
        

Citation for published version:
Evans, J, Galaktionov, V & Alvarez-Caudevilla, P 2015, 'The Cauchy problem for a tenth-order thin film equation
II. Oscillatory source-type fundamental similarity solutions', Discrete and Continuous Dynamical Systems -
Series A, vol. 35, no. 3, pp. 807-827. https://doi.org/10.3934/dcds.2015.35.807

DOI:
10.3934/dcds.2015.35.807

Publication date:
2015

Document Version
Early version, also known as pre-print

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

https://doi.org/10.3934/dcds.2015.35.807
https://researchportal.bath.ac.uk/en/publications/the-cauchy-problem-for-a-tenthorder-thin-film-equation-ii-oscillatory-sourcetype-fundamental-similarity-solutions(d8bb95a4-d63b-4a3d-acbb-2fd2b976ffce).html


THE CAUCHY PROBLEM FOR A TENTH-ORDER THIN FILM
EQUATION II. OSCILLATORY SOURCE-TYPE AND

FUNDAMENTAL SIMILARITY SOLUTIONS

P. ÁLVAREZ-CAUDEVILLA, J.D. EVANS, AND V.A. GALAKTIONOV

Abstract. Fundamental global similarity solutions of the standard form

uγ(x, t) = t−αγfγ(y), with the rescaled variable y = x

tβγ
, βγ =

1−nαγ

10 ,

where αγ > 0 are real nonlinear eigenvalues (γ is a multiindex in RN ) of the tenth-order

thin film equation (TFE-10)

i1ai1a (0.1) ut = ∇ · (|u|n∇∆4u) in RN × R+ , n > 0,

are studied. The present paper continues the study began in [1], where the following

first question was addressed:

(I) Passing to the limit n → 0+ in (0.1) on any compact subsets {|y| ≤ C} by using

Hermitian non-self-adjoint spectral theory for a pair of rescaled non-symmetric operators

{B,B∗} of corresponding to the linear poly-harmonic equation

ut = ∆5u in RN × R+, where B = ∆5 + 1
10 y · ∇+ N

10I, B∗ = ∆5 − 1
10 y · ∇ .

This allowed to identify a countable family of nonlinear eigenfunctions for (0.1), at least,

for small n > 0, which defined proper solutions of the Cauchy problem for the TFE-10.

Here, the following questions are under scrutiny:

(II) Further study of the limit n → 0, where the behaviour of finite interfaces and

solutions close by (i.e., as y →∞) are described. In particular, for N = 1, the interfaces

are shown to diverge as follows:

|x0(t)| ∼ 10
(
1
n sec

(
4π
9

)) 9
10 t

1
10 →∞ as n→ 0+.

(III) For a fixed n ∈ (0, 98 ), oscillatory structures of solutions that occur near inter-

faces.

(IV) Again, for a fixed n ∈ (0, 98 ), global structures of some of nonlinear eigenfunctions

{fγ}|γ|≥0 by a combination of numerical and analytical methods.
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1. The TFE-10 and nonlinear eigenvalue problem
S1

1.1. Main model and previous results. We study the global-in-time behaviour of
compactly supported solutions of the Cauchy problem of a tenth-order quasilinear evolu-
tion equation of parabolic type, called the thin film equation (TFE–10)

i1i1 (1.1) ut = ∇ · (|u|n∇∆4u) in RN × R+ ,

where ∇ = gradx and n > 0 is a real parameter. In view of the degenerate mobility
coefficient |u|n, equation (1.1) is written for solutions of changing sign, which can occur
in the Cauchy problem (CP) and also in some free boundary problems (FBPs).

Equation (1.1) has been chosen as a typical higher-order quasilinear degenerate para-
bolic model, Although the fourth-order version has been the most studied, higher-order
quasilinear degenerate equations are known to occur in several applications and, during
the last ten-fifteen years, have began to steadily penetrate into modern nonlinear PDE
theory; see a number of references/results in [12, § 1.1] and in [7, 21, 22].

For convenience, let us first state the main result obtained in our previous paper [1],
a study to be continued here. Thus, in [1], we introduced global self-similar solutions of
(1.1) of the standard form

sf3sf3 (1.2) u(x, t) := t−αf(y), with y := x
tβ
, β = 1−nα

10
,

where α > 0 stands for so-called real nonlinear eigenvalues and the nonlinear eigenfun-
cions f satisfy an elliptic equation

self1self1 (1.3) ∇ · (|f |n∇∆4f) + 1−αn
10

y · ∇f + αf = 0, f ∈ C0(RN) ,

Then, we state a nonlinear eigenvalue problem for pairs {α, f}1 where the problem
setting includes finite propagation phenomena for such TFEs, i.e., f is assumed to be
compactly supported, f ∈ C0(RN). This is a kind of an assumed “minimal” behaviour
of f(y) as y → ∞, which naturally accompany many standard singular Sturm–Liouville
problems and others.

Using long-established terminology, we call such similarity solutions (1.2) (and also the
corresponding profiles f) to be a sequence of fundamental solutions. Though, actually,
the classic fundamental solution is the first radially symmetric one (with the first kernel
f0 = f0(|y|)), which is the instantaneous source-type solution of (1.1) with Dirac’s delta
as initial data. Moreover, for n = 0, f0(|y|) becomes the actual rescaled kernel of the
fundamental solution of the linear operator Dt −∆5

x.

Our main goal in [1] was to show analytically that, at least, for small n > 0,

main1main1 (1.4) (1.3) admits a countable set of fundamental solutions Φ(n) = {αγ, fγ}|γ|≥0,

1More precisely, since the eigenvalue α enters not only the standard term αf , but also the linear

differential one 1−αn
10 y · ∇f , it is more correct to talk about a “linear (in α) spectral pencil for the

quasilinear TFE-10 operator”. Though, for simplicity, we keep referring to the nonlinear eigenvalue

problem. In contrast to these nonlinear issues, for n = 0, the second term looses α, and we arrive a

standard linear eigenvalue problem for the non-self-adjoint operator B = ∆5 + 1
10 y ·∇+ N

10 I; see Section

3.
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where γ is a multiindex in RN to numerate these eigenvalue-eigenfunction pairs.

Indeed, studying the nonlinear eigenvalue problem (1.3) in [1], we performed a “ho-
motopic deformation” of (1.1) as n → 0+ and reducing it to the classic poly-harmonic
equation of tenth order

lin5lin5 (1.5) ut = ∆5u in RN × R+ .

More precisely, we answered in [1] the following question:

(I) Passing to the limit n → 0+ in (0.1) on any compact subsets {|y| ≤ C} by using
Hermitian non-self-adjoint spectral theory for a pair of rescaled non-symmetric operators
{B,B∗} of corresponding to the linear poly-harmonic equation (1.5):

BoperBoper (1.6) B = ∆5 + 1
10
y · ∇+ N

10
I and B∗ = ∆5 − 1

10
y · ∇ .

The corresponding problem (1.3) then reduces to a standard (but not self-adjoint) Hermitian-
type linear eigenvalue problem for the pair {B,B∗}. Therefore, according to this approach,
the nonlinear version of (1.4) has the origin in the discreteness-reality of the spectrum of
the corresponding linear operator B.

This allowed to identify a countable family of nonlinear eigenfunctions for (0.1), at least,
for small n > 0, which defined proper solutions of the Cauchy problem for the TFE-10.

1.2. Main new results and layout of the paper. In the present paper, our main
“non-local” goal is to verify a possibility of global extensions of such “n-branches” of
some first fundamental solutions, which was then checked numerically. A couple of such
preliminary results were already available in [1, § 5].

To do so, first we analyse the limiting behaviour of the problem (1.1) in the one dimen-
sional case obtaining an approximating structure for the solutions satisfying (1.1) close to
the interfaces. Also in one-dimension we ascertain via numerical and analytical methods
the existence of periodic oscillatory solutions for n ∈ (0, 9

8
).

Furthermore, through a homotic approach, and using the standard degree theory, we
ascertain the existence of a countable family of similarity profiles globally for the equation
(1.1).

Section 2 is devoted to similarity solutions and derivation of the corresponding nonlinear
eigenvalue problem. Later, we address the following questions:

(II) Section 3: Further study of the limit n→ 0, where the behaviour of finite interfaces
and solutions close by (i.e., as y → ∞) are described. Analysing the limiting behaviour
when n→ 0+ in the one dimensional case we obtain that the non-uniform solution in this
limit comprises two regions

an Inner region {x = O(1)} and an Outer region {x = O(n−9/10)},

in which u is exponentially small. In the Inner region |u|n ∼ 1 for small n > 0. Hence,

the asymptotic behaviour of the solution tells us that the solution satisfies poly-harmonic

equation of the form
∂u0
∂t

= ∂10u0
∂x10

,
3



Moreover, from the performed analysis it is clear that this solution breaks down when

{x = O(n−9/10)}, the Outer region. In particular, the interfaces x = x0(t) are shown to

diverge as follows:

|x0(t)| ∼ 10
(

1
n

sec
(

4π
9

)) 9
10 t

1
10 →∞ as n→ 0.

By a similar analysis we also obtain the structure of the eigenfunctions satisfying

ODE1ODE1 (1.7) (|f |nf (9))′ + 1−αn
10

y f ′ + αf = 0, f ∈ C0(R) .

(III) Section 4: For a fixed n ∈ (0, 9
8
), oscillatory structures that occur near interfaces.

In one dimension, we study the local behaviour near the interface y = x0
tβ

for the similarity

ODE (1.7) assuming similarity profiles f(y) with maximal regularity at the interface

y = y0, so that, being extended by f = 0 for y = y0.

(IV) Section 6: Again, for a fixed n ∈ (0, 9
8
), global structures of some of nonlinear

eigenfunctions {fγ}|γ|≥0 by combination of numerical and analytical methods.

Using a homotopy transformation of the form

|ε2 + f 2|
n
2 ,

and applying the standard degree theory we perform a double limit when ε, n → 0+

obtaining existence and multiplicity results for the oscillatory solutions of changing sign

of the non-linear elliptic equation (1.3). Indeed, we arrive at the existence of a countable

family of solutions by a direct n-expansion from the solution of the linear elliptic equation

whose operator is denoted by (1.6).
PAC, JDE: more comments here and changes AFTER those Sections are

ready, easy...

1.3. Possible origins of discrete nonlinear spectra and principle difficulties.

It is key for us that (1.3) is not variational, so we cannot use powerful tools such as

Lusternik–Schnirel’man (L–S, for short) category-genus theory, fibering, and other well-

known approaches, which in many cases are known to provide at least a countable family

of critical points (solutions) in the non-coercive case, when the category of the functional

subset involved is typically infinite.

It is also crucial and well known that the L–S min-max approach does not detect all

families of critical points. However, sometimes it can revive some amount of solutions. A

somehow special example was revealed in [17, 18], where key features of those variational

L–S and fibering approaches applied are described. Namely, for some variational fourth-

order and higher-order ODEs in R, including those with the typical non-linearity |f |nf ,

as above,

mm.561mm.561 (1.8) −(|f |nf)(4) + |f |nf = 1
n
f in R, f ∈ C0(R) (n > 0),

4



as well as for the following standard looking one with the only cubic nonlinearity [18, § 6]:

anal1anal1 (1.9) −f (4) + f = f 3 in R, f ∈ H4
ρ(R) (ρ = ea|y|

4/3

, a > 0 small).

It was shown then that these equations admit a countable set of countable families of

solutions, while the L–S/fibering approach detects only one such a discrete family of (min-

max) critical points. Further countable families are not expected to be determined easily

by more advanced techniques of potential theory, such as the mountain pass theorem,

fibering methods, or others. Existence of other, not L–S type critical points for (1.8) and

(1.9), were shown in [17, 18] by using a combination of numerical and (often, formal)

analytic methods and heavy use of oscillatory nature of solutions close to finite interfaces

(for (1.8)) and at infinity (for (1.9)). In particular, detecting the corresponding L–S

countable sequence of critical points was done numerically, i.e., by checking their actual

min-max features (their critical values must be maximal among other solutions belonging

to the functional subset of a given category, and having a “suitable geometric shape”).

Therefore, even in the variational setting, counting various families of critical points

and values represents a difficult open problem for such higher-order ODEs, to say nothing

of their elliptic counterparts in RN .

Hence, in [1], we relied on a different approach, in particular, a “homotopic deformation”

of (1.1) as n→ 0+, which is also effective for such difficult variational problems and detects

more solutions than L–S/fibering theory (though only locally upon the parameter).

1.4. The second model: bifurcations in R2. To extend our homotopy approach to a

more complicated unstable thin film equation (TFE–10) in the critical case

e1e1 (1.10) ut = ∇ · (|u|n∇∆4u)−∆(|u|p−1u) in RN × R+ , p > n+ 1,

with the extra unstable diffusion term. We obtain a discrete real nonlinear spectrum for

(1.10) that requires a simultaneous double homotopy deformation n → 0+ and p → 1+

leading to a new linear Hermitian spectral theory. We do not develop it here and just

focus on a principal opportunity to detect a discrete nonlinear spectrum for (1.10). More

details on blow-up and global similarity solutions (as unique extensions after blow-up) of

(1.10) can be found in [2].

1.5. Global extension of bifurcation branches: a principal open problem. It is

worth mentioning that, for both problems (1.3) and the corresponding problem occurring

for (1.10) (after the similarity time-scaling), a global extension of bifurcation n-branches

((n, p)-branches for (1.10)) represents a difficult open problem of general nonlinear op-

erator theory. Moreover, as was shown in [16] (see also other examples in [18]), the

TFE-4 with absorption −|u|p−1u (instead of the backward-in-time diffusion as in (1.3)),

depending on not that small n ∼ 1, admits some p-bifurcation branches having turn-

ing (saddle-node) points and thus representing closed loops Hence, these branches are
5



not globally extendable in principle. On the other hand, for equations with monotone

operators such as the PME-4

PME4PME4 (1.11) ut = −(|u|nu)xxxx in R× R+ ,

the n-branches seem to be globally extensible in n > 0, [15].

2. Problem setting and self-similar solutions
S2

2.1. The FBP and CP. As done previously in [10]–[13], we distinguish the standard

free-boundary problem (FBP) for (1.1) and the Cauchy problem; see further details

therein.

For both the FBP and the CP, the solutions are assumed to satisfy standard free-

boundary conditions or boundary conditions at infinity:

i3i3 (2.1)


u = 0, zero-height,

∇u = ∇2u = ∇3u = ∇4u = 0,

−n · (|u|n∇∆4u) = 0, conservation of mass (zero-flux)

at the singularity surface (interface) Γ0[u], which is the lateral boundary of

gamma1gamma1 (2.2) supp u ⊂ RN × R+, N ≥ 1 ,

where n stands for the unit outward normal to Γ0[u]. Note that, for sufficiently smooth

interfaces, the condition on the flux can be read as

lim
dist(x,Γ0[u])↓0

−n · ∇(|u|n∆4u) = 0.

This condition is directly related with the conservation of mass.

Moreover, we also assume bounded, smooth, integrable, compactly supported initial

data

i4i4 (2.3) u(x, 0) = u0(x) in Γ0[u] ∩ {t = 0}.

For the CP, the assumption of nonnegativity is got rid of, and solutions become os-

cillatory close to interfaces. It is then key, for the CP, that the solutions are expected

to be “smoother” at the interface than those for the FBP, i.e., (2.1) are not sufficient to

define their regularity. These maximal regularity issues for the CP, leading to oscillatory

solutions, are under scrutiny in [11] for a fourth-order case.

In the CP for (1.1) in RN ×R+, one needs to pose bounded compactly supported initial

data (2.3) prescribed in RN .
6



2.2. Global similarity solutions: a nonlinear eigenvalue problem. We now specify

the self-similar solutions of the equation (1.1), which are admitted due to its natural

scaling-invariant nature. In the case of the mass being conserved, we have global in time

source-type solutions

u(x, t) := t−αf( x
tβ

), α = 1−10β
n

,

with f solving the quasilinear elliptic equation (nonlinear eigenvalue problem) given in

(1.3). We add to the elliptic equation a natural assumption that f must be compactly

supported (and, of course, sufficiently smooth at the interface, which is an accompanying

question to be discussed as well). For further details of how to obtain them see [1].

Thus, for such degenerate elliptic equations, the functional setting of (1.3) assumes

that we are looking for (weak) compactly supported solutions f(y) as certain “nonlinear

eigenfunctions” that hopefully occur for special values of nonlinear eigenvalues {αγ}|γ|≥0.

Therefore, our goal is to justify that (1.4) holds.

Concerning the well-known properties of finite propagation for TFEs, we refer to papers

[10]–[13], where a large amount of earlier references are available; see also [17, 18] for more

recent results and references in this elliptic area.

However, one should observe that there are still a few entirely rigorous results, especially

those that are attributed to the Cauchy problem for TFEs.

In the linear case n = 0, the condition f ∈ C0(RN), is naturally replaced by the

requirement that the eigenfunctions ψβ(y) exhibit typical exponential decay at infinity,

a property that is reinforced by introducing appropriate weighted L2-spaces. Complete

details about the spectral theory for this linear problem when n = 0 in [9]. Actually, using

the homotopy limit n → 0+, we will be obliged for small n > 0, instead of C0-setting in

(1.3), to use the following weighted L2-space:

WW11WW11 (2.4) f ∈ L2
ρ(RN), where ρ(y) = ea|y|

10/9

, a > 0 small.

Note that, in the case of the Cauchy problem with conservation of mass making use

of the self-similar solutions (1.2), and performing similar computations as done in [1] we

have that

alb1alb1 (2.5) −α + βN = 0 =⇒ α0(n) = N
10+Nn

and β0(n) = 1
10+Nn

.

3. The limit n→ 0: Behaviour of finite interfaces and nearby solutions
S3

We consider here the singular limit n → 0+ for the full equation (1.1) in one space

dimension N = 1. The non-uniform solution in this limit comprises two regions, an Inner

region {x = O(1)}, where u = O(1), and an Outer region {x = O(n−
9
10 )}, in which u

is exponentially small. The labelling of these regions as inner and outer becomes clearer

during the course of the scalings.
7



We begin with the region {x = O(1)}, for which u = O(1) and consequently |u|n ∼ 1

for small n > 0. At leading order u ∼ u0(x, t) satisfies the linear poly-harmonic equation

s3eq1s3eq1 (3.1) ∂u0
∂t

= ∂10u0
∂x10

,

where u0 here is the leading order term in an expansion with respect to n (and is not

the initial function in (2.3)). We are interested in an oscillatory class of solutions that

are analytic in x. The far-field behaviour of (3.1) may be determined using a WKBJ

expansion in the form

eq:s3eq2eq:s3eq2 (3.2) u0 ∼ a(x, t)e−φ(x,t) as x→ +∞,

which gives

s3eq3s3eq3 (3.3) ∂φ
∂t

=
(
∂φ
∂x

)10
and ∂a

∂t
+ 10

(
∂φ
∂x

)9 ∂a
∂x

= −45
(
∂φ
∂x

)8 ∂2φ
∂x2
a.

The required solutions to (3.3) take the form

s5eq4s5eq4 (3.4) φ(x, t) = φ±(x, t) ≡ 9
1010/9

e±
4πi
9
x10/9

t1/9
, a = t−

1
2 Ψ±

(
x
t

)
,

where Ψ±(ζ) are arbitrary smooth functions (depending on the initial data), but satisfy

Ψ−(ζ) = Ψ̄+(ζ). Thus,

u0 ∼ 1
t1/2

Ψ+

(
x
t

)
exp

{
− 9

1010/9
e

4πi
9

(
x10

t

) 1
9
}

s3eq5 (3.5)

+ 1
t1/2

Ψ−
(
x
t

)
exp

(
− 9

1010/9
e−

4πi
9

(
x10

t

) 1
9

)
as x→ +∞.

It is clear from (3.5) that this solution breaks down when x = O(n−9/10), since we can

no longer approximate |u|n by unity. This suggests the consideration of an outer region

with scaling X = n9/10x. In X = O(1), the PDE becomes

s3eq6s3eq6 (3.6) ∂u
∂t

= n9 ∂
∂X

(
|u|n ∂9u

∂X9

)
,

this being a conventional formulation of a singular problem, where the small parameter

multiplies the highest derivative. However, as for the fourth and sixth order cases (see [11,

13]), there are fast oscillations superposed on the slow exponential decay that occurs over

this length scale, necessitating the application of a multiple scales (Kuzmak) approach.

As such we introduce the fast variable

Z = σ(X,t)
n

,

where σ(X, t) will be determined in the standard way by the criterion that the dependence

on Z is periodic of constant (rather than (X, t)-dependent) periodicity - without loss of

generality, we take the period to be 2π. The multiple-scales ansatz for this region takes

the form

s3eq7s3eq7 (3.7) u ∼ e−Φ(X,t)/nA(X,Z, t) as n→ 0,
8



to within an algebraic power of n (which is determined by the far-field behaviour of

Ψ±(ζ)), wherein Φ is real. Thus, as n→ 0,

s3eq8s3eq8 (3.8) ∂u
∂t
∼ 1

n

(
−∂Φ

∂t
A+ ∂σ

∂t
∂A
∂Z

)
e−Φ/n,

s3eq9s3eq9 (3.9) n9 ∂
∂X

(
|u|n ∂9u

∂X9

)
∼ 1

n
e−Φ
[∑10

k=0

(
10
k

)
∂kA
∂Xk

(
∂σ
∂X

)k(− ∂Φ
∂X

)10−k
]
e−Φ/n.

We remark that these expansions need to be taken to next (i.e., O(n) smaller) order if we

are to characterise the dependence of A on X and t; we shall not proceed with such an

analysis here. Viewing the balance (3.8) and (3.9) as an ordinary differential equation in

Z, we observe that the condition of 2π periodicity in Z requires that

s3eq10s3eq10 (3.10) A = α+(X, t)eiZ + α−(X, t)e−iZ

with α− = ᾱ+. Grouping real and imaginary parts, we obtain a coupled system for Φ and

σ given by the equations

∂Φ
∂t

= e−Φ
[(

∂σ
∂X

)10 − 45
(
∂σ
∂X

)8 ( ∂Φ
∂X

)2
+ 210

(
∂σ
∂X

)6 ( ∂Φ
∂X

)4
s3eq11 (3.11)

−210
(
∂σ
∂X

)4 ( ∂Φ
∂X

)6
+ 45

(
∂σ
∂X

)2 ( ∂Φ
∂X

)8 −
(
∂Φ
∂X

)10
]
,

∂σ
∂t

= e−Φ
[
−10

(
∂σ
∂X

)9 ∂Φ
∂X

+ 120
(
∂σ
∂X

)7 ( ∂Φ
∂X

)3 − 252
(
∂σ
∂X

)5 ( ∂Φ
∂X

)5
s3eq12 (3.12)

+120
(
∂σ
∂X

)3 ( ∂Φ
∂X

)7 − 10 ∂σ
∂X

(
∂Φ
∂X

)9
]
.

Matching to (3.5) suggests seeking a consistency relation between (3.11) and (3.12) of the

form σ = λΦ with λ real, leading to

λ10− 35λ8 + 90λ6 + 42λ4− 75λ2 + 9 = 0 =⇒ (λ2 + 1)(λ2− 3)(λ6− 33λ4 + 27λ2− 3) = 0.

The appropriate root of this characteristic equation is

s3lambdas3lambda (3.13) λ = tan
(

4π
9

)
,

this being consistent with the ratio of the imaginary to real parts in the exponentials in

(3.5). Consequently, we obtain a Hamilton–Jacobi equation of the form

s3eq13s3eq13 (3.14) ∂Φ
∂t

= − sec9
(

4π
9

)
e−Φ

(
∂Φ
∂X

)10
,

the required solution being

Φ(x, t) = −9 ln
(
1− cos

(
4π
9

)(
X10

1010t

) 1
9
)
,

which matches successfully with the real part of (3.5) in the limit X → 0. Thus, the

leading order solution in this region takes the form

s3eq14s3eq14 (3.15) u(x, t) ∼
(

1− cos
(

4π
9

)(
X10

1010t

) 1
9

) 9
n
A(X,Z, t),

9



with A as given in (3.10), this local behaviour having the expected 9
n

power-law form with

oscillations superimposed as in (3.7) and (3.10). The interface x = x0(t) is thus given by

s3eq15s3eq15 (3.16) x0(t) ∼ 10
(

1
n

sec
(

4π
9

)) 9
10
t

1
10 as n→ 0 ,

illustrating its behaviour for small n.

We may also determine the structure of the eigenfunctions satisfying (1.7) in the small

n limit. Again, we have a two region structure: an inner region {y = O(1)}, in which

f = O(1) and an outer region {y = O(n−9/10)} where f is exponentially small. In the

inner region {y = O(1)}, we obtain at leading order (f ∼ f0) in n the linear ODE

s3eq16s3eq16 (3.17) f
(10)
0 + 1

4
yf ′0 + αf0 = 0.

An explicit general solution can be expressed in terms of hypergeometric functions, easily

obtained using e.g. Maple. The far-field behaviour of (3.1) may be determined using a

WKBJ expansion in the form

eq:s3eq17eq:s3eq17 (3.18) f0(y) ∼ a(y)e−φ(y) as y → +∞

which gives

s3eq18s3eq18 (3.19) 10(φ′)9 = y,
(
α− 45(φ′)8φ′′

)
a+

( y
10
− 10(φ′)9

)
a′ = 0.

The required solutions to (3.19) take the form

s5eq19s5eq19 (3.20) φ(y) = φ±(y) ≡ 9
1010/9

e±
4πi
9 y10/9, a(y) = k±y

5(2α−1)/9,

with k± arbitrary constants. Thus,

f0(y) ∼ k+y
5(2α−1)/9 exp

{
− 9

1010/9
e

4πi
9 y

10
9

}
s3eq20 (3.21)

+k−y
5(2α−1)/9 exp

{
− 9

1010/9
e−

4πi
9 y

10
9

}
as y → +∞.

Again, this solution breaks down when y = O(n−9/10), suggesting the consideration of an

outer region with scaling Y = n9/10y. In Y = O(1), we have

s3eq21s3eq21 (3.22) n9 d
dY

(
|f |n d9f

dY 9

)
+
(

1−αn
10

)
y df

dY
+ αf = 0.

Rather than posing a multiple-scales ansatz directly, we may instead consider

s3eq22s3eq22 (3.23) f(Y ) ∼ eb(Y )/nB(Y ) as n→ 0,

where b is complex in order to match with the inner solution. Thus, at O(1/n) in (3.22)

we obtain

s3eq23s3eq23 (3.24) 10|eb|
(

db
dY

)9
+ Y = 0,

whilst at O(1) we have

s3eq24s3eq24 (3.25)
(
10(b′)9|eb|+ Y

10

)
dB
dY

+B
(
α− α Y

10
b′ + (b′)8|eb| (45b′′ + b′2(1 + ln |B|))

)
= 0,

10



where ′ denotes d
dY

and the approximation

s3eq25s3eq25 (3.26) |f |n ∼ |eb| (1 + n ln |B|)

has been used. The solution to (3.24) that matches with (3.21) is

s3eq26s3eq26 (3.27) b(Y ) = (1± iλ) 9 ln
(
1− cos

(
4π
9

) (
Y
10

)10/9 )
,

with λ as given in (3.13). We can in principle determine the amplitude B(Y ) via (3.25).

The finite interface y = y0, where f vanishes, is thus given by

s3eq27s3eq27 (3.28) y0 ∼ 10
(

1
n

sec
(

4π
9

))9/10
as n→ 0 ,

again illustrating its divergent behaviour for small n.

4. Oscillatory solutions of changing sign near interfaces via periodic

structures
S4

Here we examine the local behaviour near the finite interface y0 = x0/t
β for the similar-

ity ODE (1.7) in one dimension. We consider similarity profiles f(y) exhibiting maximal

regularity at the interface y = y0, so that, being extended by f = 0 for y > y0, these will

give solutions of the CP.

4.1. Periodic structure of oscillations near interfaces for n ∈ (0, 9
8
). For the thin

film ODE (1.7), we have the asymptotic behaviour

s4eq1s4eq1 (4.1) |f |nf (9) ∼ λ0f , λ0 = βy0 > 0, as y → y−0 ,

where the no-flux condition in (2.1) has been used. To allow for oscillatory behaviour, we

seek solutions in the form

s4eq2s4eq2 (4.2) f(y) = (y0 − y)µφ(η) , η = ln(y0 − y), with µ = 9
n
,

where the oscillatory component ϕ satisfies the ninth-order autonomous ODE

eqLCeqLC (4.3)
9∑

k=0

akφ
(9−k) + λ0|φ|−nφ = 0.

The coefficients {ak} are polynomials in µ of degree k, namely

a0 = 1, a1 = 9(µ− 4), a9 = Π8
i=0(µ− i),

with the others easily obtainable using e.g., Maple and not recorded for conciseness.

Fig1LC

We formulate our overall (formal) understanding of the ODE (4.3) as follows:

Conjecture 4.1. For n ∈ (0, 9
8
), the ODE (4.3) has a unique non-trivial sign-changing

periodic solution φ∗(η).
11
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Figure 1. Numerical illustration of the limit cycles for selected n. In each case

(4.3) with parameter value λ0 = 1 was solved as an IVP using MATLAB solver

ode15s. Small error tolerances RelTol and AbsTol of typically 10−13 were set,

although these were relaxed for the larger n values.

Thus, numerics suggest that this limit cycle is globally stable and is unique (up to

translations in η). Figure 1 describes this stable periodic behaviour for selected n ∈ (0, 9
8
).

For n ∈ (9
8
, 9

7
), global stability fails since (4.3) admits also two equilibria φ = ±φ0, where

Var55Var55 (4.4) φ0 = [− λ0
Π8
i=0(µ−i) ]

1
n > 0.
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The amplitude of the periodic solution decreases markedly as n decreases, which suggests

the need to rescale for small n as discussed later.

4.2. Heteroclinic bifurcation of periodic solutions. It is crucial for both ODE and

PDE theory to find a precise n-interval of existence of periodic, oscillatory solutions of

(4.3). Firstly, the stable periodic solution φ(η) persists to exist for n > 9
8
, where the

constant solutions φ = ±φ0 are unstable; see Figure 2 for n = 1.13 and n = 1.15.
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n=1.15

Figure 2. Illustration of numerical solutions to (4.3) with λ0 = 1 for two

selected values of n ∈ (9
8 , nh). Shown are solutions leaving the unstable constant

solution φ = φ0 with the globally stable limit cycle. The figures are symmetric

in φ, the negative unstable constant solution φ = −φ0 being omitted form being

shown. Fig2LC

Secondly, as n increases further, the periodic solution is destroyed in a heteroclinic

bifurcation, a phenomenon earlier observed for fourth- and sixth-order TFEs [11, 13].

The following conjecture is entirely based on numerical evidence.

Conjecture 4.2. The stable periodic solution of (4.3) exists for all n ∈ (0, nh), where

nh ∈ (9
8
, 9

7
) is a subcritical heteroclinic (φ0 7→ −φ0) bifurcation point of stable periodic

solutions, which cease to exist for all n ≥ nh.

Numerical calculations give

n**1n**1 (4.5) nh = 1.1572339... (recall that 9
8

= 1.125 and 9
7

= 1.2857...).

Figure 3 shows formation of such a bifurcation as n → n−h . To obtain the bold line in

Figure 3(B), we took n = 1.157233919 (not all decimals being correct). This is a standard

scenario for homoclinic/heteroclinic bifurcations, [23, Ch. 4]. A rigorous justification of

such non-local bifurcations is an still an open problem.
13



-0.0015

-0.001

-0.0005

0.0

0.0005

0.001

0.0015

(
)

0 10 20 30 40 50 60 70 80 90 100

(A) n nh
-

nh=1.15 nh=1.157 nh=1.1572

nh=1.15723 nh=1.157233

-0.001

-0.0005

0.0

0.0005

0.001

(
)

0 50 100 150 200 250

(B) n nh
-

Figure 3. Formation of a heteroclinic connection φ0 → −φ0 for the ODE (4.3),

λ0 = 1, as n→ n−h . Fig3LC

Thus, for n larger than 9
8
, not all the solutions are oscillatory near the interfaces.

For n ∈ (9
8
, 9

7
), there exists a one-parametric bundle of positive solutions with constant

φ(η) given by (4.4). Nevertheless, for matching purposes, the whole 2D asymptotic bundle

(4.2) of oscillatory solutions has to be taken into account, so that the oscillatory behaviour

remains generic (as in the linear case n = 0 described next).
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Figure 4. Stable periodic behaviour for the ODE (4.3), λ0 = 1, for n = 0.1

and n = 0.05. Fig4LC
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4.3. Periodic solutions for small n > 0. Here we study the behaviour of periodic

solutions for small n > 0. They are already difficult to detect by direct numerical methods

for n = 1
2

as indicated in Figure 1, where φ = O(10−21). To reveal the limiting oscillatory

behaviour as n→ 0, solutions of changing sign are expected to be of the order

‖ϕ‖∞ ∼ (n
9
)

9
n for small n > 0.

We thus rescale in equation (4.3) as follows

AAA.1AAA.1 (4.6) φ(η) =
(
n
9

) 9
n ψ(s), s = 9

n
η.

For small n > 0, function ψ(s) solves a simpler ODE with Euler’s differential opera-

tor and binomial coefficients, which can be written in the form (omitting higher-order

perturbations in n)

AAA.2AAA.2 (4.7) e−s d9(esψ)
ds9

≡
∑9

k=0

(
9
k

)
ψ(9−k) = −λ0

ψ
|ψ|n .

Numerical analysis shows existence of a stable periodic solution in (4.7); see Figure 4. It

is worth mentioning that the periodic oscillations become very small as n reduces, e.g. by

(4.6),

‖φ‖∞ ∼ 10−176 for n = 0.1.

Note that, for n = 1
2
, (4.6) suggests ‖φ‖∞ ∼ 10−23 which is slightly smaller than the

numerical size indicated in Figure 1. Stabilization to periodic orbits of (4.7) are shown in

Figure 4 for two sufficiently small n values.

For n = 0, the equation (4.7) becomes linear,

AAA.3AAA.3 (4.8)
∑9

k=0

(
9
k

)
ψ

(9−k)
0 = −λ0ψ0.

with the characteristic equation (ν + 1)9 + λ0 = 0 for exponential solutions ψ(s) = eνs.

Thus, the generic stable behaviour for (4.8) is exponential and oscillatory:

psi0psi0 (4.9) ψ0(s) ∼ e

(
λ

1
9
0 cos(π

9
)−1
)
s cos

[(
λ

1
9
0 sin π

9

)
s+ constant

]
as s→ −∞.

These small n asymptotics given by the scaling (4.6) describes the actual branching of pe-

riodic solutions of (4.3) from the exponential decaying linear patterns (4.9) corresponding

to n = 0.

5. Towards global behaviour of nonlinear eigenfunctions via analytic

approaches
S5

To JDE: please, put as many numer. as possible. Dipoles? And more?

f2, f3, etc., or impossible?

To JDE: VAG thinks it is better to do that in a separate section, the

present analytic section is full and looks not that bad, though some

questions remain

15



5.1. Regularized problem. To obtain global information about the solutions of the

nonlinear eigenvalue problem (1.3), i.e., its nonlinear eigenfunctions or source-type solu-

tions of the degenerate elliptic equation (1.3), we consider a homotopic deformation to

the linear elliptic problem

s4s4 (5.1) BF ≡ −∆5
yF + 1

10
y · ∇yF + N

10
F = 0 in RN ,

∫
RN F (y) dy = 1.

This is the rescaled equation of the poly–harmonic equation of tenth order (1.5) which

admits a unique classic solution given by the convolution Poisson-type integral of the form

u(x, t) = b(t) ∗ u0 ≡ t−
N
10

∫
RN

F ((x− z)t−
1
10 )u0(z) dz,

where

b(x, t) = t−
N
10F (y), y := x

t1/10
(x ∈ RN)

is the unique fundamental solution of the operator ∂
∂t
− ∆5 such that, F is the rescaled

fundamental kernel which solves the linear elliptic equation (5.1) and whose explicit so-

lutions are a countable family of eigenfunctions for the linear elliptic operator (5.1) (cf.

[9] for any further details).

Therefore, we take the regularized uniform elliptic equation

regul1regul1 (5.2) ∇ · [φε(f)∇∆4f ] + 1−αn
10

y · ∇f + αf = 0, f ∈ C0(RN) ,

with

phi2phi2 (5.3) φε(f) = |ε2 + f 2|
n
2 ,

so that the inverse operator is smooth and analytic. Thus, for any ε ∈ (0, 1], the uniformly

elliptic equation admits a unique classic solution f = fε(y), which is an analytic function

in both variables y and ε. Indeed, we would like to see under which conditions we can

have that

fε(y)→ f(y) as ε→ 0+.

for a given well-defined analytic functional family (a curve or a path),

FemFem (5.4) Pφ = {fε(y)}ε∈(0,1].

Thus, to obtain relevant information about the nonlinear eigenfunctions of the problem

(1.3) we will apply standard degree theory [19, 20] and first will perform a kind of “double”

limit as ε, n → 0+, where special restrictions on two parameters will be required. Basi-

cally, because passing to the limit just when ε goes to zero we find a very deep problem

since the regularized PDE loses its uniform ellipticity.

Most of the existing results for thin film equations deal with non-negative solutions

with compact support of various FBPs, which are often more physically relevant and use

standard integral identities for {fε}. In this context, we should point out that such ap-

proximations for non-negative and non-changing sign solutions, with various non-analytic

(and non-smooth) regularizations (for example, of the form |u|n + ε, which is not analytic
16



for n < 2) have been widely used before in TFE–FBP theory as a key foundation (cf. [5])

but assuming the parabolic problem and using energy methods. tMoreover, apart from

the limiting problem when n approximates 0+ in the one-dimensional case is not possible

to apply the standard energy methods to ascertain the limiting behaviour in a convincing

manner. Hence, we will use the degree theory and a kind of “double” limit to solve this

issue.

Furthermore, although it looks quite reasonable to perform such a limit when ε→ 0+,

as mentioned above just passing to this limit we face many difficult problems since it

is not sufficiently clear, using for example integral identities techniques, how to identify

the limit (existence or non-existence of such a limit) or, even if we have more than one

limit (see [4]). Moreover, at ε = 0 the regularized PDE (5.2) loses its uniform ellipticity.

For this matter we present a discussion about how to deal with this particular limiting

problem.

5.2. Homotopy via degree theory. First we will perform a “homotopy” transforma-

tion when the double limit ε, n → 0 via standard degree theory and using the existence

of the limit when the parameters n and ε go to zero in a certain manner.

In order to apply standard degree theory we will write the regularized equation (5.2)

in the form

pertubeqpertubeq (5.5) (Bn + aId)fε ≡ ∆5fε + 1−αn
10

y · ∇fε + (α + a)fε = ∇ · (1− φε(fε))∇∆4fε + afε,

where a > 0 is a parameter to be chosen so that the inverse operator (Bn + aId)−1 (a

resolvent value) is a compact one in a weighted space L2
ρ(RN), with ρ a certain weight

that makes the embedding of H10
ρ (RN) compact into L2

ρ(RN). Moreover, the spectrum of

openopen (5.6) Bn + aId ≡ ∆5 + 1−αn
10

y · ∇+ (α + a)Id

is always discrete and, actually, thanks to the spectral theory developed for these higher-

order operators in [9] for the operators

oplinoplin (5.7) B + aId ≡ ∆5 + 1
10
y · ∇+ (α + a)Id,

whose spectrum is

σ(B) =
{
λk := − k

10
, k = 0, 1, 2, ...

}
,

we have that

sp33sp33 (5.8) σ(Bn) =
{
− k(1−αn)

10
+ α, k = 0, 1, 2, ...

}
,

so that any choice of a > 0 such that a 6∈ σ(Bn) is suitable in (5.5).

We intend to perform a homotopy transformation from the (5.2) to the (5.1) translat-

ing the already known oscillatory properties of the self-similar poly-harmonic parabolic

equation (1.5) into the thin film equation (1.1). Note that since the eigenfunctions of the
17



elliptic equation (5.1) are generalized Hermite polynomials with finite oscillatory prop-

erties our purpose will be to get such an oscillation characteristic into the solutions of

the non-linear eigenvalue equation (1.3) (the self-similar thin film equation). Thus, us-

ing the degree theory and the existence of convergence we ascertain some existence and

multiplicity results for the non-linear eigenvalue problem (1.3).

Homotopy deformations are used in other fields in mathematics, especially geometry, to

put in correspondence certain properties of several geometrical objects and the topological

degree is the only invariant which is conserved by homotopic deformations However, we

will use it as a tool to analyze topological invariants of those geometrical objects which

can be put in correspondence with the considered equation providing us with a natural

method for studying the invariant properties of the integral equation (5.5).

First of all, through the next proposition we prove that the linear elliptic operator on

the left hand side of the equation (5.5) denoted by (5.6) converge to the operator (5.7)

when the parameter n goes to zero. Thus, it turns out that, when the parameter n

approximates zero, we have according to (2.5) that

α0(0) = N
10
.

Moreover, extending that approximation also for any k ≥ 1, the parameter α reaches the

following family of values:

bf4bf4 (5.9) αk(0) := −λk + N
10

for any k = 1, 2, . . . ,

where λk are the eigenvalues of the operator B, so that

α0(0) = N
10
, α1(0) = N+1

10
, α2(0) = N+2

10
, . . . , αk(0) = N+k

10
. . . .

Then, we introduce the next expression for the parameter α

i52i52 (5.10) αk(n) := N
10+Nn

− λk.

Proposition 5.1. The operators (5.6)

Bn + aId ≡ ∆5 + 1−αk(n)n
10

y · ∇+ (αk(n) + a)Id

converge to the operator (5.7)

B + aId ≡ ∆5 + 1
10
y · ∇+ (N+k

10
+ a)Id,

as n→ 0, in the generalized sense of Kato.

Proof. Indeed, for each u ∈ H10
0 (B1) we have that

‖(Bn + aId)u− (B + aId)u‖L2(B1) ≤ n ‖αk(n)y∇u‖L2(B1) .

Hence, from the expression for the parameter αk(n) and Sobolev’s inequality

‖(Bn + aId)u− (B + aId)u‖L2(B1) ≤ cK ‖u‖H10
0 (B1) ,

18



with K > 0, a positive constant. Therefore, for any ε > 0, there exists n0 such that

‖(Bn + aId)u− (B + aId)u‖L2(B1) ≤ ε ‖u‖H10
0 (B1) ,

for all n ∈ (0, n0) and u ∈ H10
0 (B1). �

Subsequently, using the compact embedding of H10
ρ (RN) into L2

ρ(RN), we find that

converepconverep (5.11) fε −→ F̂ ,

performing a double limit as n and ε go to zero, at least in L2
ρ(RN). However, so far we

cannot identify which problem F̂ belongs to. Now, we write the equation (5.5) in the

integral form

pertubeq11pertubeq11 (5.12) fε = (Bn + aId)−1
[
∇ · (1− |ε2 + f 2

ε |
n
2 )∇∆4fε + afε

]
,

with Bn+aId denoted by (5.6), for which we know the expression for the whole spectrum

explicitly and, also, that this operator is compact in a weighted space L2
ρ(RN) with the

existence of the inverse for a suitable and positive a /∈ σ(Bn). For the the nonlinear term

∇ · (1− |ε2 + f 2
ε |

n
2 )∇∆4fε + afε,

we have that it is relatively compact, thanks to the existence of convergence shown pre-

viously (5.11) and assuming the condition

nn12nn12 (5.13) for δ ∼ ε, n = n(ε)→ 0 such that ε
n(ε)
2 → 0.

Indeed, setting

limε→0 ε
n(ε)
2 = 0, then limε→0 n(ε) ln ε = −∞.

Hence, taking

expanexpan (5.14) Fε(fε) = 1− |ε2 + f 2
ε |

n
2 = −n

2
ln(ε2 + f 2

ε )(1 + o(1)) as n→ 0+,

for a family {fε(y)} of uniformly bounded and smooth solutions, when fε ≈ 0 yields the

demand

keycondkeycond (5.15) n | ln ε(n)| → 0 as n→ 0,

which it is true if the we assume (5.13) such that the regularization parameter ε� e−
1
n .

Thus, substituting (5.14) into (5.12) we arrive at

pertubeq12pertubeq12 (5.16) fε = (Bn + aId)−1
[
∇ · (−n

2
ln(ε2 + f 2

ε )(1 + o(1)))∇∆4fε + afε
]
,

and passing to the limit when n and ε(n) go to zero we find that there exists a fixed point

for the integral equation

fixedpoeqfixedpoeq (5.17) F̂ = (B + aId)−1(aF̂ ),

whose solutions are the eigenfunctions of the linear elliptic problem (5.7), i.e., F̂ = ψ.
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Note that (5.14) could be replace for a more general form such as (3.23) with

Gε(fε) = b
n

+ lnB +O(n), as n→ 0+,

obtaining a different condition from (5.15).

Therefore, applying the degree theory, together with Fixed Point Theory, (see [19,

20] for any further details) we can assure the existence of countable family of direct n-

expansion of the solutions for the problem (1.3) to guarantee branching at n = 0+. In fact,

the degree provides us with the existence of continuous branches of eigenfunctions for the

equation (1.3) since it stays invariant via homotopic deformations as the ones performed

here. In the terms exposed by Krasnoselskii [19] we would talk about the rotation of the

vector field of the form

Φ = Id−G,

where G is the operator on the right hand side of (5.16). Note that the invariance analysis

of the rotation of vector fields and the degree in the sense of Leray–Schauder is equivalent.

5.3. The limiting problem just when ε→ 0+. In general if we want to ascertain the

limit

fε −→ F̂ ,

just when ε→ 0+ instead of the double limit performed above, we take into account the

the inverse operator

(Bn + aId)−1,

is smooth and analytic for any n, and the convergence of the sequence {fε}, at least in

L2
ρ(RN). Here, again, a > 0 is a parameter to be chosen so that the inverse operator is

compact in the weighted space L2
ρ(RN), with ρ a certain weight that makes the embedding

of H10
ρ (RN) compact into L2

ρ(RN). Moreover, the solutions of the regularized problem

(5.2), (5.3) are analytic in both variables ε, y, and by construction we know that

fε ∈ C0(RN),

in other words, these solutions have compact support and, also, by the conservation of

mass, ∫
RN |fε| ≤ C, with C > 0,

a positive constant.

Observe that we have solutions of changing sign with compact support and exponential

decay. Then, together with the boundary conditions we find that∫
RN |fε|

2 =
∫
RN\{|fε|<δ} |fε|

2 +
∫
{|fε|<δ} |fε|

2 ≤M + δ2|suppfε|,

providing us with an estimation for the norms in L2. Here we assume that the solutions

are oscillatory of changing sign but we are not able to extract information about those

oscillations (since the argument we have done before to extract information from the

solutions at n = 0 is not applicable now) we do not posses a priori information about this
20



oscillatory property when n 6= 0. However, the goal would be to extend analytically these

oscillatory properties from n = 0 forward.

Furthermore, since the inverse operator of (5.6) is smooth and analytic we can assure

that (5.6) is a topological isomorphism and, hence, we can apply the Implicit Function

Theorem to the equation (5.5) with the parameter n fixed.

Therefore, it looks quite natural to apply the argument of passing to the limit just as

ε goes to zero in the equation (5.12)

fε = (Bn + aId)−1
[
∇ · (1− |ε2 + f 2

ε |
n
2 )∇∆4fε + afε

]
.

However, we face here several problems that make this final process very tricky. Indeed,

to get the convergence of the previous pertubed equation (5.5) we need to get the term

exptermexpterm (5.18) ∇ · (1− |ε2 + f 2
ε |

n
2 )∇∆4fε + afε,

bounded in L2
ρ(RN). Essentially, since we have an inverse compact operator (Bn+aId)−1 if

(5.18) is bounded in L2
ρ(RN) we might be able to find a convergent subsequence being the

solutions fε of that fixed point equation relatively compact. Nevertheless, on the contrary

from what we had above for the double limit here we cannot assure that the non-linear

term (5.18) is relatively compact making the solution of the Fixed Point equation (5.12)

far from obvious. Even though it looks quite reasonable.

Moreover, when |fε| ≥ δ for δ > 0 since the solutions of the perturbed equation (5.5)

are continuous with compact support we have that the L∞ norm is bounded in those

subsets

||fε||L∞,{|fε|≥δ} < K, for a constant K > 0,

and, hence, the convergence of the fixed point equation (5.5) when ε→ 0+ is guaranteed

at least for the particular n’s for which there exists a solution.

However, that is not so clear to obtain, at least directly, when |fε| < δ for δ > 0.

Indeed, by construction we find that

(Bn + aId)fε ∈ L2
ρ(RN),

with fε ∈ H1
ρ(RN) however, we cannot imply directly that

∇ · (1− |ε2 + f 2
ε |

n
2 )∇∆4fε + afε ∈ L2

ρ(RN),

from the perturbed equation (5.5). Moreover, computing∫
RN (φε(fε))

2(∇∆4fε)
2 =

∫
RN |ε

2 + f 2
ε |n(∇∆4fε)

2 =
∫
RN |ε

2 + f 2
ε |

n
2 |ε2 + f 2

ε |
n
2 (∇∆4fε)

2,

we arrive at ∫
RN (φε(fε))

2(∇∆4fε)
2 ≤ K,

for a positive constant K, assuming that

firestfirest (5.19)
∫
RN |ε

2 + f 2
ε |

n
2 (∇∆4fε)

2 ≤ K and
∫
RN |fε| ≤ K.
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This final argument would provide us with the convergence of the fixed point equation

but to be so we need the first estimation of (5.19) and the relatively compactness of the

non-linear terms (5.18).

Finally, even though we ascertain the existence of the limit of the equation (5.12) we

cannot assure how many solutions sastify the limiting problem

F̂ = (Bn + aId)−1
[
∇ · (1− |F̂ |n)∇∆4F̂ + aF̂

]
.

and also, what kind of solutions are since we do not have a a priori information about

the solutions for other n apart from n = 0 (as performed above).

To PAC: any hope to apply degree/rot. theory to NONLINEAR equation,

without using n → 0??? If NOT, could you explain why? Any

sustainable comments here could be of good price...

To VAG: I tried to obtain that convergence applying the fixed point

equation but I am not sure it’s relevant or just talking!!

6. Nonlinear eigenfunctions: numerical approach
S5

Here we construct numerically the nonlinear eigenfunctions in one space dimension.

The nonlinear eigenvalue problem (1.3) for N = 1 becomes

self1N1self1N1 (6.1)
(
|f |nf (9)

)′
+ 1−αn

10
yf ′ + αf = 0, f ∈ C0(R) ,

for n > 0 with f being compactly supported. For n = 0, we require f to have expo-

nential decay in infinity, now belonging to an appropriately weighted L2-space as stated

in (2.4). The nonlinear eigenvalue-eigenfunction pairs are denoted by {αk(n), fk} for

k = 0, 1, 2, 3, . . . and the eigenfunctions are normalised using

(6.2) fk(0) = 1, k = 0, 2, 4, . . . ; f ′k(0) = 1, k = 1, 3, 5, . . . .

The first eigenvalue-eigenfunction pair {α0(n), f0} preserve mass, so that (6.1) may be

integrated once to give

f0f0 (6.3) |f0|nf (9)
0 + α0yf0 = 0, with α0(n) = 1

10+n
,

and is completed with the boundary conditions

at y = 0: f0 = 1, f
(i)
0 = 0 for i = 1, 3, 5, 7,f0bc1 (6.4)

at y = y0: f0 = f
(i)
0 = 0 for i = 1, 2, 3, 4.f0bc2 (6.5)

Since α0 is known, this gives a tenth-order system when n > 0 to determmine f0 and the

finite free boundary y0 > 0 (the corresponding interface being x = y0t
β0 with β0 as given

in (1.2)). When n = 0, then y0 = ∞. Figure 5 shows illustrative f0 profiles for selected

n values in one-dimension (N=1). The system was solved as an IVP in Matlab (shooting

from y = 0), using the ODE solver ode15s with error tolerances of AbsTol=RelTol=10−10

and the regularisation |f |n = (f 2 + δ2)n/2 with δ = 10−10. Since the α0 are known, this
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gives a tenth-order system when n > 0 to determmine f0 and the finite free boundary y0.

When n = 0, then y0 = ∞. Figure ?? shows illustrative f0 profiles for selected n values

in one-dimension (N=1). The system was solved as an IVP in Matlab (shooting from

y = 0), using the ODE solver ode15s with error tolerances of AbsTol=RelTol=10−10 and

the regularisation |f |n = (f 2 + δ2)n/2 with δ = 10−10.

The other eigenvalue-eigenfunction pairs {αk, fk} for k ≥ 1 and n > 0 satisfy the ode

in (6.1) with

at y = 0:

{
fk = 1, f

(i)
k = 0 for i = 1, 3, 5, 7, 9, if k is even fkbc1a

f ′k = 1, fk = f
(i)
k = 0 for i = 2, 4, 6, 8, if k is odd fkbc1b

(6.6)

and

at y = y0: fk = f
(i)
k = 0 for i = 1, 2, 3, 4, 5.fkbc2 (6.7)

Figure 5 show the eigenfunction profiles for the first four cases k = 0, 1, 2, 3, obtained

by using the same shooting numerical procedure for the first profile (but appropriately

adapted for this 12th-order system). A plot of the eigenvalues is given in 6. The case

when n = 0 requires slight modification, with y0 =∞ and is discussed in [1].
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