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DEPLOYMENT OF HETEROGENEOUS SWARM ROBOTIC 

AGENTS USING A TASK-ORIENTED UTILITY-BASED 

ALGORITHM 

ABSTRACT 

In a swarm robotic system, the desired collective behavior emerges from local 

decisions made by robots, themselves, according to their environment. Swarm robotics is 

an emerging area that has attracted many researchers over the last few years.  It has been 

proven that a single robot with multiple capabilities cannot complete an intended job 

within the same time frame as that of multiple robotic agents. A swarm of robots, each 

one with its own capabilities, are more flexible, robust, and cost-effective than an 

individual robot. 

 
As a result of a comprehensive investigation of the current state of swarm robotic 

research, this dissertation demonstrates how current swarm deployment systems lack the 

ability to coordinate heterogeneous robotic agents. Moreover, this dissertation’s objective 

shall define the starting point of potential algorithms that lead to the development of a 

new software environment interface. This interface will assign a set of collaborative tasks 
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to the swarm system without being concerned about the underlying hardware of the 

heterogeneous robotic agents.  

 
The ultimate goal of this research is to develop a task-oriented software application 

that facilitates the rapid deployment of multiple robotic agents.  The task solutions are 

created at run-time, and executed by the agents in a centralized or decentralized fashion.  

Tasks are fractioned into smaller sub-tasks which are, then, assigned to the optimal 

number of robots using a novel Robot Utility Based Task Assignment (RUTA) algorithm. 

The system deploys these robots using it’s application program interfaces (API’s) and 

uploads programs that are integrated with a small routine code.  The embedded routine 

allows robots to configure solutions when the decentralized approach is adopted. In 

addition, the proposed application also offers customization of robotic platforms by 

simply defining the available sensing and actuation devices. Another objective of the 

system is to improve code and component reusability to reduce efforts in deploying tasks 

to swarm robotic agents. Usage of the proposed framework prevents the need to redesign 

or rewrite programs should any changes take place in the robot’s platform. 
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𝑅 Set of Robotic Agents 

𝑇 Task to be performed  

𝑛 Number of robots 

𝑟𝑖 Robot 𝑖  
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𝑑𝑖𝑗 Distance of Robot i to Subtask j 
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𝑖𝑑 Robot id 

𝑤𝑖 Robot (i) Wheel Slip 

𝑃𝑟𝑒𝑚𝑖 Robot (i) Power Remaining 

𝑡′𝑚 Total time to execute all Subtasks 

𝑢1,𝑢2 Weight Coefficients  

𝑃𝑖 Solution Plan for robot (i) 

𝑝𝑟𝑖 Priority 
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CHAPTER ONE:  INTRODUCTION 

Decentralized modular robotics is an emerging area that has attracted many 

researchers over the last few years. The desired tasks may be too complex for one single 

robot, whereas they can be effectively done by multiple robots [1, 2]. Modular robotic 

systems have proven to be robust and flexible [3-7]. These properties are likely to 

become increasingly important in real-world robotics applications.  When investigating 

the control environments that actually deploy such robotic systems to perform the 

intended tasks, our findings indicate a lack of software packages exist that provide 

control for various platforms of robots, individually, and allow concurrent control of 

heterogeneous robotic teams. Thus designed such control applications. Figure 1-1 shows 

the break-down of the system hierarchy. 
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Over the past decade, various research efforts have been performed that attempt to 

resolve coordination and decision making problems in swarm robotic systems. Such 

studies include simple models such as foraging [8, 9]. The multi-agent robotics system 

consisting of a number of identical robots proposed in [10] for a decentralized robot is yet 

another approach to swarms. In [11], Roderich and others proposed the concept of self-

assembling capabilities of the self-reconfigurable  S-bots (also known as “Swarm-bot”) 

were developed by the Francesco Mondada et al.  [12]. Swarm-bots can either act 

independently or self-assemble to form a swarm by using their grippers. In [13], Fukuda 

and Nakagawa proposed the concept of the DRRS (Dynamically Reconfigurable Robotic 

System) based on a cell structure for removable parts. The implementation was then 

called CEBOT, the first cellular robotic system. CEBOT is a heterogeneous system 

comprised of agents with different locomotion functions. One of the critical aspects of 

this type of system is the communication between the members of the swarm [14], which 

is usually carried out using radio-links. In [15], Dumbar and Esposito studied the problem 

of maintaining communications among the robots performing tasks. 

Decentralization means that the algorithm does not require access to the full 

global state and all control computations are done locally. However, in order to command 

large groups of robots, it is also essential to include an element of centralization to allow 

humans to interact and task the team. Our work is based on the assumption that there is a 

lack of software packages which provide control for the different platforms of robots 

individually, and allow concurrent control of heterogeneous robotic teams.  
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1.1   Problem Scope 

The scope of our research is making heterogeneous robots exhibit swarm behavior 

despite their different configurations. The first objective of our research is to develop a 

task-based software environment to deploy such robots and program them to operate in a 

swarm fashion. Our second research objective is to design an intelligent coordination 

component that generates optimal platform-independent algorithms to perform three 

essential tasks based on the parameters and the type of robots entered by the user. Since 

the trend in the swarm robotic research was mainly focused on developing rather large 

and homogenous systems, our work focuses on the development of smaller and less 

intelligent robots and having a large number of such systems to perform collaborative 

tasks.  

 

1.2   Motivation 

The number of such smaller agents is the key factor that has to be decided to 

answer the question, would a single robot with larger computational power complete an 

intended job using the same time and accuracy that of multiple robotic agents or not?  

Our research hypothesis is based on two primary motivations. Our first motivation 

is to develop the necessary framework that will provide connectivity between 

heterogeneous agents, in addition to building central software that interacts with these 

agents. There are six software packages that are primarily designed to distribute programs 

and deploy the swarm of robotic agents. These packages provide simple communication, 

and allow for interfacing with the swarm of robots. Furthermore, these software packages 
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simulate the swarm systems and deploy tasks to the robots.  Our system design is 

motivated by our interest in multi-robot control for the deployment of potentially large 

numbers of cooperating robots to perform tasks such as simultaneous navigation, object 

manipulation, and transportation. Such system design would be a great practical 

integration tool to provide rapid implementation of real-world experimentations without 

spending excessive time on writing software programs. Our Second motivation is to 

extend the software programs that are uploaded on each robot in order to allow them to 

integrate more sensors and/or actuators. These programs will allow auto-detection of the 

attached standardized components as they are added to current robot configuration. 

Having such programs will add a plug-and play feature to every robotic agent in the 

swarm system.  

 

1.3   Research Contributions 

Our software deployment environment (UBSwarm) is developed to simulate, 

deploy, and coordinate robots in real-time.  By incorporating the improvements listed 

below, our research overcomes the limitations found in the existing multi-agent software 

deployment environments.  

1. UBSwarm is designed to deploy heterogeneous robotic agents that have different 

hardware configurations and functionalities, unlike the previous swarm systems in 

which robotic agents were homogenous. 

2. UBSwarm defines a set of operating rules and constructs programs that make the 

different robotic agents work in a swarm fashion even though the robots’ 
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hardware configurations are different. 

3. The proposed application offers customization of robotic platforms by defining 

the available sensing devices, actuation devices, and the required tasks. In 

addition, our application works to prevent rewriting programs for the different 

robotic configurations. 

4. The service-oriented architecture used in our deployment system demonstrates 

how programs are constructed and how the coordination agent generates solution 

plans using the agent’s Robot Utility Based Algorithm (RUTA).  

5. UBSwarm is designed to deploy and coordinate the swarm robots by using either 

centralized or decentralized modes depending on the intended task. 

6. By performing a premature simulation of the task, UBSwarm chooses the exact 

number and type of the mobile agents. 
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In conducting our survey, we identified a criteria that is based on assumptions 

similar to the ones presented in [16]. We investigated the deployment systems that target 

algorithms designed to operate heterogeneous/homogenous robots performing various 

tasks. These assumptions can be summarized as follows: 

1. The identified systems are composed of an undetermined number of embodied 

robots; 

2. Heterogeneous robots have different capabilities; 

3. These robots have a decentralized control; 

4. Additional robots may be added to the system at any time; 

5. Robots are multi-purpose, not task specific; 

6. A coordination model should exist to guide the different robots. 

 

In this literature review, we present a comprehensive study on the behavior of 

existing swarm systems dedicated to deploy different tasks/applications on collective and 

mobile reconfigurable robotic system. The modules used in these systems are fully 

autonomous mobile robots that, by establishing physical connections with each other, can 

organize into modular robots. We do not consider any particular hardware or 

CHAPTER TWO:  LITERATURE SURVEY OF SWARM 

SYSTEMS 
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infrastructure of each swarm agent. Our work focuses on building control mechanisms 

that allow the system to operate several simple heterogeneous agents. 

This literature survey is organized as follows: Section 2.1 provides a 

comprehensive survey of two primary swarm approaches, a “biologically inspired” 

robots, and “functionally inspired” robots.  Section 2.2 presents a comparison between 

existing reconfigurable robots. In section 2.3, we discuss self-replicating robots. Section 

2.4 analyses of the existing robotic software deployment systems. 

 

2.1   Two Main Categories of Swarm Behaviors 

Swarm behavior was first simulated on computers in 1986 using the simulation 

program Boids [17]. This program simulated simple agents (Boids) that were only 

allowed to move according to a set of basic rules set by programmers. These rules are in 

fact, algorithms known as the Particle Swarm Algorithms (PSA’s). The model was 

originally designed to mimic the flocking behavior of birds, but it can also be applied to 

schooling fish and other swarming entities. 

Different studies of complexity have been carried out over these types of systems 

[7, 14, 15, 18-24]. There have been many interpretations of the understanding and 

modeling of swarming behavior. Some researchers have classified these behaviors into 

two primary types namely biologically inspired and functionally built robots [25], while 

others have proposed two fundamentally different approaches that have been considered 

for analysis of swarm dynamics. These are spatial and non-spatial approaches [26]. In the 

first approach, “biologically inspired”, designers try to create robots that internally 
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simulate, or mimic, the social intelligence found in living creatures. The second 

approach, “functionally inspired”, use task-specific designed robots generally engineered 

with constrained operational and performance capabilities which include sensors, 

grippers, and so on. Consequently, these artificial robots may only need to generate 

certain effects and experiments with the environment, rather than having to withstand 

deep scrutiny for “life-like” capabilities [5]. 

2.1.1 “Biologically Inspired” Robots 

Multiple researchers have shown some interest in the foraging and other insect 

inspired coordination problem and have investigated these behaviors and summarized 

them into algorithms. Others were interested in exploiting swarm robots in the tasks of 

localization [18], surveillance, reconnaissance [19], and hazard detection [20, 21]. 

Pheromone-trail-based algorithms sometimes have the ability to dynamically improve 

their path [22] and can adapt to a changing terrain [27]. Ant-inspired foraging has been 

implemented in robots by various groups. One major difficulty can be exhibited in 

implementing the pheromone itself. Others have resolved problems of how robots should 

interact in the swarm. There have been many approaches dedicated to this: 

1. By means of physical markers, where robots physically mark their paths in 

multiple ways, such as depositing of a chemical alcohol on the ground [22], drawing lines 

onto the floor using pen and paper [21], laying trails of heat [23], storing the pheromone 

values radio Frequency Identification Tags RFID [24], or emitting ultraviolet light onto a 

phosphorescent paint [28]. 
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2. Transmitting wireless signals when laying virtual landmarks in a localization 

space. In the work of Vaughan et al., robots maintain an internal pheromone model with 

trails of waypoints as they move, and share it with other robots over a wireless network 

[27]. 

3. Virtual pheromones that consist of symbolic messages tied to the robots 

themselves rather than to fixed locations in the environment. In their experiment [19], the 

virtual pheromone is encoded as a single modulated message consisting of a type field, a 

hop-count field, and a data field. Messages are exchanged between robots through 

infrared transmitters and receivers. It is assumed that the robots receiving the pheromone 

can measure the intensity of the IR reception to estimate their distance from the 

transmitter. 

4. Foraging allocation ratio among robots. In [29], Wenguo Liu et al, presented a 

simple adaptation mechanism to automatically adjust the ratio of foragers to resting 

robots (division of labor) in a swarm of foraging robots and hence maximize the net 

energy income to the swarm. Three adaptation rules are introduced based on local sensing 

and communications. Individual robots use internal cues (successful food retrieval), 

environmental cues (collisions with teammates while searching for food) and social cues 

(team-mate success in food retrieval) to dynamically vary the time spent foraging or 

resting. 

5. Dynamic programmed deployable beacons. The method described in [30] 

provides local rules of motion for swarm members that adhere to a global principle for 
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both searching and converging on a stationary target in an unknown and complex 

environment via the use of immobile relay markers. 

The survey does not span the entire field of intelligent swarm behavior robotics. 

Instead, it focuses on systems for which new algorithms for communication between 

robots have been demonstrated. Such algorithms can be found in the work of the 

following researchers:  

1. Algorithm for Self-Organized Aggregation of Swarm Robotics using Timer: As a 

solution to self-organization among swarm agents, Xinan Yan, et al. [1] have proposed an 

aggregation algorithm based on some constraints for which neither central control nor 

information about locations of the agents are pre-given. The author’s control strategy 

contains two states, Search and Wait for each individual robot as given in the model of 

probabilistic Finite State Automata (PFSA). Their algorithm assigns unique IDs to each 

robot. Knowing the total number of robots, randomly placed robots walk in the arena 

looking for other robots. Based on IR sensing and wireless connection capabilities 

installed on each robot, each can identify the others robot’s ID. The group of encountered 

robots forms an aggregate, in which the robot with the larger ID defines the aggregate’s 

characteristics and also insures that all robots in a particular aggregate must have the 

same timers. When the timer terminates, the robot tries to detach from its current 

aggregate. In the experiment, all the robots are identical. Each robot is mobile with 

limited ability of interaction including IR sensing for detecting objects and wireless 

communication for communicating with other robots. 
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2. Two foraging algorithms using only local communications: Nicholas R. Hoff et 

al. [31], have proposed two algorithms for searching the environment for an object of 

interest (food) and then returning this object to the base, keeping in mind that all robots 

do not have any prior information about the location of the food. Their algorithms are 

inspired by the foraging behavior of ants in which they mark paths leading from the nest 

to food by depositing a chemical pheromone on the ground. Ants use the distribution of 

the pheromone to decide where to move. In their first algorithm, two simple floating-

point values are used such that some robots will decide to stop their normal search and 

become ‘pheromone robots’ at any given point. Those robots will act like locations of 

virtual pheromones. Other robots can read the pheromone level by receiving a 

transmission from the pheromone robot, and they can “lay” the virtual pheromone by 

transmitting to the pheromone robot. So, if there were a network of pheromone robots, 

the walker robots could use the distribution of virtual pheromone they were able to sense 

in order to decide how to move. If integer values are used instead of floating-point values 

at each virtual pheromone such that the nearest robot to the nest stores the digit 1 and the 

other robot that is close enough to communicate with the first robot, stores and transmits 

the digit 2. A walker robot can use these values to find a path to the nest by always 

moving to the lowest cardinality it detects.  
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2.1.2 “Functionally Inspired” Robots 

Another line of swarm-based research can be found where robot agents are built 

to achieve specific tasks such as path finding using algorithms that are not necessarily 

based on imitating biological swarm organisms. In their previous work, Wang Bei, et al. 

[32] implemented what they call a robotic termite agent, which is able to simulate the 

wood-chip collecting behavior of termites. The authors have developed a software and 

hardware solution based on the simulation of collective building of a 2D termites’ colony. 

The termites (swarm of robot agents) gather wood-chips into piles following a set of 

predefined rules. Boe-Bot Robots are used. The Boe-Bot is built on an aluminum chassis 

that provides a sturdy platform for the servomotors and printed circuit board and comes 

with a pair of whiskers and gripper. Their tasks include moving on smooth surfaces, 

detecting new objects, dropping the woodchips and then picking up such objects as they 

are encountered. The robot agent turns for a 360 degrees angle until it detects an object. 

The robot then carries the object, holds it, and moves forward. The robot keeps holding 

the chip as it wanders in the environment until it detects another object (which is another 

woodchip). After releasing the object, the robot moves backward, turns at an angle of 45 

degrees, and the same procedure is repeated.  

Obtaining decentralized control that provides interesting collective behaviors is a 

central problem [16, 33-41]. Several algorithms have been developed to run on swarms of 

robots. The complexity varies between these algorithms. Some provided basic 

functionality, such as dispersion, while others exhibited complex interactions between the 

team of robots such as bidding on tasks according to some rules. Table 2-1 summarizes 
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the most recent swarm robot systems with their corresponding algorithms. These are 

systems introduced in literature that only involve multiple agent teams with decentralized 

control. 

                       Approach 

 

              Remarks 

                                             Approach 1 

                              Knowledge-based coordination 

Symprion/ 

replicator  

What determines the behavior of either 

single or group of agents is HDRC 

(Hormone Driven Robot Controller) 

controller that contains a configuration 

for the robot itself, and a software 

controller called Genome. The Genome 

contains a set of rules that control each 

agent’s behavior and generates different 

actions according to the different 

environmental conditions. Agents keep 

learning about their environment using 

internal, external and virtual sensors. 

Agents also are supported with on-

board computational power using 

approaches like Generic Programming 

(GP) and Genetic Algorithms (GA).  

Kernbach 

et al., 2008 

[41] 

The most primary 

advantage of this 

approach is the huge 

number of units used in 

the experiment. 

Moreover, These 

modules are able to 

reassemble different 

shapes that could get the 

whole structure moving 

to desired locations. 

iRobot  Authors suggest spreading pheromones 

in an ad-hoc way over the wireless 

network constituted by the robots. The 

primary communication component is 

J.McLurkin 

and 

J.Smith, 

2004 [33] 

Their solution mainly 

focuses on path planning 

and routing protocols of 

messages transmitted 

 Table  2.1: Multi-robot Coordination Approaches 
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an infrared inter-robot communication. 

Swarm software is written as behaviors 

that run concurrently. Each behavior 

returns a variable that contains actuator 

commands. Their goal is to spread 

robots throughout an enclosed space 

quickly and uniformly, that were 

identified by direct dispersion 

performed by two algorithms. The first 

one works by moving each robot away 

from the vector sum of particular 

positions from their closest neighbors. 

In the second one, robots move towards 

areas they have yet to explore. Once the 

robots know their positions the frontier 

robots issue a message. The trees 

created by these messages guide the 

swarm toward the frontier robots.  

between agents at their 

different positions. 

However, the cost of 

individual robots and   

the number of robots 

required to provide 

sufficient coverage to 

the environment are 

high. This particular 

system suffers from the 

fact that when the ad-hoc 

network of robots gets 

partitioned, pheromone 

trails automatically 

break down causing the 

robots to stop moving. 

Quadrotors  Authors attempt to design small light 

weight flying vehicles designed to 

operate in close ranges. The team of 

quadrotors is organized into groups. 

Vehicles within the group are tightly 

coordinated. Centralized control and 

planning is possible. The inter-group 

coordination is not centralized. Each 

group is controlled by a dedicated 

software node, running in an 

independent thread.  

A.Kushleyev, 

et al., 2012 

[42] 

Quadrotors rely on an 

external localization 

system for position 

estimation and therefore 

cannot be truly 

decentralized 
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                                               Approach 2:  

                                   Auction-based coordination 

Layered 

architectures 

coordination 

Authors propose auctions in which a 

bidding process takes place among the 

agents to determine who will be 'foreman' 

and will be in-charge for a given task and 

to secure teammate participation in 

subtasks. Tight coordination is 

implemented using an inexpensive reactive 

approach. Each robot consists of a planning 

layer that decides how to achieve high-

level goals, an executive layer that 

synchronizes agents, sequences tasks and 

monitors task execution, and a behavioral 

layer that interfaces with the robot’s 

sensors and effecters. Robots execute plans 

by dynamically constructing task trees. 

R. Simmons, 

S. Singh, D. 

Hershberger, 

J. Ramos, and 

T. Smith, 

2000 [34] 

The three robots used in 

this experiment are 

coordinated by a 

manipulation manager 

which means this is a 

centralized system.  

ASyMTRe-D  The authors’ approach is based on 

schemas such as perceptual and motor 

schemas. Inputs/outputs of each schema 

create what it is called semantic 

information that is used to generate 

coalitions. Tasks are assigned to the 

robot with the highest bid. Bids are 

calculated according to the costs of 

performing different tasks. A set of 

tasks is allocated to coalitions. 

Coalition values are calculated based on 

the task requirement and robot 

capabilities. Execution of tasks is 

monitored and the process of allocation 

Tang and 

Parker, 

2007 [43]  

The advantage of this 

approach is that it 

enables robots to adopt 

new task solutions using 

different combinations 

of sensors and effecters 

for different coalition 

compositions. However, 

that solution is mainly 

related to computational 

performance where tasks 

are static.  

Authors do not mention 
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repeats itself until each individual task 

is completed. During run-time their 

novel protocol ASyMTRe-D takes 

place. This protocol manipulates 

calculated coalition values to assist in 

completing tasks.  

the dynamical tasks and 

ways of task 

reassignment. 

Additionally, they do not 

discuss fault tolerance, 

flexibility, robustness, 

and how the system 

reacts to any robot 

failure.  

RoboCup 

2002 (Sony 

legged 

league) 

Authors used wireless communication 

between robots in a 4-player soccer 

team. Each robot broadcasts a message 

to its teammates. This message contains 

the current position of the robot and 

some other information about the ball in 

that position. All of the robots use the 

same set of functions to calculate real 

valued bids for each task. Once each 

robot calculates the bids for itself and 

each of its teammates, it compares 

them. If it has the highest bid for the 

role being assigned, it assumes that 

role. If it was not the winner, it assumes 

that the winning robot will take up the 

role and performs calculations for the 

next role in the list. 

D. Vail and 

M. Veloso,. 

2003 [35] 

Communications 

between robots is critical 

for successful 

coordination between 

robots. Local 

information about the 

field will not be enough. 

 

This approach does not 

coordinate a large scale 

of robots. 

Another 

application of 

soccer robots. 

Authors use dynamic role assignment 

as in Robocup basing on information 

gathered from best behavior. Two 

E. Pagello et 

al. 2006 [36] 
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intermediate levels have been provided 

to allow robot individuals to 

communicate. The lower level 

implements stigmergy (indirectly 

stimulating the performance of the 

upcoming action to provide 

coordination between agents) whereas, 

the higher one deals with the dynamic 

role exchange. Authors use schema-

based methodology. They discuss all 

perceptual schemas with the required 

sensing, also feeding the C-

implemented motor schemas which 

demand immediate sensor data Robots 

are equipped with unidirectional 

cameras.  

M+ scheme 

for multi 

robot 

allocation 

and 

corporation 

Each robot considers all currently 

available tasks at each iteration. For 

each task, each robot uses a planner to 

compute its utility and announces the 

resulting value to the other robots. 

Robots negotiate which one will be in 

charge of performing the task. For these 

tasks, robots create their own individual 

plans and estimate their costs for 

executing these tasks. The robots then 

compare their costs to offers announced 

by other robots.  

S. Botelho 

and R. 

Alami, 

1999 [37] 

Relying on Negotiation 

Protocols, may 

complicate the design of 

the coordinating system. 

Furthermore, such 

negotiation scenario can 

drastically increase 

communication 

requirements/overhead. 
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MURDOCH 

a general 

task 

allocation 

system 

The coordination system works using 

an auction protocol that allocates tasks 

via a sequence of first-price one round 

auctions. Every auction is issued by 

agents in five steps: task announcement, 

metric evaluation, bid submission, close 

of auction, progress monitoring/contract 

renewal. For each task auction, each 

available robot broadcasts its bid. 

Because of the asymmetric nature of 

MURDOCH’s auctions, the running 

time varies between the bidders and the 

auctioneer. Authors two main testing 

domains were a long-term scenario 

consisting of many loosely coupled 

single-robot tasks, and a cooperative 

box-pushing task requiring tight 

coordination among the robots. 

 

Brian P. 

Gerkey and 

Maja  

Mataric, 

2002 [16] 

M+ and MURDOCH 

systems assume that 

each robot has a single 

task. Each task may be 

performed by a single 

robot. This assumption 

proves to be 

oversimplified as many 

task domains require 

simultaneous work from 

multiple robots. 

Market-

economy 

Approach 

Authors define three strategies for 

exploring unvisited regions. In the first 

strategy namely random goal point 

selection the goal points are chosen at 

random and discarded if the area 

surrounding the goal point has already 

been visited. In the second one, the goal 

point is centered in the closest 

unexplored spot as a candidate 

exploration point. In the last strategy, 

R. Zlot, A. 

Stentz, M. 

B. Dias, 

and S. 

Thayer, 

2003 [38] 

Authors consider regions 

of potential target 

locations for each robot 

and distribute tasks 

using bid auctions.  

 

According to some 

experiments performed 

in [44], this approach 



19 

 

the region is divided into its four 

children if the fraction of unknown 

space within the region is above a fixed 

threshold.  

Robots are initially placed into known 

positions. While running, each robot 

will try to sell each of its tasks to all 

robots with which it is currently able to 

communicate via an auction. If two 

robots lie in the same region, the robot 

with the highest bid wins that region’s 

task. 

could be useful if the 

number of robots is 

small compared to the 

number of frontier cells. 

However, in the case of 

multiple robots this 

approach can be 

disadvantageous since a 

robot discovering a new 

frontier during 

exploration will often be 

the best suited to go on 

it.  This can lead to an 

unbalanced assignment 

of tasks and increased 

overall exploration time. 

 

2.2   Reconfigurable Robots 

Reconfigurable robots automatically rearrange and change their shape accordingly 

to adapt themselves to different environments of application. Reconfigurable robots 

exhibit some features that make it possible for the robots to adapt to different tasks. For 

example shape shifting robots could form a worm-like shape to move through narrow 

spaces, and reassemble into spider-like legged robot to cross uneven terrain. Another 

important feature of modular robots is their potential for self repair. As the modules 

making a unit up are usually identical, it is possible to eliminate the damaged module and 

substitute it using another one, if available.  Modular robots are usually composed of 
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multiple building blocks of a relatively small repertoire, with uniform docking interfaces 

that allow transfer of mechanical forces and moments, electrical power, and 

communication throughout the robot. 

According to M. Yim et al. [39], modular self-reconfigurable robotic systems can 

be generally classified into three architectural groups based on the geometric arrangement 

of their units. The first group consists of lattice architectures where robot units are 

arranged and connected in some regular, three-dimensional pattern, such as a simple 

cubic or hexagonal grid. The second group consists of chain/tree architectures where 

units are connected together in a string or tree topology.  Finally, the third group consists 

of mobile architectures where units use the environment to maneuver around and can 

either hook up to form complex chains or lattices or form a number of smaller robots that 

execute coordinated movements. A respectable number of self-reconfigurable robot 

systems have been proposed in the last decade. Table 2-2 shows comparisons between the 

most recent ones. 
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Robot Author Learned Pros and Cons Software Units Communica
tion 

SuperBot 
(2006) 

Shen et 
al.[40] 

Decentralized control. 
Reliable Mechanical design. 

Limitations: Infrared 
sensors limit the search 
range and require line-of-
sight between SuperBots. 
SuperBot architecture lacks 
extra actuators, grippers, 
and sensors for gathering 
information about the 
working environment.   

Low-level 
programs 
written in C and 

Real-time java-
based operating 
system  

3D 
Modules 

Infra-red 
and a 
wireless 
capability 
limited to 
some 
functions 

Molecubes 
(2005) 

Zykov et 
al.[45] 

Molecubes are low cost, 
small lattice based swarm 
robot with 3 DOF.  

Limitations: Unable to 
provide heavy object 
transport.  Limited sensors. 
Lacks actuator mechanism. 

2-D simulation Cubes 
with 120 
swivelin
g  

None 

YaMor 
(2006) 

R. Moeckel 
et al. [46] 

Each module comprises an 
FPGA for more 
computational power. 

Limitations: Uses onboard 
low-capacity batteries that 
limit the usefulness of 
modules. Limited sensors 
limit ability to sense 
surroundings. Only two 
controllable arms  

Java-based GUI 
connected to 
robots via 
wireless 
connections 

3D 
Chain of 
modules 

Bluetooth 

Swarm-
bot (2006) 

Groß et 
al. [11] 

Robot swarms consisting of 
2 to 40 S-bots have been 
successfully demonstrated. 
S-Bots are fully autonomous 

Neural 
Networks 

S-bots 
with 
grippers 

No 
communica
tions occur 
between 

Table  2.2: Comparisons between existing reconfigurable robot systems 
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mobile robots capable of 
self-navigation, perception 
of the environment and 
objects. Capable of 
communicating other S-
Bots and transporting of 
heavy objects over very 
rough terrain.  

Limitations: Initial cost is 
high. Images and sound are 
the only way of 
communicating with other 
S-Bots. Large number of 
sensors and actuators 
consumes power, reducing 
functionality and operating 
time. 

individual 
robots (S-
bots) 
however 
each s-bot 
connects 
wirelessly 
to the PC. 

Catom 
(2005) 

Goldstein 
et al. [47] 

Largest actuated modules ( 
many electromagnets on 
modules) 

Limitations: Limited 
sensors that have limited 
ability to sense 
surroundings.  

NA 3D 
Massive 
volume  
of 
agents 
(m3) 

This papers 
only 
presents a 
principle so 
no actual 
implementa
tion 

M-TRAN 
(2002) 

Murata 
et al. 
[48] 

Very small actuated 
modules, highly-robust, 
miniature, and reliable. 
Quick self-reconfiguration 
and versatile robotic 
motion.  

Limitations:  Connection 
mechanism works on an 
internally balanced 
magnetic field that is not 
strong enough to hold the 
other modules. Single M-

OpenGL 
Library, M-
TRAN 
simulator 

3D 
Double-
Cubes 

Serial 
bilateral 
communica
tions to the 
PC. 
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TRAN module does not 
have enough DOFs for 
switching from one posture 
to another form. Lack of 
sensors leads to mapping 
and control problems. 
Power consumption is more 
as it uses servo motor and 
electromechanical force for 
connectivity. 

ATRON 
(2004) 

E. H. 
Østergaa
rd et al. 
[49] 

Each module is equipped 
with its own power supply, 
sensors and actuators, 
allowing each module to 
connect and communicate 
with a neighbor module. 
Able to sense the state of its 
connectivity and relative 
motion.  

Limitations: Since each 
module includes two-axis 
accelerometers only, a 
module cannot tell if it is 
turned upside down or not. 
When two modules are 
connected, it’s very difficult 
for them to move 
themselves, which requires 
cooperation from its 
neighbor. They are not 
mechanically stable and due 
to this mechanical 
instability, their electronic 
performance is poor. 

On-board 
system 

Lattice 
type 
units 

Infra-red 
diodes 

PolyBot 
(2002) 

Yim et al. 
[50] 

First system to demonstrate 
the ability of self-
reconfiguration with most 

NA Lattice Infra-red 
Interface 
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2.3   Self-replicating Robots 

Designing fully autonomous replicating systems did not come true until the early 

2000’s. An attempt to design semi-autonomous self-replicating robots that demonstrated 

the LEGO Mindstorm kits as a prototype capable of replication under human supervision 

active modules in a 
connected system. Each 
module fits within the 5cm 
cube. They are versatile in 
nature. Each module 
contains a Motorola 
PowerPC 555 processor 
with 1MByte of external 
RAM, and DC brushless 
motor with built in hall 
effect sensors. 

Limitations: Insufficient 
sensory unit for mapping of 
environment. Cannot work 
in unknown environment 
with rough surface or when 
obstacle avoidance is not 
possible. 

Replicator
/Symbrion 
(2008) 

7th 
framework 
program 
project, 
European 
Communities 
[41] 

Multiple processors for 
different tasks. 

 

Limitations: Limited to a 
specific task.  Lack 
actuators and connection 
mechanisms to physically 
attach to other modules.    

On-board 
system 

Lattice/ 

Chain 

N/A 
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was introduced in [51]. An autonomous self-replicating robot consisting of four low-

complexity modules was presented in [52]. The authors proposed a system composed of a 

parent robot, four unassembled modules, and an environment in which the self-

replication takes place. They defined two operations namely expansion and separation in 

which the parent robot grows itself by attaching the resource modules onto itself until it 

doubles its physical size, and then splits in the middle thereby returning the parent to its 

original state and producing one more robot. The parent robot is made of four cube-like 

modules connected to each other with electromagnets (EMs) installed in female and male 

couplers. 

In [53], similar work has been done, also using unassembled components placed 

at certain locations on a track. The authors presented a robot that can assemble exact 

functional self-replicas from seven more basic parts/subsystems. The robot follows lines 

on the floor using light sensors and a simple control circuit without any onboard memory. 

 

2.4   Swarm Control Software Environments 

Trifa V. et al., [54] have proposed a methodology that supports standardized 

interfaces and communication protocols which connects robots produced by different 

manufacturers. The authors have used the so-called Service Oriented Architecture (SOA) 

in which different software components exchange data over HTTP and then create Web 

Services (WS). The authors proposed a system that consists of four parts namely, the 

physical layer which contains the actual e-puck robots, the gateway layer which acts like 

a connection between the physical devices and the system, the logical layer containing a 
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server that runs on J2EE, and the interface layer which provides services to the end users. 

In their system, any physical device or program capable of running HTTP such as PDAs, 

Tablet PC, and mobile phones can interact with the interface regardless of the operating 

system on the device. (No further explanation about control modules or how the interface 

looks like was given in the article). The e-puck robot –the standard one- has eight 

infrared proximity and light sensors, a triangular microphone array, a speaker, a three-

axis accelerometer, and a Bluetooth interface for programming. The e-puck platform can 

be upgraded with custom pluggable modules such as the short-range radio 

communication turret which provides a subset of the 802.15.4 and ZigBee protocols and 

is fully interoperable with the MicaZ nodes used in the physical gateway layer.   

However, using SOA has some performance limitations as it requires a sophisticated 

messaging infrastructure that would restrict the capabilities of software running on 

robots. 

Kulis et al., [55] have proposed a software framework for controlling multiple 

robot agents by creating a Distributed Control Framework (DCF). DCF is an agent-based 

software architecture that is entirely written in Java and can be deployed on any 

computing architecture that supports the Java Virtual Machine. DCF is specifically 

designed to control interacting heterogeneous agents. DCF uses a high-level platform-

independent programming language for hybrid control called MDLE. The DCF 

architecture consists of two distinct agents: a Robot Agent and a Remote Control Agent 

(RCA). The RCA lies within the human interface shown in Figure 2-1. Robot Agents 

process data from onboard hardware and from other agents, and react to perceived stimuli 



27 

 

by selecting an appropriate behavior which is a sequence of control laws with embedded 

state transition logic according to a mission plan. Using the RCA, the end user can select 

tasks for either a robot agent or a group of agents using simple drag and drop operators. 

When agents are in place, a popup menu appears prompting the user to select a task. 

Relevant tasks for a team mission are defined in an XML configuration file which is 

loaded by the RCA at startup. The XML file also specifies which tasks can be performed 

by each agent. The authors also added a simulating feature to their RCA agent which 

provides a flexible numerical solving integrating system that solves differential equations 

for simulating a robot’s kinematics/dynamics. Another feature of this system, it provides 

automatic updating of sensors and actuators to be distributed across multiple computing 

resources. The DCF currently provides drivers for a variety of robots (e.g., iRobot 

Creates, Pioneers, Amigobots, FireAnt, LAGR), and a wide range of sensors (e.g., digital 

encoders, Sonars, stereo cameras, GPS receivers, and inertial navigation systems) 

 
Figure  2.1: The DCF human interface (© 2008 IEEE)1 

 
1© [2008] IEEE, Permission granted by Mr. Babak Sadjadi [55]. 
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Multiple efforts have been conducted as part of enhancing the DCF system. Other 

versions of the DCF called JAUS and TENA are being developed and tested [56]. 

Gregory P. Ball G. et al. [8], have proposed application software built in JAVA to 

operate heterogeneous multi-agent robots for the sake of educational purposes named 

MAJIC. The system provides basic components for user interaction that enables the user 

to add/remove robots change the robotic swarm configuration, load java scripts into 

robots and so on as shown in figure 2-2. The system establishes communications with 

built-in robot servers via a wireless connection that uses the client/server relationship. 

The authors described their architecture as components, consisting of one higher level 

component that is the GUI manager, two application logic components that consist of a 

logical layer to parse input into valid commands, and a robot server, which receives 

commands from the logical layer and communicates these commands to the appropriate 

robot. Local components communicate using direct procedure calls. 

 

 
2© [2008] IEEE, Permission granted by Dr. Craig Martell [8]. 

 

Figure  2.2: MAJIC Control Platform (© 2008 IEEE)2 
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In order to operate robots, the user needs to write Java-embedded programs that 

use either the MAJIC library or Java libraries. Once a robot is connected to MAJIC, the 

user can immediately communicate with it from the command line. However, repeating 

this process for a team of heterogeneous robots can be impractical. The MAJIC system 

does not allow the user to specify the types of sensors a robot is equipped with or the type 

of motion model the robot’s move command will utilize. This would allow the user to 

develop more intricate behaviors with greater precision. 

In [57], Patricio Nebot et al., were more interested in developing cooperative 

tasks among teams of robots. Their proposed architecture allowed teams of robots to 

accomplish tasks determined by end users. A Java-based multi-agent development system 

was chosen to develop their proposed platform. The authors used Acromovi architecture 

which is a distributed architecture that works as a middleware of another global 

architecture for programming robots. It has been implemented by means of the MadKit 

(Multi-Agent Development Kit) multi-agent systems framework. The graphical interface 

is built around pure Java Swing components, thus resulting in a cross platform 

application, capable of running in any operating system running the Java virtual machine.  

Tao Zhang et al. [58], proposed a software platform comprised of a central 

distributed architecture that runs in a network environment. Their system is composed of 

four parts namely, user interface, controlling center, robot agent, and operating ambient 

making up the platform top-down.  The user interface is deployed on a terminal anywhere 

as long as it can connect to the server where the control center is deployed. The control 

center provides Application Program Interfaces APIs for users. The user interfaces 
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basically communicate with the control center via a network, using TCP/UDP protocol. 

Authors’ platform was mainly developed using Java.  

In robotic control environments, a graphical application software such as 

MobileEyes [59] and the C++ based software URBI [60] are available as open source 

systems.  URBI provides GUI packages that aim to make compatible code to different 

robots, and simplify the process of writing programs and behaviors for these robots. 

URBI works by incorporating sensor data to initiate commands to the robot. URBI 

packages, however, provides no abstractions therefore they do not allow separating the 

controlling system from the rest of the system. For example, a control system might be 

intimately tied to a particular type of robot and laser scanner. Moreover the URBI’s 

uniform programming language is limited to few kinds of microcontrollers available on 

the market. The Player/Stage proposed by Gerkey et. al. [61] also produces tools for 

simulating the behavior of robots without an actual access to the robots hardware and  

environment. Its two main products are the Player robot server, a networked interface to a 

collection of hardware device drivers, and Stage, a graphical, two-dimensional device 

simulator. The player/Stage is basically designed to support research in multi-robot 

systems through the use of socket-based communication. The player/Stage is open source 

software that is available to be downloaded online on UNIX-like platforms. However, 

running this software requires a variety of prerequisite libraries and each library requires 

another set of libraries. It has never been easy to understand how the system 

communicates with the actual robots. Player/Stage mainly supported robotic platforms 

such as RWI/iRobot, Segway, Acroname, Botrics, and K-Team robots.  
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Another script-based robot programming is Pyro[62]. Pyro, which stands for 

Python Robotics, is a robotics programming environment written in the python 

programming language. Programming robot behaviors in Pyro is accomplished by 

programming high-level general-purpose programs. Pyro provides abstractions for low-

level robot specific features much like the abstractions provided in high-level languages. 

The abstractions provided by Pyro allow robot control programs written for small robots 

to be used to control much larger robots without any modifications to the controller. This 

represents advancement over previous robot programming methodologies in which robot 

programs were written for specific motor controllers, sensors, communications protocols, 

and other low-level features. 

Ayssam Elkady et. al. [63] have developed a framework that utilizes and 

configures modular robotic systems with different task descriptions. Their main focus 

was designing a middleware that is customized to work with different robotic platforms 

through a plug-and-play feature which allows auto detection and auto-reconfiguration of 

the attached standardized components installed on each robot according to the current 

system configurations. Therefore, the authors’ solution is mainly dealing with the 

abstraction layers residing between the operating system rather than software 

applications. A similar system hierarchy is used in Mobile-R [4] where the system is 

capable of interacting with multiple robots using Mobile-C library [64], an IEEE 

foundation for physical agents standard compliant mobile agent systems. Mobile-R 

provides deployment of a network of robots with off-line and on-line dynamic task 

allocation. The control strategy structure and all sub-components are dynamically 
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modified at run-time. Mobile-R provides some packages to enhance system capabilities 

like Artificial Neural Networks (ANNs), Genetic Algorithms (GAs), vision processing, 

and distributed computing. The system was validated through a real world experiment 

involving a K-Team Khepera III mobile robot and two virtual Pioneer2DX robots 

simulated using the Player/Stage system. 
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We are developing a software environment to utilize the heterogeneous robots 

that have different modular design, configuration of sensory modules, and actuators. The 

system will be implemented as a GUI interface to reduce efforts in deploying swarm 

robotic agents. The proposed application offers customization for robotic platforms by 

simply defining the available sensing devices, actuation devices, and describing the 

required tasks. The main purpose for designing this framework is to reduce the time and 

complexity of the development of robotic software and maintenance costs, and to 

improve code and component reusability. Usage of the proposed framework prevents the 

need to redesign or rewrite algorithms or applications when there is a change in the 

robot’s hardware, operating system, or the introduction of new sensory/actuation units. 

UBSwarm environment is a collection of high end APIs used for distributing 

algorithms to heterogeneous robotic agents. One of the key features of UBSwarm is 

configuring special programs which act as middleware that gain control over the agent’s 

parameters and devices. The middleware consequently allows auto-detection of the 

attached standardized components according to current system configurations. These 

components can be dynamically made available or unavailable. Dynamic detection 

CHAPTER THREE:  RESEARCH PLAN AND SYSTEM 

ARCHITECTURE 
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provides the facility to modify the robot during its execution and can be used to apply 

patches and updates, to implement adaptive systems. This real time reconfiguration of 

devices attached to different robots and driver software makes it easier and more efficient 

for end users to add and use new sensors and software applications. In addition, the high-

end interface should be written in a flexible way to get better usage of the hardware 

resource.  Also they should be easy to install/uninstall. The general overview of the 

UBSwarm deployment platform and the overall system overview are shown in Figure 3-1 

(a) and (b) respectively. 

         

 

Deployment Environment 

Add/remove 
applications 

Add / 
Remove 
Robots 

Application/Task 

Arduino microconroller, Digilent, 
etc... 

Service Modules 

Obst avoid. obj. detect. 

Compilers 

Figure  3.1:  (a) Deployment software overview (b) System overview 

 

 

(a) 

(b) 
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Another key feature of the UBSwarm interface is to move the communication 

implementation from the user’s domain to the application domain. Instead of learning 

proprietary protocols for individual robots, the user can utilize the UBSwarm scripting 

language to pass common commands to any robot managed by the application. 

UBSwarm adds a layer of abstraction to such tasks, allowing users the ability to 

intuitively obtain desired responses without extensive knowledge of robot-specific 

operating system and protocol. When users make changes to the hardware devices that 

are plugged onto the robotic agent, UBSwarm will provide the appropriate software 

package for these sensory devices and actuators. This flexibility makes it easy for the end 

users to add and use the new devices and consequently task applications. In addition, the 

software code can be written in the most common programming languages such as 

python, C#, or any programming language that is specific to a particular robot 

framework. These Software components are easy to install/upload in the console screen. 

At start up, UBSwarm uploads a code that is responsible for scanning for hardware 

changes onboard because almost all microcontrollers include a hardware feature to 

interrupt the current software routine and run a scanning routine when a particular pin 

changes states. By relying on the hardware to notice a change we can keep track of 

hardware components. Each one of these hardware component is operated using a 

particular algorithm that is created at the time of deployment. UBSwarm runs on a 

computer and uploads programs and monitors the robots through the USB (serial port), 

Radio Frequency (RF), WiFi, or Bluetooth. In our experiment we used our own robot 

agents that incorporate Arduino and Digilent Max32 microcontrollers. 
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UBSwarm provides a direct two-step configuration that helps the operator to 

select between several available robot microcontrollers, actuators, and sensors and then 

assign the group of robots a particular task from the set of predetermined tasks. To test 

and evaluate the swarm system or to change the configuration of the whole system, the 

user should be able to change each robot’s features. That is, the user will have the option 

to add/remove hardware features of any selected robot. The user can also decide which 

robots to be assigned for the task. In the main menu, the user is given a list of tasks to be 

assigned to the swarm system. At the time of startup the system will expect the user to do 

either of the following two: 

1- Configure the system by picking the available agents, their onboard components 

(sensors, motors, etc.) and the services needed to accomplish each task  

2- Run the system using saved configurations and only allow add/remove agents. 

 

UBSwarm is an interactive Java-based application designed for extensibility and 

platform independence. The system establishes communications with embedded robot 

modules.  As shown in figure 3-2, the system is divided into two main subsystems, a 

robot deployment system and a robot control and translation system. The robot control 

system includes a robot control agent in which the user should provide all the parameters 

required for all sensors incorporated on robots. The user should also describe actuation 

methods used. The robot deployment system encapsulates a variety of high-level 

applications module which contains the tasks the platforms perform such as navigation, 

area scanning, and obstacle avoidance. A hardware abstraction layer is used to hide the 
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heterogeneity of lower hardware devices and provide an interface to communicate with 

robot platforms. 

 

  

 

 

 

 

 

 

3.1   Robot Deployment System 

 The deployment system takes responsibility of running actions according to the 

definition parameters and the integrations of the heterogeneous robots. Each application 

is implemented as a software module to perform a number of specific tasks used for 

sensing, decision-making, and autonomous action. Actions are platform independent 

robot algorithms; for example, it can be an obstacle avoidance algorithm or a data 

processing algorithm using Kalmans filter, etc. These actions can communicate together 

using message channels. The deployment system framework is shown in figure 3-2. The 

Figure  3.2: System architecture 
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deployment system contains the developer interface, the coordination manager, the 

runtime interpreter, and the knowledge base. 

3.1.1 User Interface 

The system developer interface provides the human operator command and 

control windows. The user can interact with the computer through interaction tools which 

provides a list of application tasks and the available robotic agents. In the next windows, 

the user will be prompted to input the required system parameters for all sensors 

incorporated on robots such as the PIN location by which each sensor/actuator is 

connected to. As we mentioned earlier UBSwarm connects to the robots using either of 

USB cable, RF, WiFi, or Bluetooth. The user has to provide the IP address of the 

particular robot when WiFi is used. When connecting the robot to the USB, UBSwarm 

will detect the COM port automatically. After defining all required parameters, the user 

will have the chance to write programs and upload them on each robot. The interface 

provides a number of tasks that can be assigned to the group of robots such as SLAM, 

and human rescue (pulling an object). The interface also provides open system design 

that allows entering various new functions, tasks, robots and sensors.  Each task is 

defined as functional modules.  Obstacle avoidance, navigation, and SLAM are examples 

of such functional modules. Each functional module encapsulates services such as 

Opencv, Hough transformation, etc.  Each service is regarded as a component of the 

system and is described in an XML configuration file to remove platform dependency. 

The user interface also allows the users to update, remove, or add robots in the swarm 

group. After clicking on a particular task, the user will be prompted to pick a number of 
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robots displayed in a list of the available robot types. The right set of button in figure 3-3 

(a) is the group of available tasks available. The left set of buttons are designated for an 

open system extendibility which allows entering new tasks by simply altering the code 

embedded in each of the shown categories.  

 The user will be then be asked to enter each agent’s initial pin locations (once for 

each type of robot) associated with various hardware components such as ultrasonic 

sensors, scan servo motors, and the n pin locations for the n-DoF arm if any is attached 

on the robot. A value of -1 will be assigned to pin locations of components that does not 

exist on the particular robot. The programs which will be uploaded on each robot type 

will differ according the different pin locations associated with each type that were set by 

the user. The system will ask the user to connect each robot to allow uploading the 

program as shown in fig. 3-3 (c).  The next four subsystems show how the deployment 

system works to manage the heterogeneity of the hardware and the software associated 

with each robotic agent. Figure 3-3 (b) shows the coordination manager running in 

background as a running package (runtime) the figure also shows the service package that 

runs the object detection algorithm (camera on R2).  
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Figure  3.3: (a) List of available tasks (b) runtime coordinator and other running packages (c) Additional robot is 
added to the system 
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3.1.2 Coordination Manager 

The heterogeneity of the robots and the operating platforms imposes dependencies 

such as data format, location of machine addresses, and availability of the components. 

Just like the functional modules contained in the coordination manager framework, the 

relevant tasks are stored in the knowledge base. Relevant tasks for a team mission are 

defined the XML configuration file which is loaded at startup. The XML file also 

specifies which tasks can be performed by each agent. The coordination agent processes 

the available state data and activates high-level behaviors using rules defined in a schema 

approach in order to select the appropriate robots and actions based on the provided tasks. 

The coordination agent framework comprised of five components: the Communication 

Protocol Module (CPM), task module, coordinator, task composer, and the deployer. The 

framework of the coordination manager is shown in figure 3-4. 

 

 

 

 

 

 

 

 

Figure  3-4: Coordination manager framework 
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A. The Communication Protocol Module (CPM) 

This module stores communication access to all available communication devices 

and the necessary protocols used by the different hardware devices to 

communicate. 

B. Task Module: 

The task agent contains the necessary algorithms, data, and core functions to a 

given task for example obstacle avoidance. 

C. Coordinator: 

The coordinator utilizes the information given by the task module in order to select 

the appropriate robots and actions based on the provided sub-tasks. 

D. Task Composer 

Once the coordinator completes its task, the allocated tasks are broken down into 

required actions from actuator movements to communications. 

E. Deployer 

The deployer is the component responsible for sending the composed programs to the 

Robot Control System.  

The algorithm used in the coordination manager is based on artificial intelligence 

approaches based on task allocation. A break-down of the algorithm used in the 

coordination manager is shown in figure 3-5. 
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3.1.2.1 Utility-based Solution for Optimal Task Assignment 

To show how the system coordination manager generates solutions for an optimal 

number of robotic agents, we assume that 𝑅 = {𝑟1, 𝑟2, … … . , 𝑟𝑛} is a collection of n 

robots, where each robot  𝑟𝑖 is represented by its available environmental sensors (ES), 

motor devices (MD), and communication devices (CD). For example, table 3-1 shows the 

Figure  3-5: Coordination manager algorithm overview 
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configuration of robots in the experiments. Table 3-2 shows the different consumption 

rates for the components integrated on the robots.  

  
Robot Available sensor (s) /capabilities Wheels slip percentage 

R1 VGA camera, URM Ping, V32 

ultrasonic, 2-Dof arm, wheel Serial 

motors.  

3% 

R2 V32 Ultrasonic, 2-dof arm, two Serial 

motors 

1% 

R3 Sonar sensor, 1- Dof arm, two Serial 

motors 

20% 

R4 Serial motors, two sonar sensors, 1-

Dof arm 

5% 

R5 VGA camera, Serial motors, two sonar 

sensors, 1-Dof arm 

30% 

 
 
 
Sensing/actuation Component  Consumption rate 

VGA Camera 20 mA 

URM Ping 20 mA 

V32 Ultrasonic  4 mA 

2-Dof (2 servos) 2x(120 mA) 

Serial motors for wheels  2x(160 mA) 

 
Our approach to multi-robot task allocation problem (MRTA) is based on the 

following assumptions:  

- T is task to be accomplished, which is a set of m subtasks that are basically 

composed of motor, sensor and communication devices that need to be activated 

in certain ways in order to accomplish this task. Its denoted as 

Table  3-1: Five robots and their capabilities 

Table  3-2: Sensing and actuation components consumption rates 
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𝑇𝑖 = {𝑣𝑖1, 𝑣𝑖2, 𝑣𝑖3, … … , 𝑣𝑖𝑚} where 𝑣𝑖𝑗 is the subtask j performed by robot  𝑟𝑖 and 

1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 

- A subset  𝑣𝑖𝑗 of 𝑇𝑖, can be allocated to robots concurrently if they do not have 

ordering constraints. 

- To accomplish the task 𝑇𝑖 on robot  𝑟𝑖, a collection of n plans (solutions), denoted 

Pi = {𝑃1, 𝑃2,…,, 𝑃𝑛}, needs to be generated based on the task requirements and the 

robot capabilities. 

 

We define a cost function for each robot, specifying the cost of the robot 

performing a given task, and then estimate the cost of a plan performing the given task. 

We consider two types of cost: 

- A robot-specific cost determines the robot’s particular cost (e.g., in terms of 

energy consumption or computational requirements) of using particular 

capabilities on the robot 𝑟𝑖 to accomplish a task  𝑣𝑖𝑗 (such as a camera or a sonar 

sensor). We denote robot 𝑟𝑖′𝑠 cost by robot_cost(𝑟𝑖,  𝑣𝑖𝑗). 

- The cost of a plan Pi performing a task 𝑇𝑖 is the sum of individual cost of n robots 

performing sub-tasks m that are in the plan 𝑃𝑖, which is denoted as: 

𝐶𝑜𝑠𝑡(𝑃𝑖,𝑇𝑖) = ∑ � cost �ri,  𝑣𝑖𝑗�
m

j=1

𝑛
𝑖=0  

 

The problem we address here is the optimal assignment problem (OAP) which 

uses the Utility concept found in game theory [65]. Our solution is called Robot Utility-
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based Task Assignment (RUTA) and it can be summarized as the following: given (T, R), 

find a solution Pi to each task 𝑇𝑖 such that 𝐶𝑜𝑠𝑡(𝑃𝑖,𝑇𝑖) is minimized.  

 

We assume that sub-tasks tj’s allocated to robot 𝑟𝑖 must be ordered into a schedule 

𝜎𝑖 = (𝑣𝑖1, 𝑡1, 𝑡′1), … … , �𝑣𝑖𝑗 , 𝑡𝑗 , 𝑡′𝑗� for 1 ≤ 𝑗 ≤ 𝑚 where 𝑣𝑖𝑗  is the subtask performed 

from time 𝑡𝑗  𝑡𝑜 𝑡′𝑗. Each sub-task assigned to a robot is denoted by a triple; 𝛼𝑗 = <

𝑡𝑦𝑝𝑒, 𝑡𝑒𝑗, 𝑟𝑎𝑡𝑒𝑗 >  representing the 𝑣𝑖𝑗 task type whether its sensing or actuation type, 

time assigned to the task until it is accomplished (so 𝑡𝑠𝑗 = 𝑡′𝑗 −  𝑡𝑗), and the consumption 

rate (in mA) for this particular subtask respectively. Depending on the robot 𝑟𝑖′𝑠 location, 

the time spent on each task must equal 𝑟𝑖′𝑠 assigned share of the workload. We also 

assume that the distance in meters between robot 𝑟𝑖 and the location of the subtask 𝑣𝑖𝑗 is 

𝑑𝑖𝑗. Taking these values into account, each robot can be represented as 𝛽𝑖 = <

𝑖𝑑,𝑤𝑖,𝑃𝑟𝑒𝑚𝑖 >, representing the robot’s id, percentage of wheel slip, and power 

remaining to perform the sub-task respectively. The mathematical quality of a robot 𝑟𝑖 

performing a subtask 𝑣𝑖𝑗 is calculated by dividing the robot 𝑟𝑖 battery remaining power 

by the product of multiplying the sensor and/or actuator consumption rate with the 

percentage of time in which its operating. This is determined by the following equations 

 

 𝜑𝑚𝑎𝑛𝑖𝑝 𝑖𝑗 = 0.7 × �( 𝑡𝑠𝑗
𝑡′𝑚

) � 𝑃𝑟𝑒𝑚𝑖
𝑟𝑎𝑡𝑒𝑎𝑐𝑡 𝑗

��                (3.1) 

 𝜑𝑛𝑎𝑣 𝑖𝑗 = 0.7 × �� 𝑝𝑟𝑒𝑚𝑖
𝑟𝑎𝑡𝑒𝑠𝑒𝑟𝑣𝑜 𝑗

� × 1
𝑤𝑖
�     (3.2) 
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 𝜑𝑠𝑒𝑛𝑠 𝑖𝑗 = 0.9 × �( 𝑡𝑠𝑗
𝑡′𝑚

) � 𝑃𝑟𝑒𝑚𝑖
𝑟𝑎𝑡𝑒𝑠𝑒𝑛𝑠 𝑗

��     (3.3) 

           𝜑𝑔𝑖𝑣𝑒𝑛 𝑖𝑗 = 𝜑𝑚𝑎𝑛𝑖𝑝 𝑖𝑗 + 𝜑𝑛𝑎𝑣 𝑖𝑗 + 𝜑𝑠𝑒𝑛𝑠 𝑖𝑗      (3.4) 

 

Where 𝑡′𝑚 is the total time predetermined for the robot 𝑟𝑖 to complete all of its 

subtasks in seconds, 𝑤𝑖 is the pre-assumed percentage of robot 𝑟𝑖 wheel slip, and  

𝜑𝑚𝑎𝑛𝑖𝑝 𝑖𝑗, 𝜑𝑛𝑎𝑣 𝑖𝑗 and 𝜑𝑠𝑒𝑛𝑠 𝑖𝑗 are the qualities to perform manipulating, navigation, and 

sensing subtasks respectively. Depending on the subtask type, the value of any of these 

quality functions is null if they are not taking place in the subtask. 𝜑𝑔𝑒𝑣𝑖𝑛 𝑖𝑗 is the total 

quality of subtask 𝑣𝑖𝑗 being performed by robot 𝑟𝑖. When obstacle avoidance task is being 

performed, the quality function 𝜑𝑔𝑖𝑣𝑒𝑛 𝑖𝑗 has higher values than the other qualities 

because it includes navigation as well as sensing subtasks. The priorities of subtasks must 

be considered and are calculated according to the schedule of tasks 𝜎𝑖 that is set to robot 

𝑟𝑖. The priority of robot 𝑟𝑖 performing a subtask 𝑣𝑖𝑗 is defined by equation (3.5) varying 

from 0 to 1. 

𝑝𝑟𝑖𝑖𝑗 = 1
2

× 𝑚𝑖𝑛�(𝑢1 × �𝑡 − 𝑡𝑗�, 1�      (3.5) 

 
Where 𝑡 is the current time elapsed since the beginning of the task, 𝑡𝑗 is the time 

when the task is announced as declared in the schedule 𝜎𝑖. The parameter 𝑢1 adjusts how 

the priority should increase with the value of (𝑡 − 𝑡𝑗).The assignment of a subtask 𝑣𝑖𝑗 to 

the specific robot (that is capable of accomplishing it) is determined by the Utility 

function of a robot 𝑟𝑖 performing a task  𝑣𝑖𝑗  as in the following equation: 
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𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖𝑗 = max(0, 𝑢2 × (𝑑𝑖𝑗
−1/2 × 𝜑𝑔𝑖𝑣𝑒𝑛 𝑖𝑗 × 𝑝𝑟𝑖𝑖𝑗)          (3.6) 

 

Where 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖𝑗 is the nonnegative utility of robot 𝑟𝑖 for sub-task 𝑣𝑖𝑗 , 1 <= i < =n, 

1 <= j <= m, 𝑢2 is the weighted coefficient to adjust the effect of the variables inside the 

equation. We assume that each robot 𝑟𝑖 is capable of executing at most one task at any 

given time. We also assume that multiple agents can also share a single sub-task in which 

they divide the workload.  

Initially the task is introduced to the system which performs the following set of 

algorithms. 

 
Initialization Algorithm 3.1: Input: (T, R,M,N) 

1.  Schedule sub-tasks 𝑣𝑗  , such that ordering constraints are satisfied. 

2. if (N=1) then Stop 

3. Else  

4. Sort the robots according to decreasing computational and sensory 

capabilities 

5. Initially the 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖𝑗 for all robots and subtasks is equal to 0 

6. Calculate utilities of each of the N robots 

7. Based on the task requirement T, pick “at least” two robots with highest 

utility values. 

8. For each sub-task  𝑣𝑗   

9. For each robot 𝑟𝑖 of the two selected robots 

10. Assign subtask 𝑣𝑗to 𝑟𝑖 based on the task requirements  

11.   Add (𝑟𝑖, 𝑣𝑗) to plan Pi 

12.   Update parameters in 𝑣𝑗  
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As the task is being executed the following two algorithms take place. The 

optimal number of robots is decided by running the following algorithm which is equal to 

the final value of i.  

 

Centralized Algorithm 3.2: Input: (T, R,M,N) 

1.  For each unexecuted sub-task  𝑣𝑗  in the schedule 

2. For each robot 𝑟𝑖 in the new robot ordering 

3.             {         Calculate Utility function 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖𝑗 for robot 𝑟𝑖 

4.         If current utility of 𝑟𝑖 for sub-task 𝑣𝑗  is greater than its previous 

utility then assign subtask 𝑣𝑗to 𝑟𝑖 based on the task requirements  

5.   Add (𝑟𝑖, 𝑣𝑗) to plan Pi 

6.   Update parameters in 𝑣𝑗  

   

7. Stop when the task is completed or after K number of trials 

8.        Go to step 10 if a faulty robots is discovered  

9.  } 

10. If task is not complete, Pick a robot with the highest utility value from the 

list of remaining robots 

11. Add to robots ordering 

12. Go to step 1 

 

In the distributed approach, decentralized coordinated programs are uploaded on 

the swarm of robots at start up. The programs allow the set of robots to reason, reassign, 

and execute subtasks later during their mission should a failure or a change in the swarm 

team is introduced. During runtime, each robot simply calculates its own utility when 

tasks are taking place as shown in Algorithm 3. Information about robot status (such as 
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any error readings from sensors) are shared between robots. If the task is interrupted or a 

failure is introduced to the swarm team, robots are able to reconfigure new task solutions 

to cope with changes in team composition and task requirements. 

 

Decentralized Algorithm 3.3: Input (R,N) 

1. Utility is calculated on each robot 

2. Two robots with highest utility values will begin their pre-programmed plans 

3. While task is not complete 

4. { 

5. Each robot’s utility value is shared with the other robots. When a robot is 

introduced to the system or If a sensor fails on one robot 𝑟𝑖 by which it prevents it 

from completing task  𝑣𝑗 , it sends a request (bid) to the other robots in the team.  

6. Robot waits for reply (𝑡𝑜𝑢𝑡) to hear respond from the most fit one (based on the 

winner highest utility value).  

7. Task 𝑣𝑗  is taken over by the winning robot. 

8. } 

9. Stop is task is complete else call the next robot in the ordering R 

 

In the decentralized approach, the coordination among robots is achieved through 

a distributed negotiation process based on sharing of information. The task allocation is 

achieved using a variant of the well known Contract Net Protocol (CNP) [66] with a 

slight alteration that information are shared between robots only when  a task is 

interrupted or a failure is introduced to the swarm system. The solution is evaluated based 

upon each robot’s local information, and the final decision is determined by mutual 

selection. The negotiation process is triggered at each failure to generate initial solution 
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strategies, and is called to re-plan solutions to accommodate changes in the robot group. 

It is important to note, however, that the distributed approach trades off solution quality 

for communication overhead.  

3.1.3 Runtime Interpreter 

As deployment programs are being constructed, the runtime interpreter calls new 

platform independent software packages specific for the execution of the sensory and 

actuation components associated with each agent. When new service is added to the 

system, the dynamic interpreter manages flow of information between these services by 

monitoring the creation and removal of all services and the associated static registries. 

The dynamic interpreter maintains state information regarding possible & running local 

services. The host and registry maps are used in routing communication to the 

appropriate tasks. The dynamic interpreter will be the first service created which in turn 

will wrap the real JVM runtime objects. When new services are added to the system, 

messages will be initiated by the runtime interpreter. The message consists of two basic 

parts: the header (which describes the data being transmitted, its origin, its data type, and 

so on) and the body (data). There are four types of messages, the Command message, 

used to invoke a service in another application; the Document message, used to pass a set 

of data to another application; the Event message, used to notify another application of a 

change in this application and the Request-Reply message, used when an application 

should send back a reply. The messages are classified into three categories: simple 

message (small messages with low delay requirements), realtime message (small message 

with a certain deadline), and message stream (message sequence with a certain rate). The 
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priority setting of a message can be adjusted an urgent message that should be delivered 

first. System developers can extend the system’s functionality by adding new service 

modules to the list of available modules that can be found under the “runtime” tab in the 

main menu. Figure 3-6 shows the operation of the runtime interpreter when services are 

added to the system. 

 

 

Once the coordination agent completes its job, the dynamic agent breaks down 

allocated tasks into required actions from actuator movements to communications. Then, 

the dynamic interpreter monitors the flow of data, manages the flow of messages through 

the system, makes sure that all applications and components are available, tracks quality 

of service (e.g. response times) of an external service, and reports error conditions.  The 

dynamic interpreter does its job by utilizing a component requirement matrix for each 

robot. The component requirement matrix is used to combine the necessary components 

from the knowledge base to the mobile agents which are then passed to the robot control 

and translation agent. As described in [63] each component has an XML configuration 

Figure  3-6: Adding services in runtime 



53 

 

entry to customize its behavior. Each component is designed to be dynamically 

reconfigurable by the dynamic interpreter during robot operation.  

3.1.4 Registry 

The registry contains all of the necessary information for each robot to give the 

coordinator the ability to address each task. This includes a listing of all possible actions, 

service modules, and behavioral components implementations for each robot. The 

registry stores service types, dependencies, categories and other relevant information 

regarding service creation. It also includes the agents’ required communication protocols, 

and their drivers. Physical and logical addresses associated with each component are also 

stored in the knowledge base. 

3.2    Robotic Control System 

From programming prospective, the robot agent is a class. This class specifies the 

methods that must be provided by implementing such a class. The class interface 

architecture enables a loose coupling between the control algorithms and the underlying 

hardware; alternative hardware sensors supporting the required sensing functionalities 

may be interchanged freely (tested in the experiment). Unlike some robot agents that 

contains a regular PC as part of their systems; our swarm system is composed of robotic 

agents that incorporate onboard microcontrollers. UBSwarm supports most of the 

Arduino and Digilent PIC microcontrollers. Each robot has TX/RX pins which uses the 

microcontrollers’ serial communication and turns it into IO-slave. Each robot agent 

incorporates two software programs to perform its job: 
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3.2.1 Application Program 

The program which is uploaded on each robot agent consists of the task-related 

controlling code, the initial pin assignments, and the polling routine as shown in figure 3-

7 (a). This program contains function blocks to operate all the current hardware 

components which are currently connected and all possible functions associated with 

each new component that might be attached to the robot. The controlling program has 

some conditional statements to decide which function to call. The decision of which 

blocks of code to run depends on the updated pin assignments after the execution of the 

polling routine and the task intended from the robot. The polling routine is executed only 

if an internal interrupt has been activated.   

3.2.2 Polling Routine 

The polling routine is basically the hardware tracker/scanner of the robotic agent. 

It is a piece of code that resides within the application program; its job includes receiving 

raw data from onboard sensors. When an external interrupt is activated, the processor 

takes immediate notice, saves its execution state, runs the polling routine, and then 

Figure  3-7: (a) controlling program, (b) Interrupt execution 
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returns back to whatever it was doing before. Fig 3-5 (b) shows the sequence of actions 

when internal or external interrupt is triggered. The type of interrupt used is an external 

button connected to an interrupt pin and the ground (GND). When this pin change its 

signal edge (from rising to falling or vice versa), the polling routine scans all the other 

signal pins for newly attached components. After gathering such data, the polling routine 

sends messages that include the state data about the hardware components attached to 

each I/O pins. This data also include the type of the sensor. In order for the polling 

routine to understand which kind of sensor has been connected, we divided the set of pins 

into two categories: 

1- Digital PWM (Pulse Width  Modulation) pins can only be connected to Ultrasonic 

sensors or servo motors 

2- Analog pins can only be connected to Infra-red or sonar sensors 

The polling algorithm can be summarized as follows: 

 

1. Initially some signal pins are connected to components 
2. Main program begin 

{ 

3. Attach the Interrupt pin to the interrupt function 
4. If (interrupt is activated) then goto polling routine 

} Main program end 

5. Polling routine begin{ 
6. For each unassigned pin set its internal pull-up resistor to high 
7. For each unassigned pin wait 1sec for change in signal 
8. If signal change occur { 
9. Add type of sensor and its pin number to vector array  

} 
10. Update pin assignments } end polling routine 

Algorithm 3.4: Polling routine 
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The robot control middleware also incorporate the following module which 

provides essential input to the polling and controlling programs.  

3.2.3 Device library 

The device module contains information to be uploaded to the XML file about the 

hardware components which are classified according to the functionalities they provide. 

For example, a GPS receiver can function either as a position device or as a range device.  

3.2.4 Compiler 

The Compiler gets a single input from the CPM module of the coordination agent; 

this input is the type of the microcontroller board connected. Based on the board type, the 

compiler will have the information it needs to know about the microcontroller and the I/O 

ports. For example, the Arduino microcontroller boards have PIN arrangement as 

follows:  

1- Serial: 0 (RX) and 1 (TX): These pins are used to receive (RX) and transmit (TX)  

transistor-transistor logic (TTL) serial data. For example on the Arduino 

Diecimila, these pins are connected to the corresponding pins of the FTDI USB-

to-TTL Serial chip.  

2- External Interrupts (pins 2 and 3): These pins can be configured to trigger an 

interrupt on a low value, a rising or falling edge, or a change in value.  

3- PWM Pins: 4 upto 24 Provide 8-bit PWM output. 

4- Analog Pins: pins 25 and so on analog input pins support 10-bit analog-to-digital 

conversion (ADC)  
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Relevant tasks for a team mission are defined in the device library configuration 

file which is loaded by the UBSwarm at startup. The device library file also specifies 

which tasks can be performed by each agent and if applicable, the physical hardware 

sensors and devices to be used. 

 

3.2.5 Hardware Abstraction Layer 

The Hardware Abstraction Layer (HAL), is the platform dependent part of 

UBSwarm. It is used to hide the heterogeneity of lower hardware devices and provide a 

component interface for the upper layers call. HAL removes hardware and operating 

system dependencies between the robot and the application in order to assure portability 

of the architecture and application programs. It provides access to the sensor data or 

actuation commands abstracted from the underlying physical connection of the resource. 

The abstraction layer (HAL) as shown in Figure 3-2, contains wrappers to hardware 

dependent control libraries which act as a low-level middleware to hide the heterogeneity 

of the underlying microcontrollers. 
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CHAPTER FOUR:  IMPLEMENTATION AND TEST PLAN 

Three different application tasks have been implemented to test the software 

development software namely: simultaneous localization and mapping (SLAM), human 

rescue, and wall painting. The mobile robots are built at the Robotics, Intelligent Sensing 

& Control (RISC) Laboratory at the University of Bridgeport. The system is composed of 

five heterogeneous robots in the sense that they have different sensory and actuation 

components. The prototypes of the robots are shown in figure 4-1. The robots are built 

using Arduino UNO, Arduino Due, and Digilent PIC boards. These boards are designed 

to make the process of attaching hardware components easier. 

  

   

 
Figure  4-1: Heterogeneous robots showing different components 
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 The hardware consists of a simple open hardware design and a rigid frame to 

support and secure the different types microcontroller boards and on-board input/output 

components. As for the power source, five packs of 7.2V 2500mAh Ni-MH batteries 

ensure sufficient energy autonomy to the robots. For distance sensing, URM V3.2 and 

PING ultrasonic sensor were used. However, as experimental results depict, the sensing 

capabilities of the platforms can be easily upgraded with other sensors, e.g., laser range 

finders. Additionally, the platforms are also equipped with an Xbee Shield from 

Maxstream, consisting on a ZigBee communication module with an antenna attached on 

top of the Arduino Uno board as an expansion module. This Xbee Series 2 module is 

powered at 2mW having a range between 40m to 120m, for indoor and outdoor 

operation, respectively. 

UBSwarm runs on a windows operating system. The deployed robots have simple 

behaviors and the overall high intelligence of the group is created by the simple acts and 

moderate local intelligence of each individual robot. Each customized program contains 

parameters that will be initially assigned to default values when starting UBSwarm 

interface. The three application tasks used in evaluating UBSwarm environment can be 

summarized as follows:  
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4.1     Simultaneous Mapping of a Building 

SLAM is a technique used by robots to build up a map within an unknown 

environment (without a priori knowledge), or to update a map within a known 

environment (with a priori knowledge from a given map). Since our robots are equipped 

with simple hardware capabilities, the primary mapping technique will involve simple 

sonar and ultrasonic range finders to read distances as the mapping takes place. 

4.2    Human Rescue 

In  hazardous conditions when it’s too dangerous to human rescuers to reach 

remote places, a swarm of robotic agents can be deployed to search and rescue  The task 

of human/object rescue requires the robotic agents to cooperatively work together to pull 

a heavy object to a desired place. A dummy human object has been used to test different 

pulling scenarios. 

4.3    Painting a Wall 

The task’s objective is to perform interior painting job using two robots each 

equipped with an arm that has a1-Dof gripper attached to a 2-Dof arm which controls the 

position of the end effecter allowing it to rotate up, down and a 360 degree rotation 

around its own center. 
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CHAPTER FIVE:  EXPERIMENTS AND RESULTS 

A new software deployment environment for heterogeneous robots has been 

presented in the previous chapter. In this chapter, we compare how the proposed system 

stands among existing systems. The proposed software environment utilizes robots that 

have different modular designs and configurations of sensory modules and actuators.  

The embedded middleware feature allows the robotic agents to extend their configuration 

by auto-detecting newly added components. The proposed solution successfully 

overcomes most of the limitations found in previous software environments. These can 

be summarized as follows: 

1. The system defines a set of rules and constructs programs that make the different 

robotic agents work in a swarm fashion even though they are heterogeneous in 

their hardware configurations and functionalities. 

2. Robustness against failing sensory/actuation components while the task is taking 

place is one of the core functionalities of the decentralization approach. The 

decentralized algorithm allows robots to reason, reassign, and execute their 

intended missions. 

3. Another key feature of the new system is that it uses C# programs which utilize 

the strong C# built-in libraries to interface with vast types of microcontrollers. 
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Previous systems have a slightly different method to communicate with robots. 

For example the MAJIC software [8] sends only basic commands using its own 

programming language to the group of selected online robots connected to the 

different serial ports. MAJIC software does not upload complete programs to 

robotic agents to allow them work in a swarm fashion. The DCF [55] on the other 

hand, uploads the entire program to robotic agents and also it provides an online 

simulator. However, The MDLE language does not work with the recent robotic 

platforms. Moreover, the DCF system was particularly designed to be used on 

more sophisticated robotic system which posses more computing power. More 

precisely, robotic agents with onboard laptops were used to execute the programs 

the DCF generates. 

4. Unlike the player/stage system software, UBSwarm is not a real-time simulator, 

although it can monitor live data being sent by the multiple robots to the serial 

ports of a central computer. The player/stage is basically a simulator that reflects 

the movements and actions of the robotic agents as they perform their tasks in a 

graphical two-dimensional environment rendered on a computer screen. 

5. Our system explains very clearly how programs are constructed and how 

functional blocks of code are being fetched as the users feed their inputs to the 

system interface. Certain object-oriented classes are added to the program that 

incorporates the specific task/application in real time. 

6. Unlike the other systems, both decentralized/centralized coordination modes are 

adopted in UBSwarm. UBSwarm also integrates sophisticated programs that 

provide communication based coordination between the robotic agents.  
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A comprehensive attribute-based bibliography which compares our proposed 

system with the current robot deployment systems is given in table 5-1. 

 

Name System Model Control 
Model 

Fault 
tolerance 

Real-
time 

Distributed 
environment 

Simulator Standards 
and 
Technologies 

E-Puck Layered 
architecture; 
server/client; OS 
platform 
independent 

Service-
oriented 
architecture; 
no formal 
language 

Yes No Yes No Local 
procedure calls 
(RPC) to call 
functions. 
J2EE is used 

UBSwarm Component-
based 
framework; I/O 
Master/slave 
communication. 
Platform 
independent 
model (PIM)  

Service-based 
procedure 
calls. Runtime 
agent; 
dynamic 
function calls 

Yes. 
Embedded 
compiler; 
Robots have 
redundancy 

No, 
But 
Can 
be 
added 

Yes, 
services 
installed on 
server can 
be called on 
another 
machine 

No C# libraries; 
python and 
C++ programs; 
The interface 
is built in 
JAVA  

DCF Component-
based 
architecture 

XML file 
stores 
information 
needed to 
communicate 

Yes Yes No Yes, 
Limited 
to some 
apps 

Needs Java 
virtual 
machine; uses 
special 
language 
called MDLE 

MAJIC Client/Server; 
component-
based 
framework;  

Client/server; 
centralized 
control 

No Yes No No TCP protocol, 
Direct 
procedure 
calls. Java 
scripts 
uploaded to 
robots 

Pyro Architecture 
independent 

 Yes No Yes No Socket based 
using TCP 
protocol, 
XML, SOAP, 
OpenGL, 
HTTP 

Player/ 
Stage 

Client/server; 
decentralized 
control 

Centralized 
model. 
Networked 
interface 

Yes Yes Yes Yes, 2D 
and 3D 

3-Tier 
Architecture 
based on proxy 
objects. 

Mobile-R Component-
based 
architecture 

Offline and 
online 
dynamic task 
allocation,  
Neural 
Network 
(ANNs) 

No Yes Yes No IEEE Mobile-
C library 
Generic 
algorithms 
(GA) 

Table  5-1: Attribute-based comparison between the proposed system and the previous environments 
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5.1    Simultaneous Localization and Mapping (SLAM) 

As illustrated in table 3-1, robot teams are composed of heterogeneous types of 

robots. A maximum of three robots were used in the SLAM experiment where R1,R2  are 

equipped with a laser-scanner and a v32 sonar scanner mounted on servo motor that 

rotates 180 degrees, and a camera mounted on the front used for object recognition. R3 is 

equipped with a sonar scanner mounted on a servo motor only. To accomplish the task, 

robots must navigate from a starting position and stops when a base station that runs our 

SLAM program generates a complete map of the building. 

Each robot is placed randomly in the building to be mapped. The robots start 

scanning the surrounding area by moving forward while constantly maintaining 30 cm 

from the wall on its left side. An ultrasonic range sensor mounted on the top of each robot 

will turn 45 degrees to the right, it scans, and then it turns another 90 degrees to read all 

distances from the wall or the other obstacles. The scanner then rotates to the center 

position, it scans and then it turns to the left side as the ultrasonic sensor turns 90 degrees 

twice to the left. The process will be repeated every 30cm until it gets to the far side of 

the building. Encoders on each robot’s wheels measure the distance the robot has covered 

as it scans. These two readings may be combined with a third reading from sonar sensors 

mounted on each side of the robot to add more accuracy and redundancy to the scanning 

ability. All together, those readings generate two-dimensional values that are fed to a 

Matlab program on a base station which in turn generates a 2-D map of the scanned area. 

Each robot communicates with the base station using Wireless Xbee modules, which 

provide communication via Wireless Wi-Fi 802.11 b/g/. One Xbee module is attached to 
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the base computer through USB port. As far the Matlab program is concerned, the SLAM 

algorithm uses the well-known Extended Kalman Filter (EKF) to predict and refine 

measurements. The Extended Kalman Filter (EKF) is an updated nonlinear version of the 

Kalman filter which relies on the current mean and covariance to predict an estimate. In 

the extended Kalman filter, the state transition and observation models are differentiable 

functions. 

             𝑋𝑘 = 𝑓(𝑋𝑘−1,𝑈𝑘−1) + 𝑊𝑘−1      (5.1) 

𝑍𝑘 = ℎ(𝑥𝑘) + 𝑉𝑘       (5.2) 

Where 𝑊𝑘 and 𝑉𝑘 are the process and observation noises, Xk is the state vector 

and Zk is the observation vector.  The functions f() and h() are process and observation 

nonlinear vector functions respectively. The MATALB SLAM interface is a modified 

version of an open source program developed by Jai Juneja [67]. The software has been 

upgraded to make it run in real time by receiving live measurement data from the 

onboard sensors and wheel encoders. The software is also modified to simulate two or 

more robots in an attempt to meet our experimental objective. The SLAM program 

receives readings from each robot’s ultrasonic range finders, wheel encoders and/or sonar 

readings. The software takes as an input a vector of readings from the two motion 

estimates received from sensor scanning and wheel odometers on each robot.  
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The refined pose estimate is the result of the EKF processing of the two estimates, 

which takes into account their relative uncertainties. Figure 5-1 summarizes the new EKF 

technique. 

 

5.1.1 Communication 

Communication with the host computer is essential in this experiment. The robot 

must maintain the communication link to the host computer at all times. Transmission of 

data (X1, X2, X3, and Y) from the swarm robots is transmitted at the end of each scanning 

for every target distance of twenty centimeter. A special command is sent from the base 

station to initiate internal clock which enables a robot to transmit its data once at each 

clock cycle as illustrated in figure 5-2. Communication with the base station is 

accomplished according the following algorithm: 

 

Figure  5-1: Multi-robot mapping using EKF prediction 

Scan Readings Wheel Encoders 

Refined Measurements and Robot Position Robot 

 

Grid map update 

Est. new 
measurement      
r scan 
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Enable system clock each cycle 500 milliseconds 

1st clock cycle enable transmission from robot 1 

2nd clock cycle enable transmission from robot 2 

3rd clock cycle enable transmission from robot 3 

 

 

 

 

We performed three successful trials for each experiment set by varying the number 

of robots in each experiment. The mapping program is uploaded to each robot using two 

kinds of configurations that are set in the UBSwarm environment interface as follows: 

1- Wheel encoders, one sonar sensor mounted on the front, and one onboard 

ultrasonic range finder. 

2- Second configuration uses the same settings as the above plus two more sonar 

sensors mounted on both sides. 

The first experiment deploys one robot (equipped with two sensing components and 

both are used for obstacle avoidance). The second experiment deploys two robots and 

also they are equipped with two sensing components whereas three robots each equipped 

Figure 5-2: Data transmission clock from each robot to the base station 
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with three sensing components were deployed in the third experiment. In the first 

experiment, the mapping task was completed in about 33 minutes. In the second 

experiment, the task took 16 minutes to complete, whereas it took 10 minutes to complete 

in the third experiment.  

 

 

 

 

(a) 

(b) 

 Figure  5-3: (a) Scan error during runtime using one robot, (b) scan error during runtime using two robots 
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(b) 

Figure 5-4: (a) Position of one robot and its scanned estimates vs. actual map, (b) Two robots positions 
and scanned estimates versus actual map 

(a) 
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Figure 5-3 (a) and (b) shows the measurement error generated by the one and two 

robots as opposed to the actual positions of walls. The region these robots are trying to 

map is a 5x4 square meters classroom with two tables placed at the shown locations. The 

algorithm decides the number of robots needed based on the dimensions of the area it is 

going to map which in this case it was two robots. It can be seen clearly that the map 

generated by two robots is more accurate than that generated by one robot. 

Figure 5-4 (a) and (b) shows the actual map (black outline) and the estimated 

measurements (blue and red dots) generated by one and two robots respectively (blue and 

red triangles). Figure 5-5 (a) and (b) shows the rendered map generated by one and two 

robots respectively. We notice that more accurate white outline has been generated using 

the latter experiment. Figures 5-6 and 5-7 show the results of the third experiment that is 

when three robots are used (red, green and blue triangles). A different type of a range 

sensor is used on each of the three robots in the third experiment. Please note that the 

Figure  5-5: (a) the map generated by one robot, (b) the map generated by the two robots. 

 

(a) 
(b) 
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maximum position error generated by one and two robots were 50 and 20 centimeters as 

shown in figure 5-3 (a) and 5-3 (b) respectively, while the maximum position error was 

15 centimeters in the third experiment as shown in figure 5-7 (b). The average is taken 

between the two readings (on board ultrasonic sensor and side sonar sensors). Such 

addition will boost the accuracy of the measurements as well as adding redundancy to the 

robotic system should any sensor fails when tasks are being executed. 

 

 
Figure  5-6: Three robots performing mapping 
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5.2    Human Rescue Task 

The human rescue algorithm has been developed forUBSwarm so that robots can 

autonomously cooperate and coordinate their actions so that a human dummycan be 

pulled away in a minimal time. Cooperation between robots is achieved by exchanging 

Figure 5-7: Experiment three (a) The estimates generated (b) Position error (centimeters) in 10 
minutes of runtime 

(a) 

(b) 
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messages when an additional robot is needed to pull the object. First, the software 

environment deploys a particular type of robot that searches for a human dummy as it 

wanders in the unknown environment; such a robot is equipped with onboard camera 

allowing it to detect a white stripe attached to the human body lying on the ground. Video 

frames are received at a base station computer. The frames are fed to Matlab program that 

detects the white stripe using a line detection module as shown in figure 5-8. The 

algorithm incorporates Hough transform and enhanced edge detection algorithms.   

 

 

 
If more robots are needed to pull the object, the robot calls another agent using 

Xbee-based communication module. Wheel encoders on each robot are used to decide 

whether or not to call more robots. When the pulling subtask is being performed by a 

robot, its wheel encoders read the elapsed distance. If the distance is zero, it calls for 

more agents to be sent.  Robots place themselves at different locations.  Using their 

grippers and by sending a special synchronization message, the robots attach themselves 

Figure  5-8: Overview of line detection Module 
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to the body and start pulling backward towards the goal position. A human prototype was 

built and several experiments were conducted. As the weight of the human increases 

more robotic swarm agents were called. We noticed that the configuration that uses more 

than three robots is able to successfully pull the object. However; this configuration may 

cause the robots to skid to any side.  Consequently, this act increases the time taken by 

the robots to complete the task. Dispatching the right number of robots is the goal 

solution that is generated by the algorithm embedded in UBSwarm. Figure 5-8 shows a 

human-like dummy being pulled by four robots. We ran centralized as well as 

decentralized UBSwarm modes by performing three trials for each experiment set 

indicated by the number of robots, and obtained data on the completion time and the 

number of successful experiments. In total, we have performed 24 trials.  

In the last experiment set, when four robots were used, we triggered faulty sensors 

at time 100 second to illustrate the fault-recovering capabilities of swarm team. In that 

experimental set, R5 performs its assigned tasks according to the plan. During the 

execution, the camera on R5 is covered in a way that it cannot detect the object. 

Eliminating this sensor triggers the coordination manager on the centralized station to 

generate new solutions for the rest of the team (three robots) to accomplish the task. In 

the decentralized approach, robots are always in one of the following states: reasoning, 

auctioning, navigating, and idle. A robot starts reasoning when it receives a task 

announcement. We introduced the same kind of failure as that of the centralized 

approach. In this example, at time 100 seconds, all robots receive the task announcement 

of pulling and start reasoning to calculate utilities. At time 101 seconds, utilities are 



75 

 

calculated, and robots start to bid for the task and wait for the response. At time 105 

seconds, the task is assigned to the rest of the team and then the robots continue their 

interrupted task. The least time successful solution to transporting task is found using a 

robot team that is constructed of three robots; R1,R3, and R4. This result is obtained 

using the RUTA algorithm embedded in the coordination manager component. This team 

was able to accomplish the transporting task in an average of 201 seconds using the 

centralized approach. The transporting experiment was conducted using decentralized 

approach as well. In this experiment, the decentralized parameters such as the 

negotiation-timeout value were set as follows: wait for reply is 0.85s. The team that is 

constructed of the same three of robots as of that in the centralized approach also had the 

minimum time to complete the task at an average of 277 seconds. Table 5-2 shows 

performance data collected from centralized experiments.  

 

 

Team Size Weight of body Average Pulling 
distance (meters) 

Average Time 
(seconds) 

1 300g 1.6 196 
2 800g 1.3 240 
3 1200g 2.5 201 
4 1200g 2.0 210 
5 1200g 1.6 400 

 

As an example, in both approaches the total cost of task (𝑇𝑟𝑒𝑠𝑐𝑢𝑒) performed by 

the robots 𝑟𝑖′𝑠 in the capability-based ordering (R2, R3, R1, R4, R5) is determined by the 

robots utility functions associated with each of the following tasks: 

Table  5-2: Successful pulling distance according to different number of robotic agents 
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𝑇𝑟𝑒𝑠𝑐𝑢𝑒 = �𝑈𝑟𝑒𝑠𝑐𝑢𝑒(𝑖)

5

𝑖=1

 

�𝑈𝑟𝑒𝑠𝑐𝑢𝑒(𝑖)

5

𝑖=1

= �(𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖(𝑛𝑎𝑣)+𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖(𝑑𝑒𝑡𝑒𝑐𝑡) + 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖(𝑔𝑟𝑖𝑝) + 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖(𝑝𝑢𝑙𝑙))
5

𝑖=1

 

𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖𝑗 = max(0, 𝑢2 × (𝑑𝑖𝑗
−1/2 × 𝜑𝑔𝑖𝑣𝑒𝑛 𝑖𝑗 × 𝑝𝑟𝑖𝑖𝑗),  Where j = 1,2,3,4  i = 1,2,3,4,5, 

𝑈𝑟𝑒𝑠𝑐𝑢𝑒(𝑖) is the overall utility of robot 𝑟𝑖, and 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖(𝑛𝑎𝑣), 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖(𝑑𝑒𝑡𝑒𝑐𝑡), 

𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖(𝑔𝑟𝑖𝑝), 𝑢𝑡𝑖𝑙𝑖𝑡𝑦𝑖(𝑝𝑢𝑙𝑙)are the navigation, object detection, gripping, and pulling 

subtasks.  

 

5.2.1 Simulation Module 

Deploying the right number of robots to rescue a human cannot be determined 

unless the weight of the human is known prior to running the experiment. However, 

running a premature simulation that has prior knowledge about experiment will provide a 

clear picture whether or not the robots are able to accomplish the task. The prior 

knowledge includes the human weight, its distance from the robots, and any other 

essential parameters (such as robots’ wheel slippage percentages). The simulator 

calculates utilities of the robots and shows their behavior in a 3D motion. To illustrate 

that, the utilities are calculated for the different sub-tasks in the three-robot team. The 

first subtask to be performed is navigation; the utilities for the three robots (1,2, and 4) 

using the centralized approach are calculated as follows: 

Robot 1,  j = navigation 

 
𝑢𝑡𝑖𝑙𝑖𝑡𝑦1(𝑛𝑎𝑣) = max(0, 𝑢2 × (𝑑1𝑗

−1/2 × 𝜑𝑔𝑖𝑣𝑒𝑛 1𝑗 × 𝑝𝑟𝑖1𝑗) 
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𝜑𝑔𝑖𝑣𝑒𝑛 1𝑗 = 𝜑𝑛𝑎𝑣 1𝑗 = 0.7 ��
𝑝𝑟𝑒𝑚1

𝑟𝑎𝑡𝑒𝑠𝑒𝑟𝑣𝑜 (1)
� ×

1
𝑤1
� 

𝜑𝑔𝑖𝑣𝑒𝑛 1𝑗 = 0.7 ��
2200
130

� ×
1
3
� 

𝜑𝑔𝑖𝑣𝑒𝑛 1𝑗 = 0.7 [5.58] 

𝜑𝑔𝑖𝑣𝑒𝑛 1𝑗 = 3.90 

 

Initially priorities of all sub-tasks are equal to 1, and  𝑢2 = 1 hence, 

𝑢𝑡𝑖𝑙𝑖𝑡𝑦1(𝑛𝑎𝑣) = max(0, 1 × (1−1/2 × 3.90 × 1) 

𝑢𝑡𝑖𝑙𝑖𝑡𝑦1(𝑛𝑎𝑣) = 3.90 

Robot 2,  j = navigation 
 
 

𝜑𝑔𝑖𝑣𝑒𝑛 2𝑗 = 𝜑𝑛𝑎𝑣 2𝑗 = 0.7 ��
𝑝𝑟𝑒𝑚2

𝑟𝑎𝑡𝑒𝑠𝑒𝑟𝑣𝑜 (2)
� ×

1
𝑤2
� 

𝜑𝑔𝑖𝑣𝑒𝑛 2𝑗 = 0.7 ��
2200
320

� ×
1
1
� 

𝜑𝑔𝑖𝑣𝑒𝑛 2𝑗 = 0.7 [6.87] 

𝜑𝑔𝑖𝑣𝑒𝑛 2𝑗 = 4.81 

So,  

𝑢𝑡𝑖𝑙𝑖𝑡𝑦2(𝑛𝑎𝑣) = 4.81 

After calculating for R4,  

𝑢𝑡𝑖𝑙𝑖𝑡𝑦4(𝑛𝑎𝑣) = 1.21 

At time 110s, the gripping subtask was already scheduled at time 20s, the utility values 

for robots 2 and 4 are:  
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R2, j = grip 

𝜑𝑔𝑖𝑣𝑒𝑛 2𝑗 = 𝜑𝑚𝑎𝑛𝑖𝑝 2𝑗 + 𝜑𝑠𝑒𝑛𝑠 2𝑗 

    𝜑𝑚𝑎𝑛𝑖𝑝 2𝑗 = 0.7 �( 𝑡𝑠𝑗
𝑡′𝑚

) � 𝑃𝑟𝑒𝑚2
𝑟𝑎𝑡𝑒𝑎𝑐𝑡 2

��       

    = 0.7 �( 9
200

) �2000
60
�� = 1.05     

    𝜑𝑠𝑒𝑛𝑠 2𝑗 = 0.9 �( 𝑡𝑠𝑗
𝑡′𝑚

) � 𝑃𝑟𝑒𝑚2
𝑟𝑎𝑡𝑒𝑠𝑒𝑛𝑠 (2)

��  

𝜑𝑠𝑒𝑛𝑠 2𝑗 = 0.9 �( 11
200

) �2150
65
�� = 1.64  

            
  𝜑𝑔𝑖𝑣𝑒𝑛 2𝑗 = 𝜑𝑚𝑎𝑛𝑖𝑝 2𝑗 + 𝜑𝑠𝑒𝑛𝑠 2𝑗 = 2.69   
 

𝑝𝑟𝑖2𝑗 =
1
2

× 𝑚𝑎𝑥[(𝑢1 × (110 − 20), 0] 
 
 

𝑢1 = 0.01 

𝑝𝑟𝑖2𝑗 = 0.45 

Assuming robot 2 distance to the object is 3 meters 

𝑢𝑡𝑖𝑙𝑖𝑡𝑦2(𝑔𝑟𝑖𝑝) = max(0, 1 × (3.0−1/2 × 2.69 × 0.45) = 0.69 

The same applies to robot 4. Its corresponding utility values were 

𝑢𝑡𝑖𝑙𝑖𝑡𝑦4(𝑔𝑟𝑖𝑝) = max(0, 1 × (4.3−1/2 × 5.04 × 0.45) = 1.09 

Figure 5-9 shows a simulated 4 robotic agents performing the task of pulling a 1200g 
body. 
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When evaluating the performance of two versus N robots, each team’s utility 

value is the key factor that distinguishes the least time solution among the various team 

sizes and compositions. At the beginning, each team’s utility is calculated as an 

initialization step in the RUTA algorithm. At this stage, the larger the team the higher 

utility value is. However, some team utilities might start to decline depending on their 

parameters as the task is taking place. The team that sustains high utility value throughout 

the course of performing the task until its completion will determine the minimum 

execution time and hence the optimal solution. Table 5-3 shows the order of teams’ 

Figure  5-9: Four robots simulated before being deployed 
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success based on their utility values and their completion time. Please note the higher 

team utility the more successful the experiment is. 

   

Team composition Centralized Decentralized 
Utility value Time (sec) Utility value Time (sec) 

(R1,R3,R4) 9.63 201 6.91 277 
(R1,R3,R4,R5) 8.82 210 6.62 299 

(R2,R3,R4,R1,R5) 8.43 400 6.66 405 
(R2,R5) 8.16 240 6.34 310 

        

The desired pulling distance for 1200g human dummy was 2.5 meters. The 

sequenced photos in figure 5-10 below show an example of five robots pulling the 

dummy.     

  

 
 

 Figure  5-10: A dummy being pulled for 2.5 meters using five robots 

Table  5-3: Centralized vs. Decentralized team utilities 

(a) Five robots are configured for a rescue 
 

(b) Four robots are approaching 

(c) The fifth robot, R2 is called (d) Five robots crossing the finish 
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5.3     Wall Painting 

The task is executing an interior painting job. The robotic agents each equipped 

with location sensors, simple communication modules, and vision capability are able to 

paint their designated part of the wall. Painting using a brush is the most commonly used 

by human workers. Using a brush requires more sophisticated robotic arms. Painting 

using a spray, however, is less demanding in terms of accuracy and therefore more 

appropriate for our robotic agents. 

5.3.1 Arm and End-effecter 

The end effecter is basically a 1-DoF gripper attached to a 2-DoF arm which 

controls the position of the end effecter allowing it to rotate up, down and a 360° rotation 

around its own center. Figure 5-11 shows the movements and the offsets along the direct 

Z axis.  

 

 
 

 

Performing a painting job using this particular type of end-effecter creates 

multiple adjacent rectangular coating sectors as shown in figure 5-12. The height of each 

sector (H) is the height of the highest point the end effecter can reach on the wall which 

Figure  5-11: The 2-Dof sketch for the robot manipulator 
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was reasonably taken as 30 cm. The width of the sector (W), for a robot with a given 

work space), depends on the area being sprayed by the nozzle attached to the end effecter 

(gripper), that actually determines the width of a stripe (S) painted in a single tool 

movement. 

 

 

Figure 5-13 shows two robots performing a painting test and the nozzles attached 

to each of their grippers. 

 

           Figure  5-13: Spraying nozzles attached to the Robots 
 

Figure  5-12: The surface covered by the painter 
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5.3.2 Painting Method 

The two robots were used are equipped with a 2-Dof manipulator and a flexible 

hose attached to the end effecter on one end and to a compressed paint container on the 

other end. Using this flexible spraying equipment, each robot can paint a surface of 10 x 

30 cm only when it is facing the surface of the wall. The trajectory of the end-effecter is 

composed of three kinds of movements: 

1. Each robot moves concurrently at the same speed as that of the other robots. An 

infrared sensor mounted at the front of each robot. When a wall is detected, each 

robot will rotate its painting tool in order to align it with the wall at the highest 

extension then it will maintain a constant distance from the wall as the painting 

starts.  

2. The tool will be moved in two linear vertical movements in which the paint is 

being sprayed. During the movement, each sprayer is activated or de-activated 

according to the distance from the wall. 

3. After completing two vertical sprays, each robot will move to the next adjacent 

partition on the wall by moving backward for a predetermined fixed distance, 

turning to the a left, moving forward for 20 cm, turning to the right and then 

moving forward for the same fixed distance to reach the next partition. The 

painting process takes place again and the whole procedure is repeated until the 

whole area is painted. 

 
We are interested in learning how much time is saved when painting using 

multiple robots.  To do so, we ran two experiments. The first experiment which involved 
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one single robot, the task was completed in 30 minutes. In the second experiment the task 

was completed in 14 minutes using two robots. 

 
5.4    Performance of Centralized vs. Decentralized Approaches 

When it comes to evaluating the performance of both of the centralized and 

decentralized approaches, we observe that the centralized approach performs quicker 

with more flexibility while generating plans. Little time is needed to initiate new ordering 

of the robot team since any change in the capabilities of the team needs only to be 

updated locally. The centralized knowledge base also needs to be updated when the team 

capabilities change. However, the centralized approach takes a little longer time to find a 

solution than that of decentralized approach. Decentralized UBSwarm runs on each robot. 

The solution can be found using less time. However, except for single-robot team, this 

method trades off solution quality because of the less computational power of the robots 

when compared to the base station computer. To increase robustness against sensory 

failures, the decentralized approach on every robot. Robots share capability information 

with each other at the beginning or whenever the team capabilities change. This method 

requires more work to maintain the knowledge base than the centralized approach on a 

single base station, since the knowledge base updates must be duplicated on all robots. 

In centralized UBSwarm, the total time for generating a solution is the time to 

assign subtasks (m) to the current team ordering which increases exponentially O(nm), 

whereas the time needed for the decentralized approach is the auctioning time which is 

O(1) plus the time taken by each robots to respond which is O(n). Here n is the number of 
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working (unfailing) robots. As shown in Fig. 5-14, the average time to generate a solution 

increases as the robot group size increases, linearly for Decentralized UBSwarm, and 

exponentially for centralized UBSwarm. Additionally, in Fig. 5-15, the plan utility is 

plotted for four different team sizes. At time 100 seconds, an error is introduced to one of 

the robots in each team. We can observe that the team accumulated utility drops down at 

that point then as both approaches re-allocate the tasks the overall utility increases. The 

figure shows the accumulative team utility over time. The sub-task that is assigned to the 

faulty robots is taken over by the rest of the team as a result of the reasoning algorithms 

executed by the two control schemes.  If no faults occur during execution, team utility 

should maintain a slight decrease in their values. Additionally, the centralized results 

always have a higher utility value than that of the decentralized approach, because the 

centralized approach operates with complete information received from the robot team. 

Moreover, the decentralized approach’s core functionality is based on the use of time-

based parameters (i.e. wait-for-reply 𝑡𝑜𝑢𝑡) that not only requires more communication 

overhead amongst the robots but also increases the time slot given to the particular sub-

task and thus increases the execution time.  
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Figure  5-14: Centralized vs. Decentralized time needed to generate solutions 

Figure  5-15: Centralized vs. Decentralized team utility 
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Based on the task requirement, the centralized algorithm first picks at least two 

robots which calculate the two highest utility values. The system then assigns the first 

subtask according to the task schedule as an initialization step. Once the two robots are 

deployed, the coordination manager component takes over the control. Based on the 

values of the two robot’s utilities or the addition of new robots (or removing a faulty 

robots from the solution plan), the coordination component assigns or reassigns subtasks 

to the robotic team. When decentralized approach is used, the problem of reconfiguring 

solutions is left to the robots themselves to resolve. Figure 5-15 shows the effect of a 

faulty sensor introduced on each of the different team sizes (N = 2,3,4,5) in the human 

rescue task simulating a dummy that weighs 1200gms. We notice that the combination of 

robot teams which gives an optimal solution is the combination of the three robots (R1, 

R2, and R4). This specific task requires at least one robot equipped with a camera for the 

purpose of detecting the dummy object. Table 5-4 below shows the highest utility value 

of each of the different team combinations for centralized and decentralized approaches 

at time 225 seconds.  

 

Team composition Utility values at time 225s 
Centralized Decentralized 

(R1,R3,R4) 9.63 6.91 
(R2,R4) 9.40 6.53 

(R2,R3,R4,R1) 8.68 6.42 
R2 7.80 4.98 

Table  5-4:  Team compositions and their utility values 
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5.5    Comparison between RUTA and Current Techniques 

The above experiments present the results of applying UBSwarm to various 

multirobot applications and the robustness of the UBSwarm-Decenralized approach. It is 

worth mentioning how our proposed approach to the OAP stands amongst the existing 

techniques by comparing their scalabilities and execution time (for n robots and m tasks) 

to our approach. According to table 2-1 in our literature survey, approaches to robot task 

allocation are divided into behavior-based and market-based approaches ALLIANCE is a 

behavior-based technique in which each robot performs a greedy task-selection algorithm 

for each task yielding a O(mn) per iteration where m and n are the number of tasks and 

robots respectively. At each iteration, each robot compares its own utility to that of the 

other robots and selects the task for which it is capable to perform. Because robots have 

to share their utilities in each iteration, communication overhead of O(n) is added to the 

overall execution time. ACO-based task allocation [69] is another behavior-based 

approach. In this technique, each robot has a corresponding task utility that decides if the 

robot is capable of executing a task by estimating the robot’s utility for that task.  Utilities 

are computed in a task-specific manner as a function of relevant sensor data. These 

utilities are periodically broadcasted to the other robots simultaneously to allow 

reassignment of tasks. Since each robot must broadcast its utility for each task, the system 

has a communication overhead of O(mn) per iteration.  

 
Moving to auction-based approaches, In the M+ system, each robot considers all 

the currently available tasks at each iteration. For each task, each robot uses a planner to 
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compute its utility and announces the resulting value to the other robots. With each robot 

broadcasting its utility for each task, we have communication overhead of O(mn) per 

iteration. Similar to M+, the MURDOCH task allocation mechanism also employs a 

variant of CNP. For each task auction, each available robot broadcasts its bid (i.e., 

utility), yielding communication overhead of O(n) per iteration because of the 

asymmetric nature of MURDOCH’s auctions. In ASyMTRe approach, the solution is 

based on perceptual schema representation of each robot’s physical components.  The 

solution requires the time to generate all the orderings of robots, which increases 

exponentially O(n!), and the actual reasoning time O(mn2) when utilities are being 

calculated. In ASyMTRe-D, the time is the average reasoning time O(mn) for the group 

to generate a solution. 

 
We notice that our algorithm’s execution time does not differ from that of existing 

homogenous approaches. So far we have not shown any actual comparison of our 

technique with the systems that we have analyzed. Because all of the previous 

architectures execute some kind of greedy algorithm for task allocation, the solution 

quality of greedy optimization algorithms can be difficult to define. Evaluating each 

architecture depends strongly on the nature of the experiment. The input to the 

experiment is the set of robots, tasks, and the environment that they are operating in. 

However, by taking each of the previous system’s utility equations and applying them in 

our centralized approach, would give a proper comparison between our system and the 

current systems. As shown in figure 5-16, the comparison is made by calculating the 
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utilities of the systems for 15 human rescue trials performed using 1200gms dummy on 

teams that are composed of  2, 3, 4, and 5 robots respectively.        

 

 

 

 

 

 

 

 

 

Figure 5-16: Comparison of RUTA with current methods 
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CONCLUSIONS AND FUTURE WORK 

In conclusion, the creation of UBSwarm is specifically designed to deploy 

heterogeneous robotic agents. Based on the type, the number of the robotic agents 

available, and the task selected, UBSwarm automatically constructs optimal solutions to 

the three different missions specified by the user. The coordination algorithm is translated 

into programs customized for each heterogeneous robotic agent. These programs define a 

set of rules and behaviors that allow the different robotic agents to work in a swarm 

fashion, even though they have different hardware configurations. 

Our work presents a task-oriented software application that facilitates the rapid 

deployment of multiple robotic agents.  The task solutions are created at run-time and 

executed in a centralized or decentralized fashion by the robotic agents.  A core 

component of the system’s framework is responsible for generating these task solutions. 

At the robots’ deployment and throughout their operational time, the software 

reconfigures solutions to accommodate any variation within the group of robots. Then the 

tasks are fractioned into smaller sub-tasks and assigned to the optimal number of robots 

using a novel Robot Utility Based Task Assignment (RUTA) algorithm. In addition, we 

demonstrated a reasoning algorithm that generates multi-robot utilities through a 

negotiation process in a decentralized manner.  
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Through the decentralization process, each robot generates an optimal solution for 

the entire task by reassigning subtasks to the team based on each robot’s utility. The 

system has to account for any change in the number of robots being used. When 

comparing the centralized to the decentralized UBSwarm, we discover that decentralized 

UBSwarm provides more flexibility and fault-tolerance is that these solutions have less 

quality in forming solutions.  

In the centralized situation, a set of robotic agents can adopt and adjust their 

subtasks in accordance with any variation that may occur. During runtime, the robot’s 

status is shared between robots. If a failing robot interrupts a task, then the swarm robotic 

environment will reconfigure new task solutions in order to adapt to changes within the 

robotic team’s composition. Analytical studies and physical implementations of 

coordination modes have been incorporated into our research.  

In a broader view of the system, UBSwarm deployment environment reduces 

efforts in dispatching tasks to swarm robotic agents, and permits users to add various new 

functions for robots and sensors. A few of the future work improvements that can greatly 

enhance the decision making performed by the coordination component and its 

applications include: 

1.  Optimizing the control algorithm to decide shortest path in executing a task, 

locate object more accurately, shorten swarm intelligence decision time, and keep 

better power efficiency in the operation.  

2. Another future improvement would be deciding the optimal number of robots to 

carry out the task most efficiently. Implementing error estimation on the fly 
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(during run-time) can be thought of, which can positively affect the 

decisions/configurations afterwards. 

3. Developing algorithms leading to controlling nano robots for cancer cell 

detection/removal and implement neural networks to allow robots learn their 

environment as they navigate. 

4. Improving the coordination algorithm using intelligent decision agent. Incorporate 

huge number of simpler robots (hundreds) to perform complex tasks. 

5. Extending the functionality of the deployment environment to allow integrating 

more sensory and actuation devices   
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