1,435 research outputs found

    An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method

    Full text link
    In this paper we propose a collocation method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-infinite domain. They are categorized as singular initial value problems. The proposed approach is based on a Hermite function collocation (HFC) method. To illustrate the reliability of the method, some special cases of the equations are solved as test examples. The new method reduces the solution of a problem to the solution of a system of algebraic equations. Hermite functions have prefect properties that make them useful to achieve this goal. We compare the present work with some well-known results and show that the new method is efficient and applicable.Comment: 34 pages, 13 figures, Published in "Computer Physics Communications

    A new approach for solving nonlinear Thomas-Fermi equation based on fractional order of rational Bessel functions

    Full text link
    In this paper, the fractional order of rational Bessel functions collocation method (FRBC) to solve Thomas-Fermi equation which is defined in the semi-infinite domain and has singularity at x=0x = 0 and its boundary condition occurs at infinity, have been introduced. We solve the problem on semi-infinite domain without any domain truncation or transformation of the domain of the problem to a finite domain. This approach at first, obtains a sequence of linear differential equations by using the quasilinearization method (QLM), then at each iteration solves it by FRBC method. To illustrate the reliability of this work, we compare the numerical results of the present method with some well-known results in other to show that the new method is accurate, efficient and applicable

    SOLVING NONLINEAR BOUNDARY VALUE PROBLEMS USING THE HOMOTOPY ANALYSIS METHOD

    Get PDF
    Analytical solutions of differential equations are very important for all researchers from different discipline. Obtaining such solutions is difficult in most cases, especially if the differential equation is nonlinear. One of the mostly used methods are the series methods, where the solution is represented as an infinite series. Different methods are available to evaluate the terms of this series. These methods include the well-known Taylor series method, the Adomian decomposition method, the Homotopy iteration method, and the Homotopy analysis method. In this thesis we give a survey of the different series methods available to solve initial and boundary value problems. The methods to be presented are the Taylor series method, the Adomina decomposition method, and the Homotopy analysis method. The main features of each method will be presented and the error analysis will be discussed as well. For the Homotopy analysis method, the error is controlled by introducing the parameter known as ℏ, then the error is controlled by monitoring the value of the solution at a specific point for different values of ℏ. This produces what is known as the ℏ curve. The mathematical foundation of this method is not very well established, and the method will not work at all times. The error for the Taylor series and the Adomian decomposition method is controlled by adding more terms to the series solution which might be costly and difficult to calculate especially if the differential equation is nonlinear. In this study we will show that the error can be controlled by other means. A modified Taylor series method has been developed and will be discussed. The method is based on controlling the error through different choices of the point of expansion. The mathematical foundation of the method and application of the method to differential equations with singularities and eigenvalue problems will be presented

    Modeling and inversion of seismic data using multiple scattering, renormalization and homotopy methods

    Get PDF
    Seismic scattering theory plays an important role in seismic forward modeling and is the theoretical foundation for various seismic imaging methods. Full waveform inversion is a powerful technique for obtaining a high-resolution model of the subsurface. One objective of this thesis is to develop convergent scattering series solutions of the Lippmann-Schwinger equation in strongly scattering media using renormalization and homotopy methods. Other objectives of this thesis are to develop efficient full waveform inversion methods of time-lapse seismic data and, to investigate uncertainty quantification in full waveform inversion for anisotropic elastic media based on integral equation approaches and the iterated extended Kalman filter. The conventional Born scattering series is obtained by expanding the Lippmann-Schwinger equation in terms of an iterative solution based on perturbation theory. Such an expansion assumes weak scattering and may have the problems of convergence in strongly scattering media. This thesis presents two scattering series, referred to as convergent Born series (CBS) and homotopy analysis method (HAM) scattering series for frequency-domain seismic wave modeling. For the convergent Born series, a physical interpretation from the renormalization prospective is given. The homotopy scattering series is derived by using homotopy analysis method, which is based on a convergence control parameter hh and a convergence control operator HH that one can use to ensure convergence for strongly scattering media. The homotopy scattering scattering series solutions of the Lippmann-Schwinger equation, which is convergent in strongly scattering media. The homotopy scattering series is a kind of unified scattering series theory that includes the conventional and convergent Born series as special cases. The Fast Fourier Transform (FFT) is employed for efficient implementation of matrix-vector multiplication for the convergent Born series and the homotopy scattering series. This thesis presents homotopy methods for ray based seismic modeling in strongly anisotropic media. To overcome several limitations of small perturbations and weak anisotropy in obtaining the traveltime approximations in anisotropic media by expanding the anisotropic eikonal equation in terms of the anisotropic parameters and the elliptically anisotropic eikonal equation based on perturbation theory, this study applies the homotopy analysis method to the eikonal equation. Then this thesis presents a retrieved zero-order deformation equation that creates a map from the anisotropic eikonal equation to a linearized partial differential equation system. The new traveltime approximations are derived by using the linear and nonlinear operators in the retrieved zero-order deformation equation. Flexibility on variable anisotropy parameters is naturally incorporated into the linear differential equations, allowing a medium of arbitrarily anisotropy. This thesis investigates efficient target-oriented inversion strategies for improving full waveform inversion of time-lapse seismic data based on extending the distorted Born iterative T-matrix inverse scattering to a local inversion of a small region of interest (e. g. reservoir under production). The target-oriented approach is more efficient for inverting the monitor data. The target-oriented inversion strategy requires properly specifying the wavefield extrapolation operators in the integral equation formulation. By employing the T-matrix and the Gaussian beam based Green’s function, the wavefield extrapolation for the time-lapse inversion is performed in the baseline model from the survey surface to the target region. I demonstrate the method by presenting numerical examples illustrating the sequential and double difference strategies. To quantify the uncertainty and multiparameter trade-off in the full waveform inversion for anisotropic elastic media, this study applies the iterated extended Kalman filter to anisotropic elastic full waveform inversion based on the integral equation method. The sensitivity matrix is an explicit representation with Green’s functions based on the nonlinear inverse scattering theory. Taking the similarity of sequential strategy between the multi-scale frequency domain full waveform inversion and data assimilation with an iterated extended Kalman filter, this study applies the explicit representation of sensitivity matrix to the the framework of Bayesian inference and then estimate the uncertainties in the full waveform inversion. This thesis gives results of numerical tests with examples for anisotropic elastic media. They show that the proposed Bayesian inversion method can provide reasonable reconstruction results for the elastic coefficients of the stiffness tensor and the framework is suitable for accessing the uncertainties and analysis of parameter trade-offs

    The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions

    Get PDF
    Fundamental global similarity solutions of the standard form u_\g(x,t)=t^{-\a_\g} f_\g(y), with the rescaled variable y= x/{t^{\b_\g}}, \b_\g= \frac {1-n \a_\g}{10}, where \a_\g>0 are real nonlinear eigenvalues (\g is a multiindex in R^N) of the tenth-order thin film equation (TFE-10) u_{t} = \nabla \cdot(|u|^{n} \n \D^4 u) in R^N \times R_+, n>0, are studied. The present paper continues the study began by the authors in the previous paper P. Alvarez-Caudevilla, J.D.Evans, and V.A. Galaktionov, The Cauchy problem for a tenth-order thin film equation I. Bifurcation of self-similar oscillatory fundamental solutions, Mediterranean Journal of Mathematics, No. 4, Vol. 10 (2013), 1759-1790. Thus, the following questions are also under scrutiny: (I) Further study of the limit n \to 0, where the behaviour of finite interfaces and solutions as y \to infinity are described. In particular, for N=1, the interfaces are shown to diverge as follows: |x_0(t)| \sim 10 \left( \frac{1}{n}\sec\left( \frac{4\pi}{9} \right) \right)^{\frac 9{10}} t^{\frac 1{10}} \to \infty as n \to 0^+. (II) For a fixed n \in (0, \frac 98), oscillatory structures of solutions near interfaces. (III) Again, for a fixed n \in (0, \frac 98), global structures of some nonlinear eigenfunctions \{f_\g\}_{|\g| \ge 0} by a combination of numerical and analytical methods

    On sequential multiscale inversion and data assimilation

    Get PDF
    Multiscale approaches are very popular for example for solving partial differential equations and in many applied fields dealing with phenomena which take place on different levels of detail. The broad idea of a multiscale approach is to decompose your problem into different scales or levels and to use these decompositions either for constructing appropriate approximations or to solve smaller problems on each of these levels, leading to increased stability or increased efficiency. The idea of sequential multiscale is to first solve the problem in a large-scale subspace and then successively move to finer scale spaces. Our goal is to analyse the sequential multiscale approach applied to an inversion or state estimation problem. We work in a generic setup given by a Hilbert space environment. We work out the analysis both for an unregularized and a regularized sequential multiscale inversion. In general the sequential multiscale approach is not equivalent to a full solution, but we show that under appropriate assumptions we obtain convergence of an iterative sequential multiscale version of the method. For the regularized case we develop a strategy to appropriately adapt the regularization when an iterative approach is taken. We demonstrate the validity of the iterative sequential multiscale approach by testing the method on an integral equation as it appears for atmospheric temperature retrieval from infrared satellite radiances
    corecore