26 research outputs found

    A Comprehensive Review of Video Steganalysis

    Get PDF
    Steganography is the art of secret communication and steganalysis is the art of detecting the hidden messages embedded in digital media covers. One of the covers that is gaining interest in the field is video. Presently, the global IP video traffic forms the major part of all consumer Internet traffic. It is also gaining attention in the field of digital forensics and homeland security in which threats of covert communications hold serious consequences. Thus, steganography technicians will prefer video to other types of covers like audio files, still images or texts. Moreover, video steganography will be of more interest because it provides more concealing capacity. Contrariwise, investigation in video steganalysis methods does not seem to follow the momentum even if law enforcement agencies and governments around the world support and encourage investigation in this field. In this paper, we review the most important methods used so far in video steganalysis and sketch the future trends. To the best of our knowledge this is the most comprehensive review of video steganalysis produced so far

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Design and simulation a video steganography system by using FFT­turbo code methods for copyrights application

    Get PDF
    Protecting information on various communication media is considered an essential requirement in the present information transmission technology. So, there is a continuous search around different modern techniques that may be used to protect the data from the attackers. Steganography is one of those techniques that can be used to maintain the copyright by employing it to cover the publisher logo image inside the video frames. Nowadays, most of the popular known of the Video-Steganography methods become a conventional technique to the attacker, so there is a requirement for a modern and smart strategy to protect the copyright of the digital video file. Where this proposed system goal to create a hybrid system that combines the properties of Cryptography and Steganography work to protect the copyright hidden data from different attack types with maintaining of characteristics of the original video (quality and resolution). In this article, a modern Video-Steganography method is presented by employing the benefits of TC (Turbo code) to encrypt the pixels of logo image and Least two Significant Bit Technique procedure to embed the encryption pixels inside the frames of the video file. The insertion is performed in the frequency domain by applying the Fast Fourier Transform (FFT)on the video frames. The examination of the suggested architecture is done by terms of Structural Similarity Index, MSE (mean squared error), and PSNR (peak signal-to-noise ratio) by comparing between an original and extracted logo as well as between original and Steganographic video (averaged overall digital frames in the video). The simulation results show that this method proved high security, robustness, capacity and produces a substantial performance enhancement over the present known ways with fewer distortions in the quality of the vide

    Design and simulation a video steganography system by using FFT­turbo code methods for copyrights application

    Get PDF
    Protecting information on various communication media is considered an essential requirement in the present information transmission technology. So, there is a continuous search around different modern techniques that may be used to protect the data from the attackers. Steganography is one of those techniques that can be used to maintain the copyright by employing it to cover the publisher logo image inside the video frames. Nowadays, most of the popular known of the Video-Steganography methods become a conventional technique to the attacker, so there is a requirement for a modern and smart strategy to protect the copyright of the digital video file. Where this proposed system goal to create a hybrid system that combines the properties of Cryptography and Steganography work to protect the copyright hidden data from different attack types with maintaining of characteristics of the original video (quality and resolution). In this article, a modern Video-Steganography method is presented by employing the benefits of TC (Turbo code) to encrypt the pixels of logo image and Least two Significant Bit Technique procedure to embed the encryption pixels inside the frames of the video file. The insertion is performed in the frequency domain by applying the Fast Fourier Transform (FFT)on the video frames. The examination of the suggested architecture is done by terms of Structural Similarity Index, MSE (mean squared error), and PSNR (peak signal-to-noise ratio) by comparing between an original and extracted logo as well as between original and Steganographic video (averaged overall digital frames in the video). The simulation results show that this method proved high security, robustness, capacity and produces a substantial performance enhancement over the present known ways with fewer distortions in the quality of the vide

    Information leakage and steganography: detecting and blocking covert channels

    Get PDF
    This PhD Thesis explores the threat of information theft perpetrated by malicious insiders. As opposite to outsiders, insiders have access to information assets belonging the organization, know the organization infrastructure and more importantly, know the value of the different assets the organization holds. The risk created by malicious insiders have led both the research community and commercial providers to spend efforts on creating mechanisms and solutions to reduce it. However, the lack of certain controls by current proposals may led security administrators to a false sense of security that could actually ease information theft attempts. As a first step of this dissertation, a study of current state of the art proposals regarding information leakage protections has been performed. This study has allowed to identify the main weaknesses of current proposals which are mainly the usage of steganographic algorithms, the lack of control of modern mobile devices and the lack of control of the action the insiders perform inside the different trusted applications they commonly use. Each of these drawbacks have been explored during this dissertation. Regarding the usage of steganographic algorithms, two different steganographic systems have been proposed. First, a steganographic algorithm that transforms source code into innocuous text has been presented. This system uses free context grammars and to parse the source code to be hidden and produce an innocuous text. This system could be used to extract valuable source code from software development environments, where security restrictions are usually softened. Second, a steganographic application for iOS devices has also been presented. This application, called “Hide It In” allows to embed images into other innocuous images and send those images through the device email account. This application includes a cover mode that allows to take pictures without showing that fact in the device screen. The usage of these kinds of applications is suitable in most of the environments which handle sensitive information, as most of them do not incorporate mechanisms to control the usage of advanced mobile devices. The application, which is already available at the Apple App Store, has been downloaded more than 5.000 times. In order to protect organizations against the malicious usage of steganography, several techniques can be implemented. In this thesis two different approaches are presented. First, steganographic detectors could be deployed along the organization to detect possible transmissions of stego-objects outside the organization perimeter. In this regard, a proposal to detect hidden information inside executable files has been presented. The proposed detector, which measures the assembler instruction selection made by compilers, is able to correctly identify stego-objects created through the tool Hydan. Second, steganographic sanitizers could be deployed over the organization infrastructure to reduce the capacity of covert channels that can transmit information outside the organization. In this regard, a framework to avoid the usage of steganography over the HTTP protocol has been proposed. The presented framework, diassembles HTTP messages, overwrites the possible carriers of hidden information with random noise and assembles the HTTP message again. Obtained results show that it is possible to highly reduce the capacity of covert channels created through HTTP. However, the system introduces a considerable delay in communications. Besides steganography, this thesis has also addressed the usage of trusted applications to extract information from organizations. Although applications execution inside an organization can be restricted, trusted applications used to perform daily tasks are generally executed without any restrictions. However, the complexity of such applications can be used by an insider to transform information in such a way that deployed information protection solutions are not able to detect the transformed information as sensitive. In this thesis, a method to encrypt sensitive information using trusted applications is presented. Once the information has been encrypted it is possible to extract it outside the organization without raising any alarm in the deployed security systems. This technique has been successfully evaluated against a state of the art commercial data leakage protection solution. Besides the presented evasion technique, several improvements to enhance the security of current DLP solutions are presented. These are specifically focused in avoiding information leakage through the usage of trusted applications. The contributions of this dissertation have shown that current information leakage protection mechanisms do not fully address all the possible attacks that a malicious insider can commit to steal sensitive information. However, it has been shown that it is possible to implement mechanisms to avoid the extraction of sensitive information by malicious insiders. Obviously, avoiding such attacks does not mean that all possible threats created by malicious insiders are addressed. It is necessary then, to continue studying the threats that malicious insiders pose to the confidentiality of information assets and the possible mechanisms to mitigate them. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Esta tesis doctoral explora la amenaza creada por los empleados maliciosos en lo referente a la confidencialidad de la información sensible (o privilegiada) en posesión de una organización. Al contrario que los atacantes externos a la organización, los atacantes internos poseen de acceso a los activos de información pertenecientes a la organización, conocen la infraestructura de la misma y lo más importante, conocen el valor de los mismos. El riesgo creado por los empleados maliciosos (o en general atacantes internos) ha llevado tanto a la comunidad investigadora como a los proveedores comerciales de seguridad de la información a la creación de mecanismos y soluciones para reducir estas amenazas. Sin embargo, la falta de controles por parte de ciertas propuestas actuales pueden inducir una falsa sensación de seguridad en los administradores de seguridad de las organizaciones, facilitando los posibles intentos de robo de información. Para la realización de esta tesis doctoral, en primer lugar se ha realizado un estudio de las propuestas actuales con respecto a la protección de fugas de información. Este estudio ha permitido identificar las principales debilidades de las mismas, que son principalmente la falta de control sobre el uso de algoritmos esteganográficos, la falta de control de sobre dispositivos móviles avanzados y la falta de control sobre las acciones que realizan los empleados en el interior de las organizaciones. Cada uno de los problemas identificados ha sido explorado durante la realización de esta tesis doctoral. En lo que respecta al uso de algoritmos esteganográficos, esta tesis incluye la propuesta de dos sistemas de ocultación de información. En primer lugar, se presenta un algoritmo esteganográfico que transforma código fuente en texto inocuo. Este sistema utiliza gramáticas libres de contexto para transformar el código fuente a ocultar en un texto inocuo. Este sistema podría ser utilizado para extraer código fuente valioso de entornos donde se realiza desarrollo de software (donde las restricciones de seguridad suelen ser menores). En segundo lugar, se propone una aplicación esteganográfica para dispositivos móviles (concretamente iOS). Esta aplicación, llamada “Hide It In” permite incrustar imágenes en otras inocuas y enviar el estegoobjeto resultante a través de la cuenta de correo electrónico del dispositivo. Esta aplicación incluye un modo encubierto, que permite tomar imágenes mostrando en el propio dispositivo elementos del interfaz diferentes a los de a cámara, lo que permite tomar fotografías de forma inadvertida. Este tipo de aplicaciones podrían ser utilizadas por empleados malicios en la mayoría de los entornos que manejan información sensible, ya que estos no suelen incorporar mecanismos para controlar el uso de dispositivos móviles avanzados. La aplicación, que ya está disponible en la App Store de Apple, ha sido descargada más de 5.000 veces. Otro objetivo de la tesis ha sido prevenir el uso malintencionado de técnicas esteganográficas. A este respecto, esta tesis presenta dos enfoques diferentes. En primer lugar, se pueden desplegar diferentes detectores esteganográficos a lo largo de la organización. De esta forma, se podrían detectar las posibles transmisiones de estego-objetos fuera del ámbito de la misma. En este sentido, esta tesis presenta un algoritmo de estegoanálisis para la detección de información oculta en archivos ejecutables. El detector propuesto, que mide la selección de instrucciones realizada por los compiladores, es capaz de identificar correctamente estego-objetos creados a través de la herramienta de Hydan. En segundo lugar, los “sanitizadores” esteganográficos podrían ser desplegados a lo largo de la infraestructura de la organización para reducir la capacidad de los posibles canales encubiertos que pueden ser utilizados para transmitir información sensible de forma descontrolada.. En este sentido, se ha propuesto un marco para evitar el uso de la esteganografía a través del protocolo HTTP. El marco presentado, descompone los mensajes HTTP, sobrescribe los posibles portadores de información oculta mediante la inclusión de ruido aleatorio y reconstruye los mensajes HTTP de nuevo. Los resultados obtenidos muestran que es posible reducir drásticamente la capacidad de los canales encubiertos creados a través de HTTP. Sin embargo, el sistema introduce un retraso considerable en las comunicaciones. Además de la esteganografía, esta tesis ha abordado también el uso de aplicaciones de confianza para extraer información sensible de las organizaciones. Aunque la ejecución de aplicaciones dentro de una organización puede ser restringida, las aplicaciones de confianza, que se utilizan generalmente para realizar tareas cotidianas dentro de la organización, se ejecutan normalmente sin ninguna restricción. Sin embargo, la complejidad de estas aplicaciones puede ser utilizada para transformar la información de tal manera que las soluciones de protección ante fugas de información desplegadas no sean capaces de detectar la información transformada como sensibles. En esta tesis, se presenta un método para cifrar información sensible mediante el uso de aplicaciones de confianza. Una vez que la información ha sido cifrada, es posible extraerla de la organización sin generar alarmas en los sistemas de seguridad implementados. Esta técnica ha sido evaluada con éxito contra de una solución comercial para la prevención de fugas de información. Además de esta técnica de evasión, se han presentado varias mejoras en lo que respecta a la seguridad de las actuales soluciones DLP. Estas, se centran específicamente en evitar la fuga de información a través del uso de aplicaciones de confianza. Las contribuciones de esta tesis han demostrado que los actuales mecanismos para la protección ante fugas de información no responden plenamente a todos los posibles ataques que puedan ejecutar empleados maliciosos. Sin embargo, también se ha demostrado que es posible implementar mecanismos para evitar la extracción de información sensible mediante los mencionados ataques. Obviamente, esto no significa que todas las posibles amenazas creadas por empleados maliciosos hayan sido abordadas. Es necesario por lo tanto, continuar el estudio de las amenazas en lo que respecta a la confidencialidad de los activos de información y los posibles mecanismos para mitigar las mismas

    System Steganalysis: Implementation Vulnerabilities and Side-Channel Attacks Against Digital Steganography Systems

    Get PDF
    Steganography is the process of hiding information in plain sight, it is a technology that can be used to hide data and facilitate secret communications. Steganography is commonly seen in the digital domain where the pervasive nature of media content (image, audio, video) provides an ideal avenue for hiding secret information. In recent years, video steganography has shown to be a highly suitable alternative to image and audio steganography due to its potential advantages (capacity, flexibility, popularity). An increased interest towards research in video steganography has led to the development of video stego-systems that are now available to the public. Many of these stego-systems have not yet been subjected to analysis or evaluation, and their capabilities for performing secure, practical, and effective video steganography are unknown. This thesis presents a comprehensive analysis of the state-of-the-art in practical video steganography. Video-based stego-systems are identified and examined using steganalytic techniques (system steganalysis) to determine the security practices of relevant stego-systems. The research in this thesis is conducted through a series of case studies that aim to provide novel insights in the field of steganalysis and its capabilities towards practical video steganography. The results of this work demonstrate the impact of system attacks over the practical state-of-the-art in video steganography. Through this research, it is evident that video-based stego-systems are highly vulnerable and fail to follow many of the well-understood security practices in the field. Consequently, it is possible to confidently detect each stego-system with a high rate of accuracy. As a result of this research, it is clear that current work in practical video steganography demonstrates a failure to address key principles and best practices in the field. Continued efforts to address this will provide safe and secure steganographic technologies

    PROACTIVE BIOMETRIC-ENABLED FORENSIC IMPRINTING SYSTEM

    Get PDF
    Insider threats are a significant security issue. The last decade has witnessed countless instances of data loss and exposure in which leaked data have become publicly available and easily accessible. Losing or disclosing sensitive data or confidential information may cause substantial financial and reputational damage to a company. Therefore, preventing or responding to such incidents has become a challenging task. Whilst more recent research has focused explicitly on the problem of insider misuse, it has tended to concentrate on the information itself—either through its protection or approaches to detecting leakage. Although digital forensics has become a de facto standard in the investigation of criminal activities, a fundamental problem is not being able to associate a specific person with particular electronic evidence, especially when stolen credentials and the Trojan defence are two commonly cited arguments. Thus, it is apparent that there is an urgent requirement to develop a more innovative and robust technique that can more inextricably link the use of information (e.g., images and documents) to the users who access and use them. Therefore, this research project investigates the role that transparent and multimodal biometrics could play in providing this link by leveraging individuals’ biometric information for the attribution of insider misuse identification. This thesis examines the existing literature in the domain of data loss prevention, detection, and proactive digital forensics, which includes traceability techniques. The aim is to develop the current state of the art, having identified a gap in the literature, which this research has attempted to investigate and provide a possible solution. Although most of the existing methods and tools used by investigators to conduct examinations of digital crime help significantly in collecting, analysing and presenting digital evidence, essential to this process is that investigators establish a link between the notable/stolen digital object and the identity of the individual who used it; as opposed to merely using an electronic record or a log that indicates that the user interacted with the object in question (evidence). Therefore, the proposed approach in this study seeks to provide a novel technique that enables capturing individual’s biometric identifiers/signals (e.g. face or keystroke dynamics) and embedding them into the digital objects users are interacting with. This is achieved by developing two modes—a centralised or decentralised manner. The centralised approach stores the mapped information alongside digital object identifiers in a centralised storage repository; the decentralised approach seeks to overcome the need for centralised storage by embedding all the necessary information within the digital object itself. Moreover, no explicit biometric information is stored, as only the correlation that points to those locations within the imprinted object is preserved. Comprehensive experiments conducted to assess the proposed approach show that it is highly possible to establish this correlation even when the original version of the examined object has undergone significant modification. In many scenarios, such as changing or removing part of an image or document, including words and sentences, it was possible to extract and reconstruct the correlated biometric information from a modified object with a high success rate. A reconstruction of the feature vector from unmodified images was possible using the generated imprints with 100% accuracy. This was achieved easily by reversing the imprinting processes. Under a modification attack, in which the imprinted object is manipulated, at least one imprinted feature vector was successfully retrieved from an average of 97 out of 100 images, even when the modification percentage was as high as 80%. For the decentralised approach, the initial experimental results showed that it was possible to retrieve the embedded biometric signals successfully, even when the file (i.e., image) had had 75% of its original status modified. The research has proposed and validated a number of approaches to the embedding of biometric data within digital objects to enable successful user attribution of information leakage attacks.Embassy of Saudi Arabia in Londo

    The dynamics of complex systems. Studies and applications in computer science and biology

    Get PDF
    Our research has focused on the study of complex dynamics and on their use in both information security and bioinformatics. Our first work has been on chaotic discrete dynamical systems, and links have been established between these dynamics on the one hand, and either random or complex behaviors. Applications on information security are on the pseudorandom numbers generation, hash functions, informationhiding, and on security aspects on wireless sensor networks. On the bioinformatics level, we have applied our studies of complex systems to theevolution of genomes and to protein folding
    corecore