
robotics

Article

Deployment Environment for a Swarm of
Heterogeneous Robots

Tamer Abukhalil, Madhav Patil, Sarosh Patel * and Tarek Sobh

Interdisciplinary Robotics, Intelligent Sensing and Control (RISC) Laboratory, School of Engineering,
University of Bridgeport, Bridgeport, CT 06604, USA; tabukhal@my.bridgeport.edu (T.A.);
mpatil@my.bridgeport.edu (M.P.); sobh@bridgeport.edu (T.S.)
* Correspondence: saroshp@bridgeport.edu; Tel.: +1-203-576-4408

Academic Editor: Huosheng Hu
Received: 8 June 2016; Accepted: 26 September 2016; Published: 26 October 2016

Abstract: The objective of this work is to develop a framework that can deploy and provide
coordination between multiple heterogeneous agents when a swarm robotic system adopts a
decentralized approach; each robot evaluates its relative rank among the other robots in terms
of travel distance and cost to the goal. Accordingly, robots are allocated to the sub-tasks for which
they have the highest rank (utility). This paper provides an analysis of existing swarm control
environments and proposes a software environment that facilitates a rapid deployment of multiple
robotic agents. The framework (UBSwarm) exploits our utility-based task allocation algorithm.
UBSwarm configures these robots and assigns the group of robots a particular task from a set of
available tasks. Two major tasks have been introduced that show the performance of a robotic group.
This robotic group is composed of heterogeneous agents. In the results, a premature example that
has prior knowledge about the experiment shows whether or not the robots are able to accomplish
the task.

Keywords: heterogeneous swarm agents; reconfigurable robotic agents; dynamic robotic coordination;
robotics interactive software; robots deployment environment

1. Introduction

Cooperative multi-agent robotic systems have been shown to be fault-tolerant in that a robot can
take over the task of a failing one. It has been proven that a single robot with multiple capabilities
cannot necessarily complete an intended job using the same time and cost as multiple robotic agents.
Different robots, each with its own configuration, are more flexible, robust, and cost-effective. Moreover,
the desired tasks may be too complex for one single robot, whereas they can be effectively done by
multiple robots [1–3]. Modular robotic systems have been shown to be robust and flexible in the tasks
of localization and surveillance [4,5], and reconnaissance [6]. Such properties are likely to become
increasingly important in real-world robotics applications.

Decentralization means that the algorithm does not require access to the full global state and
all control computations are done locally. However, to command large groups of robots, it is also
essential to include an element of centralization to allow humans to interact and task the team.
Our paper is based on the premise that there is a lack of software packages that provide control for
the different platforms of robots individually and allow concurrent control of heterogeneous robotic
teams. Our objective is to develop algorithms that can provide coordination between heterogeneous
agents, besides building central software to track these agents. Such system design is motivated by our
interest in multi-robot control for the deployment of potentially large numbers of cooperating robots
with applications such as persistent navigation, localization, mapping, and object transportation.

Robotics 2016, 5, 22; doi:10.3390/robotics5040022 www.mdpi.com/journal/robotics

http://www.mdpi.com/journal/robotics
http://www.mdpi.com
http://www.mdpi.com/journal/robotics

Robotics 2016, 5, 22 2 of 21

In the following section we provide a short analysis of existing swarm deployment environments.
In Section 3 we present a deployment software package for obtaining decentralized control that can
provide interesting collective behaviors dedicated to different tasks/applications with a new collective
and mobile reconfigurable robotic system. We do not consider the particular hardware or infrastructure
of each swarm agent, as our focus is on building control mechanisms that allow the system to operate
several simple heterogeneous agents. In Section 4 we evaluate the proposed software framework in
simultaneous localization and mapping (SLAM) and human rescue applications. Finally, Section 5
presents a summary of the work and draws some conclusions.

2. Related Work

A comprehensive investigation and evaluation of the present multi-robotic systems (MRS) has
been thoroughly discussed in our previous work [7]. In that survey we organized and classified
10 swarm robotics systems and their corresponding behavioral algorithms into a preliminary
taxonomy. We concluded that several algorithms have been developed to run on swarms of robots.
These algorithms varied in complexity. Some provided basic functionality, such as leader following,
while others exhibited complex interactions between the team of robots such as bidding on tasks
according to arbitrary rules. Many early approaches in the literature concentrated on behavior-based
techniques, wherein several desired behaviors are prescribed for each agent and the final control
is derived by weighing the relative importance of each behavior. On the other hand, recently
researchers have begun to take a system controls perspective and analyze the stability of multiple
robot agents. Other important hardware aspects of the current modular swarm robotic systems
such as self-reconfigurability, self-replication, self-assembly, cost and miniaturization with robustness,
flexibility, and scalability were thoroughly analyzed in our other work [8].

In robotic control environments, a graphical application software such as MobileEyes [9] and the
C++ based software URBI [10] are available as open source systems. URBI provides GUI (Graphical
User Interface) packages that aim to make a compatible code for different robots, and simplify the
process of writing programs and behaviors for these robots. URBI works by incorporating sensor data
to initiate commands to the robot. URBI packages, however, provide no abstractions. Therefore, they
do not allow for separating the controlling system from the rest of the system. For example, a control
system might be intimately tied to a particular type of robot and laser scanner.

The Player/Stage proposed by Gerkey et al. [11] also produces tools for simulating the behavior
of robots without actual access to the robots’ hardware and environment. Its two main products are
the Player robot server, a networked interface to a collection of hardware device drivers, and Stage,
a graphical, two-dimensional device simulator. The player/Stage is basically designed to support
research in multi-robot systems through the use of socket-based communication. The player/Stage is
an open-source software that is available to be downloaded online on UNIX-like platforms. However,
running this software requires a variety of prerequisite libraries and each library requires another set
of libraries. It has never been easy to understand how the system communicates with the actual robots.
Player/Stage mainly supported robotic platforms such as RWI/iRobot, Segway, Acroname, Botrics,
and K-Team robots.

Nebot et al. were more interested in developing cooperative tasks among teams of robots [12].
Their proposed architecture allowed teams of robots to accomplish tasks determined by end users.
A Java-based multi-agent development system was chosen to develop their proposed platform.
Zhang et al. [13] proposed a software platform comprised of a central distributed architecture that
runs in a network environment. Their system is composed of four parts, namely a user interface, a
controlling center, a robot agent, and an operating ambient making up the platform top-down.

Another script-based robot program is Pyro [14]. Pyro, short for Python Robotics, is a
robotics programming environment written in the Python programming language. Programming
robot behaviors in Pyro is accomplished by programming high-level general-purpose programs.
Pyro provides abstractions for low-level robot specific features, much like the abstractions provided
in high-level languages. The abstractions provided by Pyro allow robot control programs written

Robotics 2016, 5, 22 3 of 21

for small robots to be used to control much larger robots without any modifications to the controller.
This represents an advancement over previous robot programming methodologies in which robot
programs were written for specific motor controllers, sensors, communications protocols, and other
low-level features. Kulis et al. [15] proposed a software framework for controlling multiple robot agents
by creating a Distributed Control Framework (DCF). DCF is an agent-based software architecture that
is entirely written in Java and can be deployed on any computing architecture that supports the Java
Virtual Machine. DCF is specifically designed to control interacting heterogeneous agents. DCF uses
a high-level platform-independent programming language for hybrid control called MDLE (Motion
Description Language Extended).

Elkady et al. [16] have developed a framework that utilizes and configures modular robotic
systems with different task descriptions. Their main focus was designing a middleware that is
customized to work with different robotic platforms through a plug-and-play feature that allows for
automatic detection and auto-reconfiguration of the attached standardized components installed on
each robot according to the current system configurations. Therefore, the authors’ solution is to deal
with the abstraction layers residing between the operating system rather than software applications.
A similar system hierarchy is used in Mobile-R [17], where the system is capable of interacting
with multiple robots using Mobile-C library [18], an IEEE Foundation for physical agents’ standard
compliant mobile agent systems. Mobile-R provides deployment of a network of robots with offline and
online dynamic task allocation. The control strategy structure and all sub-components are dynamically
modified at run-time. Mobile-R provides some packages to enhance system capabilities like artificial
neural networks (ANNs), genetic algorithms (GAs), vision processing, and distributed computing.
The system was validated through a real world experiment involving a K-Team Khepera III mobile
robot and two virtual robots simulated using the Player/Stage system.

Gregory et al. [19] proposed an application software built in JAVA to operate heterogeneous
multi-agent robots for the sake of educational purposes named MAJIC (Multi-Agent Java Interface
Controller). The system provides basic components for user interaction that enable the user to
add/remove robots change the robotic swarm configuration, load Java scripts into robots, and so on.

In ASyMTRe-D [20], the authors’ approach is based on schemas such as perceptual and motor
schemas. Inputs/outputs of each schema create what it is called semantic information that is used to
generate coalitions. Tasks are assigned to the robot with the highest bid. Bids are calculated according
to the costs of performing different tasks. A set of tasks is allocated to coalitions. Coalition values
are calculated based on the task requirement and robot capabilities. Execution of tasks is monitored
and the process of allocation repeats itself until each individual task is completed. During run-time
their novel protocol ASyMTRe-D is executed. This protocol manipulates calculated coalition values to
assist in completing tasks. Authors do not mention the dynamical tasks and ways of task reassignment.
Additionally, they do not discuss fault tolerance, flexibility, robustness, and how the system reacts to
any robot failure.

In the Symprion/Replicator project [21], what determines the behavior of an agent or group
of agents is the HDRC (Hormone Driven Robot Controller), which contains a configuration for the
robot itself, and a software controller called Genome that runs a utility-based allocation algorithm.
Frontier-based task allocation, such as in MinPos [22], is another approach to the frontier allocation
problem and is based on the distribution of robots among the frontiers.

3. Methodology

We developed an environment to utilize robots that have different modular design and
configuration of sensory modules and actuators. The system will be implemented as a GUI interface to
reduce efforts in controlling swarm robotic systems. The proposed application offers customization for
robotic platforms by simply defining the available sensing devices, actuation devices, and required
tasks. A task is a general mission assigned to a group of robots instead of one (e.g., painting a
wall). The main purpose for designing this framework is to reduce the time and complexity of
the development of robotic software and maintenance costs, and to improve code and component

Robotics 2016, 5, 22 4 of 21

reusability. Usage of the proposed framework obviates the need to redesign or rewrite algorithms or
applications when there is a change in the robot’s platform or operating systems, or the introduction of
new functionalities.

UBSwarm environment is a high-end interface used for distributing algorithms to heterogeneous
robotic agents. One of the key features of UBSwarm is configuring special programs that act as
middleware to gain control over the agent’s parameters and devices. The middleware consequently
allows auto-detection of the attached standardized components according to current system
configurations. These components can be dynamically available or unavailable. Dynamic detection
provides the facility to modify the robot during its execution and can be used to apply patches and
updates, to implement adaptive systems. This real-time reconfiguration of devices attached to different
robots and driver software makes it easier and more efficient for end users to add and use new sensors
and software applications. In addition, the high-end interface should be written in a flexible way to
get better usage of the hardware resource. Also, they should be easy to install/uninstall. The basic
hierarchy of the UBSwarm deployment platform is shown in Figure 1.

Robotics 2016, 5, 22 4 of 21

algorithms or applications when there is a change in the robot’s platform or operating systems, or

the introduction of new functionalities.

UBSwarm environment is a high-end interface used for distributing algorithms to

heterogeneous robotic agents. One of the key features of UBSwarm is configuring special programs

that act as middleware to gain control over the agent’s parameters and devices. The middleware

consequently allows auto-detection of the attached standardized components according to current

system configurations. These components can be dynamically available or unavailable. Dynamic

detection provides the facility to modify the robot during its execution and can be used to apply

patches and updates, to implement adaptive systems. This real-time reconfiguration of devices

attached to different robots and driver software makes it easier and more efficient for end users to

add and use new sensors and software applications. In addition, the high-end interface should be

written in a flexible way to get better usage of the hardware resource. Also, they should be easy to

install/uninstall. The basic hierarchy of the UBSwarm deployment platform is shown in Figure 1.

Figure 1. Deployment environment overview.

Another key feature of the UBSwarm interface is to move the communication implementation

from the user’s domain to the application domain. Instead of learning proprietary protocols for

individual robots, the user can utilize the UBSwarm scripting language to pass common commands

to any robot managed by the application. UBSwarm adds a layer of abstraction to such tasks,

allowing users the ability to intuitively obtain desired responses without extensive knowledge of

robot-specific operating systems and protocols. When users make changes to the hardware devices

that are plugged onto the robotic agent, UBSwarm will provide the appropriate software package for

these sensory devices and actuators. This flexibility makes it easy for end users to add and use the

new devices and consequently task applications. In addition, the software code can be written in the

most common programming languages such as Python, C++, or any language that is specific to a

particular robot framework. These Software components are easy to install/upload in the console

screen. At startup, UBSwarm uploads a code that is responsible for scanning for hardware changes

onboard because almost all microcontrollers include a hardware feature to interrupt the current

software routine and run a scanning routine when a particular pin (PINS are the I/O ports found on

the microcontroller board) changes state. By relying on the hardware to notice a change, we can keep

track of hardware components. Each one of these hardware components is operated using a

particular algorithm that is created at the time of deployment. UBSwarm runs on a computer and

uploads programs to or communicates with/monitors the robots through the USB (serial port), RF,

WiFi, or Bluetooth. In our experiment we used our own robot agents that incorporate Arduino and

Digilent Max32 microcontrollers.

UBSwarm provides a direct forward two-step configuration that helps the operator to select

between several available robot computers (microcontrollers) actuators, and sensors and then assign

Figure 1. Deployment environment overview.

Another key feature of the UBSwarm interface is to move the communication implementation
from the user’s domain to the application domain. Instead of learning proprietary protocols for
individual robots, the user can utilize the UBSwarm scripting language to pass common commands
to any robot managed by the application. UBSwarm adds a layer of abstraction to such tasks,
allowing users the ability to intuitively obtain desired responses without extensive knowledge of
robot-specific operating systems and protocols. When users make changes to the hardware devices
that are plugged onto the robotic agent, UBSwarm will provide the appropriate software package
for these sensory devices and actuators. This flexibility makes it easy for end users to add and use
the new devices and consequently task applications. In addition, the software code can be written in
the most common programming languages such as Python, C++, or any language that is specific to
a particular robot framework. These Software components are easy to install/upload in the console
screen. At startup, UBSwarm uploads a code that is responsible for scanning for hardware changes
onboard because almost all microcontrollers include a hardware feature to interrupt the current
software routine and run a scanning routine when a particular pin (PINS are the I/O ports found
on the microcontroller board) changes state. By relying on the hardware to notice a change, we can
keep track of hardware components. Each one of these hardware components is operated using a
particular algorithm that is created at the time of deployment. UBSwarm runs on a computer and
uploads programs to or communicates with/monitors the robots through the USB (serial port), RF,
WiFi, or Bluetooth. In our experiment we used our own robot agents that incorporate Arduino and
Digilent Max32 microcontrollers..

UBSwarm provides a direct forward two-step configuration that helps the operator to select
between several available robot computers (microcontrollers) actuators, and sensors and then assign

Robotics 2016, 5, 22 5 of 21

the group of robots a particular task from the set of available tasks. To test and evaluate the swarm
system or to change the configuration of the whole system, the user should be able to change each
robot’s features. That is, the user has the option to add/remove hardware features of any selected
robot. The user can also decide which robots should be assigned for the task. In the main menu,
the user is given a list of tasks to be assigned to the swarm system.

4. System Architecture

UBSwarm is an interactive Java-based application designed for extensibility and platform
independence. The system establishes communications with embedded robot modules via various
mediums. At the time of startup the system will expect the operator to:

- Configure the system by picking the available agents, their onboard features (sensors, motors,
etc.), and the services needed to accomplish each task

- Run the system using saved configurations and add/remove agents.

The system is divided into two main subsystems, a robot deployment system and a robot control
and translation system. The robot control system includes a robot control agent in which the user
should provide all the parameters required for all sensors incorporated on robots. The user should also
describe the actuation methods used. The robot deployment system encapsulates a variety of high-level
applications in a module that contains the tasks to perform such as navigation, area scanning, and
obstacle avoidance. A hardware abstraction layer is used to hide the heterogeneity of lower hardware
devices and provide a component interface for the upper layers.

4.1. Robot Deployment Environment

The deployment system interacts with agents through various types of communications protocols.
The deployment system takes responsibility for running actions according to the definition parameters
and the different integrations of the heterogeneous robots. Each application is implemented
as a software module to perform a number of specific tasks used for sensing, decision-making,
and autonomous action. Actions are platform-independent robot algorithms; for example, they can
be an obstacle avoidance algorithm or a data processing algorithm using Kalman’s filter, etc. These
actions can communicate using message channels. The deployment system framework is shown in
Figure 2. The deployment system contains the developer interface, the coordination agent, the dynamic
interpreter, and the knowledge base.

Robotics 2016, 5, 22 5 of 21

the group of robots a particular task from the set of available tasks. To test and evaluate the swarm

system or to change the configuration of the whole system, the user should be able to change each

robot’s features. That is, the user has the option to add/remove hardware features of any selected

robot. The user can also decide which robots should be assigned for the task. In the main menu, the

user is given a list of tasks to be assigned to the swarm system.

4. System Architecture

UBSwarm is an interactive Java-based application designed for extensibility and platform

independence. The system establishes communications with embedded robot modules via various

mediums. At the time of startup the system will expect the operator to:

- Configure the system by picking the available agents, their onboard features (sensors, motors,

etc.), and the services needed to accomplish each task

- Run the system using saved configurations and add/remove agents.

The system is divided into two main subsystems, a robot deployment system and a robot

control and translation system. The robot control system includes a robot control agent in which the

user should provide all the parameters required for all sensors incorporated on robots. The user

should also describe the actuation methods used. The robot deployment system encapsulates a

variety of high-level applications in a module that contains the tasks to perform such as navigation,

area scanning, and obstacle avoidance. A hardware abstraction layer is used to hide the

heterogeneity of lower hardware devices and provide a component interface for the upper layers.

4.1. Robot Deployment Environment

The deployment system interacts with agents through various types of communications

protocols. The deployment system takes responsibility for running actions according to the

definition parameters and the different integrations of the heterogeneous robots. Each application is

implemented as a software module to perform a number of specific tasks used for sensing,

decision-making, and autonomous action. Actions are platform-independent robot algorithms; for

example, they can be an obstacle avoidance algorithm or a data processing algorithm using

Kalman’s filter, etc. These actions can communicate using message channels. The deployment

system framework is shown in Figure 2. The deployment system contains the developer interface,

the coordination agent, the dynamic interpreter, and the knowledge base.

Figure 2. Software architecture. Figure 2. Software architecture.

Robotics 2016, 5, 22 6 of 21

4.1.1. User Interface

The system developer interface provides the human operator command and control windows.
The user can interact with the computer through interaction tools that provide a list of actions/tasks
and available robotic agents. In some other parts of the interface, the user will be prompted to input
the required system parameters for all sensors incorporated on robots such as the PIN numbers to
which each of the sensor/actuator is connected. As mentioned earlier, UBSwarm connects to the robots
using a USB cable, RF, WiFi, or Bluetooth. The user has to provide the IP address of the particular
robot when WiFi is used. When connecting the robot to the USB, UBSwarm will detect the COM port
automatically. After defining all required parameters, the user will have the chance to write programs
and upload them on each robot. The interface provides a number of tasks that can be assigned to
the group of robots such as SLAM, and human rescue (pulling an object). Each task is defined as
a functional module. Obstacle avoidance, navigation, and SLAM are examples of such functional
modules. Each functional module encapsulates services such as Opencv, Hough transformation, etc.
Each service is regarded as a component of the system and is described in an XML configuration file to
remove platform dependency.

The user interface also allows users to update, remove, or add robots in the swarm group.
The programs that will be uploaded on each robot type differ according to the different pin locations
associated with each type that were set by the user. The system will ask the user to connect each robot
to allow for uploading the program, as shown in Figure 3b. The next four subsystems show how the
deployment system works to manage the heterogeneity of the hardware and the software associated
with each robotic agent.

Robotics 2016, 5, 22 6 of 21

4.1.1. User Interface

The system developer interface provides the human operator command and control windows.

The user can interact with the computer through interaction tools that provide a list of actions/tasks

and available robotic agents. In some other parts of the interface, the user will be prompted to input

the required system parameters for all sensors incorporated on robots such as the PIN numbers to

which each of the sensor/actuator is connected. As mentioned earlier, UBSwarm connects to the

robots using a USB cable, RF, WiFi, or Bluetooth. The user has to provide the IP address of the

particular robot when WiFi is used. When connecting the robot to the USB, UBSwarm will detect the

COM port automatically. After defining all required parameters, the user will have the chance to

write programs and upload them on each robot. The interface provides a number of tasks that can be

assigned to the group of robots such as SLAM, and human rescue (pulling an object). Each task is

defined as a functional module. Obstacle avoidance, navigation, and SLAM are examples of such

functional modules. Each functional module encapsulates services such as Opencv, Hough

transformation, etc. Each service is regarded as a component of the system and is described in an

XML configuration file to remove platform dependency.

The user interface also allows users to update, remove, or add robots in the swarm group. The

programs that will be uploaded on each robot type differ according to the different pin locations

associated with each type that were set by the user. The system will ask the user to connect each

robot to allow for uploading the program, as shown in Figure 3b. The next four subsystems show

how the deployment system works to manage the heterogeneity of the hardware and the software

associated with each robotic agent.

(a)

(b)

Figure 3. User interface: (a) Adding/removing robots; (b) Uploading a program to a robot. Figure 3. User interface: (a) Adding/removing robots; (b) Uploading a program to a robot.

Robotics 2016, 5, 22 7 of 21

4.1.2. Coordination Agent

The heterogeneity of the robots and the operating platforms imposes dependencies such as the
data format, location of machine addresses, and availability of the components. As addressed in [16],
the data format dependency is removed by a standard data format that is machine-independent.
Just like the functional modules described earlier, the data format is regarded as a component in the
system. Relevant tasks for a team mission are defined by the XML configuration file that is loaded at
startup. The XML file also specifies which tasks can be performed by each agent. The coordination
manager is responsible for optimal assignment problem (OAP), which uses the Utility concept found
in game theory [23]. We proposed a solution called Robot Utility-based Task Assignment (RUTA) in
our previous work [24]. The RUTA algorithm is based on the following assumptions:

- T is the task to be accomplished, which is a set of m subtasks that are basically composed of
motor, sensor, and communication devices that need to be activated in certain ways in order
to accomplish this task. It is denoted as Ti = {vi1, vi2, vi3, . . . , vim}, where vij is the subtask j
performed by robot ri and 1 ≤ i ≤ n, 1 ≤ j ≤ m.

- A subset vij of Ti can be allocated to robots concurrently if they do not have ordering constraints.
- To accomplish the task Ti on robot ri, a collection of n plans (solutions), denoted Pi = {P1, P2, . . . ,

Pn}, needs to be generated based on the task requirements and the robot capabilities.

We define a cost function for each robot, specifying the cost of the robot performing a given task,
and then estimate the cost of a plan performing the given task. We consider two types of cost:

- A robot-specific cost determines the robot’s particular cost (e.g., in terms of energy consumption
or computational requirements) of using particular capabilities on the robot ri to accomplish a
task vij (such as a camera or a sonar sensor). We denote robot ri

′s cost by robot cost (ri, vij).
- The cost of a plan Pi performing a task Ti is the sum of the individual cost of robot i performing

sub-tasks m that are in the plan Pi, which is denoted by: Cost (Pi, Ti) = ∑m
j=1 cost

(
ri, vij

)
where

1 ≤ i ≤ n.

Given (T, R), we define a solution Pi to each task Ti such that Cost (Pi, Ti) is
minimized. We assume that sub-tasks vij allocated to robot ri must be ordered into a schedule
σi = (vi1, t1, t′1) , . . . ,

(
vij, tj, t′ j

)
for 1 ≤ j ≤ m where vij is the subtask performed from time

tj to t′ j. Each sub-task assigned to a robot is denoted by a triple, αj ≤ type, tej, ratej > representing
the vij task type whether, sensing or actuation, the time assigned to the task until it is accomplished
(so tsj = t′ j − tj), and the consumption rate (in mA) for this particular subtask respectively. Depending
on the robot ri

′s location, the time spent on each task must equal ri
′s assigned share of the workload.

We also assume that the distance in meters between robot ri to subtask vij is dij. Taking these values into
account, each robot can be represented as βi ≤ id, wi, Premi >, representing the robot’s identification
number, wi is the percentage of the robot i wheel slip, and Premi is the power remaining for the robot.
The cost of a robot ri performing a subtask vij is calculated by dividing the robot ri’s remaining battery
power by the product of multiplying the sensor and/or actuator consumption rate by the percentage
of time in which it is operating. This is determined by the following equations:

ϕmanip ij = 0.7×
[
(

tsj

t′m
)

[
Premi

rateact j

]]
(1)

ϕnav ij = 0.7×
[[

premi
rateservo j

]
× 1

wi

]
(2)

ϕsens ij = 0.9×
[
(

tsj

t′m
)

[
Premi

ratesens j

]]
(3)

Robotics 2016, 5, 22 8 of 21

ϕgiven ij = ϕmanip ij + ϕnav ij + ϕsens ij, (4)

where t′m is the total time predetermined for the robot ri to complete all of its subtasks in seconds, wi is
the pre-assumed percentage of robot ri wheel slip, and ϕmanip ij, ϕnav ij, and ϕsens ij are the qualities to
perform manipulating, navigation, and sensing subtasks, respectively. Depending on the subtask type,
the value of any of these quality functions is null if they are not taking place in the subtask. ϕgevin ij
is the total quality of subtask vij being performed by robot ri. When an obstacle avoidance task is
being performed, the quality function ϕgiven ij has higher values than the other qualities because it
includes navigation as well as sensing subtasks. The priorities of subtasks must be considered and are
calculated according to the schedule of tasks σi set for robot ri. The priority of robot ri performing a
subtask vij is defined by the following equation, with the priority bounded between 0 and 1:

priij =
1
2
×min

[
(u1 ×

(
t− tj

)
), 1
]
, (5)

where t is the current time elapsed since the beginning of the task and tj is the time when the task is
announced as declared in the schedule σi. The parameter u1 adjusts how the priority should increase
with the value of

(
t− tj

)
. The assignment of a subtask vij to the specific robot (that is capable of

accomplishing it) is determined by the Utility function of a robot ri performing a task vij, as in the
following equation:

utilityij = max(0, u2 × (dij
−1/2 × ϕgiven ij × priij)), (6)

where utilityij is the nonnegative utility of robot ri for sub-task vij, 1 ≤ i ≤ n, 1 ≤ j ≤ m, and u2 is the
weighted coefficient to adjust the effect of the variables inside the equation. dij is the distance in meters
between robot ri to subtask vij. The smaller the distance dij is, the higher the utilityij, thus we notice
that a robot closer to the goal has a higher utility. That is only true for the subtasks that are related
to the location of the robot, e.g., in a human rescue task, the robot already nearer to the body has an
advantage that should affect its utility value. Whereas, in the other subtasks, when no distance is
involved, dij has a value of 1.

Robots are added randomly. No particular time is set. The decision to involve a robot in a task
depends on its utility value. The robots are of different types. A summary of the two modes is as
follows (found in our previous work [24]. As the task is being executed, the following two algorithms
take place. The optimal number of robots is decided by running the following algorithm (Algorithm 1),
which equals the final value of i.

Algorithm 1. Input: (T, R, M, N)

1. For each unexecuted sub-task vj in the schedule
2. For each robot ri in the new robot ordering
3. {Calculate Utility function utilityij for robot ri

4. If the current utility of ri for sub-task vj is greater than its previous utility then assign subtask vj to ri
based on the task requirements

5. →Add
(
ri, vj

)
to plan Pi

6. →Update parameters in vj

7. Stop when the task is completed or after K number of trials
8. Go to step 10 if a faulty robot is discovered
9. }

10. If task is not complete, pick the robot with the highest utility value from the list of remaining robots
11. →Add to robots ordering
12. Go to Step 1

Robotics 2016, 5, 22 9 of 21

In the distributed approach, decentralized coordinated programs are uploaded on the swarm of
robots at startup. The programs allow the set of robots to reason, reassign, and execute subtasks later
during their mission should a failure or a change in the swarm team be introduced. During run-time,
each robot simply calculates its own utility when tasks are taking place, as shown in Algorithm 2.
Information about robot status (such as any error readings from sensors) is shared between robots.
If the task is interrupted or a failure is introduced to the swarm team, robots are able to reconfigure
new task solutions to cope with changes in team composition and task requirements.

Algorithm 2. Input (R, N)

1. Utility is calculated on each robot
2. The two robots with the highest utility values will begin their pre-programmed plans
3. While task is not complete
4. {
5. Each robot’s utility value is shared with the other robots. When a robot is introduced to the system or if

a sensor fails on one robot ri by which it is prevented from completing task vj, it sends a request (bid) to
the other robots in the team.

6. Robot waits for reply (tout) from the fittest one (based on the highest utility value).
7. Task vj is taken over by the winning robot.
8. }
9. Stop if task is complete; else call the next robot in the ordering R

4.1.3. Runtime Interpreter

When new devices are plugged in, system developers can install new platform software packages
specific to the execution of the newly added devices. In other words, system developers can extend
the system’s functionality by adding new service modules (i.e., program functions such as obstacle
avoidance) to the list of available modules that can be found under the “runtime” tab in the main menu.
When a new service is added to the system, the dynamic interpreter manages the flow of information
between these services by monitoring the creation and removal of all services and the associated static
registries. The runtime interpreter maintains state information regarding possible and running local
services. The host and registry maps are used in routing communication to the appropriate tasks.
The flow of information managed by the dynamic interpreter is shown in Figure 4. The dynamic
interpreter will be the first service created, which, in turn, will wrap the real JVM Runtime objects.Robotics 2016, 5, 22 10 of 21

Figure 4. Adding services in runtime.

Once the coordination agent completes its job, the dynamic agent breaks down allocated tasks

into required actions from actuator movements to communications. Then, the dynamic interpreter

monitors the flow of data, manages the flow of messages through the system, makes sure that all

applications and components are available, tracks the quality of service (e.g., response times) of an

external service, and reports error conditions. The dynamic interpreter does its job by utilizing a

component requirement matrix for each robot. The component requirement matrix is used to

combine the necessary components from the knowledge base to the mobile agents, which are then

passed to the robot control and translation agent. As described in [16], each component has an XML

configuration file to customize its behavior. Each component is designed to be dynamically

reconfigurable by the dynamic interpreter during robot operation.

4.1.4. Knowledge Base (Registry)

The knowledge base contains all of the necessary information for each robot to give the operator

the ability to address each task. This includes a listing of all possible actions, service modules, and

behavioral component implementations for each robot. The knowledge base stores service types,

dependencies, categories, and other relevant information regarding service creation. It also includes

the agents’ required communication protocols, and their drivers. Physical and logical addresses

associated with each component are also stored in the knowledge base.

4.2. Robot Control Middleware

From a programming prospective, the robotic agent is a class. This class specifies the methods

that must be provided by implementing such class. The class interface architecture enables a loose

coupling between the control algorithms and the underlying hardware; alternative hardware

sensors supporting the required sensing functionalities may be interchanged freely (tested in the

experiment). Unlike some robot agents that contain a regular PC as part of their systems, our swarm

system is composed of robotic agents that incorporate onboard microcontrollers. UBSwarm supports

most of the Arduino and Digilent PIC microcontrollers. Each robot has TX/RX pins that use the

microcontrollers’ serial communication and turn it into IO-slave. Each robot agent incorporates two

software programs to perform its job.

4.2.1. Device Library

The device module contains information to be uploaded to the XML file about the hardware

components, which are classified according to the functionalities they provide. For example, a GPS

receiver can function either as a position device or as a range device. The device module gets a single

input from the GUI operator interface; this input is the type of the microcontroller board connected.

Based on the type of the board, the device module will have the information it needs about the

Figure 4. Adding services in runtime.

When new services are added to the system, messages will be initiated by the runtime interpreter.
The message consists of two basic parts: the header (which describes the data being transmitted,

Robotics 2016, 5, 22 10 of 21

its origin, its data type, and so on) and the body (data). There are four types of messages, the
Command message, used to invoke a service in another application; the Document message, used to
pass a set of data to another application; the Event message, used to notify another application of a
change in this application; and the Request-Reply message, used when an application should send back
a reply. The messages are classified into three categories: Simple message (small messages with low
delay requirements), real-time message (small message with a certain deadline), and message stream
(message sequence with a certain rate). The priority setting of a message can be adjusted so that an
urgent message should be delivered first. Figure 4 shows the operation of the runtime interpreter
when services are added to the system.

Once the coordination agent completes its job, the dynamic agent breaks down allocated tasks
into required actions from actuator movements to communications. Then, the dynamic interpreter
monitors the flow of data, manages the flow of messages through the system, makes sure that all
applications and components are available, tracks the quality of service (e.g., response times) of an
external service, and reports error conditions. The dynamic interpreter does its job by utilizing a
component requirement matrix for each robot. The component requirement matrix is used to combine
the necessary components from the knowledge base to the mobile agents, which are then passed to the
robot control and translation agent. As described in [16], each component has an XML configuration
file to customize its behavior. Each component is designed to be dynamically reconfigurable by the
dynamic interpreter during robot operation.

4.1.4. Knowledge Base (Registry)

The knowledge base contains all of the necessary information for each robot to give the operator
the ability to address each task. This includes a listing of all possible actions, service modules, and
behavioral component implementations for each robot. The knowledge base stores service types,
dependencies, categories, and other relevant information regarding service creation. It also includes
the agents’ required communication protocols, and their drivers. Physical and logical addresses
associated with each component are also stored in the knowledge base.

4.2. Robot Control Middleware

From a programming prospective, the robotic agent is a class. This class specifies the methods
that must be provided by implementing such class. The class interface architecture enables a loose
coupling between the control algorithms and the underlying hardware; alternative hardware sensors
supporting the required sensing functionalities may be interchanged freely (tested in the experiment).
Unlike some robot agents that contain a regular PC as part of their systems, our swarm system is
composed of robotic agents that incorporate onboard microcontrollers. UBSwarm supports most of the
Arduino and Digilent PIC microcontrollers. Each robot has TX/RX pins that use the microcontrollers’
serial communication and turn it into IO-slave. Each robot agent incorporates two software programs
to perform its job.

4.2.1. Device Library

The device module contains information to be uploaded to the XML file about the hardware
components, which are classified according to the functionalities they provide. For example, a GPS
receiver can function either as a position device or as a range device. The device module gets a single
input from the GUI operator interface; this input is the type of the microcontroller board connected.
Based on the type of the board, the device module will have the information it needs about the
microcontroller and the I/O ports. The Arduino microcontroller boards have a PIN arrangement
as follows:

Robotics 2016, 5, 22 11 of 21

- Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. For example,
on the Arduino Diecimila, these PINs are connected to the corresponding pins of the FTDI
USB-to-TTL Serial chip.

- External Interrupts (PINs 2 and 3): These pins can be configured to trigger an interrupt on a low
value, a rising or falling edge, or a change in value.

- PWM (Pulse Width Modulation) Pins: 4 up to 24 provide 8-bit PWM output.
- Analog Pins: PINs 25 and higher (analog input pins) support 10-bit analog-to-digital

conversion (ADC).

Relevant tasks for a team mission are defined in the device module configuration file, which is
loaded by the UBSwarm at startup. The device module file also specifies which tasks can be performed
by each agent and, if applicable, the physical hardware sensors and devices to be used.

4.2.2. Controlling Program

The program that is uploaded on each robot agent consists of the task-related controlling code,
the initial pin assignments, and a polling routine, as shown in Figure 5a. This program contains function
blocks to operate all the current hardware components that are currently connected and all possible
functions associated with each new component that might be attached to the robot. The controlling
program has conditional statements to decide which function to call. The decision of which blocks of
code to run depends on the updated pin assignments after the execution of the polling routine and
the task intended from the robot. The polling routine is executed only if an internal interrupt has
been activated.

Robotics 2016, 5, 22 11 of 21

microcontroller and the I/O ports. The Arduino microcontroller boards have a PIN arrangement as

follows:

- Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. For example,

on the Arduino Diecimila, these PINs are connected to the corresponding pins of the FTDI

USB-to-TTL Serial chip.

- External Interrupts (PINs 2 and 3): These pins can be configured to trigger an interrupt on a low

value, a rising or falling edge, or a change in value.

- PWM (Pulse Width Modulation) Pins: 4 up to 24 provide 8-bit PWM output.

- Analog Pins: PINs 25 and higher (analog input pins) support 10-bit analog-to-digital conversion

(ADC).

Relevant tasks for a team mission are defined in the device module configuration file, which is

loaded by the UBSwarm at startup. The device module file also specifies which tasks can be

performed by each agent and, if applicable, the physical hardware sensors and devices to be used.

4.2.2. Controlling Program

The program that is uploaded on each robot agent consists of the task-related controlling code,

the initial pin assignments, and a polling routine, as shown in Figure 5a. This program contains

function blocks to operate all the current hardware components that are currently connected and all

possible functions associated with each new component that might be attached to the robot. The

controlling program has conditional statements to decide which function to call. The decision of

which blocks of code to run depends on the updated pin assignments after the execution of the

polling routine and the task intended from the robot. The polling routine is executed only if an

internal interrupt has been activated.

(a) (b)

Figure 5. Application program and polling routine: (a) Controlling program; (b) Interrupt execution

process.

4.2.3. Polling Routine

The polling routine is basically the hardware tracker/scanner of the robotic agent. It is a piece of

code that resizes in the microcontroller; its job includes continuously receiving raw data from

onboard sensors. When an external interrupt is activated, the processor takes immediate notice,

saves its execution state, runs the polling routine, and then returns to whatever it was doing before.

Figure 5b shows the sequence of actions when an internal or external interrupt is triggered. The type

of interrupt used is an external button connected to an interrupt pin and the ground (GND). When

this pin changes its signal edge (from rising to falling or vice versa), the polling routine scans all the

other signal pins for newly attached components. After gathering such data, the polling routine

sends messages that include the state data about the hardware components attached to each I/O

Figure 5. Application program and polling routine: (a) Controlling program; (b) Interrupt execution process.

4.2.3. Polling Routine

The polling routine is basically the hardware tracker/scanner of the robotic agent. It is a piece of
code that resizes in the microcontroller; its job includes continuously receiving raw data from onboard
sensors. When an external interrupt is activated, the processor takes immediate notice, saves its
execution state, runs the polling routine, and then returns to whatever it was doing before. Figure 5b
shows the sequence of actions when an internal or external interrupt is triggered. The type of interrupt
used is an external button connected to an interrupt pin and the ground (GND). When this pin changes
its signal edge (from rising to falling or vice versa), the polling routine scans all the other signal pins
for newly attached components. After gathering such data, the polling routine sends messages that
include the state data about the hardware components attached to each I/O pins. These data also

Robotics 2016, 5, 22 12 of 21

include the type of the sensor. In order for the polling routine to understand which kind of sensor has
been connected, we divided the set of pins into two categories:

- Digital PWM pins can only be connected to Ultrasonic sensors or servo motors
- Analog pins can only be connected to Infra-red or sonar sensors

The robot agents also incorporate the following module, which provides essential input to the
polling and controlling programs.

4.2.4. Hardware Abstraction Layer

The Hardware Abstraction Layer (HAL), the platform-dependent part of UBSwarm, is used to hide
the heterogeneity of lower hardware devices and provide a component interface for the upper layers.
HAL removes hardware and operating system dependencies between the robot and the application in
order to assure the portability of the architecture and application programs. It provides access to the
sensor data or actuation commands abstracted from the underlying physical connection of the resource.
The standard interface to hardware devices takes place through the seven following operations
(all the operations will indicate error conditions if they fail): Open, Close, Read, Write, Get attributes,
Set attributes, and Lock. The abstraction layer shown in Figure 2 contains hardware-dependent control
libraries that act as low-level middleware to hide the heterogeneity of the underlying microcontrollers.

5. Experimental Results

Our swarm system is composed of semi-intelligent heterogeneous robots. Hence, robots have
very simple behaviors, but the overall high intelligence of the group is actually created by the simple
acts and moderate local intelligence of each individual robot. Each robot’s behavior is determined by
running different programs to cope with the changes in the overall swarm configuration. Each program
contains parameters that will be assigned to the values that are initially set by the user when starting
UBSwarm interface.

A complete discussion about the robotic agents used in our experiments can be found in [25].
The robotic platforms shown in Figure 6 are built using Arduino UNO, Arduino Due, and Digilent
PIC boards. These boards are designed to make the process of using electronics in multidisciplinary
projects more accessible. The hardware consists of a simple open hardware design and a rigid frame to
support and secure the different types microcontroller boards and onboard input/output components.
The software is uploaded on each robotic agent using UBSwarm interface running on a Windows
operating system. As for power source, six packs of 6 V 2500 mAh Ni-MH batteries ensure sufficient
energy autonomy to the robots. For distance sensing, a URM V3.2 and PING ultrasonic sensor
were used. However, as experimental results depict, the sensing capabilities of the platforms can
be easily upgraded with other sensors, e.g., laser range finders. Additionally, the platforms are also
equipped with an Xbee Shield from Maxstream, consisting of a ZigBee communication module with
an antenna attached on top of the Arduino Uno board as an expansion module. This Xbee Series 2
module is powered at 2 mW, having a range between 40 m and 120 m, for indoor and outdoor
operation, respectively.

Robotics 2016, 5, 22 13 of 21
Robotics 2016, 5, 22 13 of 21

(a) (b)

(c) (d) (e)

Figure 6. The heterogeneous swarm robots showing different configurations. (a) Robot R1 with 4-Dof

arm; (b) Robot R2 with 1-Dof arm ; (c) Robot R3 with onboard blackfin camera; (d) Robot R4 showing

two kinds of sensors at the front; (e) Robot R5 with 3-Dof arm and a camera.

5.1. Mapping Task

One of the experiments we conducted is mapping. Mapping or SLAM is a technique used by

robots to build up a map within an unknown environment (without a priori knowledge), or to

update a map within a known environment (with a priori knowledge from a given map). Since our

robots are equipped with simple hardware capabilities, the primary mapping technique will involve

simple sonar and ultrasonic range finders to read distances as the mapping takes place. Each robot is

placed on different corners of the building. Robots start scanning the surrounding area using an

ultrasonic distance reader mounted on the top of each robot. Decoders on each robot’s wheels

measure the distance the robot has covered as it scans. These two readings are combined with a third

reading from sonar sensors mounted on each side of the robot to add more accuracy and

redundancy to the scanning ability. All together, these readings will generate two-dimensional

values that will be fed to a Matlab program on a base station, which in turn generates a 2D map of

the scanned area. Each robot communicates with the base station using Wireless Xbee modules,

which provide communication via Wireless WiFi. One Xbee module is attached to the base computer

through USB port. As far as the Matlab program is concerned, the SLAM technique uses an

Extended Kalman Filter (EKF) to predict measurements. The EKF receives estimates from each

robot’s ultrasonic range finders, wheel odometry, and/or sonar readings. The user decides whether

or not to use these sonar readings as he runs his/her tests against performance criteria.

We ran SLAM experiments on each robot group simultaneously, meaning a mapping program

is uploaded on each robot in two experiments as follows:

- Experiment 1 uses two robots; each one has wheel encoders and one onboard ultrasonic range

finder.

- Experiment 2 uses three robots, each of which has the same configuration as the above robots

plus two more sonar sensors mounted on the sides.

Hence, the first experiment deploys two robots with two sensing components, whereas three

robots each equipped with three sensing components were deployed in the second experiment. In

the first experiments, the mapping task took 23 min, whereas the second experiment took 10 min to

complete. Figure 7a shows the actual map (black outline) and the estimated measurements (blue and

red dots) generated by the two robots (blue and red triangles). As the mapping task proceeds, Figure

7b shows the error generated by the swarm of robots as opposed to the actual distance to the wall,

Figure 6. The heterogeneous swarm robots showing different configurations. (a) Robot R1 with 4-Dof
arm; (b) Robot R2 with 1-Dof arm ; (c) Robot R3 with onboard blackfin camera; (d) Robot R4 showing
two kinds of sensors at the front; (e) Robot R5 with 3-Dof arm and a camera.

5.1. Mapping Task

One of the experiments we conducted is mapping. Mapping or SLAM is a technique used by
robots to build up a map within an unknown environment (without a priori knowledge), or to update
a map within a known environment (with a priori knowledge from a given map). Since our robots
are equipped with simple hardware capabilities, the primary mapping technique will involve simple
sonar and ultrasonic range finders to read distances as the mapping takes place. Each robot is placed
on different corners of the building. Robots start scanning the surrounding area using an ultrasonic
distance reader mounted on the top of each robot. Decoders on each robot’s wheels measure the
distance the robot has covered as it scans. These two readings are combined with a third reading
from sonar sensors mounted on each side of the robot to add more accuracy and redundancy to the
scanning ability. All together, these readings will generate two-dimensional values that will be fed to a
Matlab program on a base station, which in turn generates a 2D map of the scanned area. Each robot
communicates with the base station using Wireless Xbee modules, which provide communication via
Wireless WiFi. One Xbee module is attached to the base computer through USB port. As far as the
Matlab program is concerned, the SLAM technique uses an Extended Kalman Filter (EKF) to predict
measurements. The EKF receives estimates from each robot’s ultrasonic range finders, wheel odometry,
and/or sonar readings. The user decides whether or not to use these sonar readings as he runs his/her
tests against performance criteria.

We ran SLAM experiments on each robot group simultaneously, meaning a mapping program is
uploaded on each robot in two experiments as follows:

- Experiment 1 uses two robots; each one has wheel encoders and one onboard ultrasonic
range finder.

- Experiment 2 uses three robots, each of which has the same configuration as the above robots
plus two more sonar sensors mounted on the sides.

Hence, the first experiment deploys two robots with two sensing components, whereas three
robots each equipped with three sensing components were deployed in the second experiment. In the
first experiments, the mapping task took 23 min, whereas the second experiment took 10 min to

Robotics 2016, 5, 22 14 of 21

complete. Figure 7a shows the actual map (black outline) and the estimated measurements (blue and
red dots) generated by the two robots (blue and red triangles). As the mapping task proceeds, Figure 7b
shows the error generated by the swarm of robots as opposed to the actual distance to the wall, objects,
and so on. We can see that at some points the program receives extremely incorrect readings from
the ultrasonic sensor. After analyzing the cause for this inconsistency, we found that a particular
type of ultrasonic sensor reads a value of 0 and this was not the case with the other types of sensors.
One solution to this hardware error is to repeat (placing in a loop) the reading/scanning command
until it reads a non-zero value.

Robotics 2016, 5, 22 14 of 21

objects, and so on. We can see that at some points the program receives extremely incorrect readings

from the ultrasonic sensor. After analyzing the cause for this inconsistency, we found that a

particular type of ultrasonic sensor reads a value of 0 and this was not the case with the other types

of sensors. One solution to this hardware error is to repeat (placing in a loop) the reading/scanning

command until it reads a non-zero value.

(a)

(b)

Figure 7. Experiment 1: (a) Map generated using two robots; (b) Measurement error (meters) in 10 min

running time.

Figure 8a and b show results of the second experiment, when one more sensing component is

added to each of the three robots (indicated by the red, green, and blue triangles). The average is

taken between the two readings (on-board ultrasonic sensor and side sonar sensors). Such an

addition will have the benefit of boosting the accuracy of the measurements as well as adding

redundancy to the robotic system should any sensor fail when tasks are being executed. The average

of the error generated by all of the robots is calculated and depicted in Figures 7b and 8b. Please note

the maximum error value in both figures.

Figure 7. Experiment 1: (a) Map generated using two robots; (b) Measurement error (meters) in 10 min
running time.

Figure 8a and b show results of the second experiment, when one more sensing component is
added to each of the three robots (indicated by the red, green, and blue triangles). The average is
taken between the two readings (on-board ultrasonic sensor and side sonar sensors). Such an addition
will have the benefit of boosting the accuracy of the measurements as well as adding redundancy to
the robotic system should any sensor fail when tasks are being executed. The average of the error
generated by all of the robots is calculated and depicted in Figures 7b and 8b. Please note the maximum
error value in both figures.

Robotics 2016, 5, 22 15 of 21
Robotics 2016, 5, 22 15 of 21

(a)

(b)

Figure 8. Experiment 2: (a) map generated using three robots; (b) measurement error (meters) in 10

min running time.

5.2. Human Rescue Task

The human rescue algorithm has been developed for UBSwarm so that robots can

autonomously cooperate and coordinate their actions so that a human dummy can be pulled away

in a minimal time. Centralized as well as decentralized approaches have been used in this task. Our

previous work [24] provides a brief discussion of these approaches. Cooperation between robots is

achieved by exchanging messages when an additional robot is needed to pull the object. First, the

software environment deploys a particular type of robot that searches for a human dummy as it

wanders in the unknown environment; such a robot is equipped with an onboard camera allowing it

to detect a white stripe attached to the human body lying on the ground. Video frames are received

at a base station computer. The frames are fed into the Matlab program, which detects the white

stripe using a line detection module, as shown in Figure 9. The algorithm incorporates Hough

transform and enhanced edge detection algorithms.

Figure 8. Experiment 2: (a) map generated using three robots; (b) measurement error (meters) in 10 min
running time.

5.2. Human Rescue Task

The human rescue algorithm has been developed for UBSwarm so that robots can autonomously
cooperate and coordinate their actions so that a human dummy can be pulled away in a minimal
time. Centralized as well as decentralized approaches have been used in this task. Our previous
work [24] provides a brief discussion of these approaches. Cooperation between robots is achieved
by exchanging messages when an additional robot is needed to pull the object. First, the software
environment deploys a particular type of robot that searches for a human dummy as it wanders in the
unknown environment; such a robot is equipped with an onboard camera allowing it to detect a white
stripe attached to the human body lying on the ground. Video frames are received at a base station
computer. The frames are fed into the Matlab program, which detects the white stripe using a line
detection module, as shown in Figure 9. The algorithm incorporates Hough transform and enhanced
edge detection algorithms.

If more robots are needed to pull the object, the robot calls another agent using the Xbee-based
communication module. Wheel encoders on each robot are used to decide whether or not to call more
robots. When the pulling subtask is being performed by a robot, its wheel encoders read the elapsed
distance. If the distance is zero, it calls for more agents to be sent. Robots place themselves at different
locations. Using their grippers and by sending a special synchronization message, the robots attach
themselves to the body and start pulling backward towards the goal position. A human prototype is
built and several experiments were conducted. As the weight of the human increases, more robotic

Robotics 2016, 5, 22 16 of 21

swarm agents were called. We noticed that the configuration that uses more than three robots is
able to pull the object successfully. However, this configuration causes the robots to skid to the side.
Consequently, this act increases the time taken by the robots to complete the task. Dispatching the
right number of robots is the goal that is generated by the algorithm embedded in UBSwarm. As said
earlier, centralized as well as decentralized coordination modes are adopted to perform three trials for
each experiment set indicated by the number of robots. Data were obtained for the completion time
and the number of successful experiments. In total, 24 trials were performed.Robotics 2016, 5, 22 16 of 21

Figure 9. Overview of line detection module.

If more robots are needed to pull the object, the robot calls another agent using the Xbee-based

communication module. Wheel encoders on each robot are used to decide whether or not to call

more robots. When the pulling subtask is being performed by a robot, its wheel encoders read the

elapsed distance. If the distance is zero, it calls for more agents to be sent. Robots place themselves at

different locations. Using their grippers and by sending a special synchronization message, the

robots attach themselves to the body and start pulling backward towards the goal position. A

human prototype is built and several experiments were conducted. As the weight of the human

increases, more robotic swarm agents were called. We noticed that the configuration that uses more

than three robots is able to pull the object successfully. However, this configuration causes the robots

to skid to the side. Consequently, this act increases the time taken by the robots to complete the task.

Dispatching the right number of robots is the goal that is generated by the algorithm embedded in

UBSwarm. As said earlier, centralized as well as decentralized coordination modes are adopted to

perform three trials for each experiment set indicated by the number of robots. Data were obtained

for the completion time and the number of successful experiments. In total, 24 trials were performed.

In the first experiment set, when four robots were used (R1, R3 and R5) in a centralized fashion,

we triggered faulty sensors at time 100 s to illustrate the fault-recovering capabilities of the swarm

team. In that experiment, R5 performs its assigned tasks according to the plan. During the execution,

the camera on R5 is covered in such a way that it cannot detect the object anymore. Eliminating this

sensor triggers the coordination manager on the centralized station to generate new solutions for the

rest of the team (three robots) to accomplish the task. In the decentralized approach, robots are

always in one of the following states: reasoning, auctioning, navigating, and idle. A robot starts

reasoning when it receives a task announcement. We introduced the same kind of failure as that of

the centralized approach. In this example, at time 100 s, all robots receive the task announcement of

pulling and start reasoning to calculate utilities. At time 101 s, utilities are calculated and robots start

to bid for the task and wait for a response. At time 105 s, the task is assigned to the rest of the team

and then the robots continue their interrupted task.

The least successful solution to the human rescue task was found when using a team

constructed of three robots; R1, R3, and R4 (Experiment 2). This team was able to accomplish the

transporting task in an average of 201 s using the centralized approach. The same experiment was

conducted using a decentralized approach as well. The team also took the minimum time to

complete the task, at an average of 277 s. Table 1 shows the performance data collected from

centralized experiments only. As an example, in both approaches (i.e., centralized vs. decentralized)

the total cost of the task (𝑇𝑟𝑒𝑠𝑐𝑢𝑒) performed by the robots 𝑟𝑖′𝑠 in the capability-based ordering (R2,

Figure 9. Overview of line detection module.

In the first experiment set, when four robots were used (R1, R3 and R5) in a centralized fashion,
we triggered faulty sensors at time 100 s to illustrate the fault-recovering capabilities of the swarm
team. In that experiment, R5 performs its assigned tasks according to the plan. During the execution,
the camera on R5 is covered in such a way that it cannot detect the object anymore. Eliminating this
sensor triggers the coordination manager on the centralized station to generate new solutions for the
rest of the team (three robots) to accomplish the task. In the decentralized approach, robots are always
in one of the following states: reasoning, auctioning, navigating, and idle. A robot starts reasoning
when it receives a task announcement. We introduced the same kind of failure as that of the centralized
approach. In this example, at time 100 s, all robots receive the task announcement of pulling and start
reasoning to calculate utilities. At time 101 s, utilities are calculated and robots start to bid for the task
and wait for a response. At time 105 s, the task is assigned to the rest of the team and then the robots
continue their interrupted task.

The least successful solution to the human rescue task was found when using a team constructed
of three robots; R1, R3, and R4 (Experiment 2). This team was able to accomplish the transporting task
in an average of 201 s using the centralized approach. The same experiment was conducted using
a decentralized approach as well. The team also took the minimum time to complete the task, at an
average of 277 s. Table 1 shows the performance data collected from centralized experiments only.
As an example, in both approaches (i.e., centralized vs. decentralized) the total cost of the task (Trescue)
performed by the robots ri

′s in the capability-based ordering (R2, R3, R1, R4, R5) is determined by the
robots’ utility functions associated with each of the following tasks:

Trescue =
5

∑
i=1

Urescue(i)

Robotics 2016, 5, 22 17 of 21

5

∑
i=1

Urescue(i) =
5

∑
i=1

(utilityi(nav) + utilityi(detect) + utilityi(grip) + utilityi(pull))

utilityij = max(0, u2 × (dij
−1/2 × ϕgiven ij × priij)),

where j = 1, 2, 3, 4, i = 1, 2, 3, 4, 5, Urescue(i) is the overall utility of robot ri, and utilityi(nav),
utilityi(detect), utilityi(grip), utilityi(pull) are the navigation, object detection, gripping, and pulling
subtasks, respectively.

Table 1. Successful pulling distance according to different number of robotic agents.

Team Size Weight of Body Average Pulling Distance (m) Average Time (s)

1 300 g 1.6 196
2 800 g 1.3 240
3 1200 g 2.5 201
4 1200 g 2.0 210
5 1200 g 1.6 400

5.2.1. Execution Example

Deploying the right number of robots to rescue a human is determined by the RUTA algorithm.
The information needed at this step includes the human weight, its distance from the robots, and any
other essential parameters (such as robots’ wheel slippage percentages). The following example
calculates utilities for three robots and shows their decisions at different times. To illustrate that,
the utilities are calculated for the different sub-tasks in the three-robot team. According to RUTA,
we first deploy the two robots with the highest utilities. Obviously, the first subtask to be performed is
navigation; the two highest utilities for the three robots (1, 2 and 4) using the decentralized approach
were calculated as follows:

Suppose that the time given to robots R1, R2 and R4 to complete their subtasks is 200 s. Robot R1,
j = navigation:

utility1(nav) = max(0, u2 × (d1j
−1/2 × ϕgiven 1j × pri1j))

ϕgiven 1j = ϕnav 1j = 0.7

[[
prem1

rateservo (1)

]
× 1

w1

]

ϕgiven 1j = 0.7
[[

2200
130

]
× 1

3

]
ϕgiven 1j = 0.7 [5.58]

ϕgiven 1j = 3.90.

Initially, the priorities of all sub-tasks are equal to 1, and u2 = 1 hence,

utility1(nav) = max(0, 1× (1−1/2 × 3.90× 1))

utility1(nav) = 3.90.

Robot 2, j = navigation

ϕgiven 2j = ϕnav 2j = 0.7

[[
prem2

rateservo (2)

]
× 1

w2

]

ϕgiven 2j = 0.7
[[

2200
320

]
× 1

1

]
ϕgiven 2j = 0.7 [6.87]

Robotics 2016, 5, 22 18 of 21

ϕgiven 2j = 4.81.

So,
utility2(nav) = 4.81.

The same applies to R4, j = navigation:

utility4(nav) = 1.21.

Hence, R1 and R2 will be deployed first.
At time 110 s, and when the gripping subtask is scheduled at 20 s, the utility values for robots R2

and R4 are: R2, j = grip,
ϕgiven 2j = ϕmanip 2j + ϕsens 2j

ϕmanip 2j = 0.7
[
(

tsj
t′m

)
[

Prem2
rateact 2

]]
= 0.7

[
(9

200)
[2000

60
]]

= 1.05

ϕsens 2j = 0.9

[
(

tsj

t′m
)

[
Prem2

ratesens (2)

]]

ϕsens 2j = 0.9
[
(

11
200

)

[
2150

65

]]
= 1.64

ϕgiven 2j = ϕmanip 2j + ϕsens 2j = 2.69

pri2j =
1
2
×max [(u1 × (110− 20)), 0]

u1 = 0.01

pri2j = 0.45.

Assuming R2 distance to the object is 3 m,

utilityij = max(0, u2 × (dij
−1/2 × ϕgiven ij × priij))

utility2(grip) = max(0, 1× (3.0−1/2 × 2.69× 0.45)) = 0.69.

The same applies to R4 (supposing its distance from the body is 4.3 and its pri4j = 0.45).
Its corresponding utility value is: R4, j = grip,

utility4(grip) = max(0, 1× (4.3−1/2 × 5.04× 0.45)) = 1.09.

It is clear at this point that robot R4, which has a higher utility than R2, will perform the gripping
subtask first.

5.2.2. Optimal Solution

When evaluating the performance of two versus N robots, each team’s utility value is the key
factor that distinguishes the quickest solution from among the various team sizes and compositions.
At the beginning, each team’s utility is calculated as an initialization step in the RUTA algorithm.
At this stage, the larger the team the higher the utility value is. However, some team utilities might
start to decline depending on their parameters as the task is taking place. The team that sustains a high
utility value throughout the course of performing the task will determine the minimum execution time
and hence the optimal solution. Table 2 shows the order of teams’ success based on their utility values
and completion time. Please note: the higher the team utility the more successful the experiment is.

Robotics 2016, 5, 22 19 of 21

Table 2. Centralized vs. decentralized team utilities.

Team Composition
Centralized Decentralized

Utility Value Time (s) Utility Value Time (s)

(R1, R3, R4, R5) 8.82 210 6.62 299
(R1, R3, R4) 9.63 201 6.91 277

(R2, R3, R4, R1, R5) 8.43 400 6.66 405
(R2, R5) 8.16 240 6.34 310

The desired pulling distance for a 1200-g human dummy was 2.5 m. The sequenced photos in
Figure 10 below shows an example of five robots pulling the dummy.

Robotics 2016, 5, 22 19 of 21

Table 2. Centralized vs. decentralized team utilities.

Team Composition
Centralized Decentralized

Utility Value Time (s) Utility Value Time (s)

(R1, R3, R4, R5) 8.82 210 6.62 299

(R1, R3, R4) 9.63 201 6.91 277

(R2, R3, R4, R1, R5) 8.43 400 6.66 405

(R2, R5) 8.16 240 6.34 310

The desired pulling distance for a 1200-g human dummy was 2.5 m. The sequenced photos in

Figure 10 below shows an example of five robots pulling the dummy.

(a) (b)

(c) (d)

Figure 10. A dummy being pulled for 2.5 m using five robots. (a) Five robots being deployed for a

rescue task; (b) Four robots have the best utility and are approaching; (c) Five robots crossing the

finish line; (d) The fifth robot, R2, is called (a decision made by the robots themselves).

6. Conclusions

The deployment environment deploys a group of heterogeneous robots using its application

program interface and uploads programs that are integrated with a small sub-routine. The

embedded routine exploits an algorithm that allows robots to coordinate their behaviors when the

decentralized control mode is adopted. To reduce efforts in deploying tasks to swarm robotic agents,

the proposed application also offers customization of robotic platforms by simply defining the

available sensing and actuation devices. Another objective of the system is to improve code and

component reusability. Usage of the proposed framework prevents the need to redesign or rewrite

programs should any changes take place in the robot’s platform.

Performance measures depicted in the experiments demonstrated that different heterogeneous

robots, each one with its own configuration, are more flexible, robust, and cost-effective. Tasks are

fractioned into smaller sub-tasks, which are then assigned to the optimal number of robots using a

novel Robot Utility Based Task Assignment (RUTA) algorithm. RUTA is a reasoning algorithm that

generates multi-robot utilities through a negotiation process in a decentralized manner. A

centralized approach (whereby RUTA runs on a single computer and instructions are sent to each

robot) was also adopted for comparison reasons. In the decentralized mode, the negotiation process

enables each robot to find the best solution by reassigning subtasks through the process of finding

the utility of executing the specific sub-task.

Figure 10. A dummy being pulled for 2.5 m using five robots. (a) Five robots being deployed for a
rescue task; (b) Four robots have the best utility and are approaching; (c) Five robots crossing the finish
line; (d) The fifth robot, R2, is called (a decision made by the robots themselves).

6. Conclusions

The deployment environment deploys a group of heterogeneous robots using its application
program interface and uploads programs that are integrated with a small sub-routine. The embedded
routine exploits an algorithm that allows robots to coordinate their behaviors when the decentralized
control mode is adopted. To reduce efforts in deploying tasks to swarm robotic agents, the proposed
application also offers customization of robotic platforms by simply defining the available sensing
and actuation devices. Another objective of the system is to improve code and component reusability.
Usage of the proposed framework prevents the need to redesign or rewrite programs should any
changes take place in the robot’s platform.

Performance measures depicted in the experiments demonstrated that different heterogeneous
robots, each one with its own configuration, are more flexible, robust, and cost-effective. Tasks are
fractioned into smaller sub-tasks, which are then assigned to the optimal number of robots using a
novel Robot Utility Based Task Assignment (RUTA) algorithm. RUTA is a reasoning algorithm that
generates multi-robot utilities through a negotiation process in a decentralized manner. A centralized
approach (whereby RUTA runs on a single computer and instructions are sent to each robot) was also
adopted for comparison reasons. In the decentralized mode, the negotiation process enables each robot

Robotics 2016, 5, 22 20 of 21

to find the best solution by reassigning subtasks through the process of finding the utility of executing
the specific sub-task.

Author Contributions: Tamer Abukhalil developed the software deployment environment. Madhav Patil built
the heterogeneous robotic swarm. Sarosh Patel debugged hardware and software issues. Tarek Sobh conceived
and designed the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yan, X.; Liang, A.; Guan, H. An algorithm for self-organized aggregation of swarm robotics using timer.
In Proceedings of the 2011 IEEE Symposium on Swarm Intelligence (SIS), Paris, France, 11–15 April 2011;
pp. 1–7.

2. Bayindir, L.; Sahin, E. A review of studies in swarm robotics. Turk. J. Electr. Eng. 2007, 15, 115–147.
3. Liemhetcharat, S.; Veloso, M. Weighted synergy graphs for effective team formation with heterogeneous ad

hoc agents. Artif. Intell. 2014, 208, 41–65. [CrossRef]
4. Hayes, A.T.; Martinoli, A.; Goodman, R.M. Swarm robotic odor localization. In Proceedings of the 2001

IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, HI, USA, 29 October–3
November 2001; pp. 1073–1078.

5. Kalde, N.; Simonin, O.; Charpillet, F. Comparison of Classical and Interactive Multi-Robot Exploration
Strategies in Populated Environments. Acta Polytech. 2015, 55, 154–161. [CrossRef]

6. Payton, D.; Daily, M.; Estowski, R.; Howard, M.; Lee, C. Pheromone robotics. Auton. Robots 2001, 11, 319–324.
[CrossRef]

7. Abukhalil, T.; Patil, M.; Sobh, T. Survey on Decentralized Modular Swarm Robots and Control Interfaces.
Int. J. Eng. 2013, 7, 44.

8. Patil, M.; Abukhalil, T.; Patel, S.; Sobh, T. Hardware Architecture Review of Swarm Robotics System:
Self-Reconfigurability, Self-Reassembly, and Self-Replication. In Innovations and Advances in Computing,
Informatics, Systems Sciences, Networking and Engineering; Springer International Publishing: New York, NY,
USA, 2015; pp. 433–444.

9. Inc, M. Documentation & Technical Support for MobileRobots Research Platforms; Adept MobileRobots Inc.:
Amherst, NH, USA, 2006.

10. Baillie, J.C. The URBI Tutorial; Gostai: Lyon, France, 2006.
11. Gerkey, B.; Vaughan, R.T.; Howard, A. The player/stage project: Tools for multi-robot and distributed sensor

systems. In Proceedings of the 11th International Conference on Advanced Robotics, Coimbra, Portugal,
30 June–3 July 2003; pp. 317–323.

12. Nebot, P.; Cervera, E. Agent-based application framework for multiple mobile robots cooperation.
In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain,
18–22 April 2005; pp. 1509–1514.

13. Zhang, X.L.T.; Zhu, Y.; Li, X.; Chen, S. Coordinative Control for Multi-Robot System through Network
Software Platform. iConcept Press 2010, 28, 51–59.

14. Blank, D.; Kumar, D.; Meeden, L.; Yanco, H. Pyro: A python-based versatile programming environment for
teaching robotics. J. Educ. Resour. Comput. 2004, 4, 3. [CrossRef]

15. Kulis, Z.; Manikonda, V.; Azimi-Sadjadi, B.; Ranjan, P. The distributed control framework: A software
infrastructure for agent-based distributed control and robotics. In Proceedings of the American Control
Conference, Seattle, WA, USA, 11–13 June 2008; pp. 1329–1336.

16. Elkady, A.; Joy, J.; Sobh, T. A plug and play middleware for sensory modules, actuation platforms and task
descriptions in robotic manipulation platforms. In Proceedings of the ASME 2011 International Design
Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, IL,
USA, 28–31 August 2011; pp. 565–574.

17. Nestinger, S.S.; Cheng, H.H. Mobile-R: A reconfigurable cooperative control platform for rapid deployment of
multi-robot systems. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation
(ICRA), Shanghai, China, 9–13 May 2011; pp. 52–57.

18. Chen, B.; Cheng, H.H.; Palen, J. Mobile-C: A mobile agent platform for mobile C/C++ agents.
Softw. Pract. Exp. 2006, 36, 1711–1733. [CrossRef]

http://dx.doi.org/10.1016/j.artint.2013.12.002
http://dx.doi.org/10.14311/AP.2015.55.0154
http://dx.doi.org/10.1023/A:1012411712038
http://dx.doi.org/10.1145/1083310.1047569
http://dx.doi.org/10.1002/spe.742

Robotics 2016, 5, 22 21 of 21

19. Ball, G.P.; Squire, K.; Martell, C.; Shing, M.T. MAJIC: A Java application for controlling multiple,
heterogeneous robotic agents. In Proceedings of the 19th IEEE/IFIP International Symposium on Rapid
System Prototyping, Monterey, CA, USA, 5 January 2008; pp. 189–195.

20. Tang, F.; Parker, L.E. A complete methodology for generating multi-robot task solutions using asymtre-d
and market-based task allocation. In Proceedings of the 2007 IEEE International Conference on Robotics and
Automation, Sanya, China, 15–18 December 2007; pp. 3351–3358.

21. Kernbach, S.; Meister, E.; Schlachter, F.; Jebens, K.; Szymanski, M.; Liedke, J.; Laneri, D.; Winkler, L.;
Schmickl, T.; Thenius, R.; et al. Symbiotic robot organisms: REPLICATOR and SYMBRION projects.
In Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, Gaithersburg, MD,
USA, 19–21 August 2008; pp. 62–69.

22. Bautin, A.; Simonin, O.; Charpillet, F. Minpos: A novel frontier allocation algorithm for multi-robot
exploration. In Intelligent Robotics and Applications; Springer: Berlin/Heidelberg, Germany, 2012; pp. 496–508.

23. Von Neumann, J.; Morgenstern, O. Theory of games and economic behavior. Bull. Am. Math. Soc. 1945, 51,
498–504.

24. Abukhalil, T.; Patil, M.; Patel, S.; Sobh, T. Coordinating a Heterogeneous Robot Swarm Using Robot
Utility-Based Task Assignment (RUTA). In Proceedings of the 2016 IEEE 14th International Workshop on
Advanced Motion Control (AMC), Auckland, New Zealand, 22–24 April 2016; pp. 57–62.

25. Patil, M.; Abukhalil, T.; Patel, S.; Sobh, T. UB Robot Swarm, Design, Implementation, and Power Management.
In Proceedings of the 12th IEEE International Conference on Control and Automation (ICCA), Kathmandu,
Nepal, 1–3 June 2016; pp. 577–582.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Methodology
	System Architecture
	Robot Deployment Environment
	User Interface
	Coordination Agent
	Runtime Interpreter
	Knowledge Base (Registry)

	Robot Control Middleware
	Device Library
	Controlling Program
	Polling Routine
	Hardware Abstraction Layer

	Experimental Results
	Mapping Task
	Human Rescue Task
	Execution Example
	Optimal Solution

	Conclusions

