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Kurzfassung

Die steigende Nachfrage nach komplexen Signalverarbeitungsverfahren in Verbindung

mit niederenergetischen, großen, drahtlosen, akustischen Sensornetzwerken, sogenan-

nten wireless acoustic sensor networks (WASNs) treibt den Wandel zu einem neuen

Paradigma der Informations- und Kommunikationstechnologien (ICT) voran. Die

aufkommende Forschungsrichtung strebt eine attraktive drahtlose Netzwerkkommu-

nikation an, bei der mehrere heterogene Geräte mit unterschiedlichen Interessen an

verschiedenen Signalverarbeitungsaufgaben kooperieren können. Im Englischen wird

hierfür der Begriff multiple devices cooperating in multiple tasks (MDMT) verwen-

det. Diese Dissertation beschäftigt sich mit der verteilten Mehrquellen-Erkennung

und -Kennzeichnung zur Verbesserung von Audiosignalen, die eine MDMT-gestützte,

knotenspezifische Signalverstärkung in WASNs verfolgen. Tatsächlich ist eine genaue

Erkennung und Kennzeichnung eine Grundvoraussetzung, um das MDMT-Paradigma

zu verfolgen, bei dem die Knoten im WASN effektiv die Quellen ihres Interesses kom-

munizieren und somit mehrere Signalverarbeitungsaufgaben durch Zusammenarbeit

verbessert werden können.

Zu Beginn wird ein neuartiges Rahmenwerk vorgestellt, das auf einem dominan-

ten Quellenmodell in dezentralen WASNs zur Aktivitätsdetektion mehrerer aktiver

Sprachsignalquellen in einer halligen und lauten Umgebung basiert. Eine vorläufige,

multiplikative, nicht-negative, unabhängige Rank-eins-Komponentenanalyse (M-

NICA) zur Extraktion dominanter Energiequellen anhand der zugehörigen Knotenclus-

ter wird vorgestellt. Algorithmen, die die mittlere absolute Abweichung und gewichtete

mittlere absolute Abweichung innerhalb des Clusters minimieren, werden vorgeschla-

gen, um die Clusterzugehörigkeit der getrennten Energien zu bestimmen und so eine

quellspezifische Sprachaktivitätserkennung zu erreichen.

Des Weiteren wird eine Verbesserung der Energie-Signaltrennung zur Vereinfachung

der Mehrfachquellen-Aktivitäts-Diskriminierung angestrebt. Auf iterativen Rank-eins-

Singulärwert-Zerlegungsebenen werden Regularisierungsterme angewandt, die Dünnbe-

setztheit induzieren. Anschließend wird mittels multiplikativer Aktualisierungen eine

dünnbesetzte, nicht-negative, blinde Energietrennung vollzogen. Somit wird das Prob-

lem der Mehrfachquellenerkennung in eine dünnbesetzte, nicht-negative Quellenergie-

Dekorrelation umgewandelt. Dünnbesetztheit stimmt die vermeintlich nicht aktiven

Energiesignaturen exakt auf Null-Energien ab, sodass es einfacher ist, aktive Energien

zu identifizieren, und ein Aktivitätsdetektor unkompliziert aufgebaut werden kann.

In einem zentralisierten Szenario wird die Aktivitätsentscheidung von einem Fusion-

szentrum gesteuert, das die binäre Quellaktivitätsdetektion für jede teilnehmende En-
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ergiequelle liefert. Diese Strategie liefert präzise Erkennungsergebnisse für eine kleine

Anzahl von Quellen. Bei einer wachsenden Anzahl von Störquellen ist die verteilte

Detektion vielversprechender. Gleichzeitig wird ein robuster, verteilter Energietren-

nungsalgorithmus für mehrere konkurrierende Quellen vorgeschlagen. Hierzu wird eine

robuste und regularisierte tνM -Schätzung der Kovarianzmatrix der gemischten En-

ergien verwendet. Dieser Ansatz führt zu einer einfachen Aktivitätsentscheidung, bei

der nur die robust getrennten Energiesignaturen der Quellen im WASN verwendet

werden. Die Leistung des robusten Aktivitätsdetektors wird mit einem verteilten,

adaptiven, knotenspezifischen Signalschätzverfahren zur Sprachverbesserung validiert.

Im Gegensatz zur ursprünglichen M-NICA für die Quelltrennung verbessern die ex-

trahierten binären Aktivitätsmuster im Zusammenspiel mit der robusten Energietren-

nung die knotenspezifische Signalschätzung signifikant.

Aufgrund der durch den zusätzlichen Schritt der Energiesignaltrennung verursachten,

erhöhten Rechenkomplexität wird ein neuer Ansatz zur Lösung der Detektionsfrage

von Mehrfachgeräte-Mehrfachquellen-Netzwerken vorgestellt. Stabilitätsselektion wird

zur iterativen Extraktion robuster, rechts-singulärer Vektoren berücksichtigt. Die

Unterabtastungs-Auswahlmethode sorgt für Transparenz bei der korrekten Auswahl

der Regularisierungsvariablen im Lasso-Optimierungsproblem. Auf diese Weise bilden

die stärksten dünnbesetzten, rechts-singulären Vektoren mit einer robusten `1-Norm

und Stabilitätsselektion die Basisvektoren, die die Eingangsdaten effizient beschreiben.

Sie werden mit einer robusten, unbeaufsichtigten Methode auf der Basis einer Norm `1

ermittelt. Die Klassifizierung der aktiven/nicht-aktiven Quellen erfolgt eines robusten

Mahalanobis-Klassifikators. Hierzu wird ein robuster M -Schätzer der Kovarianzmatrix

in der Mahalanobis-Distanz verwendet. Umfangreiche Auswertungen in zentralisierten

und verteilten Szenarien werden durchgeführt, um die Effektivität des vorgeschlage-

nen Ansatzes zu bewerten. Die Überwindung der rechenintensiven Quellentrennung

ist somit möglich, indem die robuste Stabilitätsselektion für die Extraktion von Multi-

Energiemerkmalen genutzt wird.

Im Hinblick auf das Kennzeichnungsproblem verschiedener Quellen in einem WASN

wird ein robuster Ansatz eingeführt, der die Einfallsrichtung der ankommenden

Quellsignale ausnutzt. Ein auf der Kurzzeit-Fourier-Transformation basierendes Un-

terraumverfahren schätzt die Winkel von lokal stationären Breitbandsignalen mit Hilfe

einer gleichförmigen linearen Sensorgruppe. Der Median der Winkel, die bei je-

dem Frequenzbereich geschätzt werden, wird verwendet, um den Gesamtwinkel für

jede teilnehmende Quelle zu erhalten. Die Merkmale nutzen in diesem Fall die

geräteübergreifende Ähnlichkeit in den jeweiligen Frequenzbereichen aus, die eine zu-

verlässige Schätzung der Ankunftsrichtung für jede Quelle liefern. Die Zuverlässigkeit



VII

wird in Bezug auf den Median über die Frequenzen hinweg definiert. Alle quellspez-

ifischen Frequenzbänder, die zur korrekten Schätzung der Winkel beitragen, werden

ausgewählt. Für jede Quelle wird an jedem Gerät ein Merkmalsvektor gebildet, in dem

die Indizes der Frequenzbereiche gespeichert werden, die innerhalb des oberen und

unteren Intervalls der mittleren absoluten Abweichungsskala des geschätzten Winkels

liegen. Die Kennzeichnung erfolgt durch ein verteiltes Clustering der extrahierten

winkelbasierten Merkmalsvektoren mittels Konsensmittelung.
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Abstract

The growing demand in complex signal processing methods associated with low-energy

large scale wireless acoustic sensor networks (WASNs) urges the shift to a new in-

formation and communication technologies (ICT) paradigm. The emerging research

perception aspires for an appealing wireless network communication where multiple het-

erogeneous devices with different interests can cooperate in various signal processing

tasks (MDMT). Contributions in this doctoral thesis focus on distributed multi-source

detection and labeling applied to audio enhancement scenarios pursuing an MDMT

fashioned node-specific source-of-interest signal enhancement in WASNs. In fact, an

accurate detection and labeling is a pre-requisite to pursue the MDMT paradigm where

nodes in the WASN communicate effectively their sources-of-interest and, therefore,

multiple signal processing tasks can be enhanced via cooperation.

First, a novel framework based on a dominant source model in distributed WASNs for

resolving the activity detection of multiple speech sources in a reverberant and noisy

environment is introduced. A preliminary rank-one multiplicative non-negative inde-

pendent component analysis (M-NICA) for unique dominant energy source extraction

given associated node clusters is presented. Partitional algorithms that minimize the

within-cluster mean absolute deviation (MAD) and weighted MAD objectives are pro-

posed to determine the cluster membership of the unmixed energies, and thus establish

a source specific voice activity recognition.

In a second study, improving the energy signal separation to alleviate the multiple

source activity discrimination task is targeted. Sparsity inducing penalties are en-

forced on iterative rank-one singular value decomposition layers to extract sparse right

rotations. Then, sparse non-negative blind energy separation is realized using multi-

plicative updates. Hence, the multiple source detection problem is converted into a

sparse non-negative source energy decorrelation. Sparsity tunes the supposedly non-

active energy signatures to exactly zero-valued energies so that it is easier to identify

active energies and an activity detector can be constructed in a straightforward man-

ner. In a centralized scenario, the activity decision is controlled by a fusion center

that delivers the binary source activity detection for every participating energy source.

This strategy gives precise detection results for small source numbers. With a growing

number of interfering sources, the distributed detection approach is more promising.

Conjointly, a robust distributed energy separation algorithm for multiple competing

sources is proposed. A robust and regularized tνM -estimation of the covariance matrix

of the mixed energies is employed. This approach yields a simple activity decision

using only the robustly unmixed energy signatures of the sources in the WASN. The
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performance of the robust activity detector is validated with a distributed adaptive

node-specific signal estimation method for speech enhancement. The latter enhances

the quality and intelligibility of the signal while exploiting the accurately estimated

multi-source voice decision patterns. In contrast to the original M-NICA for source

separation, the extracted binary activity patterns with the robust energy separation

significantly improve the node-specific signal estimation.

Due to the increased computational complexity caused by the additional step of en-

ergy signal separation, a new approach to solving the detection question of multi-

device multi-source networks is presented. Stability selection for iterative extraction

of robust right singular vectors is considered. The sub-sampling selection technique

provides transparency in properly choosing the regularization variable in the Lasso

optimization problem. In this way, the strongest sparse right singular vectors using

a robust `1-norm and stability selection are the set of basis vectors that describe the

input data efficiently. Active/non-active source classification is achieved based on a

robust Mahalanobis classifier. For this, a robust M -estimator of the covariance ma-

trix in the Mahalanobis distance is utilized. Extensive evaluation in centralized and

distributed settings is performed to assess the effectiveness of the proposed approach.

Thus, overcoming the computationally demanding source separation scheme is possible

via exploiting robust stability selection for sparse multi-energy feature extraction.

With respect to the labeling problem of various sources in a WASN, a robust approach

is introduced that exploits the direction-of-arrival of the impinging source signals. A

short-time Fourier transform-based subspace method estimates the angles of locally

stationary wide band signals using a uniform linear array. The median of angles esti-

mated at every frequency bin is utilized to obtain the overall angle for each participating

source. The features, in this case, exploit the similarity across devices in the particu-

lar frequency bins that produce reliable direction-of-arrival estimates for each source.

Reliability is defined with respect to the median across frequencies. All source-specific

frequency bands that contribute to correct estimated angles are selected. A feature

vector is formed for every source at each device by storing the frequency bin indices

that lie within the upper and lower interval of the median absolute deviation scale

of the estimated angle. Labeling is accomplished by a distributed clustering of the

extracted angle-based feature vectors using consensus averaging.
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1

Chapter 1

Introduction to Detection and Labeling in
Wireless Acoustic Sensor Networks

‘Avant donc que d’écrire, apprenez à
penser.
Ce que l’on conçoit bien s’énonce
clairement,
Et les mots pour le dire arrivent
aisément.
Hâtez-vous lentement, et sans perdre
courage.’

Nicolas Boileau

Traditional microphone arrays suffer from weak intelligibility of the recorded speech at

the microphones due to local sampling of the sound field often at large distance from

the sources. Together with their size and processing power limitations, microphone

arrays are not sufficiently performant for many demanding applications [6]. Wireless

acoustic sensor networks (WASN) consisting of spatially distributed wireless nodes

(see Fig. 1.2) equipped with one or more microphones that are supplied with wireless

communication and computation capabilities overcome these restrictions. Contrary to

single-node, higher quality recordings are perceived in WASNs by taking advantage

of the spatial diversity of the participating nodes in the network. This fact allows

WASNs for improved speech enhancement algorithms compared to single-node meth-

ods [7, 8]. In spite of the challenges in designing WASNs due to the significant data

traffic in the network, many researchers in the field have acknowledged the benefits of

WASNs to improve the quality and/or the intelligibility of the observed speech signals

corrupted by noise. WASNs are beneficial in a wide variety of research fields, such as

hearing aids, echo cancellation and hands-free telephony [9], teleconferencing systems,

automatic speech recognition (ASR) and speaker recognition [6, 10–15], speech coding

systems [16], computer games, and speech enhancement [17–21]. In the centralized

WASN configuration nodes transmit their observations to a fusion center (FC) that

performs all processing. Recently, distributed speech enhancement algorithms, such as

the distributed adaptive node-specific signal estimation (DANSE) algorithm, have been

developed for WASNs [7, 8, 11, 22–33]. Distributed WASNs disseminate the computa-

tions among the nodes and thus do not depend upon a FC. The communication cost in

this case is reduced by an exchange of information within neighboring nodes. Moreover,
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distributed WASNs are robust against failures of the FC and scalable to larger networks

at the cost of an increased computational effort at the different wireless nodes [7,8,34].

1.1 Multiple Devices for Multiple Tasks (MDMT)

for WASNs

With the abrupt advances in the area of signal processing, ceaseless high-demanding

constraints are perceived on wireless networks of microphone arrays. In most of the

ongoing information and communication technologies (ICT), wireless communications

using microphone arrays permit multi-functional sensor nodes that are low-cost, low-

power, and small in size to communicate in an untethered fashion and collaborate as a

group to achieve a signal processing task. These sensor nodes, equipped with sensing,

data processing, and communication components, leverage the strength of the cooper-

ative effort to supply increased sensing quality and higher precision in task fulfillment

in time and space. In such a scenario, sensor nodes have the same specific intent and

cooperation grants them the possibility to solve a unique signal processing task. This

concept is still lagging behind compared to the non-stop increase in complexity of signal

processing tasks and diversity of devices [35].

In fact, current research targets a new ICT paradigm that considers multiple het-

erogeneous devices with different interests, i.e., node-specific interests, cooperating in

various signal processing tasks in a WASN. In this sense, an emerging new paradigm is

that of multiple devices cooperating in multiple tasks (MDMT) [35]. This is different

from the classical ICT strategies employed in wireless sensor network setups, in which

multiple devices perform one single joint task. There is a potential to improve the net-

work performance if multiple devices are cooperating in order to solve multiple signal

processing tasks in a sensor network [35].

The MDMT technology encompasses aspects derived from various signal processing

fields of study including, e.g., distributed adaptive speech enhancement, which offers a

better node-specific audio signal enhancement [7,8,11,18] based on consistent, common,

unique labeling of all relevant sources that are observed by the network, as well as

precise voice activity detection (VAD) for the targeted multiple audio sources [1,5,34,

36, 37]. Researchers are targeting headway in establishing fundamental perimeters of

this field that is experiencing a continuing growth with new applications [35]. The

MDMT paradigm aims for a superior performance of the distinct signal processing

tasks in case of diverse participating sensors. For seek of proof of the usefulness of the
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MDMT paradigm, in this thesis an emphasis is put on robust distributed multi-source

detection and labeling applied to audio enhancement scenarios aspiring a node-specific

source-of-interest signal enhancement.

1.2 Motivation and Research Goals of This Doc-

toral Project

The labeling problem refers to providing a consistent identifier (label) to each of the

sources over the WASN. In other words, the speech sources should have the same la-

bels throughout the network. Furthermore, voice activity detection algorithms aim at

deciding whether sources of interest are active or not. Many detection and labeling

problems in statistical signal processing rely on specific assumptions, for instance, a

specific parametric signal model, Gaussianity, independence, and stationarity. Often,

these assumptions do not hold in practice, for example, the presence of non-Gaussian

and impulsive noise has been confirmed in several measurement campaigns. In these

situations, the performance of detection or labeling algorithms may drastically de-

grade. Conventional approaches for detection and labeling assume that all nodes have

a single common underlying objective. In addition, distributed multi-source detection

and labeling remains an unsolved problem. Hence, with regards to speech processing

applications, the major interest of this PhD project is to solve two main problems:

• Distributed multi-source voice activity detection, see [Chapter 2, Chapter 3], and

• Distributed multi-source labeling of a known number of interfering sources in a

challenging MDMT WASN, see [Chapter 4].

The fulfillment of the detection and labeling tasks for multiple interfering speech sources

in a distributed environment is crucial. If an accurate detection and labeling is con-

duced, the nodes in the WASN are subsequently able to efficiently communicate their

sources-of-interest and, consequently, any signal processing task can be enhanced via co-

operation. Based on the multi-device multi-source WASN described by Fig. 1.2, Fig. 1.1

presents an intuitive sketch of the labeling/detection of active sources in a WASN. No-

tice that when targeting such practical use-case applications, no prior knowledge, such

as the noise distribution, or the source and node positions and array orientations, is

assumed to be available to the algorithms. These challenging points are mostly taken
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as available preliminary knowledge in the conventional techniques treating the detec-

tion and source labeling questions, which makes the problem tractable and feasible to

solve.

This work investigates the distributed multi-source detection/labeling framework from

a generic point of view. Hence, a focal point is the extraction of robust low-dimensional

feature vectors, which are required to lead to a unique labeling and an accurate ac-

tivity detection. Furthermore, due to the non-stationarity of the speech signals and

the absence of a FC, distributed and adaptive approaches are considered. Our aim is

to develop robust distributed multi-source detection and labeling techniques in WASN

scenarios with node-specific interests, which fulfills the MDMT concept. To achieve

a node-specific decision, nodes cooperate locally within an ad hoc network structure.

This requires detecting sources of interest for the different nodes in adverse environ-

ments taking into account robust measures. Distributed multi-source detection and

labeling is a new research field and an important enabler for MDMT systems. Since

the received speech signals are a mixture of multiple sources, a preliminary step of

detection can be to unmix the received mixtures. A large focus is placed on developing

unmixing methods for VAD throughout this thesis. This study intuitively provides an

extracted set of unmixed features from the considered audio speech scenario depicted

in Fig. 1.2. Precisely, our detection and labeling techniques should be robust with

respect to interference and background noise environment uncertainties. Moreover,

adaptiveness is an important key so as to cope with environment non-stationarities.

1.3 Multi-Source Multi-Device WASN Use-Case

Consider a WASN that is deployed in a public environment, such as an airport hall,

a meeting room or a conference hall. Multiple speakers (sources) are simultaneously

active in the network. In order to perform subsequent speech enhancement, source

specific labels and voice activity patterns are required. Developing algorithms which

do not necessitate a priori information, such as positions and orientations of the devices

in the WASN, is essential.

Figure 1.2 shows a simulated public scenario with 7 active sources {S1, · · · , S7} and 20

nodes {D1, · · · , D20} that form the WASN in a reverberant 20× 10 meter room. Data

which follows such a setup has been generated within the HANDiCAMS1 project and

1HANDiCAMS is an EU-funded project where researchers aim at developing new distributed and
adaptive signal processing algorithms under a novel paradigm where multiple devices cooperate in
multiple tasks (MDMT) to achieve superior performance in their node-specific interests. More infor-
mation about this project can be found on: http://www.handicams-fet.eu/
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Figure 1.1: Nodes identifying well labeled active speech sources in a WASN.

is used for the evaluation of our proposed algorithms.

The sources (red) transmit speech signals that are recorded at the multiple sensor

nodes (blue) of the WASN. The nodes of the network are heterogeneous and can be

portable devices, such as mobile phones, or hearing aids. These are necessarily placed

nearly to their owners (source-of-interest). For the sake of simplification, we consider

a static use-case throughout this project. This means that the speech sources of the

network do not move. Sensor nodes, colored in blue in Fig. 1.2, are composed of 3

microphones aligned as a uniform linear array (ULA). The distance between every two

microphones is 1.5cm. Every source in the WASN represents a male or a female voice

signal. We consider a language-independent speech use-case, in the sense that the

targeted sources emit speech signals in different languages. The speakers in Fig. 1.2

emit signals that are recorded and sampled at the different microphone nodes with a

sampling frequency of fs = 16kHz. In such a speech scenario, sound signals are received

as mixtures at the different microphones. Cross-talk and noise are components that

appear with different powers at the multiple microphones. More precisely, the speech

is affected by spatially independent additive white Gaussian noise (AWGN) or babble

noise and the nodes are additionally disturbed by numerous interferers. Note that, in

this setting, each sensor receives a delayed and filtered version of the signals based on

the room-impulse-response.
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Figure 1.2: The speech use-case scenario: An example of a WASN observing seven speech
sources (red) in a 20×10m room with reverberation time T60 = 0.3s. The microphone signals
of the nodes (blue) are sampled at 16kHz. Source S2 models a public address system playing
an announcement broadcasted from two loudspeakers. Sources S1, S3, S4, S5, S6 and S7 are
six different speech sources.

Each device may be interested in enhancing a certain source signal. For the described

multiple source and multiple device WASN use-case, we propose, in this doctoral

project, novel algorithms to robustly and collaboratively determine the labeling in-

formation and speech activity of the participating speech sources from the received

mixtures.

1.4 Detection and Labeling: Related Works

1.4.1 Voice Activity Detection in Wireless Acoustic Sensor
Networks

Voice activity detection (VAD) distinguishes periods of speech from periods contain-

ing only noise. VAD is ubiquitous in speech processing applications such as speech

enhancement, speech coding, speaker and speech recognition. The VAD approaches
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amount to a pair of research fields compiled in statistical feature extraction and gen-

erative/discriminative models. In this work, the former steps are building blocks for

both detection and labeling tasks.

Research is still in full swing for efficient voice activity detectors, especially when

multiple sources are active. Reliable automatic speech/non-speech detection is crucial

for a number of different speech processing algorithms. This area of study affects a

number of SP applications.

Conventional VADs are sensitive to a variably noisy environment, especially at low

signal-to-noise ratio (SNR). This usually results in cutting off unvoiced regions of the

speech signal and random oscillations of the detector’s output. The classical single

source VAD approaches are based on thresholding procedures [3, 38–42]. The thresh-

olds are set based on a study that considers the different parameters of the voice signal

to obtain simply structured VAD algorithms. However, these methods fail at finding

the exact active/non-active transitions of a speech signal. Their immunity to noise is

bounded, which makes them particularly not efficient under low SNR environments.

Moreover, short-term energy-based detectors are proposed in [16, 43, 44]. Short-term

features employed by these techniques are advantageous since they capture the local

statistics of a signal at short periods where stationarity is assumed. In addition, these

methods have the merit of tracking the noise statistics properly for improved threshold

estimation. A front-end VAD technique is conveyed in [45] for speech signals buried in

noisy and reverberant environments. The study is based on the modulation transfer

function concept to reduce the ill effects of noise and reverberation for speech, and

propose a robust VAD method. Empirical mode decomposition (EMD) together with

modulation spectrum analysis (MSA) are employed in [46] for a robust VAD. EMD is

used for reducing the background noise without estimating the SNR. Later, determin-

ing speech/non-speech periods is done using the MSA approach. The authors in [47]

describe a unified approach meant for jointly solving the SP tasks related to: the under-

determined blind source separation (BSS), source activity detection, dereverberation

and direction-of-arrival (DoA), through the estimation of the parameters of an overall

generative model. The designed novel VAD algorithms in [48,49] incorporate machine

learning for detection where artificial neural network (ANN) classifiers are trained to

assess superior speech discrimination. However, machine learning-based VADs require

large data to properly learn the model. Determining speech activity based on time-

frequency representations of noisy microphone signals are established in [50, 51]. The

study of speech in the spectro-temporal space reveals a significant improvement of

the VAD performance directed at solving various speech related applications, such as

enhancing speech systems in low SNRs. More sophisticated approaches are based on

the statistical modeling of the VAD problem and are proposed in [2,52–62]. Statistical
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methods for VAD report significant improvements in speech/non-speech discrimination

accuracy over existing conventional VAD techniques. Nonetheless, they are based on

more complex models and require strong assumptions, e.g. to compare a likelihood

ratio with an appropriate thresholding function. Developing robust VAD methods

that do not break down under very low SNRs is necessary. Effective VAD algorithms

in terms of robustness and speech recognition performance in noisy environments are

defined in [54, 63–66]. The proposed techniques, however, show a trade-off between

detection accuracy and computational cost.

Even with these existing challenges, single-speaker speech detection can be considered

as a well-studied problem. The multi-speaker VAD counterpart, however, remains

an open question. Only few research work has targeted designing VAD approaches

for multiple simultaneous speech sources [67–71]. Another framework presented in [4]

considers the multi-speaker VAD as tracking the power of multiple simultaneous speech

signals using an ad hoc microphone array with unknown microphone positions. By

considering short-term energy-based recordings of the microphone signals, the multi-

speaker VAD question can be converted into a non-negative blind source separation

(NBSS) problem with non-negative sources, which can be solved efficiently with second-

order statistics only.

1.4.1.1 Discussion

Regarding the single source detection case, the presented methods operate well under

specific conditions, but their performance depends highly on the choice of thresholds,

the efficient estimation of which remains an open question. In addition, these methods

are single-channel detection solutions. Any further signal transmission using the same

channel is considered as an interferer and will cause the detector to break down. In

our proposed approaches, we consider a multi-source framework. A repeated sound

source at a different position, obviously recorded with different power, interestingly

collaborates in improving the quality of the proposed detectors in both single and multi-

source schemes. On the other hand, results of the state-of-the-art methods relating

to multi-source detection are not explicitly presented in the scientific manuscripts.

Additionally, the multi-source use-case in some of these methods is defined such as,

at a specific time instant, only one source is considered active while the others are

interfering sources. From our perspective, we consider such problems as single source

detection, because only a unique VAD pattern corresponding to the active source is

generated after processing. A sequential processing of these methods is not feasible.
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1.4.2 Source Labeling in Signal Processing

In contrast to centralized algorithms that confide the network’s final decision to a

central node, distributed learning for labeling is based on the cooperation between

nodes over a network, which insures a minimal overall network risk. No coordinating

FC that has access to the entire data from all nodes is needed. When data features are

distributed across different nodes, relaying information to a centralized processing unit

is discouraged due to the communication costs. A fully distributed scheme is favorable

to solve the labeling task for the sake of scalability, reduced communication complexity,

and robustness to isolated points of failure, i.e., a possible FC’s failure.

Up until today, there is a growing research interest on the topic of distributed clas-

sification [72–79]. In particular, a distributed algorithm for supervised learning in

the presence of a FC has been proposed in [77] and totally distributed schemes are

treated in [74, 75]. Distributed algorithms for unsupervised learning have been pro-

posed in [76, 80]. Nonetheless, to the best of our knowledge, prior to this doctoral

project, the distributed labeling task has not yet been addressed for the case of mul-

tiple speech sources in a WASN. Recently, distributed labeling techniques have been

introduced in [81–83] for labeling multiple objects in camera sensor networks.

1.5 Publications

The following publications have been produced during this doctoral project.

Internationally Refereed Journal Articles

• M. H. Bahari, L. K. Hamaidi, M. Muma, J. Plata-Chaves, M. Moonen, A. M.

Zoubir, A. Bertrand, “Distributed Multi-Speaker Voice Activity Detection for

Wireless Acoustic Sensor Networks”, submitted to IEEE Trans. Audio, Speech

and Language Process., March 2017.

Internationally Refereed Conference Papers

• S. Chouvardas, M. Muma, L. K. Hamaidi, S. Theodoridis, A. M. Zoubir, “Dis-

tributed Robust Labeling of Audio Sources in Heterogeneous Wireless Sensor
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Networks”, In Proc. 40th IEEE Int. Conf. Acoust., Speech and Signal Process.

(ICASSP), Brisbane, Australia, 2015.

• L. K. Hamaidi, M. Muma, A. M. Zoubir, “Multi-Speaker Voice Activity Detection

by An Improved Multiplicative Non-Negative Independent Component Analysis

With Sparseness Constraints”, In Proc. 42nd IEEE Int. Conf. Acoust., Speech

and Signal Process. (ICASSP), New Orleans, USA, 2017.

• L. K. Hamaidi, M. Muma, A. M. Zoubir, “Robust Distributed Multi-Speaker

Voice Activity Detection Using Stability Selection for Sparse Non-Negative Fea-

ture Extraction”, In the Proc. 25th European Signal Process. Conf. (EUSIPCO),

Kos Island, Greece, 2017.

• L. K. Hamaidi, M. Muma, A. M. Zoubir, “Robust Distributed Sparsity-

Constrained Non-Negative Source Separation and Multi-Speaker Voice Activity

Detection for Distributed Speech Enhancement in Wireless Acoustic Sensor Net-

works”, Submitted to the Proc. 2nd IEEE Int. Conf. Signals Syst. (ICSigSys),

Bali, Indonesia, 2018.

1.6 Organization of This Doctoral Thesis

The organization of this doctoral thesis comes as follows:

Chapter 2 introduces a novel framework for the multi-source detection task in a

distributed WASN. The suggested framework is based on three well stated steps:

distributed source-specific node clustering [1], distributed rank-one source un-

mixing, and distributed clustering-based multi-source VAD. In fact, the detection

task is based on partitional clustering of unmixed signals related to a dominant

speech source. Two robust clustering techniques are presented for the aim of a

compact multi-source detection method robust to outliers. Extensive simulation

results on a speech scenario of 6 sources and 20 nodes prove the effectiveness of

the detection technique under various noise conditions.

Chapter 3 focuses on developing an efficient energy-based multiple source sep-

aration method. The latter relies on a robust sparse modeling based on the `1-

norm. Source-specific non-negative sparse features related to the right rotations

of a sparse singular decomposition are extracted. This is considered as an initial

energy separation phase that is post-processed with an actual robust separation
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technique that uses multiplicative updates. Feature decorrelation is maximized

with a median measure of central tendency used in the computation of the co-

variance matrix, which makes the proposed method, named sparse median-based

multiplicative non-negative independent component analysis (SMM-NICA), ro-

bust to outlying energy signatures. A centralized scenario composed of 2 speech

sources is considered to test the assessment of the proposed approach and apply

it to a straightforward VAD classifier. Promising detection results are presented

and discussed.

In addition, in Chapter 3 we derive a robust version of SMM-NICA for energy

source unmixing. The multi-speaker VAD problem is converted into a robust

and sparse blind source separation problem. The performance in terms of speech

activity detection is further evaluated using a distributed and adaptive node-

specific signal enhancement (DANSE), see [7,8], scheme where node-specific signal

estimation is achieved based on the proposed robust sparsely estimated VAD

patterns. A two-phased simulation setup is utilized to prove the accuracy of the

suggested robust and sparse-promoting separation technique for VAD and speech

enhancement in both centralized and distributed modes.

Furthermore, in Chapter 3, we demonstrate that the need for a complete speech

separation technique for the fulfillment of the multi-source VAD can be diverted.

In fact, a sparse constrained model based on stability selection is employed to

extract robust source-specific feature vectors. Subsequently, robust classification

techniques based on a robust tνM -estimator are proposed for speech discrimina-

tion. Intensive experiments are conducted in both a centralized speech use-case

of 2 sources, and an extended distributed approach to resolve speech decision

for a challenging 7 source scenario buried in noise. VAD results based on this

proposed technique are precise and promising.

Chapter 4 develops a two-step technique for robust multiple source labeling

in WASNs. The non-hierarchical technique relies on the similarity information

deduced from the frequency bins that generate reliable estimation of direction-

of-arrivals (DoAs) at different nodes of the WASN. The labeling of the multiple

sources resorts to exploiting these extracted DoA-based feature vectors in a dis-

tributed/cooperative unsupervised learning technique based on a similarity mea-

sure applied to the feature vectors. The labeling results for different experiments

are presented and evaluated.

Chapter 5 settles some concluding points related to the presented multi-source

detection and labeling methods. Moreover, some possible open questions, future

research, and suggested schemes are identified.
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Chapter 2

Distributed Multi-Speaker
Clustering-Based Voice Activity Detection
for Wireless Acoustic Sensor Networks

‘Simplicity is the ultimate
sophistication’

Leonardo da Vinci

In this chapter1, the focus regards unsupervised learning based on clustering to solve the

multi-source detection problem in terms of VAD. We distinguish two settings related

to: the availability of data ahead of time where we perform batch multi-source VAD,

and the setting where data is streaming-in and decision is made in real-time, which

we call sequential multi-source VAD. The multi-source VAD question can be converted

into a blind source separation problem with non-negative sources, which can be solved

efficiently with second order statistics, by using short-term power measurements at

different nodes [1, 4, 5]. Different centralized non-negative signal unmixing methods

have been suggested in the literature, for instance, non-negative principal component

analysis (NPCA) [84] and multiplicative non-negative independent component analysis

(M-NICA) [85]. These algorithms are capable of producing separated source energy

signals, from the nodes’ observations [4]. However, they require a FC and their unmix-

ing performance severely degrades with an increasing number of active sources, see for

instance Fig. 2.1 (b) for an example of unmixing the energy of Source S6 for the WASN

with seven active speech sources that is displayed in Fig. 1.2. Obviously, nodes that

are located in the proximity of a source observe the corresponding source signal with

a higher power compared to other interfering source signals. Therefore, unmixing the

energy signal of this specific source using the recorded signals at these nodes is much

easier. Fig. 2.1 (c) depicts the improvement in performance when using M-NICA with

only observations collected from devices D8, D11, and D14, which are located around

Source S6, compared to using centralized M-NICA in Fig. 2.1 (b).

1This chapter is based on the journal article entitled: ”Distributed Multi-Speaker Voice Activity
Detection for Wireless Acoustic Sensor Networks”, submitted to the IEEE Trans. Audio, Speech and
Language Process. (T-ASL). Our major original contributions are in Section III. D, Section III. E,
and Section IV. D of this journal submission.
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Figure 2.1: The unmixing result for Source S6 in the scenario of Fig. 1.2 using (b) M-NICA
over the observation of all devices and (c) M-NICA with the observations of devices D8, D11,
and D14.
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2.1 Introduction

2.1.1 Background

While single-speaker single-node VAD is a well researched problem [2, 3, 43, 50, 53,

56, 57, 61, 62, 66, 86], to the best of our knowledge, no distributed multi-speaker voice

activity detection (DM-VAD) method is available in the literature. Even for central-

ized WASNs, the literature is sparse [4, 5, 68–71]. The VAD method introduced by

Bertrand et al. for multiple-concurrent-speakers in centralized WASNs [4] performs a

multi-speaker energy pattern extraction by designing an efficient energy unmixing algo-

rithm in a WASN. Nevertheless, after energy separation, no implicit VAD is performed

in [4]. Moreover, in [71], independent component analysis (ICA) is used combined

with beampattern analysis to identify the active speaker and perform VAD based on

the precise knowledge of the direction of arrival of the speech signals. This approach

is computationally demanding as it operates in the time-frequency domain. An inte-

grated centralized multi-source speaker localization and multi-channel VAD framework

is introduced in [69]. The work exploits the behavior of the spatial gradient steered

response power function using the phase transform method. While in [68], identifying

a single target speaker from multiple speakers in a centralized fashion is considered.

Thus, an energy-based information from the interfering channels is included to adap-

tively adjust the decision threshold of the targeted channel. Recently, a centralized

VAD method [70] is developed that exploits processed information recorded from a

camera-assisted microphone array. Moreover, a centralized sparse median-based mul-

tiplicative non-negative ICA (M-NICA), abbreviated by SMM-NICA, is proposed for

energy source unmixing in our recent work [5].

Many distributed speech enhancement algorithms, such as the distributed adaptive

node-specific signal estimation (DANSE) algorithm [7, 8, 11, 27], or the distributed

speech enhancement based on multi-channel Wiener filtering (MWF) in [18] require

a DM-VAD method to estimate the speech and noise covariances. Therefore, in this

chapter, an original DM-VAD for WASNs is proposed. The proposed method nei-

ther requires a FC nor prior knowledge about the node positions, microphone array

orientations or the number of observed sources.

Exploiting the WASN topology to develop a DM-VAD technique is a promising idea,

yet challenging. In fact, it requires a distributed method to locate the nodes around

each source (LONAS) [1]. LONAS solves a node clustering problem, where nodes in

the vicinity of each source are grouped into a cluster. Only one cluster of nodes should
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be formed for every source [1]. LONAS defines a unified framework that answers the

source enumeration and the node clustering problems based on adaptive distributed

eigenvalue decomposition (EVD) [87–91]. In this chapter, the distributed WASN set-

ting is resolved using LONAS to determine the clusters of nodes for which a single

source is dominant. The subsequent VAD in the presence of multi-speakers is then

achievable in a distributed mode by applying algorithms that are proposed in this

chapter.

2.1.2 Problem Formulation and Signal Model

We analyze an ad hoc WASN accommodating Q speakers and k = [1, . . . , K] devices.

Each device k comprises a uniform linear array (ULA) equipped with Mk microphone

sensing elements indexed by m = [1, . . . ,Mk]. In our setup, we assume an identical

number of microphones at every active node k. The overall number of microphones

throughout the network is M =
∑K

k=1 Mk. Fig. 1.2 sketches the studied audio scenario.

A speaker q generates signals s̃q[η], η = [1, . . . , T ], where η denotes the sample time

index. Let s̃q describe the column vector of all emitted signals from source q, i.e. s̃q[η],

at every time instant η = [1, . . . , T ]. The speech sources [̃s1, . . . , s̃Q]> are mutually

independent and uniquely labeled using the algorithm presented in [34]. We assume

statistical second-order stationarity for blocks of length L and define the instantaneous

power of a signal s̃q[η] at each block as

sq[n] =
1

L

L−1∑
l=0

s̃q[nL+ l]2, (2.1)

where n = [1, . . . , N ] is the frame index. The sq[n] are stacked in a Q-dimensional

vector s[n]. The instantaneous noisy signal power at the mth microphone of the kth

device is

yk,m[n] =
1

L

L−1∑
l=0

ỹk,m[nL+ l]2, m ∈ {1, . . . ,Mk}, (2.2)

where ỹk,m denotes the observed signal at the mth microphone of the kth device. By

assuming mutually independent source signals and neglecting the reverberation effects

over time segments [4], in a centralized network, the system-wide non-negative yk,m[n]



2.2 Overview of the Proposed DM-VAD Scheme 17

of all devices k are stacked in a M -dimensional vector y[n]. The mixture is modeled

by

y[n] ≈ As[n] + ω[n], n = 1, . . . , N, (2.3)

with

y[n] ,
[
(y1[n])>, . . . , (yk[n])>, . . . , (yK [n])>

]>
(2.4)

yk[n] , [yk,1[n], . . . , yk,Mk
[n]]> (2.5)

s[n] , [s1[n], . . . , sQ[n]]> , (2.6)

where A ∈ RM×Q is the mixing matrix that describes the power attenuation between

speaker q and microphone m. The additive noise term ω[n] follows the same design

introduced in Eqs. (2.1)-(2.2). In the centralized setup, as in [4], the instantaneous

linear mixtures in Eq. (2.3) allow for the estimation of the unknown signal powers s[n].

2.2 Overview of the Proposed DM-VAD Scheme

In order to elucidate the framework that the proposed DM-VAD undergoes, the steps

of the overall DM-VAD mechanism are illustrated in Fig. 2.2. The figure provides an

overview of the proposed DM-VAD algorithm, which consists of three main steps

(1) Locating Nodes around sources (LONAS) [1],

(2) distributed source-specific energy signal unmixing,

(3) energy signal based voice activity detection.
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Figure 2.2: Block-diagram of the proposed DM-VAD framework. The input signals are
energy mixtures received at every device Dk ∈ {D1, . . . , DK} and the output of the proposed
system are VAD patterns relative to the energy sources Sq ∈ {S1, . . . , SQ}.

Node clustering around their unique dominant source-of-interest is performed using the

LONAS method [1], which is presented in Section 2.3.2. LONAS is able to identify Q

node clusters Bq, q = [1, . . . , Q], which are composed such that Bq observes source q

as the dominant speech source. This technique endures a distributed source enumer-

ation method to obtain an estimate of Q, which we denote as Q̂. Once a distributed

node clustering is created using LONAS, a consecutive distributed source energy un-
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mixing is enabled at every cluster dominated by a single energy signature related to a

well-labeled speech source. This implies that each cluster applies independently a rank-

one M-NICA to separate its dominant source’s energy from the remaining signal and

noise content. In fact, the computationally efficient blind source separation (BSS) tech-

nique, namely M-NICA [85], rapidly loses its performance when the number of targeted

sources increases in a centralized scenario with a FC. A distributed extraction of domi-

nant source-specific energy signals from the mixed observations hugely outperforms the

estimation performance of the existing centralized M-NICA approach [1,5]. It is to note

that estimating the energy signal of a single-source using the observations of the nodes

around it is a much easier task for M-NICA compared to estimating Q energy signals

simultaneously given the observations of all the nodes in the WASN. The scalability

issue for large Q and K in the M-NICA method is solved by the divide-and-conquer

strategy, namely LONAS [1]. Finally, to determine voice activity, partitional clustering

algorithms are applied for which low-dimensional features are extracted from the un-

mixed source energies to distinguish the pause from the active speech frames for each

source separately. At this stage, we propose a robust weighted partitional algorithm

that has higher clustering accuracy, mainly for speech energy signatures. Exhaustive

simulations are performed on consecutive real world multi-variate speech data to show

the efficiency of the proposed distributed multi-speaker VAD framework.

2.2.1 Original Contributions in This Chapter

We introduce a novel clustering-based DM-VAD method for distributed WASNs. Our

original approach to the DM-VAD includes:

• Contributing to and proposing a DM-VAD framework for WASNs.

• Designing and evaluating a voice activity detector based on rank-one M-NICA

energy unmixing using the dominant source model, see Section 2.3.3.

• Proposing activity detection via a clustering approach based on energy features,

see Section 2.4.

2.3 Distributed Unmixing of Source Energy Signals

In this section, we first present fundamentals of the centralized M-NICA algorithm

based on [4,85]. We find it essential explaining the centralized M-NICA since our pro-

posed techniques all through this thesis are based on energy features extracted from
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different improved versions of M-NICA. Centralized unmixing of the energies based

on Eq. (2.3) can be performed, for example, using non-negative principal component

analysis (NPCA) [84] and multiplicative non-negative independent component anal-

ysis (M-NICA) [4, 85]. We then briefly describe LONAS [1]. Finally, the proposed

distributed source dominant rank-one M-NICA approach is explained in Section 2.3.3.

2.3.1 The Centralized M-NICA Algorithm

A long-standing research question is how to find a suitable representation of data.

Independent component analysis (ICA) seeks essential structures in statistical data.

The identified data components are both statistically independent and non-Gaussian

[92–97]. The separation of the observed mixed energies turns into a NBSS that can be

solved using non-negative ICA (NICA) methods.

For a self-contained thesis, we introduce in the following the basic M-NICA algorithm.

M-NICA is proposed in [85] with the aim to reconstruct the original non-negative

signals from the observed linear mixtures based on a multiplicative update rule. A

multiplicative update preserves the non-negativity constraint of the signals and does

not depend on a user-defined learning rate as opposed to gradient based updates [98].

Let Ȳ denote the M×N non-negative matrix of all received noisy energies at every mi-

crophone m and frame n collected from Eq. (2.4). The goal of the centralized M-NICA

is to find a Q × N non-negative matrix S̄ such that the rows of the recovered matrix

S̄ are uncorrelated and only contain non-negative numbers. The centralized M-NICA

is a fixed-point type algorithm that is used to generate this matrix. The centralized

M-NICA pre-processes the energy separation step by a singular value decomposition

(SVD) step in Eq. (2.7). The SVD decomposes the energy signal Ȳ into the left

U ∈ RM×M and right V ∈ RN×M right rotations of singular vectors, and a scaling ma-

trix Σ ∈ RM×M of M singular values on its diagonal. This step is meant to substitute

the matrix Ȳ by its smoothed best rank approximation via an SVD operation as shown

in Eq. (2.8). This means only the largest Q < M singular values are considered in the

computation of the new filtered matrix Ȳ. More specifically, the product in Eq. (2.8)

generates a smoothed matrix Ȳ ∈ RM×N that is formed from the multiplication of the

matrices Ū ∈ RM×Q, V̄ ∈ RN×Q, and Σ̄ ∈ RQ×Q. The remaining singular values, i.e.

Q+ 1, . . . ,M are regarded as noise. It is to notice that this step is capable of removing

some noise from the observations. This initialization step is pursued by a centralized

signal decorrelation step using Eq. (2.9) of Algorithm 1, derived in [85]. In Eq. (2.9),

the elements of the matrix S̄ are updated to decrease the mutual correlation between
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the rows of S̄. Due to the fact that S̄ is initialized with non-negative elements, the

decorrelation process in Eq. (2.9) will preserve the non-negativity because of its mul-

tiplicative nature. However, the rows of the constructed matrix S̄ are no longer in the

signal subspace defined by the rows of Ȳ. Consequently, the matrix S̄ is projected to

the row space of Ȳ using Eq. (2.14). A summary of the centralized M-NICA procedure

is given in Algorithm 1 and in [85].

Algorithm 1 Centralized M-NICA [4,85]

Input
1: Ȳ = (y[1], · · · ,y[N ]) ∈ RM×N

+ based on Eq. (2.4)
Initialization

2: ∀q = 1, . . . , Q, ∀n = 1, . . . , N : [S̄]qn ←− [Ȳ]qn
3: Replace Ȳ by its best rank approximation by means of the singular value decom-

position (SVD), i.e.
4:

{U,Σ,V} ←− SVD(Ȳ) (2.7)

5:

Ȳ ←− ŪΣ̄V̄> (2.8)

where Σ̄ is the Q×Q diagonal matrix containing the Q largest singular values of
Ȳ on its diagonal, and the corresponding left and right singular vectors are stored
in the columns of Ū and V̄, respectively.

6: Decorrelation Step
∀q = 1, . . . , Q ∀n = 1, . . . , N

[S̄∗]q,n ← [S̄]q,n

[
S̀qS̄

>
q Λ−1

1 S̄q + S̄qS̄
>
q Λ−1

1 S̀q + Λ2S̄q

S̀qS̄>q Λ−1
1 S̀q + S̄qS̄>q Λ−1

1 S̄q + Λ2S̀q

]
q,n

(2.9)

S̀ =
1

N
{S̄n}1>N ,∀n = 1, . . . , N (2.10)

CS̄ = (S̄− S̀)(S̄− S̀)> (2.11)

Λ1 = D{CS̄} (2.12)

Λ2 = D{(Λ−1
1 CS̄)2} (2.13)

where 1N denotes an N -dimensional column vector in which each entry is 1, and
D{X} denotes the operator that sets all off-diagonal elements of X to zero.

7: Signal Subspace Projection Step
∀q = 1, . . . , Q, ∀n = 1, . . . , N :

[S̄]q,n ← max([S̄∗V̄V̄>]q,n, 0) (2.14)

8: Return to Step 6.
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Once a fixed point of Eqs. (2.9)-(2.14) is achieved, the elements in each row of the

non-negative matrix S̄ correspond to frames of the unmixed signal sq[n]. The mixing

matrix Â related to a row of S̄ can then be calculated using

Â = ȲS̄>(S̄S̄>)−1. (2.15)

By applying the centralized M-NICA algorithm, there remains always a permutation

and scaling ambiguity between the columns of Â and the estimated energy source

signals in S̄. Since we are interested in solving the multi-speaker VAD problem based

on well-labeled energy signatures in S̄, the permutation problem of the source signals

resulting from the centralized M-NICA algorithm is solved using a distributed labeling

algorithm that we propose in [34]. The labeling method is able to assign with high

accuracy the energy signatures to their corresponding speech sources in the WASN. In

this manner, the resulting energies in the network, and thus the speakers, are well

identified. Multi-source energy labeling, or speaker identification based on energy

signatures, is discussed in detail in Chapter 4.

2.3.1.1 Computational Cost of the Centralized M-NICA

The complexity of the centralized M-NICA algorithm is similar to that of the non-

negative principal component analysis (NPCA). Notice that the M-NICA converges

slowly compared to NPCA, but achieves more accurate unmixing results. Especially,

when using small sample sizes M-NICA outperforms NPCA significantly. In addition,

M-NICA does not rely on a user-defined step size parameter, as opposed to NPCA.

This data-driven parameter should be tuned by the user to ensure the convergence

of NPCA, and thus obtain relevant unmixing results. Having a number of samples

greater than the number of targets, i.e. N � Q, the overall complexity of the M-NICA

algorithm is O(Q2N), which is the same as the NPCA algorithm [85].

2.3.2 Locating Nodes Around Sources (LONAS)

Node clustering around their unique dominant source-of-interest is performed using

the LONAS method [1]. LONAS allows to identify Q node clusters Bq, q = [1, . . . , Q],

which are composed such that Bq observes source q as the dominant speech source.

To achieve a node clustering, LONAS applies a distributed eigenvalue decomposition
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(EVD). Details on LONAS and a method to estimate the numbers of sources in the

network are given in [1] and the outcoming node clustering results are utilized within

this research. The results from applying the LONAS to cluster the nodes around their

dominant sources of interest in the WASN described by Fig. 1.2 are summarized in [1]

and shown in Fig. 2.3.

Figure 2.3: Results of the distributed clustering of nodes around their unique dominant
sources of interest using LONAS [1] in a WASN of Q = 7 speech sources (red) and K = 20
devices (blue). Clusters of nodes, i.e., Bq are represented with black dashed lines for every
source q.

2.3.3 Proposed Distributed Rank-One M-NICA for Cluster
Dominant Source Estimation

Since different speakers have different positions, the design of a non-negative BSS, such

as M-NICA, can rely on spatial information collected by multiple microphones. With

a growing number of interfering energy sources in the WASN, the mixture of energies

recorded at different microphones is markedly affected by interference. The noise signal

can be environmental noise and/or a speaker that interferes with the target speaker

(the microphone’s source-of-interest). Therefore, a centralized blind source separation

algorithm of type M-NICA becomes unreliable in scenarios with higher number of

speakers. This is because crucial assumptions, such as the well-groundedness [4, 85]
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are violated when many sources are active. In order to overcome the restraints of the

centralized M-NICA, we derive a distributed rank-one M-NICA based on distributed

node clustering achieved by LONAS. Let Bq denote the set of nodes that are assigned

to the qth source by LONAS, and #(Bq) > 0 denotes its cardinality, i.e., the number

of nodes assigned to the qth source. Further, analogously to Eq. (2.4), let yBq [n] ∈
R#(Bq)×1 contain the instantaneous energies of the microphone signals of all nodes

k ∈ Bq at time segment n. Then, assuming that sq[n] is the dominant source for the

nodes in Bq we define

yBq [n] ≈ aBqsq[n] + ωBq [n], q ∈ {1, . . . , Q̂}, (2.16)

where aBq is a #(Bq)-dimensional mixing vector that describes the power attenuation

between the qth source and the nodes within Bq. Based on Eq. (2.16), each cluster

Bq, q ∈ {1, . . . , Q̂} uses a source-specific rank-one M-NICA algorithm to determine sq.

A rank-one M-NICA algorithm applied on distributed clusters is capable of recovering

a single dominating energy signal q at every cluster of nodes Bq based on the integration

of the cooperative information collected from the set of elementary microphones at a

cluster level Bq. Instead of a single centralized M-NICA that assumes Q sources, this

implies that, the proposed distributed unmixing approach based on LONAS performs

Q rank-one M-NICA algorithms for the Q formed clusters of nodes. For this reason,

the performance of the source energy recovery based on the proposed rank-one M-

NICA, performed in each cluster, no longer depends on Q, and in principle, Q can

grow arbitrarily large.

For the sake of an easy exposition, the ensuing section is concerned with the substantial

derivations carried out in order to map the design of a centralized M-NICA into a

distributed rank-one M-NICA for a distributed energy-based BSS. Hence, assume that

we collect a #(Bq) × N data matrix ȲBq , at cluster Bq, that contains N samples

yBq [n], n = [1, . . . , N ], in its columns based on Eq. (2.4). In a distributed M-NICA, we

aim at finding a single 1 × N vector sq per cluster, such that sq = (sq[1], . . . , sq[N ]),

and sq contains non-negative values and corresponds to the refined extracted energy

for a dominant source q in a cluster Bq. Thus, the derived steps outlined in Algorithm

2 corresponding to the distributed fixed-point rank-one type M-NICA algorithm are

used to generate such a vector related to a source-of-interest at every cluster q. In

Algorithm 2, the initialization of the vector sq is given in Step 2. As a next step, the

SVD-based pre-processing of the input matrix ȲBq is established to replace ȲBq with its

best first rank approximation of the same size R#(Bq)×N . In this case, the left and right
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rotations, i.e., U ∈ R#(Bq)×#(Bq) and V ∈ RN×#(Bq), as well as, the scaling matrix Σ ∈
R#(Bq)×#(Bq) are extracted in Eq. (2.18). Afterwards, Eq. (2.19) substitutes ȲBq by its

first rank approximated smoothed version matrix of size #(Bq)×N . The decorrelation

step for the distributed rank-one M-NICA comes with modifications imposed on the

numerator and the denominator compared to Eq. (2.9). In particular, the computation

of the covariance matrix CS̄ ∈ RQ×Q in Eq. (2.11) reduces to computing the variance

csq of the signal sq in Eq. (2.22). This entails that the diagonal matrices Λ1 ∈ RQ×Q

and Λ2 ∈ RQ×Q used to derive Eq. (2.9) reduce, in the proposed distributed rank-

one M-NICA, to λ̀1 and λ̀2 corresponding to weighting scalars equal to the computed

variance of the signal sq and the value one, respectively. Consequently, the proposed

decorrelation function for the case of a distributed rank-one M-NICA algorithm is

given in Eq. (2.20) of Algorithm 2. Since the term λ̀2 reduces to one, the decorrelation

formulation in Eq. (2.20) can be written as

[s∗q]n ← [sq]n

[
s̀qs
>
q λ̀
−1
1 sq + sqs

>
q λ̀
−1
1 s̀q + sq

s̀qs>q λ̀
−1
1 s̀q + sqs>q λ̀

−1
1 sq + s̀q

]
n

(2.17)

The signal subspace projection for the distributed M-NICA is performed and introduced

in Eq. (2.25). Equations (2.20)-(2.25) are repeatedly implemented until a fixed point

of the algorithm is achieved. Likewise, the mixing vector aBq ∈ R#(Bq)×1 is estimated

using

aBq = ȲBqs
>
q (sqs

>
q )−1. (2.26)

Clearly, the distributed rank-one M-NICA algorithm for the estimation of the signals

sq separately at every cluster does not issue a permutation problem. Obviously, the

recovered unique signal sq per cluster q corresponds to the dominant source at that

cluster q. A summary of the derived distributed rank-one M-NICA approach is given

in Algorithm 2. Figures. 2.4 and 2.5 show the unmixing results when applying a dis-

tributed rank-one M-NICA that uses node clusters around dominant sources, compared

to the energy unmixing of a centralized M-NICA over all nodes for Sources S4 and S5,

respectively.

2.3.3.1 Computational Cost of the Distributed Rank-one M-NICA

The above mentioned divide-and-conquer approach, related to deriving a distributed

unmixing based on the M-NICA algorithm (see Algorithm 2), reduces to a problem
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Figure 2.4: The unmixing results for Source S4 using (b) M-NICA over all nodes and (c)
Distributed source dominant rank-one M-NICA.



2.3 Distributed Unmixing of Source Energy Signals 27

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9

E
n

er
g

y

(a)

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

4000

E
n

er
g

y

(b)

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

4000

E
n

er
g

y

(c)

Figure 2.5: The unmixing results for Source S5 using (b) M-NICA over all nodes and (c)
Distributed source dominant rank-one M-NICA.
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Algorithm 2 Distributed rank-one M-NICA

1: Input

ȲBq = (yBq [1], · · · ,yBq [N ]) ∈ R#(Bq)×N
+ based on Eq. (2.16)

2: Initialization
For a unique dominant source q, sq ←− [ȲBq ]1n ∀n = 1, . . . , N
Replace ȲBq by its best first rank approximation by means of the singular value
decomposition (SVD), i.e.

{U,Σ,V} ←− SVD(ȲBq) (2.18)

ȲBq ←− ūσ̄v̄> (2.19)

where σ̄ is the largest singular value of ȲBq , ū ∈ R#(Bq)×1 corresponds to the left
singular vector of length #(Bq) stored in U ∈ R#(Bq)×#(Bq), and v̄> is the right
singular vector of V ∈ RN×#(Bq) with v̄ ∈ RN×1.

3: Decorrelation Step
∀n = 1, . . . , N

[s∗q]n ← [sq]n

[
s̀qs
>
q λ̀
−1
1 sq + sqs

>
q λ̀
−1
1 s̀q + λ̀2sq

s̀qs>q λ̀
−1
1 s̀q + sqs>q λ̀

−1
1 sq + λ̀2s̀q

]
n

(2.20)

s̀q =
1

N
{sq}1>N (2.21)

csq = (sq − s̀q)(sq − s̀q)
> (2.22)

λ̀1 = csq (2.23)

λ̀2 = (λ̀−1
1 csq)

2 = 1 (2.24)

4: Signal Subspace Projection Step
For a given source q, ∀n = 1, . . . , N :

[sq]n ← max([s∗qv̄v̄>]n, 0) (2.25)

5: Return to Step 3

with linear complexity. Specifically, the steps of the distributed M-NICA are applied

in parallel to every identified cluster of nodes in order to estimate a unique energy

source. This means, the computational cost of the distributed algorithm is independent

of the overall number of participating sources, but only depends on the number of

observations. At every cluster, we assume N � 1. The value one here pertains to the

unique source-of-interest q of the formed cluster Bq. Based on this, we infer that the

complexity of the distributed M-NICA at a cluster Bq increases linearly with N , i.e.,

O(N). The implementation of the distributed M-NICA is parallelized, as to recover
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the Q energy sources, without any additional time complexity.

2.4 Distributed Clustering-Based Multi-Speaker

Voice Activity Detection (DM-VAD)

The final step of the proposed algorithm distinguishes the active and the non-active

speech segments for each source by means of efficient partitional clustering algorithms

[99, 100]. These algorithms determine the class membership of each time segment,

depending on its distance to the estimated cluster centroids. The idea of our approach

is to transform the VAD problem into a clustering task by extracting features from the

estimated energy signatures. There are two clusters that correspond to the active and

non-active speech clusters. Unique labels of the speech sources throughout the network

are available from the distributed labeling algorithm presented in [34] and Chapter 4

of this thesis.

Rational decision is involved to answer the question: ”Which center corresponds to

which speech case?”. Apparently, taking the minimum center to be a descriptive mea-

sure of the non-active speech and vice versa seems to be a practical assumption for our

speech discrimination purpose. We utilize this straightforward assumption all along

the upcoming proposed approach for voice activity decision. Running a K-means type

algorithm in the case of known two-centers based clustering enables us to estimate

two centers, one related to the active speech while the other describes the non-active

speech.

Based on the source energies extracted using the proposed distributed framework pre-

sented earlier, the forthcoming subsections consist of

1. Robust low-dimensional short-term energy feature extraction

2. Non-stationary speech discrimination based on two proposed robust objective

functions for clustering.

2.4.1 Robust Low-Dimensional Short-Term Energy Features

Let ŝ
(n)
Bq , q = [1, . . . , Q̂] denote the estimated source-specific energy signals sq[n] in

Eq. (2.25). Source-specific voice activity patterns for each source q = [1, . . . , Q̂] are
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determined by extracting features from ŝ
(n)
Bq locally within each node cluster Bq, allowing

for a distributed computation. The unique labels of ŝ
(n)
Bq throughout the network are

available from the distributed labeling algorithm presented in [34]. The feature vector

v(n)
q , [v

(n)
q,1 , v

(n)
q,2 , v

(n)
q,3 ]> (2.27)

is formed from three different features. The selected features are the result of an

empirical study that contained a larger set of features which we do not elaborate on

for the sake of conciseness. The selected features are computed as follows

1. Short-term arithmetic average

v
(n)
q,1 =

1

W

n+1∑
i=n−W

ŝ
(i)
Bq , n ∈ {W + 1, · · · , N} (2.28)

2. Short-term standard deviation

v
(n)
q,2 =

√√√√ 1

W

n∑
i=n−W

(ŝ
(i)
Bq − v

(i)
q,1)2, n ∈ {W + 1, · · · , N} (2.29)

3. First-order energy difference

v
(n)
q,3 = ŝ

(n)
Bq − ŝ

(n+1)
Bq , n ∈ {W, · · · , N − 1} (2.30)

Figure 2.6 gives an illustrating example, where each point corresponds to one feature

vector v
(n)
q , which either belongs to the active speech (blue crosses) or the pause class

(red dots). From Fig. 2.6, it can be seen that the distribution of the data in the feature

space is non-symmetric and non-Gaussian. The speech clusters are highly overlapping

and do not generate spherical clusters. Based on these facts, relying on a standard K-

means for speech activity detection is unsuitable. Following our previously presented

arguments, we propose two alternative robust objective functions for clustering. We

also use some existing robust variations of the K-means algorithm for comparison.

One such variation is the K-medians, where the component-wise sample median of

each cluster is used to determine its centroid. This results in minimizing the error over

all clusters with respect to the `1-norm distance metric. A further robust variation is

the K-medoids, which can be used with arbitrary distance metrics, and is based on the
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Figure 2.6: Example of the extracted feature vectors for Source S2.

medoid, which is the instance from the dataset for which the average dissimilarity to

all the objects in the cluster is minimal. In the following subsections, we explain the

distributed VAD decision based on the original K-means, then we look at the proposed

robust objective functions in clustering to perform speech activity discrimination.

2.4.2 K-means Type Clustering Criteria for Distributed Non-
Stationary Multiple Speech Discrimination

Cluster analysis is one of the main analytical methods in data mining and signal pro-

cessing. Clustering discovers reasonable grouping of raw data while searching hidden

patterns that may exist in datasets. The data points in the resulting clusters are sim-

ilar when they belong to the same cluster and differ from a cluster to another. The

quality of a cluster is usually measured using the variance. We briefly discuss the

standard K-means algorithm [99] and propose a clustering approach that provides an

improvement for our considered use-case.

The K-means clustering, commonly named the Lloyd’s algorithm, is a greedy algo-

rithm which is guaranteed to converge to a local minimum while minimizing its score
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function. K-means is a numerical, unsupervised, non-deterministic, iterative method.

Finding optimal K-means centers is an NP-hard problem. Therefore, heuristics are

often used. The algorithm consists of two separate phases. The first phase regards

selecting the centroids randomly and the second phase concerns assigning each data

object to the nearest center. The Euclidean distance is generally considered to de-

termine the distance between each data object and the cluster centers. Once a first

clustering of all data points is performed using randomly initialized cluster centroids,

the first step is completed. This provides an initial grouping of the data. Next, a

re-calculation of the centers of every cluster is done by taking the average of the data

within every formed cluster. This iterative process continues repeatedly until reaching

a minimum of the criterion function, which is a minimization of the within-cluster sum

of squares (WCSS) defined as

arg min
C

2∑
j=1

∑
v
(n)
q ∈Cj

‖v(n)
q − ĉ

(q)
j ‖2

2 (2.31)

Equation (2.31) describes the objective function of the K-means algorithm that, applied

to our speech use-case, aims to partition N observations of the features v
(n)
q into j = 1, 2

sets C = {C1,C2}. The mean of points in Cj is the center of the cluster and is denoted

with ĉ
(q)
j , [ĉ

(q)
j,1 , ĉ

(q)
j,2 , ĉ

(q)
j,3 ]> ∈ R3×1,∀j ∈ {1, 2}. In addition, we use the K-medoids

technique [101] to estimate the speech cluster centroids for the active and non-active

speech clusters. The K-medoids is a variation of the simple framework given by the

K-means algorithm. The modification that it brings to the K-means relies on choosing

the actual data points as representative prototypes for the clusters which makes the

K-medoids more resilient to noise and outliers in the data compared to K-means.

Moreover, for a comparative purpose, we also use the K-medians [102] as an alternative

technique for estimating cluster centroids. The K-medians is a robust version of the

K-means that relies on the median measure, which is less sensitive to outliers, for the

update of the centers instead of the average mean employed by K-means. In the sequel,

we subsume the K-means, K-medoids, K-medians and the proposed feature weighted

K-MAD algorithms under the category K-means type algorithms.

2.4.2.1 Proposed K-MAD and Weighted K-MAD Clustering Algorithms

We propose a variation of K-means that we call Feature Weighted K-MAD. Here, a

weighted objective function, in this case, the mean absolute deviation to the mean is

minimized using an iterative procedure. The weighting ensures that each feature is



2.4 Distributed Clustering-Based Multi-Speaker Voice Activity Detection (DM-VAD) 33

given equal importance, whereas the MAD is less sensitive to outliers compared to the

squared Euclidean distance.

The motivation for using a weighted K-MAD (WK-MAD) is that the spread in each

dimension of the feature space varies strongly, as shown in Fig. 2.6. From Fig. 2.6,

it can be observed that there are no evident partitions in the feature space. A linear

distance measure can fail clustering highly non-separated data as it is the case for

speech energies. This can occur when the used energy-based features are non-Gaussian

distributed and overlapping. Overlapping features imply non-spherical representation

of features in the space. Thus, applying a stand-alone linear Euclidean distance for

clustering does not provide satisfactory results. A weight function that ensures each

feature is given equal weight in the K-MAD procedure is then introduced. Moreover,

the proposed WK-MAD algorithm relaxes the assumption of clustering while main-

taining comparable cluster variances. This holds only for the case where the clusters

are harmoniously spherical, well separated, have similar number of elements and finally

similar clusters’ volume. Hence, the proposed WK-MAD algorithm aims at minimiz-

ing a robust weighted objective function, in this case, the mean absolute deviation to

the mean. In the proposed objective function, outliers has less weight compared to a

squared Euclidean distance. The WK-MAD clustering method is efficiently computable

and sufficiently accurate for the VAD purpose. In the following, an explanation of the

working principle of the proposed algorithms is presented.

As initialization, a centroid ĉ
(q)
j , j = {1, 2} associated to a source q is chosen randomly

at the iteration ζ = 0 as one of the existent data points. Next, we compute for each

dimension of ĉ
(q)
j , j = {1, 2} separately the Euclidean distance to each of the feature

vectors entries. This is done using

‖v(n)
q,f? − ĉ

(q)
j,f?‖2, j = 1, 2, n = 1, . . . , N, f ? = 1, . . . , 3, (2.32)

where f ? represents the features’ index. In this way, for each f ? = 1, . . . , 3, we obtain a

matrix of measured distances Lf? ∈ RN×2 whose entries are given in Eq. (2.32). Next,

we compute the respective average distance for each feature f ?

µLf? =
1

2N

N∑
n=1

2∑
j=1

‖v(n)
q,f? − ĉ

(q)
j,f?‖2, f ? = 1, . . . , 3. (2.33)

The feature related weights are defined as
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wf? =
3/µLf?∑3
f?=1 1/µLf?

, f ? = 1, . . . , 3. (2.34)

Combining Eq. (2.32) and Eq. (2.34), the weighted Euclidean distance is readily ob-

tained as

3∑
f?=1

wf?‖v(n)
q,f? − ĉ

(q)
j,f?‖2, j = 1, 2, n = 1, . . . , N. (2.35)

In the subsequent iteration, each feature vector v
(n)
q is assigned to a cluster Cζ

1 or Cζ
2.

Once the clusters are formed, the centroid estimates are updated by evaluating

ĉ
(q)
j =

∑
v
(n)
q ∈Cζ

j
v

(n)
q

#(Cζ
j)

, j = 1, 2, (2.36)

where #(Cζ
j) is the cardinality of the cluster Cζ

j . The steps defined in Eqs. (2.32)-

(2.36) are then repeated until the centroids do not change their values or an alternative

relaxed convergence criterion to a local minimum is met. The objective function, which

is minimized by the Feature Weighted K-MAD, is

2∑
j=1

N∑
n=1

3∑
f?=1

wf?‖v(n)
q,f? − ĉ

(q)
j,f?‖2, j = 1, 2, n = 1, . . . , N. (2.37)

Algorithm 3 summarizes the steps applied in the proposed feature-based K-MAD clus-

tering technique where the minimized objective function is the within-cluster sum de-

fined in Eq. (2.38). In a similar way, Algorithm 4 outlines the necessary steps for the

computation of the proposed WK-MAD partitional algorithm.

Let ĉ
(q)
j , [ĉ

(q)
j,1 , ĉ

(q)
j,2 , ĉ

(q)
j,3 ]> ∈ R3×1,∀j ∈ {1, 2} denote the estimated centroids of the

K-means type algorithms for source q = [1, . . . , Q], and let ĉ
(q)
1 correspond to the pause

class, which is easily identified by min(ĉ
(q)
j,1) for j ∈ {1, 2} since the short-term average

energy of this class is smaller than for the active speech class, and then ĉ
(q)
2 corresponds

to the active speech class. The cluster memberships are then determined from
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Algorithm 3 Proposed K-MAD clustering for Source q.

Initialization
1: Initial guess for the centers ĉ

(q)
j , j = {1, 2}

Classification Phase
2: repeat
3: Use the centers to classify the data points v

(n)
q into clusters using Eq. (2.32).

4: Update the centroids ĉ
(q)
j , j = {1, 2} using Eq. (2.36)

5: until ĉ
(q)
j , j = {1, 2} do not change, or convergence to a local minimum is met.

Output
6: Minimized mean absolute deviation-based objective function defined by

arg min
C

2∑
j=1

∑
v
(n)
q ∈Cj

‖v(n)
q − ĉ

(q)
j ‖2 (2.38)

7: Estimate of the centroids ĉ
(q)
j , j = {1, 2}

8: Estimated clusters Cj, j = {1, 2}.

Algorithm 4 Proposed WK-MAD clustering for Source q.

Initialization
1: Initial guess for the centers ĉ

(q)
j , j = {1, 2}

Classification Phase
2: repeat
3: Use the centers to classify the data points v

(n)
q into clusters using Eq. (2.32).

4: Compute the respective average distance for each feature f ? using Eq. (2.33)
5: Calculate the weights for every feature f ? using Eq. (2.34)
6: Obtain the weighted Euclidean distance by applying Eq. (2.35)

7: Update the centroids ĉ
(q)
j , j = {1, 2} using Eq. (2.36)

8: until ĉ
(q)
j , j = {1, 2} do not change, or convergence to a local minimum is met.

Output
9: Minimized objective function defined in Eq. (2.37)

10: Estimate of the centroids ĉ
(q)
j , j = {1, 2}

11: Estimated clusters Cj, j = {1, 2}.

tj(v
(n)
q ) = ‖v(n)

q − ĉ
(q)
j ‖2

2, n ∈ {W + 1, . . . , N}, (2.39)

based on which the binary voice activity decision rule for multiple speech sources in

the distributed use-case is formed by

δ(n)
q =

{
0 if t1(v

(n)
q ) < t2(v

(n)
q ) (pause),

1 otherwise (active speech).
(2.40)
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2.4.2.2 Computational Complexity of the Proposed K-MAD and WK-
MAD

In general, the problem of finding the global optimum of the partitional K-means ob-

jective function is NP-hard. However, the standard implementation of K-means only

approximates a local optimum of its objective function. At this stage, assuming a

fixed number τ of running iterations of the K-means algorithm requires O(τ#(C)Nϕ).

Herein, #(C) = 2 is the number of clusters, and ϕ = 3 the dimension of the data.

Likewise, the suggested variations, namely K-MAD and WK-MAD are similar in com-

plexity to the standard K-means. Hence, the time complexity of both of these proposed

robust algorithms is of O(τ#(C)Nϕ), with j = {1, . . . , ϕ}.

2.4.3 Energy Classification-Based Hangover Scheme

The decision rule introduced in Eq. (2.40) might result in the misclassification of some

low power data points. For this reason, a hangover scheme is utilized for correction.

Because of its practical usefulness, we report on a simple and optional correction step.

This step aims at reducing the misdetection rate by reassigning the labels for some low

power data points that were falsely assigned to the pause class in δ
(n)
q by the decision

rule defined in Eq. (2.40). Given the assignments from Eq. (2.40), let M0 denote the

set of n ∈ {W +1, . . . , N} for which δ
(n)
q = 0 and letM1 denote the set where δ

(n)
q = 1.

Then we calculate

σ̂0 , mad({v(n)
q,1 }), ∀n ∈M0 (2.41)

and

σ̂1 , mad({v(n)
q,1 }), ∀n ∈M1 (2.42)

where mad(X ) is the median absolute deviation of a dataset X , and v
(n)
q,1 refers to the

short-term arithmetic average feature presented previously in Eq. (2.28). By defining

D0(n) , |v(n)
q,1 − σ̂0| (2.43)

and

D1(n) , |v(n)
q,1 − σ̂1|, (2.44)

the voice activity decision δ
(n)
q may be corrected as follows:
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δ(n)
q,new =

{
1 if D0(n) > D1(n),

δ
(n)
q otherwise.

(2.45)

The correction step in Eq. (2.45) is intended to solve the misclassification of the at-

tenuated energies that still represent active speech. Figure 2.7 and Fig. 2.8 illustrate

the effect of the correction step on the empirical distribution function of the energies

v
(n)
q,1 that are associated to the speech class. In the top graph of Fig. 2.7, the histogram

based on the assignments of Eq. (2.40) is displayed. The middle graph shows the distri-

bution of speech obtained for the case of the (unavailable) ground truth assignments.

The lower graph of Fig. 2.7, on the other hand, depicts the speech distribution after

applying the correction step of Eq. (2.45). It is noticed that the speech distribution

after the correction step becomes more similar to the one obtained from the ground

truth assignments. A shift in the speech distribution mode to the left is observed in

the bottom subplot. This is explained by the correct reassignment of elements to the

speech distribution. The positive effect of this correction step is also noticed in the

real data experiments, see Tabs. 2.1-2.4 and Tab. 2.8.

2.4.4 Batch-Mode DM-VAD Algorithm

The proposed VAD algorithm, which is run locally, e.g., by a unique node at each node

cluster Bq, q = [1, . . . , Q] can be operated on batches of data (batch-mode VAD), or

for streaming data (sequential VAD). The batch mode VAD algorithm is summarized

in Algorithm 5.

Algorithm 5 Batch-mode VAD algorithm for Source q evaluated locally within Bq.
Input

1: Set a window value W
Batch VAD procedure

2: for n = W + 1, . . . , N do
3: Compute the features v

(n)
q using Eq. (2.27).

4: end for
5: Estimate the centroids ĉ

(q)
j , j = {1, 2} using

K-means, K-medians, K-medoids, or the proposed K-MAD/WK-MAD.

6: Label min(ĉ
(q)
j,1), j = {1, 2} and max(ĉ

(q)
j,1), j = {1, 2}

as pause and active speech centroids, respectively.
7: Decide ∀n ∈ {W + 1, . . . , N} based on Eq. (2.40)

Output
8: VAD patterns in δ

(n)
q ,∀n ∈ {W + 1, . . . , N}.
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Figure 2.7: Example of the histogram of v
(n)
q,1 , n ∈ {W + 1, . . . , N} for Source S2 for

the active speech class using the distributed multi-speaker VAD (DM-VAD) approach before
(top), i.e. DM-VAD, and after (bottom), i.e. DM-VAD+, applying the correction step defined
in Eq. (2.45), and the ground truth histogram for Source S2 is shown in the middle.

2.4.5 Sequential-Mode DM-VAD Algorithm

Incremental clustering, as opposed to traditional batch-mode clustering, for VAD

has the ability to process new streaming data features without performing a full re-

clustering, i.e. a full calculation of the decision pattern. The proposed sequential-mode

DM-VAD algorithm allows for a dynamic tracking and incremental decision updates to

the database during the clustering procedure. In the sequential DM-VAD algorithm,

the VAD decision is made immediately as data streams in.

In the sequential VAD algorithm, the feature vector v
(n)
q is calculated sequentially for

streaming-in unmixed energy signals ŝ
(n)
Bq , n = [W + 1, . . . , N ] which can be computed

with the adaptive M-NICA algorithm as described in [4]. The proposed sequential mode

DM-VAD algorithm uses a growing window so as to incorporate all past information. In

principle, a sliding window implementation is also possible, however, the window must

be chosen large enough so as to capture both active speech and pause segments. The
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Figure 2.8: Example of the probability density function estimate (pdf) for the active speech
region (blue) and the non-active speech region (red) before improving the misdetection rate
(top) and after applying the correction step in Eq. (2.45) (bottom).

initial size W 0 of the growing window W (n) at the first iteration n = W 0 + 1 should be

chosen sufficiently large to reliably extract v
(n)
q . In this case, the instantaneous feature

vectors are obtained by evaluating Eq. (2.28), Eq. (2.29), and Eq. (2.30) for all time

segments 6 W 0 +1. The features at each time segment n are collected as in Eq. (2.27).

All further steps are the same as in the batch mode algorithm, given the available

data, except that the random initialization of the centroids in the sequential VAD

algorithm is performed only once. Then the sequential VAD uses the previous value of

the centroid estimates as initialization. The sequential VAD algorithm is summarized

in Algorithm 6.

After operating Algorithm 5 related to the batch-mode clustering-based DM-VAD, the

information about the extracted VAD patterns for every energy source q is relayed and

shared within and between node clusters. Pertaining to Algorithm 6 that solves the

sequential-mode clustering-based DM-VAD problem, the process of sharing the VAD

patterns for every source q is accomplished for every real-time voice activity decision.
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Algorithm 6 Sequential VAD algorithm for Source q evaluated locally within Bq.
Input

1: Initialize the window size by W (n) = W 0

2: Randomly pick ĉ
(q)
j ,∀j = 1, 2 centroids from the data.

Sequential VAD procedure
3: while n ≤ N do
4: Estimate the centroids ĉ

(q)
j , j = 1, 2, using

K-means, K-medians, K-medoids, or the proposed K-MAD/WK-MAD.

5: Label min(ĉ
(q)
j,1), j = 1, 2, and max(ĉ

(q)
j,1), j = 1, 2

as pause and active speech centroids, respectively.
6: Decide for n = Ncurrent based on Eq. (2.40)
7: W (n) = W (n) + 1
8: end while

Output
9: Streaming data VAD patterns in δ

(n)
q ,∀n ∈ {W + 1, . . . , N}.

2.5 Detection Simulation Results

In this section, numerical experiments are conducted to assess the performance of our

proposed DM-VAD. The system is evaluated and compared to existing benchmarks.

The accuracy of the proposed detection method is verified for single-speaker and multi-

speaker scenarios by considering the WASN displayed in Fig. 1.2.

2.5.1 Batch-Mode Voice Activity Detection for Single-
Speaker Scenario

The performance for single-speaker VAD is benchmarked against two existing single-

node methods, i.e., the VAD-1 [2] and the VAD-2 [3] given observations from Node

D2 for Source S2 and Node D9 for Source S7, respectively, of the scenario depicted in

Fig. 1.2. The distributed multi-speaker VAD (DM-VAD) refers to the proposed VAD

approach based on K-medoids and without post-processing (see Section 2.4.3), whereas

DM-VAD+ includes this step. Tables 2.1-2.4 summarize the results of the comparative

study for Sources S2 and S7 under Gaussian and babble noise conditions of variance

σ2
ω = 0.01. The babble noise sequences at each microphone are created by taking

non-overlapping excerpts from a long babble noise process. It is therefore spatially

independent. In the ensuing tables, the values in bold are indicators of a superior

performance attained by our proposed VAD technique. The performance metrics are:

correct decision (CD), missed detection (MD), false alarm (FA), equal error rate (EER),

and cost of log-likelihood ratio (Cmin
llr ). The EER reports the measure between the
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frame-level speech and non-speech detections and Cmin
llr measures the quality of the log-

likelihood ratio detection output. In both cases, a small value corresponds to a highly

accurate VAD. DM-VAD+ outperforms its single-node competitors by leveraging upon

the WASN via a distributed M-NICA based on LONAS and achieves > 92% correct

VAD in all cases.

Metric
VAD Results for Source S2

DM-VAD DM-VAD+ VAD-1 VAD-2

CD 64.8 92.3 89.5 63

MD 34.7 5.7 3 0

FA 0.5 2 7.5 37

EER 0.06 0.06 0.4 0.4

Cmin
llr 0.2 0.2 0.9 0.9

Table 2.1: Comparison of our approach with different benchmark algorithms, referred to as
VAD-1 [2] and VAD-2 [3], for a single active Source S2 and additive white Gaussian noise of
variance σ2

ω = 0.01.

For the same noisy environment and a different single Source S7, Tab. 2.2 shows that

DM-VAD+, VAD-1 and VAD-2 provide nearly perfect detection results.

Metric
VAD Results for Source S7

DM-VAD DM-VAD+ VAD-1 VAD-2

CD 80.3 96.2 94.6 96.3

MD 19.7 3.8 3.3 3.1

FA 0 0 2 0.6

EER 0.01 0.01 0.35 0.35

Cmin
llr 0.03 0.04 0.85 0.85

Table 2.2: Comparison of our approach with different benchmark algorithms [2, 3], for a
single active source S7 and additive white Gaussian noise of variance σ2

ω = 0.01.

In Tabs. 2.3 and 2.4, we consider the single speech sources S2 and S7 corrupted with

babble noise. Results show that VAD-1 and VAD-2 are more sensitive to babble noise

since they lose in detection performance while the decisions in DM-VAD and DM-

VAD+ remain stable.



42
Chapter 2: Distributed Multi-Speaker Clustering-Based Voice Activity Detection for

Wireless Acoustic Sensor Networks

Metric
VAD Results for Source S2

DM-VAD DM-VAD+ VAD-1 VAD-2

CD 65 92.7 88.2 61.9

MD 34.5 5.2 2.2 0

FA 0.5 2.1 29.6 38.1

EER 0.06 0.06 0.4 0.4

Cmin
llr 0.2 0.2 0.9 0.9

Table 2.3: Comparison of our approach with different benchmark algorithms [2, 3], for a
single active source S2 and babble noise of variance σ2

ω = 0.01.

Metric
VAD Results for Source S7

DM-VAD DM-VAD+ VAD-1 VAD-2

CD 80.3 96.2 94.6 57.6

MD 19.7 3.8 3.3 20.8

FA 0 0 2 21.6

EER 0.01 0.01 0.35 0.35

Cmin
llr 0.03 0.04 0.85 0.85

Table 2.4: Comparison of our approach with different benchmark algorithms [2, 3], for a
single active source S7 and babble noise of variance σ2

ω = 0.01.

2.5.2 Batch-Mode Distributed Multi-Speaker Voice Activity
Detection

The performance of the proposed detector in batch-mode (see Algorithm 5) is evaluated

on the challenging multi-speaker scenario with six active sources, as given in Fig. 1.2,

for different variations of K-means and an additive white noise, e.g. AWGN or babble

noise, of variance σ2
ω = 0.01. For the considered multi-source multi-device speech

scenario corrupted with additive noise of variance σ2
ω = 0.01, the Signal-to-Noise-Ratio

(SNR) and the Signal-to-Interference-Plus-Noise-Ratio (SINR) are computed. Table

2.5 summarizes the SNR results in dB computed using Eq. (2.46), such that

SNRq
k = 10 log10

(
σ2
k,q

σ2
ω

)
, k = [1, · · · , K], q = [1, · · · , Q], (2.46)
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where SNRq
k describes the SNR value at device k related to source q, σ2

k,q is the qth

signal power recorded at device k, and σ2
ω is the variance of the additive noise. Similarly,

Tab. 2.6 outlines the SINR values in dB that are computed as

SINRq
k = 10 log10

(
σ2
k,q∑

q′ σ
2
k,q′ + σ2

ω

)
, q 6= q′, (2.47)

where σ2
k,q is the power of the source-of-interest q recorded at device k,

∑
q′ σ

2
k,q′ is the

power of all interfering sources q′ 6= q excluding source q.

Device
Sources

S2 S4 S5 S6 S7 S3

D1 -11.4589 -17.6404 -16.6260 -13.6959 -20.7077 -15.6372

D2 0.0934 -11.6536 -11.5104 -18.6551 -17.2166 -2.1003

D3 -10.9801 -18.1935 -16.0995 -22.5626 -7.6164 -17.4065

D4 -3.5013 -9.9627 -8.4591 -16.2553 -11.0875 -12.2566

D5 -6.9445 20.5279 -0.8062 -15.1585 -13.4586 -6.8904

D6 -6.9354 20.5279 -0.8036 -15.0987 -13.3724 -7.5072

D7 -6.9359 -1.3016 21.0934 -16.4537 -12.0481 -6.8898

D8 -9.2737 -15.2052 -15.2053 24.0060 -18.6392 -14.6985

D9 -9.4454 -16.1539 -14.1710 -20.4702 26.1795 -14.7554

D10 -2.7619 -8.9624 -8.4145 -17.4757 -14.5563 26.4637

D11 -8.2539 -12.4152 -13.4559 -4.7990 -18.9410 -13.0758

D12 0.0967 -12.4637 -10.9967 -16.3664 -10.6964 -14.0706

D13 -10.1892 -16.9620 -15.1463 -21.2894 -2.6891 -15.1536

D14 -10.5095 -15.6839 -15.3758 -7.0405 -19.4056 -14.9124

D15 -6.8680 -2.2273 -5.7471 -15.3000 -14.7592 -4.2921

D16 -8.4652 -14.2714 -11.3672 -19.1954 -4.4415 -12.7729

D17 -7.9013 -14.6474 -14.6394 -16.1804 -20.0453 -10.4947

D18 -5.6399 -7.4222 -4.5985 -18.2256 -12.6457 -2.2425

D19 -7.9034 -15.7171 -13.3606 -21.0486 -13.2083 -10.4876

D20 -6.9695 -6.1520 -8.9937 -14.2016 -16.4199 -7.0315

Table 2.5: SNR for the multi-device (K = 20) multi-source (Q = 6) speech setup.

Tables 2.7 and 2.8 summarize the outcome of DM-VAD and DM-VAD+ for AWGN
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Device
Sources

S2 S4 S5 S6 S7 S3

D1 -11.9412 -18.3286 -17.2974 -14.2887 -21.4281 -16.2879

D2 -2.4306 -16.0336 -15.8867 -23.1208 -21.6741 -5.5113

D3 -11.9022 -19.3368 -17.2115 -23.7380 -8.1977 -18.5399

D4 -4.9764 -12.3934 -10.7851 -18.8734 -13.5750 -14.7888

D5 -27.5528 16.8864 -21.3907 -35.7733 -34.0729 -27.4986

D6 -27.5428 16.9332 -21.3871 -35.7126 -33.9857 -28.1155

D7 -28.0973 -22.4451 17.6041 -37.6211 -33.2142 -28.0511

D8 -33.2988 -39.2318 -39.2320 23.1208 -42.6661 -38.7251

D9 -35.6364 -42.3458 -40.3628 -46.6623 25.3210 -40.9472

D10 -29.2385 -35.4430 -34.8949 -43.9574 -41.0378 23.7840

D11 -10.0023 -14.4232 -15.4972 -5.9848 -21.0693 -15.1060

D12 -0.9878 -15.9844 -14.4732 -19.9515 -14.1618 -17.6250

D13 -12.3031 -19.2732 -17.4308 -23.6329 -3.4241 -17.4382

D14 -11.6403 -17.0172 -16.7027 -7.7912 -20.7883 -16.2289

D15 -10.4857 -5.0310 -9.2489 -19.2381 -18.6904 -7.5833

D16 -10.3259 -16.4194 -13.4199 -21.4101 -5.6394 -14.8800

D17 -8.6637 -15.8522 -15.8440 -17.4186 -21.3297 -11.5149

D18 -9.0523 -11.0127 -7.8620 -22.1206 -16.4705 -4.9614

D19 -8.7596 -17.0307 -14.6117 -22.4226 -14.4541 -11.5955

D20 -9.0848 -8.1547 -11.3042 -16.7312 -18.9862 -9.1544

Table 2.6: SINR for the multi-device (K = 20) multi-source (Q = 6) speech setup.

of variance σ2
ω = 0.01. Comparable detection results are achieved when alternating

between the variants of the K-means algorithm, and the post-processing step is most

useful for Source S2, where the original speech signal is a noisy PA announcement. The

worst-case CD for DM-VAD+ is > 84% in this challenging scenario.
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Method Metric
DM-VAD

S2 S4 S5 S6 S7 S3

K-means

CD 61.1 92.3 93.6 61.7 86.7 92.4
MD 38.1 7.4 5.5 38.3 13.2 6.7
FA 0.8 0.3 0.9 0 0 0.9

EER 0.22 0.02 0.02 0.17 0.03 0.04
Cmin

llr 0.63 0.09 0.11 0.41 0.12 0.18

K-medians

CD 70.4 93.1 95.2 86.6 88.7 93.8
MD 27.5 6.6 3.8 13.5 11.3 5
FA 2.12 0.3 1 0 0 1.2

EER 0.14 0.02 0.02 0.01 0.01 0.04
Cmin

llr 0.55 0.09 0.11 0.06 0.03 0.14

K-medoids

CD 62.7 85 82.1 74.7 80.3 88.1
MD 36.3 14.9 17.6 25.3 19.7 11.2
FA 1 0.1 0.3 0 0 0.7

EER 0.15 0.02 0.02 0.01 0.01 0.04
Cmin

llr 0.5 0.09 0.1 0.06 0.03 0.12

K-MAD

CD 61.1 92.3 93.6 61.7 86.8 92.4
MD 38.1 7.4 5.5 38.3 13.2 6.7
FA 0.8 0.3 0.9 0 0 0.9

EER 0.22 0.02 0.02 0.17 0.03 0.04
Cmin

llr 0.63 0.09 0.11 0.4 0.12 0.18

WK-MAD

CD 63.4 92.4 93.2 62.1 87 92.7
MD 35.5 7.3 5.9 37.9 13 6.4
FA 1.1 0.3 0.9 0 0 0.9

EER 0.2 0.02 0.02 0.17 0.03 0.04
Cmin

llr 0.6 0.09 0.1 0.39 0.12 0.18

Table 2.7: Proposed batch-mode DM-VAD using different clustering methods for signals
corrupted by additive white Gaussian noise of variance σ2

ω = 0.01.

2.5.3 Sequential-Mode Distributed Multi-Speaker Voice Ac-
tivity Detection

The performance of the proposed detector in the sequential-mode, i.e., SDM-VAD+ is

evaluated on the challenging multi-speaker scenario with six active sources, as given in

Fig. 1.2, for K-medoids.

Table 2.9 displays the VAD results when using a growing window W (n), n = W 0 +

1, . . . , N , for AWGN of variance σ2
ω = 0.01. A performance loss of maximally 6%,

compared to the batch-mode is experienced. Figure 2.9 depicts the convergence for
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Method Metric
DM-VAD+

S2 S4 S5 S6 S7 S3

K-means

CD 85.2 96.2 97 89.9 96.2 94.8
MD 5.1 0.8 0.9 10.1 3.8 2.2
FA 9.7 3 2.1 0 0 2.9

EER 0.15 0.02 0.02 0.01 0.03 0.04
Cmin

llr 0.5 0.09 0.1 0.07 0.12 0.18

K-medians

CD 86.3 96.3 97 93.6 96.2 94.8
MD 3.5 0.8 0.9 6.4 3.8 2.2
FA 10.1 2.9 2.1 0 0 2.9

EER 0.15 0.02 0.02 0.01 0.01 0.04
Cmin

llr 0.49 0.09 0.11 0.06 0.04 0.14

K-medoids

CD 84.6 96.3 97.1 93.6 96.2 94.8
MD 6 0.8 0.8 6.4 3.8 2.2
FA 9.4 2.9 2.1 0 0 2.9

EER 0.15 0.02 0.02 0.01 0.01 0.04
Cmin

llr 0.5 0.09 0.1 0.06 0.04 0.14

K-MAD

CD 85.2 96.2 97 89.9 96.2 94.8
MD 5.1 0.8 0.9 10.1 3.8 2.2
FA 9.7 3 2.1 0 0 2.9

EER 0.15 0.02 0.02 0.01 0.01 0.04
Cmin

llr 0.5 0.09 0.1 0.06 0.04 0.14

WK-MAD

CD 84.8 96.2 97.1 89.8 96.2 94.8
MD 5.5 0.8 0.8 10.2 3.8 2.2
FA 9.7 3 2.1 0 0 2.9

EER 0.15 0.02 0.02 0.01 0.01 0.04
Cmin

llr 0.5 0.09 0.1 0.06 0.04 0.14

Table 2.8: Proposed batch-mode DM-VAD+ using different clustering methods for signals
corrupted by additive white Gaussian noise of variance σ2

ω = 0.01.

the different speech sources to their associated VAD decision. Clearly, the transient

behavior of the SDM-VAD+ is source-dependent. When using the growing window

technique described in Section 2.4.5, SDM-VAD+ for this setup achieves a steady

state performance after approx. 300− 500 speech frames of 30ms duration each.

The performance is next analyzed using a fixed size moving window, i.e., the buffer

of the past speech data included in the decision is limited to 400 frames. Table 2.10

summarizes the fixed sliding window SDMVAD+ results, while Fig. 2.10 displays the

convergence of the SDM-VAD+ for different sources.
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Source
Metric

CD MD FA EER Cmin
llr

S2 80.2 5.7 14.1 0.2 0.63

S4 92.9 1.7 5.4 0.07 0.32

S5 90.8 1 8.2 0.06 0.22

S6 90.6 7.4 2 0.07 0.31

S7 94 4.3 1.7 0.04 0.22

S3 89.5 2.5 8 0.07 0.27

Table 2.9: Proposed sequential-mode VAD (SDM-VAD+) with K-medoids using a growing
window for signals corrupted by additive white Gaussian noise with variance σ2

ω = 0.01.

Source
Metric

CD MD FA EER Cmin
llr

S2 78.8 6.1 15.1 0.2 0.65

S4 92.8 1.6 5.6 0.1 0.39

S5 90.7 0.9 8.4 0.06 0.2

S6 90.3 7.2 2.5 0.09 0.37

S7 93.9 4.7 1.4 0.04 0.23

S3 88.9 2.3 8.8 0.06 0.26

Table 2.10: Proposed sequential-mode VAD (SDM-VAD+) with K-medoids using a fixed
sliding window for a mixture of energies corrupted by additive white Gaussian noise with
variance σ2

ω = 0.01.

2.6 Conclusions

The current chapter describes a novel technique that solves the challenging multi-

source VAD in a distributed WASN. The proposed method, i.e. DM-VAD, is validated

on real speech data consisting of multiple simultaneously interfering source signals in

a reverberant and noise conditioned environment.

The presented DM-VAD requires mainly two information about the data. Well-labeled

source signals and a known number of interfering sources. However, the labeling and

source enumeration information can be obtained beforehand using existing techniques

[34,103].
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Figure 2.9: Sequential decision of SDM-VAD+ using a growing window.

The key idea of this chapter is to operate a voice activity decision function after well-

separating the energies of the mixture of received signals locally at node cluster level.

This step is mandatory because we target a source-specific speech discrimination, mean-

ing that, our voice activity system should output speech activity pattern for every

contributing speech source at every node of the network. M-NICA provides quality

non-negative energy features that can be used for VAD for small numbers of conflict-

ing speech sources. However, it quickly loses its performance with increasing speaker

source numbers and an amplified environmental noise. Following this reasoning, we

have extended the centralized multiple non-negative energy separation to a distributed

energy separation problem. A distributed setup is related to forming clusters of nodes

around every source-of-interest using the LONAS algorithm in [1]. The logic behind

considering this built-in framework pertains to estimating a rank-one M-NICA algo-

rithm at every cluster of nodes to extract a unique energy signal related to a well-labeled

source. To this end, the multiple source separation problem in a centralized WASN

boils down to executing multiple rank-one M-NICA algorithms in parallel, in a dis-

tributed manner, at every well-defined cluster of nodes to estimate a cleaner unique

dominant energy source.

Consequently, the DM-VAD technique for WASNs does not require a FC or prior
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Figure 2.10: Sequential decision of SDM-VAD+ using a fixed sliding window for the scenario
given in Fig. 1.2.

knowledge about the node positions, microphone array orientations or the number

of observed sources. The multi-speaker VAD has then been approached by extracting

further robust low-dimensional short-term features from the unmixed energy signals by

applying robust K-means type clustering algorithms. Additionally, robust clustering

approaches, namely K-MAD and WK-MAD, have been presented. These partitional

robust techniques provide comparable clustering results with built-in robust metrics

for the estimation of the clusters’ centroids. We have also introduced in this chapter a

comparative study of our approach in contrast to state-of-the-art methods. The results

of this study demonstrate the capabilities of the proposed approach in both single-

source and multiple-source VAD. Hence, the steps of the proposed clustering-based DM-

VAD method show promising performance compared to existing benchmark methods.

More than 85% of correct detection in the worst case is obtained for a challenging

scenario where 20 nodes observe 6 sources in a simulated reverberant rectangular room

illustrated in Fig. 1.2. The proposed method is also able to operate for streaming data

taking into account a small performance loss compared to the batch-mode case.
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Chapter 3

Robust Distributed Sparse Constrained
Non-Negative Blind Energy Separation for
Multi-Speaker Voice Activity Detection in
Wireless Acoustic Sensor Networks

‘I learned that courage was not the
absence of fear, but the triumph over
it’

Nelson Mandela

In various speech processing applications, short-term features reflect the speech sta-

tistical parameters. In this PhD project, short-term energy-based feature analysis is

accomplished based on shifting short-time window, see [4]. The chosen window size

is of 30 msec where short-term stationarity of the speech signal is assumed. No win-

dow overlapping is used, which implicates a window step size of 30 msec. Considering

the energy level as an indicator for speech activity follows intuition and is especially

useful for the multi-speaker setting, where the energies associated to the sources must

be separated from a received mixture in order to obtain speaker-specific VAD pat-

terns [1, 5, 34, 36, 85]. Energy separation is computationally less expensive compared

to the source unmixing task for time-series. The combination of short-term energy

features with the energy unmixing process is investigated in depth to solve the multi-

source VAD problem.

In many real-world applications, such as biomedical imaging, energy consumption

analysis, pixel intensities data and spectral analysis, the sources to recover are non-

negative. The positive sources have physical meanings, which favor the processing of

the non-negative data under non-negativity constraints. Several authors have proposed

methods for solving the noise-free separation problem under non-negativity constraint,

such as the non-negative matrix factorization (NMF) [98, 104, 105], or the NICA ap-

proaches [106–109]. In this thesis, we assume statistically independent positive latent

energy sources, then we consider solving energy-based NICA with the intent to obtain

a better voice activity detector. More recent NICA techniques, such as [85], further as-

sume well-grounded random variables with a non-vanishing probability density function

(pdf) in the positive neighborhood of zero. Under these conditions, the minimization
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of the inter-source correlation is a way to recover the hidden sources up to permutation

and scaling ambiguities. However, these standard constraints are not always sufficient

to guarantee the uniqueness of the solution. We have mentioned previously in Chapter

2, Section 2.3.3, that deriving the distributed M-NICA approach overcomes the permu-

tation indetermination issue. In the challenging noise-embedded NICA modeling that

we assume in Eq. (2.3), we believe that improving the energy separation based on the

noisy instantaneous mixtures in y[n] for VAD is a feasible procedure. Hence, in this

work, sparseness constraints are incorporated in the noise-embedded NICA to improve

the energy recovery of the multiple contributing speech sources and reduce the range of

admissible solutions. This, indeed, favors a particular type of solution for VAD, where

sparsity plays a role in tuning noisy energies to exactly (non-active) zero-valued data

points.

3.1 Introduction

ICA is a well established technique that is capable of separating independent sources

that are linearly mixed, e.g., in a wireless sensor network (WSN) [92,95,96,110]. Given

a multivariate observed data, ICA characterizes the model for which some unmixed

latent variables and a mixing system are unknown and subject to estimation. The

latent variables are the source signals that determine the independent components

of the observed data. A vast amount of research explores ICA, (see, e.g. [94, 107]),

particularly its powerful performance compared to other methods such as principal

component analysis (PCA) [4, 84, 85]. Many applications require ICA for their data

analysis, including image denoising [111] and face recognition [112] in digital images or

speech enhancement [113] and voice activity detection (VAD) [1,4, 85].

In this chapter, we consider the application of multi-speaker VAD for a WASN. This

involves dealing with mixtures of simultaneously recorded speech signals at spatially

distributed microphones. ICA is used to extract unmixed (non-negative) energy sig-

nals, based on which speaker specific VAD is performed. Non-negative ICA algorithms

(NICA) are presented in [106, 108]. Similar representations that are tailored to the

statistics of non-negative data exist in the literature, such as the NMF introduced

in [98, 114]. In noisy environments, the lack of robustness is very problematic for

NICA. In fact, the majority of the NICA methods assume a noise-free model in or-

der to keep the problem tractable. However, this assumption is unrealistic in speech

scenarios. Consequently, we assume an embedded-noise NICA model for which the

proposed energy source unmixing can be solved using second order statistics only. The
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latter assumption makes the proposed NICA-based unmixing approach computation-

ally efficient compared to ICA algorithms that use higher order statistics (HOS) [5].

A variety of non-negative data representation problems take advantage of the `1-norm

regularization in order to obtain a sparse representation of the solution [115]. This is

known as non-negative sparse coding (SC) and is proposed in [104,105,116–119]. SC is

widely applicable in signal analysis [116,120]. It defines a representational scheme that

favors a desired degree of sparseness by means of a data-driven sparseness measure.

The idea of enhancing the energy features with a penalized `1-norm model is relevant,

as it readily brings about a straightforward zero-threshold VAD, which detects speech

activity. Conjointly, despite the abundance of studies that focus on NICA, to the best

of our knowledge none has targeted multi-speaker VAD with sparseness constraints.

We show that our proposed sparse algorithm better reconstructs the unknown non-

negative speech energies as compared to the standard M-NICA along with solving the

speech/non-speech energy discrimination for a VAD purpose. Higher correct detection

results are achieved even in challenging noisy and reverberant WASN conditions such

as the cocktail party scenario illustrated in Fig. 1.2.

In spite of its efficiency, one can think of performing VAD without having to compute

a complete sparse-based unmixing process. Solving the NICA problem with an incor-

porated multiplicative gradient descent updates is of ”supplementary” computational

load for the multi-source VAD task. Hence, in the current chapter, we also target

developing a multi-speaker VAD technique with a built-in semi separation procedure

that does not consume a complete energy unmixing step, such as M-NICA [85] or

the proposed sparse blind energy separation [5]. The technique aims at achieving a

multi-source VAD of lower complexity by only considering a stability-based penalized

sum-of-squares criterion minimization with an `1-regularized term. The latter empow-

ers sparse SVD layers with an automatic selection of the sparseness parameters, which

produce decently separated non-negative energy features suitable for the multi-source

VAD task. A detailed list of contributions provided in this chapter is given in Section

3.2.

3.2 Contributions

In this chapter1, a sparse median-based M-NICA (SMM-NICA) approach is proposed

that provides an improvement to the M-NICA algorithm in [85] by integrating spar-

1This chapter is based on the following conference articles:

- ”Multi-Speaker Voice Activity Detection by an Improved Multiplicative Non-Negative Inde-
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sity constraints in the embedded-noise NICA model. Sparsity is introduced by using

a sparse singular value decomposition (SSVD) as an initial step for the multiplica-

tive update. We initialize our algorithm by projecting the non-negative data onto the

right rotation matrix subspace on which we impose sparsity. We propose an improved

version of the M-NICA algorithm. We examine a challenging NICA application in a

noise-embedded multi-speaker VAD setup. We present a novel approach that includes

sparsity constraints to solve the energy separation problem with independent source sig-

nals. A sparse feature extraction step is performed to project the non-negative signals

onto a dimension-reduced subspace and identify sparse principal components. Then, we

maximize the signal decorrelation by employing a median measure of central tendency

in the computation of the covariance matrix that contributes in robustness against

outliers. Moreover, our approach supplies a straightforward multi-speaker VAD, for

which no empirical thresholding or other ad hoc decision rule is required. Instead,

an active voice frame simply corresponds to a non-zero value of the separated energy

signal. Numerical experiments using real data validate the superior performance of the

proposed technique.

In addition, a robust multi-source VAD is presented. Robustness is achieved by in-

tegrating a tνM -estimator of the covariance matrix in the multi-source separation al-

gorithm, resulting in the proposed tνM -SMM-NICA algorithm. The robust energy

separation approach in the presence of multi-sources is tested in a centralized and a

distributed scenario. We further improve the sparse multi-source separation algorithm,

i.e. tνM -SMM-NICA, by taking into account a regularized tνM -estimator. The robust

estimators for the computation of the covariance matrix in the NICA-based decorrela-

tion procedure provide valuable results in terms of correct detection rate. Hence, the

suggested robust and sparse energy separation algorithms serve well the VAD process.

Moreover, we measure the quality of the estimated voice activity for every source, by

performing speech enhancement based on the generated VAD patterns. The estimated

node-specific speech signals of the WASN using the robust sparse VAD algorithm are

compared to the estimated signals with an M-NICA-based VAD.

Moreover, an alternative approach for robust multi-speaker VAD in WASNs is pre-

pendent Component Analysis With Sparseness Constraints”, in Proc. 42nd IEEE Int. Conf.
Acoust., Speech and Signal Process. (ICASSP).

- ”Robust Distributed Multi-Speaker Voice Activity Detection Using Stability Selection for
Sparse Non-Negative Feature Extraction”, in Proc. 25th IEEE Eur. Signal Process. Conf.
(EUSIPCO).

- ”Robust Distributed Sparsity-Constrained Non-Negative Source Separation and Multi-Speaker
Voice Activity Detection for Distributed Speech Enhancement in Wireless Acoustic Sensor
Networks”, Submitted to the Proc. 2nd IEEE Int. Conf. Signals Syst. (ICSigSys).



3.3 Multi-Speaker Voice Activity Detection by an Improved Multiplicative Non-Negative

Independent Component Analysis With Sparseness Constraints 55

sented in this chapter. We improve upon [5] and [1] with a two-step robust solution

to the multi-speaker VAD problem by exploiting SC, see [116,120]. The novelty of our

approach lies in first using a sub-sampling stability approach that selects the degree of

sparseness parameter in the penalized regression suitable for a time-domain sparse en-

ergy feature extraction. Each node of the WASN receives a mixture of sound sources.

We propose a non-negative feature extraction using stability selection that exploits

the sparsity of the speech energy signals. The strongest right singular vectors serve

as source-specific features for the subsequent VAD. Additionally, a subsequent robust

classification step that uses robust Mahalanobis distance based on M -estimation is

performed. Hence, separating active speech frames from silent frames is done via the

proposed robust Mahalanobis classifier that is based on an M -estimation of the covari-

ance matrix. A sub-sampling-based variable selection method for SC combined with

a robust Mahalanobis classifier appropriately addresses the multiple speech activity

detection task and makes it unnecessary to use a posterior energy unmixing method,

as proposed by the SMM-NICA method [5]. In this work, stability selection is, in fact,

exploited to extract well-separated energy speech signatures.

Both centralized and distributed multi-speaker VAD is considered in this chapter, and

in both cases highly accurate VAD results are obtained. The assessment of our meth-

ods is actually tested on a challenging WASN of 20 nodes observing 6 sources in a

reverberant environment. Highly accurate VAD results are obtained, which makes

the blind energy separation techniques for VAD of great potential in the multi-source

multi-device speech signal processing.

3.3 Multi-Speaker Voice Activity Detection by an

Improved Multiplicative Non-Negative Inde-

pendent Component Analysis With Sparseness

Constraints

In this section2, a new algorithm for energy source separation based on sparse modeling

is presented. Original ICA methods approach the separation problem with a noise-free

assumption on the model. In particular, our approach aims at improving the M-

NICA method that relies on multiplicative updates while assuming a noise-embedded

environment and a sparse modeling of the received noisy mixtures.

2This section is based on our work presented in the conference article entitled: ”Multi-Speaker Voice
Activity Detection by an Improved Multiplicative Non-Negative Independent Component Analysis
With Sparseness Constraints”, in Proc. 42nd IEEE Int. Conf. Acoust., Speech and Signal Process.
(ICASSP).
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3.3.1 Proposed Median-Based M-NICA With Sparsity Con-
straints (SMM-NICA)

A useful property that could be added to the M-NICA algorithm is the capability of

producing a sparse representation. A sparse M-NICA solution can encode much of the

data using few active components, which better reflects reality and makes the encoding

easy to interpret. Applied to VAD for instance, the concept of sparse coding introduces

a representational scheme where only few units out of a large population are effectively

used. The active units can be interpreted as active speech, while the zero elements, are

non-active speech. Many sparseness measures are proposed in literature. With regards

to non-negative representation, we suggest using the `1 regularization. In the following

subsections, we explain how sparse coding is integrated into the M-NICA algorithm

for the sake of better signal estimation and an enhanced VAD procedure in a noisy

environment.

3.3.1.1 Sparse Singular Features

We define Y ∈ RM×N
+ as the matrix containing all vectors y[n] from Eqs. (2.3)–(2.5)

with n = 1, . . . , N . The standard M-NICA algorithm pre-processes the data using a

singular value decomposition step (SVD). The latter can be seen as a PCA technique

in itself that extracts the first principal components [121]. Transforming Y using the

SVD projects the signal onto the sub-spaces

SVD(Y) = UΣV>, (3.1)

where the left orthogonal matrix U ∈ RM×M represents the principal directions, Σ ∈
RM×N is the scaling matrix of singular values, and V> ∈ RN×N is the right rotation

orthogonal matrix of singular vectors. The matrix product ΣV > ∈ RM×N embodies

the principal components. The linear transformation Σ controls the speech energies

by a scale factor that is the same in all directions. Omitting this factor does not

deteriorate the signal shape. In addition, based on [122], the criterion of orthogonality

for the vectors in U forces the right vectors in V to be a mixture of sources. We suggest

using the matrix of right singular vectors as a feature for the subsequent separation

step. We employ a sparse decomposition (SSVD) in lieu of an SVD to extract sparse

features. We impose sparsity on the right rotation matrix V and seek a lower rank

representation of the matrix Y with the requirement that the right singular vectors v



3.3 Multi-Speaker Voice Activity Detection by an Improved Multiplicative Non-Negative

Independent Component Analysis With Sparseness Constraints 57

are sparse for every source q = 1, . . . , Q. This means that these vectors may have many

zero entries. Conjointly, we believe that adding sparsity to these components yield a

more parsimonious representation, clearly emphasizing a unique feature contribution to

the subsequent multiplicative update rule. In this chapter, we use the individual sparse

right singular matrix as some scaled features of the principal components obtained via

SSVD. Our features are attractive since, as described previously, the space of right

singular vectors is considerably smaller than the observation space. As a summary,

our main task is to recover sparse and well unmixed right rotations v for every source

q = 1, . . . , Q that we use as features for the multi-speaker VAD procedure.

3.3.1.2 Sparse Right Singular Vectors Subspace Projection

First, a rank-one SVD layer (σ,u,v)> is the best approximation of Y if it solves

arg min
σ,u,v

‖Y − σuv>‖2, (3.2)

where u is a unit M -vector and v is a unit N -vector. In order to obtain a sparse vector

v, we add sparsity-inducing penalties on v in the optimization objective in Eq. (3.2).

We thus can expand Eq. (3.2) with an `1 regularization penalty term to formulate a

sparsity promoting optimization problem. Specifically, we minimize with respect to

the triplet (σ,u,v) the following penalized sum-of-squares criterion

‖Y − σuv>‖2 + λvΦ(σv), (3.3)

with Φ(σv) being the `1 regularization function

Φ(σv) =
N∑
n=1

|σv[n]| (3.4)

and λv being the non-negative penalty parameter. If λv = 0 than Eq. (3.3) is equivalent

to Eq. (3.2). The selection of λv corresponds to selecting the degree of sparsity of v.

The latter is the number of zero components in v or, based on [118], the number of n

elements that satisfy
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g(λv) = #

({
n ∈ {1, · · · , N} : [Y>u]nσ >

λv
2

})
(3.5)

for a fixed u. Here, g(λv) is the degree of sparsity function and #(·) represents the car-

dinality symbol. Moreover, [118] and [123] suggest the use of the Bayesian information

criterion (BIC), from [124], to estimate the optimal number of non-zero coefficients

BIC(λv) =
‖Y − Ŷ‖2

mn%̂2
+

log(mn)

mn
g(λv) (3.6)

with %̂2 denoting the ordinary least squares estimate of the error variance in Eq. (3.3).

In order to reach a sparse v, the minimization of Eq. (3.3) with respect to σv is iterated

until convergence. A closed-form solution for minimizing σv in Eq. (3.3) is detailed in

Appendix (A.1). Consequently, it follows that the sparse representation of the vector

v is obtained using a component-wise update that computes every element v[n] of v

based on

v[n] =
1

σ

[
sgn

{
[Y>u]n

}(
|[Y>u]n| −

λv
2

)]
, (3.7)

with λv being the minimiser of Eq. (3.6).

3.3.1.3 The Proposed SMM-NICA Algorithm

Algorithm 7 summarizes the steps of our method. Given Y, we iterate Eq. (3.2)–(3.10)

to build a matrix of sparse singular vectors VS . Specifically, the matrix VS is first

initialized as an empty matrix in Algorithm 7. Step 2. Then, at every qth iteration

of Algorithm 7. Eq. (3.2)–(3.10), the computed sparse vector v relative to source q is

concatenated to VS using Algorithm 7, Step 7. After Q iterations of Eq. (3.2)–(3.10),

the matrix VS is of dimensions RQ×N
+ and contains all the Q computed sparse vectors

v in its rows. We use the final state of the sparse matrix VS to initialize the proposed

SMM-NICA as shown in Eq. (3.11). Then, Eqs. (3.12)-(3.16) are reiterated to retrieve

an invariant estimate of S. According to [4,85], the nature of the multiplicative update

introduced in Eq. (3.16) conserves the non-negativity of the matrix S. The function

D{·} in Eqs. (3.14)-(3.15) sets all off-diagonal elements to null. In Eq. (3.12), we

use the median central measure instead of the mean suggested in [4, 85]. A precise
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descriptive measure depends highly on the shape of the data distribution. The median

mid-point outperforms the mean in terms of accuracy for heavy tailed distributions

since the mean can strongly be influenced by a small number of outliers [125]. Fig. 3.1

shows the right-skewed histogram for the energy of source S2 considered in Fig 1.2.

Obviously, the mean characterizes the relatively high but infrequent values. For our

purpose, the median is a better summary of the typical value.

-1 0 1 2 3 4 5
Energy interval

0

330

660

S
am

p
le

 c
o
u
n
t

Figure 3.1: Right-skewed histogram for the ground truth energies of S2 with the mean (red
line) and median (dashed green) speech energy central values.

3.3.1.4 Computational Complexity of the Proposed SMM-NICA

Since the SMM-NICA method is composed of two phases, namely the pre-processing

phase and a subsequent decorrelation step, we study the complexity of the two phases

separately. First, the SVD decomposition fulfilled in the pre-processing step requires

time complexity of the order of O(min(M2N,N2M)). A subsequent step is based on

iteratively extracting SVD layers upon which we impose sparsity. The step of sparse

optimization problem based on Lasso described in Eq. (3.3) is obviously the computa-

tionally most expensive. In fact, the sum of squares and the Lasso penalty are both

convex. However, the Lasso loss function is not strictly convex. This is the reason why
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Algorithm 7 The SMM-NICA algorithm

Input
1: Y = (y[1], · · · ,y[N ]) ∈ RM×N

+ based on Eq. (2.3)
2: VS , Ø

Initialization
3: for q = 1, . . . , Q do
4: Extract rank-one SVD layer (σ,u,v)> from Y that

solves Eq. (3.2)
5: Minimize Eq. (3.3) with respect to v
6: Update the sparse right singular vector v using Eq. (3.7)
7: Construct the sparse matrix VS , VS ‖ v>,

with ‖ being the concatenation symbol.
8: Set

σ = u>Yv (3.8)

9: Compose a sparse lower-rank matrix

YSSVD = σuv> (3.9)

10: Matrix subtraction

Y = Y −YSSVD (3.10)

11: end for
12: Define

[S]q,n ← |[VS ]q,n|,∀q = 1, . . . , Q, ∀n = 1, . . . , N. (3.11)

13: repeat

S̈ = median
(q)∈Q

{Sq}1>N ,∀q = 1, . . . , Q (3.12)

CS = (S− S̈)(S− S̈)> (3.13)

Λ1 = D{CS} (3.14)

Λ2 = D{(Λ−1
1 CS)2} (3.15)

14: Minimize the correlation in [S]q,n

[S]q,n ← [S]q,n

[
S̈S>Λ−1

1 S + SS>Λ−1
1 S̈ + Λ2S

S̈S>Λ−1
1 S̈ + SS>Λ−1

1 S + Λ2S̈

]
q,n

(3.16)

15: until reaching a fixed-point of Eqs. (3.12)-(3.16)
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there may be no global solution, but there are multiple local solutions that minimize

the Lasso loss function. There are many fast algorithms meant to solve the Lasso

regression problem in the general form given in Eq. (3.3). This optimization problem

can be solved using quadratic programming yielding an overall upper-bound for the

worst-case complexity of O(3M). Meanwhile, the least angle regression and shrinkage

(LARS) can solve the Lasso optimization problem, which leads to a computational

complexity of O(MN min(M,N)). This computational time is required for every it-

eration q, until reaching a maximum extracted SVD loads, which is defined as the

number of the treated targets Q in Algorithm 7. With regards to the decorrelation

step, which is based on the M-NICA algorithm, the complexity is of the order of M-

NICA. This means, the computational cost of the median-based decorrelation step of

the SMM-NICA is O(Q2N).

3.3.2 Experimental Results and Discussion

In this section, we provide simulation results for the multi-speaker energy separation

based on our proposed SMM-NICA technique. We consider the scenario depicted in

Fig. 1.2 with two active speech sources S2 and S3 affected by a reverberant environment.

We compare the performance of the proposed algorithm with the original M-NICA

based on diverse performance metrics in different noise variance environments. Table

3.1 outlines the overall separation results when a mixture of two active speech sources

(S2, S3) is considered. These mixtures are corrupted with noise of two variance levels,

i.e. σ2
ω = {0.1, 0.5}. Tables 2.5 and 2.6 contains an example of the SNR and SINR

values in dB, for an additive babble noise of power σ2
ω = 0.01 to the mixed multi-

source scenario illustrated in Fig. 1.2, recorded at each microphone and computed

using Eqs. (2.46) and (2.47), respectively. In a first experiment, an additive white

Gaussian noise (AWGN) is considered. The proposed method reduces the root mean

square error (RMSE) considerably. We further assess our results in terms of the signal

correlation ρ. The proposed SMM-NICA is capable of enhancing the signal correlation

for S2, as shown in Tab. 3.1. The distance between the estimated energies and the

ground truth is evaluated through `1 and `2 norms, respectively. The developed SMM-

NICA technique displays remarkably small distances outperforming M-NICA in all

cases. Moreover, we analyse the normalized RMSE that omits the energy scaling

in the performance assessment. Besides an accurate energy separation performance,

the efficiency of SMM-NICA remains stable as the variance of the noise increases to

σ2
ω = 0.5. Figure 3.2 (a) and Fig. 3.3 (a) illustrate the ground truth energies for

S2 and S3, respectively. The corresponding unmixed energies produced by M-NICA

are depicted in Fig. 3.2 (b) and Fig. 3.3 (b). It can be seen that some erroneous
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energy spikes, appear in the M-NICA result. For example, the energies in Fig. 3.2

(b) experience a cross-talk in the frame interval around k = [450, · · · , 550], which

obviously belongs to the alternative source S2. On the other hand, Fig. 3.2 (c) shows a

high accuracy in the sense that the cross-talk is attenuated and most of the supposedly

zero-energies are indeed attenuated to zero and thus properly unmixed. We further

compare the performance of M-NICA to our proposed technique for S3 where the

SMM-NICA in Fig. 3.3 (c) precisely tunes the energies describing the pause regions

to zero. As a second case, we also study the performance of the proposed method

with an additive babble noise. The results are summarized in Tab. 3.3. In addition,

we compare the median-based M-NICA, or MM-NICA, to the standard Mean-based

M-NICA and our proposed variants, i.e., SMeM-NICA and SMM-NICA. Again, both

SMeM-NICA and SMM-NICA outperform M-NICA. In terms of energy separation,

the MM-NICA performs better than the original M-NICA in the used speech use-case

sketched in Fig. 1.2. The energy unmixing results of MM-NICA for the centralized

scenario are depicted in Tab. 3.2. Regarding the VAD performance, we exploit the

sparse estimated energies in the VAD procedure. Hence, a simple detector that does not

require a threshold is implemented. Our VAD step simply assigns the estimated zero-

energies to the non-active speech region and vice versa. Higher detection is obtained,

as shown in Tab. 3.4 and Tab. 3.5 for both Gaussian and babble noise environments.

SMM-NICA achieves a significant 99.4% correct decision for S3 in the babble noise

case with variance σ2
ω = 0.5, see Tab. 3.5.

3.4 Robust Distributed Sparsity-Constrained Reg-

ularization Model-Based Multi-Speaker Voice

Activity Detection for Speech Enhancement in

Wireless Acoustic Sensor Networks

When the data departs from a nominal distribution, i.e. a well defined probability

distribution with fixed set of parameters, applying robust methods may yield a better

performance. The aim of robust signal processing is to design methods that are not

unduly affected by modeling errors and outliers/heavy tailed noise. On the other hand,

robust methods perform nearly optimal when the distributional assumptions are ex-

actly fulfilled [125]. In this section3, a new robust sparse-constrained VAD system for

3This section is based on the following conference article: ”Robust Distributed Sparsity-
Constrained Non-Negative Source Separation and Multi-Speaker Voice Activity Detection for Dis-
tributed Speech Enhancement in Wireless Acoustic Sensor Networks”, Submitted to the Proc. 2nd

IEEE Int. Conf. Signals Syst. (ICSigSys)
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VAD results Case 1: Additive white Gaussian noise

Variance Source Method
Performance measure

NRMSE RMSE ρ `1-norm `2-norm

σ
2 ω

=
0.

1 S2

M-NICA 0.974 97.1 0.78 4.6× 104 3.1× 103

SMeM-NICA 0.972 0.97 0.77 403.45 30.79

SMM-NICA 0.972 0.97 0.83 401.89 30.76

S3

M-NICA 0.97 1.7× 103 0.8 6× 105 5.2× 104

SMeM-NICA 0.97 0.97 0.8 321.46 30.8

SMM-NICA 0.97 0.97 0.8 321.78 30.8

σ
2 ω

=
0.

5 S2

M-NICA 0.97 180.3 0.78 9.22× 104 5.7× 103

SMeM-NICA 0.97 0.973 0.78 403.32 30.79

SMM-NICA 0.97 0.97 0.83 401.51 30.76

S3

M-NICA 0.97 1.7× 103 0.8 6.49× 105 5.34× 104

SMeM-NICA 0.97 0.974 0.8 321.47 30.8

SMM-NICA 0.97 0.97 0.8 321.79 30.8

Table 3.1: Comparison of the energy separation performance of the original M-NICA al-
gorithm and the proposed approaches: the sparse mean-based M-NICA (SMeM-NICA), and
the median-based M-NICA (SMM-NICA) for two sources (S2 and S3). Case 1: Additive
white Gaussian noise of variance σ2

ω = 0.1 and σ2
ω = 0.5.

Method Variance Source
Performance measure

NRMSE RMSE ρ `1-norm `2-norm

MM-NICA
σ2
ω = 0.1

S2 99.8 10 0.78 4.69× 103 317.35

S3 2.7× 106 1.6× 103 0.8 5.5× 105 5.2× 104

σ2
ω = 0.5

S2 104.2 10.2 0.78 5.21× 103 324.26

S3 2.7× 106 1.6× 103 0.8 5.52× 105 5.20× 104

Table 3.2: Energy separation performance of the median-based M-NICA (MM-NICA) al-
gorithm for two sources (S2 and S3) buried in additive white Gaussian noise of variance
σ2
ω = 0.1 and σ2

ω = 0.5.
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Case 2: Background babble noise

Variance Source Method
Performance measure

NRMSE RMSE ρ `1-norm `2-norm

σ
2 ω

=
0.

1 S2

M-NICA 0.974 10 0.78 4.7× 103 316

SMeM-NICA 0.972 0.974 0.83 401.3 30.74

SMM-NICA 0.972 0.973 0.83 402.6 30.76

S3

M-NICA 0.974 1.6× 103 0.8 5.5× 105 5.2× 104

SMeM-NICA 0.973 0.97 0.81 321.4 30.78

SMM-NICA 0.973 0.97 0.8 321.7 30.79

σ
2 ω

=
0.

5 S2

M-NICA 0.973 78.1 0.78 4× 104 2.5× 103

SMeM-NICA 0.972 0.97 0.84 401 30.74

SMM-NICA 0.972 0.97 0.83 401.9 30.76

S3

M-NICA 0.97 1.7× 103 0.8 6× 105 5.3× 104

SMeM-NICA 0.97 0.973 0.8 321.5 30.8

SMM-NICA 0.97 0.974 0.8 321.7 30.79

Table 3.3: Comparison of the energy separation performance of the original M-NICA al-
gorithm and the proposed approaches: the sparse mean-based M-NICA (SMeM-NICA), and
the median-based M-NICA (SMM-NICA) for two sources (S2 and S3). Case 2: Babble noise
of variance σ2

ω = 0.1 and σ2
ω = 0.5.

VAD results Case 1: Additive white Gaussian noise

Variance Source
VAD-based Methods

M-NICA VAD (%) SMeM-NICA VAD (%) SMM-NICA VAD (%)

σ2
ω = 0.1

S2 63.3 92.8 92.8

S3 26.1 82 82

σ2
ω = 0.5

S2 62.9 89.6 89.6

S3 26.1 81.4 81.4

Table 3.4: Comparison of VAD performance of the original M-NICA algorithm and the pro-
posed approaches: the sparse mean-based M-NICA (SMeM-NICA), and the sparse median-
based M-NICA (SMM-NICA) for two sources (S2 and S3). Case 1: Additive white Gaussian
noise of variance σ2

ω = 0.1 and σ2
ω = 0.5.
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Figure 3.2: (a) Energy ground truth for the speech source S2 of Fig. 1.2, (b) the correspond-
ing energy estimates using the M-NICA algorithm, and (c) the energy estimates using the
proposed sparse and median based multiplicative non-negative component analysis (SMM-
NICA) approach, under additive white Gaussian noise with variance σ2

ω = 0.5.
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Figure 3.3: (a) Energy ground truth for the speech source S3 of Fig. 1.2, (b) the correspond-
ing energy estimates using the M-NICA algorithm, and (c) the energy estimates using the
proposed sparse and median based multiplicative non-negative component analysis (SMM-
NICA) approach, under additive white Gaussian noise with variance σ2

ω = 0.5.
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VAD results Case 2: Background babble noise

Variance Source
VAD-based Methods

M-NICA VAD (%) SMeM-NICA VAD (%) SMM-NICA VAD (%)

σ2
ω = 0.1

S2 63.8 92.9 98.1

S3 26.1 84.7 99.3

σ2
ω = 0.5

S2 62.7 88.2 99.3

S3 26.1 85.7 99.4

Table 3.5: Comparison of VAD performance of the original M-NICA algorithm and the pro-
posed approaches: the sparse mean-based M-NICA (SMeM-NICA), and the sparse median-
based M-NICA (SMM-NICA) for two sources (S2 and S3). Case 2: Additive background
babble noise of variance σ2

ω = 0.1 and σ2
ω = 0.5.

speech enhancement is proposed that does not require any voiced/unvoiced modelling.

However, multiple speech mixtures are well separated based on sparse modeling and ro-

bust decorrelation functions. Non-empirical thresholding functions for speech periods

detection are introduced to improve the node-specific speech enhancement performance

in a distributed WASN. Hence, a new robust VAD is designed to update the noise statis-

tics in the subsequent speech enhancement system when faced to non-stationary noise.

Extensive evaluation of the method on a multi-speaker setup under noisy conditions is

carried out. Results show that the new method greatly improves the performance of

the subsequent speech enhancement algorithm.

3.4.1 Proposed Robust Centralized VAD-Based Energy
Source Separation Using a tνM-SMM-NICA

In this section, the developed robust VAD technique is introduced and explained. We

first look at the centralized VAD scheme. For this, we utilize the data model de-

scribed by Eq. (2.3) presented in Section 2.1.2. In this case, every node k = 1, . . . , K

is equipped with Mk = 3 microphones. The number of microphones at every node is

the same and the overall number of microphones around the WASN is M =
∑K

k=1Mk.

The proposed tνM -SMM-NICA algorithm starts with collecting the energy data matrix

Y as shown in Algorithm 8, Step 1. The rows of this short-term energy matrix are

associated to the observations recorded at the different microphones. We next define

the empty data matrix VS where we collect iteratively the computed sparse rotations.

The pre-processing of the proposed algorithm is accomplished using an iterative proce-

dure. In other words, for every participating source q, an SVD layer extraction is first
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calculated as given in Algorithm 8. Step 4. Following to that, a minimization of the

optimization problem defined in Eq. (3.3) with respect to the variable v is performed,

see Algorithm 8, Step 5. An update of the vector v related to source q with its sparse

components is then performed and the matrix VS is revised to include the new sparse

vector v as shown in Algorithm 8, Step 6. Then, an update of the scalar σ is also done

based on the sparse vector v of source q. For a fixed u, a sparse matrix YSSVD of lower-

rank is calculated using Eq. (3.18) of Algorithm 8. This step is relevant to complete

a matrix subtraction and deduce the new lower-rank matrix Y using Eq. (3.19). The

initialization steps are iterated for every source q until reaching Q. Next, the features

that we utilize for the remaining robust decorrelation steps are the ones collected in the

sparse matrix VS . An initial [S]q,n then takes the absolute values of VS as illustrated in

Eq. (3.20) of Algorithm 8. The covariance matrix based on the median central tendency

is computed in Eq. (3.22) of Algorithm. 8. We use it for calculating the coefficients Λ1

and Λ2 that improve both the numerator and denominator of the decorrelation func-

tion in Eq. (3.25) of Algorithm 8. Moreover, we apply M -estimation in order to achieve

a robust estimation of the covariance matrix. M -estimators are common methods of

robust regression, which can be regarded as generalizations of the maximum-likelihood

estimation. We propose using the tνM -estimator to compute a robust C∗ in Eq. (3.26)

to minimize the correlation between the rows of S ∈ RQ×N . In Eq. (3.26), the vector

xn ∈ RQ×1 is a Q-dimensional vector of elements [S]q,n, q = [1, . . . , Q] at a frame n.

Moreover, uν(t) is a Q variate weight function.

3.4.1.1 Proposed Robust VAD Based on a Regularized tνM-SMM-NICA
for Energy Source Separation

Analogous to the tνM -SMM-NICA presented in Algorithm 8, a regularized tνM -SMM-

NICA algorithm (RtνM -SMM-NICA) is also proposed. The initialization step is identi-

cal to what we have introduced in Algorithm 8. However, the covariance matrix utilized

in the computation of the decorrelation function is now being regularized. In this case,

instead of C∗, the matrix Cα,β
∗ is computed using Eq. (3.38) of Algorithm 9. The

regularization depends on the parameters α and β, which are usually chosen by cross-

validation. The steps of the suggested RtνM -SMM-NICA method are then described

in Algorithm 9.
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Algorithm 8 Proposed tνM -SMM-NICA algorithm for energy separation

Input
1: Y = (y[1], · · · ,y[N ]) ∈ RM×N

+ based on Eq. (2.3) of Section 2.1.2
2: VS , Ø

Initialization
3: for q = 1, . . . , Q do
4: Extract a layer (σ,u,v)> that solves Eq. (3.2) of Section 3.3.1
5: Minimize Eq. (3.3) and update v using Eq. (3.7) of Section 3.3.1
6: Form the sparse matrix VS , VS ‖ v>,

with ‖ being the concatenation symbol.
7: Update the singular value σ

σ = u>Yv (3.17)

8: Compose a sparse lower-rank matrix

YSSVD = σuv> (3.18)

9: Matrix subtraction

Y = Y −YSSVD (3.19)

10: end for
11: Define

[S]q,n ← |[VS ]q,n|,∀q = [1, . . . , Q],∀n = [1, . . . , N ]. (3.20)

12: repeat
S̈ = median

(q)∈Q
{Sq}1>N ,∀q = [1, . . . , Q] (3.21)

CS = (S− S̈)(S− S̈)> (3.22)

Λ1 = D{CS} (3.23)

Λ2 = D{(Λ−1
1 CS)2} (3.24)

13: Minimize the correlation in [S]q,n

[S]q,n ← [S]q,n

[
S̈S>Λ−1

1 S + C∗Λ
−1
1 S̈ + Λ2S

S̈S>Λ−1
1 S̈ + C∗Λ

−1
1 S + Λ2S̈

]
q,n

(3.25)

C∗ =
1

N

N∑
n=1

uν(x
>
n Ĉ−1

S xn)xnx
>
n (3.26)

uν(t) =
Q+ ν

ν + t
(3.27)

t = x>n Ĉ−1
S xn (3.28)

14: until reaching a fixed-point of Eqs. (3.21)-(3.25)
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Algorithm 9 Proposed source energy separation based on the RtνM -SMM-NICA
algorithm

Input
1: Y = (y[1], · · · ,y[N ]) ∈ RM×N

+ based on Eq. (2.3) of Section 2.1.2
2: VS , Ø

Initialization
3: for q = 1, . . . , Q do
4: Extract a layer (σ,u,v)> that solves Eq. (3.2)
5: Minimize Eq. (3.3) and update v using Eq. (3.7)
6: Construct the sparse matrix VS , VS ‖ v>,

with ‖ being the concatenation symbol.
7: Set

σ = u>Yv (3.29)

8: Compose a sparse lower-rank matrix

YSSVD = σuv> (3.30)

9: Matrix subtraction

Y = Y −YSSVD (3.31)

10: end for
11: Define

[S]q,n ← |[VS ]q,n|,∀q = [1, . . . , Q],∀n = [1, . . . , N ]. (3.32)

12: repeat

S̈ = median
(q)∈Q

{Sq}1>N ,∀q = [1, . . . , Q] (3.33)

CS = (S− S̈)(S− S̈)> (3.34)

Λ1 = D{CS} (3.35)

Λ2 = D{(Λ−1
1 CS)2} (3.36)

13: Minimize the correlation in [S]q,n

[S]q,n ← [S]q,n

[
S̈S>Λ−1

1 S + Cα,β
∗ Λ−1

1 S̈ + Λ2S

S̈S>Λ−1
1 S̈ + Cα,β

∗ Λ−1
1 S + Λ2S̈

]
q,n

(3.37)

Cα,β
∗ = β

1

N

N∑
n=1

uν(x
>
n Ĉ−1

S xn)xnx
>
n + αI (3.38)

uν(t) =
Q+ ν

ν + t
(3.39)

t = x>n Ĉ−1
S xn (3.40)

14: until reaching a fixed-point of Eqs. (3.33)-(3.37)
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3.4.2 Proposed Distributed tνM-SMM-NICA Algorithm for
Energy Source Separation

In this section, we introduce a distributed tνM -SMM-NICA (DtνM -SMM-NICA) so-

lution for separating increasing number of energy sources in a WASN. A DtνM -SMM-

NICA is achieved via applying the tνM -SMM-NICA technique at distributed node

clusters. The node clusters are formed using the LONAS technique [1]. Consequently,

the steps of the DtνM -SMM-NICA are illustrated in Algorithm 10. In Algorithm 10,

since Eq. 3.49 reduces to one, the decorrelation function in Eq. 3.50 can be expressed

by

[s∗q]n ← [sq]n

[
s̀qs
>
q λ̀
−1
1 sq + c∗λ̀

−1
1 s̀q + sq

s̀qs>q λ̀
−1
1 s̀q + c∗λ̀

−1
1 sq + s̀q

]
n

(3.41)

3.4.2.1 Proposed Distributed Regularized tνM-SMM-NICA

With regards to the distributed regularized tνM -SMM-NICA (DRtνM -SMM-NICA),

the steps of Algorithm 9 are used at the formed sub-networks of nodes sharing the same

unique source-of-interest. The resulting steps are summarized in Algorithm 11. In the

same manner, since Eq. 3.63 of Algorithm 11 reduces to the value one, the proposed

decorrelation function in Eq. 3.64 can be simplified to

[s∗q]n ← [sq]n

[
s̀qs
>
q λ̀
−1
1 sq + cα,β∗ λ̀−1

1 s̀q + sq

s̀qs>q λ̀
−1
1 s̀q + cα,β∗ λ̀−1

1 sq + s̀q

]
n

(3.55)

3.4.3 Experimental Results

To assess the performance of the proposed robust VAD algorithms introduced in Section

3.4, the acoustic scenario depicted in Fig. 1.2 is simulated. Two different speech

scenarios are investigated:

1. Centralized speech use-case: which consists of two interfering speech sources S2

and S3. For this less challenging setup, a centralized robust VAD algorithm,
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Algorithm 10 The proposed distributed tνM -SMM-NICA algorithm (DtνM -SMM-
NICA)

1: for q = 1, . . . , Q do

2: YBq = (yBq [1], . . . ,yBq [N ]) ∈ R(Mk#(Bq))×N
+ using Eq. (2.16).

3: sq , ø
4: Extract a unique layer (σ,u,v)> that solves

arg min
σ,u,v

‖YBq − σuv>‖2, (3.42)

5: Minimize the `1 penalized sum-of-squares regression for the source dominant
model at node cluster Bq using

‖YBq − σuv>‖2 + λvΦ(σv), (3.43)

6: Update every indicator n of vector v at cluster Bq relative to source q using

v[n] =
1

σ

[
sgn

{
[Y>Bqu]n

}(
|[Y>Bqu]n| −

λv
2

)]
, (3.44)

7: Update the vector sq with the values of the sparse vector v at source q using

sq ← v. (3.45)

8: Based on |sq| compute

s̀q = median
(q)∈Q

{sq}1>N , (3.46)

csq = (sq − s̀q)(sq − s̀q)
> (3.47)

λ̀1 = csq (3.48)

λ̀2 = (λ̀−1
1 csq)

2 (3.49)

9: Minimize the correlation function using

[s∗q]n ← [sq]n

[
s̀qs
>
q λ̀
−1
1 sq + c∗λ̀

−1
1 s̀q + λ̀2sq

s̀qs>q λ̀
−1
1 s̀q + c∗λ̀

−1
1 sq + λ̀2s̀q

]
n

(3.50)

c∗ =
1

N

N∑
n=1

uν(xnĉ
−1
sq xn)x2

n (3.51)

uν(t) =
1 + ν

ν + t
(3.52)

t = x>n ĉ
−1
sq xn (3.53)

10: Update the sparse vector sq using

[sq]n ← [s∗q]n, ∀n ∈ N (3.54)

11: Extract the speaker-specific zero-threshold VAD patterns for the current
observations YBq based on the computed sparse vectors sq.

12: end for
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Algorithm 11 Proposed Distributed Regularized tνM -SMM-NICA (DRtνM -SMM-
NICA)

1: for q = 1, . . . , Q do

2: YBq = (yBq [1], . . . ,yBq [N ]) ∈ R(Mk#(Bq))×N
+ using Eq. (2.16).

3: sq , ø
4: Extract a unique layer (σ,u,v)> that solves

arg min
σ,u,v

‖YBq − σuv>‖2, (3.56)

5: Minimize the `1 penalized sum-of-squares regression for the source dominant
model at node cluster Bq using

‖YBq − σuv>‖2 + λvΦ(σv), (3.57)

6: Update every indicator n of vector v at cluster Bq relative to source q using

v[n] =
1

σ

[
sgn

{
[Y>Bqu]n

}(
|[Y>Bqu]n| −

λv
2

)]
, (3.58)

7: Update the vector sq with the values of the sparse vector v at source q using

sq ← v. (3.59)

8: Based on |sq| compute

s̀q = median
(q)∈Q

{sq}1>N , (3.60)

csq = (sq − s̀q)(sq − s̀q)
> (3.61)

λ̀1 = csq (3.62)

λ̀2 = (λ̀−1
1 csq)

2 (3.63)

9: Minimize the correlation using

[s∗q]n ← [sq]n

[
s̀qs
>
q λ̀
−1
1 sq + cα,β∗ λ̀−1

1 s̀q + λ̀2sq

s̀qs>q λ̀
−1
1 s̀q + cα,β∗ λ̀−1

1 sq + λ̀2s̀q

]
n

(3.64)

cα,β∗ =
1

N

N∑
n=1

uν(xnĉ
−1
sq xn)x2

n (3.65)

uν(t) =
1 + ν

ν + t
(3.66)

t = x>n ĉ
−1
sq xn (3.67)

10: Update the sparse vector sq using

[sq]n ← [s∗q]n, ∀n ∈ N (3.68)

11: Extract the speaker-specific zero-threshold VAD patterns for the current
observations YBq based on the computed sparse vectors sq.

12: end for
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namely tνM -SMM-NICA, is considered. The loudspeaker S2 produces the de-

sired speech signal, consisting of a female speaking English announcements at an

airport with regions of silence between every two subsequent sentences. Source

S3 consists of a male speaking English sentences.

2. Distributed speech-use-case: In the second case, an increased number of speech

sources is considered. A multi-speaker speech scenario consisting of six speech

sources is used. The considered sources are S2, S4, S5, S6, S7, and S3. Since

we look at a language independent VAD application, the studied speech sources

are in different languages. In addition, the delivered messages were spoken by

different genders.

In both cases, the mixture of speech is corrupted with an interfering additive Gaussian

noise. In the studied setup, we consider 20 nodes, each having Mk = 3 microphones

that are placed 1.5 cm apart. The microphone signals are sampled at a sampling

frequency of fs = 16kHz.

To validate the proposed VAD algorithms, we further consider applying the DANSE1

algorithm, see [18], for local node speech enhancement. The outcome of DANSE1 highly

depends on the VAD input. The validation of the proposed VAD techniques uses the

following parameters for the DANSE1 algorithm: a weighted overlap-add (WOLA)

with a DFT size of LDFT = 512, a forgetting factor λDANSE = 0.997, and a step size

parameter µ = 5 to improve noise reduction. Usually, an ideal VAD is exploited in

order to isolate the influence of VAD errors. In our experiments, the VAD input is the

one estimated using the proposed robust VAD algorithms. It is to mention that the

performed simulations, related to speech enhancement based on robust VAD inputs,

are completed in a static scenario where the speech sources do not move.

3.4.3.1 Centralized Use-Case

In a first experiment, we consider a speech scenario consisting of two active sources

S2 and S3 from Fig. 1.2. The proposed tνM -SMM-NICA algorithm is applied to the

mixture of these two sources corrupted with additive white Gaussian noise of variance

σ2
ω = 0.01. Table 3.6 depicts the VAD results in terms of correct detection (CD),

false alarm rate (FA), and misdetection percentage (MD). It is demonstrated that, for

this realistic centralized situation, the robustness parameter ν plays a crucial role to

obtain good results. Hence, the robustness parameter ν is object of analysis. Figure 3.4

illustrates the speech detection performance that varies with distinct robustness degree
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of freedom ν. Meanwhile, we notice that stability in speech detection is reached when

ν is 249 regarding S2. However, a robust speech activity decision for S3 is accomplished

when ν = 55.
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Figure 3.4: Correct detection achievement with varying degree of freedom ν for the ro-
bustness parameter applied in the tνM -SMM-NICA speech separation and activity detection
algorithm.

In Tab. 3.6, we summarize the detection results for the best selected ν values from

Fig. 3.4. The developed centralized tνM -SMM-NICA-based VAD attains 81.8% of cor-

rect decision with a minimum midetection rate of 0.4%. Minimizing the misdetection

rate in the VAD procedure is valuable for a subsequent speech enhancement phase.

Higher MD levels certainly affects the speech quality. A significant likelihood of misde-

tection of weak energy speech components as noise will cause distortion in the filtered

noisy speech signal. As presented by Tab. 3.6, our proposed robust detector based

on the suggested tνM -SMM-NICA algorithm for speech separation secures a high en-

ergy detection rate for S3 with 96.1% of maximal correct decision and a minimum MD

of 1.7% when ν = 55. Since the proposed tνM -SMM-NICA is meant primarily for

multiple energy speech separation based on a sparsity promoting model, the source to

interference ratio (SIR) and the signal to distortion ratio (SDR) are two measures used

for quantifying the quality of the separated energy speech signals as given in Tab. 3.6.
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Method Source ν
Measures

CD (%) MD (%) FA (%) SIR SDR

tνM -SMM-NICA
S2 249 81.8 17.8 0.4 277.2 3.75

S3 55 96.1 2.2 1.7 280.34 5.68

RtνM -SMM-NICA
S2 249 83.3 14.9 1.8 279.9 6.7

S3 55 95.9 2.2 1.9 280.4 5.75

M-NICA
S2 - 62.4 1.9 35.73 349.6 -1.4

S3 - 54.65 1.1 44.24 374.5 5.5

Table 3.6: Energy separation results and detection performance in the centralized use-case of
a two-energy mixture using the tνM -SMM-NICA, the RtνM -SMM-NICA, and the standard
M-NICA algorithm.

For the same energy use-case scenario, we measure the achievement of the suggested

RtνM -SMM-NICA in Tab. 3.6. For a fixed regularization parameter β = 1 and a value

of α > 1, higher VAD is observed for S2, see Tab. 3.6. We compare the results of the

proposed tνM -SMM-NICA and the RtνM -SMM-NICA to the M-NICA-based energy

separation and VAD, summarized in Tab. 3.6. Clearly, the proposed tνM -SMM-NICA

and RtνM -SMM-NICA algorithms obtain higher CD as compared to the M-NICA

based detector in a centralized setup. It can be also viewed that improved SDR val-

ues are reached when separating the mixture of energy signatures using the proposed

approaches as compared the the standard M-NICA. The latter is more pronounced

when S2 is estimated using M-NICA with a low negative valued SDR of −1.38. In

contrast, a finer SDR for the source S2 is realized using the robust tνM -SMM-NICA

and RtνM -SMM-NICA approaches for energy mixtures separation. The same inter-

pretation applies for the results achieved for S3. The CD values obtained using the

original M-NICA algorithm for S3 are substantially lower as compared to those given

by the robust and sparse tνM -SMM-NICA and RtνM -SMM-NICA techniques. In the

following, Fig. 3.5 and Fig. 3.6 show the quality of the estimated unmixed energies of

the noisy energy mixture of the two speech sources S2 and S3. The sparsity-integrated

model causes low-valued energies representing noise to converge explicitly to null. This

fact makes the ensuing VAD task easier to tackle and reduces only to counting non-zero

valued energies to be labeled as active signatures.
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Figure 3.5: Unmixed sparse energy of source S2 using the proposed tνM -SMM-NICA in a
centralized setup.

3.4.3.2 Validation of the Centralized tνM-SMM-NICA with DANSE1

In this section, we evaluate the assessment of the proposed robust VAD algorithms

based on a node-specific signal estimation method, namely DANSE1 [18]. For this, we

aim at enhancing the signal at a single node when the VAD information is estimated

using our detection techniques in a centralized setup. We calculate the SDR and SIR

of the output enhanced signals of the sources S2 and S3 compared to their ground

truth states. The cases when the VAD input relies on M-NICA is compared to that

which relies on the proposed tνM -SMM-NICA method. Results are summarized in

Tab. 3.7 and Tab. 3.8. In Tab. 3.7, the on-off VAD regions are generated using the

M-NICA algorithm. The on-off speech regions based on the proposed robust and sparse

tνM -SMM-NICA are used to generate Tab. 3.8. Clearly, in the examined centralized

two-source mixture scenario contaminated with additive Gaussian noise of variance

σ2
ω = 0.01, high quality signals are always achieved when DANSE1 uses the VAD input

generated with our proposed tνM -SMM-NICA algorithm. This is mainly noticed for

the speech signal S2 that is estimated with SDR of -9.62 for the M-NICA input, while

the signal quality improves to an SDR of 8.23 when the robust VAD based on the
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Figure 3.6: Unmixed sparse energy of source S3 using the proposed tνM -SMM-NICA in a
centralized setup.

suggested tνM -SMM-NICA algorithm is used.

Noise Variance Source
Measures

SIR SDR

0.01
S2 287.1063 -9.6207

S3 312.737 6.9277

Table 3.7: Node-specific time-domain speech signals estimation in the centralized use-case
of two sources S2 and S3 using the M-NICA-based VAD algorithm.

3.4.3.3 Distributed Use-Case

In this second part of the experiments, we consider evaluating the accomplishment

of the proposed VAD based on a robust distributed tνM -SMM-NICA (DtνM -SMM-

NICA). For this reason, we compute the detection performance, the energy separation

results and apply the resulting VAD patterns to speech enhancement based on DANSE1
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Noise Variance Source
Measures

SIR SDR

0.01
S2 287.8674 8.2389

S3 313.6354 26.2240

Table 3.8: Node-specific time-domain DANSE1-based speech enhancement in the centralized
use-case of two sources using the robust tνM -SMM-NICA-based VAD algorithm.

algorithm. The DtνM -SMM-NICA approach is based on node clustering achieved by

LONAS [1] where we utilize the distributed well-clustered nodes sharing the same

unique source-of-interest to produce a cluster (relative to a source) based VAD pattern.

This means that the DtνM -SMM-NICA computes the VAD output for a specific source

based on a cluster of nodes rather than the whole set of nodes existing in the WASN.

This framework is scalable to a large number of sources, see Chapter 2. Table 3.9

outlines the VAD results and the energy separation quality for the distributed speech

use-case consisting of six speech sources. We observe that the values of the degree of

freedom ν in Tab. 3.9 are smaller compared to the centralized use-case analyzed earlier.

Method
Source ν

Measures

CD (%) MD (%) FA (%) SIR SDR

DtνM -SMM-NICA

S2 5 74.6 19.72 5.7 280.53 7.23

S4 10 83.5 16.5 0 279.37 4.38

S5 10 79.9 20.7 0 279.36 4.47

S6 15 88.9 2.2 8.9 280.19 6.93

S7 10 87.19 2.5 10.3 279.26 2.28

S3 15 89.8 10.21 0 279.77 4.52

M-NICA

S2 - 60.76 6 33.23 358.1533 -55.7288

S4 - 46.84 3 50.15 447.1549 -9.4796

S5 - 56.96 3.9 39.14 381.0957 -34.5684

S6 - 55.85 6.4 37.73 397.0846 -14.5258

S7 - 45.74 5 49.25 422.5848 -34.5201

S3 - 46.5 2.8 50.6 375.6884 -20.2579

Table 3.9: Detection results for the distributed use-case of six source mixture corrupted
with additive Gaussian noise of variance 0.01 using the DtνM -SMM-NICA algorithm.
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Compared to the DtνM -SMM-NICA in Tab. 3.9, the energy separation capability and

the detection results are significantly low when the M-NICA algorithm is used for this

challenging scenario of six simultaneous speakers. An example of the VAD pattern

(in red) estimated using M-NICA and the DtνM -SMM-NICA algorithms are shown

in Fig. 3.7. (a) and Fig. 3.7. (b), respectively. Moreover, we give an idea of the

generated VAD patterns with the proposed robust VAD technique DtνM -SMM-NICA

in time-domain for the speech source S3 in Fig. 3.8. (a). The latter can be compared

to the time-domain VAD output for source S3 produced using the original M-NICA in

Fig. 3.8. (b).

3.4.3.4 Validation of the DtνM-SMM-NICA Based on Speech Enhance-
ment Results Using DANSE1

In this section, we investigate the performance of the proposed robust distributed VAD

algorithm, namely DtνM -SMM-NICA, based on the speech enhancement performance.

To this end, the obtained VAD results communicated in the forth-mentioned section are

subject to be used as an input for a subsequent DANSE1-based speech enhancement.

In Tab. 3.10, we report on the quality of the produced signals using the SIR and SDR

measures when the DtνM -SMM-NICA is employed. This is compared to the Tab. 3.11

that collects the achievement in terms of speech enhancement when the standalone M-

NICA-based VAD is utilized. Again, the speech enhancement for a challenging number

of sources is well obtained by the DANSE1 algorithm that uses the DtνM -SMM-NICA

for estimating the multiple-speaker on-off regions.

Noise Variance Source
Measures

SIR SDR

0.01

S2 289.1388 5.9283

S4 306.1935 -1.0096

S5 310.5850 25.0671

S6 313.9891 15.7383

S7 275.1634 8.0664

S3 313.2935 20.2881

Table 3.10: Node-specific speech enhancement results based on the robust distributed
VAD input, or DtνM -SMM-NICA, applied on a noisy mixture scenario of 6 sources, namely
{S2, . . . , S7} of Fig. 1.2.
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Figure 3.7: Estimated VAD pattern for the energy signature S3 in the 6 source scenario
use-case, using M-NICA in (a) and DtνM -SMM-NICA in (b).
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Figure 3.8: Time-domain VAD pattern of source S3 in the 6 source scenario using: (a) the
proposed robust DtνM -SMM-NICA algorithm, and (b) the original M-NICA-based VAD.
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Noise Variance Source
Measures

SIR SDR

0.01

S2 269.9669 -12.0037

S4 305.8562 2.0281

S5 305.6178 0.3762

S6 312.5591 -3.7797

S7 278.3810 3.9074

S3 310.0795 -5.4394

Table 3.11: Node-specific speech enhancement results with a M-NICA-based VAD input
applied in a mixed scenario of 6 sources, namely {S2, . . . , S7} of Fig. 1.2.

In the following, we show the improvement in speech enhancement using DANSE1

when the proposed DtνM -SMM-NICA is used for VAD as compared to M-NICA. For

instance, Fig. 3.9. (a) displays the noisy received signal at Node D7 (in blue) while

the ground truth signal corresponding to S5 is in red. DANSE1 considers estimating a

unique desired source-of-interest. In Fig. 3.9, the signal of interest is S5. The remaining

sources are interfering sources. We utilize this strategy of estimating single source-of-

interest for every different source in the distributed use-case. Figure 3.9. (b) illustrates

the speech estimation results of Source S5 at Node D7 when the M-NICA-based VAD

is favored for the DANSE1-based speech enhancement task. However, Fig. 3.9. (c)

shows the accuracy of the speech enhancement for source S5 when the VAD input for

DANSE1 is the one generated with our proposed DtνM -SMM-NICA. In the same way,

we show the different enhancement results for S6, S7, and S3 in Fig. 3.10, Fig. 3.11,

and Fig. 3.12, respectively. It is clear that the best achievement in terms of speech

enhancement is the one observed at nodes utilizing the proposed DtνM -SMM-NICA

for estimating the VAD patterns.

3.5 Robust Distributed Multi-Speaker Voice Ac-

tivity Detection Using Stability Selection for

Sparse Non-Negative Feature Extraction

As discussed previously, the non-negativity constraint, naturally, leads to sparse signal

representation in the underdetermined speech separation. However, we have shown

in Section 3.3 and Section 3.4 that using an explicit Lasso-based sparse model gen-
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Figure 3.9: Comparison between the received speech signal at Node D7 and (a) the ground
truth source signal S5 in red, (b) the estimated speech signal using DANSE1 based on the
VAD output of M-NICA, and (c) the estimated signal S5 using DANSE1 with DtνM -SMM-
NICA for VAD.
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Figure 3.10: Comparison between the received speech signal at Node D8 and (a) the ground
truth source signal S6 in red, (b) the estimated speech signal using DANSE1 based on the
VAD output of M-NICA, and (c) the estimated signal S6 using DANSE1 with DtνM -SMM-
NICA for VAD.
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Figure 3.11: Comparison between the received speech signal at Node D3 and (a) the ground
truth source signal S7 in red, (b) the estimated speech signal using DANSE1 based on the
VAD output of M-NICA, and (c) the estimated signal S7 using DANSE1 with DtνM -SMM-
NICA for VAD.
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Figure 3.12: Comparison between the received speech signal at Node D10 and (a) the
ground truth source signal S3 in red, (b) the estimated speech signal using DANSE1 based
on the VAD output of M-NICA, and (c) the estimated signal S3 using DANSE1 with DtνM -
SMM-NICA for VAD.
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erates advantageous features for computationally efficient multiplicative algorithms.

There has been a flourishing interest in exploring the study of sparse approximation

of signals. Ubiquitous applications in speech and audio processing areas utilize sparse

representations of signals including feature extraction, source separation, compressive

sensing, speech enhancement, model regularization, to name a few. In general, sparsity

is achieved by using an over-complete set of prototype signals, from which recovered

signals are described by sparse linear combinations of these prototypes. Sparsity can

be viewed as effective dimensionality reduction that leads to an efficient data sample

representation. The signal, in this case, is linearly represented with a few useful pa-

rameters. With high probability, such representations can contain most of its relevant

information and often yield superior signal processing algorithms. However, a question

that can arise is: “How sparse should the feature of interest be?”. This section4 deals

with the estimation of an optimal maximal sparsity degree convenient to highlight the

on-off regions of the speech signal features.

Thus, the main focus of this section sheds light on meaningful feature extraction based

on sparse modeling with an integrated automatic degree of freedom selection with an

application to the field of speech processing for the multi-speaker VAD purpose. Hence,

the proposed algorithms in this section do not require a complete blind energy source

separation task prior to VAD.

3.5.1 Robust and Sparse Energy Feature Extraction-Based
Stability Selection

Let Y ∈ RM×N
+ denote the matrix composed of entries y[n], n = [1, . . . , N ], where y[n]

is defined in Eqs. (2.3)–(2.5). We use an SVD decomposition that projects Y onto

SVD(Y) = UΣV>, (3.69)

where U ∈ RM×M and V> ∈ RN×N describe the left and right orthogonal rotations of

singular vectors, respectively. Σ ∈ RM×N contains the singular values on its diagonal.

In essence, we target a robust derivation of sparse right-singular vectors. Thus, we

suggest as in [5] to impose sparsity-inducing penalties solely on V within the iterative

rank-one SVD layer extraction. Sparse right rotation components grant a parsimonious

4This section is based on our work presented in the conference article entitled: ” Robust Distributed
Multi-Speaker Voice Activity Detection Using Stability Selection for Sparse Non-Negative Feature
Extraction”, in Proc. 25th IEEE Eur. Signal Process. Conf. (EUSIPCO).



3.5 Robust Distributed Multi-Speaker Voice Activity Detection Using Stability Selection for

Sparse Non-Negative Feature Extraction 89

speech representation, which clearly emphasizes features for the posterior VAD phase.

Consequently, a lower rank representation of Y is undertaken with the particular re-

quirement that the right singular vectors v, for different sources q = [1, . . . , Q], are

sparse. Sparse right rotation components serve as features for the subsequent VAD

phase. Accordingly, we consider a robust `1-regularized term that minimizes the pe-

nalized sum-of-squares criterion introduced previously in Eq. (3.3). From Eq. (3.3), u

and v are unit vectors of length M and N , respectively. We interpret the right singular

vectors v as regression coefficients of a linear penalized regression fit as to design their

sparse map. λv describes the tuning parameter of the penalization and Φ(σv) is the

`1 regularization function as shown in Eq. (3.4).

Based on the Lasso penalized regression in Eq. (3.3), the selection of λv corresponds to

selecting the degree of sparsity of v, i.e., the number of non-zero components in v. In [5],

we use the BIC based penalty parameter selection proposed in [118]. However, the

resulting sparse vectors v require a subsequent unmixing step, see [5]. In this section, we

favor the use of stability selection [126,127] to accurately deduce the sparseness level of

the right singular vectors v and thus robustly determine the minimal penalization value

of the regularization parameter λv. This approach is promising as it surmounts the

imperative use of an ensuing unmixing procedure, such as M-NICA. Stability selection

is utilized to improve the estimation of the right sparse singular vectors presented in

Section 3.3.1, or the work presented in [5]. Stability selection is a sub-sampling based

variable selection that allows the control of false alarm rates. In this work, the aim

is to infer the true set of non-zero coefficients in the right singular vector using the

stability selection approach. Let Lv be the set of possible λv parameters that we

adapt to Eq. (3.3). Every λv ∈ Lv points to a distinct subspace of non-zero indicators

n ∈ N of v denoted Ẑλvv (M). The probability of selecting a non-zero coefficient is

obtained via estimating the relative selection frequency of n pertaining to sub-samples

M◦ ⊂ M for an arbitrary threshold τ . This combined approach allows to control the

expected number of falsely selected non-zero coefficients in the right singular vectors

and therefore the degree of sparsity of the resulting right singular vector layers. Based

on the selection probability, the subset of non-zero coefficients n of a vector v given a

value λv from the set of values Lv is defined as

Ẑv =
{
n : max

λv∈Λv

P (n ∈ Ẑλvv (M◦)) ≥ τ
}
. (3.70)

In Eq. (3.70), M◦ is a sub-sample of M drawn without replacement from the set

{1, . . . ,M}. An efficient iterative algorithm that incorporates a component-wise thresh-

olding rule to solve the penalized regression in Eq. (3.3) with respect to σv is given
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in [118]. An approximate solution to the Lasso-based minimization problem in Eq. (3.3)

is detailed in Appendix (A.1). Here, Ẑv encloses the stable selection set of non-

attenuated candidates n ∈ N . The minimal penalization value λmin
v that verifies

Eq. (3.70) is used to adjust the components of the vector v. Hence

v[n] =
1

σ

[
sgn

{
[Y>u]n

}(
|[Y>u]n| −

λmin
v

2

)]
. (3.71)

Algorithm 12 Centralized stability selection based sparse feature extraction and ro-
bust Mahalanobis classifier for VAD (SRM-VAD)

Input: Form Y = (y[1], · · · ,y[N ]) ∈ RM×N
+ using Eq. (2.3).

VAD procedure
1: for q = 1, . . . , Q do
2: Minimize Eq. (3.3) subject to the `1-norm constraints imposed

on the right-singular vector v.
3: Deduce λmin

v through a stability approach that selects the best
set of non-zero indicators n guaranteeing sparsity in v, based on Eq. (3.70).

4: Adjust v with its new elements using Eq. (3.71).
5: Update the singular value σ = u>Yv.
6: Construct a sparse lower-rank matrix Y? = σuv>.
7: Collect the matrix of residue Y = Y −Y?.
8: Based on |v|, extract v

(n)
q , [v

(n)
q,1 , v

(n)
q,2 , v

(n)
q,3 ]>,∀n ∈ N .

9: Initial speech/silence segregation Cj based on c>j , j = {1, 2}.
10: Compute R̂q,j,∀j using the p-variate tνM -estimator from Eq. (3.72).
11: Evaluate robust Mahalanobis distance given in Eq. (3.73).
12: Decide upon speech activity for source q using Eq. (3.74).
13: end for

Output: VAD patterns d>1 , · · · ,d>Q

3.5.2 Robust Mahalanobis Classifier for Multi-Speaker VAD

In this section, we explain how the Mahalanobis distance is used to model a linear

classifier of the extracted speech energy features |v| at every source q ∈ Q. A ro-

bustification of the covariance matrix utilized in the computation of the Mahalanobis

distance is also described. The output of the designed robust classifier is a binary de-

cision pattern where the non-activity of speech energies is labeled zero and the active

speech energy regions are labeled one.
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3.5.2.1 K-medians Based Speech/Silence Prior Partitioning

Our focus is to first estimate a pair of centroids cj, j = {1, 2} associated to two sep-

arate classes, namely the active and non-active speech data points Cj, q = {1, 2},
respectively. For this, we collect three statistical short-term feature series v

(n)
q ,

[v
(n)
q,1 , v

(n)
q,2 , v

(n)
q,3 ]> analogous [1], see Chapter 2, that well characterize the sparse vector

v for a given source q. These features capture information about the energy average,

the standard deviation, and the energy difference. In this study, we use the K-medians

partitional clustering technique as a robust variation of the K-means to determine

conforming estimates of the active and non-active centroids, namely cj, j = {1, 2}, re-

spectively, while utilizing the features v
(n)
q . A centroid c>j is defined as a 3-dimensional

vector accommodating the individual centroids relating to the energy average feature,

the standard deviation, and the energy difference features at the speech/non-speech

clusters. Subsequently, we form two disjoint classes Cj, j = {1, 2}, of speech/silence

by assigning the realizations of v
(n)
q to the closest class Cj depending on their corre-

sponding distances to the estimated centroids cj.

3.5.2.2 Robust Mahalanobis-Based Speech Detection

In this subsection, we design a Mahalanobis-based similarity measure using the robust

p-variate tνM -estimator of ν degrees of freedom, see [128], for the estimation of the

covariance matrix R̂q,j, j = {1, 2}, of the speech/non-speech feature’s distributions,

respectively. The latter can be formulated as

R̂q,j =
1

#(Cj)

#(Cj)∑
n=1

uν(C
>
j,nR̂

−1
q,jCj,n)Cj,nC

>
j,n, (3.72)

with uν(t) = p+ν
ν+t

being the weight function, p the dimension of v
(n)
q , t = C>j,nR̂

−1
q,jCj,n,

and R̂−1
q,j corresponding to the inverse covariance matrix. The robust Mahalanobis

distance for the speech/silence classes then becomes

Mj(v
(n)
q ) =

√
(v

(n)
q − ĉj)>R̂−1

q,j (v
(n)
q − ĉj), (3.73)

Next, speech activity is determined following the decision rule
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dnq =

{
1 if M1(v

(n)
q ) < M2(v

(n)
q )

0 otherwise.
(3.74)

The values 0 and 1 correspond to speech absent and speech present, respectively. More-

over, M1(v
(n)
q ) represents the measured distance to the active speech region, while, on

the other hand, M2(v
(n)
q ) describe the calculated distance to the non-active speech re-

gion. Eq. (3.74) illustrates that we recognize an active speech when the computed

distance to the active speech, i.e., M1(v
(n)
q ), is lower than that to the non-active

speech, represented by M2(v
(n)
q ). Nonetheless, we identify a silent speech when the

measured distance M2(v
(n)
q ) is smaller than the distance to the active speech, i.e.,

M2(v
(n)
q ) < M1(v

(n)
q ) for a specific speaker q and a frame n. The proposed multi-

speaker stability selection based sparseness combined with the robust Mahalanobis

classifier for VAD (SRM-VAD) is summarized in Algorithm 12.

3.5.3 Distributed Stability-Based Sparseness and Robust Ma-
halanobis Classifier for VAD

Assuming a distributed network of devices, our aim is to obtain speaker-specific VAD

patterns using clusters of devices that share a common interest in the described multi-

source scheme in Fig. 2.3. A preliminary divide-and-conquer-based approach is per-

formed. To do this, we apply the LONAS algorithm, see [1], which partitions the

network into Q clusters by grouping devices around a unique dominant source based

on adaptive distributed eigenvalue decomposition. Figure 2.3 illustrates the resulting

device clusters (dashed red), each observing a specific source-of-interest q. We define

Bq as the set of devices k sharing a common interest in q. Based on this distributed de-

vice structure, we construct the (Mk#(Bq))-dimensional vector yBq [n] by stacking the

non-negative yk,m[n] for every device k present in Bq. #(Bq) is the device cardinality

for a given source q. Based on Eq. (2.3), the distributed signal model becomes

yBq [n] ≈ aBqs[n] + ωBq [n], n = [1, . . . , N ]. (3.75)

Here, aBq , ωBq [n] ∈ RMk#(Bq)×1 reduce to the mixing vector and noise for the ensemble

of devices in Bq. In such a distributed setup, our goal is to provide a sparse estimate

v̂Bq by observing only the linear mixture yBq [n]. The vectors v̂Bq ,∀q ∈ Q, are features

used to decide upon speaker-specific activity as outlined in Algorithm 13.
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Algorithm 13 Distributed stability selection based sparseness and robust Mahalanobis
classifier for VAD (DSRM-VAD)

1: for q = 1, . . . , Q do

2: YBq = (yBq [1], . . . ,yBq [N ]) ∈ R(Mk#(Bq))×N
+ using Eq. (2.16).

3: sq , ø
4: Extract a unique layer (σ,u,v)> that solves

arg min
σ,u,v

‖YBq − σuv>‖2, (3.76)

5: Minimize the `1 penalized sum-of-squares regression at node cluster Bq
based on

‖YBq − σuv>‖2 + λvΦ(σv), (3.77)

6: At every node cluster Bq, deduce λmin
v through a stability approach that selects

the best set of non-zero indicators n guaranteeing sparsity in v, based on
Eq. (3.70).

7: Component-wise update of the elements of the vector v at cluster
Bq relative to source q such that

v[n] =
1

σ

[
sgn

{
[Y>Bqu]n

}(
|[Y>Bqu]n| −

λmin
v

2

)]
. (3.78)

8: Update the vector sq with the values of the sparse vector v calculated at cluster
Bq for a dominant source q using

sq ← v. (3.79)

9: Based on |sq| compute, extract v
(n)
q , [v

(n)
q,1 , v

(n)
q,2 , v

(n)
q,3 ]>,∀n ∈ N .

10: Initial speech/silence segregation Cj based on c>j , j = {1, 2} at node
cluster Bq.

11: Compute R̂q,j,∀j using the p-variate tνM -estimator from Eq. (3.72) at node
cluster Bq.

12: Evaluate robust Mahalanobis distance given in Eq. (3.73) at node cluster Bq.
13: Extract the speaker-specific VAD pattern dq for the current

observations in YBq .
14: end for

3.5.4 Simulation Results for VAD and Discussion

In this section, we illustrate the performance of the proposed VAD technique using

two different settings. We assess the achievement of our method given in Algorithm 12

with a centralized scenario composed of Q = 2 speech sources. Then, we evaluate the

performance of our approach in the case of higher number of competing speech sources
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Q. In this case, for a scenario composed of Q = 6 speech sources, we favor a distributed

solution sketched in Algorithm 13. We discuss the conduct of our algorithms in both

centralized and distributed setups and report on the VAD results.

3.5.4.1 Centralized Two-Source Scenario Use-Case

We assess the outcome of our proposed VAD approach on the basis of a central-

ized multi-speaker WASN presented in Fig. 2.3 with two simultaneously active speech

sources S2 and S3 and an additive white Gaussian noise (AWGN) of variance σ2
ω = 0.01.

In this case, the speech mixture is recorded at every device as shown in Eq. (2.3). We

apply the centralized SRM-VAD method summarized in Algorithm 12 on the collected

noisy speech mixture Y. The degree of freedom for the robust Mahalanobis is empir-

ically chosen as ν = 49. Figure 3.13 shows the impact of choosing ν on the correct

detection (CD), misdetection (MD), and false alarm (FA) rates. From Tab. 3.12, we

see that the proposed SRM-VAD noticeably outperforms M-NICA in speech activity

decision. More than 95% of CD is achieved as displayed in Tab. 3.12. Additionally,

we deliver the generated decisions when the proposed standalone sparseness based sta-

bility selection for VAD (S-VAD) and its improved version with Mahalanobis distance

(SM-VAD) are considered. Comparable results are drawn from both SM-VAD and the

fully robust version SRM-VAD. Both algorithms outperform S-VAD for S2. Mean-

while, marginally decreased performance is obtained for S3. This is explained by the

concern of stability selection in reducing the false alarm rates, while the proposed im-

proved versions SM-VAD and SRM-VAD are biased towards misdetection reduction.

Our justification is clearly supported by the measures given in columns MD and FA

of Tab. 3.12. Moreover, we assess the separation quality reached by M-NICA and

the introduced sparse stability-selection-based methods for VAD. For this, we measure

the signal-to-distortion ratios (SDR) as summarized in Tab. 3.12. Distinctly superior

separation quality is reached in the energy signatures used for our proposed VAD ap-

proaches. We also achieve less distorted signals compared to the SMM-NICA algorithm,

explained in Section 3.3.

3.5.4.2 Distributed Multi-Source Scenario Use-Case

As a second experiment, we consider a WASN observing six speech sources, see Fig. 2.3,

affected with AWGN of variance σ2
ω = 0.01 variance. We deal with grouped devices

following their unique dominant source [1]. Devices hearing a source with higher power

are more likely to cluster together in order to cooperate for an accurate VAD. Eq. (2.16)
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Centralized Use-Case

Variance Source Method CD (%) MD (%) FA (%) SDR
σ

2 ω
=

0.
01

S2

M-NICA [4] 62.4 1.9 35.7 -3.23

SMM-NICA [5] 87.2 5.8 7 7.63

S-VAD 80.7 6.5 12.8 6.9

SM-VAD 85.44 1.92 12.64 6.9

SRM-VAD 85.03 1.52 13.45 6.9

S3

M-NICA [4] 54.7 1.1 44.2 5.75

SMM-NICA [5] 80.7 0.9 18.4 5.4

S-VAD 96.1 2 1.9 5.91

SM-VAD 95.3 1.3 3.4 5.91

SRM-VAD 95.45 0.4 4.15 5.91

Table 3.12: Comparative results of the original M-NICA [4], SMM-NICA [5], and the
proposed S-VAD, SM-VAD, and the SRM-VAD (with ν = 49), in a centralized scenario of
two sources (S2 and S3) with AWGN of variance σ2

ω = 0.01.

accumulates mixtures from clustered devices per primary dominant source. For the

scenario sketched in Fig. 2.3, we apply Algorithm 13. The input is a sub-matrix YBq
assembled from the #(Bq) devices for source q. Table 3.13 outlines the higher decision

results for the proposed distributed VAD algorithms compared to M-NICA and DM-

VAD. Figure 3.14 depicts the estimated VAD patterns with high precision layered on

the energy ground truth in the distributed scenario for three different speech sources

S5, S6, and S7.

3.6 Conclusions

We realized a sparse constrained blind energy separation of non-negative well-grounded

independent instantaneous source signals, which arises in many practical applications

but is hardly ever explored for the noise-embedded model case. In contrast to the addi-

tive gradient descent updates used for instance in the non-negative principal component

analysis (NPCA), we use the multiplicative weights for the update rule in M-NICA,

which maintains the assumed physical condition of non-negativity. The proposed tech-

nique improves the M-NICA algorithm by integrating sparse SVD features. Then, a

derivation of the SMM-NICA algorithm is introduced by applying the multiplicative
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Distributed Use-Case

Variance Source Method CD (%) MD (%) FA (%) SDR
σ

2 ω
=

0.
01

S2

M-NICA [4] 60.8 6 33.2 -55.73

DMVAD [1] 86.3 3.5 10.1 7.7

S-VAD 79.6 10.4 10 7.4

SM-VAD 85.44 5.7 8.9 7.4

DSRM-VAD 85.04 2.33 12.63 7.4

S4

M-NICA [4] 46.85 3 50.15 -9.5

DMVAD [1] 96.3 0.8 2.9 6.73

S-VAD 93.1 3 3.9 6.7

SM-VAD 96 0.2 3.8 6.7

DSRM-VAD 95.1 0 4.9 6.7

S5

M-NICA [4] 56.96 3.90 39.14 -34.6

DMVAD [1] 97 0.9 2.1 7

S-VAD 89.4 10.5 0.1 6.6

SM-VAD 96.6 0.3 3.1 6.6

DSRM-VAD 96.2 0.3 3.5 6.6

S6

M-NICA [4] 55.85 6.41 37.74 -14.52

DMVAD [1] 93.6 6.4 0 8.6

S-VAD 77.6 22.4 0 8.2

SM-VAD 95.96 3.03 1.01 8.2

DSRM-VAD 96.4 2.4 1.2 8.2

S7

M-NICA [4] 45.75 5 49.25 -34.52

DMVAD [1] 96.2 3.8 0 2.3

S-VAD 94.5 4 1.5 2.3

SM-VAD 98.2 1.7 0.1 2.3

DSRM-VAD 98.9 0.8 0.3 2.3

S3

M-NICA [4] 46.55 2.8 50.65 -20.3

DMVAD [1] 94.8 2.2 2.9 5.9

S-VAD 91.4 8.6 0 5.3

SM-VAD 94.85 2.12 3.03 5.3

DSRM-VAD 95.7 0.6 3.7 5.3

Table 3.13: Detection comparision of the original M-NICA algorithm [4], the DM-VAD
approach [1], and the proposed methods: the S-VAD, the SM-VAD and the DSRM-VAD
(with a degree of freedom robustness parameter ν = 49), for the speech use-case scenario
presented in Fig. 2.3, with AWGN of variance σ2

ω = 0.01.
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Figure 3.13: The impact of varying the degree of freedom ν on the outcome of the proposed
distributed SRM-VAD in terms of (a) correct detection level, (b) false alarm rate, and (c)
misdetection percentage.
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Figure 3.14: The acquired VAD patterns (red) using our SRM-VAD approach in the dis-
tributed setup for (a) S5, (b) S6, and (c) S7.
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update rule to the robust cost function, proposed based on the mutual correlation min-

imization principle. The decorrelation of the sparse feature mixture is maximized with

a more robust median-based multiplicative update that retains non-negativity. Since

the subspace spanned by the rows of the well separated energies does not change af-

ter the initialization, our technique does not require a subsequent subspace projection

correction step. The learning rate, upon which the convergence of the proposed SMM-

NICA depends, is not user-defined due to the mechanism of the multiplicative update.

Consequently, the multi-speaker VAD is examined as a non-negative energy separation

problem for a mixture of speech signals. The VAD in the proposed scheme, reduces

to determining the non-zero energies, which mitigates an empirical thresholding of the

energy signals.

Furthermore, two new robust VAD algorithms are proposed to improve the speech

detection robustness in non-stationary noisy environments. The presented techniques

distinguish speech from noise utterances in a multi-speaker noisy scenario. The novel

speech activity detectors are based on a robust and sparsely modeled multiple speech

separation method. Solving the separation problem entails to inspecting a general-

ization of a mixture model where the underlying independent latent variables, which

control the mixture components to be selected for each observation, are related to the

observed signal through a linear transformation. Based on our analysis, we find that

improving the speech separation of the mixture helps identifying patterns that can be

used to discriminate noise from noisy speech signal and, hence, can be used as a fea-

ture for VAD. At this stage, a distributed Wiener filtering-based speech enhancement

method, namely DANSE1 [18], is applied to demonstrate the efficiency of the proposed

robust VAD in improving the node-specific estimation of desired signals. Experimen-

tal results show that the proposed robust VADs can estimate precise speech activity

under different SNR conditions, which improves the subsequent speech enhancement

procedure that is sensitive to variable VAD input.

In addition, a new method for solving the multi-speaker VAD problem for WASNs in a

distributed reverberant environment that does not rely on a complete energy separation

step is suggested. As a matter of fact, instead of fulfilling a full source unmixing task,

in the proposed approach the multi-source VAD problem is solved via a ”semi” separa-

tion methodology. For this reason, energy features are extracted based on an iterative

stability-based sparse SVD (SSVD). This approach involves an automatic adjustment

and selection of the degree of freedom parameter in the sparse model. Consequently,

our proposed method relies on a stability selection assisted technique to promote a

sparse speaker-specific feature extraction from a noisy observed signal mixture. The

extracted sparse components are sufficiently well-separated for VAD, so the use of a

complete energy unmixing algorithm, such as the standard M-NICA, or the proposed
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SMM-NICA in Section 3.3 and Section 3.4, is no longer required. The design of a robust

Mahalanobis classifier applied to reveal speaker-specific activity patterns is also pro-

posed. At this stage, the covariance matrix of the Mahalanobis distance is determined

with a robust tνM -estimator. The robust Mahalanobis classifier aims to group similar

speech features together and provide an activity pattern. The suggested approach is

able to detect the presence of multiple active speech sources from a given mixture.

Our algorithm is convenient for speech and non-speech discrimination with/without a

prevailing blind energy source separation step. Throughout this chapter, simulation

results are presented that demonstrate the high VAD performance under noisy and

reverberant conditions for a challenging speech scenario in a WASN.
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Chapter 4

Distributed Robust Labeling of Audio
Sources in Heterogeneous Wireless Sensor
Networks

‘I am a slow walker, but I never
walk back.’

Abraham Lincoln

The aim of MDMT in wireless microphone networks is to attain higher performance in

the signal processing tasks through cooperation. In this PhD project, many source sig-

nals are assumed to be active in the WASN simultaneously. The detection and labeling

of the sources is required prior to the nodes cooperation. So far, we have introduced

many voice activity detection techniques for multi-source multi-device WASNs. The

proposed detection algorithms rely on the available information of well-labeled sources.

In this chapter, we investigate a framework for source labeling when many active tar-

gets are present in the network. Source labeling is relevant in the sense that nodes

can efficiently inform each other of the specific sources-of-interest in their own task,

by transmitting the corresponding labels. Source-specific features are proposed that

together with an ensuing distributed clustering step allow for a unique and uniform

labeling of the multiple sources throughout the WASN. With both detection and la-

beling tasks accomplished, cooperation amongst the devices on the basis knowledge

of activity and identity of sources is enabled, where under the MDMT paradigm each

node contributes to other nodes tasks following their interests.

4.1 Introduction

In the MDMT paradigm, different nodes from the network cooperate with each other to

carry out different node-specific tasks. Many applications require MDMT, for instance,

speech enhancement or VAD in a multi-source WASNs where devices receive speech

signal mixtures. Accurate speech detection for the multiple participant speech sources

should be performed in order to achieve a better subsequent speaker-related signal

enhancement. In the latter, the multi-sensor devices such as smart-phones or hearing

aids, are interested in enhancing their node-specific audio source-of-interest, given a
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received mixture of interfering sound sources. Each node is interested in enhancing its

own node-specific signal-of-interest, which may be considered to be a disturbance at a

different node and vice-versa. In this case, nodes may benefit from a cooperation, even

though their source-of-interest are different.

Cooperation between nodes in such an MDMT-based WASN is related to the labeling

task. Pertaining to the multi-source activity detection task, the labeling information

allows the devices to cluster their detected activity patterns according to the corre-

sponding sources. Source labeling ensures that all nodes identify each source with the

same label. In a WASN setting, each node observes mixtures of interfering signals

transmitted by different sources, while labeling the sources requires source-specific in-

formation at each node. Hence, the labeling information must be extracted locally

from the mixtures of received speech signals.

Motivated by the MDMT scheme, new techniques to solve the distributed labeling

problem are needed. In this study, we deal with a realistic scenario where the features

are not available a priori and have to be extracted from non-labeled sources. This is a

rather challenging task due to the fact that the various speech signals, to be labeled, are

mixed. Moreover, exchanging the raw sensor signals is often prohibited in practical sig-

nal processing scenarios due to communication (bandwidth/energy) constraints. Thus,

the distributed multi-source labeling is performed using new simple but informative

short-term features.

In this chapter1, appropriate source-specific features are extracted at each node. In

particular, we introduce a new direction-of-arrival (DoA)-based feature extraction tech-

nique that is used for the common unique labeling of all relevant speech sources that

are observed by the distributed WASN. We consider non-hierarchical networks for the

feature estimation. We further explain how the distributed clustering for a labeling

purpose is used based on the DoA-related features. The nodes in the network perform

the labeling via a distributed/cooperative unsupervised learning technique based on a

similarity measure applied to the feature vectors.

1This chapter is based on our work presented in the conference article entitled: ” Distributed
Robust Labeling of Audio Sources in Heterogeneous Wireless Sensor Networks”, in Proc. 40th IEEE
Int. Conf. Acoustics, Speech and Signal Process. (ICASSP).
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4.2 Contributions to the Distributed Multi-Source

Labeling

In this chapter, we present a new framework of distributed labeling of speech sources in

a WASN. A DoA-based feature extraction approach is suggested, which estimates the

source-specific features from a received mixture of sound sources impinging onto the

microphone array of each device in the network. For this, a subspace based algorithm

is considered which provides a high resolution sub-optimal technique that exploits the

Eigen-structure of the input matrix. We then consider a feature extraction step that

operates in non-hierarchical networks by exploiting similarities in the frequency bands

of the subspace decompositions at each node, that produce reliable DoA estimates

of the speech sources. Finally, a distributed centroid clustering scheme for the DoA-

related features is used for the distributed multi-source labeling purpose.

4.3 Signal Model

In this section for a better readability, we introduce a convenient notation for the basic

signal model that is used in the labeling task. Consider Q narrowband far-field sources

emitting waveforms impinging on K arrays of sensors. Every device k = 1, . . . , K,

holds Mk sensing microphones. The devices are willing and capable to cooperate in

order to perform a device-specific signal processing task, e.g., speech enhancement.

We deal with a sub-scenario of the speech use-case given in Fig. 1.2 of Chapter 1.

The considered sub-scenario consists of Q = 3 speech sources, K = 20 devices, each

equipped with Mk = 3 microphones in a vertically oriented ULA configuration with

an inter-sensor spacing of 1.5 centimeters. From Fig. 1.2, the active speech sources are

S1, S6, and S3, respectively. In the current study, a FC for centralized processing is not

present and the devices form a fully distributed network.

For the classical subspace DoA estimation methods, it is required that the number of

sources is less than the number of sensors, that is, Q < Mk. Sensors collect T snapshots

of the incident Q signals. The signal ym[η] received by the mth sensor, m = [1, . . . ,Mk],

at time instant η is expressed as

ym[η] = a?ms[η] + ωm[η], (4.1)

where a?m is a steering vector defined as



104
Chapter 4: Distributed Robust Labeling of Audio Sources in Heterogeneous Wireless Sensor

Networks

a?m = [a?m(θ1), . . . , a?m(θQ)] ∈ C1×Q. (4.2)

Here, θq denotes the DoA of the qth source. An element a?m(θq) of the vector a?m can

be computed using

a?m(θq) = e
−j2πdmic

λw
(m−1)sin(θq), (4.3)

where m = [1, . . . ,Mk], refers to the reference of the microphone in the ULA, dmic is

the inter-sensor spacing. The wavelength is λw = cw
fw

with cw being the propagation

speed and fw the frequency of the wave. The vector s[η] = [s1[η], . . . , sQ[η]]> ∈ RQ×1

represents the impinging Q signals at snapshot η. Based on Eq. (4.1), arranging the

output in a node level gives

yk[η] = A?
ks[η] + ωk[η], . (4.4)

In Eq. (4.4), the vector yk[η] is an Mk-dimensional vector of elements

[y1[η], . . . , yMk
[η]]>. The matrix A?

k = [a?k(θ1)>, . . . , a?k(θQ)>] ∈ CMk×Q is the steer-

ing matrix of the angles of arrival collected from the Q impinging sources on the Mk

microphones of node k. Every vector a?k(θq) is composed of the elements a?k(θq) =

[a?1(θq), . . . , a
?
m(θq), . . . , a

?
Mk

(θq)] ∈ C1×Mk . It is possible to calculate the steering vector

a?k(θq) related to source q and node k using

a?k(θq) = [1, e
−j2πdmic

λw
sin(θq), . . . , e

−j2πdmic
λw

(Mk−1)sin(θq)] ∈ C1×Mk . (4.5)

The elements of the matrix A?
k can be written as

A?
k =



1 · · · 1 . . . 1
...

. . .
...

. . .
...

a?m(θ1) · · · a?m(θq) · · · a?m(θQ)
...

. . .
...

. . .
...

a?Mk
(θ1) · · · a?Mk

(θq) · · · a?Mk
(θQ)


∈ CMk×Q, (4.6)
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where each column of the matrix A?
k is represented by the elements of the Mk-

dimensional column vector a?k(θq)
> in Eq. (4.5). Moreover, a row of the matrix A?

k

is described by the Q-dimensional row steering vector a?m of Eq. (4.2) at microphone

m.

The network-wide narrowband signal model at time instant η can be formed by ar-

ranging the output of the M =
∑K

1 Mk sensors in a linear equation, such as

y[η] = A?s[η] + ω[η], ∀η ∈ N. (4.7)

Here, A? ∈ CM×Q is the array response matrix of the Q emitted speech signals on the

M microphones of all the K nodes.

The goal of DoA is to estimate the angles of arrivals of all targets q = [1, . . . , Q].

Necessary assumptions are made to ensure the stability of most of the subspace-based

DoA methods:

• The number of sources Q is assumed to be known.

• The number of sources Q is less than that of the sensors Mk, Q < Mk

• Spatially white noise

• Independent sources and sources are also independent from noise.

Much research has been devoted to the development of alternative sub-optimal but

computationally feasible DoA methods, many of which are variations of the multiple

signal classification (MUSIC) algorithm [129–132]. In the sequel, we present a short

overview of direction finding literature and summarize the basic steps of the Khatri-

Rao MUSIC (KR-MUSIC) approach, which we use for extracting DoA related features

relevant for the labeling task.

4.4 Fundamentals on Direction-of-Arrival Estima-

tion

4.4.1 Direction-of-Arrival Estimation: State-of-the-Art

High resolution DoA estimation has received substantial attention. Many real-world

applications require DoA estimation including wireless communications, radar, sonar,
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tracking, and localization [132]. The signal subspace-based array processing algorithms

represent an important class of techniques for DoA estimation. Subspace-based meth-

ods exploit the underlying data model via separating the space spanned by the recorded

signal into noise and signal subspaces. Numerous signal processing techniques have

been established to cover this area. Among others, the MUSIC algorithm and its root-

MUSIC variation are the most popular [129–131]. MUSIC is a DoA estimation method

applicable to arrays with arbitrary geometry. In Fig. 4.1, for instance, we show the

MUSIC-based DoA estimation of three targets using a ULA. Moreover, Fig. 4.2 illus-

trates the estimation of the same angles using a uniform circular array (UCA) geometry

for the MUSIC-based DoA estimation. An interesting MUSIC based method that uses

the Khatri-Rao (KR) product is developed in [133–135] and will be briefly introduced

in Section 4.4.2. In [133], the quasi-stationary signal characteristic is explored to deter-

mine the direction of a transmitting source. Moreover, unlike the standard narrowband

array processing model, wideband approaches tend to operate in the frequency-domain.

Different high-resolution subspace approaches to wideband DoA estimation employing

the frequency-domain methods are elaborated in the literature [135–138].
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Figure 4.1: Example of DoA estimation based on the MUSIC algorithm with a ULA con-
figuration.
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Figure 4.2: Example of DoA estimation based on the MUSIC algorithm with a UCA
configuration.

4.4.2 The Khatri-Rao-MUSIC Approach

Given the received signal sequence yk[η] at node k of Eq. (4.4) and by assuming lo-

cal stationarity at intervals of length L, the KR-MUSIC approach models the local

covariance matrix under the quasi-stationary assumption of the speech signal. The

sensor local covariance matrix at a stationary frame n is of dimension RMk×Mk and is

estimated by local averaging using

R̂loc
n = (1/L)

nL−1∑
η=(n−1)L

yk[η]y
H

k [η], (4.8)

where n represents the frame index, n = 1, ..., N , and N = T/L. The superscript
H

is the Hermitian transpose. The Khatri-Rao product properties play an important

role in formulating a new array signal model where a virtual array response matrix is

formed which is of dimension greater than the physical array dimension, see [139]. This
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intrinsically provides the possibility to treat situations where the number of sensors is

less than that of sources i.e. Mk < Q. The computed local covariance matrices R̂loc
n

are then stacked in a way to form the matrix Ŷ as described in the ensuing formula.

Ŷ = [vec(R̂loc
1 )>, . . . , vec(R̂loc

N )>], (4.9)

where Ŷ ∈ R(Mk×Mk)×N and vec(·) is the vectorization function that transforms a

matrix R̂loc
n ∈ RMk×Mk to a (Mk×Mk)-dimensional vector. Smoothing of the covariance

matrix is performed with a noise covariance elimination by applying

Ȳ = ŶPN , (4.10)

with

PN = IN −
1

N
1N1>N ∈ RN×N . (4.11)

Then, a dimension reduction step is completed using

Ỹ = W
1
2
KRG>KRȲ, (4.12)

subject to
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GKR =


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...
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. . .
...

...
...

. . .
...

0 · · · 0 0 · · · 1 0

...
...

...
...

...
...

...

1 0 · · · 0 0 . . . 0

0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 1 0 · · · 0



∈ CM2
k×2(Mk−1) (4.13)

and

WKR = G>KRGKR = Diag(1, . . . ,Mk−1,Mk,Mk−1, . . . , 1) ∈ C(2Mk−1)×(2Mk−1), (4.14)

with Ỹ ∈ C(2Mk−1)×N . Next, the SVD projects Ỹ onto

Ỹ = ŨΣ̃Ṽ
H

, (4.15)

with Σ̃ ∈ CQ×Q, Ṽ ∈ CN×Q, and Ũ ∈ C(2Mk−1)×Q. The left singular matrix Ũ yields

the noise subspace matrix, such that

Ũnoise = [ũQ+1, . . . , ũ2Mk−1] ∈ C(2Mk−1)×(2Mk−1−Q) (4.16)

Next, the DoA spatial spectrum computed based on the Khatri-Rao subspace frame-

work takes the form

PKR-MUSIC(θ) =
1

‖ŨH

noiseW
1/2
KRb(θ)‖2

, θ ∈ [−π
2
,
π

2
]. (4.17)



110
Chapter 4: Distributed Robust Labeling of Audio Sources in Heterogeneous Wireless Sensor

Networks

In the KR-based spectrum formulation of Eq. (4.17), the vector b(θ) represents a

dimension reduced virtual array response vector and can be computed using

b(θ) = [e(Mk−1)
j2πdmic
λw

sin(θ), . . . , e
j2πdmic
λw

sin(θ), 1, . . . , e−(Mk−1)
j2πdmic
λw

sin(θ)]> (4.18)

The Q largest peaks of PKR-MUSIC(θ) in Eq. (4.17) represent the DoA estimates for the

narrowband signal model described in Eq. (4.7).

For speech scenarios, signals are non-stationary but can be modeled as stationary

within local time frames. In [139], DoA estimation is performed for locally stationary

signals. For this an extended DoA spectrum formulation based on Eq. (4.17) is de-

rived. The frequency-domain representation decouples the wideband signals into many

narrowband signals. The short-time Fourier transform (STFT) is used in [139] to trans-

form quasi-stationary signals into a multitude of narrowband models. We apply the

STFT on the observed noisy signals received at the microphones and denote y̌[n, f ]

the short-term time-frequency representation of y[η] at frame index n and frequency

bin f . According to [139], a wideband signal model approximation can be formulated

as

y̌[n, f ] ≈ A?(f)š[n, f ] + ω̌[n, f ], n = 1, · · · , N. (4.19)

Here, A?(f) represents a frequency dependent array response matrix. In order to

estimate DoAs, combination of the subspaces at various frequencies is performed in

the frequency-domain KR-MUSIC approach to obtain a spectrum fusion. The DoA

spectrum of wideband models can then be computed using [139]

PKR-MUSIC(θ) =
1∑

f‖Ũ
H

noise(f)W
1/2
KRb(θ, f)‖2

, θ ∈ [−π
2
,
π

2
], (4.20)

where Ũ
H

noise(f) denotes the KR noise subspace at a frequency f and b(θ, f) is an

extended steering vector at frequency f . The Q largest peaks of PKR-MUSIC(θ) in

Eq. (4.20) represent the DoA estimates for the wideband signal model described in

Eq. (4.19).
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4.5 Distributed Labeling Based on Clustered

Khatri-Rao-MUSIC Direction-of-Arrival Fea-

tures

In this section, the distributed labeling of different sources in a WASN is explained.

The proposed labeling approach of different speech sources throughout the network

consists of two steps, compiled in

1. A DoA-based feature extraction at each device for each speech source of the

WASN.

2. A distributed clustering of the computed DoA-based features.

We next detail the above steps to solve the labeling task.

4.5.1 Non-Hierarchical Feature Extraction: Exploiting Simi-
larities in the Frequency Bands Which Produce Reliable
Direction-of-Arrival Estimates

In the feature extraction phase, we ideally extract features for each speech source,

which are similar from node to node. This is a challenging task, since the various

speech signals are mixed and the signal powers in the mixtures differ significantly.

Non-hierarchically organized networks are able to extract features without forming sub-

networks. Our study focuses on extracting features based on promising high resolution

DoA estimation. However, DoA information cannot be applied directly to labeling,

since, in general, the devices in a WSN do not know their positions and array ori-

entations. Furthermore, in the considered setup, due to the ULA configuration, and

the use of omnidirectional microphones, an ambiguity in the DoA estimates along the

symmetry axis of the array orientation cannot be resolved.

For this reason, we propose a novel feature which exploits the similarity across devices

in the particular frequency bins that produce more accurate DoA estimates for each

source. The DoA is estimated with the KR subspace approach for locally stationary

wide band signals. The idea of the KR method is to form a new array signal model

by use of the KR-product, which generates a virtual array response matrix that is of
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greater dimension than the original physical array [139]. In this way, the KR method

can identify up to Q = 2Mk − 2 unknown sources in underdetermined mixing systems

of Mk sensors. In our work, we estimate the DoA based on the frequency dependent

spatial KR-MUSIC spectrum defined as

PKR-MUSIC(θ, f) =
1

‖ŨH

noise(f)W
1/2
KRb(θ, f)‖2

, θ ∈ [−π
2
,
π

2
], (4.21)

The Q largest peaks of PKR-MUSIC(θ, f) in Eq. (4.21) at a specific frequency bin f

represent the DoA estimates for the wideband signal model described in Eq. (4.19).

Based on the calculated DoA at every frequency f in Eq. (4.21), an overall DoA

estimate can be obtained, e.g. by taking the geometric or the arithmetic average or

their robust estimates over the estimates of all frequencies. However, due to the noisy

environment and multiple source interference, the DoA estimates are inappropriate at

some frequency bands. For this reason, we propose a source-specific frequency bands

selection that contribute in “good” DoA estimation based on the generated spectrums

PKR-MUSIC(θ, f) in Eq. (4.21) at every device.

Figure 4.3 displays the estimated DoA for S6 and S3 at device D1 at different frequen-

cies. Likewise, Fig. 4.4 illustrates the estimated DoA for S6 and S3 at device D14. The

overall DoA for each source θ̂q, q = 1, . . . , Q, is obtained by taking the median of θ̂q(f)

with 0 < f < fs/2. The dashed red lines indicate the σ̂θ̂q -interval around θ̂q. If the

DoA is estimated correctly, θ̂q(f) is centered around the median. However, due to noise

in particular sub-bands, or due to interference from other sources, the distribution of

the estimates may be heavy-tailed, as it contains outliers. It is therefore necessary to

estimate σθ̂q robustly [125], e.g., with the median absolute deviations scale estimator.

In this manner, the source-specific frequency bands that typically contribute to correct

DoA estimates are selected. The proposed feature vector is formed for each source at

each device by storing the frequency bin indexes within θ̂q ± σ̂θ̂q . Figures 4.5 and 4.6

illustrate the binary feature vectors of the selected frequency bins that contribute in a

better DoA estimation of source S3 at devices D1 and D14, respectively. Section 4.5.2

discusses how the DoA-based features with selected frequencies are used to achieve a

labeling of sources in the network.

4.5.2 Distributed Clustering of Direction-of-Arrival-Based
Frequency Selected Features

After computing source-specific features, we employ a distributed clustering scheme.

The goal of distributed clustering algorithms is to form the clusters in a way that
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Figure 4.3: The proposed non-hierarchical feature displays which frequency bins produce
reliable DoA estimates for each source at different nodes. The underlying DoA estimates
from which the feature is derived are displayed for D1, given S6 and S3, with positions, as
depicted in Fig. 1.2.
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Figure 4.4: The proposed non-hierarchical feature displays which frequency bins produce
reliable DoA estimates for each source at different nodes. The underlying DoA estimates
from which the feature is derived are displayed for D14, given S6 and S3, with positions, as
depicted in Fig. 1.2.
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Figure 4.5: Example of a binary feature vector indicating the selected frequency bins at
Node D1 that produce a reliable DoA estimation for S3.

they exploit all the available data of the network by relying, however, only on local

processing, at each node, as well as on interactions within the node’s neighborhood.

One possibility to achieve this goal is by consensus averaging [80,140]. In this case, the

nodes average the computed centroids of the clusters and consensus on the centroids is

accomplished. In other words, the nodes compute the same centroids and consequently

the same clusters. This is a crucial point for the labeling problem, since if the devices

have computed the same clusters, the labeling can be readily performed.

In this Section, we will discuss how the previously extracted DoA-based features can be

incorporated into a distributed clustering algorithm. Ideally, we would like each cluster

to contain every feature corresponding to the same speech source. We realize this by

employing a cooperative clustering scheme. This is achieved when a node cooperates

with its neighbors, and these cooperate, in turn, with their neighbors. Then, the

information coming from the whole network is incorporated. The distributed clustering

presented in [80] is adapted so as to fit with the current context of clustering DoA-based

features for source labeling. The steps to achieve this are summarized in Algorithm 14.
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Figure 4.6: Example of a binary feature vector indicating the selected frequency bins at
Node D14 that produce a reliable DoA estimation for S3.

Algorithm 14 Distributed clustering for multi-source labeling based on DoA infor-
mation

1: Centroid Initialization:
c

(k)
q (i = 0) = c

(k′)
q (i = 0)

2: repeat
3: Local Clustering Phase:

Apply the K-means algorithm at every node k
4: Cooperation Phase and Centroid Update:
5:

c(k′′)
q (i) =

c̃
(k)
q (i) + c̃

(k′)
q (i)

2
, k′′ = k, k′. (4.22)

6: until reaching a centroid consensus at iteration i

As a first step for the distributed clustering, an initialization of the centroids is per-

fomed. The nodes (sub-networks) initialize the centroids c
(k)
q (0), q = 1, . . . , Q as shown

in Algorithm 14. 1. Methodologies for selecting the initial centroids so as to satisfy the

above equality can be found in [80, Section 7.7]. Next, a local clustering is achieved. In

this case, each node (sub-network) k, at iteration i, performs a local clustering scheme
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by employing a distributed K-means algorithm, which uses the computed features and

the previously computed centroids c
(k)
q (i−1). For the DoA related features each feature

is assigned to the cluster, for which the Euclidean distance between the feature vector

and the centroid is minimized. The centroids c̃
(k)
q (i) are computed for q = 1, . . . , Q.

After the clustering is performed, node k′ belonging to the neighborhood of k is acti-

vated with a certain probability (see also [140]). We assume that node k picks some

neighbor k′ with probability 1/Nk, where Nk is the number of neighbors of k. Nodes

k, k′ update their centroids q = 1, 2, . . . , Q according to Eq. (4.22) of Algorithm 14.

Labeling is readily performed once the clusters are computed. The label of each speech

signal q will be set equal to the number of the class, in which the respective feature be-

longs. The averaging that takes place in the cooperation phase of the algorithm drives

the nodes of the network to a centroid consensus. This means, the nodes compute, af-

ter a sufficient number of iterations, the same centroids. This behavior is consistently

observed in extensive experiments. Moreover, the centroid consensus is proved in [76]

for a similar distributed K-means clustering scheme as the one we employ.

4.6 Simulation Results

In this Section, we study the performance of the proposed distributed labeling ap-

proach. We consider a sub-scenario of the network depicted in Fig. 1.2 and we validate

the accuracy of the labeling, using the proposed DoA features. The achievement in

terms of source labeling based on DoA is compared to the energy based features for

distributed labeling, suggested in [34]. In Fig. 1.2, the speech signal S1 corresponds

to a woman making a public announcement, whereas S6 and S3 consist of two male

speakers that are reading sentences in different languages. We use the mirror image

method [141] to synthesize room impulse responses that can be used to compute the

signals captured by microphones at arbitrary positions in a reverberant enclosure with

multiple sound sources.

In the first experiment, we consider that two speech sources, i.e., S6 and S3, are active.

We assume that both babble and white noise are present in the environment. The

variance of the noise processes is varied, so as to validate the accuracy in different

noise scenarios. The sampling frequency of the microphone signals is fs = 16kHz. The

DoA-based features are only computed on a single short interval of 0.5 seconds, where

all sources are active. Finally, two nodes of the network are assumed to be connected

if their distance is smaller than 4.5 meters.

Table 4.1 summarizes the results. It can be seen that the clustering accuracy, using

the DoA estimates, drops as the variance of the noise increases. On the contrary, using
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Noise Variance σ2
ω DoA Related Features Energy-Based Features [34]

0 100% 100%
0.1 89% 100%
0.5 65% 100%

Table 4.1: Distributed source labeling: Results for the two source scenario, S6 and S3.

the energy-based features, proposed in [34], the distributed clustering-based labeling

algorithm is able to label correctly the speech sources. This advantage comes at the

cost of forming a hierarchical network. In particular, the energy-based feature, as it is

apparent in Tab. 4.1, exhibits a better accuracy, compared to the DoA-based feature.

However, the former requires a hierarchical network and the process takes place over

the full-time signal. On the contrary, the labeling accuracy of the DoA features slightly

degrades, but these features can be computed at node level and the DoAs are estimated

on much shorter speech intervals of only 0.5 seconds.

In the second experiment, we consider the more challenging scenario, where all the

sources, namely S1, S6, and S3, are active in the network. The parameters remain the

same as in the previous example and the noise variance are varied as depicted in Table

4.2.

Noise Variance σ2
ω DoA Related Features Energy-Based Features [34]

0 80% 100%
0.1 60% 82%

Table 4.2: Distributed source labeling: Results for the three source scenario, S1, S6, and
S3.

As it is expected, the performance drops compared to the two-source scenario. Similarly

to the previous experiment, a better accuracy is achieved by employing the energy-

based features. It is worth pointing that, the performance of the labeling algorithm

is degraded, due to the fact that some nodes of the network are located in positions,

in which they are not able to hear all the speech sources. However, in the feature

extraction phase, we force the devices to assume that 3 sources are active and to form

3 clusters. A preprocessing, through which the number of active sources in a node is

computed, could potentially enhance the results.
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4.7 Conclusions

In this chapter, the question of labeling multiple sources in a distributed WASN is

addressed. Our proposed approach first derives features related to the DoA estimation

of multiple targets using a time-frequency analysis. Source-specific frequencies that

contribute to reliable DoA estimates are identified and selected for the computation

of the angles of arrival. The DoA-based features are estimated for each participating

source at every device of the network. Labeling of active sources in the WASN is then

achieved via a distributed clustering technique. Local processing of the DoA-based

feature vectors is performed, in which nodes attempt to determine locally the cluster

membership of the computed features and update their centroids. Cooperation between

neighboring nodes is then achieved where an averaging procedure of the centroids

is applied. Extensive clustering iterations show that nodes converge to a centroid

consensus over the network upon which the labeling of targets is performed at every

node. Experiments show that the proposed methodology is able to accurately label

speech signals in a practical speech scenario for high SNR values.
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Chapter 5

Summary, Conclusions and Future
Research

‘Sometimes what you think is an end
is only a beginning.’

Agatha Christie

5.1 Summary and Conclusions

In many current applications, low-cost sensors with high sensing capabilities are gener-

ally deployed in the WASNs to solve difficult signal processing tasks. The rapid com-

putational improvement of the physical sensors comes with the cost of highly stringent

constraints in sensor networks, which urges new wireless ad hoc networking techniques.

To this end, the MDMT paradigm is of paramount importance, so as to endure the

rapidly changing statistics of multimedia signals. The developed methods in this doc-

toral thesis are enablers for MDMT and allow for increased higher order cooperation

in WASNs.

In this doctoral project, novel algorithms for distributed labeling and detection of mul-

tiple sources in a reverberant and noisy WASN have been introduced. Several speech

processing applications depend on source activity detection/labeling front-end tech-

niques. The proposed multi-source methodologies have been validated in a challenging

realistic speech scenario using real speech data recorded in a reverberant noisy multi-

device WASN. It is to note that the detection and labeling questions are inter-related.

This means, on the one hand, solving the detection task for multiple sources requires

a prior labeling task. On the other hand, labeling of multi-sources can be of higher

accuracy if done on the basis of known signal activity information. The latter, indeed,

helps focusing the labeling search on active signal segments that bear useful informa-

tion compared to non-active regions of the signal, which are considered as noise. In

contrast to long-term features obtained from longer portions of signals, in this thesis,

we have utilized stationary short-term energy-based features. The centralized methods

in this thesis rely on a central entity that polls the detection/labeling decisions from

all the contributing nodes. For an increased number of participating speech sources,
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the proposed approaches are readily applied to distributed WASN settings, where no

fusion center is available and scalability is not an issue.

In the context of distributed multi-source detection, new approaches have been pre-

sented in this thesis to tackle the signal detection problem in the presence of many

sources in WASNs equipped with various devices. In fact, conventional algorithms for

single-source detection trade off accuracy and computational cost, while no research

has yet solved the distributed VAD for multiple-concurrent-sources in a reverberant

and noisy WASN environment. Essentially, we have proposed a new framework to

solve the multi-source detection problem based on distributed dominant source extrac-

tion and a subsequent robust clustering approach to determine signal activity patterns.

Distributed energy source unmixing has been performed via a rank-one non-negative

independent component analysis that uses multiplicative updates rule, which is com-

puted at node clusters sharing a unique source-of-interest. Following to that, a dis-

tributed partitioning-based binary source activity detection has been presented, which

precisely distinguishes active from non-active utterances of the different competitor

energy signals in the WASN. In a second approach, we have proposed a Lasso-based

sparse blind energy source separation of noisy mixed energies recorded at different

nodes in the network. At this stage, we have derived a new non-negative blind energy

source separation technique that combines sparse coding and multiplicative updates

rule for sparse non-negative energy extraction relative to the participating sources in

the WASN. Precisely, we have assumed a sparse representation of the right rotation

loads of a singular value decomposition extracted by an iterative procedure where every

layer describes an energy source. The decorrelation of multiplicative nature between the

rows of the matrix of sparse right vectors is maximized while preserving non-negativity

of the signals. We have shown that sparse decomposition in the unsupervised learning

provides high-quality blind energy source separation. Consequently, the multi-source

detection problem is converted to a non-negative blind energy separation where the

non-active energy frames are automatically tuned to zeros due to the enforced sparse

modeling. Moreover, robust tνM -estimator-based sparse energy separation algorithms

have been suggested. The robustly unmixed sparse energy signatures of the sources

readily produce a straightforward zero-threshold VAD, which detects speech activity.

In this doctoral thesis, we also aimed at surmounting the dependency on full unmix-

ing approaches in solving the multi-source detection problem. Our consecutive logic

suggests using a partial separation technique based on a sparse singular value decom-

position jointly with a robust stability approach for sparseness variable selection. We

have shown that the proposed robust non-negative sparse energy signal decomposi-

tion generates sufficiently separated energies for a subsequent suggested robust voice

activity classifier based on the Mahalanobis distance.
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In the context of labeling, a distributed multi-source labeling algorithm has been de-

veloped to uniquely label all energy source signals throughout the WASN. In this part,

extraction of proper energy-based source-specific features from the mixed signals is

achieved. The features are based on a STFT applied to the estimation of DoAs. We

have exploited these DoA related features via a distributed unsupervised learning tech-

nique to reach an accurate source labeling.

5.2 Future Research Directions Based on the Pro-

posed Multi-Source VAD and Labeling Tech-

niques

In this section, we suggest some future research directions.

5.2.1 Image Unmixing

Linear unmixing of non-negative image mixtures is considered in [85]. Due to the non-

negativity of the pixels, image mixtures separation can naturally be seen as a NICA

problem. Pertaining to hyperspectral image processing, which finds usage, e.g., in

military target recognition applications, hyperspectral unmixing is a crucial prepro-

cessing step. Due to the non-negativity of the hyperspectral images’ spectra, sparse

NICA-based methods, similar to what we suggest in Chapter 3, can be applied.

5.2.2 Distributed Multi-speaker Diarization and Localization
Based on Joint Robust VAD, Labeling, and DoA Esti-
mation

Speaker diarization consists of answering the question “who speaks when?”. It is con-

sidered as an extension of the speaker identification task in speaker recognition where

additionally the occurrence time of a speech segment has to be determined. Speaker

diarization has gained increased visibility and significance in society as speech tech-

nology continues to expand. In real-world distributed multi-source speech scenarios

such as group meeting situations, the speakers should be identified and associated to

their respective speech segments without any prior information about the audio nor

the speakers. As a continuation of our research, distributed multi-speaker diarization
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can be accomplished. In this case, we suggest using distributed processing to extract

the main information related to multi-source VAD, labeling and DoA-based localiza-

tion. Jointly exploiting this prior knowledge to build a diarization system seems to be

a promising idea. This information makes it possible to detect ”who speaks when, and

where a speech segment occurs“. The proposed speaker diarization system relies on a

series of steps summarized in Fig. 5.1. First, a pre-processing of the raw input data is

performed consisting of a distributed node clustering, for example using the LONAS

algorithm [1], and a subsequent distributed sparse energy feature extraction. In order

to avoid the adverse effect of impulsive noise and the interfering neighboring sources,

a node-specific speech enhancement technique based on multi-source VAD information

can be employed. Improving speech quality allows for the design of sophisticated algo-

rithms. Text-independent VAD information is essential to determine when a specific

speaker is talking. The direction of an impinging speech signal relating to a speaker

is resolved using a DoA-based method. Estimating DoAs of the different participating

sources is done only using active speech segments, which carry more useful information.

DoAs are more accurate when using exclusively active speech segments, estimated via

VAD, and the computation cost in this case is less expensive. The labeling information

of the multiple sources is extracted using DoA-based features as we propose in Chapter

4. Combining this information yields a diarization system of higher performance where

questions on speaker identity, localization and activity are well achieved.
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Figure 5.1: Approach for solving the distributed multi-speaker diarization problem.
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Appendix

A.1 Closed-Form Solution for a Quadratic Opti-

mization Based on Component-Wise Thresh-

olding Rule

Extracting sparse right rotations based on a penalized SVD regression as described in

Chapter 3 suggests solving the regression to obtain proper sparse right singular vectors

from the SVD layers. This can be done, for instance, using the algorithm proposed

in [142]. However, [118] derives an efficient algorithm that well explores the structure

of SSVD. In the following, we present the necessary derivations for the update of

the Lasso-based sparse right rotations simply based on a thresholding rule suggested

in [118].

Let the following formulation be the penalized sum-of-squares criterion

‖Y − σuv>‖2 + λvΦ(σv). (A.1)

As described in Chapter 3, λv is the non-negative penalty coefficient. Tweaking this

parameter controls the desired amount of sparseness, which depends on the data-driven

application and the characteristics of the signal. An explicit sparseness constraint

imposed in Eq. (A.1) is defined with Φ(σv), which is a sparsity-inducing penalty term.

In our study, we use a Lasso-based regularization sparse model. Based on the Lasso

penalty and a fixed right rotations u, minimizing Eq. (A.1) with respect to the right

singular vectors v refers to minimizing

‖Y − σuv>‖2 + λv

N∑
n=1

|σv[n]|. (A.2)

σ is a non-negative scalar, u is a unit M -vector, and v is a unit N -vector. Let v̆[n]

replace the product v̆[n] = σv[n]. Then, for a fixed u, the minimization of Eq. (A.2)

corresponds to minimizing

‖Y‖2 +
N∑
n=1

{v̆[n]2 − 2v̆[n](Y>u) + λv|v̆[n]|}. (A.3)
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Solving the regression for a Lasso-based sparse right rotations extracted from the SVD

layers can be fulfilled using component-wise thresholding rules developed in [118]. We

use the lemma introduced in [118] to deduce a closed-form solution for Lasso-based

minimization problem presented in our objective in Eq. (A.3).

Lemma 1. Given Eq. (A.3), a minimiser for the formula of the form γ2− 2yγ+ 2λ|γ|
is γ̌ = sgn(y)(|y| − λ)+. A simple thresholding rule can be defined as

γ̌ =


y − λ, if y > λ

y + λ, if y < −λ
0, otherwise

(A.4)

In Lemma 1, we set y to represent the nth component of Y>u. Moreover, in our case

λ = λv
2

. Then, a minimal v[n] for Eq. (A.3) is given by

v̆[n] = sgn{(Y>u)n}(|(Y>u)n| −
λv
2

)+. (A.5)

Next, an update of the scalar σ is done by σ = ‖v̆‖, with v̆ = (v̆[1], . . . , v̆[N ]). Similarly,

v is then updated with v = v̆
σ
.



127

List of Acronyms

ANN artificial neural network

ASR automatic speech recognition

BSS blind source separation

DoA direction-of-arrival

DM-VAD distributed multi-speaker voice activity detection

EMD empirical mode decomposition

EVD eigenvalue decomposition

FC fusion center

HANDiCAMS heteregenous ad hoc networks for distributed, cooperative, and

adaptive multimedia signal processing

HOS higher order statistics

ICA independent component analysis

KR-MUSIC Khatri Rao-MUSIC

LARS least angle regression and shrinkage

Lasso Least absolute shrinkage and selection operator

LONAS locating nodes around sources

MAD mean absolute deviation

mad median absolute deviation

M-NICA multiplicative non-negative independent component analysis

MSA modulation spectrum analysis

MTF modulation transfer function

MUSIC multiple signal classification

MWF multi-channel Wiener filtering

NBSS non-negative blind source separation
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NICA non-negative independent component analysis

NMF non-negative matrix factorization

NPCA non-negative principal component analysis

PCA principal component analysis

pdf probability density function

RMSE root mean square error

SDR signal to distortion ratio

SINR signal-to-interference-plus-noise-ratio

SNR signal-to-noise-ratio

STFT short-time Fourier transform

SMM-NICA sparse median-based multiplicative non-negative independent

component analysis

SIR source to interference ratio

SVM support vector machine

UCA uniform circular array

ULA uniform linear array

VAD voice activity detection

WASN wireless acoustic sensor network

WCSS within-cluster sum of squares

WOLA weighted overlap-add

WSN wireless sensor network
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List of Symbols

> transposition
H

Hermitian transposition
−1 matrix inversion

ø empty vector symbol

Ø empty matrix symbol

sgn(·) sign function

log(·) logarithm function

1N N -dimensional column vector of ones

#(·) cardinality symbol

| · | absolute value

‖ concatenation symbol

P (·) probability of

IN identity matrix

M number of microphones in the network

s̃q[η] qth signal sample at time instant η

s̃q signal vector emitted from source q

L signal block length where stationarity is assumed

s[n] Q-dimensional vector at frame n

ỹk,m observed signal at microphone m of device k

y[n] observed M -dimensional energy vector at all K devices

A mixing matrix

ω[n] additive white noise process

Bq qth cluster of nodes

Ȳ matrix of received energies at every microphone m and
frame n

S̄ matrix of recovered Q energy sources at all N frames

U left rotation matrix

V right rotation matrix

Σ scaling matrix of singular values

Λ1,Λ2 diagonal matrices of tweaking parameters for the decor-
relation function

D{·} sets off-diagonal elements of a matrix to zero

S̀ matrix of mean values

CS̄ sample covariance matrix
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yBq [n] |Bq|-dimensional instantaneous energy vector at frame n

aBq power attenuation between source q and k ∈ Bq
ȲBq collected energy matrix at nodes k ∈ Bq relative to

source q

sq qth source dominant vector of length N

csq variance of sq

λ̀1, λ̀2 weighting scalars

s̀q vector of mean values

v
(n)
q qth energy-based feature vector at frame n

ĉ
(q)
j centroid vector at class j and source q

Cj feature cluster j

f ? index of the energy-based speech features

Lf? matrix of measured distances to the active/non-active
centroids

µLf? average distance for each feature f ?

wf? feature related weights

tj(·) feature cluster membership determination function

δ
(n)
q binary voice activity decision rule

v right singular vector

σ singular value

u left singular vector

Φ(·) `1 regularization function

λv non-negative penalty parameter

g(·) degree of sparsity function

VS matrix of sparse singular vectors

YSSVD sparse lower-rank matrix

S̈ matrix of median values

σ2
ω additive noise power

C∗ robust covariance matrix based on tνM -estimator

uν(·) weight function of the tνM-estimator

Cα,β
∗ regularized robust covariance matrix

µ = 5 step size

LDFT DFT size

λDANSE forgetting factor

Lv set of λv parameters

Ẑλvv (·) subspace of non-zero indicators n of v for a specific λv
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λmin
v minimal penelization value that ensures a stable set Ẑv

R̂q,j robust covariance matrix of speech/non-speech feature’s
distributions

Mj(·) robust Mahalanobis distance for the speech/silence
classes

dq binary decision pattern for source q based on robust Ma-
halanobis classifier

s[η] impinging Q signals at snapshot η

A?
k complex-valued steering matrix

a?k(θq) steering vector of source q and node k

y[η] network-wide received signal at instant η using a nar-
rowband model

y̌[n, f ] network-wide received signal at frame n and frequency
f using a wideband model

A?(f) frequency dependent array response matrix

U
H

noise(f) noise subspace at a frequency f

PKR-MUSIC(θ, f) frequency dependent spatial KR-MUSIC spectrum

θ̂q estimated DoA angle for source q based on all θ̂q(f)

Nk number of neighbors of k

σ̂θ̂q
σ2
ω variance of the noise process

fs sampling frequency

dmic inter-sensor spacing

λw wavelength

cw propagation speed of a wave

fw frequency of a wave

R̂loc
n sensor local covariance matrix at a stationary frame n

k′, k′′ nodes in the neighborhood of k

c
(k)
q (i) qth computed centroid at node k and iteration i
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[63] J. M. Górriz, J. Ramı́rez, E. W. Lang, and C. G. Puntonet, “Hard C-means
clustering for voice activity detection,” Speech Commun., vol. 48, no. 12, pp.
1638–1649, 2006.



138 Bibliography

[64] J. Ramırez, J. C. Segura, C. Benıtez, A. De La Torre, and A. Rubio, “Efficient
voice activity detection algorithms using long-term speech information,” Speech
Commun., vol. 42, no. 3, pp. 271–287, 2004.

[65] J. Haigh and J. Mason, “Robust voice activity detection using cepstral features,”
in Proc. IEEE Region 10 Conf. Comput. Commun. Control Power Eng. (TEN-
CON’93), vol. 3, 1993, pp. 321–324.

[66] M. W. Mak and H. B. Yu, “Robust voice activity detection for interview speech
in NIST speaker recognition evaluation,” Proc. APSIPA ASC, pp. 1–4, 2010.

[67] T. Tran, W. Cowley, and A. Pollok, “Multi-speaker beamforming for voice ac-
tivity classification,” in IEEE Commun. Theor. Workshop (AusCTW), 2013, pp.
116–121.

[68] G. Chen, K. Kumatani, J. McDonough, and B. Raj, “Distant multi-speaker voice
activity detection using relative energy ratio.”

[69] M. Taghizadeh, P. Garner, H. Bourlard, H. Abutalebi, and A. Asaei, “An inte-
grated framework for multi-channel multi-source localization and voice activity
detection,” in Joint Workshop Hands-free Speech Commun. Microphone Arrays
(HSCMA), 2011, pp. 92–97.

[70] T. F. Bergh, I. Hafizovic, and S. Holm, “Multi-speaker voice activity detection
using a camera-assisted microphone array,” in IEEE Int. Conf. Syst. Signals
Image Process. (IWSSIP), 2016, pp. 1–4.

[71] S. Maraboina, D. Kolossa, P. Bora, and R. Orglmeister, “Multi-speaker voice
activity detection using ICA and beampattern analysis,” in 14th Eur. Signal
Process. Conf. (EUSIPCO), 2006, pp. 1–5.

[72] R. R. Brooks, P. Ramanathan, and A. M. Sayeed, “Distributed target classifica-
tion and tracking in sensor networks,” Proc. IEEE, vol. 91, no. 8, pp. 1163–1171,
2003.

[73] B. Koetz, F. Morsdorf, S. Van der Linden, T. Curt, and B. Allgöwer, “Multi-
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