51 research outputs found

    Controlled comparison of machine vision algorithms for Rumex and Urtica detection in grassland

    Get PDF
    Automated robotic weeding of grassland will improve the productivity of dairy and sheep farms while helping to conserve their environments. Previous studies have reported results of machine vision methods to separate grass from grassland weeds but each use their own datasets and report only performance of their own algorithm, making it impossible to compare them. A definitive, large-scale independent study is presented of all major known grassland weed detection methods evaluated on a new standardised data set under a wider range of environment conditions. This allows for a fair, unbiased, independent and statistically significant comparison of these and future methods for the first time. We test features including linear binary patterns, BRISK, Fourier and Watershed; and classifiers including support vector machines, linear discriminants, nearest neighbour, and meta-classifier combinations. The most accurate method is found to use linear binary patterns together with a support vector machin

    Controlled comparison of machine vision algorithms for Rumex and Urtica detection in grassland

    Get PDF
    Automated robotic weeding of grassland will improve the productivity of dairy and sheep farms while helping to conserve their environments. Previous studies have reported results of machine vision methods to separate grass from grassland weeds but each use their own datasets and report only performance of their own algorithm, making it impossible to compare them. A definitive, large-scale independent study is presented of all major known grassland weed detection methods evaluated on a new standardised data set under a wider range of environment conditions. This allows for a fair, unbiased, independent and statistically significant comparison of these and future methods for the first time. We test features including linear binary patterns, BRISK, Fourier and Watershed; and classifiers including support vector machines, linear discriminants, nearest neighbour, and meta-classifier combinations. The most accurate method is found to use linear binary patterns together with a support vector machin

    Rumex and Urtica detection in grassland by UAV

    Get PDF
    . Previous work (Binch & Fox, 2017) used autonomous ground robotic platforms to successfully detect Urtica (nettle) and Rumex (dock) weeds in grassland, to improve farm productivity and the environment through precision herbicide spraying. It assumed that ground robots swathe entire fields to both detect and spray weeds, but this is a slow process as the slow ground platform must drive over every square meter of the field even where there are no weeds. The present study examines a complimentary approach, using unmanned aerial vehicles (UAVs) to perform faster detections, in order to inform slower ground robots of weed location and direct them to spray them from the ground. In a controlled study, it finds that the existing state-of-the-art (Binch & Fox, 2017) ground detection algorithm based on local binary patterns and support vector machines is easily re-usable from a UAV with 4K camera despite large differences in camera type, distance, perspective and motion, without retraining. The algorithm achieves 83-95% accuracy on ground platform data with 1-3 independent views, and improves to 90% from single views on aerial data. However this is only attainable at low altitudes up to 8 feet, speeds below 0.3m/s, and a vertical view angle, suggesting that autonomous or manual UAV swathing is required to cover fields, rather than use of a single high-altitude photograph. This demonstrates for the first time that combined aerial detection with ground spraying system is feasible for Rumex and Urtica in grassland, using UAVs to replace the swathing and detection of weeds then dispatching ground platforms to spray them at the detection sites (as spraying by UAV is illegal in EU countries). This reduces total time requires to spray as the UAV performs the survey stage faster than a ground platform

    DETECTING <i>RUMEX OBTUSIFOLIUS</i> WEED PLANTS IN GRASSLANDS FROM UAV RGB IMAGERY USING DEEP LEARNING

    Get PDF
    Broad-leaved dock (Rumex obtusifolius) is a fast growing and spreading weed and is one of the most common weeds in production grasslands in the Netherlands. The heavy occurrence, fast growth and negative environmental-agricultural impact makes Rumex a species important to control. Current control is done directly in the field by mechanical or chemical actuation methods as soon as the plants are found in situ by the farmer. In nature conservation areas control is much more difficult because spraying is not allowed. This reduces the amount of grass and its quality. Rumex could be rapidly detected using high-resolution RGB images obtained from a UAV and optimize the plant control practices in wide nature conservation areas. In this paper, a novel approach for Rumex detection from orthomosaics obtained using a commercial available quadrotor (DJI Phantom 3 PRO) is proposed. The results obtained shown that Rumex can be detected up to 90% from a 6&thinsp;mm/pixel ortho-mosaic generated from an aerial survey and using deep learning

    Segmentación de instancias para detección automática de malezas y cultivos en campos de cultivo

    Get PDF
    Con base en las recientes aplicaciones exitosas de técnicas de Aprendizaje Profundo en la clasificación, detección y segmentación de plantas, proponemos un enfoque de segmentación de instancias utilizando un modelo Mask R-CNN para la detección de malezas y cultivos en tierras de cultivo. Evaluamos el rendimiento de nuestro modelo con la métrica de precisión promedio de MSCOCO, contrastando el uso de técnicas de aumento de datos. Los resultados obtenidos muestran cómo el modelo se adapta muy bien en este contexto, abriendo nuevas oportunidades para soluciones automatizadas de control de malezas a gran escala

    Dandelion Weed Detection and Recognition for a Weed Removal Robot

    Get PDF
    Current research in agricultural weeding automation attempts to develop accurate methods of distinguishing between crop and weed. Consequently, the use of computer vision has become a cornerstone in these endeavours. Some recent methods employ pattern recognition techniques that involve hierarchical feature groupings. The application generally applies some form of machine learning. Furthermore, using convolutional neural networks (CNN), many techniques implement complex architectures that not only classify but also detect and locate objects. These detection problems generally involve datasets taken under artificial or controlled lighting conditions where foreground elements (i.e. weed and crop) are easily distinguishable from the background (usually soil) by virtue of their distinct hue and textures. Plant overlap is generally limited to being between foreground elements. The research in this thesis addresses the challenges overlooked by agricultural weeding by focusing on weeding in lawn grass with two distinct approaches. First, a pattern recognition methodology is developed to distinguish dandelion weed centers from grass using the morphological attributes of binary (black-and-white) regions. This method is tested in lab settings with both artificial weeds and grass. However, practical limitations include a fragile performance in real-world applications in the field and a heavy reliance on parameter calibration. Next, a machine-learning approach is developed to address the shortcomings of the prior approach as well as to deal with the challenges specific to weeding in a domestic setting. A five-step process involving CNN structures proves successful at accurately detecting dandelion weeds within grass and other lawn vegetation. Extensive tests have been carried out on a wide array of real work images and the results demonstrate that the developed algorithm can detect and recognize dandelions in the grass within a reasonable range of natural lighting conditions

    Innovative 3D and 2D machine vision methods for analysis of plants and crops in the field

    Get PDF
    © 2018 Elsevier B.V. Machine vision systems offer great potential for automating crop control, harvesting, fruit picking, and a range of other agricultural tasks. However, most of the reported research on machine vision in agriculture involves a 2D approach, where the utility of the resulting data is often limited by effects such as parallax, perspective, occlusion and changes in background light – particularly when operating in the field. The 3D approach to plant and crop analysis described in this paper offers potential to obviate many of these difficulties by utilising the richer information that 3D data can generate. The methodologies presented, such as four-light photometric stereo, also provide advanced functionalities, such as an ability to robustly recover 3D surface texture from plants at very high resolution. This offers potential for enabling, for example, reliable detection of the meristem (the part of the plant where growth can take place), to within a few mm, for directed weeding (with all the associated cost and ecological benefits) as well as offering new capabilities for plant phenotyping. The considerable challenges associated with robust and reliable utilisation of machine vision in the field are also considered and practical solutions are described. Two projects are used to illustrate the proposed approaches: a four-light photometric stereo apparatus able to recover plant textures at high-resolution (even in direct sunlight), and a 3D system able to measure potato sizes in-the-field to an accuracy of within 10%, for extended periods and in a range of environmental conditions. The potential benefits of the proposed 3D methods are discussed, both in terms of the advanced capabilities attainable and the widespread potential uptake facilitated by their low cost

    Black-grass (Alopecurus myosuroides) in cereal multispectral detection by UAV

    Get PDF
    Site-specific weed management (on the scale of a few meters or less) has the potential to greatly reduce pesticide use and its associated environmental and economic costs. A prerequisite for site-specific weed management is the availability of accurate maps of the weed population that can be generated quickly and cheaply. Improvements and cost reductions in unmanned aerial vehicles (UAVs) and camera technology mean these tools are now readily available for agricultural use. We used UAVs to collect aerial images captured in both RGB and multispectral formats of 12 cereal fields (wheat [Triticum aestivum L.] and barley [Hordeum vulgare L.]) across eastern England. These data were used to train machine learning models to generate prediction maps of locations of black-grass (Alopecurus myosuroides Huds.), a prolific weed in UK cereal fields. We tested machine learning and data set resampling methods to obtain the most accurate system for predicting the presence and absence of weeds in new out-of-sample fields. The accuracy of the system in predicting the absence of A. myosuroides is 69% and its presence above 5 g in weight with 77% accuracy in new out-of-sample fields. This system generates prediction maps that can be used by either agricultural machinery or autonomous robotic platforms for precision weed management. Improvements to the accuracy can be made by increasing the number of fields and samples in the data set and the length of time over which data are collected to gather data across the entire growing season

    Artificial Intelligence : Implications for the Agri-Food Sector

    Get PDF
    Artificial intelligence (AI) involves the development of algorithms and computational models that enable machines to process and analyze large amounts of data, identify patterns and relationships, and make predictions or decisions based on that analysis. AI has become increasingly pervasive across a wide range of industries and sectors, with healthcare, finance, transportation, manufacturing, retail, education, and agriculture are a few examples to mention. As AI technology continues to advance, it is expected to have an even greater impact on industries in the future. For instance, AI is being increasingly used in the agri-food sector to improve productivity, efficiency, and sustainability. It has the potential to revolutionize the agri-food sector in several ways, including but not limited to precision agriculture, crop monitoring, predictive analytics, supply chain optimization, food processing, quality control, personalized nutrition, and food safety. This review emphasizes how recent developments in AI technology have transformed the agri-food sector by improving efficiency, reducing waste, and enhancing food safety and quality, providing particular examples. Furthermore, the challenges, limitations, and future prospects of AI in the field of food and agriculture are summarized
    corecore