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Abstract—It is of great importance for intraoperative 

monitoring to accurately extract somatosensory evoked potentials 
(SEPs) and track its changes fast. Currently, multi-trial 
averaging is widely adopted for SEP signal extraction. However, 
because of the loss of variations related to SEP features across 
different trials, the estimated SEPs in such a way are not suitable 
for the purpose of real-time monitoring of every single trial of 
SEP. In order to handle this issue, a number of single-trial SEP 
extraction approaches have been developed in the literature, such 
as ARX and SOBI, but most of them have their performance 
limited due to not sufficient utilization of multi-trial and 
multi-condition structures of the signals. In this paper,   a novel 
Bayesian model of SEP signals is proposed to make systemic use 
of multi-trial and multi-condition priors and other structural 
information in the signal by integrating both a cortical source 
propagation model and a SEP basis components model, and an 
Expectation Maximization (EM) algorithm is developed for 
single-trial SEP estimation under this model. Numerical 
simulations demonstrate that the developed method can provide 
reasonably good single-trial estimations of SEP as long as 
signal-to-noise ratio (SNR) of the measurements is no worse than 
-25dB. The effectiveness of the proposed method is further 
verified by its application to real SEP measurements of a number 
of different subjects during spinal surgeries. It is observed that 
using the proposed approach the main SEP features (i.e. 
latencies) can be reliably estimated at single-trial basis, and thus  
the variation of latencies in different trials can be traced, which 
provides a solid support for surgical intraoperative monitoring. 

Index Terms—Somatosensory evoked potential (SEP), 
single-trial, cortical source, SEP latency, regions of interest (ROI), 
universal template, Bayesian model, expectation maximization 
(EM), maximum likelihood (ML), log-likelihood.  

I. INTRODUCTION 

OMATOSENSORY Evoked Potential (SEP) is a brain 
electrical response elicited by stimulation of the median 

nerve, common peroneal nerve and posterior tibial nerve [1]. 
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SEP can be utilized to diagnose neurological disease which 
refers to the dysfunction of peripheral nerve, plexus, spinal 
root, spinal cord, brain stem and primary somatosensory 
cortex [2]. The acquisition of SEP depends on the signal 
collection during intra-operative SEP monitoring, which is 
non-invasive and applicable to any surgical level [3]. 
However, because of the large magnitude of background 
ongoing EEG, the SNR of directly obtained SEP signals is so 
low (-20 dB, even -30 dB) that it is difficult to observe the 
features of SEP [4].  

The across-trial averaging in the time domain is the most 
widely used extraction approach [5,6]. The averaging 
procedure can recover the clean SEP, which describes the total 
effect of scalp potentials related to the onset of sensory event 
in a series of trials. But the prerequisite is that SEP must be 
stationary (e.g. The latency and morphology of SEPs are fixed 
generally in different trials) and unaffected by background 
EEG. While in some real cases of monitoring, SEP is not 
stable (e.g. Latencies are variable), then the averaging method 
is unable to generate reliable results reflecting real SEP 
features (e.g. latency and amplitude) in different trials. Thus, 
an approach that can extract accurately pure SEP in every 
single trial is needed. 

In recent years, several approaches of single-trial detection 
of pure ERP (Event-related potentials) signals including SEP 
have been developed. Rossi [7] applied Auto Regressive filter 
with eXogenous input (ARX) to track SEPs’ fast inter-trial 
changes emphasizing the relations between waveform 
variability and surgical maneuvers. Hu [8] proposed an 
approach based on wavelet filtering and multiple linear 
regression, which can promote the SNR of original single-trial 
ERP and detect the variability of the morphology, peak 
latencies and amplitudes corresponding to pure ERP signals. 
Hu [9] also explored a space-time-frequency filter combining 
probabilistic independent component analysis (PICA) with 
wavelet filtering in order to extract precisely the particular 
sensory modalities in different trials. Furthermore, since that 
the extraction of clean SEP can be regarded as an inverse 
recovery problem from collected SEP (observable signals), a 
series of blind source separation (BSS) methods may be 
adopted. Liu [10] has utilized several typical BSS approaches 
on SEP extraction tasks and compared the performances of 
these methods. In sum, second-order blind identification with 
six covariance matrix (SOBI6) is considered as an appropriate 
algorithm to handle SEP extraction from noise background. 
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All the above approaches belong to multi-linear 
algorithms, which can well exploit the spatial structure of 
multichannel ERP. However, such methods do not make use 
of the multiple-trial, multiple-condition structures or some 
standard features of ERP/EEG [11]. In addition, the 
prerequisite of executing these algorithms is that background 
EEG signals are uncorrelated and isotropic, which is often 
invalid in practice [12]. Besides, from the view of statistical 
inference, the modes corresponding to pure ERP may meet the 
risk of missing regions of significant probability mass [13]. 
Motivated by dealing with these disadvantages, Wu [11] 
constructed a hierarchical Bayesian model to utilize the 
inter-trial and inter-condition structure of EEG. In addition, 
Wu [12] proposed a specific Bayesian integrated statistical 
framework regarding some stereotyped ERP components on 
the scalp. The two approaches may provide comparatively 
reliable estimations of ERP features, but only statistical 
characteristic of original noisy ERPs is considered without 
combining the physiological generation mechanism of ERP. 
While in this paper, we integrate the cortical source potentials’ 
effect and the basis waveforms of prior pure SEP features 
(extracted from a universal standard SEP template) into our 
methodology framework and propose a new Bayesian 
hierarchical model, in which SEP is denoted as the linear 
combination of cortical source signals. In addition, the source 
activities are regarded as an entire effect of several basis 
components of SEP features. So our model further simulates 
the physiological generation mechanism of SEP. Then based 
on the novel Bayesian framework, we deduce an innovative 
EM (Expectation Maximization) algorithm in order to give the 
estimation of pure SEP for every single trial. The new 
approach is applied to a series of synthetic and real SEP data. 
Finally, the results indicate that SEP latencies (an important 
index of SEP features) can be estimated well. 

The organization of this paper is shown in the following. 
Section 2 describes our Bayesian model and the specific EM 
approach in detail. Section 3 shows the estimation results of 
some synthetic data with different SNRs. Section 4 displays 
the estimation results of pure SEP signals originated from real 
spinal surgeries. Section 5 provides the discussion related to 
our novel approach and SEP estimation. In the end, Section 6 
gives the total conclusion. 

 

II. METHOD 

A. Problem Formulation 

The physiological basis of ERP shows that scalp ERP 
signals come from composite effect of activation potentials 
related to some particular cortex regions under specific 
stimulations (e.g. pain stimulus in SEP). A simplified model 
of such mechanism is to consider EEG as linear combination 
of several cortical source potential signals corresponding to 
particular dipole sources or cortical source regions of interest 
(ROIs). Such model has been adopted widely in the literature 
[14]. For example, in [15] scalp potential signals are modeled 
as the multiplication between source-scalp forward fields and 
source activity potentials with a particular time dynamic 
relationship, and such model is adapted in this paper for the 
purpose of single-trial estimation. In order to represent 

single-trial variation about SEPs, we decompose the cortical 
source activities as a linear combination of the basis 
waveforms related to SEP features. 

 Denote the spatial distribution of cortical activities at time 

n as n . According to linear conductivity from the cortex to 

the scalp, the scalp EEG measurement ny can be modeled as 

follows, 

 n ny H ,                  (1) 

where H is the leadfield matrix with each column representing 
the conductivity from a specified point on the cortex to the 
scalp. For ERP study such as SEP in this paper, we are 
interested in the cortical activities related to only the ERP 
under consideration, i.e., only a small number of ROIs on the 
cortex will be considered as the sources of SEP and all other 
regions on the cortex will be considered to contribute to 
background EEG in the context of SEP study. Denote part of 

H  and n  corresponding to the mth ROI as mH and m
n , 

respectively. In practice, mH  is often a low-rank matrix 

reflecting an ill-conditioning in the forward physics, so it is 
difficult to see all spatial degrees of freedom related to the 
measured SEP [16]. So, for the purpose of dimension 

reduction we make an approximation 
TK K K

m m m mH U Σ V
using the leading K components of the singular value 

decomposition (SVD) of mH . Further simplifying
m m m
n nx  , and denoting K K

m m mC U Σ and 
TK m

m m  V , assuming we have a total of M ROIs, then 

according to equation (1) we have 

1

M
m

n m m n n n n
m

x


  y C v CΛx v , (2) 

where ~ ( , )n Nv 0 R is a vector of normal distribution with 

covariance matrix R , representing a combination of model 
error and background EEG that have sources other than the 

ROIs,  1 MC C C , 
1 0

0 M

 
 

  
 
 

λ

Λ

λ

 , and 

1 TM
n n nx x   x  . In order to represent trial-to-trial 

variation of SEP, cortical SEP nx  is further decomposed by 

a set of basis components ns  as follows 

n n n x As w ,    (3) 

where A  represents the decomposition scores and 

~ ( , )n Nw 0 Q  is a random vector of normal distribution 

with covariance matrix Q , representing decomposition error.   
Accordingly, the overall hierarchical Bayesian model of 

SEP measurements is described as follows: 
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~ ( , ),

~ ( , ).

n n n

n n n

n

n

N

N

 
 

y CΛx v

x As w

v 0 R

w 0 Q

               (4) 

In this model, ny
 
is the known measured scalp EEG signal, 

ns  is the basis set that should be designed from SEP template, 

and C is the matrix which is calculated from the leadfield 

matrix H  needing to be determined from a head conduction 
model, while A ,Λ , R and Q  are model parameters that 
will be estimated using an EM algorithm developed later in 
this paper. 

B. Calculation of leadfield matrix C  

Based on a standard 3-sphere head model, the forward field 
from each cortical mesh point to the scalp EEG electrode 
positions can be calculated by surface integral [17], resulting 
as a column of the leadfield matrix H , and in this paper such 
calculation is performed by Fieldtrip toolbox [18] embedded 
in the SPM software [19]. To determine the ROIs related to 
SEP, we use an empirical Bayesian method included in SPM 
to generate cortical source imaging based on scalp SEP signals 
that are estimated from the standard multi-trial averaging of 
the measured scalp EEG signals under the SEP experiments.  

 
 

Fig. 1.  2 selected cortical source regions generating SEP signals 

 
Fig. 1 displays possible cortical SEP sources estimated by 
SPM from a subject’s scalp SEP. According to the particular 
SEP experiment (stimulating electrodes were placed over the 
posterior tibial nerve at ankle), we have the prior knowledge 
of possible cortical source positions (postcentral gyrus and 
cingulate sulcus[32]). In addition, the number of cortical 
source regions should be smaller than EEG channel number 

because of the matrix singularity of 
1 1( )T

yy
 C R C  in

1 1 1( )T
yy yy
  W R C C R C

 
of Equation (14). Then we choose 

2 main cortical regions, referring to postcentral gyrus and 
cingulate sulcus, which are also the two most activated regions 
at 40ms (time of the P37-N45 complex of the SEP). The two 
areas, marked with red rectangles in Figure 1, are chosen as 

the two ROIs in this paper. Accordingly, 1H  and 2H  

corresponding to the two ROIs, respectively, are extracted 

from H , and then 1C  and 2C  are obtained from SVD 

approximation described previously, and finally we get 

 1 2C C C .  In the SVD of 1H  and 2H , a good 

approximation can be obtained using at most 4 leading 

components ( 4K  ) when the area of ROI is 590 2mm or 

less as in our situation [20]. In this study, 1C  occupies 85.65% 

of total variance of H1, while 2C  holds 72.62% related to 

H2. 
 

C. Design of SEP basis set ns  

The basis set ns
 

is designed as to be able to represent the 

basic waveform of SEP, especially the P37 and N45 
components of traditional SEP [30], and trial-to-trial 
variations of the latencies of the two components. We design 
such a basis set from a SEP template, which can be either a 
multi-trial averaged SEP waveform from the subject’s own 
scalp EEG, or a universal one that is common for all subjects. 
For the ease of application, a universal SEP template is 
adopted in this paper, as shown in Fig. 2.  

 

 
Fig. 2. Universal SEP template 

 

With the given SEP template, the whole process of 
building up the basis set is described as follows. At first, two 
segments of the SEP template are extracted, with Segment I 
covering the period 30-50ms and Segment II covering 
50-70ms. Then a series of time-delayed version of each 
segment are obtained, where time delay is 0.4k ms with 
k=-15,-14, … ,-2,-1,0,1,2,…,14,15, as shown in Fig 3a and Fig 
3b. These set of signals will be able to cover a latency 
variation ranging from -6ms to 6ms. Since these total of 62 
signals shown in Fig 3a and 3b are highly correlated, we use 
their leading 3 principal components (2 for Segment I and 1 
for Segment II), which cover more than 70% of the total 

variation of 2 signal sets, as the final basis set ns  for the 

purpose of model simplification, as shown in Fig 4. 
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(a). 

 
(b).  

 
 

Fig. 3. (a). Delayed version of Segment I of the SEP template (b). Delayed 
version of Segment II of the SEP template 
 

 

Fig. 4  Final basis set ns  
 

D. EM Algorithm for model parameter estimation 

With scalp EEG signals ny measured, SEP basis set ns  

designed, and leadfield matrix C determined, our final step is 
to estimate the set of unknown model parameters in Eq. (4), 

1 2, ( , ,..., ), ,MA Λ λ λ λ R Q , denoted as variable set  . In 

the following we develop an Expectation Maximization (EM) 
algorithm [21] for a Maximum Likelihood (ML) estimation of

 . The development of our EM algorithm for our SEP model 
is in some sense similar to that for the state-space model (SSM) 
described in [22]. 

To develop the EM algorithm, we first get the likelihood 
and log-likelihood of our model as follows. 

 
Likelihood: 

1

1

( , ; ) ( | ) ( )

( , ) ( , )

N

n n n
n

N

n n
n

P P P

N P













Y X θ y x x

CΛx R As Q

   (5) 

 
Log-likelihood: 

1

1 1
log ( , ; ) [ log | | log | |

2 2

N

n

P


  Y X θ R Q  

11
( ( )( ) )

2
T

n n n ntr   R y CΛx y CΛx  

 11
( ( )( ) ]

2
T

n n n ntr   Q x As x As              (6) 

 
1) E-step 

In the E-step of our EM algorithm, the conditional 
expectation of log-likelihood, given an estimate of the model 

parameter in the previous (rth) iteration denoted as rθ , is 
shown as follows. 

| ,
( | ) {log ( , ; )}r

rq E p
X Y θ

θ θ Y X θ  

log | | log | |
2 2

N N
  R Q  

1 1( ) ( )
2 2

T TN N
tr tr    R CΛ Λ C Q  

1

1

1
( ) ( )

2

N
T

n n n n
n





   y CΛμ R y CΛμ      

1

1

1
( ) ( )

2

N
T

n n n n
n





   μ As Q μ As ,     (7) 

where { | }n n nEμ x y  and cov{ , | }n n n  x x y are 

calculated based on the conditional distribution proposition of 
a normal random vector given another dependent normal 
random vector described in [23], as 

,
 

1
11 12 22 21cov{ , | }n n n

     x x y  , where 

11 cov{ , } { }T
n n n nE   x x w w Q

, 

12 cov{ , } ( )T
n n  x y Q CΛ

,
 

22 cov{ , } ( ) ( )T
n n   y y CΛ Q CΛ R

, 

21 cov{ , }n n  y x CΛQ
, 

, 
. 

 

1
12 22{ | } ( )n n n x n yE      μ x y μ y μ

{ }x n nE μ x As { }y n nE μ y CΛAs
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2) M-step 
In the M-step of our EM algorithm, the partial derivatives 

of each variable   with respect to q  are derived and set as 

0, resulting in the following Equations (8) – (11). 

1 1

1 1
0 ( )

N N
T T T

n n n n
n n

q

N N 


     

  Q μ μ A s s A
Q

 

1 1

1 1
( ) ( )

N N
T T T

n n n n
n nN N 

  A s μ μ s A    (8) 

1

1 1

1 1
0 ( )( )

N N
T T

n n n n
n n

q

N N


 


  

  A μ s s s
A         (9) 

1 1

1 1
0 ( )

N N
T T

n n n n
n n

q

N N 


   

  R y y CΛ μ y
R  

1

1

1
( )

1
( )

N
T T T

n n
n

N
T T T

n n
n

N

N







  





y μ Λ C

CΛ μ μ Λ C

     (10) 

                                                               

(11) 
Different from Equations (8) and (9) that provide an 

estimate for Q and A , respectively, Equations (10) and (11) 

cannot provide explicit expression forΛ and R  since they 
are coupled in these two equations. A way of decoupling is to 
give an approximation of R  as following as in [15], 

1

1 1

1 1
( )

N N
T T T T

n n n n n n n n
n nN N



 

   R y y y μ Σ μ μ μ y , (12) 

and then calculate Λ  according to Eq. (11). While Eq. (12) 
can be further simplified into Eq. (13) based on Woodbury 

matrix identity --- 
1 1

1 1
1

( )
1

T
T n n

n n T
n n

 
 

  

Σ μ μ Σ

Σ μ μ Σ
μ Σ μ

[24]. 

1
1

1

1

TN
n n
T

n n nN 



 y y

R
μ Σ μ

         (13) 

 
3) Initialization 

To complete our EM algorithm, we need to set initial values 
for the model parameters. While A and Q can be given 

randomly, R and Λ can be better initialized through solving 
a linearly constrained minimum variance (LCMV) problem. 

If we have a matrix W with T W C I , from Eq. (2) we 

have a rough estimate of nx  as T T
n n n W y Λx w v , 

and we want to minimize the error 
1

( )
N

T T
n n

n
 tr W v v W by 

choosing W properly according to the following optimization 

1

{ ( ) }

. .

min
N

T
n n

nW

Ts t





tr W y y W

C W I

 ,            (14) 

which can be solved through the LCMV beamformer [25] as 

1 1 1( )T
yy yy
  W R C C R C , where 

1

1 N
T

yy n n
nN 

 R y y  and 

T T
yy xxW R W ΛR Λ .  

Then we set the initial value of R and Λ  as follows. 
1 1{ ( ) }T T

yy yy
  R diag R C C R C C ,  

iλ = the first eigenvector of ( )T i
yyW R W . 

 
4) Convergence criterion 

Convergence of the EM algorithm can be considered as 
achieved if the relative change of log-likelihood drops below a 

small threshold, for example 510 .  The log-likelihood in our 
model can be determined as 

1

1

1

log ( ; ) log ( ; ) log| |
2

1
[( ) ( )

2

( )] constant

N
T T

n
n

N
T T T

n n
n

n n

N
P P







  

  

 





Y θ y θ CΛQΛ C R

y CΛAs CΛQΛ C R

y CΛAs (15)

 

  
5) Complete EM algorithm 

In summary, our EM algorithm for model parameter 
estimation can be described as below. 
 
(1) Initialization 

1 1

1 1

th

0

0

0

0

1 1
Let ,  ,  ( ) ,  

 is the   diagonal block of . Make:

 largest eigenvector of ,

{ },

( , ),  sources,  bases.

( (

N N
T T T

yy n n ss n n yy
n n

i

i
i

T
yy

N N

i K K

randn M L M L

rand M





 

 

  





 





 R y y R s s D C R C

D D

λ D

R diag R CDC

A

Q diag


 ,1)),  is determined by SNR of .n y

  
0

n nx A s     

(2) EM iteration ( r : the iteration number)

 

21

22 21 11

:

, , , ,

,

r r r
x n y x

T r

   

  


  

E - step

B CΛ μ A s μ Bμ BQ

B R Q

 

1 11 1,1 1 ,1
1 ,11 1 , 1 ,

1 1, 1 , 1
1 , , ,

0
i

TT T M
y xx x M x x

T M T M M T M
M x x M M x x M M y x

q

rr r

r r r

 

  


 



   
        

        

λ

C RλC R C C R C

C R C C R C λ C R
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1 1
21 22 21 21 22

1

1 1

1 1

1 1 1 1 1

, ( )

1
Define: , ,

1 1
,

update

,
T T

r T T
n x n y

N
T

n n xx
n

N N
T T

y n n s n n
n n

r
s ss

r r r r T r
xx ss s s

N

N N

 

 



 

 



 

 

    

    

  

 



   

     

 

 

Q μ μ y μ

R μ μ R R

R μ y R μ s

M - step :

A R R

Q R A R A A R R A

 

 
(3) Check convergence and output 

If 
1

5(log ( ; )) (log ( ; ))
10

(log ( ; ))

r r

r

P Y P Y

P Y

 





 , (

log ( ; )P Y   given in Equation (15)), output:  
1 1 1 1 1 1

1 2( ,..., ) , , ,r r r T r r r
M

     λ λ λ A R Q ; 

else, return to step (2) and continue the EM iteration.
 

 

III. SYNTHETIC SEP DATA EXPERIMENT 

The synthetic SEP data is generated based on the EEG 
generation model through the effect of cortical leadfield 
potentials (Equation (10) and (11) in [15]). The acquisition of 
EEG conforms to a distributed source model [26]. SNR is 
defined in Equation (16). 

, ,1 1 1
10

, ,1 1

tr{ ( )( ) }
10 lo g

{ ( )( ) }

J N M i i i i T
n j n jj n i

J N T
n j n jj n

SNR
tr

 
  

 


  

 
H H

v v
  

(16) 
We provide 6 cases of synthetic data, which are respectively 
related to the SNR of observed data (synthetic SEP data) as 
-30 dB, -25 dB, -20 dB, -10 dB, -5 dB, 0 dB. The SNRs fit 
different cases of real collected SEP signals [27]. Referring to 
each SNR case, 100 teams of data are generated. 

We adopt our Bayesian model and the novel EM algorithm 
to estimate pure synthetic SEP signals from the generated 
synthetic SEP data corresponding to various noise levels. The 
evaluation of estimation effects depends on calculating the 
Pearson correlation coefficient between the presumed pure 
synthetic SEP data and the estimated clean synthetic SEP 

signal ( nCΛx  in Equation (1)). Fig. 5 shows the total 

estimation situations of all synthetic SEP data corresponding 

to different SNR cases. From the figure, we know that the 
extracted synthetic SEPs are reasonable when SNR is larger 
than -20 dB, because the mean Pearson correlation coefficient 
values are greater than 0.8 related to these cases. In contrast, 
the cases of SNRs as -30 dB and -25 dB can only respectively 
give the mean correlation values as 0.4 and 0.5, which 
indicates a terrible estimation effect. In addition, the standard 
deviations corresponding to SNRs as -20 dB, -10 dB, -5 dB 
and 0 dB are smaller than those for SNRs as -30 dB and -25 
dB. Thus, our EM approach can give more stable estimations 
referring to the cases of SNRs larger than -25 dB. Based on 
Fig. 5, we observe that the SNR as -20 dB can be regarded as 
the threshold of the feasible SEP noisy data adaptive to our 
Bayesian model and EM algorithm. When noises follow 
Gaussian distribution with SNR -20 dB , our approach 
has the capability of generating the feasible estimation of pure 
SEP signals. 

 
Fig. 5. Estimation evaluation of synthetic SEP data for different SNR cases. 
Each column displays Pearson correlation coefficient values between 
presumed clean synthetic SEP data and estimated pure SEP signals related to 
100 teams of synthetic data in a particular SNR case. 

 

IV. REAL SEP DATA EXPERIMENT 

In our task, the clinical SEP data is originated from the 
spinal surgery. Referring to elicit SEP signals, a pair of 
stimulating electrodes was placed over both sides of subjects’ 
posterior tibial nerve at ankle [28]. The time period of 
collecting SEP is 100 ms with the sampling rate as 5000 Hz. 
There exist 6 subjects. Corresponding to each subject, the 
measurement of more than 100 trials is executed. We give the 
average of SEPs related to all trials and consider it as the 
reference of pure SEP signals for the purpose of verification. 
Then our model and EM approach are applied to all 
single-trial cases. Referring to the feedback of activating 
crura, SEP is more evident in Channel Cz than that in other 
channels. So we intend to care the estimated signals of 
Channel Cz. The SEP latency we concern is the time period 
from the starting point (0 ms) to the minimum wave trough 
(P-peak) point. Based on clinical guideline for short-latency 
SEP [31], average SEP from 300 trials was used as the 
standard SEP for evaluation of single trial SEP extraction. 
Notch filter is applied to the EEG signals to reduce power line 
noise of 50Hz in frequency, and an additional low-pass filter is 
used to reduce the harmonics (mainly 100Hz) to better fit the 
Gaussian noise assumption in our model. However, results 
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show that such a low-pass filter has very little effect on the 
estimation of our proposed EM algorithm.  

Fig. 6 shows the estimation of pure SEP signal in a 
single-trial test (Trial 216) corresponding to Subject 1. The 
first sub-figure gives the original SEP signal of Channel Cz in 
Trial 216. The second shows the estimated pure SEP signal in 
this trial. The third one is the average of original SEP signals 
related to all trials (300 trials). The mean values of 
multiple-trial SEPs can be regarded as the reference and the 
upper bound of estimated SEP. In the first sub-figure, we see 
nothing about SEP features. Regarding the second sub-figure, 
we observe that the latency of estimated SEP signal is around 
33 ms, which is nearby that of average SEP signal (34 ms) 
shown in the third sub-figure. Thus, referring to this trial, our 
approach gives a reasonable estimation of the SEP latency. In 
addition, our method gives the same waveform estimation as 
that of average-trial SEP signals during the SEP feature 
period, which is the interval from 30 ms to 60 ms. So in this 
trial, the SEP features are extracted accurately. 

 

 
Fig. 6. Comparison of original SEP signal, estimated pure SEP of single-trial 
(Trial 216) based on universal feature template of SEP and the average SEPs 
from 300 trials of Channel Cz corresponding to Subject 1 

 

In order to check the total estimation effect of latencies 
related to the extracted pure SEPs, we display the potential 
amplitudes of estimated and original SEPs of all trials in one 
figure. The function of ERP image in EEGLAB [29] is 
adopted to plot 2-D images of amplitudes of SEP potentials, 
which can show the SEP latencies in all trials accurately and 
smoothly. Fig. 7 is such a smoothed 2-D colormap of potential 
amplitudes of Subject 1’s SEPs in 522 trials. Dark blue points 
represent the minimum wave troughs, while bright red parts 
indicate the maximum wave peaks. Referring to calculate 
troughs and peaks, we set a range between 30 ms and 50 ms, 
which belongs to the area of obligated SEP waveform. Then in 
this region, find out the minimum time point as a trough and 
the maximum time point as a peak. Based on Fig. 7, we notice 
that it is not evident that there exist particular regions of wave 
troughs in the left sub-figure (original SEP), while the right 
sub-figure (estimated SEP) clearly displays an area of wave 
troughs appearing in the interval from 30 ms to 40 ms. The 
entire effect of amplitudes is summarized by the waveform 
under the colormap. We see that the integrated waveform in 
the right sub-figure displays the main SEP features. The 
average estimated SEP latency is located nearby 34 ms, which 
is marked by a vertical line. The composite estimation result is 

approximate to the average-trial SEP (upper bound of 
estimated SEP) shown in the third sub-figure of Fig. 6. In 
addition, the results lie in the latency range of identifiable P37 
– N45 wave, which is one of features of traditional SEP wave 
[30]. Therefore, our approach can give a totally feasible and 
stable estimation of SEPs in all trials. 

 
Fig. 7. Smoothed colormap of original (Left panel) and estimated SEPs (Right 
panel) of Channel Cz based on the universal feature template of SEP signal 
related to Subject 1 

 

 
Fig. 8. Colormap of the potential amplitudes of original (Left panel) and 
estimated SEP (Right panel) related to Channel Cz of Subject 1 based on the 
universal template of SEP feature signal 

 

With respect to find out the change tendency of latencies in 
all trials, we draw a colormap showing the specific wave 
troughs and peaks of potential amplitudes, which are displayed 
in Fig. 8. Based on this figure, we observe that the left panel 
(original SEPs) almost provides no information about the 
latencies, while the right panel clearly reflects the time points 
of wave troughs (latencies) of estimated SEPs in different 
trials. It is evident that there exist some variations 
corresponding to latencies in various trials. Thus, the 
diversification of latencies related to the whole trials is 
displayed evidently. Furthermore, Fig. 8 demonstrates that our 
approach can trace the change of SEP latencies among 
multiple trials. With respect to the scale difference between 
Fig. 7 and Fig. 8, it is caused by smoothness. Fig. 8 is our 
original result. Fig. 7 is a smoothed result processed by a 
smooth function in EEGLAB software. . Smoothness is 
realized through moving-average of potentials across several 
trials. The major procedures refer to split total trials into 
several partitions and each partition’s potential averaging 
within the regions of moving non-rectangular windows. The 
purpose of smoothness is to emphasize trough and peak 
regions from the view of total trials. Through averaging 
operations, the values of previous peaks and troughs are 
replaced by means across the selected trials. So the scale of 
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smoothed estimated SEPs (Fig. 7) is lower than those without 
smooth operations (Fig. 8).  

 
Table 1. Relative errors of average-trial estimated SEPs and single-trial 

estimated SEPs 
Subject  Trial 

number 
Relative error 
(average) 

Relative 
error 
(single- 
trial)  

Standard 
deviation  
(single-trial) 

1  100 0.0116 0.0349 0.0228 
2  100 0.0166 0.0392 0.0235 
3  100 0.0116 0.0407 0.0246 
4  100 0.0243 0.0536 0.0352 
5  300 0.0058 0.0277 0.0261 
6  100 0 0.0259 0.0114 

 
Referring to the verification of total effects of extracted 

pure SEPs in multiple trials, we calculate the relative error ( , 
defined in Eq. (17)) between the latency of average-trial 
original SEP and that of single-trial estimated SEP. 

a u

a

L L

L



                (17) 

In Eq. (17), uL  is the latency of average-trial estimated SEP 

based on the universal template of SEP feature signal, while 

aL  is the latency of average-trial original SEP signal. 

Corresponding to every subject, we extract the results in 
different trials of data and calculate their relative errors ( ) of 
average-trial estimated SEP. The results are shown in 3rd 
column of Table 1. We know that the relative errors of 6 
subjects are lower than 0.025. Specifically, Subject 6 gives the 
zero-error. So the latency of entire extracted SEPs based on a 
universal SEP template is almost the same as that of 

average-trial original SEP. In addition, if uL  is the latency of 

single-trial estimated SEP signal, Eq. (17) defines single-trial 
relative error. Then we calculate 6 subjects’ single-trial 
relative errors and gives the statistic of mean and standard 
deviation related to each subject. The results are provided in 
4th and 5th columns of Table 1. We observe that the means of 
single-trial relative errors for 6 subjects are lower than 0.055. 
The standard deviations are around 0.02. Therefore, our 
approach can provide a reasonable estimation of pure 
single-trial SEP from the view of total trials. 

V. DISCUSSION 

The model of generating SEP is originated from the 
generation model of VEP in [15]. We modify the state 
equation (2nd equation in our model) through utilizing the 
basis components and regulatory weight matrix to fit the 
source activities. It is a rough approximation of the 
physiological generation of SEP. 

The polarity of traditional P37-N45 waveform related to 
SEP is opposite to that of ERP. P37 of the traditional SEP 
refers to a negative peak, while N45 marks a positive peak 
[30]. All of figures corresponding to the estimated SEP 
waveforms are consistent with the marks on P37 and N45 of 
the traditional SEP. 

The basic components ( ns  in Eq. (1)) may generate some 

impacts to the estimated pure SEP signals. In Section IV, 
corresponding to each subject, our approach utilizes a standard 
SEP feature signal (wave trough point is located at 37 ms) as 

the universal template to calculate the values of ns  (details 

shown in Section II.B 2)). Here we make use of each subject’s 
average-trial SEP as the basis component template of their 
own. Then EM is applied to 6 subjects’ data in Section IV.  

Through comparing latencies, we find that there exist only 
small discrepancies. So the individual SEP template can 
provide the similar estimation solution as that upon the 
universal SEP template. Therefore, the variation of the basis 
component template gives a small influence to the estimation 
of SEP latencies. 
  The leadfield matrix (C) also gives a large influence related 
to the estimated SEP. Based on our model (Equation (1)), the 
pure SEP should be the multiplication of C, Λ  and x. Thus, 
a precise C will be a strong prior and constraint guaranteeing 
the accurate estimation of other variables. 

Referring to Gaussian noises and the influence of SNRs, we 
concern the range of suitable SNRs for our approach as SNRs 
larger than -20 dB. A large numbers of synthetic data 
experiments have given the verification in Section III. In real 
cases, if main noises follow Gaussian distribution with 
originally collected SEP signals conforming to the feasible 
SNR range, our approach can be effective to extract real SEP 
signals. 

In order to check the estimation effect of our approach (EM) 
compared to other single-trial SEP detection methods, we 
make the comparison of estimated latencies among EM (our 
approach), CSOBI, PICA and WFMLR (referred in Section I). 
We adopt the software of STEP1[32], which integrates these 
algorithms. Fig. 9 shows the single-trial estimation results 
among 4 approaches. We observe that SEP latency point (red 
framework) in Subfigure EM is nearest to that of average SEP 
(upper bound) in Fig. 6. In addition, the feature waveforms of 
estimated SEP related to 3 other approaches are far from the 
average SEP. Referring to the total estimation effect, Fig. 10 
and Fig. 11 gives the smoothed colormap of estimated SEPs 
corresponding to all trials of Subject 1 and Subject 3. We 
know that EM can provide the most stable estimation of SEP 
latencies. Referring to other subjects, we provide the statistic 
of single-trial relative estimation errors of SEP latencies in 
Table 2. Compared with Table 1, it is evident that EM can 
gain smaller relative errors than 3 other approaches involving 
all subjects. 

As a matter of fact, our proposed EM method has the same 
clear superiority for all 6 subjects under study, but due to 
space limitation, results for subjects 4-6 are not shown in the 
manuscript, and instead we compared the relative errors of 
extracted SEP signals for all 6 subjects in Table 1 of Section 
IV for our proposed method and Table 2 of Section V for the 
other 3 methods under comparison. 

Considering our algorithm’s stability across different 
subjects, we shows the subject 2 (Fig. 11’s first sub-graph) 
and 3’s estimation effect figures of SEP latencies (Fig. 12). 
From the two figures we know that the latencies of estimated 
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SEPs locate in the range between 35 ms and 45 ms. Altogether 
with Fig. 7 and 8, it shows that our algorithm can give a stable 
estimation of pure SEP across multiple subjects. 

 

 
Fig. 9. Comparison of estimated SEP in Trial 216 of Subject 1 based on 
EM, CSOBI, PICA and WFMLR (red framework: latency point) 

 

 
 
Fig. 10. Smoothed colormap of estimated SEP of Subject 1 based on CSOBI, 
PICA, WFMLR and EM 
 
Table 2. Single-trial relative errors of latencies based on CSOBI, PICA, 
WFMLR 

Subject  TRIAL 

NO. 
PICA  CSOBI  WFMLR  

1 300 0.3364 0.1630 0.3788 
2 100 0.4092 0.2578 0.4679 
3 100 0.4479 0.2311 0.4664 
4 100 0.3712 0.2694 0.3977 
5 100 0.3996 0.2263 0.4895 
6  100 0.1927 0.1488 0.3059 

 
Finally, considering the algorithm strategy of EM, EM 

approach owns the limitation of local convergence. In addition, 
as described in Section II.D, three approximations are adopted 

to decouple Λ and R in Equations 10-11 and set the initial 

value of Λ and nx
 , respectively. While a good 

initialization can help an iterative algorithm converge close to 
global optimum, the approximation we used in the proposed 
initialization strategy is still an intelligent good guess which 
should be much better than a random guess. However, 
approximation to decouple Equations 10 and 11 may indeed 

affect the EM algorithm’s converge property, but since EM is 
an iterative algorithm, if the approximation is good enough, 
the algorithm should most probably still converge to the same 
convergence point of the corresponding ideal EM algorithm, 
just with a slower convergence speed. The advantage of such 
approximations is to promote calculation convenience. 

 
 
Fig. 11. Smoothed colormap of estimated SEP of Subject 3 based on CSOBI, 
PICA, WFMLR and EM 

   
Fig. 12. Colormap of magnitudes of Subject 2’s extracted SEP 

VI. CONCLUSION 

Referring to the SEP feature extraction, we propose a 
particular Bayesian model of SEP signal generation 
considering the effects of cortical source potentials. In 
addition, a specific Expectation Maximization (EM) 
approach is proposed. Through utilizing a universal feature 
SEP signal template, our approach can fast acquire the 
accurate pure SEP estimation similar to that adopting the 
across-trial averaging (a conventional approach) in a 
single-trial level. Specially, in original collected SEP signals 
with a low SNR (-20 dB ~ -10 dB), when latencies vary in 
different trials, our approach can trace the changing tendency 
precisely and fast, which is quite important in SEP 
intraoperative monitoring. 
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