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Heinrich W. Löllmann1), Christine Evers2), Alexander Schmidt1), Heinrich Mellmann3),
Hendrik Barfuss1), Patrick A. Naylor2), and Walter Kellermann1)

1)Friedrich-Alexander University Erlangen-Nürnberg, 2)Imperial College London,
3)Humboldt-Universität zu Berlin

Abstract—Algorithms for acoustic source localization and
tracking are essential for a wide range of applications such
as personal assistants, smart homes, tele-conferencing systems,
hearing aids, or autonomous systems. Numerous algorithms have
been proposed for this purpose which, however, are not evaluated
and compared against each other by using a common database so
far. The IEEE-AASP Challenge on sound source localization and
tracking (LOCATA) provides a novel, comprehensive data corpus
for the objective benchmarking of state-of-the-art algorithms
on sound source localization and tracking. The data corpus
comprises six tasks ranging from the localization of a single
static sound source with a static microphone array to the tracking
of multiple moving speakers with a moving microphone array.
It contains real-world multichannel audio recordings, obtained
by hearing aids, microphones integrated in a robot head, a
planar and a spherical microphone array in an enclosed acoustic
environment as well as positional information about the involved
arrays and sound sources represented by moving human talkers
or static loudspeakers.

I. INTRODUCTION

Acoustic source localization and tracking equip machines
with positional information about nearby sound sources re-
quired for applications such as tele-conferencing systems,
smart environments, hearing aids, or humanoid robots (see
e.g., [1–5]). Instantaneous estimates of the source Direction
Of Arrival (DOA), independent of information acquired in the
past, can be obtained with at least two microphones using, e.g.,
the Generalized Cross-Correlation (GCC) Phase Transform
(PHAT) [6], Steered Response Power (SRP) PHAT [2, 7],
subspace-based approaches and beamsteering [8–10], adaptive
filtering [11], Independent Component Analysis (ICA)-based
approaches [12, 13] or localization in the Spherical Harmonics
(SH)-domain [14, 15]. Smoothed trajectories of the source
positional information can be obtained from the instantaneous
DOA estimates using acoustic source tracking approaches.
Kalman filter variants and particle filters are applied in,
e.g., [1, 16] for tracking of a single moving sound source.
Multiple moving sources are tracked from Time Delay of Ar-
rival (TDOA) estimates using Probability Hypothesis Density
(PHD) filters in [17]. Using a moving microphone array, the
3D source positions are probabilistically triangulated from 2D
DOA estimates in [18, 19], and are tracked directly from the
acoustic signals without the need of DOA or TDOA extraction
in [20]. Moreover, acoustic Simultaneous Localization And

Mapping (SLAM) [19, 21] equips autonomous machines, such
as robots, with the ability to localize the machine’s position
and orientation within the environment whilst jointly tracking
the 3D positions of nearby sound sources.

The evaluation of localization and tracking approaches
is mostly conducted with simulated data where reverberant
enclosures are commonly simulated by means of the image-
method [22] or its variants [23]. An additional evaluation of
such algorithms with real-world data seems appropriate to
demonstrate their practicality. Such an evaluation of localiza-
tion algorithms for a fixed array and speaker position can be
found in, e.g., [2, 24, 25]. In [16, 26], tracking algorithms
are evaluated by measured data for a single moving speaker.
However, such evaluation results can hardly be compared with
those for other algorithms since no common publicly available
database is used. Moreover, information on the accuracy of
the ground-truth position data is often not provided or lies in
a range of several centimeters, e.g., [16].

More recently, the single- and multichannel audio record-
ings database (SMARD) was published [27]. The recordings
were conducted in a low-reverberant room (T60 = 0.15s)
using different microphone arrays and loudspeakers which
played back either artificial sounds, music or speech signals.
However, this database considers only a single source scenario
and microphone arrays and loudspeakers at fixed positions.

This paper presents a novel, open-access data corpus for
acoustic source localization and tracking that i) provides audio
recordings in a real acoustic environment using four different
microphone arrays for a variety of scenarios encountered
in practice, ii) involves static loudspeakers, moving human
talkers, and microphone arrays installed on a static as well as
a moving platform, and iii) includes ground-truth positional
data of all microphones and sources with an accuracy of less
than 1cm. The data corpus is released as part of the IEEE
Audio and Acoustic Signal Processing (AASP) Challenge on
acoustic source LOCalization And TrAcking (LOCATA).

II. THE LOCATA CHALLENGE

The scope of the LOCATA Challenge is to objectively
benchmark state-of-the-art localization and tracking algorithms
using one common, open-access data corpus of scenarios
typically encountered in speech and acoustic signal processing



applications. The offered challenge tasks are the localization
and/or tracking of:

• Task 1: A single, static loudspeaker using a static micro-
phone array

• Task 2: Multiple static loudspeakers using a static mi-
crophone array

• Task 3: A single, moving talker using a static microphone
array

• Task 4: Multiple moving talkers using a static micro-
phone array

• Task 5: A single, moving talker using a moving micro-
phone array

• Task 6: Multiple moving talkers using a moving micro-
phone array.

Similar to previous IEEE-AASP challenges, such as CHIME
[28] or ACE [29], the data corpus is divided into a devel-
opment and evaluation database. The development database
contains three recordings for each of the tasks and each of the
four microphone arrays described later, i.e., 72 recordings in
total. The development database should enable participants of
the challenge to develop and tune their algorithms. Ground-
truth data of the position and orientation for all microphone
arrays and sound sources is therefore provided. The evaluation
database contains the ground-truth positional information for
all microphone arrays, but not the sound sources. For Task 1
and 2, it comprises 13 recordings for each microphone config-
uration and task and 5 recordings per task and array otherwise,
i.e., 184 recordings in total.

Upon completion of the LOCATA Challenge, the full data
corpus containing the ground-truth positional information for
all scenarios will be released. Further information about the
challenge can be found in [30].

III. DATA CORPUS

The recordings for the LOCATA data corpus were con-
ducted in the computing laboratory of the Department of
Computer Science at the Humboldt University Berlin. This
room with dimensions of about 7.1m×9.8m×3m is equipped
with the optical tracking system OptiTrack [31], which is
typically used to track the positions of robots deployed for
the soccer competition RoboCup.

A. Microphone Arrays
Four different microphone arrays (see Fig. 1) were used for

the recordings to emulate scenarios typically encountered in
speech signal processing applications, such as smart environ-
ments, hearing aids or robot audition.

• DICIT array: A planar array with 15 microphones which
includes four nested linear uniform sub-arrays with mi-
crophone spacings of 4, 8, 16 and 32 cm. The array
has a length of 2.24m and a height of 0.32m, and has
been developed as part of the EU-funded project “Distant
talking Interfaces for Control of Interactive TV (DICIT)”,
cf., [32].

• Eigenmike: The em32 Eigenmike R©of the manufacturer
mh acoustics is a spherical microphone array with 32
microphones and a diameter of 84mm [33].

Figure 1. Recording environment and used microphone arrays with markers.

• Robot head: A pseudo-spherical array with 12 micro-
phones integrated in a prototype head for the humanoid
robot NAO. This prototype head was developed as part
of the EU-funded project “Embodied Audition for Robots
(EARS)”, cf., [34, 35].

• Hearing aids: A pair of hearing aid dummies (Siemens
Signia, type Pure 7mi) mounted on a dummy head
(HMS II of HeadAcoustics). Each hearing aid dummy is
equipped with two microphones (Sonion, type 50GC30-
MP2) at a distance of 9mm, and the spacing of both
hearing aid dummies amounts to 157mm.

The multichannel recordings (fs = 48kHz) were synchronized
with the ground-truth positional data acquired by an optical
tracking system (see Sec. III-C). The recordings were con-
ducted in a real acoustic environment and were hence subject
to room reverberation (T60 = 0.55s) and noise, including
measurement and ambient noise. A detailed description of the
array configurations and recording conditions is given by [36].

B. Speech Material
For the scenarios involving static sound sources, sentences

of the CSTR VCTK1 database [37], downsampled to 48kHz,
were played back by loudspeakers. For the scenarios involving
moving sound sources, randomly selected sentences of the
CSTR VCTK1 database were read live by 5 non-native moving
human talkers, equipped with microphones near their mouths
to record the close-talking speech signals. The source signals
are provided as part of the development dataset, but not the
evaluation dataset.

C. Ground-Truth Position Data
The positions and orientations of the arrays and sound

sources were determined by the optical tracking system
OptiTrac [31], equipped with 10 synchronized infra-red cam-
eras (type Flex 13) and positioned along the perimeter of
a 4m × 6m recording area within the acoustic enclosure.
The optical tracking system provides position estimates at
a frame rate of 120Hz and an error of less than 1mm
as per manufacturer specification [31]. The optical tracking
system uses reflective markers for localizing objects, i.e.,
the microphone arrays and sound sources for LOCATA (see



Fig. 1), by optical cameras. Multiple markers were attached
to each object, forming marker groups – or trackables – used
to determine the orientation and position of the objects over
time. The camera system determines the marker positions by
triangulation. The position estimates were labeled with time
stamps to synchronize it with the audio recordings with an
accuracy of approximately ±1ms.

The microphone positions were obtained from the individual
marker positions of each trackable based on models derived
from caliper measurements and technical drawings of the
microphone configuration. Each model contains the marker
positions of each trackable and the microphone positions w.r.t.
the local coordinate system (local reference frame) of the
object (trackable). The origin and orientation of the local
coordinate system for the arrays, for example, are given,
by their physical center and ‘look direction’, respectively.
An exact specification for all microphone arrays and sound
sources is provided by [36].

For convenient transformations of coordinates between the
global and local reference frames, the data corpus provides
the positions, translation vectors and rotation matrices for all
sound sources and arrays for each time stamp of the ground-
truth data. Moreover, the microphone positions are provided
relative to the global reference frame for each array.

Reflections of the infra-red light emitted by the OptiTrack
system on the surfaces of the objects could cause the detection
of ‘ghost markers’ or missing detections. In addition, some
markers were occasionally occluded during the recordings
with moving objects. These effects led in isolated instances
to outliers for the position and orientation estimates which
were replaced by reconstructed and interpolated values. The
calculation of the Mean-Square Error (MSE) between the
unprocessed and processed marker positions led to values of
less than 1cm.

IV. BASELINE RESULTS

Baseline results obtained with the development database are
presented to illustrate the character of the challenge.

A. Algorithms
For all algorithms, the microphone signals are processed in

the Short-Time Fourier Transform domain at 48kHz sampling
rate, for 1024 Discrete Fourier Transform points, and a frame
duration of 0.03ms. The source DOAs are estimated only dur-
ing periods of voice activity which are estimated by applying
the Voice Activity Detector (VAD) of [38] for a window length
of 10ms to one arbitrarily selected channel of each microphone
array. The following algorithms serve as baseline approaches
for the challenge and, hence, are not adapted to the specific
array geometries (e.g., by performing SH-domain processing
for the Eigenmike).

1) Multiple Signal Classification (MUSIC): The instanta-
neous source DOAs are estimated by evaluating the MUSIC
[9, 10] pseudo-spectrum for each frequency bin and block
size of 100 frames. The step-size between consecutive blocks
is 10 frames. The MUSIC resolution is 5◦ in azimuth and
inclination, respectively. To obtain a single pseudo-spectrum

per block, the spectra are summed over all frequency bins
[39]. A single DOA estimate per block corresponds to the peak
direction in the summed spectrum. Due to different rates of the
blocks and ground-truth position data, the MUSIC estimates
are interpolated to the sampling rate of the ground-truth data.

2) Single-source Kalman filter: For the single-source sce-
narios in Task 1, 3, and 5, smoothed trajectories of the source
azimuth are estimated using the Kalman filter [40] from the
uninterpolated MUSIC estimates of the source azimuth only.
The Kalman filter avoids interpolation to the ground-truth data
rate by 1) predicting the source tracks at the ground-truth
data rate, and 2) updating the predictions using the MUSIC
estimates at the block rate. The Kalman filter uses a constant-
velocity source motion model [41] with process noise standard
deviation of 5◦ in azimuth and 0.1◦ per second in speed. The
measurement noise standard deviation is 20◦.

3) Multi-source Kalman filter: A one-to-one mapping be-
tween each MUSIC estimate and a predicted source track is
established by means of the association algorithm in [42],
using the azimuth error as cost function. If the nearest track
corresponds to an angular distance of over 20◦, a new, tempo-
rary track is initialized. To avoid false track initializations due
to MUSIC estimates directed away from the sound sources,
e.g., due to early reflections, the following track confirmation
scheme is used: A ‘full’ track is confirmed if the track is
associated with a DOA estimate in 3 consecutive time-frames.
To avoid an exponential explosion in the number of tracks,
any temporary and confirmed tracks that are unassociated in
5 consecutive time-frames are terminated.

B. Metrics
The performance of the baseline algorithms is evaluated

in this paper based on the azimuth accuracy of the DOA
estimates. In the case of MUSIC, the error between the ground-
truth source azimuth and the interpolated azimuth estimates is
evaluated. For the multi-source scenarios in Tasks 2, 4 and 6,
the minimum azimuth error between the interpolated MUSIC
estimates and any of the ground-truth DOAs is used.

In contrast to MUSIC, the Kalman filter implementation
may estimate multiple source tracks for each time step.
Therefore, the average azimuth error is evaluated between
all ground-truth source trajectories and estimated tracks. The
resulting cost matrix is used for the association algorithm in
[42] to establish a one-to-one assignment between the ground-
truth trajectories and track estimates. The overall azimuth error
per recording is given by the azimuth error averaged over all
pairs of tracks and their associated ground-truth trajectories.

C. Results
The results in Fig. 2 show the azimuth error, averaged over

each recording and all voice activity periods, for Task 1, 3 and
5. Fig. 2a shows that the pseudo-spherical robot head achieves
the highest azimuth accuracy, with DOA estimation errors of
2.9◦ for Task 1 and 14.2◦ for Task 3. The less challenging
Task 1 to localize a static sources with a static microphone
array leads to the lowest error for all configurations. The errors
increase for Task 3, involving a single, moving source; e.g., the



(a) DOA Estimation (b) Tracking

Figure 2. Azimuth accuracy for Tasks 1, 3, 5 involving single sources for (a) baseline DOA estimator and (b) baseline tracker.

Table I
AZIMUTH ERROR FOR BASELINE LOCALIZATION ALGORITHMS.

Task Robot head DICIT array Hearing aids Eigenmike
Mean Std Mean Std Mean Std Mean Std

1 2.9 0.0 50.0 0.6 9.2 0.1 11.4 0.0
2 6.4 0.0 52.4 0.6 16.5 0.1 8.0 0.0
3 14.2 0.2 70.9 0.9 65.8 0.8 26.8 0.2
4 9.5 0.0 64.4 0.8 72.6 0.7 12.1 0.0
5 11.1 0.2 81.0 1.0 56.5 0.8 27.5 0.4
6 10.2 0.1 42.5 0.4 51.3 0.5 22.9 0.1

Table II
AZIMUTH ERROR FOR BASELINE TRACKING ALGORITHMS.

Task Robot head DICIT array Hearing aids Eigenmike
Mean Std Mean Std Mean Std Mean Std

1 3.3 0.0 16.0 0.1 5.5 0.0 11.9 0.0
2 8.6 0.0 48.0 0.8 15.7 0.3 17.0 0.3
3 8.4 0.0 36.6 0.6 29.5 0.4 23.8 0.2
4 14.4 0.1 59.0 1.2 59.7 1.0 16.8 0.1
5 9.2 0.2 25.7 0.8 31.3 0.4 14.6 0.1
6 32.0 0.6 51.3 0.7 61.4 0.7 38.5 0.5

azimuth accuracy reduces by 56.8% for the Eigenmike from
11.4◦ for Task 1 to 26.8◦ for Task 3. The performance for
Task 5, compared to Task 3, remains approximately constant
for the Eigenmike. The robot head and hearing aids indicate
small performance improvements relative to Task 3 of 14% and
21% respectively. Reflective of human-machine interaction ap-
plications, Task 5 involves microphone arrays that frequently
approach the moving talker. Reductions in source-sensor range
due to an approaching microphone array therefore lead to
improvements in azimuth estimation accuracy.

As summarized in Table I, the results highlight that the
DICIT array results in azimuth errors between 50◦ and 81◦.
To reduce the severe effects of spatial aliasing due to the large
spacings of some microphones for the DICIT array and in
order to use the same algorithms (which do not account for
nested sub-arrays) for all four arrays, a linear, uniform sub-
array of the DICIT array with only 3 microphone and a spacing
of 4cm has been used, which necessarily leads to front-back
ambiguities.

DOA estimation using the signals recorded by the hearing

aids result in an azimuth error of 9.2◦ for Task 1. The azimuth
errors for the hearing aids is degraded to 65.8◦ for Task 3 and
56.5◦ for Task 5. The microphone configuration of the hearing
aids mounted on the dummy head leads to ambiguities in the
elevation, and hence azimuth angle, of the MUSIC pseudo-
spectra. These ambiguities are particularly severe for the tasks
involving moving sources as the motion of a walking human
leads to elevation variations in and between blocks.

The performance results for the tracking algorithm are
shown in Fig. 2b and summarized in Table II. The results
highlight that extrapolation of the source trajectories using
temporal models of the source dynamics, rather than inter-
polation, lead to performance improvements for all arrays in
Task 3 and 5. For example, the azimuth estimates obtained
from the DICIT array recordings in Task 3 are improved by
55.3◦, i.e., 68%, compared to the MUSIC estimates. However,
the performance results in Table II indicate that the tracking
accuracy is mostly degraded for the multi-source scenarios of
Task 2, 4, and 6, compared to the single-source scenarios of
Task 1, 3, and 5. This performance degradation is caused by
the association uncertainty between the MUSIC estimates and
tracks, and ambiguities due to overlapping speech segments
from multiple sound sources.

V. SUMMARY

This paper presents a novel, open-access data corpus of
multichannel audio recordings for the objective evaluation of
sound source localization and tracking algorithms as part of
the LOCATA Challenge. The recordings were conducted using
a planar array, a spherical and a pseudo-spherical array, as well
as a pair of hearing aids. Scenarios include static loudspeakers,
moving human talkers, as well as static and moving arrays.
Baseline results are presented using the development dataset
of the LOCATA Challenge for broadband MUSIC DOA esti-
mation and Kalman filter-based source tracking.
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