
1

DEPLOYMENT OF HETEROGENEOUS SWARM ROBOTIC

AGENTS USING A TASK-ORIENTED UTILITY-BASED

ALGORITHM

Tamer Abukhalil

Under the Supervision of Dr. Tarek M. Sobh

DISSERTATION

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIRMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOHPY IN COMPUTER SCIENCE

AND ENGINEERING

THE SCHOOL OF ENGINEERING

UNIVERSITY OF BRIDGEPORT

CONNECTICUT

JANUARY, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UB ScholarWorks

https://core.ac.uk/display/52956273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

DEPLOYMENT OF HETEROGENEOUS SWARM ROBOTIC

AGENTS USING A TASK-ORIENTED UTILITY-BASED

ALGORITHM

© 2015 Copyright by Tamer Yousef Abukhalil

iv

DEPLOYMENT OF HETEROGENEOUS SWARM ROBOTIC

AGENTS USING A TASK-ORIENTED UTILITY-BASED

ALGORITHM

ABSTRACT

In a swarm robotic system, the desired collective behavior emerges from local

decisions made by robots, themselves, according to their environment. Swarm robotics is

an emerging area that has attracted many researchers over the last few years. It has been

proven that a single robot with multiple capabilities cannot complete an intended job

within the same time frame as that of multiple robotic agents. A swarm of robots, each

one with its own capabilities, are more flexible, robust, and cost-effective than an

individual robot.

As a result of a comprehensive investigation of the current state of swarm robotic

research, this dissertation demonstrates how current swarm deployment systems lack the

ability to coordinate heterogeneous robotic agents. Moreover, this dissertation’s objective

shall define the starting point of potential algorithms that lead to the development of a

new software environment interface. This interface will assign a set of collaborative tasks

v

to the swarm system without being concerned about the underlying hardware of the

heterogeneous robotic agents.

The ultimate goal of this research is to develop a task-oriented software application

that facilitates the rapid deployment of multiple robotic agents. The task solutions are

created at run-time, and executed by the agents in a centralized or decentralized fashion.

Tasks are fractioned into smaller sub-tasks which are, then, assigned to the optimal

number of robots using a novel Robot Utility Based Task Assignment (RUTA) algorithm.

The system deploys these robots using it’s application program interfaces (API’s) and

uploads programs that are integrated with a small routine code. The embedded routine

allows robots to configure solutions when the decentralized approach is adopted. In

addition, the proposed application also offers customization of robotic platforms by

simply defining the available sensing and actuation devices. Another objective of the

system is to improve code and component reusability to reduce efforts in deploying tasks

to swarm robotic agents. Usage of the proposed framework prevents the need to redesign

or rewrite programs should any changes take place in the robot’s platform.

vi

ACKNOWLEDGEMENTS

My thanks are wholly devoted to God who has helped me all the way to complete

this work successfully. I owe a debt of gratitude to my family for their understanding,

support, and encouragement.

I am honored that my work has been supervised by Prof. Tarek Sobh. He has taught

me how good research work is done. I appreciate all his contributions of time, ideas, and

funding to make my PhD experience productive and stimulating. The joy and enthusiasm

he has for his research is contagious and motivated me, even during tough times

throughout my PhD pursuit.

 I would like to extend my special thanks to my friend and colleague, Dr. Sarosh

Patel for his inspiring ideas. I am so grateful for his support and helpful comments. I am

extremely thankful for the excellent example he has been as a researcher and a teacher. I

wish him all the very best in his future.

I would like to convey my thanks to my friend and fellow PhD candidate Madhav

Patil for the effort he has put in developing the physical robotic swarm agents. I would

not have got the chance to complete my research without the actual hardware he has built.

vii

NOMENCLATURE

𝑅 Set of Robotic Agents

𝑇 Task to be performed

𝑛 Number of robots

𝑟𝑖 Robot 𝑖

𝑡𝑗 Subtask (j) Beginning Time

𝑡′𝑗 Subtask (j) Ending Time

𝑚 Number of Subtasks

𝑣𝑖𝑗 Subtask (j) performed by Robot (i)

𝑡𝑦𝑝𝑒 Subtask type

𝑡𝑒𝑗 Subtask (j) Assigned Time

𝑟𝑎𝑡𝑒𝑗 Subtask (j) Consumption Rate

L Workload

𝑑𝑖𝑗 Distance of Robot i to Subtask j

𝛽𝑖 Robot Representation

𝑖𝑑 Robot id

𝑤𝑖 Robot (i) Wheel Slip

𝑃𝑟𝑒𝑚𝑖 Robot (i) Power Remaining

𝑡′𝑚 Total time to execute all Subtasks

𝑢1,𝑢2 Weight Coefficients

𝑃𝑖 Solution Plan for robot (i)

𝑝𝑟𝑖 Priority

viii

ACRONYMS

API Application Program Interface

ANN Artificial Neural Network

ACO Ant Colony Optimization

CNP Contract Net Protocol

DRRS Dynamically Reconfigurable Robotic System

DoF Degrees of freedom

EKF Extended Kalman Filter

FPGA Field Programmable Gate Array

GA Genetic Algorithms

GP Generic Programming

HDRC Hormone Driven Robot Controller

HAL Hardware Abstraction Layer

IR Infra Red

JVM Java Virtual Machine

MRTA Multi Robot Task Allocation

OAP Optimal Assignment Problem

PSA Particle Swarm Algorithm

PWM Pulse Width Modulation

PFSA Probabilistic Finite State Automata

PIM Platform Independent Model

RPC Remote Procedure Call

RUTA Robot Utility based Task Assignment

ix

RFID Radio Frequency Identification Tags

SOA Service Oriented Architecture

SLAM Simultaneous Localization And Mapping

SOAP Simple Object Access Protocol

WS Web Services

x

TABLE OF CONTENTS

ABSTRACT…… ... iv

ACKNOWLEDGEMENTS ... vi

NOMENCLATURE ... vii

ACRONYMS…. .. viii

CHAPTER ONE: INTRODUCTION ..1

1.1 Problem Scope ..3

1.2 Motivation ...3

1.3 Research Contributions ...4

CHAPTER TWO: LITERATURE SURVEY OF SWARM SYSTEMS6

2.1 Two Main Categories of Swarm Behaviors ...7

2.1.1 “Biologically Inspired” Robots ...8

2.1.2 “Functionally Inspired” Robots ..12

2.2 Reconfigurable Robots ...19

2.3 Self-replicating Robots ...24

2.4 Swarm Control Software Environments ..25

CHAPTER THREE: RESEARCH PLAN AND SYSTEM ARCHITECTURE33

3.1 Robot Deployment System ..37

3.1.1 User Interface ..38

3.1.2 Coordination Manager ..41

3.1.3 Runtime Interpreter ...51

3.1.4 Registry ...53

3.2 Robotic Control System ...53

3.2.1 Application Program ...54

xi

3.2.2 Polling Routine ...54

3.2.3 Device library..56

3.2.4 Compiler ...56

3.2.5 Hardware Abstraction Layer ...57

CHAPTER FOUR: IMPLEMENTATION AND TEST PLAN ...58

4.1 Simultaneous Mapping of a Building ...60

4.2 Human Rescue ..60

4.3 Painting a Wall ...60

CHAPTER FIVE: EXPERIMENTS AND RESULTS ...61

5.1 Simultaneous Localization and Mapping (SLAM) ...64

5.1.1 Communication ...66

5.2 Human Rescue Task ..72

5.2.1 Simulation Module..76

5.3 Wall Painting ..81

5.3.1 Arm and End-effecter ...81

5.3.2 Painting Method ..83

5.4 Performance of Centralized vs. Decentralized Approaches84

5.5 Comparison between RUTA and Current Techniques ..88

CONCLUSIONS AND FUTURE WORK ..91

BIBILOGRAPHY ...94

xii

LIST OF FIGURES

Figure 1.1: System Layers ... 1

Figure 2.1: The DCF human interface (© 2008 IEEE)1 .. 27

Figure 2.2: MAJIC Control Platform (© 2008 IEEE)2 ... 28

Figure 3.1: (a) Deployment software overview (b) System overview 34

Figure 3.2: System Architecture .. 37

Figure 3.3: (a) List of available tasks (b) runtime coordinator and other running

packages (c) Additional robot is added to the system............................... 40

Figure 3.4: Coordination manager framework... 41

Figure 3.5: Coordination Manager Algorithm Overview .. 43

Figure 3.6: Adding services in runtime.. 52

Figure 3.7: (a) Controlling program, (b) Interrupt execution .. 54

Figure 4.1: Heterogeneous robots showing different configurations 58

Figure 5.1: Multi-Robot mapping using EKF prediction... 66

Figure 5.2: Data transmission clock from each robot to the base station 67

Figure 5.3: (a) Scan error during runtime using one robot, (b) scan/position error

during runtime using two robots .. 68

Figure 5.4: (a) Position of one robot and its scanned estimates vs. actual map, (b)

Two robots positions and scanned estimates versus actual map............... 69

xiii

Figure 5.5: (a) The map generated by one robot, (b) the map generated by the two

robots. ... 70

Figure 5.6: Three robots performing mapping ... 71

Figure 5.7: Experiment three (a) The estimates generated (b) Position error

(centimeters) in 10 minutes of runtime .. 72

Figure 5.8: Overview of line detection Module ... 73

Figure 5.9: Four robots simulation before being deployed .. 79

Figure 5.10: A dummy being pulled for 2.5 meters using five robots 80

Figure 5.11: The 2-Dof sketch for the robot manipulator .. 81

Figure 5.12: Spraying nozzles attached to the Robots ... 82

Figure 5.13: The surface covered by the painter .. 82

Figure 5.14: Centralized vs. Decentralized time needed to generate solutions 86

Figure 5.15: Centralized vs. Decentralized team utility .. 86

Figure 5.16: Comparison of RUTA with current methods .. 90

xiv

LIST OF TABLES

Table 2-1: Multi-robot Coordination Approaches .. 13

Table 2-2: Comparisons between existing reconfigurable robot systems 21

Table 3-1: Five robots and their capabilities... 44

Table 3-2: Sensing and actuation components consumption rates 44

Table 5-1: Attribute-based comparison between the proposed system and the

previous environments ... 63

Table 5-2: Successful pulling distance according to different number of robotic

agents ... 75

Table 5-3: Centralized vs. Decentralized team utilities .. 80

Table 5-4: Team compositions and their utility values .. 87

1

CHAPTER ONE: INTRODUCTION

Decentralized modular robotics is an emerging area that has attracted many

researchers over the last few years. The desired tasks may be too complex for one single

robot, whereas they can be effectively done by multiple robots [1, 2]. Modular robotic

systems have proven to be robust and flexible [3-7]. These properties are likely to

become increasingly important in real-world robotics applications. When investigating

the control environments that actually deploy such robotic systems to perform the

intended tasks, our findings indicate a lack of software packages exist that provide

control for various platforms of robots, individually, and allow concurrent control of

heterogeneous robotic teams. Thus designed such control applications. Figure 1-1 shows

the break-down of the system hierarchy.

Figure 1.1: System Layers

Robot Deployment Environment

Hardware (Robots)

Middleware

User

2

Over the past decade, various research efforts have been performed that attempt to

resolve coordination and decision making problems in swarm robotic systems. Such

studies include simple models such as foraging [8, 9]. The multi-agent robotics system

consisting of a number of identical robots proposed in [10] for a decentralized robot is yet

another approach to swarms. In [11], Roderich and others proposed the concept of self-

assembling capabilities of the self-reconfigurable S-bots (also known as “Swarm-bot”)

were developed by the Francesco Mondada et al. [12]. Swarm-bots can either act

independently or self-assemble to form a swarm by using their grippers. In [13], Fukuda

and Nakagawa proposed the concept of the DRRS (Dynamically Reconfigurable Robotic

System) based on a cell structure for removable parts. The implementation was then

called CEBOT, the first cellular robotic system. CEBOT is a heterogeneous system

comprised of agents with different locomotion functions. One of the critical aspects of

this type of system is the communication between the members of the swarm [14], which

is usually carried out using radio-links. In [15], Dumbar and Esposito studied the problem

of maintaining communications among the robots performing tasks.

Decentralization means that the algorithm does not require access to the full

global state and all control computations are done locally. However, in order to command

large groups of robots, it is also essential to include an element of centralization to allow

humans to interact and task the team. Our work is based on the assumption that there is a

lack of software packages which provide control for the different platforms of robots

individually, and allow concurrent control of heterogeneous robotic teams.

3

1.1 Problem Scope

The scope of our research is making heterogeneous robots exhibit swarm behavior

despite their different configurations. The first objective of our research is to develop a

task-based software environment to deploy such robots and program them to operate in a

swarm fashion. Our second research objective is to design an intelligent coordination

component that generates optimal platform-independent algorithms to perform three

essential tasks based on the parameters and the type of robots entered by the user. Since

the trend in the swarm robotic research was mainly focused on developing rather large

and homogenous systems, our work focuses on the development of smaller and less

intelligent robots and having a large number of such systems to perform collaborative

tasks.

1.2 Motivation

The number of such smaller agents is the key factor that has to be decided to

answer the question, would a single robot with larger computational power complete an

intended job using the same time and accuracy that of multiple robotic agents or not?

Our research hypothesis is based on two primary motivations. Our first motivation

is to develop the necessary framework that will provide connectivity between

heterogeneous agents, in addition to building central software that interacts with these

agents. There are six software packages that are primarily designed to distribute programs

and deploy the swarm of robotic agents. These packages provide simple communication,

and allow for interfacing with the swarm of robots. Furthermore, these software packages

4

simulate the swarm systems and deploy tasks to the robots. Our system design is

motivated by our interest in multi-robot control for the deployment of potentially large

numbers of cooperating robots to perform tasks such as simultaneous navigation, object

manipulation, and transportation. Such system design would be a great practical

integration tool to provide rapid implementation of real-world experimentations without

spending excessive time on writing software programs. Our Second motivation is to

extend the software programs that are uploaded on each robot in order to allow them to

integrate more sensors and/or actuators. These programs will allow auto-detection of the

attached standardized components as they are added to current robot configuration.

Having such programs will add a plug-and play feature to every robotic agent in the

swarm system.

1.3 Research Contributions

Our software deployment environment (UBSwarm) is developed to simulate,

deploy, and coordinate robots in real-time. By incorporating the improvements listed

below, our research overcomes the limitations found in the existing multi-agent software

deployment environments.

1. UBSwarm is designed to deploy heterogeneous robotic agents that have different

hardware configurations and functionalities, unlike the previous swarm systems in

which robotic agents were homogenous.

2. UBSwarm defines a set of operating rules and constructs programs that make the

different robotic agents work in a swarm fashion even though the robots’

5

hardware configurations are different.

3. The proposed application offers customization of robotic platforms by defining

the available sensing devices, actuation devices, and the required tasks. In

addition, our application works to prevent rewriting programs for the different

robotic configurations.

4. The service-oriented architecture used in our deployment system demonstrates

how programs are constructed and how the coordination agent generates solution

plans using the agent’s Robot Utility Based Algorithm (RUTA).

5. UBSwarm is designed to deploy and coordinate the swarm robots by using either

centralized or decentralized modes depending on the intended task.

6. By performing a premature simulation of the task, UBSwarm chooses the exact

number and type of the mobile agents.

6

In conducting our survey, we identified a criteria that is based on assumptions

similar to the ones presented in [16]. We investigated the deployment systems that target

algorithms designed to operate heterogeneous/homogenous robots performing various

tasks. These assumptions can be summarized as follows:

1. The identified systems are composed of an undetermined number of embodied

robots;

2. Heterogeneous robots have different capabilities;

3. These robots have a decentralized control;

4. Additional robots may be added to the system at any time;

5. Robots are multi-purpose, not task specific;

6. A coordination model should exist to guide the different robots.

In this literature review, we present a comprehensive study on the behavior of

existing swarm systems dedicated to deploy different tasks/applications on collective and

mobile reconfigurable robotic system. The modules used in these systems are fully

autonomous mobile robots that, by establishing physical connections with each other, can

organize into modular robots. We do not consider any particular hardware or

CHAPTER TWO: LITERATURE SURVEY OF SWARM

SYSTEMS

7

infrastructure of each swarm agent. Our work focuses on building control mechanisms

that allow the system to operate several simple heterogeneous agents.

This literature survey is organized as follows: Section 2.1 provides a

comprehensive survey of two primary swarm approaches, a “biologically inspired”

robots, and “functionally inspired” robots. Section 2.2 presents a comparison between

existing reconfigurable robots. In section 2.3, we discuss self-replicating robots. Section

2.4 analyses of the existing robotic software deployment systems.

2.1 Two Main Categories of Swarm Behaviors

Swarm behavior was first simulated on computers in 1986 using the simulation

program Boids [17]. This program simulated simple agents (Boids) that were only

allowed to move according to a set of basic rules set by programmers. These rules are in

fact, algorithms known as the Particle Swarm Algorithms (PSA’s). The model was

originally designed to mimic the flocking behavior of birds, but it can also be applied to

schooling fish and other swarming entities.

Different studies of complexity have been carried out over these types of systems

[7, 14, 15, 18-24]. There have been many interpretations of the understanding and

modeling of swarming behavior. Some researchers have classified these behaviors into

two primary types namely biologically inspired and functionally built robots [25], while

others have proposed two fundamentally different approaches that have been considered

for analysis of swarm dynamics. These are spatial and non-spatial approaches [26]. In the

first approach, “biologically inspired”, designers try to create robots that internally

8

simulate, or mimic, the social intelligence found in living creatures. The second

approach, “functionally inspired”, use task-specific designed robots generally engineered

with constrained operational and performance capabilities which include sensors,

grippers, and so on. Consequently, these artificial robots may only need to generate

certain effects and experiments with the environment, rather than having to withstand

deep scrutiny for “life-like” capabilities [5].

2.1.1 “Biologically Inspired” Robots

Multiple researchers have shown some interest in the foraging and other insect

inspired coordination problem and have investigated these behaviors and summarized

them into algorithms. Others were interested in exploiting swarm robots in the tasks of

localization [18], surveillance, reconnaissance [19], and hazard detection [20, 21].

Pheromone-trail-based algorithms sometimes have the ability to dynamically improve

their path [22] and can adapt to a changing terrain [27]. Ant-inspired foraging has been

implemented in robots by various groups. One major difficulty can be exhibited in

implementing the pheromone itself. Others have resolved problems of how robots should

interact in the swarm. There have been many approaches dedicated to this:

1. By means of physical markers, where robots physically mark their paths in

multiple ways, such as depositing of a chemical alcohol on the ground [22], drawing lines

onto the floor using pen and paper [21], laying trails of heat [23], storing the pheromone

values radio Frequency Identification Tags RFID [24], or emitting ultraviolet light onto a

phosphorescent paint [28].

9

2. Transmitting wireless signals when laying virtual landmarks in a localization

space. In the work of Vaughan et al., robots maintain an internal pheromone model with

trails of waypoints as they move, and share it with other robots over a wireless network

[27].

3. Virtual pheromones that consist of symbolic messages tied to the robots

themselves rather than to fixed locations in the environment. In their experiment [19], the

virtual pheromone is encoded as a single modulated message consisting of a type field, a

hop-count field, and a data field. Messages are exchanged between robots through

infrared transmitters and receivers. It is assumed that the robots receiving the pheromone

can measure the intensity of the IR reception to estimate their distance from the

transmitter.

4. Foraging allocation ratio among robots. In [29], Wenguo Liu et al, presented a

simple adaptation mechanism to automatically adjust the ratio of foragers to resting

robots (division of labor) in a swarm of foraging robots and hence maximize the net

energy income to the swarm. Three adaptation rules are introduced based on local sensing

and communications. Individual robots use internal cues (successful food retrieval),

environmental cues (collisions with teammates while searching for food) and social cues

(team-mate success in food retrieval) to dynamically vary the time spent foraging or

resting.

5. Dynamic programmed deployable beacons. The method described in [30]

provides local rules of motion for swarm members that adhere to a global principle for

10

both searching and converging on a stationary target in an unknown and complex

environment via the use of immobile relay markers.

The survey does not span the entire field of intelligent swarm behavior robotics.

Instead, it focuses on systems for which new algorithms for communication between

robots have been demonstrated. Such algorithms can be found in the work of the

following researchers:

1. Algorithm for Self-Organized Aggregation of Swarm Robotics using Timer: As a

solution to self-organization among swarm agents, Xinan Yan, et al. [1] have proposed an

aggregation algorithm based on some constraints for which neither central control nor

information about locations of the agents are pre-given. The author’s control strategy

contains two states, Search and Wait for each individual robot as given in the model of

probabilistic Finite State Automata (PFSA). Their algorithm assigns unique IDs to each

robot. Knowing the total number of robots, randomly placed robots walk in the arena

looking for other robots. Based on IR sensing and wireless connection capabilities

installed on each robot, each can identify the others robot’s ID. The group of encountered

robots forms an aggregate, in which the robot with the larger ID defines the aggregate’s

characteristics and also insures that all robots in a particular aggregate must have the

same timers. When the timer terminates, the robot tries to detach from its current

aggregate. In the experiment, all the robots are identical. Each robot is mobile with

limited ability of interaction including IR sensing for detecting objects and wireless

communication for communicating with other robots.

11

2. Two foraging algorithms using only local communications: Nicholas R. Hoff et

al. [31], have proposed two algorithms for searching the environment for an object of

interest (food) and then returning this object to the base, keeping in mind that all robots

do not have any prior information about the location of the food. Their algorithms are

inspired by the foraging behavior of ants in which they mark paths leading from the nest

to food by depositing a chemical pheromone on the ground. Ants use the distribution of

the pheromone to decide where to move. In their first algorithm, two simple floating-

point values are used such that some robots will decide to stop their normal search and

become ‘pheromone robots’ at any given point. Those robots will act like locations of

virtual pheromones. Other robots can read the pheromone level by receiving a

transmission from the pheromone robot, and they can “lay” the virtual pheromone by

transmitting to the pheromone robot. So, if there were a network of pheromone robots,

the walker robots could use the distribution of virtual pheromone they were able to sense

in order to decide how to move. If integer values are used instead of floating-point values

at each virtual pheromone such that the nearest robot to the nest stores the digit 1 and the

other robot that is close enough to communicate with the first robot, stores and transmits

the digit 2. A walker robot can use these values to find a path to the nest by always

moving to the lowest cardinality it detects.

12

2.1.2 “Functionally Inspired” Robots

Another line of swarm-based research can be found where robot agents are built

to achieve specific tasks such as path finding using algorithms that are not necessarily

based on imitating biological swarm organisms. In their previous work, Wang Bei, et al.

[32] implemented what they call a robotic termite agent, which is able to simulate the

wood-chip collecting behavior of termites. The authors have developed a software and

hardware solution based on the simulation of collective building of a 2D termites’ colony.

The termites (swarm of robot agents) gather wood-chips into piles following a set of

predefined rules. Boe-Bot Robots are used. The Boe-Bot is built on an aluminum chassis

that provides a sturdy platform for the servomotors and printed circuit board and comes

with a pair of whiskers and gripper. Their tasks include moving on smooth surfaces,

detecting new objects, dropping the woodchips and then picking up such objects as they

are encountered. The robot agent turns for a 360 degrees angle until it detects an object.

The robot then carries the object, holds it, and moves forward. The robot keeps holding

the chip as it wanders in the environment until it detects another object (which is another

woodchip). After releasing the object, the robot moves backward, turns at an angle of 45

degrees, and the same procedure is repeated.

Obtaining decentralized control that provides interesting collective behaviors is a

central problem [16, 33-41]. Several algorithms have been developed to run on swarms of

robots. The complexity varies between these algorithms. Some provided basic

functionality, such as dispersion, while others exhibited complex interactions between the

team of robots such as bidding on tasks according to some rules. Table 2-1 summarizes

13

the most recent swarm robot systems with their corresponding algorithms. These are

systems introduced in literature that only involve multiple agent teams with decentralized

control.

 Approach

 Remarks

 Approach 1

 Knowledge-based coordination

Symprion/

replicator

What determines the behavior of either

single or group of agents is HDRC

(Hormone Driven Robot Controller)

controller that contains a configuration

for the robot itself, and a software

controller called Genome. The Genome

contains a set of rules that control each

agent’s behavior and generates different

actions according to the different

environmental conditions. Agents keep

learning about their environment using

internal, external and virtual sensors.

Agents also are supported with on-

board computational power using

approaches like Generic Programming

(GP) and Genetic Algorithms (GA).

Kernbach

et al., 2008

[41]

The most primary

advantage of this

approach is the huge

number of units used in

the experiment.

Moreover, These

modules are able to

reassemble different

shapes that could get the

whole structure moving

to desired locations.

iRobot Authors suggest spreading pheromones

in an ad-hoc way over the wireless

network constituted by the robots. The

primary communication component is

J.McLurkin

and

J.Smith,

2004 [33]

Their solution mainly

focuses on path planning

and routing protocols of

messages transmitted

 Table 2.1: Multi-robot Coordination Approaches

14

an infrared inter-robot communication.

Swarm software is written as behaviors

that run concurrently. Each behavior

returns a variable that contains actuator

commands. Their goal is to spread

robots throughout an enclosed space

quickly and uniformly, that were

identified by direct dispersion

performed by two algorithms. The first

one works by moving each robot away

from the vector sum of particular

positions from their closest neighbors.

In the second one, robots move towards

areas they have yet to explore. Once the

robots know their positions the frontier

robots issue a message. The trees

created by these messages guide the

swarm toward the frontier robots.

between agents at their

different positions.

However, the cost of

individual robots and

the number of robots

required to provide

sufficient coverage to

the environment are

high. This particular

system suffers from the

fact that when the ad-hoc

network of robots gets

partitioned, pheromone

trails automatically

break down causing the

robots to stop moving.

Quadrotors Authors attempt to design small light

weight flying vehicles designed to

operate in close ranges. The team of

quadrotors is organized into groups.

Vehicles within the group are tightly

coordinated. Centralized control and

planning is possible. The inter-group

coordination is not centralized. Each

group is controlled by a dedicated

software node, running in an

independent thread.

A.Kushleyev,

et al., 2012

[42]

Quadrotors rely on an

external localization

system for position

estimation and therefore

cannot be truly

decentralized

15

 Approach 2:

 Auction-based coordination

Layered

architectures

coordination

Authors propose auctions in which a

bidding process takes place among the

agents to determine who will be 'foreman'

and will be in-charge for a given task and

to secure teammate participation in

subtasks. Tight coordination is

implemented using an inexpensive reactive

approach. Each robot consists of a planning

layer that decides how to achieve high-

level goals, an executive layer that

synchronizes agents, sequences tasks and

monitors task execution, and a behavioral

layer that interfaces with the robot’s

sensors and effecters. Robots execute plans

by dynamically constructing task trees.

R. Simmons,

S. Singh, D.

Hershberger,

J. Ramos, and

T. Smith,

2000 [34]

The three robots used in

this experiment are

coordinated by a

manipulation manager

which means this is a

centralized system.

ASyMTRe-D The authors’ approach is based on

schemas such as perceptual and motor

schemas. Inputs/outputs of each schema

create what it is called semantic

information that is used to generate

coalitions. Tasks are assigned to the

robot with the highest bid. Bids are

calculated according to the costs of

performing different tasks. A set of

tasks is allocated to coalitions.

Coalition values are calculated based on

the task requirement and robot

capabilities. Execution of tasks is

monitored and the process of allocation

Tang and

Parker,

2007 [43]

The advantage of this

approach is that it

enables robots to adopt

new task solutions using

different combinations

of sensors and effecters

for different coalition

compositions. However,

that solution is mainly

related to computational

performance where tasks

are static.

Authors do not mention

16

repeats itself until each individual task

is completed. During run-time their

novel protocol ASyMTRe-D takes

place. This protocol manipulates

calculated coalition values to assist in

completing tasks.

the dynamical tasks and

ways of task

reassignment.

Additionally, they do not

discuss fault tolerance,

flexibility, robustness,

and how the system

reacts to any robot

failure.

RoboCup

2002 (Sony

legged

league)

Authors used wireless communication

between robots in a 4-player soccer

team. Each robot broadcasts a message

to its teammates. This message contains

the current position of the robot and

some other information about the ball in

that position. All of the robots use the

same set of functions to calculate real

valued bids for each task. Once each

robot calculates the bids for itself and

each of its teammates, it compares

them. If it has the highest bid for the

role being assigned, it assumes that

role. If it was not the winner, it assumes

that the winning robot will take up the

role and performs calculations for the

next role in the list.

D. Vail and

M. Veloso,.

2003 [35]

Communications

between robots is critical

for successful

coordination between

robots. Local

information about the

field will not be enough.

This approach does not

coordinate a large scale

of robots.

Another

application of

soccer robots.

Authors use dynamic role assignment

as in Robocup basing on information

gathered from best behavior. Two

E. Pagello et

al. 2006 [36]

17

intermediate levels have been provided

to allow robot individuals to

communicate. The lower level

implements stigmergy (indirectly

stimulating the performance of the

upcoming action to provide

coordination between agents) whereas,

the higher one deals with the dynamic

role exchange. Authors use schema-

based methodology. They discuss all

perceptual schemas with the required

sensing, also feeding the C-

implemented motor schemas which

demand immediate sensor data Robots

are equipped with unidirectional

cameras.

M+ scheme

for multi

robot

allocation

and

corporation

Each robot considers all currently

available tasks at each iteration. For

each task, each robot uses a planner to

compute its utility and announces the

resulting value to the other robots.

Robots negotiate which one will be in

charge of performing the task. For these

tasks, robots create their own individual

plans and estimate their costs for

executing these tasks. The robots then

compare their costs to offers announced

by other robots.

S. Botelho

and R.

Alami,

1999 [37]

Relying on Negotiation

Protocols, may

complicate the design of

the coordinating system.

Furthermore, such

negotiation scenario can

drastically increase

communication

requirements/overhead.

18

MURDOCH

a general

task

allocation

system

The coordination system works using

an auction protocol that allocates tasks

via a sequence of first-price one round

auctions. Every auction is issued by

agents in five steps: task announcement,

metric evaluation, bid submission, close

of auction, progress monitoring/contract

renewal. For each task auction, each

available robot broadcasts its bid.

Because of the asymmetric nature of

MURDOCH’s auctions, the running

time varies between the bidders and the

auctioneer. Authors two main testing

domains were a long-term scenario

consisting of many loosely coupled

single-robot tasks, and a cooperative

box-pushing task requiring tight

coordination among the robots.

Brian P.

Gerkey and

Maja

Mataric,

2002 [16]

M+ and MURDOCH

systems assume that

each robot has a single

task. Each task may be

performed by a single

robot. This assumption

proves to be

oversimplified as many

task domains require

simultaneous work from

multiple robots.

Market-

economy

Approach

Authors define three strategies for

exploring unvisited regions. In the first

strategy namely random goal point

selection the goal points are chosen at

random and discarded if the area

surrounding the goal point has already

been visited. In the second one, the goal

point is centered in the closest

unexplored spot as a candidate

exploration point. In the last strategy,

R. Zlot, A.

Stentz, M.

B. Dias,

and S.

Thayer,

2003 [38]

Authors consider regions

of potential target

locations for each robot

and distribute tasks

using bid auctions.

According to some

experiments performed

in [44], this approach

19

the region is divided into its four

children if the fraction of unknown

space within the region is above a fixed

threshold.

Robots are initially placed into known

positions. While running, each robot

will try to sell each of its tasks to all

robots with which it is currently able to

communicate via an auction. If two

robots lie in the same region, the robot

with the highest bid wins that region’s

task.

could be useful if the

number of robots is

small compared to the

number of frontier cells.

However, in the case of

multiple robots this

approach can be

disadvantageous since a

robot discovering a new

frontier during

exploration will often be

the best suited to go on

it. This can lead to an

unbalanced assignment

of tasks and increased

overall exploration time.

2.2 Reconfigurable Robots

Reconfigurable robots automatically rearrange and change their shape accordingly

to adapt themselves to different environments of application. Reconfigurable robots

exhibit some features that make it possible for the robots to adapt to different tasks. For

example shape shifting robots could form a worm-like shape to move through narrow

spaces, and reassemble into spider-like legged robot to cross uneven terrain. Another

important feature of modular robots is their potential for self repair. As the modules

making a unit up are usually identical, it is possible to eliminate the damaged module and

substitute it using another one, if available. Modular robots are usually composed of

20

multiple building blocks of a relatively small repertoire, with uniform docking interfaces

that allow transfer of mechanical forces and moments, electrical power, and

communication throughout the robot.

According to M. Yim et al. [39], modular self-reconfigurable robotic systems can

be generally classified into three architectural groups based on the geometric arrangement

of their units. The first group consists of lattice architectures where robot units are

arranged and connected in some regular, three-dimensional pattern, such as a simple

cubic or hexagonal grid. The second group consists of chain/tree architectures where

units are connected together in a string or tree topology. Finally, the third group consists

of mobile architectures where units use the environment to maneuver around and can

either hook up to form complex chains or lattices or form a number of smaller robots that

execute coordinated movements. A respectable number of self-reconfigurable robot

systems have been proposed in the last decade. Table 2-2 shows comparisons between the

most recent ones.

21

Robot Author Learned Pros and Cons Software Units Communica
tion

SuperBot
(2006)

Shen et
al.[40]

Decentralized control.
Reliable Mechanical design.

Limitations: Infrared
sensors limit the search
range and require line-of-
sight between SuperBots.
SuperBot architecture lacks
extra actuators, grippers,
and sensors for gathering
information about the
working environment.

Low-level
programs
written in C and

Real-time java-
based operating
system

3D
Modules

Infra-red
and a
wireless
capability
limited to
some
functions

Molecubes
(2005)

Zykov et
al.[45]

Molecubes are low cost,
small lattice based swarm
robot with 3 DOF.

Limitations: Unable to
provide heavy object
transport. Limited sensors.
Lacks actuator mechanism.

2-D simulation Cubes
with 120
swivelin
g

None

YaMor
(2006)

R. Moeckel
et al. [46]

Each module comprises an
FPGA for more
computational power.

Limitations: Uses onboard
low-capacity batteries that
limit the usefulness of
modules. Limited sensors
limit ability to sense
surroundings. Only two
controllable arms

Java-based GUI
connected to
robots via
wireless
connections

3D
Chain of
modules

Bluetooth

Swarm-
bot (2006)

Groß et
al. [11]

Robot swarms consisting of
2 to 40 S-bots have been
successfully demonstrated.
S-Bots are fully autonomous

Neural
Networks

S-bots
with
grippers

No
communica
tions occur
between

Table 2.2: Comparisons between existing reconfigurable robot systems

22

mobile robots capable of
self-navigation, perception
of the environment and
objects. Capable of
communicating other S-
Bots and transporting of
heavy objects over very
rough terrain.

Limitations: Initial cost is
high. Images and sound are
the only way of
communicating with other
S-Bots. Large number of
sensors and actuators
consumes power, reducing
functionality and operating
time.

individual
robots (S-
bots)
however
each s-bot
connects
wirelessly
to the PC.

Catom
(2005)

Goldstein
et al. [47]

Largest actuated modules (
many electromagnets on
modules)

Limitations: Limited
sensors that have limited
ability to sense
surroundings.

NA 3D
Massive
volume
of
agents
(m3)

This papers
only
presents a
principle so
no actual
implementa
tion

M-TRAN
(2002)

Murata
et al.
[48]

Very small actuated
modules, highly-robust,
miniature, and reliable.
Quick self-reconfiguration
and versatile robotic
motion.

Limitations: Connection
mechanism works on an
internally balanced
magnetic field that is not
strong enough to hold the
other modules. Single M-

OpenGL
Library, M-
TRAN
simulator

3D
Double-
Cubes

Serial
bilateral
communica
tions to the
PC.

23

TRAN module does not
have enough DOFs for
switching from one posture
to another form. Lack of
sensors leads to mapping
and control problems.
Power consumption is more
as it uses servo motor and
electromechanical force for
connectivity.

ATRON
(2004)

E. H.
Østergaa
rd et al.
[49]

Each module is equipped
with its own power supply,
sensors and actuators,
allowing each module to
connect and communicate
with a neighbor module.
Able to sense the state of its
connectivity and relative
motion.

Limitations: Since each
module includes two-axis
accelerometers only, a
module cannot tell if it is
turned upside down or not.
When two modules are
connected, it’s very difficult
for them to move
themselves, which requires
cooperation from its
neighbor. They are not
mechanically stable and due
to this mechanical
instability, their electronic
performance is poor.

On-board
system

Lattice
type
units

Infra-red
diodes

PolyBot
(2002)

Yim et al.
[50]

First system to demonstrate
the ability of self-
reconfiguration with most

NA Lattice Infra-red
Interface

24

2.3 Self-replicating Robots

Designing fully autonomous replicating systems did not come true until the early

2000’s. An attempt to design semi-autonomous self-replicating robots that demonstrated

the LEGO Mindstorm kits as a prototype capable of replication under human supervision

active modules in a
connected system. Each
module fits within the 5cm
cube. They are versatile in
nature. Each module
contains a Motorola
PowerPC 555 processor
with 1MByte of external
RAM, and DC brushless
motor with built in hall
effect sensors.

Limitations: Insufficient
sensory unit for mapping of
environment. Cannot work
in unknown environment
with rough surface or when
obstacle avoidance is not
possible.

Replicator
/Symbrion
(2008)

7th
framework
program
project,
European
Communities
[41]

Multiple processors for
different tasks.

Limitations: Limited to a
specific task. Lack
actuators and connection
mechanisms to physically
attach to other modules.

On-board
system

Lattice/

Chain

N/A

25

was introduced in [51]. An autonomous self-replicating robot consisting of four low-

complexity modules was presented in [52]. The authors proposed a system composed of a

parent robot, four unassembled modules, and an environment in which the self-

replication takes place. They defined two operations namely expansion and separation in

which the parent robot grows itself by attaching the resource modules onto itself until it

doubles its physical size, and then splits in the middle thereby returning the parent to its

original state and producing one more robot. The parent robot is made of four cube-like

modules connected to each other with electromagnets (EMs) installed in female and male

couplers.

In [53], similar work has been done, also using unassembled components placed

at certain locations on a track. The authors presented a robot that can assemble exact

functional self-replicas from seven more basic parts/subsystems. The robot follows lines

on the floor using light sensors and a simple control circuit without any onboard memory.

2.4 Swarm Control Software Environments

Trifa V. et al., [54] have proposed a methodology that supports standardized

interfaces and communication protocols which connects robots produced by different

manufacturers. The authors have used the so-called Service Oriented Architecture (SOA)

in which different software components exchange data over HTTP and then create Web

Services (WS). The authors proposed a system that consists of four parts namely, the

physical layer which contains the actual e-puck robots, the gateway layer which acts like

a connection between the physical devices and the system, the logical layer containing a

26

server that runs on J2EE, and the interface layer which provides services to the end users.

In their system, any physical device or program capable of running HTTP such as PDAs,

Tablet PC, and mobile phones can interact with the interface regardless of the operating

system on the device. (No further explanation about control modules or how the interface

looks like was given in the article). The e-puck robot –the standard one- has eight

infrared proximity and light sensors, a triangular microphone array, a speaker, a three-

axis accelerometer, and a Bluetooth interface for programming. The e-puck platform can

be upgraded with custom pluggable modules such as the short-range radio

communication turret which provides a subset of the 802.15.4 and ZigBee protocols and

is fully interoperable with the MicaZ nodes used in the physical gateway layer.

However, using SOA has some performance limitations as it requires a sophisticated

messaging infrastructure that would restrict the capabilities of software running on

robots.

Kulis et al., [55] have proposed a software framework for controlling multiple

robot agents by creating a Distributed Control Framework (DCF). DCF is an agent-based

software architecture that is entirely written in Java and can be deployed on any

computing architecture that supports the Java Virtual Machine. DCF is specifically

designed to control interacting heterogeneous agents. DCF uses a high-level platform-

independent programming language for hybrid control called MDLE. The DCF

architecture consists of two distinct agents: a Robot Agent and a Remote Control Agent

(RCA). The RCA lies within the human interface shown in Figure 2-1. Robot Agents

process data from onboard hardware and from other agents, and react to perceived stimuli

27

by selecting an appropriate behavior which is a sequence of control laws with embedded

state transition logic according to a mission plan. Using the RCA, the end user can select

tasks for either a robot agent or a group of agents using simple drag and drop operators.

When agents are in place, a popup menu appears prompting the user to select a task.

Relevant tasks for a team mission are defined in an XML configuration file which is

loaded by the RCA at startup. The XML file also specifies which tasks can be performed

by each agent. The authors also added a simulating feature to their RCA agent which

provides a flexible numerical solving integrating system that solves differential equations

for simulating a robot’s kinematics/dynamics. Another feature of this system, it provides

automatic updating of sensors and actuators to be distributed across multiple computing

resources. The DCF currently provides drivers for a variety of robots (e.g., iRobot

Creates, Pioneers, Amigobots, FireAnt, LAGR), and a wide range of sensors (e.g., digital

encoders, Sonars, stereo cameras, GPS receivers, and inertial navigation systems)

Figure 2.1: The DCF human interface (© 2008 IEEE)1

1© [2008] IEEE, Permission granted by Mr. Babak Sadjadi [55].

28

Multiple efforts have been conducted as part of enhancing the DCF system. Other

versions of the DCF called JAUS and TENA are being developed and tested [56].

Gregory P. Ball G. et al. [8], have proposed application software built in JAVA to

operate heterogeneous multi-agent robots for the sake of educational purposes named

MAJIC. The system provides basic components for user interaction that enables the user

to add/remove robots change the robotic swarm configuration, load java scripts into

robots and so on as shown in figure 2-2. The system establishes communications with

built-in robot servers via a wireless connection that uses the client/server relationship.

The authors described their architecture as components, consisting of one higher level

component that is the GUI manager, two application logic components that consist of a

logical layer to parse input into valid commands, and a robot server, which receives

commands from the logical layer and communicates these commands to the appropriate

robot. Local components communicate using direct procedure calls.

2© [2008] IEEE, Permission granted by Dr. Craig Martell [8].

Figure 2.2: MAJIC Control Platform (© 2008 IEEE)2

29

In order to operate robots, the user needs to write Java-embedded programs that

use either the MAJIC library or Java libraries. Once a robot is connected to MAJIC, the

user can immediately communicate with it from the command line. However, repeating

this process for a team of heterogeneous robots can be impractical. The MAJIC system

does not allow the user to specify the types of sensors a robot is equipped with or the type

of motion model the robot’s move command will utilize. This would allow the user to

develop more intricate behaviors with greater precision.

In [57], Patricio Nebot et al., were more interested in developing cooperative

tasks among teams of robots. Their proposed architecture allowed teams of robots to

accomplish tasks determined by end users. A Java-based multi-agent development system

was chosen to develop their proposed platform. The authors used Acromovi architecture

which is a distributed architecture that works as a middleware of another global

architecture for programming robots. It has been implemented by means of the MadKit

(Multi-Agent Development Kit) multi-agent systems framework. The graphical interface

is built around pure Java Swing components, thus resulting in a cross platform

application, capable of running in any operating system running the Java virtual machine.

Tao Zhang et al. [58], proposed a software platform comprised of a central

distributed architecture that runs in a network environment. Their system is composed of

four parts namely, user interface, controlling center, robot agent, and operating ambient

making up the platform top-down. The user interface is deployed on a terminal anywhere

as long as it can connect to the server where the control center is deployed. The control

center provides Application Program Interfaces APIs for users. The user interfaces

30

basically communicate with the control center via a network, using TCP/UDP protocol.

Authors’ platform was mainly developed using Java.

In robotic control environments, a graphical application software such as

MobileEyes [59] and the C++ based software URBI [60] are available as open source

systems. URBI provides GUI packages that aim to make compatible code to different

robots, and simplify the process of writing programs and behaviors for these robots.

URBI works by incorporating sensor data to initiate commands to the robot. URBI

packages, however, provides no abstractions therefore they do not allow separating the

controlling system from the rest of the system. For example, a control system might be

intimately tied to a particular type of robot and laser scanner. Moreover the URBI’s

uniform programming language is limited to few kinds of microcontrollers available on

the market. The Player/Stage proposed by Gerkey et. al. [61] also produces tools for

simulating the behavior of robots without an actual access to the robots hardware and

environment. Its two main products are the Player robot server, a networked interface to a

collection of hardware device drivers, and Stage, a graphical, two-dimensional device

simulator. The player/Stage is basically designed to support research in multi-robot

systems through the use of socket-based communication. The player/Stage is open source

software that is available to be downloaded online on UNIX-like platforms. However,

running this software requires a variety of prerequisite libraries and each library requires

another set of libraries. It has never been easy to understand how the system

communicates with the actual robots. Player/Stage mainly supported robotic platforms

such as RWI/iRobot, Segway, Acroname, Botrics, and K-Team robots.

31

Another script-based robot programming is Pyro[62]. Pyro, which stands for

Python Robotics, is a robotics programming environment written in the python

programming language. Programming robot behaviors in Pyro is accomplished by

programming high-level general-purpose programs. Pyro provides abstractions for low-

level robot specific features much like the abstractions provided in high-level languages.

The abstractions provided by Pyro allow robot control programs written for small robots

to be used to control much larger robots without any modifications to the controller. This

represents advancement over previous robot programming methodologies in which robot

programs were written for specific motor controllers, sensors, communications protocols,

and other low-level features.

Ayssam Elkady et. al. [63] have developed a framework that utilizes and

configures modular robotic systems with different task descriptions. Their main focus

was designing a middleware that is customized to work with different robotic platforms

through a plug-and-play feature which allows auto detection and auto-reconfiguration of

the attached standardized components installed on each robot according to the current

system configurations. Therefore, the authors’ solution is mainly dealing with the

abstraction layers residing between the operating system rather than software

applications. A similar system hierarchy is used in Mobile-R [4] where the system is

capable of interacting with multiple robots using Mobile-C library [64], an IEEE

foundation for physical agents standard compliant mobile agent systems. Mobile-R

provides deployment of a network of robots with off-line and on-line dynamic task

allocation. The control strategy structure and all sub-components are dynamically

32

modified at run-time. Mobile-R provides some packages to enhance system capabilities

like Artificial Neural Networks (ANNs), Genetic Algorithms (GAs), vision processing,

and distributed computing. The system was validated through a real world experiment

involving a K-Team Khepera III mobile robot and two virtual Pioneer2DX robots

simulated using the Player/Stage system.

33

We are developing a software environment to utilize the heterogeneous robots

that have different modular design, configuration of sensory modules, and actuators. The

system will be implemented as a GUI interface to reduce efforts in deploying swarm

robotic agents. The proposed application offers customization for robotic platforms by

simply defining the available sensing devices, actuation devices, and describing the

required tasks. The main purpose for designing this framework is to reduce the time and

complexity of the development of robotic software and maintenance costs, and to

improve code and component reusability. Usage of the proposed framework prevents the

need to redesign or rewrite algorithms or applications when there is a change in the

robot’s hardware, operating system, or the introduction of new sensory/actuation units.

UBSwarm environment is a collection of high end APIs used for distributing

algorithms to heterogeneous robotic agents. One of the key features of UBSwarm is

configuring special programs which act as middleware that gain control over the agent’s

parameters and devices. The middleware consequently allows auto-detection of the

attached standardized components according to current system configurations. These

components can be dynamically made available or unavailable. Dynamic detection

CHAPTER THREE: RESEARCH PLAN AND SYSTEM

ARCHITECTURE

34

provides the facility to modify the robot during its execution and can be used to apply

patches and updates, to implement adaptive systems. This real time reconfiguration of

devices attached to different robots and driver software makes it easier and more efficient

for end users to add and use new sensors and software applications. In addition, the high-

end interface should be written in a flexible way to get better usage of the hardware

resource. Also they should be easy to install/uninstall. The general overview of the

UBSwarm deployment platform and the overall system overview are shown in Figure 3-1

(a) and (b) respectively.

Deployment Environment

Add/remove
applications

Add /
Remove
Robots

Application/Task

Arduino microconroller, Digilent,
etc...

Service Modules

Obst avoid. obj. detect.

Compilers

Figure 3.1: (a) Deployment software overview (b) System overview

(a)

(b)

35

Another key feature of the UBSwarm interface is to move the communication

implementation from the user’s domain to the application domain. Instead of learning

proprietary protocols for individual robots, the user can utilize the UBSwarm scripting

language to pass common commands to any robot managed by the application.

UBSwarm adds a layer of abstraction to such tasks, allowing users the ability to

intuitively obtain desired responses without extensive knowledge of robot-specific

operating system and protocol. When users make changes to the hardware devices that

are plugged onto the robotic agent, UBSwarm will provide the appropriate software

package for these sensory devices and actuators. This flexibility makes it easy for the end

users to add and use the new devices and consequently task applications. In addition, the

software code can be written in the most common programming languages such as

python, C#, or any programming language that is specific to a particular robot

framework. These Software components are easy to install/upload in the console screen.

At start up, UBSwarm uploads a code that is responsible for scanning for hardware

changes onboard because almost all microcontrollers include a hardware feature to

interrupt the current software routine and run a scanning routine when a particular pin

changes states. By relying on the hardware to notice a change we can keep track of

hardware components. Each one of these hardware component is operated using a

particular algorithm that is created at the time of deployment. UBSwarm runs on a

computer and uploads programs and monitors the robots through the USB (serial port),

Radio Frequency (RF), WiFi, or Bluetooth. In our experiment we used our own robot

agents that incorporate Arduino and Digilent Max32 microcontrollers.

36

UBSwarm provides a direct two-step configuration that helps the operator to

select between several available robot microcontrollers, actuators, and sensors and then

assign the group of robots a particular task from the set of predetermined tasks. To test

and evaluate the swarm system or to change the configuration of the whole system, the

user should be able to change each robot’s features. That is, the user will have the option

to add/remove hardware features of any selected robot. The user can also decide which

robots to be assigned for the task. In the main menu, the user is given a list of tasks to be

assigned to the swarm system. At the time of startup the system will expect the user to do

either of the following two:

1- Configure the system by picking the available agents, their onboard components

(sensors, motors, etc.) and the services needed to accomplish each task

2- Run the system using saved configurations and only allow add/remove agents.

UBSwarm is an interactive Java-based application designed for extensibility and

platform independence. The system establishes communications with embedded robot

modules. As shown in figure 3-2, the system is divided into two main subsystems, a

robot deployment system and a robot control and translation system. The robot control

system includes a robot control agent in which the user should provide all the parameters

required for all sensors incorporated on robots. The user should also describe actuation

methods used. The robot deployment system encapsulates a variety of high-level

applications module which contains the tasks the platforms perform such as navigation,

area scanning, and obstacle avoidance. A hardware abstraction layer is used to hide the

37

heterogeneity of lower hardware devices and provide an interface to communicate with

robot platforms.

3.1 Robot Deployment System

 The deployment system takes responsibility of running actions according to the

definition parameters and the integrations of the heterogeneous robots. Each application

is implemented as a software module to perform a number of specific tasks used for

sensing, decision-making, and autonomous action. Actions are platform independent

robot algorithms; for example, it can be an obstacle avoidance algorithm or a data

processing algorithm using Kalmans filter, etc. These actions can communicate together

using message channels. The deployment system framework is shown in figure 3-2. The

Figure 3.2: System architecture

Robot Deployment Environment

Robot Control System

High-level services
Face
Detect

Obstacle
Avoidance

Navigation

Coordination Agent

Robots Middleware

Knowledge base

Deployer

Robotic Agents

Hardware Components

Xbee Sonar Actuator

Robot N Robot 1

Device Library

38

deployment system contains the developer interface, the coordination manager, the

runtime interpreter, and the knowledge base.

3.1.1 User Interface

The system developer interface provides the human operator command and

control windows. The user can interact with the computer through interaction tools which

provides a list of application tasks and the available robotic agents. In the next windows,

the user will be prompted to input the required system parameters for all sensors

incorporated on robots such as the PIN location by which each sensor/actuator is

connected to. As we mentioned earlier UBSwarm connects to the robots using either of

USB cable, RF, WiFi, or Bluetooth. The user has to provide the IP address of the

particular robot when WiFi is used. When connecting the robot to the USB, UBSwarm

will detect the COM port automatically. After defining all required parameters, the user

will have the chance to write programs and upload them on each robot. The interface

provides a number of tasks that can be assigned to the group of robots such as SLAM,

and human rescue (pulling an object). The interface also provides open system design

that allows entering various new functions, tasks, robots and sensors. Each task is

defined as functional modules. Obstacle avoidance, navigation, and SLAM are examples

of such functional modules. Each functional module encapsulates services such as

Opencv, Hough transformation, etc. Each service is regarded as a component of the

system and is described in an XML configuration file to remove platform dependency.

The user interface also allows the users to update, remove, or add robots in the swarm

group. After clicking on a particular task, the user will be prompted to pick a number of

39

robots displayed in a list of the available robot types. The right set of button in figure 3-3

(a) is the group of available tasks available. The left set of buttons are designated for an

open system extendibility which allows entering new tasks by simply altering the code

embedded in each of the shown categories.

 The user will be then be asked to enter each agent’s initial pin locations (once for

each type of robot) associated with various hardware components such as ultrasonic

sensors, scan servo motors, and the n pin locations for the n-DoF arm if any is attached

on the robot. A value of -1 will be assigned to pin locations of components that does not

exist on the particular robot. The programs which will be uploaded on each robot type

will differ according the different pin locations associated with each type that were set by

the user. The system will ask the user to connect each robot to allow uploading the

program as shown in fig. 3-3 (c). The next four subsystems show how the deployment

system works to manage the heterogeneity of the hardware and the software associated

with each robotic agent. Figure 3-3 (b) shows the coordination manager running in

background as a running package (runtime) the figure also shows the service package that

runs the object detection algorithm (camera on R2).

40

(b)

Figure 3.3: (a) List of available tasks (b) runtime coordinator and other running packages (c) Additional robot is
added to the system

(a)

(c)

41

3.1.2 Coordination Manager

The heterogeneity of the robots and the operating platforms imposes dependencies

such as data format, location of machine addresses, and availability of the components.

Just like the functional modules contained in the coordination manager framework, the

relevant tasks are stored in the knowledge base. Relevant tasks for a team mission are

defined the XML configuration file which is loaded at startup. The XML file also

specifies which tasks can be performed by each agent. The coordination agent processes

the available state data and activates high-level behaviors using rules defined in a schema

approach in order to select the appropriate robots and actions based on the provided tasks.

The coordination agent framework comprised of five components: the Communication

Protocol Module (CPM), task module, coordinator, task composer, and the deployer. The

framework of the coordination manager is shown in figure 3-4.

Figure 3-4: Coordination manager framework

Coordination Agent
CPM Task

Registry Coordinator

Task

Robot

Control

System

Deployer

42

A. The Communication Protocol Module (CPM)

This module stores communication access to all available communication devices

and the necessary protocols used by the different hardware devices to

communicate.

B. Task Module:

The task agent contains the necessary algorithms, data, and core functions to a

given task for example obstacle avoidance.

C. Coordinator:

The coordinator utilizes the information given by the task module in order to select

the appropriate robots and actions based on the provided sub-tasks.

D. Task Composer

Once the coordinator completes its task, the allocated tasks are broken down into

required actions from actuator movements to communications.

E. Deployer

The deployer is the component responsible for sending the composed programs to the

Robot Control System.

The algorithm used in the coordination manager is based on artificial intelligence

approaches based on task allocation. A break-down of the algorithm used in the

coordination manager is shown in figure 3-5.

43

3.1.2.1 Utility-based Solution for Optimal Task Assignment

To show how the system coordination manager generates solutions for an optimal

number of robotic agents, we assume that 𝑅 = {𝑟1, 𝑟2, … … . , 𝑟𝑛} is a collection of n

robots, where each robot 𝑟𝑖 is represented by its available environmental sensors (ES),

motor devices (MD), and communication devices (CD). For example, table 3-1 shows the

Figure 3-5: Coordination manager algorithm overview

User
inputs

u

Coordinator Robots types

Selected task Decompose into subtasks

Task Module

Arrange robots based on
their increasing capabilities

Object recognition. Range scanning, etc….

R1, R2, etc…..

Allocate subtasks to robots
using RUTA

Determine subtasks that
require collaboration
between robots

Allocate tasks to available
robots

Task

Deployer

Services

Schedule

Core functions, Obst. Avoidance

44

configuration of robots in the experiments. Table 3-2 shows the different consumption

rates for the components integrated on the robots.

Robot Available sensor (s) /capabilities Wheels slip percentage

R1 VGA camera, URM Ping, V32

ultrasonic, 2-Dof arm, wheel Serial

motors.

3%

R2 V32 Ultrasonic, 2-dof arm, two Serial

motors

1%

R3 Sonar sensor, 1- Dof arm, two Serial

motors

20%

R4 Serial motors, two sonar sensors, 1-

Dof arm

5%

R5 VGA camera, Serial motors, two sonar

sensors, 1-Dof arm

30%

Sensing/actuation Component Consumption rate

VGA Camera 20 mA

URM Ping 20 mA

V32 Ultrasonic 4 mA

2-Dof (2 servos) 2x(120 mA)

Serial motors for wheels 2x(160 mA)

Our approach to multi-robot task allocation problem (MRTA) is based on the

following assumptions:

- T is task to be accomplished, which is a set of m subtasks that are basically

composed of motor, sensor and communication devices that need to be activated

in certain ways in order to accomplish this task. Its denoted as

Table 3-1: Five robots and their capabilities

Table 3-2: Sensing and actuation components consumption rates

45

𝑇𝑖 = {𝑣𝑖1, 𝑣𝑖2, 𝑣𝑖3, … … , 𝑣𝑖𝑚} where 𝑣𝑖𝑗 is the subtask j performed by robot 𝑟𝑖 and

1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚

- A subset 𝑣𝑖𝑗 of 𝑇𝑖, can be allocated to robots concurrently if they do not have

ordering constraints.

- To accomplish the task 𝑇𝑖 on robot 𝑟𝑖, a collection of n plans (solutions), denoted

Pi = {𝑃1, 𝑃2,…,, 𝑃𝑛}, needs to be generated based on the task requirements and the

robot capabilities.

We define a cost function for each robot, specifying the cost of the robot

performing a given task, and then estimate the cost of a plan performing the given task.

We consider two types of cost:

- A robot-specific cost determines the robot’s particular cost (e.g., in terms of

energy consumption or computational requirements) of using particular

capabilities on the robot 𝑟𝑖 to accomplish a task 𝑣𝑖𝑗 (such as a camera or a sonar

sensor). We denote robot 𝑟𝑖′𝑠 cost by robot_cost(𝑟𝑖, 𝑣𝑖𝑗).

- The cost of a plan Pi performing a task 𝑇𝑖 is the sum of individual cost of n robots

performing sub-tasks m that are in the plan 𝑃𝑖, which is denoted as:

𝐶𝑜𝑠𝑡(𝑃𝑖,𝑇𝑖) = ∑ � cost �ri, 𝑣𝑖𝑗�
m

j=1

𝑛
𝑖=0

The problem we address here is the optimal assignment problem (OAP) which

uses the Utility concept found in game theory [65]. Our solution is called Robot Utility-

46

based Task Assignment (RUTA) and it can be summarized as the following: given (T, R),

find a solution Pi to each task 𝑇𝑖 such that 𝐶𝑜𝑠𝑡(𝑃𝑖,𝑇𝑖) is minimized.

We assume that sub-tasks tj’s allocated to robot 𝑟𝑖 must be ordered into a schedule

𝜎𝑖 = (𝑣𝑖1, 𝑡1, 𝑡′1), … … , �𝑣𝑖𝑗 , 𝑡𝑗 , 𝑡′𝑗� for 1 ≤ 𝑗 ≤ 𝑚 where 𝑣𝑖𝑗 is the subtask performed

from time 𝑡𝑗 𝑡𝑜 𝑡′𝑗. Each sub-task assigned to a robot is denoted by a triple; 𝛼𝑗 = <

𝑡𝑦𝑝𝑒, 𝑡𝑒𝑗, 𝑟𝑎𝑡𝑒𝑗 > representing the 𝑣𝑖𝑗 task type whether its sensing or actuation type,

time assigned to the task until it is accomplished (so 𝑡𝑠𝑗 = 𝑡′𝑗 − 𝑡𝑗), and the consumption

rate (in mA) for this particular subtask respectively. Depending on the robot 𝑟𝑖′𝑠 location,

the time spent on each task must equal 𝑟𝑖′𝑠 assigned share of the workload. We also

assume that the distance in meters between robot 𝑟𝑖 and the location of the subtask 𝑣𝑖𝑗 is

𝑑𝑖𝑗. Taking these values into account, each robot can be represented as 𝛽𝑖 = <

𝑖𝑑,𝑤𝑖,𝑃𝑟𝑒𝑚𝑖 >, representing the robot’s id, percentage of wheel slip, and power

remaining to perform the sub-task respectively. The mathematical quality of a robot 𝑟𝑖

performing a subtask 𝑣𝑖𝑗 is calculated by dividing the robot 𝑟𝑖 battery remaining power

by the product of multiplying the sensor and/or actuator consumption rate with the

percentage of time in which its operating. This is determined by the following equations

 𝜑𝑚𝑎𝑛𝑖𝑝 𝑖𝑗 = 0.7 × �(𝑡𝑠𝑗
𝑡′𝑚

) � 𝑃𝑟𝑒𝑚𝑖
𝑟𝑎𝑡𝑒𝑎𝑐𝑡 𝑗

�� (3.1)

 𝜑𝑛𝑎𝑣 𝑖𝑗 = 0.7 × �� 𝑝𝑟𝑒𝑚𝑖
𝑟𝑎𝑡𝑒𝑠𝑒𝑟𝑣𝑜 𝑗

� × 1
𝑤𝑖
� (3.2)

47

 𝜑𝑠𝑒𝑛𝑠 𝑖𝑗 = 0.9 × �(𝑡𝑠𝑗
𝑡′𝑚

) � 𝑃𝑟𝑒𝑚𝑖
𝑟𝑎𝑡𝑒𝑠𝑒𝑛𝑠 𝑗

�� (3.3)

 𝜑𝑔𝑖𝑣𝑒𝑛 𝑖𝑗 = 𝜑𝑚𝑎𝑛𝑖𝑝 𝑖𝑗 + 𝜑𝑛𝑎𝑣 𝑖𝑗 + 𝜑𝑠𝑒𝑛𝑠 𝑖𝑗 (3.4)

Where 𝑡′𝑚 is the total time predetermined for the robot 𝑟𝑖 to complete all of its

subtasks in seconds, 𝑤𝑖 is the pre-assumed percentage of robot 𝑟𝑖 wheel slip, and

𝜑𝑚𝑎𝑛𝑖𝑝 𝑖𝑗, 𝜑𝑛𝑎𝑣 𝑖𝑗 and 𝜑𝑠𝑒𝑛𝑠 𝑖𝑗 are the qualities to perform manipulating, navigation, and

sensing subtasks respectively. Depending on the subtask type, the value of any of these

quality functions is null if they are not taking place in the subtask. 𝜑𝑔𝑒𝑣𝑖𝑛 𝑖𝑗 is the total

quality of subtask 𝑣𝑖𝑗 being performed by robot 𝑟𝑖. When obstacle avoidance task is being

performed, the quality function 𝜑𝑔𝑖𝑣𝑒𝑛 𝑖𝑗 has higher values than the other qualities

because it includes navigation as well as sensing subtasks. The priorities of subtasks must

be considered and are calculated according to the schedule of tasks 𝜎𝑖 that is set to robot

𝑟𝑖. The priority of robot 𝑟𝑖 performing a subtask 𝑣𝑖𝑗 is defined by equation (3.5) varying

from 0 to 1.

𝑝𝑟𝑖𝑖𝑗 = 1
2

× 𝑚𝑖𝑛�(𝑢1 × �𝑡 − 𝑡𝑗�, 1� (3.5)

Where 𝑡 is the current time elapsed since the beginning of the task, 𝑡𝑗 is the time

when the task is announced as declared in the schedule 𝜎𝑖. The parameter 𝑢1 adjusts how

the priority should increase with the value of (𝑡 − 𝑡𝑗).The assignment of a subtask 𝑣𝑖𝑗 to

the specific robot (that is capable of accomplishing it) is determined by the Utility

function of a robot 𝑟𝑖 performing a task 𝑣𝑖𝑗 as in the following equation:

48

𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖𝑗 = max(0, 𝑢2 × (𝑑𝑖𝑗
−1/2 × 𝜑𝑔𝑖𝑣𝑒𝑛 𝑖𝑗 × 𝑝𝑟𝑖𝑖𝑗) (3.6)

Where 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖𝑗 is the nonnegative utility of robot 𝑟𝑖 for sub-task 𝑣𝑖𝑗 , 1 <= i < =n,

1 <= j <= m, 𝑢2 is the weighted coefficient to adjust the effect of the variables inside the

equation. We assume that each robot 𝑟𝑖 is capable of executing at most one task at any

given time. We also assume that multiple agents can also share a single sub-task in which

they divide the workload.

Initially the task is introduced to the system which performs the following set of

algorithms.

Initialization Algorithm 3.1: Input: (T, R,M,N)

1. Schedule sub-tasks 𝑣𝑗 , such that ordering constraints are satisfied.

2. if (N=1) then Stop

3. Else

4. Sort the robots according to decreasing computational and sensory

capabilities

5. Initially the 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖𝑗 for all robots and subtasks is equal to 0

6. Calculate utilities of each of the N robots

7. Based on the task requirement T, pick “at least” two robots with highest

utility values.

8. For each sub-task 𝑣𝑗

9. For each robot 𝑟𝑖 of the two selected robots

10. Assign subtask 𝑣𝑗to 𝑟𝑖 based on the task requirements

11. Add (𝑟𝑖, 𝑣𝑗) to plan Pi

12. Update parameters in 𝑣𝑗

49

As the task is being executed the following two algorithms take place. The

optimal number of robots is decided by running the following algorithm which is equal to

the final value of i.

Centralized Algorithm 3.2: Input: (T, R,M,N)

1. For each unexecuted sub-task 𝑣𝑗 in the schedule

2. For each robot 𝑟𝑖 in the new robot ordering

3. { Calculate Utility function 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖𝑗 for robot 𝑟𝑖

4. If current utility of 𝑟𝑖 for sub-task 𝑣𝑗 is greater than its previous

utility then assign subtask 𝑣𝑗to 𝑟𝑖 based on the task requirements

5. Add (𝑟𝑖, 𝑣𝑗) to plan Pi

6. Update parameters in 𝑣𝑗

7. Stop when the task is completed or after K number of trials

8. Go to step 10 if a faulty robots is discovered

9. }

10. If task is not complete, Pick a robot with the highest utility value from the

list of remaining robots

11. Add to robots ordering

12. Go to step 1

In the distributed approach, decentralized coordinated programs are uploaded on

the swarm of robots at start up. The programs allow the set of robots to reason, reassign,

and execute subtasks later during their mission should a failure or a change in the swarm

team is introduced. During runtime, each robot simply calculates its own utility when

tasks are taking place as shown in Algorithm 3. Information about robot status (such as

50

any error readings from sensors) are shared between robots. If the task is interrupted or a

failure is introduced to the swarm team, robots are able to reconfigure new task solutions

to cope with changes in team composition and task requirements.

Decentralized Algorithm 3.3: Input (R,N)

1. Utility is calculated on each robot

2. Two robots with highest utility values will begin their pre-programmed plans

3. While task is not complete

4. {

5. Each robot’s utility value is shared with the other robots. When a robot is

introduced to the system or If a sensor fails on one robot 𝑟𝑖 by which it prevents it

from completing task 𝑣𝑗 , it sends a request (bid) to the other robots in the team.

6. Robot waits for reply (𝑡𝑜𝑢𝑡) to hear respond from the most fit one (based on the

winner highest utility value).

7. Task 𝑣𝑗 is taken over by the winning robot.

8. }

9. Stop is task is complete else call the next robot in the ordering R

In the decentralized approach, the coordination among robots is achieved through

a distributed negotiation process based on sharing of information. The task allocation is

achieved using a variant of the well known Contract Net Protocol (CNP) [66] with a

slight alteration that information are shared between robots only when a task is

interrupted or a failure is introduced to the swarm system. The solution is evaluated based

upon each robot’s local information, and the final decision is determined by mutual

selection. The negotiation process is triggered at each failure to generate initial solution

51

strategies, and is called to re-plan solutions to accommodate changes in the robot group.

It is important to note, however, that the distributed approach trades off solution quality

for communication overhead.

3.1.3 Runtime Interpreter

As deployment programs are being constructed, the runtime interpreter calls new

platform independent software packages specific for the execution of the sensory and

actuation components associated with each agent. When new service is added to the

system, the dynamic interpreter manages flow of information between these services by

monitoring the creation and removal of all services and the associated static registries.

The dynamic interpreter maintains state information regarding possible & running local

services. The host and registry maps are used in routing communication to the

appropriate tasks. The dynamic interpreter will be the first service created which in turn

will wrap the real JVM runtime objects. When new services are added to the system,

messages will be initiated by the runtime interpreter. The message consists of two basic

parts: the header (which describes the data being transmitted, its origin, its data type, and

so on) and the body (data). There are four types of messages, the Command message,

used to invoke a service in another application; the Document message, used to pass a set

of data to another application; the Event message, used to notify another application of a

change in this application and the Request-Reply message, used when an application

should send back a reply. The messages are classified into three categories: simple

message (small messages with low delay requirements), realtime message (small message

with a certain deadline), and message stream (message sequence with a certain rate). The

52

priority setting of a message can be adjusted an urgent message that should be delivered

first. System developers can extend the system’s functionality by adding new service

modules to the list of available modules that can be found under the “runtime” tab in the

main menu. Figure 3-6 shows the operation of the runtime interpreter when services are

added to the system.

Once the coordination agent completes its job, the dynamic agent breaks down

allocated tasks into required actions from actuator movements to communications. Then,

the dynamic interpreter monitors the flow of data, manages the flow of messages through

the system, makes sure that all applications and components are available, tracks quality

of service (e.g. response times) of an external service, and reports error conditions. The

dynamic interpreter does its job by utilizing a component requirement matrix for each

robot. The component requirement matrix is used to combine the necessary components

from the knowledge base to the mobile agents which are then passed to the robot control

and translation agent. As described in [63] each component has an XML configuration

Figure 3-6: Adding services in runtime

53

entry to customize its behavior. Each component is designed to be dynamically

reconfigurable by the dynamic interpreter during robot operation.

3.1.4 Registry

The registry contains all of the necessary information for each robot to give the

coordinator the ability to address each task. This includes a listing of all possible actions,

service modules, and behavioral components implementations for each robot. The

registry stores service types, dependencies, categories and other relevant information

regarding service creation. It also includes the agents’ required communication protocols,

and their drivers. Physical and logical addresses associated with each component are also

stored in the knowledge base.

3.2 Robotic Control System

From programming prospective, the robot agent is a class. This class specifies the

methods that must be provided by implementing such a class. The class interface

architecture enables a loose coupling between the control algorithms and the underlying

hardware; alternative hardware sensors supporting the required sensing functionalities

may be interchanged freely (tested in the experiment). Unlike some robot agents that

contains a regular PC as part of their systems; our swarm system is composed of robotic

agents that incorporate onboard microcontrollers. UBSwarm supports most of the

Arduino and Digilent PIC microcontrollers. Each robot has TX/RX pins which uses the

microcontrollers’ serial communication and turns it into IO-slave. Each robot agent

incorporates two software programs to perform its job:

54

3.2.1 Application Program

The program which is uploaded on each robot agent consists of the task-related

controlling code, the initial pin assignments, and the polling routine as shown in figure 3-

7 (a). This program contains function blocks to operate all the current hardware

components which are currently connected and all possible functions associated with

each new component that might be attached to the robot. The controlling program has

some conditional statements to decide which function to call. The decision of which

blocks of code to run depends on the updated pin assignments after the execution of the

polling routine and the task intended from the robot. The polling routine is executed only

if an internal interrupt has been activated.

3.2.2 Polling Routine

The polling routine is basically the hardware tracker/scanner of the robotic agent.

It is a piece of code that resides within the application program; its job includes receiving

raw data from onboard sensors. When an external interrupt is activated, the processor

takes immediate notice, saves its execution state, runs the polling routine, and then

Figure 3-7: (a) controlling program, (b) Interrupt execution

55

returns back to whatever it was doing before. Fig 3-5 (b) shows the sequence of actions

when internal or external interrupt is triggered. The type of interrupt used is an external

button connected to an interrupt pin and the ground (GND). When this pin change its

signal edge (from rising to falling or vice versa), the polling routine scans all the other

signal pins for newly attached components. After gathering such data, the polling routine

sends messages that include the state data about the hardware components attached to

each I/O pins. This data also include the type of the sensor. In order for the polling

routine to understand which kind of sensor has been connected, we divided the set of pins

into two categories:

1- Digital PWM (Pulse Width Modulation) pins can only be connected to Ultrasonic

sensors or servo motors

2- Analog pins can only be connected to Infra-red or sonar sensors

The polling algorithm can be summarized as follows:

1. Initially some signal pins are connected to components
2. Main program begin

{

3. Attach the Interrupt pin to the interrupt function
4. If (interrupt is activated) then goto polling routine

} Main program end

5. Polling routine begin{
6. For each unassigned pin set its internal pull-up resistor to high
7. For each unassigned pin wait 1sec for change in signal
8. If signal change occur {
9. Add type of sensor and its pin number to vector array

}
10. Update pin assignments } end polling routine

Algorithm 3.4: Polling routine

56

The robot control middleware also incorporate the following module which

provides essential input to the polling and controlling programs.

3.2.3 Device library

The device module contains information to be uploaded to the XML file about the

hardware components which are classified according to the functionalities they provide.

For example, a GPS receiver can function either as a position device or as a range device.

3.2.4 Compiler

The Compiler gets a single input from the CPM module of the coordination agent;

this input is the type of the microcontroller board connected. Based on the board type, the

compiler will have the information it needs to know about the microcontroller and the I/O

ports. For example, the Arduino microcontroller boards have PIN arrangement as

follows:

1- Serial: 0 (RX) and 1 (TX): These pins are used to receive (RX) and transmit (TX)

transistor-transistor logic (TTL) serial data. For example on the Arduino

Diecimila, these pins are connected to the corresponding pins of the FTDI USB-

to-TTL Serial chip.

2- External Interrupts (pins 2 and 3): These pins can be configured to trigger an

interrupt on a low value, a rising or falling edge, or a change in value.

3- PWM Pins: 4 upto 24 Provide 8-bit PWM output.

4- Analog Pins: pins 25 and so on analog input pins support 10-bit analog-to-digital

conversion (ADC)

57

Relevant tasks for a team mission are defined in the device library configuration

file which is loaded by the UBSwarm at startup. The device library file also specifies

which tasks can be performed by each agent and if applicable, the physical hardware

sensors and devices to be used.

3.2.5 Hardware Abstraction Layer

The Hardware Abstraction Layer (HAL), is the platform dependent part of

UBSwarm. It is used to hide the heterogeneity of lower hardware devices and provide a

component interface for the upper layers call. HAL removes hardware and operating

system dependencies between the robot and the application in order to assure portability

of the architecture and application programs. It provides access to the sensor data or

actuation commands abstracted from the underlying physical connection of the resource.

The abstraction layer (HAL) as shown in Figure 3-2, contains wrappers to hardware

dependent control libraries which act as a low-level middleware to hide the heterogeneity

of the underlying microcontrollers.

58

CHAPTER FOUR: IMPLEMENTATION AND TEST PLAN

Three different application tasks have been implemented to test the software

development software namely: simultaneous localization and mapping (SLAM), human

rescue, and wall painting. The mobile robots are built at the Robotics, Intelligent Sensing

& Control (RISC) Laboratory at the University of Bridgeport. The system is composed of

five heterogeneous robots in the sense that they have different sensory and actuation

components. The prototypes of the robots are shown in figure 4-1. The robots are built

using Arduino UNO, Arduino Due, and Digilent PIC boards. These boards are designed

to make the process of attaching hardware components easier.

Figure 4-1: Heterogeneous robots showing different components

59

 The hardware consists of a simple open hardware design and a rigid frame to

support and secure the different types microcontroller boards and on-board input/output

components. As for the power source, five packs of 7.2V 2500mAh Ni-MH batteries

ensure sufficient energy autonomy to the robots. For distance sensing, URM V3.2 and

PING ultrasonic sensor were used. However, as experimental results depict, the sensing

capabilities of the platforms can be easily upgraded with other sensors, e.g., laser range

finders. Additionally, the platforms are also equipped with an Xbee Shield from

Maxstream, consisting on a ZigBee communication module with an antenna attached on

top of the Arduino Uno board as an expansion module. This Xbee Series 2 module is

powered at 2mW having a range between 40m to 120m, for indoor and outdoor

operation, respectively.

UBSwarm runs on a windows operating system. The deployed robots have simple

behaviors and the overall high intelligence of the group is created by the simple acts and

moderate local intelligence of each individual robot. Each customized program contains

parameters that will be initially assigned to default values when starting UBSwarm

interface. The three application tasks used in evaluating UBSwarm environment can be

summarized as follows:

60

4.1 Simultaneous Mapping of a Building

SLAM is a technique used by robots to build up a map within an unknown

environment (without a priori knowledge), or to update a map within a known

environment (with a priori knowledge from a given map). Since our robots are equipped

with simple hardware capabilities, the primary mapping technique will involve simple

sonar and ultrasonic range finders to read distances as the mapping takes place.

4.2 Human Rescue

In hazardous conditions when it’s too dangerous to human rescuers to reach

remote places, a swarm of robotic agents can be deployed to search and rescue The task

of human/object rescue requires the robotic agents to cooperatively work together to pull

a heavy object to a desired place. A dummy human object has been used to test different

pulling scenarios.

4.3 Painting a Wall

The task’s objective is to perform interior painting job using two robots each

equipped with an arm that has a1-Dof gripper attached to a 2-Dof arm which controls the

position of the end effecter allowing it to rotate up, down and a 360 degree rotation

around its own center.

61

CHAPTER FIVE: EXPERIMENTS AND RESULTS

A new software deployment environment for heterogeneous robots has been

presented in the previous chapter. In this chapter, we compare how the proposed system

stands among existing systems. The proposed software environment utilizes robots that

have different modular designs and configurations of sensory modules and actuators.

The embedded middleware feature allows the robotic agents to extend their configuration

by auto-detecting newly added components. The proposed solution successfully

overcomes most of the limitations found in previous software environments. These can

be summarized as follows:

1. The system defines a set of rules and constructs programs that make the different

robotic agents work in a swarm fashion even though they are heterogeneous in

their hardware configurations and functionalities.

2. Robustness against failing sensory/actuation components while the task is taking

place is one of the core functionalities of the decentralization approach. The

decentralized algorithm allows robots to reason, reassign, and execute their

intended missions.

3. Another key feature of the new system is that it uses C# programs which utilize

the strong C# built-in libraries to interface with vast types of microcontrollers.

62

Previous systems have a slightly different method to communicate with robots.

For example the MAJIC software [8] sends only basic commands using its own

programming language to the group of selected online robots connected to the

different serial ports. MAJIC software does not upload complete programs to

robotic agents to allow them work in a swarm fashion. The DCF [55] on the other

hand, uploads the entire program to robotic agents and also it provides an online

simulator. However, The MDLE language does not work with the recent robotic

platforms. Moreover, the DCF system was particularly designed to be used on

more sophisticated robotic system which posses more computing power. More

precisely, robotic agents with onboard laptops were used to execute the programs

the DCF generates.

4. Unlike the player/stage system software, UBSwarm is not a real-time simulator,

although it can monitor live data being sent by the multiple robots to the serial

ports of a central computer. The player/stage is basically a simulator that reflects

the movements and actions of the robotic agents as they perform their tasks in a

graphical two-dimensional environment rendered on a computer screen.

5. Our system explains very clearly how programs are constructed and how

functional blocks of code are being fetched as the users feed their inputs to the

system interface. Certain object-oriented classes are added to the program that

incorporates the specific task/application in real time.

6. Unlike the other systems, both decentralized/centralized coordination modes are

adopted in UBSwarm. UBSwarm also integrates sophisticated programs that

provide communication based coordination between the robotic agents.

63

A comprehensive attribute-based bibliography which compares our proposed

system with the current robot deployment systems is given in table 5-1.

Name System Model Control
Model

Fault
tolerance

Real-
time

Distributed
environment

Simulator Standards
and
Technologies

E-Puck Layered
architecture;
server/client; OS
platform
independent

Service-
oriented
architecture;
no formal
language

Yes No Yes No Local
procedure calls
(RPC) to call
functions.
J2EE is used

UBSwarm Component-
based
framework; I/O
Master/slave
communication.
Platform
independent
model (PIM)

Service-based
procedure
calls. Runtime
agent;
dynamic
function calls

Yes.
Embedded
compiler;
Robots have
redundancy

No,
But
Can
be
added

Yes,
services
installed on
server can
be called on
another
machine

No C# libraries;
python and
C++ programs;
The interface
is built in
JAVA

DCF Component-
based
architecture

XML file
stores
information
needed to
communicate

Yes Yes No Yes,
Limited
to some
apps

Needs Java
virtual
machine; uses
special
language
called MDLE

MAJIC Client/Server;
component-
based
framework;

Client/server;
centralized
control

No Yes No No TCP protocol,
Direct
procedure
calls. Java
scripts
uploaded to
robots

Pyro Architecture
independent

 Yes No Yes No Socket based
using TCP
protocol,
XML, SOAP,
OpenGL,
HTTP

Player/
Stage

Client/server;
decentralized
control

Centralized
model.
Networked
interface

Yes Yes Yes Yes, 2D
and 3D

3-Tier
Architecture
based on proxy
objects.

Mobile-R Component-
based
architecture

Offline and
online
dynamic task
allocation,
Neural
Network
(ANNs)

No Yes Yes No IEEE Mobile-
C library
Generic
algorithms
(GA)

Table 5-1: Attribute-based comparison between the proposed system and the previous environments

64

5.1 Simultaneous Localization and Mapping (SLAM)

As illustrated in table 3-1, robot teams are composed of heterogeneous types of

robots. A maximum of three robots were used in the SLAM experiment where R1,R2 are

equipped with a laser-scanner and a v32 sonar scanner mounted on servo motor that

rotates 180 degrees, and a camera mounted on the front used for object recognition. R3 is

equipped with a sonar scanner mounted on a servo motor only. To accomplish the task,

robots must navigate from a starting position and stops when a base station that runs our

SLAM program generates a complete map of the building.

Each robot is placed randomly in the building to be mapped. The robots start

scanning the surrounding area by moving forward while constantly maintaining 30 cm

from the wall on its left side. An ultrasonic range sensor mounted on the top of each robot

will turn 45 degrees to the right, it scans, and then it turns another 90 degrees to read all

distances from the wall or the other obstacles. The scanner then rotates to the center

position, it scans and then it turns to the left side as the ultrasonic sensor turns 90 degrees

twice to the left. The process will be repeated every 30cm until it gets to the far side of

the building. Encoders on each robot’s wheels measure the distance the robot has covered

as it scans. These two readings may be combined with a third reading from sonar sensors

mounted on each side of the robot to add more accuracy and redundancy to the scanning

ability. All together, those readings generate two-dimensional values that are fed to a

Matlab program on a base station which in turn generates a 2-D map of the scanned area.

Each robot communicates with the base station using Wireless Xbee modules, which

provide communication via Wireless Wi-Fi 802.11 b/g/. One Xbee module is attached to

65

the base computer through USB port. As far the Matlab program is concerned, the SLAM

algorithm uses the well-known Extended Kalman Filter (EKF) to predict and refine

measurements. The Extended Kalman Filter (EKF) is an updated nonlinear version of the

Kalman filter which relies on the current mean and covariance to predict an estimate. In

the extended Kalman filter, the state transition and observation models are differentiable

functions.

 𝑋𝑘 = 𝑓(𝑋𝑘−1,𝑈𝑘−1) + 𝑊𝑘−1 (5.1)

𝑍𝑘 = ℎ(𝑥𝑘) + 𝑉𝑘 (5.2)

Where 𝑊𝑘 and 𝑉𝑘 are the process and observation noises, Xk is the state vector

and Zk is the observation vector. The functions f() and h() are process and observation

nonlinear vector functions respectively. The MATALB SLAM interface is a modified

version of an open source program developed by Jai Juneja [67]. The software has been

upgraded to make it run in real time by receiving live measurement data from the

onboard sensors and wheel encoders. The software is also modified to simulate two or

more robots in an attempt to meet our experimental objective. The SLAM program

receives readings from each robot’s ultrasonic range finders, wheel encoders and/or sonar

readings. The software takes as an input a vector of readings from the two motion

estimates received from sensor scanning and wheel odometers on each robot.

66

The refined pose estimate is the result of the EKF processing of the two estimates,

which takes into account their relative uncertainties. Figure 5-1 summarizes the new EKF

technique.

5.1.1 Communication

Communication with the host computer is essential in this experiment. The robot

must maintain the communication link to the host computer at all times. Transmission of

data (X1, X2, X3, and Y) from the swarm robots is transmitted at the end of each scanning

for every target distance of twenty centimeter. A special command is sent from the base

station to initiate internal clock which enables a robot to transmit its data once at each

clock cycle as illustrated in figure 5-2. Communication with the base station is

accomplished according the following algorithm:

Figure 5-1: Multi-robot mapping using EKF prediction

Scan Readings Wheel Encoders

Refined Measurements and Robot Position Robot

Grid map update

Est. new
measurement
r scan

Est. new Pose
robnew

EKF
Prediction

67

Enable system clock each cycle 500 milliseconds

1st clock cycle enable transmission from robot 1

2nd clock cycle enable transmission from robot 2

3rd clock cycle enable transmission from robot 3

We performed three successful trials for each experiment set by varying the number

of robots in each experiment. The mapping program is uploaded to each robot using two

kinds of configurations that are set in the UBSwarm environment interface as follows:

1- Wheel encoders, one sonar sensor mounted on the front, and one onboard

ultrasonic range finder.

2- Second configuration uses the same settings as the above plus two more sonar

sensors mounted on both sides.

The first experiment deploys one robot (equipped with two sensing components and

both are used for obstacle avoidance). The second experiment deploys two robots and

also they are equipped with two sensing components whereas three robots each equipped

Figure 5-2: Data transmission clock from each robot to the base station

68

with three sensing components were deployed in the third experiment. In the first

experiment, the mapping task was completed in about 33 minutes. In the second

experiment, the task took 16 minutes to complete, whereas it took 10 minutes to complete

in the third experiment.

(a)

(b)

 Figure 5-3: (a) Scan error during runtime using one robot, (b) scan error during runtime using two robots

69

(b)

Figure 5-4: (a) Position of one robot and its scanned estimates vs. actual map, (b) Two robots positions
and scanned estimates versus actual map

(a)

70

Figure 5-3 (a) and (b) shows the measurement error generated by the one and two

robots as opposed to the actual positions of walls. The region these robots are trying to

map is a 5x4 square meters classroom with two tables placed at the shown locations. The

algorithm decides the number of robots needed based on the dimensions of the area it is

going to map which in this case it was two robots. It can be seen clearly that the map

generated by two robots is more accurate than that generated by one robot.

Figure 5-4 (a) and (b) shows the actual map (black outline) and the estimated

measurements (blue and red dots) generated by one and two robots respectively (blue and

red triangles). Figure 5-5 (a) and (b) shows the rendered map generated by one and two

robots respectively. We notice that more accurate white outline has been generated using

the latter experiment. Figures 5-6 and 5-7 show the results of the third experiment that is

when three robots are used (red, green and blue triangles). A different type of a range

sensor is used on each of the three robots in the third experiment. Please note that the

Figure 5-5: (a) the map generated by one robot, (b) the map generated by the two robots.

(a)
(b)

71

maximum position error generated by one and two robots were 50 and 20 centimeters as

shown in figure 5-3 (a) and 5-3 (b) respectively, while the maximum position error was

15 centimeters in the third experiment as shown in figure 5-7 (b). The average is taken

between the two readings (on board ultrasonic sensor and side sonar sensors). Such

addition will boost the accuracy of the measurements as well as adding redundancy to the

robotic system should any sensor fails when tasks are being executed.

Figure 5-6: Three robots performing mapping

72

5.2 Human Rescue Task

The human rescue algorithm has been developed forUBSwarm so that robots can

autonomously cooperate and coordinate their actions so that a human dummycan be

pulled away in a minimal time. Cooperation between robots is achieved by exchanging

Figure 5-7: Experiment three (a) The estimates generated (b) Position error (centimeters) in 10
minutes of runtime

(a)

(b)

73

messages when an additional robot is needed to pull the object. First, the software

environment deploys a particular type of robot that searches for a human dummy as it

wanders in the unknown environment; such a robot is equipped with onboard camera

allowing it to detect a white stripe attached to the human body lying on the ground. Video

frames are received at a base station computer. The frames are fed to Matlab program that

detects the white stripe using a line detection module as shown in figure 5-8. The

algorithm incorporates Hough transform and enhanced edge detection algorithms.

If more robots are needed to pull the object, the robot calls another agent using

Xbee-based communication module. Wheel encoders on each robot are used to decide

whether or not to call more robots. When the pulling subtask is being performed by a

robot, its wheel encoders read the elapsed distance. If the distance is zero, it calls for

more agents to be sent. Robots place themselves at different locations. Using their

grippers and by sending a special synchronization message, the robots attach themselves

Figure 5-8: Overview of line detection Module

74

to the body and start pulling backward towards the goal position. A human prototype was

built and several experiments were conducted. As the weight of the human increases

more robotic swarm agents were called. We noticed that the configuration that uses more

than three robots is able to successfully pull the object. However; this configuration may

cause the robots to skid to any side. Consequently, this act increases the time taken by

the robots to complete the task. Dispatching the right number of robots is the goal

solution that is generated by the algorithm embedded in UBSwarm. Figure 5-8 shows a

human-like dummy being pulled by four robots. We ran centralized as well as

decentralized UBSwarm modes by performing three trials for each experiment set

indicated by the number of robots, and obtained data on the completion time and the

number of successful experiments. In total, we have performed 24 trials.

In the last experiment set, when four robots were used, we triggered faulty sensors

at time 100 second to illustrate the fault-recovering capabilities of swarm team. In that

experimental set, R5 performs its assigned tasks according to the plan. During the

execution, the camera on R5 is covered in a way that it cannot detect the object.

Eliminating this sensor triggers the coordination manager on the centralized station to

generate new solutions for the rest of the team (three robots) to accomplish the task. In

the decentralized approach, robots are always in one of the following states: reasoning,

auctioning, navigating, and idle. A robot starts reasoning when it receives a task

announcement. We introduced the same kind of failure as that of the centralized

approach. In this example, at time 100 seconds, all robots receive the task announcement

of pulling and start reasoning to calculate utilities. At time 101 seconds, utilities are

75

calculated, and robots start to bid for the task and wait for the response. At time 105

seconds, the task is assigned to the rest of the team and then the robots continue their

interrupted task. The least time successful solution to transporting task is found using a

robot team that is constructed of three robots; R1,R3, and R4. This result is obtained

using the RUTA algorithm embedded in the coordination manager component. This team

was able to accomplish the transporting task in an average of 201 seconds using the

centralized approach. The transporting experiment was conducted using decentralized

approach as well. In this experiment, the decentralized parameters such as the

negotiation-timeout value were set as follows: wait for reply is 0.85s. The team that is

constructed of the same three of robots as of that in the centralized approach also had the

minimum time to complete the task at an average of 277 seconds. Table 5-2 shows

performance data collected from centralized experiments.

Team Size Weight of body Average Pulling
distance (meters)

Average Time
(seconds)

1 300g 1.6 196
2 800g 1.3 240
3 1200g 2.5 201
4 1200g 2.0 210
5 1200g 1.6 400

As an example, in both approaches the total cost of task (𝑇𝑟𝑒𝑠𝑐𝑢𝑒) performed by

the robots 𝑟𝑖′𝑠 in the capability-based ordering (R2, R3, R1, R4, R5) is determined by the

robots utility functions associated with each of the following tasks:

Table 5-2: Successful pulling distance according to different number of robotic agents

76

𝑇𝑟𝑒𝑠𝑐𝑢𝑒 = �𝑈𝑟𝑒𝑠𝑐𝑢𝑒(𝑖)

5

𝑖=1

�𝑈𝑟𝑒𝑠𝑐𝑢𝑒(𝑖)

5

𝑖=1

= �(𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖(𝑛𝑎𝑣)+𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖(𝑑𝑒𝑡𝑒𝑐𝑡) + 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖(𝑔𝑟𝑖𝑝) + 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖(𝑝𝑢𝑙𝑙))
5

𝑖=1

𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖𝑗 = max(0, 𝑢2 × (𝑑𝑖𝑗
−1/2 × 𝜑𝑔𝑖𝑣𝑒𝑛 𝑖𝑗 × 𝑝𝑟𝑖𝑖𝑗), Where j = 1,2,3,4 i = 1,2,3,4,5,

𝑈𝑟𝑒𝑠𝑐𝑢𝑒(𝑖) is the overall utility of robot 𝑟𝑖, and 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖(𝑛𝑎𝑣), 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖(𝑑𝑒𝑡𝑒𝑐𝑡),

𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖(𝑔𝑟𝑖𝑝), 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖(𝑝𝑢𝑙𝑙)are the navigation, object detection, gripping, and pulling

subtasks.

5.2.1 Simulation Module

Deploying the right number of robots to rescue a human cannot be determined

unless the weight of the human is known prior to running the experiment. However,

running a premature simulation that has prior knowledge about experiment will provide a

clear picture whether or not the robots are able to accomplish the task. The prior

knowledge includes the human weight, its distance from the robots, and any other

essential parameters (such as robots’ wheel slippage percentages). The simulator

calculates utilities of the robots and shows their behavior in a 3D motion. To illustrate

that, the utilities are calculated for the different sub-tasks in the three-robot team. The

first subtask to be performed is navigation; the utilities for the three robots (1,2, and 4)

using the centralized approach are calculated as follows:

Robot 1, j = navigation

𝑢𝑡𝑖𝑙𝑖𝑡𝑦1(𝑛𝑎𝑣) = max(0, 𝑢2 × (𝑑1𝑗

−1/2 × 𝜑𝑔𝑖𝑣𝑒𝑛 1𝑗 × 𝑝𝑟𝑖1𝑗)

77

𝜑𝑔𝑖𝑣𝑒𝑛 1𝑗 = 𝜑𝑛𝑎𝑣 1𝑗 = 0.7 ��
𝑝𝑟𝑒𝑚1

𝑟𝑎𝑡𝑒𝑠𝑒𝑟𝑣𝑜 (1)
� ×

1
𝑤1
�

𝜑𝑔𝑖𝑣𝑒𝑛 1𝑗 = 0.7 ��
2200
130

� ×
1
3
�

𝜑𝑔𝑖𝑣𝑒𝑛 1𝑗 = 0.7 [5.58]

𝜑𝑔𝑖𝑣𝑒𝑛 1𝑗 = 3.90

Initially priorities of all sub-tasks are equal to 1, and 𝑢2 = 1 hence,

𝑢𝑡𝑖𝑙𝑖𝑡𝑦1(𝑛𝑎𝑣) = max(0, 1 × (1−1/2 × 3.90 × 1)

𝑢𝑡𝑖𝑙𝑖𝑡𝑦1(𝑛𝑎𝑣) = 3.90

Robot 2, j = navigation

𝜑𝑔𝑖𝑣𝑒𝑛 2𝑗 = 𝜑𝑛𝑎𝑣 2𝑗 = 0.7 ��
𝑝𝑟𝑒𝑚2

𝑟𝑎𝑡𝑒𝑠𝑒𝑟𝑣𝑜 (2)
� ×

1
𝑤2
�

𝜑𝑔𝑖𝑣𝑒𝑛 2𝑗 = 0.7 ��
2200
320

� ×
1
1
�

𝜑𝑔𝑖𝑣𝑒𝑛 2𝑗 = 0.7 [6.87]

𝜑𝑔𝑖𝑣𝑒𝑛 2𝑗 = 4.81

So,

𝑢𝑡𝑖𝑙𝑖𝑡𝑦2(𝑛𝑎𝑣) = 4.81

After calculating for R4,

𝑢𝑡𝑖𝑙𝑖𝑡𝑦4(𝑛𝑎𝑣) = 1.21

At time 110s, the gripping subtask was already scheduled at time 20s, the utility values

for robots 2 and 4 are:

78

R2, j = grip

𝜑𝑔𝑖𝑣𝑒𝑛 2𝑗 = 𝜑𝑚𝑎𝑛𝑖𝑝 2𝑗 + 𝜑𝑠𝑒𝑛𝑠 2𝑗

 𝜑𝑚𝑎𝑛𝑖𝑝 2𝑗 = 0.7 �(𝑡𝑠𝑗
𝑡′𝑚

) � 𝑃𝑟𝑒𝑚2
𝑟𝑎𝑡𝑒𝑎𝑐𝑡 2

��

 = 0.7 �(9
200

) �2000
60
�� = 1.05

 𝜑𝑠𝑒𝑛𝑠 2𝑗 = 0.9 �(𝑡𝑠𝑗
𝑡′𝑚

) � 𝑃𝑟𝑒𝑚2
𝑟𝑎𝑡𝑒𝑠𝑒𝑛𝑠 (2)

��

𝜑𝑠𝑒𝑛𝑠 2𝑗 = 0.9 �(11
200

) �2150
65
�� = 1.64

 𝜑𝑔𝑖𝑣𝑒𝑛 2𝑗 = 𝜑𝑚𝑎𝑛𝑖𝑝 2𝑗 + 𝜑𝑠𝑒𝑛𝑠 2𝑗 = 2.69

𝑝𝑟𝑖2𝑗 =
1
2

× 𝑚𝑎𝑥[(𝑢1 × (110 − 20), 0]

𝑢1 = 0.01

𝑝𝑟𝑖2𝑗 = 0.45

Assuming robot 2 distance to the object is 3 meters

𝑢𝑡𝑖𝑙𝑖𝑡𝑦2(𝑔𝑟𝑖𝑝) = max(0, 1 × (3.0−1/2 × 2.69 × 0.45) = 0.69

The same applies to robot 4. Its corresponding utility values were

𝑢𝑡𝑖𝑙𝑖𝑡𝑦4(𝑔𝑟𝑖𝑝) = max(0, 1 × (4.3−1/2 × 5.04 × 0.45) = 1.09

Figure 5-9 shows a simulated 4 robotic agents performing the task of pulling a 1200g
body.

79

When evaluating the performance of two versus N robots, each team’s utility

value is the key factor that distinguishes the least time solution among the various team

sizes and compositions. At the beginning, each team’s utility is calculated as an

initialization step in the RUTA algorithm. At this stage, the larger the team the higher

utility value is. However, some team utilities might start to decline depending on their

parameters as the task is taking place. The team that sustains high utility value throughout

the course of performing the task until its completion will determine the minimum

execution time and hence the optimal solution. Table 5-3 shows the order of teams’

Figure 5-9: Four robots simulated before being deployed

80

success based on their utility values and their completion time. Please note the higher

team utility the more successful the experiment is.

Team composition Centralized Decentralized
Utility value Time (sec) Utility value Time (sec)

(R1,R3,R4) 9.63 201 6.91 277
(R1,R3,R4,R5) 8.82 210 6.62 299

(R2,R3,R4,R1,R5) 8.43 400 6.66 405
(R2,R5) 8.16 240 6.34 310

The desired pulling distance for 1200g human dummy was 2.5 meters. The

sequenced photos in figure 5-10 below show an example of five robots pulling the

dummy.

 Figure 5-10: A dummy being pulled for 2.5 meters using five robots

Table 5-3: Centralized vs. Decentralized team utilities

(a) Five robots are configured for a rescue

(b) Four robots are approaching

(c) The fifth robot, R2 is called (d) Five robots crossing the finish

81

5.3 Wall Painting

The task is executing an interior painting job. The robotic agents each equipped

with location sensors, simple communication modules, and vision capability are able to

paint their designated part of the wall. Painting using a brush is the most commonly used

by human workers. Using a brush requires more sophisticated robotic arms. Painting

using a spray, however, is less demanding in terms of accuracy and therefore more

appropriate for our robotic agents.

5.3.1 Arm and End-effecter

The end effecter is basically a 1-DoF gripper attached to a 2-DoF arm which

controls the position of the end effecter allowing it to rotate up, down and a 360° rotation

around its own center. Figure 5-11 shows the movements and the offsets along the direct

Z axis.

Performing a painting job using this particular type of end-effecter creates

multiple adjacent rectangular coating sectors as shown in figure 5-12. The height of each

sector (H) is the height of the highest point the end effecter can reach on the wall which

Figure 5-11: The 2-Dof sketch for the robot manipulator

82

was reasonably taken as 30 cm. The width of the sector (W), for a robot with a given

work space), depends on the area being sprayed by the nozzle attached to the end effecter

(gripper), that actually determines the width of a stripe (S) painted in a single tool

movement.

Figure 5-13 shows two robots performing a painting test and the nozzles attached

to each of their grippers.

 Figure 5-13: Spraying nozzles attached to the Robots

Figure 5-12: The surface covered by the painter

83

5.3.2 Painting Method

The two robots were used are equipped with a 2-Dof manipulator and a flexible

hose attached to the end effecter on one end and to a compressed paint container on the

other end. Using this flexible spraying equipment, each robot can paint a surface of 10 x

30 cm only when it is facing the surface of the wall. The trajectory of the end-effecter is

composed of three kinds of movements:

1. Each robot moves concurrently at the same speed as that of the other robots. An

infrared sensor mounted at the front of each robot. When a wall is detected, each

robot will rotate its painting tool in order to align it with the wall at the highest

extension then it will maintain a constant distance from the wall as the painting

starts.

2. The tool will be moved in two linear vertical movements in which the paint is

being sprayed. During the movement, each sprayer is activated or de-activated

according to the distance from the wall.

3. After completing two vertical sprays, each robot will move to the next adjacent

partition on the wall by moving backward for a predetermined fixed distance,

turning to the a left, moving forward for 20 cm, turning to the right and then

moving forward for the same fixed distance to reach the next partition. The

painting process takes place again and the whole procedure is repeated until the

whole area is painted.

We are interested in learning how much time is saved when painting using

multiple robots. To do so, we ran two experiments. The first experiment which involved

84

one single robot, the task was completed in 30 minutes. In the second experiment the task

was completed in 14 minutes using two robots.

5.4 Performance of Centralized vs. Decentralized Approaches

When it comes to evaluating the performance of both of the centralized and

decentralized approaches, we observe that the centralized approach performs quicker

with more flexibility while generating plans. Little time is needed to initiate new ordering

of the robot team since any change in the capabilities of the team needs only to be

updated locally. The centralized knowledge base also needs to be updated when the team

capabilities change. However, the centralized approach takes a little longer time to find a

solution than that of decentralized approach. Decentralized UBSwarm runs on each robot.

The solution can be found using less time. However, except for single-robot team, this

method trades off solution quality because of the less computational power of the robots

when compared to the base station computer. To increase robustness against sensory

failures, the decentralized approach on every robot. Robots share capability information

with each other at the beginning or whenever the team capabilities change. This method

requires more work to maintain the knowledge base than the centralized approach on a

single base station, since the knowledge base updates must be duplicated on all robots.

In centralized UBSwarm, the total time for generating a solution is the time to

assign subtasks (m) to the current team ordering which increases exponentially O(nm),

whereas the time needed for the decentralized approach is the auctioning time which is

O(1) plus the time taken by each robots to respond which is O(n). Here n is the number of

85

working (unfailing) robots. As shown in Fig. 5-14, the average time to generate a solution

increases as the robot group size increases, linearly for Decentralized UBSwarm, and

exponentially for centralized UBSwarm. Additionally, in Fig. 5-15, the plan utility is

plotted for four different team sizes. At time 100 seconds, an error is introduced to one of

the robots in each team. We can observe that the team accumulated utility drops down at

that point then as both approaches re-allocate the tasks the overall utility increases. The

figure shows the accumulative team utility over time. The sub-task that is assigned to the

faulty robots is taken over by the rest of the team as a result of the reasoning algorithms

executed by the two control schemes. If no faults occur during execution, team utility

should maintain a slight decrease in their values. Additionally, the centralized results

always have a higher utility value than that of the decentralized approach, because the

centralized approach operates with complete information received from the robot team.

Moreover, the decentralized approach’s core functionality is based on the use of time-

based parameters (i.e. wait-for-reply 𝑡𝑜𝑢𝑡) that not only requires more communication

overhead amongst the robots but also increases the time slot given to the particular sub-

task and thus increases the execution time.

86

Figure 5-14: Centralized vs. Decentralized time needed to generate solutions

Figure 5-15: Centralized vs. Decentralized team utility

87

Based on the task requirement, the centralized algorithm first picks at least two

robots which calculate the two highest utility values. The system then assigns the first

subtask according to the task schedule as an initialization step. Once the two robots are

deployed, the coordination manager component takes over the control. Based on the

values of the two robot’s utilities or the addition of new robots (or removing a faulty

robots from the solution plan), the coordination component assigns or reassigns subtasks

to the robotic team. When decentralized approach is used, the problem of reconfiguring

solutions is left to the robots themselves to resolve. Figure 5-15 shows the effect of a

faulty sensor introduced on each of the different team sizes (N = 2,3,4,5) in the human

rescue task simulating a dummy that weighs 1200gms. We notice that the combination of

robot teams which gives an optimal solution is the combination of the three robots (R1,

R2, and R4). This specific task requires at least one robot equipped with a camera for the

purpose of detecting the dummy object. Table 5-4 below shows the highest utility value

of each of the different team combinations for centralized and decentralized approaches

at time 225 seconds.

Team composition Utility values at time 225s
Centralized Decentralized

(R1,R3,R4) 9.63 6.91
(R2,R4) 9.40 6.53

(R2,R3,R4,R1) 8.68 6.42
R2 7.80 4.98

Table 5-4: Team compositions and their utility values

88

5.5 Comparison between RUTA and Current Techniques

The above experiments present the results of applying UBSwarm to various

multirobot applications and the robustness of the UBSwarm-Decenralized approach. It is

worth mentioning how our proposed approach to the OAP stands amongst the existing

techniques by comparing their scalabilities and execution time (for n robots and m tasks)

to our approach. According to table 2-1 in our literature survey, approaches to robot task

allocation are divided into behavior-based and market-based approaches ALLIANCE is a

behavior-based technique in which each robot performs a greedy task-selection algorithm

for each task yielding a O(mn) per iteration where m and n are the number of tasks and

robots respectively. At each iteration, each robot compares its own utility to that of the

other robots and selects the task for which it is capable to perform. Because robots have

to share their utilities in each iteration, communication overhead of O(n) is added to the

overall execution time. ACO-based task allocation [69] is another behavior-based

approach. In this technique, each robot has a corresponding task utility that decides if the

robot is capable of executing a task by estimating the robot’s utility for that task. Utilities

are computed in a task-specific manner as a function of relevant sensor data. These

utilities are periodically broadcasted to the other robots simultaneously to allow

reassignment of tasks. Since each robot must broadcast its utility for each task, the system

has a communication overhead of O(mn) per iteration.

Moving to auction-based approaches, In the M+ system, each robot considers all

the currently available tasks at each iteration. For each task, each robot uses a planner to

89

compute its utility and announces the resulting value to the other robots. With each robot

broadcasting its utility for each task, we have communication overhead of O(mn) per

iteration. Similar to M+, the MURDOCH task allocation mechanism also employs a

variant of CNP. For each task auction, each available robot broadcasts its bid (i.e.,

utility), yielding communication overhead of O(n) per iteration because of the

asymmetric nature of MURDOCH’s auctions. In ASyMTRe approach, the solution is

based on perceptual schema representation of each robot’s physical components. The

solution requires the time to generate all the orderings of robots, which increases

exponentially O(n!), and the actual reasoning time O(mn2) when utilities are being

calculated. In ASyMTRe-D, the time is the average reasoning time O(mn) for the group

to generate a solution.

We notice that our algorithm’s execution time does not differ from that of existing

homogenous approaches. So far we have not shown any actual comparison of our

technique with the systems that we have analyzed. Because all of the previous

architectures execute some kind of greedy algorithm for task allocation, the solution

quality of greedy optimization algorithms can be difficult to define. Evaluating each

architecture depends strongly on the nature of the experiment. The input to the

experiment is the set of robots, tasks, and the environment that they are operating in.

However, by taking each of the previous system’s utility equations and applying them in

our centralized approach, would give a proper comparison between our system and the

current systems. As shown in figure 5-16, the comparison is made by calculating the

90

utilities of the systems for 15 human rescue trials performed using 1200gms dummy on

teams that are composed of 2, 3, 4, and 5 robots respectively.

Figure 5-16: Comparison of RUTA with current methods

91

CONCLUSIONS AND FUTURE WORK

In conclusion, the creation of UBSwarm is specifically designed to deploy

heterogeneous robotic agents. Based on the type, the number of the robotic agents

available, and the task selected, UBSwarm automatically constructs optimal solutions to

the three different missions specified by the user. The coordination algorithm is translated

into programs customized for each heterogeneous robotic agent. These programs define a

set of rules and behaviors that allow the different robotic agents to work in a swarm

fashion, even though they have different hardware configurations.

Our work presents a task-oriented software application that facilitates the rapid

deployment of multiple robotic agents. The task solutions are created at run-time and

executed in a centralized or decentralized fashion by the robotic agents. A core

component of the system’s framework is responsible for generating these task solutions.

At the robots’ deployment and throughout their operational time, the software

reconfigures solutions to accommodate any variation within the group of robots. Then the

tasks are fractioned into smaller sub-tasks and assigned to the optimal number of robots

using a novel Robot Utility Based Task Assignment (RUTA) algorithm. In addition, we

demonstrated a reasoning algorithm that generates multi-robot utilities through a

negotiation process in a decentralized manner.

92

Through the decentralization process, each robot generates an optimal solution for

the entire task by reassigning subtasks to the team based on each robot’s utility. The

system has to account for any change in the number of robots being used. When

comparing the centralized to the decentralized UBSwarm, we discover that decentralized

UBSwarm provides more flexibility and fault-tolerance is that these solutions have less

quality in forming solutions.

In the centralized situation, a set of robotic agents can adopt and adjust their

subtasks in accordance with any variation that may occur. During runtime, the robot’s

status is shared between robots. If a failing robot interrupts a task, then the swarm robotic

environment will reconfigure new task solutions in order to adapt to changes within the

robotic team’s composition. Analytical studies and physical implementations of

coordination modes have been incorporated into our research.

In a broader view of the system, UBSwarm deployment environment reduces

efforts in dispatching tasks to swarm robotic agents, and permits users to add various new

functions for robots and sensors. A few of the future work improvements that can greatly

enhance the decision making performed by the coordination component and its

applications include:

1. Optimizing the control algorithm to decide shortest path in executing a task,

locate object more accurately, shorten swarm intelligence decision time, and keep

better power efficiency in the operation.

2. Another future improvement would be deciding the optimal number of robots to

carry out the task most efficiently. Implementing error estimation on the fly

93

(during run-time) can be thought of, which can positively affect the

decisions/configurations afterwards.

3. Developing algorithms leading to controlling nano robots for cancer cell

detection/removal and implement neural networks to allow robots learn their

environment as they navigate.

4. Improving the coordination algorithm using intelligent decision agent. Incorporate

huge number of simpler robots (hundreds) to perform complex tasks.

5. Extending the functionality of the deployment environment to allow integrating

more sensory and actuation devices

94

BIBILOGRAPHY

[1] Y. Xinan, L. Alei, and G. Haibing, "An algorithm for self-organized aggregation

of swarm robotics using timer," in Swarm Intelligence (SIS), 2011 IEEE

Symposium on, 2011, pp. 1-7.

[2] L. Bayindir and E. Sahin, "A review of studies in swarm robotics," Turkish

Journal of Electrical Engineering, vol. 15, pp. 115-147, 2007.

[3] Z. B. D. Rus, K. Kotay, and M. Vona, "Self-reconfiguring robots,"

Communications of the ACM, vol. vol. 45, pp. 39-45, 2002.

[4] S. S. Nestinger and H. H. Cheng, "Mobile-R: A reconfigurable cooperative

control platform for rapid deployment of multi-robot systems," in Robotics and

Automation (ICRA), 2011 IEEE International Conference on, 2011, pp. 52-57.

[5] T. Fong, I. Nourbakhsh, and K. Dautenhahn, "A survey of socially interactive

robots," Robotics and autonomous systems, vol. 42, pp. 143-166, 2003.

[6] K. Sugawara and T. Watanabe, "Swarming robots-foraging behavior of simple

multirobot system," in Intelligent Robots and Systems, 2002. IEEE/RSJ

International Conference on, 2002, pp. 2702-2707.

95

[7] H. Szu, P. Chanyagorn, W. Hwang, M. Paulin, and T. Yamakawa, "Collective and

distributive swarm intelligence: evolutional biological survey," in International

Congress Series, 2004, pp. 46-49.

[8] G. P. Ball, K. Squire, C. Martell, and M. T. Shing, "MAJIC: A Java application

for controlling multiple, heterogeneous robotic agents," in Rapid System

Prototyping, 2008. RSP'08. The 19th IEEE/IFIP International Symposium on,

2008, pp. 189-195.

[9] H. Dai, "Adaptive Control in Swarm Robotic Systems," The Hilltop Review, vol.

3, p. 7, 2011.

[10] A. Sayouti, H. Medromi, and F. Moutaouakil, "Autonomous and Intelligent

Mobile Systems based on Multi-Agent Systems."

[11] R. Groß, M. Bonani, F. Mondada, and M. Dorigo, "Autonomous self-assembly in

swarm-bots," Robotics, IEEE Transactions on, vol. 22, pp. 1115-1130, 2006.

[12] F. Mondada, G. C. Pettinaro, A. Guignard, I. W. Kwee, D. Floreano, J. L.

Deneubourg, et al., "SWARM-BOT: A new distributed robotic concept,"

Autonomous Robots, vol. 17, pp. 193-221, 2004.

[13] T. Fukuda and S. Nakagawa, "Dynamically reconfigurable robotic system," in

Robotics and Automation, 1988. Proceedings., 1988 IEEE International

Conference on, 1988, pp. 1581-1586.

[14] Y. Mohan and S. Ponnambalam, "An extensive review of research in swarm

robotics," in Nature & Biologically Inspired Computing, 2009. NaBIC 2009.

World Congress on, 2009, pp. 140-145.

96

[15] T. W. Dunbar and J. Esposito, "Artificial potential field controllers for robust

communications in a network of swarm robots," in System Theory, 2005. SSST'05.

Proceedings of the Thirty-Seventh Southeastern Symposium on, 2005, pp. 401-

405.

[16] B. P. Gerkey and M. J. Mataric, "Sold!: Auction methods for multirobot

coordination," Robotics and Automation, IEEE Transactions on, vol. 18, pp. 758-

768, 2002.

[17] C. W. Reynolds, "Flocks herds and schools: A distributed behavioral model,"

Computer Graphics, pp. 25-34, July 1987.

[18] A. T. Hayes, A. Martinoli, and R. M. Goodman, "Swarm robotic odor

localization," in Intelligent Robots and Systems, 2001. Proceedings. 2001

IEEE/RSJ International Conference on, 2001, pp. 1073-1078.

[19] D. Payton, M. Daily, R. Estowski, M. Howard, and C. Lee, "Pheromone

robotics," Autonomous Robots, vol. 11, pp. 319-324, 2001.

[20] R. Mayet, J. Roberz, T. Schmickl, and K. Crailsheim, "Antbots: A feasible visual

emulation of pheromone trails for swarm robots," Swarm Intelligence, pp. 84-94,

2010.

[21] J. Svennebring and S. Koenig, "Building terrain-covering ant robots: A feasibility

study," Autonomous Robots, vol. 16, pp. 313-332, 2004.

[22] R. A. Russell, "Ant trails-an example for robots to follow?," in Robotics and

Automation, 1999. Proceedings. 1999 IEEE International Conference on, 1999,

pp. 2698-2703.

97

[23] R. A. Russell, "Heat trails as short-lived navigational markers for mobile robots,"

in Robotics and Automation, 1997. Proceedings., 1997 IEEE International

Conference on, 1997, pp. 3534-3539.

[24] M. Mamei and F. Zambonelli, "Spreading pheromones in everyday environments

through RFID technology," in 2nd IEEE Symposium on Swarm Intelligence, 2005,

pp. 281-288.

[25] H. Psaier and S. Dustdar, "A survey on self-healing systems: approaches and

systems," Computing, vol. 91, pp. 43-73, 2011.

[26] V. Gazi and K. M. Passino, "Stability analysis of social foraging swarms,"

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol.

34, pp. 539-557, 2004.

[27] R. T. Vaughan, K. Støy, G. S. Sukhatme, and M. J. Mataric, "Blazing a trail:

insect-inspired resource transportation by a robot team," in Proceedings of the 5th

International Symposium on Distributed Autonomous Robotic Systems (DARS),

Knoxville, TN, 2000, pp. 111-120.

[28] M. Blow, "’stigmergy’: Biologically-inspired robotic art," in Proceedings of the

Symposium on Robotics, Mechatronics and Animatronics in the Creative and

Entertainment Industries and Arts, The Society for the Study of Artificial

Intelligence and the Simulation of Behaviour, 2005.

[29] W. Liu, A. F. T. Winfield, J. Sa, J. Chen, and L. Dou, "Towards energy

optimization: Emergent task allocation in a swarm of foraging robots," Adaptive

Behavior, vol. 15, pp. 289-305, 2007.

98

[30] E. J. Barth, "A dynamic programming approach to robotic swarm navigation

using relay markers," in American Control Conference, 2003. Proceedings of the

2003, 2003, pp. 5264-5269.

[31] N. R. Hoff, A. Sagoff, R. J. Wood, and R. Nagpal, "Two foraging algorithms for

robot swarms using only local communication," in Robotics and Biomimetics

(ROBIO), 2010 IEEE International Conference on, 2010, pp. 123-130.

[32] B. Wang, D. Hoang, I. Daiz, C. Okpala, and T. M. Sobh, "An Experimental

Collective Intelligence Research Tool," in proceedings of the Fourth

International ICSC Symposium on Engineering in Intelligent Systems (EIS 2004),

Madeira, Portugal, 2004.

[33] J. McLurkin and J. Smith, "Distributed algorithms for dispersion in indoor

environments using a swarm of autonomous mobile robots," Distributed

Autonomous Robotic Systems 6, pp. 399-408, 2007.

[34] R. Simmons, S. Singh, D. Hershberger, J. Ramos, and T. Smith, "First results in

the coordination of heterogeneous robots for large-scale assembly," Experimental

Robotics VII, pp. 323-332, 2001.

[35] D. Vail and M. Veloso, "Multi-robot dynamic role assignment and coordination

through shared potential fields," Multi-Robot Systems, pp. 87-98, 2003.

[36] E. Pagello, A. D'Angelo, and E. Menegatti, "Cooperation issues and distributed

sensing for multirobot systems," Proceedings of the IEEE, vol. 94, pp. 1370-1383,

2006.

99

[37] S. C. Botelho and R. Alami, "M+: a scheme for multi-robot cooperation through

negotiated task allocation and achievement," in Robotics and Automation, 1999.

Proceedings. 1999 IEEE International Conference on, 1999, pp. 1234-1239.

[38] R. Zlot, A. Stentz, M. B. Dias, and S. Thayer, "Multi-robot exploration controlled

by a market economy," in Robotics and Automation, 2002. Proceedings. ICRA'02.

IEEE International Conference on, 2002, pp. 3016-3023.

[39] M. Yim, W. M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, et al., "Modular

self-reconfigurable robot systems [grand challenges of robotics]," Robotics &

Automation Magazine, IEEE, vol. 14, pp. 43-52, 2007.

[40] B. Salemi, M. Moll, and W. M. Shen, "SUPERBOT: A deployable, multi-

functional, and modular self-reconfigurable robotic system," in Intelligent Robots

and Systems, 2006 IEEE/RSJ International Conference on, 2006, pp. 3636-3641.

[41] S. Kernbach, E. Meister, F. Schlachter, K. Jebens, M. Szymanski, J. Liedke, et al.,

"Symbiotic robot organisms: REPLICATOR and SYMBRION projects," in

Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems,

2008, pp. 62-69.

[42] A. Kushleyev, D. Mellinger, and V. Kumar, "Towards a swarm of agile micro

quadrotors," in Robotics: Science and Systems (RSS), 2012.

[43] F. Tang and L. E. Parker, "A complete methodology for generating multi-robot

task solutions using asymtre-d and market-based task allocation," in Robotics and

Automation, 2007 IEEE International Conference on, 2007, pp. 3351-3358.

[44] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, "Coordinated multi-

robot exploration," Robotics, IEEE Transactions on, vol. 21, pp. 376-386, 2005.

100

[45] V. Zykov, E. Mytilinaios, M. Desnoyer, and H. Lipson, "Evolved and designed

self-reproducing modular robotics," Robotics, IEEE Transactions on, vol. 23, pp.

308-319, 2007.

[46] R. Moeckel, C. Jaquier, K. Drapel, E. Dittrich, A. Upegui, and A. J. Ijspeert,

"Exploring adaptive locomotion with YaMoR, a novel autonomous modular robot

with Bluetooth interface," Industrial Robot: An International Journal, vol. 33, pp.

285-290, 2006.

[47] S. C. Goldstein, J. D. Campbell, and T. C. Mowry, "Programmable matter,"

Computer, vol. 38, pp. 99-101, 2005.

[48] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. Kokaji,

"M-TRAN: Self-reconfigurable modular robotic system," Mechatronics,

IEEE/ASME Transactions on, vol. 7, pp. 431-441, 2002.

[49] E. H. Østergaard, K. Kassow, R. Beck, and H. H. Lund, "Design of the ATRON

lattice-based self-reconfigurable robot," Autonomous Robots, vol. 21, pp. 165-

183, 2006.

[50] M. Yim, Y. Zhang, and D. Duff, "Modular robots," Spectrum, IEEE, vol. 39, pp.

30-34, 2002.

[51] J. Suthakorn, Y. T. Kwon, and G. S. Chirikjian, "A semi-autonomous replicating

robotic system," in Computational Intelligence in Robotics and Automation, 2003.

Proceedings. 2003 IEEE International Symposium on, 2003, pp. 776-781.

[52] K. Lee and G. S. Chirikjian, "An autonomous robot that duplicates itself from

low-complexity components," in Robotics and Automation (ICRA), 2010 IEEE

International Conference on, 2010, pp. 2771-2776.

101

[53] A. Liu, M. Sterling, D. Kim, A. Pierpont, A. Schlothauer, M. Moses, et al., "A

memoryless robot that assembles seven subsystems to copy itself," in Assembly

and Manufacturing, 2007. ISAM'07. IEEE International Symposium on, 2007, pp.

264-269.

[54] V. M. Trifa, C. M. Cianci, and D. Guinard, "Dynamic control of a robotic swarm

using a service-oriented architecture," in 13th International Symposium on

Artificial Life and Robotics (AROB 2008), 2008.

[55] Z. Kulis, V. Manikonda, B. Azimi-Sadjadi, and P. Ranjan, "The distributed

control framework: a software infrastructure for agent-based distributed control

and robotics," in American Control Conference, 2008, 2008, pp. 1329-1336.

[56] N. Lenzi, B. Bachrach, and V. Manikonda, "DCF (Registered)-A JAUS and

TENA Compliant Agent-Based Framework for Test and Evaluation of Unmanned

Vehicles," DTIC Document2011.

[57] P. Nebot and E. Cervera, "Agent-based application framework for multiple

mobile robots cooperation," in Robotics and Automation, 2005. ICRA 2005.

Proceedings of the 2005 IEEE International Conference on, 2005, pp. 1509-1514.

[58] X. L. Tao Zhang, Yi Zhu, Xiaqin Li, Song Chen, "Coordinative Control for Multi-

Robot System through Network Software Platform," iConcept Press, pp. 51-59,

2010.

[59] M. INC, "Documentation & Technical Support for MobileRobots Research

Platforms," ed: Adept MobileRobots INC 2006.

[60] J.-C. Baillie, "The URBI Tutorial," ed: Gostai, 2006.

102

[61] B. Gerkey, R. T. Vaughan, and A. Howard, "The player/stage project: Tools for

multi-robot and distributed sensor systems," in Proceedings of the 11th

international conference on advanced robotics, 2003, pp. 317-323.

[62] D. Blank, D. Kumar, L. Meeden, and H. Yanco, "Pyro: A python-based versatile

programming environment for teaching robotics," Journal on Educational

Resources in Computing (JERIC), vol. 4, p. 3, 2004.

[63] A. Elkady, J. Joy, and T. Sobh, "A plug and play middleware for sensory

modules, actuation platforms and task descriptions in robotic manipulation

platforms," in Submitted to Proc. 2011 ASME International Design Engineering

Technical Conf. and Computers and Information in Engineering

Conf.(IDETC/CIE’11), 2011.

[64] B. Chen, H. H. Cheng, and J. Palen, "Mobile‐C: a mobile agent platform for

mobile C/C++ agents," Software: Practice and Experience, vol. 36, pp. 1711-

1733, 2006.

[65] J. Von Neumann and O. Morgenstern, "Theory of games and economic behavior,"

Bull. Amer. Math. Soc, vol. 51, pp. 498-504, 1945.

[66] K. Kuwabara, T. Ishida, and N. Osato, "AgenTalk: Coordination Protocol

Description for Multiagent Systems," in ICMAS, 1995, pp. 455-461.

[67] J. Juneja. Available: http://www.jaijuneja.com/blog/2013/05/simultaneous-

localisation-mapping-matlab/

[68] L. E. Parker, "ALLIANCE: An architecture for fault tolerant multirobot

cooperation," Robotics and Automation, IEEE Transactions on, vol. 14, pp. 220-

240, 1998.

http://www.jaijuneja.com/blog/2013/05/simultaneous-localisation-mapping-matlab/
http://www.jaijuneja.com/blog/2013/05/simultaneous-localisation-mapping-matlab/

103

[69] L. Jiang and R. Zhan, "An autonomous task allocation for multi-robot system,"

Journal of Computational Information Systems, vol. 7, pp. 3747-3753, 2011.

	ABSTRACT
	ACKNOWLEDGEMENTS
	NOMENCLATURE
	ACRONYMS
	CHAPTER One: INTRODUCTION
	1.1 Problem Scope
	1.2 Motivation
	1.3 Research Contributions

	CHAPTER Two: LITERATURE SURVEY OF SWARM SYSTEMS
	2.1 Two Main Categories of Swarm Behaviors
	2.1.1 “Biologically Inspired” Robots
	2.1.2 “Functionally Inspired” Robots

	2.2 Reconfigurable Robots
	2.3 Self-replicating Robots
	2.4 Swarm Control Software Environments

	CHAPTER Three: RESEARCH PLAN AND SYSTEM ARCHITECTURE
	3.1 Robot Deployment System
	3.1.1 User Interface
	3.1.2 Coordination Manager
	3.1.2.1 Utility-based Solution for Optimal Task Assignment

	3.1.3 Runtime Interpreter
	3.1.4 Registry

	3.2 Robotic Control System
	3.2.1 Application Program
	3.2.2 Polling Routine
	3.2.3 Device library
	3.2.4 Compiler
	3.2.5 Hardware Abstraction Layer

	CHAPTER Four: IMPLEMENTATION AND TEST PLAN
	4
	4.1 Simultaneous Mapping of a Building
	4.2 Human Rescue
	4.3 Painting a Wall

	CHAPTER Five: EXPERIMENTS AND RESULTS
	5
	5.1 Simultaneous Localization and Mapping (SLAM)
	5.1.1 Communication

	5.2 Human Rescue Task
	5.2.1 Simulation Module

	5.3 Wall Painting
	5.3.1 Arm and End-effecter
	5.3.2 Painting Method

	5.4 Performance of Centralized vs. Decentralized Approaches
	5.5 Comparison between RUTA and Current Techniques

	CONCLUSIONS AND FUTURE WORK
	BIBILOGRAPHY

