7 research outputs found

    Single-Trial Extraction of Pure Somatosensory Evoked Potential Based on Expectation Maximization Approach

    Get PDF
    published_or_final_versio

    Probabilistic algorithms for MEG/EEG source reconstruction using temporal basis functions learned from data.

    Get PDF
    We present two related probabilistic methods for neural source reconstruction from MEG/EEG data that reduce effects of interference, noise, and correlated sources. Both methods localize source activity using a linear mixture of temporal basis functions (TBFs) learned from the data. In contrast to existing methods that use predetermined TBFs, we compute TBFs from data using a graphical factor analysis based model [Nagarajan, S.S., Attias, H.T., Hild, K.E., Sekihara, K., 2007a. A probabilistic algorithm for robust interference suppression in bioelectromagnetic sensor data. Stat Med 26, 3886–3910], which separates evoked or event-related source activity from ongoing spontaneous background brain activity. Both algorithms compute an optimal weighting of these TBFs at each voxel to provide a spatiotemporal map of activity across the brain and a source image map from the likelihood of a dipole source at each voxel. We explicitly model, with two different robust parameterizations, the contribution from signals outside a voxel of interest. The two models differ in a trade-off of computational speed versus accuracy of learning the unknown interference contributions. Performance in simulations and real data, both with large noise and interference and/or correlated sources, demonstrates significant improvement over existing source localization methods

    Hippocampal-Prefrontal theta oscillations support memory integration

    Get PDF
    Integration of separate memories forms the basis of inferential reasoning—an essential cognitive process that enables complex behavior. Considerable evidence suggests that both hippocampus and medial prefrontal cortex (mPFC) play a crucial role in memory integration. Although previous studies indicate that theta oscillations facilitate memory processes, the electrophysiological mechanisms underlying memory integration remain elusive. To bridge this gap, we recorded magnetoencephalography data while participants performed an inference task and employed novel source reconstruction techniques to estimate oscillatory signals from the hippocampus. We found that hippocampal theta power during encoding predicts subsequent memory integration. Moreover, we observed increased theta coherence between hippocampus and mPFC. Our results suggest that integrated memory representations arise through hippocampal theta oscillations, possibly reflecting dynamic switching between encoding and retrieval states, and facilitating communication with mPFC. These findings have important implications for our understanding of memory-based decision making and knowledge acquisition

    Brain source imaging: from sparse to tensor models

    Get PDF
    International audienceA number of application areas such as biomedical engineering require solving an underdetermined linear inverse problem. In such a case, it is necessary to make assumptions on the sources to restore identifiability. This problem is encountered in brain source imaging when identifying the source signals from noisy electroencephalographic or magnetoencephalographic measurements. This inverse problem has been widely studied during the last decades, giving rise to an impressive number of methods using different priors. Nevertheless, a thorough study of the latter, including especially sparse and tensor-based approaches, is still missing. In this paper, we propose i) a taxonomy of the algorithms based on methodological considerations, ii) a discussion of identifiability and convergence properties, advantages, drawbacks, and application domains of various techniques, and iii) an illustration of the performance of selected methods on identical data sets. Directions for future research in the area of biomedical imaging are eventually provided

    Sparsity enables estimation of both subcortical and cortical activity from MEG and EEG

    Get PDF
    Subcortical structures play a critical role in brain function. However, options for assessing electrophysiological activity in these structures are limited. Electromagnetic fields generated by neuronal activity in subcortical structures can be recorded noninvasively, using magnetoencephalography (MEG) and electroencephalography (EEG). However, these subcortical signals are much weaker than those generated by cortical activity. In addition, we show here that it is difficult to resolve subcortical sources because distributed cortical activity can explain the MEG and EEG patterns generated by deep sources. We then demonstrate that if the cortical activity is spatially sparse, both cortical and subcortical sources can be resolved with M/EEG. Building on this insight, we develop a hierarchical sparse inverse solution for M/EEG. We assess the performance of this algorithm on realistic simulations and auditory evoked response data, and show that thalamic and brainstem sources can be correctly estimated in the presence of cortical activity. Our work provides alternative perspectives and tools for characterizing electrophysiological activity in subcortical structures in the human brain

    Technique de parcellisation et de localisation des sources cérébrales à partir des signaux MEG

    Get PDF
    Ce travail consiste au développement d'une technique de résolution du problÚme inverse concernant la localisation de l'activité neuro-cérébrale à partir des données MEG (Magnétoencéphalographie). Cette technique se base sur la parcellisation sélective des sources du modÚle corticale afin d'améliorer la régularisation du problÚme inverse, ensuite procéder à sa résolution. La parcellisation sélective est basée sur deux principes; la pré-localisation des sources et la formation des parcelles à partir des sources sélectionnées. Pour la pré-localisation des sources on exploite la technique MSP (Multivariate Sources Prelocalisation) qui permet d'estimer le degré de l'activation des sources. Pour la sélection des sources on utilise la technique de test d'hypothÚse FDR (False Discovery Rate) qui permet de définir un seuil de sélection sur les informations de pré-localisation des sources. AprÚs la parcellisation sélective, on procÚde à la résolution du problÚme inverse en exploitant la technique LCMV (Linearly Constrained Minimum Variance) adaptée pour un filtrage spatial sur des parcelles. Les résultats obtenus montrent que cette technique permet de localiser les sources avec une bonne sensibilité et spécificité. Il est aussi important de mentionner que cette technique est modulaire; ainsi, on peut exploiter un module séparément des autres. Par exemple, on peut combiner la technique de parcellisation sélective avec la technique MEM (Maximum Entropy Method) (Amblard C 2004)

    Spatio-temporal analysis in functional brain imaging

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 119-137).Localizing sources of activity from electroencephalography (EEG) and magnetoencephalography (MEG) measurements involves solving an ill-posed inverse problem, where infinitely many source distribution patterns can give rise to identical measurements. This thesis aims to improve the accuracy of source localization by incorporating spatio-temporal models into the reconstruction procedure. First, we introduce a novel method for current source estimation, which we call the l₁l₂-norm source estimator. The underlying model captures the sparseness of the active areas in space while encouraging smooth temporal dynamics. We compute the current source estimates efficiently by solving a second-order cone programming problem. By considering all time points simultaneously, we achieve accurate and stable results as confirmed by the experiments using simulated and human MEG data. Although the l₁l₂-norm estimator enables accurate source estimation, it still faces challenges when the current sources are close to each other in space. To alleviate problems caused by the limited spatial resolution of EEG/MEG measurements, we introduce a new method to incorporate information from functional magnetic resonance imaging (fMRI) into the estimation algorithm.(cont.) Whereas EEG/MEG record neural activity, fMRI reflects hemodynamic activity in the brain with high spatial resolution. We examine empirically the neurovascular coupling in simultaneously recorded MEG and diffuse optical imaging (DOI) data, which also reflects hemodynamic activity and is compatible with MEG recordings. Our results suggest that the neural activity and hemodynamic responses are aligned in space. However, the relationship between the temporal dynamics of the two types of signals is non-linear and varies from region to region. Based on these findings, we develop the fMRI-informed regional EEG/MEG source estimator (FIRE). This method is based on a generative model that encourages similar spatial patterns but allows for differences in time courses across imaging modalities. Our experiments with both Monte Carlo simulation and human fMRI-EEG/MEG data demonstrate that FIRE significantly reduces ambiguities in source localization and accurately captures the timing of activation in adjacent functional regions.by Wanmei Ou.Ph.D
    corecore