101 research outputs found

    The LOCATA challenge data corpus for acoustic source localization and tracking

    Get PDF
    Algorithms for acoustic source localization and tracking are essential for a wide range of applications such as personal assistants, smart homes, tele-conferencing systems, hearing aids, or autonomous systems. Numerous algorithms have been proposed for this purpose which, however, are not evaluated and compared against each other by using a common database so far. The IEEE-AASP Challenge on sound source localization and tracking (LOCATA) provides a novel, comprehensive data corpus for the objective benchmarking of state-of-the-art algorithms on sound source localization and tracking. The data corpus comprises six tasks ranging from the localization of a single static sound source with a static microphone array to the tracking of multiple moving speakers with a moving microphone array. It contains real-world multichannel audio recordings, obtained by hearing aids, microphones integrated in a robot head, a planar and a spherical microphone array in an enclosed acoustic environment as well as positional information about the involved arrays and sound sources represented by moving human talkers or static loudspeakers

    Audio source separation into the wild

    Get PDF
    International audienceThis review chapter is dedicated to multichannel audio source separation in real-life environment. We explore some of the major achievements in the field and discuss some of the remaining challenges. We will explore several important practical scenarios, e.g. moving sources and/or microphones, varying number of sources and sensors, high reverberation levels, spatially diffuse sources, and synchronization problems. Several applications such as smart assistants, cellular phones, hearing aids and robots, will be discussed. Our perspectives on the future of the field will be given as concluding remarks of this chapter

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Robust Distributed Multi-Source Detection and Labeling in Wireless Acoustic Sensor Networks

    Get PDF
    The growing demand in complex signal processing methods associated with low-energy large scale wireless acoustic sensor networks (WASNs) urges the shift to a new information and communication technologies (ICT) paradigm. The emerging research perception aspires for an appealing wireless network communication where multiple heterogeneous devices with different interests can cooperate in various signal processing tasks (MDMT). Contributions in this doctoral thesis focus on distributed multi-source detection and labeling applied to audio enhancement scenarios pursuing an MDMT fashioned node-specific source-of-interest signal enhancement in WASNs. In fact, an accurate detection and labeling is a pre-requisite to pursue the MDMT paradigm where nodes in the WASN communicate effectively their sources-of-interest and, therefore, multiple signal processing tasks can be enhanced via cooperation. First, a novel framework based on a dominant source model in distributed WASNs for resolving the activity detection of multiple speech sources in a reverberant and noisy environment is introduced. A preliminary rank-one multiplicative non-negative independent component analysis (M-NICA) for unique dominant energy source extraction given associated node clusters is presented. Partitional algorithms that minimize the within-cluster mean absolute deviation (MAD) and weighted MAD objectives are proposed to determine the cluster membership of the unmixed energies, and thus establish a source specific voice activity recognition. In a second study, improving the energy signal separation to alleviate the multiple source activity discrimination task is targeted. Sparsity inducing penalties are enforced on iterative rank-one singular value decomposition layers to extract sparse right rotations. Then, sparse non-negative blind energy separation is realized using multiplicative updates. Hence, the multiple source detection problem is converted into a sparse non-negative source energy decorrelation. Sparsity tunes the supposedly non-active energy signatures to exactly zero-valued energies so that it is easier to identify active energies and an activity detector can be constructed in a straightforward manner. In a centralized scenario, the activity decision is controlled by a fusion center that delivers the binary source activity detection for every participating energy source. This strategy gives precise detection results for small source numbers. With a growing number of interfering sources, the distributed detection approach is more promising. Conjointly, a robust distributed energy separation algorithm for multiple competing sources is proposed. A robust and regularized tνMt_{\nu}M-estimation of the covariance matrix of the mixed energies is employed. This approach yields a simple activity decision using only the robustly unmixed energy signatures of the sources in the WASN. The performance of the robust activity detector is validated with a distributed adaptive node-specific signal estimation method for speech enhancement. The latter enhances the quality and intelligibility of the signal while exploiting the accurately estimated multi-source voice decision patterns. In contrast to the original M-NICA for source separation, the extracted binary activity patterns with the robust energy separation significantly improve the node-specific signal estimation. Due to the increased computational complexity caused by the additional step of energy signal separation, a new approach to solving the detection question of multi-device multi-source networks is presented. Stability selection for iterative extraction of robust right singular vectors is considered. The sub-sampling selection technique provides transparency in properly choosing the regularization variable in the Lasso optimization problem. In this way, the strongest sparse right singular vectors using a robust ℓ1\ell_1-norm and stability selection are the set of basis vectors that describe the input data efficiently. Active/non-active source classification is achieved based on a robust Mahalanobis classifier. For this, a robust MM-estimator of the covariance matrix in the Mahalanobis distance is utilized. Extensive evaluation in centralized and distributed settings is performed to assess the effectiveness of the proposed approach. Thus, overcoming the computationally demanding source separation scheme is possible via exploiting robust stability selection for sparse multi-energy feature extraction. With respect to the labeling problem of various sources in a WASN, a robust approach is introduced that exploits the direction-of-arrival of the impinging source signals. A short-time Fourier transform-based subspace method estimates the angles of locally stationary wide band signals using a uniform linear array. The median of angles estimated at every frequency bin is utilized to obtain the overall angle for each participating source. The features, in this case, exploit the similarity across devices in the particular frequency bins that produce reliable direction-of-arrival estimates for each source. Reliability is defined with respect to the median across frequencies. All source-specific frequency bands that contribute to correct estimated angles are selected. A feature vector is formed for every source at each device by storing the frequency bin indices that lie within the upper and lower interval of the median absolute deviation scale of the estimated angle. Labeling is accomplished by a distributed clustering of the extracted angle-based feature vectors using consensus averaging

    Informed Sound Source Localization for Hearing Aid Applications

    Get PDF

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    On the applicability of models for outdoor sound (A)

    Get PDF
    • …
    corecore