31 research outputs found

    Coordinating a Heterogeneous Robot Swarm Using Robot Utility-based Task Assignment (RUTA)

    Get PDF
    The goal of this work is the development of a task-oriented software application that facilitates the rapid deployment of multiple robotic agents. The task solutions are created at run-time and executed by the agents in a centralized or decentralized fashion. Tasks are divided into smaller subtasks which are then assigned to the optimal number of robots using Robot Utility Based Task Assignment (RUTA) algorithm. The system deploys these robots using its application program interfaces (API’s) and uploads programs that are integrated with a small routine code. The embedded routine allows robots to configure solutions when decentralized approach is adopted

    Deployment Environment for a Swarm of Heterogeneous Robots

    Get PDF
    The objective of this work is to develop a framework that can deploy and provide coordination between multiple heterogeneous agents when a swarm robotic system adopts a decentralized approach; each robot evaluates its relative rank among the other robots in terms of travel distance and cost to the goal. Accordingly, robots are allocated to the sub-tasks for which they have the highest rank (utility). This paper provides an analysis of existing swarm control environments and proposes a software environment that facilitates a rapid deployment of multiple robotic agents. The framework (UBSwarm) exploits our utility-based task allocation algorithm. UBSwarm configures these robots and assigns the group of robots a particular task from a set of available tasks. Two major tasks have been introduced that show the performance of a robotic group. This robotic group is composed of heterogeneous agents. In the results, a premature example that has prior knowledge about the experiment shows whether or not the robots are able to accomplish the task.https://doi.org/10.3390/robotics504002

    Deployment of Heterogeneous Swarm Robotic Agents Using a Task-Oriented Utility-Based Algorithm

    Get PDF
    In a swarm robotic system, the desired collective behavior emerges from local decisions made by robots, themselves, according to their environment. Swarm robotics is an emerging area that has attracted many researchers over the last few years. It has been proven that a single robot with multiple capabilities cannot complete an intended job within the same time frame as that of multiple robotic agents. A swarm of robots, each one with its own capabilities, are more flexible, robust, and cost-effective than an individual robot. As a result of a comprehensive investigation of the current state of swarm robotic research, this dissertation demonstrates how current swarm deployment systems lack the ability to coordinate heterogeneous robotic agents. Moreover, this dissertation's objective shall define the starting point of potential algorithms that lead to the development of a new software environment interface. This interface will assign a set of collaborative tasks to the swarm system without being concerned about the underlying hardware of the heterogeneous robotic agents. The ultimate goal of this research is to develop a task-oriented software application that facilitates the rapid deployment of multiple robotic agents. The task solutions are created at run-time, and executed by the agents in a centralized or decentralized fashion. Tasks are fractioned into smaller sub-tasks which are, then, assigned to the optimal number of robots using a novel Robot Utility Based Task Assignment (RUTA) algorithm. The system deploys these robots using it's application program interfaces (API's) and uploads programs that are integrated with a small routine code. The embedded routine allows robots to configure solutions when the decentralized approach is adopted. In addition, the proposed application also offers customization of robotic platforms by simply defining the available sensing and actuation devices. Another objective of the system is to improve code and component reusability to reduce efforts in deploying tasks to swarm robotic agents. Usage of the proposed framework prevents the need to redesign or rewrite programs should any changes take place in the robot's platform

    Artificial Intelligence Techniques Applied to the Remote-Controlled Aircraft Sector

    Get PDF
    Programa Oficial de Doutoramento en Tecnoloxías da Información e as Comunicacións. 5032V01[Resumen] El principal objetivo de esta Tesis Doctoral es estudiar el uso de técnicas para el control de enjambres heterogéneos de Aeronaves Pilotadas Remotamente (RPA o UAV, por sus siglas en inglés), coloquialmente conocidos como drones. Esta tesis está apoyada por tres publicaciones científicas indexadas en el sistema Journal Citation Report. Uno de ellos es el estudio de la aplicación de estas y otras técnicas en el ámbito de los enjambres de UAV. Los dos restantes proponen modelos para su aplicación en mapas simulados sin obstáculos y con obstáculos fijos. La importancia del estudio de estas técnicas para el control de enjambres de UAV demuestra que emplear un grupo heterogéneo de UAV con total libertad de movimiento permiten realizar las tareas de manera más rápida que empleando solo uno. Además, las técnicas de Aprendizaje por Refuerzo demuestran que son capaces de adaptarse a la situación del entorno y a sus obstáculos. El Aprendizaje por Refuerzo es un conjunto de técnicas de la Inteligencia Artificial que buscan resolver ciertos tipos de tareas basándose en la interacción con un entorno. Todo esto es realizado basándose en la recompensa o refuerzo que provoca realizar diferentes acciones en dicho entorno. Así, si una acción es la correcta, el refuerzo es positiva y, de ser incorrecta, el refuerzo es negativo. Al poder emplear un único sistema para el control de los UAV, se reduce la necesidad de tener un operador por cada aeronave, reduciendo los costes asociados a la operación. Para una mejora en la capacidad de estas técnicas, se han empleado Redes de Neuronas Artificiales por su capacidad de extraer conocimiento a partir de patrones. Así, se consigue mejorar la capacidad de adaptación de los modelos propuestos a los diferentes entornos en los que es probado.[Resumo] O principal obxectivo desta Tese Doctoral é estudar o uso de técnicas para o control de enxames heteroxéneos de Aeronaves Pilotadas Remotamente (RPA ou UAV, polas súas siglas en ingl´es) , coloquialmente co˜necidos como drons. Esta tese está apoiada por tres publicaciós científicas indexadas no sistema Journal Citation Report. Un deles é o estudo da aplicación destas e outras técnicas no ámbito dos enxames de UAV. Os dous restantes propo˜nen modelos para a súa aplicación en mapas simulados sen obstáculos e con obstáculos fixos. A importancia do estudo destas técnicas para o control de enxames de UAV demostra que empregar un grupo heteroxéneo de UAV con total liberdade de movemento permiten realizar as tarefas de maneira máis rápida que empregando só un. Ademais, as técnicas de Aprendizaxe por Reforzo demostran que son capaces de adaptarse á situaci ón da contorna e aos seus obstáculos. A Aprendizaxe por Reforzo é un conxunto de técnicas da Intelixencia Artificial que buscan resolver certos tipos de tarefas baseándose na interacción cunha contorna. Todo isto é realizado baseándose na recompensa ou reforzo que provoca realizar diferentes accións na devandito contorna. Así, se unha acci ón é a correcta, o reforzo é positiva e, de ser incorrecta, o reforzo é negativo. Ao poder empregar un único sistema para o control dos UAV, redúcese a necesidade de ter un operador por cada aeronave, reducindo os custos asociados á operación. Para unha mellora na capacidade destas técnicas, empregáronse Redes de Neuronas Artificiais pola súa capacidade de extraer co˜necemento a partir de patróns. Así, conséguese mellorar a capacidade de adaptación dos modelos propostos ás diferentes contornas nos que é probado.[Abstract] The main objective of this Doctoral Thesis is to study the use of the techniques for the control of heterogeneous swarms of Remotely Piloted Aircraft (RPA) or Unmanned Aerial Vehicles (UAV), colloquially known as drones. This thesis is supported by three scientific publications indexed in the Journal Citation Report system. One of them is the study of the application of these and other techniques in the field of UAV swarms. The remaining two propose models for their application in simulated maps without obstacles and with fixed obstacles. The importance of the study of these techniques for UAV swarm control demonstrates that using a heterogeneous group of UAVs with full freedom of movement allows tasks to be performed faster than using only one. In addition, Reinforcement Learning techniques prove that they are able to adapt to the environmental situation and its obstacles. Reinforcement Learning is a set of Artificial Intelligence techniques that seek to solve certain types of tasks based on interaction with an environment. All this is done based on the reward or reinforcement caused by performing different actions in that environment. Thus, if an action is correct, the reinforcement is positive and, if it is incorrect, the reinforcement is negative. By being able to use a single system to control UAVs, the need for one operator per aircraft is reduced, reducing the costs associated with the operation. To improve the capability of these techniques, Artificial Neural Networks have been used for their ability to extract knowledge from patterns. Thus, it is possible to improve the adaptability of the proposed models to the different environments in which they are tested

    Algorithms for multi-robot systems on the cooperative exploration & last-mile delivery problems

    Get PDF
    La aparición de los vehículos aéreos no tripulados (UAVs) y de los vehículos terrestres no tripulados (UGVs) ha llevado a la comunidad científica a enfrentarse a problemas ideando paradigmas de cooperación con UGVs y UAVs. Sin embargo, no suele ser trivial determinar si la cooperación entre UGVs y UAVs es adecuada para un determinado problema. Por esta razón, en esta tesis, investigamos un paradigma particular de cooperación UGV-UAV en dos problemas de la literatura, y proponemos un controlador autónomo para probarlo en escenarios simulados. Primero, formulamos un problema particular de exploración cooperativa que consiste en alcanzar un conjunto de puntos de destino en un área de exploración a gran escala. Este problema define al UGV como una estación de carga móvil para transportar el UAV a través de diferentes lugares desde donde el UAV puede alcanzar los puntos de destino. Por consiguiente, proponemos el algoritmo TERRA para resolverlo. Este algoritmo se destaca por dividir el problema de exploración en cinco subproblemas, en los que cada subproblema se resuelve en una etapa particular del algoritmo. Debido a la explosión de la entrega de paquetes en las empresas de comercio electrónico, formulamos también una generalización del conocido problema de la entrega en la última milla. En este caso, el UGV actúa como una estación de carga móvil que transporta a los paquetes y a los UAVs, y estos se encargan de entregarlos. De esta manera, seguimos la estrategia de división descrita por TERRA, y proponemos el algoritmo COURIER. Este algoritmo replica las cuatro primeras etapas de TERRA, pero construye una nueva quinta etapa para producir un plan de tareas que resuelva el problema. Para evaluar el paradigma de cooperación UGV-UAV en escenarios simulados, proponemos el controlador autónomo ARIES. Este controlador sigue un enfoque jerárquico descentralizado de líder-seguidor para integrar cualquier paradigma de cooperación de manera distribuida. Ambos algoritmos han sido caracterizados para identificar los aspectos relevantes del paradigma de cooperación en los problemas relacionados. Además, ambos demuestran un gran rendimiento del paradigma de cooperación en tales problemas, y al igual que el controlador autónomo, revelan un gran potencial para futuras aplicaciones reales.The emergence of Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) has conducted the research community to face historical complex problems by devising UGV-UAV cooperation paradigms. However, it is usually not a trivial task to determine whether or not a UGV-UAV cooperation is suitable for a particular problem. For this reason, in this thesis, we investigate a particular UGV-UAV cooperation paradigm over two problems in the literature, and we propose an autonomous controller to test it on simulated scenarios. Driven by the planetary exploration, we formulate a particular cooperative exploration problem consisting of reaching a set of target points in a large-scale exploration area. This problem defines the UGV as a moving charging station to carry the UAV through different locations from where the UAV can reach the target points. Consequently, we propose the cooperaTive ExploRation Routing Algorithm (TERRA) to solve it. This algorithm stands out for splitting up the exploration problem into five sub-problems, in which each sub-problem is solved in a particular stage of the algorithm. In the same way, driven by the explosion of parcels delivery in e-commerce companies, we formulate a generalization of the well-known last-mile delivery problem. This generalization defines the same UGV’s and UAV’s rol as the exploration problem. That is, the UGV acts as a moving charging station which carries the parcels along several UAVs to deliver them. In this way, we follow the split strategy depicted by TERRA to propose the COoperative Unmanned deliveRIEs planning algoRithm (COURIER). This algorithm replicates the first four TERRA’s stages, but it builds a new fifth stage to produce a task plan solving the problem. In order to evaluate the UGV-UAV cooperation paradigm on simulated scenarios, we propose the Autonomous coopeRatIve Execution System (ARIES). This controller follows a hierarchical decentralized leader-follower approach to integrate any cooperation paradigm in a distributed manner. Both algorithms have been characterized to identify the relevant aspects of the cooperation paradigm in the related problems. Also, both of them demonstrate a great performance of the cooperation paradigm in such problems, and as well as the autonomous controller, reveal a great potential for future real applications

    Multi-Agent Systems

    Get PDF
    This Special Issue ""Multi-Agent Systems"" gathers original research articles reporting results on the steadily growing area of agent-oriented computing and multi-agent systems technologies. After more than 20 years of academic research on multi-agent systems (MASs), in fact, agent-oriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agent-oriented models and technologies. In particular, the 17 contributions cover agent-based modeling and simulation, situated multi-agent systems, socio-technical multi-agent systems, and semantic technologies applied to multi-agent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agent-based models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/Multi-Agent_Systems_2019

    System Architectures for Cooperative Teams of Unmanned Aerial Vehicles Interacting Physically with the Environment

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have become quite a useful tool for a wide range of applications, from inspection & maintenance to search & rescue, among others. The capabilities of a single UAV can be extended or complemented by the deployment of more UAVs, so multi-UAV cooperative teams are becoming a trend. In that case, as di erent autopilots, heterogeneous platforms, and application-dependent software components have to be integrated, multi-UAV system architectures that are fexible and can adapt to the team's needs are required. In this thesis, we develop system architectures for cooperative teams of UAVs, paying special attention to applications that require physical interaction with the environment, which is typically unstructured. First, we implement some layers to abstract the high-level components from the hardware speci cs. Then we propose increasingly advanced architectures, from a single-UAV hierarchical navigation architecture to an architecture for a cooperative team of heterogeneous UAVs. All this work has been thoroughly tested in both simulation and eld experiments in di erent challenging scenarios through research projects and robotics competitions. Most of the applications required physical interaction with the environment, mainly in unstructured outdoors scenarios. All the know-how and lessons learned throughout the process are shared in this thesis, and all relevant code is publicly available.Los vehículos aéreos no tripulados (UAVs, del inglés Unmanned Aerial Vehicles) se han convertido en herramientas muy valiosas para un amplio espectro de aplicaciones, como inspección y mantenimiento, u operaciones de rescate, entre otras. Las capacidades de un único UAV pueden verse extendidas o complementadas al utilizar varios de estos vehículos simultáneamente, por lo que la tendencia actual es el uso de equipos cooperativos con múltiples UAVs. Para ello, es fundamental la integración de diferentes autopilotos, plataformas heterogéneas, y componentes software -que dependen de la aplicación-, por lo que se requieren arquitecturas multi-UAV que sean flexibles y adaptables a las necesidades del equipo. En esta tesis, se desarrollan arquitecturas para equipos cooperativos de UAVs, prestando una especial atención a aplicaciones que requieran de interacción física con el entorno, cuya naturaleza es típicamente no estructurada. Primero se proponen capas para abstraer a los componentes de alto nivel de las particularidades del hardware. Luego se desarrollan arquitecturas cada vez más avanzadas, desde una arquitectura de navegación para un único UAV, hasta una para un equipo cooperativo de UAVs heterogéneos. Todo el trabajo ha sido minuciosamente probado, tanto en simulación como en experimentos reales, en diferentes y complejos escenarios motivados por proyectos de investigación y competiciones de robótica. En la mayoría de las aplicaciones se requería de interacción física con el entorno, que es normalmente un escenario en exteriores no estructurado. A lo largo de la tesis, se comparten todo el conocimiento adquirido y las lecciones aprendidas en el proceso, y el código relevante está publicado como open-source

    Model for WCET prediction, scheduling and task allocation for emergent agent-behaviours in real-time scenarios

    Get PDF
    [ES]Hasta el momento no se conocen modelos de tiempo real específicamente desarrollados para su uso en sistemas abiertos, como las Organizaciones Virtuales de Agentes (OVs). Convencionalmente, los modelos de tiempo real se aplican a sistemas cerrados donde todas las variables se conocen a priori. Esta tesis presenta nuevas contribuciones y la novedosa integración de agentes en tiempo real dentro de OVs. Hasta donde alcanza nuestro conocimiento, éste es el primer modelo específicamente diseñado para su aplicación en OVs con restricciones temporales estrictas. Esta tesis proporciona una nueva perspectiva que combina la apertura y dinamicidad necesarias en una OV con las restricciones de tiempo real. Ésto es una aspecto complicado ya que el primer paradigma no es estricto, como el propio término de sistema abierto indica, sin embargo, el segundo paradigma debe cumplir estrictas restricciones. En resumen, el modelo que se presenta permite definir las acciones que una OV debe llevar a cabo con un plazo concreto, considerando los cambios que pueden ocurrir durante la ejecución de un plan particular. Es una planificación de tiempo real en una OV. Otra de las principales contribuciones de esta tesis es un modelo para el cálculo del tiempo de ejecución en el peor caso (WCET). La propuesta es un modelo efectivo para calcular el peor escenario cuando un agente desea formar parte de una OV y para ello, debe incluir sus tareas o comportamientos dentro del sistema de tiempo real, es decir, se calcula el WCET de comportamientos emergentes en tiempo de ejecución. También se incluye una planificación local para cada nodo de ejecución basada en el algoritmo FPS y una distribución de tareas entre los nodos disponibles en el sistema. Para ambos modelos se usan modelos matemáticos y estadísticos avanzados para crear un mecanismo adaptable, robusto y eficiente para agentes inteligentes en OVs. El desconocimiento, pese al estudio realizado, de una plataforma para sistemas abiertos que soporte agentes con restricciones de tiempo real y los mecanismos necesarios para el control y la gestión de OVs, es la principal motivación para el desarrollo de la plataforma de agentes PANGEA+RT. PANGEA+RT es una innovadora plataforma multi-agente que proporciona soporte para la ejecución de agentes en ambientes de tiempo real. Finalmente, se presenta un caso de estudio donde robots heterogéneos colaboran para realizar tareas de vigilancia. El caso de estudio se ha desarrollado con la plataforma PANGEA+RT donde el modelo propuesto está integrado. Por tanto al final de la tesis, con este caso de estudio se obtienen los resultados y conclusiones que validan el modelo

    Cooperative social robots: accompanying, guiding and interacting with people

    Get PDF
    The development of social robots capable of interacting with humans is one of the principal challenges in the field of robotics. More and more, robots are appearing in dynamic environments, like pedestrian walkways, universities, and hospitals; for this reason, their interaction with people must be conducted in a natural, gradual, and cordial manner, given that their function could be aid, or assist people. Therefore, navigation and interaction among humans in these environments are key skills that future generations of robots will require to have. Additionally, robots must also be able to cooperate with each other, if necessary. This dissertation examines these various challenges and describes the development of a set of techniques that allow robots to interact naturally with people in their environments, as they guide or accompany humans in urban zones. In this sense, the robots' movements are inspired by the persons' actions and gestures, determination of appropriate personal space, and the rules of common social convention. The first issue this thesis tackles is the development of an innovative robot-companion approach based on the newly founded Extended Social-Forces Model. We evaluate how people navigate and we formulate a set of virtual social forces to describe robot's behavior in terms of motion. Moreover, we introduce a robot companion analytical metric to effectively evaluate the system. This assessment is based on the notion of "proxemics" and ensures that the robot's navigation is socially acceptable by the person being accompanied, as well as to other pedestrians in the vicinity. Through a user study, we show that people interpret the robot's behavior according to human social norms. In addition, a new framework for guiding people in urban areas with a set of cooperative mobile robots is presented. The proposed approach offers several significant advantages, as compared with those outlined in prior studies. Firstly, it allows a group of people to be guided within both open and closed areas; secondly, it uses several cooperative robots; and thirdly, it includes features that enable the robots to keep people from leaving the crowd group, by approaching them in a friendly and safe manner. At the core of our approach, we propose a "Discrete Time Motion" model, which works to represent human and robot motions, to predict people's movements, so as to plan a route and provide the robots with concrete motion instructions. After, this thesis goes one step forward by developing the "Prediction and Anticipation Model". This model enables us to determine the optimal distribution of robots for preventing people from straying from the formation in specific areas of the map, and thus to facilitate the task of the robots. Furthermore, we locally optimize the work performed by robots and people alike, and thereby yielding a more human-friendly motion. Finally, an autonomous mobile robot capable of interacting to acquire human-assisted learning is introduced. First, we present different robot behaviors to approach a person and successfully engage with him/her. On the basis of this insight, we furnish our robot with a simple visual module for detecting human faces in real-time. We observe that people ascribe different personalities to the robot depending on its different behaviors. Once contact is initiated, people are given the opportunity to assist the robot to improve its visual skills. After this assisted learning stage, the robot is able to detect people by using the enhanced visual methods. Both contributions are extensively and rigorously tested in real environments. As a whole, this thesis demonstrates the need for robots that are able to operate acceptably around people; to behave in accordance with social norms while accompanying and guiding them. Furthermore, this work shows that cooperation amongst a group of robots optimizes the performance of the robots and people as well.El desenvolupament de robots socials capaços d'interactuar amb els éssers humans és un dels principals reptes en el camp de la robòtica. Actualment, els robots comencen a aparèixer en entorns dinàmics, com zones de vianants, universitats o hospitals; per aquest motiu, aquesta interacció ha de realitzar-se de manera natural, progressiva i cordial, ja que la seva utilització pot ser col.laboració, assistència o ajuda a les persones. Per tant, la navegació i la interacció amb els humans, en aquests entorns, són habilitats importants que les futures generacions de robots han de posseir, a més a més, els robots han de ser aptes de cooperar entre ells si fos requerit. El present treball estudia aquests reptes plantejats. S’han desenvolupat un conjunt de tècniques que permeten als robots interectuar de manera natural amb les persones i el seu entorn, mentre que guien o acompanyen als humans en zones urbanes. En aquest sentit, el moviment dels robots s’inspira en la manera com es mouen els humans en les convenvions socials, així com l’espai personal.El primer punt que aquesta tesi comprèn és el desenvolupament d’un nou mètode per a "robots-acompanyants" basat en el nou model estès de forces socials. S’ha evaluat com es mouen les persones i s’han formulat un conjunt de forces socials virtuals que descriuren el comportament del robot en termes de moviments. Aquesta evaluació es basa en el concepte de “proxemics” i assegura que la navegació del robot està socialment acceptada per la persona que està sent acompanyada i per la gent que es troba a l’entorn. Per mitjà d’un estudi social, mostrem que els humans interpreten el comportament del robot d’acord amb les normes socials. Així mateix, un nou sistema per a guiar a persones en zones urbanes amb un conjunt de robots mòbils que cooperen és presentat. El model proposat ofereix diferents avantatges comparat amb treballs anteriors. Primer, es permet a un grup de persones ser guiades en entorns oberts o amb alta densitat d’obstacles; segon, s’utilitzen diferents robots que cooperen; tercer, els robots són capaços de reincorporar a la formació les persones que s’han allunyat del grup anteriorment de manera segura. La base del nostre enfocament es basa en el nou model anomenat “Discrete Time Motion”, el qual representa els movimients dels humans i els robots, prediu el comportament de les persones, i planeja i proporciona una ruta als robots.Posteriorment, aquesta tesi va un pas més enllà amb el desenvolupament del model “Prediction and Anticipation Model”. Aquest model ens permet determinar la distribució òptima de robots per a prevenir que les persones s’allunyin del grup en zones especíıfiques del mapa, i per tant facilitar la tasca dels robots. A més, s’optimitza localment el treball realitzat pels robots i les persones, produint d’aquesta manera un moviment més amigable. Finalment, s’introdueix un robot autònom mòbil capaç d’interactuar amb les persones per realitzar un aprenentatge assistit. Incialment, es presenten diferents comportaments del robot per apropar-se a una persona i crear un víıncle amb ell/ella. Basant-nos en aquesta idea, un mòdul visual per a la detecció de cares humanes en temps real va ser proporcionat al robot. Hem observat que les persones atribueixen diferents personalitats al robot en funció dels seus diferents comportaments. Una vegada que el contacte va ser iniciat es va donar l’oportunitat als voluntaris d’ajudar al robot per a millorar les seves habilitats visuals. Després d’aquesta etapa d’aprenentatge assistit, el robot va ser capaç d’identificar a les persones mitjançant l'ús de mètodes visuals.En resum, aquesta tesi presenta i demostra la necessitat de robots que siguin capaços d’operar de forma acceptable amb la gent i que es comportin d’acord amb les normes socials mentres acompanyen o guien a persones. Per altra banda, aquest treball mostra que la coperació entre un grup de robots pot optimitzar el rendiment tant dels robots com dels humans

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications
    corecore