAM-
sim2 following manufactures documentation with specific timings
on memory device part [20].

2.2 Memory latency microbenchmark
State-of-the-artmemory benchmarks such as LMbench [14], stream
[13] and Intel’s Memory Latency Checker (imlc) [23] can be used
for main memory latency measurements. However, they are not a
good fit for our study because it is very difficult to use them in ZSim
simulation. LMbench and stream rely on compiler optimization
and imlc is a binary-only distributed program; Hence, no tailored



Figure 2: Illustration of pointer a chasing memory access
pattern used in the microbenchmark.

analysis nor modification to the code could be made. Therefore, as
none of the open source existent benchmarks was appropriate for
our analysis, we had to design a specific microbenchmark to use
for our experiments.

Our microbenchmark is designed to stress the caches and main
memory implementing the concept of pointer chasing. Because the
microbenchmarks are designed to run on top of an Operating Sys-
tem, a C program wraps all functionality outside the microbench-
mark design as memory initialization, metrics collection, and
program cleanup. By doing so, the microarchitectural implications
of running on top of an OS are diminished.

In the microbenchmarks prologue, we allocate a contiguous
section of memory that stores an array of pointers. The elements
on the array are initialized as a circular linked list that follows a
pointer chase pattern, Figure 2 portray an example of such ordering.
Our design goals for the microbenchmarks are summarized as:
(1) Iteratively traverse the whole array; (2) Access different cache
lines for every memory access; (3) The memory accesses have a
random pattern preventing data prefetchers to bring data to any
level of cache.

The core of the microbenchmarks is implemented directly in
assembly of the target processor in order to: (1) Provide the pro-
grammer with the maximum control over the instructions that
are to be executed; (2) Prevent a compiler from applying any opti-
mization that changes the core of the benchmarks. Table 2 lists the
pseudo code for the main memory latency microbenchmarks. It’s
behavior is explain as follows (1) In line 2, the register used as a loop
iteration counter (ecx) is initialized; (2) In line 4, the initial address
of the array is passed to the assembly code as an input parameter;
(3) From line 5 onwards the asm is listed: the main part of the bench-
mark is a sequence of indirect load instructions (mov(%rax), %rax)
that traverse the memory access pattern; (4) The sequence of target
instructions is finalized with the decrement of the loop counter reg-
ister and an exit condition or jump to the beginning of the iteration.
(5) The assembly loop is wrapped-up by the C program which reads
a previously generated file containing information about the array
size and the random access pattern.

By setting the array size, we target a given level of the memory
hierarchy: L1, L2, L3 or the main memory. Since there is a depen-
dency between each two consecutive instructions (pointer chasing),
the instructions are executed in-order. Therefore, we can compute
the latency of each instruction as

Memory instruction latency =
Microbenchmark execution time

Number o f instructions

Table 2: Pseudo-code: structure of the memory latency mi-
crobenchmark.

Line Source code Explanation

0001 register struct line
*next asm("rax");

struct line owns pointer to
the next element to access

0002 register int
i asm("ecx");

ecx is the loop counter

0003 i = 1000000; initialization of the loop counter
0004 next = ptr->next; first memory access
0005 start_loop: beginning of the asm loop
0006 mov (%rax), %rax load instruction (pointer chasing)
0007 mov (%rax), %rax load instruction (pointer chasing)
. . . . . . . . .
1007 mov (%rax), %rax load instruction (pointer chasing)
1008 dec %ecx decrement loop counter
1009 jnz start_loop if (counter , 0) jump to start_loop

Table 3: By setting the microbenchmark array size can we
measure the latency of different level in the Intel Xeon E5-
2670 Sandy Bridge-EP memory hierarchy. We traverse each
memory level with various measurement for array sizes.

Size of each
memory level

Microbenchmark
array size & stride size

Number of
measurements

L1 cache: 32 KiB 4KiB to 32 KiB,3.5 KiB 8
L2 cache: 256 KiB 60 KiB to 256 KiB,24.5 KiB 8
L3 cache: 20MiB 2.71MiB to 20MiB,2.46MiB 8
Main memory, 16GiB 532MiB to 3.52GiB,512MiB 7

There are two modes for the C program to wrap the microbench-
mark core, one for the execution with the simulator, and other
for the execution in the real machine. The difference between this
modes relies only on the way to collect the number of instructions
and cycles. On the real system, the measurements are collected via
system calls to the linux perf subsystem. This calls are made just
before entering the main loop and intermediately after the loop
is finished. On the simulator, we use a ZSim feature that allow to
enable-disable fast-forwarding up to an specific point in the pro-
gram execution. The points in the program simulation are set, as
in real machine, just before entering the microbenchmark core and
as soon as the microbenchmark core is done.

2.3 Methodology
To measure the latency of different levels of memory hierarchy, we
vary the array size from 4 KiB up to 3.52GiB, as shown in Table 3. At
each level of memory hierarchy, L1, L2, L3 cache and main memory,
we select the array sizes to have equidistant measurements.

ZSim is a user-level simulator, it does not take into account
virtual-to-physical address translation and all its overheads such
as Translation Look-aside Buffer (TLB) misses, page walk, cache
collision between application data and address-mapping table. To
mitigate the address translation overheads in the real system, we
used the 4 × 1GiB Huge Pages available in the Sandy Bridge archi-
tecture [8] and allocate a contiguous memory space up to 3.52GiB
so few memory pages fit into the TLB. 1

1We also quantified the address translation overheads when standard memory pages
(4KiB) are used, but this analysis exceeds the scope of this paper.
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Figure 3: When using default configuration parameters,
there is a missing memory latency of 20 ns between the real
system and the integration of ZSim + DRAMsim2.

2.4 Evaluation
In this section we investigate main memory access latency devia-
tion from real system to simulation infrastructure with microbench-
marks. We also propose multiple schemes to mitigate this discrep-
ancy.

Comparison between cache and main memory latencies between
the real system and the ZSim + DRAMsim2 simulators is depicted
in Figure 3. The horizontal axis of the figure represents the size of
the traversed array, while the vertical axis shows the memory la-
tency in CPU cycles. In Figure 3, four steps of the memory hierarchy
are distinguishable, each one corresponding to three leves of pro-
cessor caches and lastly, the main memory. For the cache levels, L1,
L2, L3, the lines overlap, meaning that ZSim cache contention based
on the manufacturer documentation accurately represents the real
system. However, for the memory latency, we detect a significant
gap between the simulators integration and the actual system. The
main memory access latency of the real system is approximately
66 ns while the ZSim + DRAMsim2 simulate the latency of 46 ns.
As we discussed in Section 1, it is not difficult to find an explanation
for the 20 ns are missing from the main memory access latency.
While the ZSim provides timings up to LLC, DRAMsim2 models
timings from the memory controller, meaning that the latency of
bus-interface unit between the LLC and the memory controller is
not accounted for.

2.5 Potential enhancements
To account for the missing cycles in the main memory latency as
identified in Figure 3, we propose three approaches by adjusting
two parameters from ZSim and DRAMsim2 .

2.5.1 ZSim enhancements: mem.latency parameter. To inter-
pret the function of this parameter, it is essential to understand how
ZSim is operated. ZSim is driven by a two-phase algorithm: the
Bound andWeave phases. In the Bound phase every core is simulated
as they were isolated and for every memory request a fixed latency
is assumed. This fixed latency is configured as the mem.latency

parameter. Then, on the Weave phase, memory request latency left
from the Bound phase are updated with their corrected values; i.e.
if DRAMsim2 is integrated, CPU cycles are added up from DRAM
simulation for each memory transaction and thus, constitutes the
total memory access latency.

The mem.latency is a ZSim parameter and its value is set in the
CPU cycles. In the current ZSim distribution, the default mem.latency
value is set to 100 cycles, that in our environment with a 3.0GHz
CPU clock corresponds to the 33 ns.

2.5.2 DRAMsim2 enhancements: Delay Queue. Another, more
general approach to add latency to themainmemory requests would
be to enhance the memory controller simulated in the DRAMsim2.
In particular, we upgraded the DRAMsim2 memory controller with
a Delay Queue structure. The purpose of the Delay Queue is to
insert delay cycles for all main memory transactions in order to
adjust the latency deviation identified from the real systemmeasure-
ments. We implement the Delay Queue into DRAMsim2 memory
controller using the following design:

(1) The queue have an unlimited size
(2) When a transaction arrives to the memory controller, it is

immediately redirected to the queue.
(3) Each element (transaction) that joined the queue, is bound

to a counter holding the configured delayed.
(4) On each update to the memory controller clock, all the ele-

ments on the queue are visited getting their corresponding
counter decreased by one.

(5) When an element counter reaches 0, the memory controller
fires the transaction to the main memory and deletes the
element from the queue.

Since the Delay Queue is part of the DRAMsim2 simulator, its
value corresponds to the added latency in the DRAM clock cycles.

2.5.3 Selected configurations. In this paper, we select and ana-
lyze three approaches for the main memory latency adjustments:

(1) Adjusting only mem.latency parameter.
(2) Adjusting only Delay Queue parameter.
(3) Adjusting both parameters.
Figure 4 portray the results from the proposed approaches. The

X-axis of the figure lists the array size, essentially characterizing
different level of caches and main memory, while the Y-axis shows
the corresponding memory access latency. Overall, we can conclude
that all three approaches fix the main memory latency gap between
the simulators and the real systems with slight margin2, while
having no impact on the on-chip cache latencies.

Fixing the simulator’s memory latency required the following
parameter values:

(1) mem.latency=170, instead of default 100.
(2) mem.latency=170 and Delay Queue latency=24.
(3) mem.latency=100 and Delay Queue latency=96.
However, we should not forget that these measurements are

taken for a simple microbenchmark. In the following sections we
investigate the impact of the simulator enhancements on more
complex SPEC CPU2006 workloads.
2For the microbenchmark, main memory access latency in real system was measured
to be 210 CPU cycles, in the worst case. Among this 210 cycles, 40 cycles correspond
to LLC latency. Therefore, mem.latency was updated with the remaining 170 cycles.
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Figure 4: Memory latency for the real system, the default
integration of ZSim + DRAMsim2 and three proposed con-
figurations to match the simulator infrastructure with the
targeted system.

3 EVALUATION: SPEC 2006 BENCHMARKS
In the previous section, we analyzed and validated various ways
to fix the the main memory latency gap between the simulators
and the real systems. In this section we investigate the impact of
these enhancements on SPEC CPU2006 benchmark performance
and behavior. We execute and evaluate the simulator enhancements
on a set of eleven integer and fourteen floating point benchmarks
from the SPEC CPU2006 suite [? ]. Table 4 lists the benchmarks
with their application areas used for the study.

3.1 System performance
For each SPEC CPU2006 benchmark we configure the execution to
last for the first 50 billion instructions. Then, we compare the three
versions of the enhanced simulators versus the default configuration
(baseline). The simulators are compared based on the performance
difference, calculated as:

IPC relative di f f erence =
IPCEnhanced Sim . − IPCDef ault Sim .

IPCDef ault Sim .

Results are presented in Figure 5. Negative values on the perfor-
mance difference indicate that the default simulators configuration
(baseline) estimates better performance, i.e., higher Instruction per
Cycle (IPC) w.r.t. to the enhanced simulators. This is an expected
outcome because all three simulator enhancements increase the
main memory access time which leads to performance loss.

The first and the third simulator enhancement approaches ,
mem.latency = 170 and mem.latency = 170 & Delay Queue
latency = 24, show similar performance, very close to the default
simulator configuration. The significant differences are detected
only for milc and libquantum, that reach up to 20% of the perfor-
mance difference. The second approach, adjusting the Delay Queue
parameter to 100 DRAM cycles, leads to significant differences that,
e.g., exceed 50% for the milc and libquantum benchmarks.

Table 4: SPEC CPU2006 benchmarks used in the study

Benchmark Application Area Language

bzip2 Compression C
gcc C Language Optimizing Compiler C
bwaves Fluid Dynamics Fortran
gamess Quantum Chemistry Fortran
mcf Combinatorial optimization C
milc Quantum Chromodynamics C
gromacs Molecular Dynamics C,Fortran
cactusADM General Relativity C,Fortran
leslie3d Fluid Dynamics Fortran
namd Molecular Dynamics C++
gobmk Artificial Intelligence C
dealII Finite Element Analysis C++
soplex Simplex Linear Program Solver C++
calculix Structural Mechanics C,Fortran
hmmer Gene Sequence Analysis C
sjeng Artificial Intelligence C
GemsFDTD Computational Electromagnetics Fortran
libquantum Quantum Computing C
h264ref Video Compression C
tonto Quantum Chemistry Fortran
lbm Fluid Dynamics C
omnetpp Discrete Event Simulation C++
astar Path-finding Algorithm C++
sphinx3 Speech Recognition C,Fortran
xalancbmk XML Processing C++

Overall we can conclude that, although all three simulator en-
hancements lead to the same main memory latency of the mem-
ory stressing microbenchmarks, their performance impact on the
SPEC CPU2006 workloads may differ significantly.

3.2 System behavior
In order to identify the differences in the benchmark behavior on
different systems under test, we use the Top-Down method [26].

3.2.1 Top-Down method: Overview. The Top-Down is designed
to understand the application behavior and identify bottlenecks in
modern Out of Order (OoO) processors. The model conceptually
breaks the CPU engine into two major portions: frontend and back-
end. The frontend is in charge of decoding instructions from mem-
ory and translating them into micro-operations, while the backend
executes and retires the work generated as the outcome of sched-
uling the micro-operations. The place where the frontend feeds
the backend with micro-operations is the issue point. In the Sandy
Bridge micro-architecture, the issue point is 4-slot wide, meaning
that it can deliver to the backend up to four micro-operation per
cycle. The Top-Down method categorizes application performance
in four main groups: frontend bound, bad speculation, retiring, and
backend bound. The issued micro-operations that are retired at
the end of the pipeline are the ones that correspond to the useful
pipeline work; the Top-Down classify these issue slots as retiring.
However, some issued micro-operations are not retired, e.g., be-
cause they are part of the mis-predicted branch path. These slots
are categorized as bad speculation. The issue slot can also be empty,
because the CPU frontend is unable to fill them; these slots are
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Figure 5: Although all three simulator enhancements lead to the same main memory latency of the memory stressing mi-
crobenchmarks, their performance impact on the SPEC CPU2006 workloads may differ significantly.

categorized as frontend bound. If the frontend is ready to deliver
a new micro-operation in the issue point, but there are no avail-
able slots because the backend has not freed them from previous
micro-operations, the slots are categorized as backend bound.

Top-Down go further building a hierarchical tree with other
subcategories beneath this four main groups. For example, backend
category spawns a tree over two other main categories: Core and
Memory bound; and Memory further breaks into: stores, L1, L2, L3
and Main memory.

Top-Down was designed by Intel, implemented targeting the
Ivy Bridge microarchitecture. The authors had given a conceptual
approach for each category and the real system also a list of hard-
ware counters they used to determine each one of the mentioned
categories. From the conceptual description and with the hardware
counter definition, we have applied the method not only to obtain
measurements from the Sandy Bridge micro-architecture but to
implement an approximation of this features into the simulator to
export the corresponding data. Nevertheless, we just did it for the
main four categories. In the simulator used in the study, implemen-
tation of the hardware counters required for more detailed analysis,
e.g., core, L1, L2, L3 and Main memory, would require significant
effort. Sandy Bridge processor used in the study has just a subset
of the hardware counters available in the Ivy Bridge architecture
used for the Top-Down development. Therefore, for the processor
under study, it is unfeasible to perform Top-Down analysis that we
provide more details from the one that we presented in this paper.

3.2.2 Top-Downmethod: Analysis. Figure 6 shows the Top-Down
analysis for each benchmark. We plot five bars that are shown in
the following order, from left to right:

(1) mem.latency = 100 (Deafult configuration)
(2) mem.latency = 170
(3) mem.latency = 170 and Delay Queue latency = 24
(4) mem.latency = 100 and Delay Queue latency = 96
(5) Real system measurements

Each bar shows a Top-Down issue slot breakdown between the
four main categories: Retiring, Bad Speculation, Frondend Bound and
Backend Bound.

For the real system measurements, the right-most bar for each
benchmark in Figure 6, we use the standard Top-Down represen-
tation in which the the sum of all issue slot is scaled to 1. The
Top-Down comparison of different systems, however, is not trivial.
Scaling Top-Down bars of all the systems to 1 is confusing because
improvement of one component, e.g., reduction of the empty issues
slots due to the main memory access could be seen as deteriorate
of another. Therefore, Top-Down comparison of different systems
requires a reference point that will enable meaningful presentation
and analysis of the results. Since in all the configuration, we execute
the same code for the same number of instructions, our reference
point is the number of Retiring micro-operations. This means that,
for a given benchmark, the high of the Retiring bar is the same for
the real system and all the simulator configurations. For each bar,
i.e., each benchmark and simulator configuration, other Top-Down
components, are scaled relative to the Retiring category. This en-
ables direct visual comparison of different benchmark Top-Down
categories in different configurations.

The results are summarized in Figure 6. First, we will focus on
the comparison of the different simulator configurations, i.e., the
first four bars for each benchmark. For most of the benchmarks,
there is low to moderate difference between the different simu-
lator configurations. This comes mainly from the fact that these
benchmarks have low memory usage [6], so any memory-related
configuration has low impact of the overall application behavior.
For the benchmarks with high stress to the main memory, such as
the libquantum, bwaves, milc, leslie3d, soplex, GemsFDTD a lbm [6],
the behavior depends significantly on the approach used to correct
the latency of the memory requests. The simulator enhancements
based on the changes in the mem.latency ZSim parameter, plotted
as the second and the third bar for each benchmark, show moderate
changes w.r.t. to the default ZSim + DRAMsim2 configuration.



The simulator enhancements based on the Delay Queue in the
DRAMsim2, show much larger differences.

Overall, it is interesting to detect that different simulator en-
hancements that led to practically the same main memory latency
of the microbenchmark (see Figure 4), can lead to significantly dif-
ferent behavior and performance of a more complex benchmarks,
as shown in Figures 5 and 6.

This opens a question on which out of proposed simulator en-
hancements should be used to adjust the main memory latency. In
order to address this question, in Figure 6 we also plot the Top-
Down breakdown of the Sandy Bridge platform used in the study.
However, the most important finding of the presented results is
a huge difference in the Backend bound issues stalls between the
real platform and the all simulator configurations for all memory
intensive benchmarks.

We analyzed this difference by extensive benchmark profiling
(hardware counters) and analysis of the main differences between
the simulator and the simulated platform. Our conclusion is that
the difference comes mainly from the fact that the data prefetching
incorporated in the the Sandy Bridge platform leads to significant
performance improvements, while the ZSim simulator incorporates
no data prefetcher. This makes a huge difference in performance
and behavior of the memory intensive benchmarks. Until the data
prefetching gap is removed or at least mitigated, we could conclude
which out of the proposed simulator enhancements is the closest
match to the real system behavior.

4 OTHER SYSTEMS
Up to now, our study focused on the analysis of the main memory
latency and the missing cycles in the main memory simulation
for the Intel Sandy Bridge E5-2670 processor. In this section, we
analyze the LLC to main memory latency on other HPC platforms,
including two mainstream HPC architectures which have been
predominantly used in HPC systems so far, Nehalem X5560 and
Haswell E5-2698v3, as well as five emerging ones: Knighths Landing,
Power8, ThunderX, X-Gene 1 and X-Gene 2. The most important
features and the memory hierarchy of the architectures used in this
part of the study are summarized in Table 5.

In order to quantify access latencies to different levels of mem-
ory hierarchy, we used one of the benchmarks from the LMbench
benchmark suite [14]. It is a suite of simple, portable benchmarks,
which compare different performance characteristics of Unix sys-
tems. It comprises both bandwidth benchmarks (cached file read,
memory read/write, pipe, TCP etc.) and latency benchmarks (con-
text switching, various networking latencies, memory read latency
etc.). We used the memory read latency benchmark, with random-
access Reads in order to mitigate the impact of the data prefetching.
By varying input dataset size, we could measure access latency to
all memory hierarchy levels. The measured latency comprises the
latency of the hardware components (caches, memory controller,
main memory), but also the latency of the system software, and
virtual to physical memory translation.

Our experiments show significant range in the main memory
access latency. In this paper, we focused on the latency between the
LLC and the main memory, so in Figure 7 we plot these measure-
ments for the platforms under study. The POWER8 platform has the

Table 5: Details memory hierarchy for main memory la-
tency measurements

Mainstream architectures Emerging architectures
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N
eh

al
em

X
55

60

H
as
w
el
l

E5
-2
69

8v
3

K
ni
gh

ts
La

nd
in
g

Po
w
er
8

T
hu

nd
er
X

X
-G

en
e
2

X
-G

en
e
1

Manuf. Intel Intel Intel IBM Cavium APM APM
Arch. Nehalem Haswell MIC POWER8 ARMv8-A ARMv8-A ARMv8-A

Released 2009 2014 2016 2014 2014 2015 2013

Sockets 2 2 1 2 2 1 1
Cores per
Socket 4 16 68 10 48 8 8

CPU freq.
[GHz] 2.8 2.3 1.4 3.49 1.8 2.4 2.4

Out-of-order Yes Yes Yes Yes No Yes Yes
DP Flops,
per cycle,
per core

4 16 32 8 2 2 2

L1i 32kB 32kB 32kB 32kB 48kB 32kB 32kB
L1d 32kB 32kB 32kB 64kB 32kB 32kB 32kB
L2 256kB 256kB 1MB 512kB 16MB 256kB 256kB
L3 8MB 40MB / 80MB / 8MB 8MB

Memory
conf.

per socket

3 ch.
DDR3
1333

4 ch.
DDR4
2133

8 ch.
MCDRAMa

+
6 ch.
DDR4
2400

4 ch.
DMI

28.8GBps

4 ch.
DDR3
1600

4 ch.
DDR3
1600

4 ch.
DDR3
1600

Memory
capacity
per node

24GB 128GB

16GB
(MCDRAM)

+
192GB
(DDR4)

256GB 128GB 128GB 64GB

a KNL system has been set to flat mode, therefore bothmemories, MCDRAM andDDR4, are exposed
as separate NUMA nodes, and the user can choose in which memory the workload executes.

lowest LLC to main memory latency of 30ns , followed by the main-
stream x86 platforms, Haswell (73 ns) and Nehalem (71 ns), and
emerging Arm-based servers Thunder X (82 ns) and XGene 2 (81 ns).
The XGene 1 latency is slightly higer, 124 ns, KNL latency reaches
245 ns and 277 ns for DDR4 and MCDRAM memory, respectively.

Overall, we see that the latency between the LLC and the main
memory can vary significantly between different platforms. Since
its value ranges between tens and hundreds of nanoseconds, it is
really important to properly adjust and validate this latency in the
system simulators before any measurements are performed.

5 STATE OF THE ART
5.1 Main memory simulators
DRAMsim [24] is the first cycle-accurate DRAM simulator, followed
by DRAMsim2 [18]. The authors advocated for the detailed timing
simulation of main memory following DDR2 and DDR3 standards.
DRAMsim2 was validated against Micron’s DDR3 DRAM Verilog
models [15], and no timing constrains violations were detected.

Ramulator [10], released in 2016, is the another publicly-available
DRAM simulator. It provides faster main-memory simulation and
enables simulation of the high-end DRAM standards and prod-
ucts such as the DDR4, GDDR5 or HBM. Ramulator DDR3 timings
were validated against Micron’s DDR3 DRAM Verilog models [15],
and no timing constrains violations were detected. The Ramulator
correctness was not validated for the memories other than DDR3.

5.2 CPU simulators
gem5 [2] is the most-widely used system simulator. It originated
as a merge of the M5 simulator [3] of the CPU pipeline (validated
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Figure 6: TopDown analysis. For memory intensive benchmarks, simulator enhancements based on the changes in
the mem.latency ZSim parameter (2nd and 3rd bar for each benchmark) show moderate changes w.r.t. to the default
ZSim+DRAMSim2 configuration (1st bar). The simulator enhancements based on the Delay Queue in the DRAMSim2 (4th bar),
show much larger differences. We also detect a huge difference in the Backend bound issues stalls between the real platform
(5th bar) and the all simulator configurations.

against an Alpha machine) and the memory hierarchy inherited
from GEMS [11]. The gem5 can be easily configured to simulate
various platforms, and since 2002, more than a hundred of publica-
tions are referred to be improving, extending or simply using this
simulator. Validation of the simulator versus the actual hardware is
delegated to the gem5 users.

Sniper [4] is an enhancement of the Graphite parallel simula-
tion infrastructure [16]. The simulator models the main memory
accesses with a fixed latency of 65 ns. Sniper is validated against
an Intel Xeon X5550 processor (Nehalem architecture) with a set
of of SPLASH-2 benchmarks [25]. The validation results show that
the Sniper IPC error w.r.t. the actual hardware is below 25 %.

ZSim [19] simulator is built upon the Dynamic Binary Transla-
tion technique. Currently, it is the fastest simulator with up to 300
MIPS capable to perform simulation of over a thousand cores.

The secret behind the ZSim speed is that it partitions the sim-
ulation in two phases, Bound and Weave phases, as described in
Section 2.5. In the Bound phase each core is simulated as they were
isolated, with no interaction with other cores. This enables fast
parallel simulation. Then, in the Weave phase, the simulation is
corrected to account for a potential collision between concurrent
events from different cores, such as, e.g., main memory accesses.
The ZSim supports two alternatives for the main memory simu-
lation: an internal memory model based on the M/D/1 queue con-
tention, and a software interface to use DRAMsim2. The ZSim
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Figure 7: LLC to main memory latency can span over a wide
range for various high-end and emerging HPC platforms

with the internal M/D/1 memory model is validated with an ac-
tual Intel Xeon L5640 machine (Nehalem architecture) running
SPEC CPU2006 and PARSEC [1] benchmarks. The authors report
the IPC errors of below 10 %. ZSim authors clarified that using
DRAMsim2 will restricts the simulation to 3 MIPS, landing out-
side their design goals. Thus, validation with DRAMsim2 it is not
performed in the original paper.



6 CONCLUSIONS
In this paper, we take an approach to quantify the missing cycles
in the main memory simulation, and we show that significant la-
tency can be overlooked when CPU and memory simulators are
merged without considering delays of all the circuitries that re-
sides between LLC and main memory. In particular, we validate
a simulation infrastructure based on ZSim and DRAMsim2 mod-
eling Intel Sandy Bridge E5-2670. Our experiments identify that,
in comparison to the real machine measurements, approximately
one-third of total main memory latency is not taken into account
in the simulated system. Such deviation in main memory latency
estimation could place the reliability of a simulation infrastructure
in question. We propose multiple schemes to add extra delay in the
simulation model to account for these missing cycles, and validate
the approaches with the SPEC CPU2006 benchmarks. We also mea-
sure main memory latency on seven main-stream and emerging
compute platforms and the results show a huge range of LLC to
main memory latency. Therefore, it is really important to properly
adjust and validate related parameters in system simulators before
any measurements are performed. We strongly believe, this study
identifies an important issue in main memory latency simulation
and the approaches proposed in the work will certainly improve
main memory simulation techniques.
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