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Abstract

Site-specific weed management (on the scale of a few meters or less) has the potential to greatly
reduce pesticide use and its associated environmental and economic costs. A prerequisite for
site-specific weed management is the availability of accurate maps of the weed population that
can be generated quickly and cheaply. Improvements and cost reductions in unmanned aerial
vehicles (UAVs) and camera technology mean these tools are now readily available for
agricultural use.We usedUAVs to collect aerial images captured in both RGB andmultispectral
formats of 12 cereal fields (wheat [Triticum aestivum L.] and barley [Hordeum vulgare L.])
across eastern England. These data were used to train machine learning models to generate
prediction maps of locations of black-grass (Alopecurus myosuroides Huds.), a prolific weed in
UK cereal fields. We tested machine learning and data set resampling methods to obtain the
most accurate system for predicting the presence and absence of weeds in new out-of-sample
fields. The accuracy of the system in predicting the absence of A. myosuroides is 69% and its
presence above 5 g in weight with 77% accuracy in new out-of-sample fields. This system
generates prediction maps that can be used by either agricultural machinery or autonomous
robotic platforms for precision weed management. Improvements to the accuracy can be made
by increasing the number of fields and samples in the data set and the length of time over which
data are collected to gather data across the entire growing season.

Introduction

The use of unmanned aerial vehicles (UAVs) and machine learning is increasingly important in
precision agriculture, particularly for weed management (Boursianis et al. 2020; Fernández-
Quintanilla et al. 2018; Shaner and Beckie 2014; Tsouros et al. 2019). Herbicides are essential for
weed management but incur economic and environmental costs that are compounded by the
traditional approach of tractor-based bulk application to entire fields, even in weed-free areas.
A more efficient method is site-specific weed management (Christensen et al. 2009;
López-Granados 2011), which involves creating customized weed maps for each field. Then,
herbicide application by small ground robots can focus on areas with weeds, saving time and
reducing herbicide use. While cameras on ground robots may also detect weeds, they are slower
and require initial travel across the entire field to detect and remove weeds (Binch et al. 2018;
Binch and Fox 2017; Hall et al. 2017; Lottes et al. 2016; Milioto et al. 2018; Sheikh et al. 2020;
Wendel andUnderwood 2016;Wu et al. 2019). Traditionally, themost cost-effectivemethods to
capture aerial images for weed detection and mapping (especially at scale) have been light
aircraft or satellites (Brown andNoble 2005; Christensen et al. 2009; Lamb and Brown 2001), but
they struggle to detect small patches of weeds due to relatively low spatial resolution. However,
recent UAV and camera technology has improved and become cheaper, allowing UAVs to
capture higher spatial resolution images for weed mapping (Boursianis et al. 2020; Huang et al.
2018; López-Granados 2011). This has led to a growing commercial sector of UAV companies
specializing in aerial imagery for agricultural purposes (Drone AG 2023; Droneflight 2023;
Drone Photography Services 2023; iRed 2023; Skeye Train 2023; SkyCam 2023).

We aim to investigate the accuracy of machine learning methods when applied to UAV RGB
and multispectral aerial images for predicting the presence of black-grass (Alopecurus
myosuroides Huds.) in fields that were not in the training data. Accurate predictions for out-of-
sample fields are vitally important to the widespread deployment of UAV imagery in weed
detection, as collecting ground-truth samples for every new field is not feasible. Previous
research has predicted A. myosuroides density at a lower resolution (20 m by 20 m) with models
that performed poorly on out-of-sample fields (Lambert et al. 2018, 2019), but out-of-sample
weed detection may still be viable in other crops (Kim et al. 2019). We explore methods to
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improve the prediction resolution to approximately 1 m. To
achieve this, ground-truth samples are collected within 1 m by 1 m
quadrats, and high-resolution cameras with pixel sizes ranging
from 22 to 27 mm are used for the aerial imagery.

Related Work

UAVs are becoming increasingly popular in agriculture as an
inexpensive, agile, and time-efficient platform for a wide range of
applications (Kim et al. 2019;Maddikunta et al. 2021; Tsouros et al.
2019).Weed detection using UAVs andmachine learningmethods
has been developed across many different crop and weed species
(Lambert et al. 2018, 2019; Lottes et al. 2017; Mohidem et al. 2021;
Popović et al. 2017; Su et al. 2022); to date two main categories of
classification have been studied: pixel-based and object-based
classification. Generally, studies using pixel-based classification
have captured images at higher altitudes, around 20 m and higher,
and studies using object-based classification at lower altitudes, as
these images have the resolution required to recognize small
objects (e.g., leaves or whole plants). Rozenberg et al. (2021)
investigated both pixel- and object- based classification using two
different classifiers in onion (Allium cepa L.) fields. They found
that both pixel and object methods produced very similar results,
with average overall accuracies between 94% and 96%. However,
the pixel method had better performance with lower-resolution
images than the object method.

Other studies have focused on detecting specific weed species
such as A. myosuroides in wheat (Triticum aestivum L.). Lambert
et al. (2018) used a pixel-based random forest method across 18
fields using RGB and red-edge (RE) cameras, achieving accuracies
of 61% to 87%. They expanded their work by using near-infrared
(NIR) cameras, vegetation indices, and a convolutional neural
network, resulting in an area under the curve of 0.825 (Lambert
et al. 2019). Su et al. (2022) used a pixel-based random forest
classifier on RGB, NIR, and RE images, as well as 18 vegetation
indices, achieving an accuracy of 93%, but only used one field for
sampling and testing.

In this study, we investigate the potential for using UAVs to
capture images andmachine learning methods to create weedmaps.
We focus on UAV systems that are readily available for hire by
agricultural users and well-known machine learning libraries that
can be used for weed distribution analysis. Our first aim was to
investigate whether images captured by UAVs are capable of
detecting weeds, and if so, the size of weeds that can be detected. To
do this, we captured aerial images of twelve wheat and barley
(Hordeum vulgare L.) fields and created ground-truth data sets of
A. myosuroides weights. Second, we wanted to determine whether
the use of a multispectral camera improves the detection of the
weeds or whether the use of a cheaper RGB camera would produce
accurate results. To do this, we captured bothRGB andmultispectral
images of the fields and compared them. Third, to establish which
machine learning method produces the most accurate results, we
evaluated four machine learning methods frequently used for this
task. Finally, to investigate whether these models could be
transferred across fields, we removed one field from the data set
and trained the machine learning applications on the remaining
eleven fields to detect weeds in new, previously unobserved fields.

Materials and Methods

To collect the image and ground-truth data, twelve cereal fields
with A. myosuroides were selected in Bourne, Lincolnshire, and

Peterborough, Cambridgeshire, UK. The aerial images and
ground-truth data were collected from July 27 to 31, 2020. The
fields included six winter wheat, one spring wheat, and five spring
barley, with varying sizes ranging from 10 to 40 ha. The spring
wheat and spring barley fields were at growth stages GS85 to GS89
and the winter wheat fields were GS90 to GS95, near to being
harvested.

Aerial Images

Aerial images were taken by a commercial UAV imagery company
(iRed, Emsworth, UK) (iRed 2023) using a MicaSense RedEdge3
Multi-spectral camera. The camera was calibrated, and all bands
were stitched and orthorectified using ground control points by
iRed, so that the processed files were the starting point for our
analysis. The images had pixel sizes ranging from 22 to 27 mm for
the RGB images and from 57 to 76 mm for the normalized
difference vegetation index (NDVI) and normalized difference
red-edge index (NDRE). Images were collected flying at a height of
75 to 100 m and captured five bands: blue (455 to 495 nm), green
(540 to 580 nm), red (658 to 678 nm), RE (707 to 727 nm), andNIR
(800 to 880 nm). The last two bands are used to calculate the NDVI
(Equation 1) and NDRE (Equation 2) (Gitelson et al. 2002; Torres-
Sánchez et al. 2014). These are ratios of reflected light over
incoming light to detect vegetation and are based on the fact that
plant leaves strongly reflect NIR and RE.

NDVI ¼ NIR� Red
NIRþ Red

[1]

NDRE ¼ NIR� RE
NIRþ RE

[2]

Their values range from −1 corresponding to water, 0 for rock and
sand, and 0.2 to 1 for vegetation. RGB sensors are much cheaper
with higher resolution than NIR or RE sensors (note the resolution
difference in our images). Thus, it would be beneficial to train
classifiers on RGB and indices that only use RGB data; a commonly
used index is the visible atmospherically resistant index (VARI)
(Equation 3) (Gitelson et al. 2002), which only needs RGB data:

VARI ¼ Green� Red
Greenþ Red � Blue

[3]

Its values range from −1 to 1, as with NDVI and NDRE. Figure 1
shows the color aerial image and the three indices of one field
sampled.

In the field, the most obvious difference between the crop and
the weed was the level of senescence, with the crops exhibiting
greater senescence than the weed. For this reason, we focused on
indices that are designed to pick up living photosynthetic material
(i.e., green leaves) and that are obtainable with widely available,
cheaper, drone-mounted sensors (i.e., five-band multispectral
imagery), and that are simple to calculate with only spectral data.
Even with these restrictions, there are several other indices we
could have used (e.g., Triangular Greenness Index). However, as all
these indices focus on the relative amount of green reflectance in
different ways, they tend to correlate with each other to varying
degrees.
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Ground-Truth Data Collection

Ground-truth data were obtained by field walking through the
twelve fields and collecting allA. myosuroides seed heads and stalks
within 1 m by 1 m quadrats. Quadrats were placed wherever
A. myosuroides was encountered, and in cases where there was a
large dense patch, we randomly placed the quadrat in two to four
locations within the patch, depending on its size. In addition, we
sampled no-weed quadrats where we visually verified no weeds
were present. The center coordinates of the quadrat were recorded
using a Leica CS20 and GS07 RTK GNSS unit (Leica Geosystems
2023) with an accuracy of 10 to 20 mm. The harvested samples
were then dried and weighed to create the ground-truth data set,
which includes the coordinate at the center of the quadrat and the
sample weight. There are 406 A. myosuroides and 649 no-weed
quadrats, a total of 1,055 quadrats sampled across the twelve fields.
Figure 2 shows the distribution of A. myosuroides sample weights.

Data Set Definition

Data sets were created by matching up the ground-truth sample
coordinates with the coordinates of the orthorectified aerial
images. To increase the resolution of the NIR and RE images, the
pixels were split up, the new pixels were assigned the same values as
the original pixel, and all images were upscaled to the same
resolution as the RGB images. For each 1 m by 1 m quadrat, the
RGB andmultispectral pixels were extracted from the aerial images
centered around the GPS location, and the indices were calculated
for each pixel. The data set contains the red, green, blue, NDVI,
NDRE, and VARI values for each pixel within each 1 m by 1 m
quadrat. Each pixel was labeled with the sample weight or zero
where the quadrat contained no weeds (i.e., all pixels in the quadrat
are assigned the sameA. myosuroidesweight). The data sets consist
of pixel and weight data from both wheat and barley fields.
Training the classifiers on a data set containing both crop types has
the potential to enhance the overall applicability of the
classification method, allowing it to develop a more robust
understanding of the relevant features and patterns necessary for
accurate weed identification and classification.

To investigate the sizes of A. myosuroides that classifiers can
detect, we created four data sets, three with two classes and one
with four classes. The aim is to determine whether the classifiers
can simply distinguish between a threshold of plant weights or
differentiate between several classes (C1, C2, etc.) of weights at the
same time:

• two classes: threshold at 0 g, C1= 0 g, C2 > 0 g
• two classes: threshold at 3 g, C1 ≤ 3 g, C2 > 3 g
• two classes: threshold at 5 g, C1 ≤ 5 g, C2 > 5 g
• four classes: C1= 0 g, 0 g < C2 < 5 g, 5 g ≤ C3 < 10 g,
C4 ≥ 10 g

The machine learning classifiers are predicting the probability that
a pixel comes from a quadrat in a given weed density class.
We tested several other class structures and thresholds. The results
showed the same pattern and the conclusions were unaffected.
In this paper, we present the most relevant results.

Figure 1. Aerial image and indices of Field 1: (A) RGB color image, (B) normalized difference vegetation (NDVI), (C) normalized difference red-edge (NDRE), and (D) visible
atmospherically resistant index (VARI).

Figure 2. Histogram of Alopecurus myosuroides sample weights harvested. This
graph excludes the 649 samples with no (0 g) Alopecurus myosuroides.
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Machine Learning Classification

Four classifiers from Scikit.learn (scikit-learn 2023a) were trained
and tested on the data; Random Forest, support vector machine
(SVM), gradient boosting, and multilayer perceptron (MLP). They
estimate P(quadrat | pixel data), the probability that a quadrat
centered on the pixel would be labeled as a weed or not a weed,
given the data from the pixel only. For each field the classifiers are
run on ground-truth samples for testing and then across the whole
aerial image, classifying every pixel to generate weed prediction
maps of each field. The random forest and SVM classifiers
performed very poorly, and thus we present here only the more
relevant data from the gradient-boosting and MLP classifiers. The
features the classifiers were trained on were the red, green, blue,
NDVI, NDRE, and VARI pixel data. The training data were
randomly split, with 10% used for training and 90% for testing. The
parameters used for the gradient-boosting classifier were: n
estimators= 500, max depth= 4, minimum samples split= 5, and
learning rate= 0.01 (scikit-learn 2023b). For theMLP classifier, the
parameters used were: activation identity and learning rate
invscaling (scikit-learn 2023c).

The data sets used to train and test the machine learning
classifiers contained samples from eleven of the twelve fields.
Samples from the excluded field were used to test the classifiers and
generate the performance metrics. This process was repeated with
each field excluded in turn to test the classifiers on unseen fields.
The data sets are unbalanced, as overall, 62% of the data is empty
quadrats and 38% contains A. myosuroides. To improve the
classification accuracy, the data are resampled to balance the
number of data points in each class. Several resampling methods
were tried, including random oversampling, which randomly
duplicates samples in the minority classes, and random under-
sampling which randomly deletes samples in the majority class.
Two methods of synthetic minority oversampling technique
(SMOTE) (Batista et al. 2004; Chawla et al. 2002) were also tried to
rebalance the data set. SMOTE-ENN combines oversampling
(SMOTE) with edited nearest neighbors (ENN) (Wilson 1972);
this method generates new samples where some may overlap
between classes, and ENN locates and removes misclassified
samples by comparing the samples to their nearest neighbors.
SMOTE-Tomek also involves SMOTE oversampling, but com-
bines with Tomek links (Tomek 1976). Tomek links finds pairs of
samples in opposite classes which are their nearest neighbor. The
majority instance of the pair is removed, which removes unwanted
overlap and more clearly defines a border between the classes. For
both resampling methods, only the minority classes were
resampled, and the default parameters were used as detailed in
scikit-learn (2023d, 2023e).

Performance Metrics

To investigate the performance of classification, four metrics were
calculated: accuracy, balanced accuracy (BA), Cohen’s kappa, and
Matthews correlation coefficient (MCC). Overall accuracy repre-
sents the proportion of all correct predictions, where TP is true
positive (correctly classified weeds), TN is true negative (correctly
classified no weeds), FP is false positive (incorrectly classified
weeds), and FN is false negative (incorrectly classified no weeds).
However, accuracy is a poor measure when the testing data set is
unbalanced. Consider the extreme case where 99% of samples are
positive. A classifier can achieve 99% accuracy by always predicting
positive cases, but such a classifier has no predictive skill. We use
three other performancemeasures that attempt to account for class

imbalance in different ways. BA (Equation 4) is the average of the
proportion of positive and negative samples that are correctly
classified.

1
2

TP
TP þ FN

þ TN
TN þ FP

� �
[4]

Cohen’s kappa, κ (Equation 5) (Cohen 1960) compares observed
accuracy, p0, with expected accuracy, pe.

� ¼ p0 � pe
1� pe

[5]

κ ranges between −1 and 1, where 1 is perfect agreement between
observed and expected accuracy, between 0 and 1 there is some
agreement, and at less than 0 there is no agreement and the
classification is worse than random guessing. Finally, we use a
balance-corrected measure of the correlation between the observed
data and the predictions, MCC (Equation 6) (Boughorbel et al.
2017; Matthews 1975).

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp [6]

MCC ranges between −1 and 1, where 1 is perfect correlation, 0 is
no better than random guessing, and −1 is an inverse prediction
(total disagreement between truth and prediction). We are
interested in how well our classifiers work on unseen fields, as
this is the most likely use case for aerial images, where a pretrained
classifier is applied to images from a new field for which there are
no ground data. Thus, we calculate TP, TN, FN, and FP on the
excluded fields, and where a single value for a classifier and
resampling method is given, it is the total performance across all
twelve fields when excluded from the training set.

Results and Discussion

Our aims were: first, to determine the size of weeds that can be
accurately detected and whether the classifiers can distinguish
between several weed size classes; second, to investigate the
accuracy of the classification when using multispectral images as
compared to RGB color images; third, to evaluate the performance
of machine learning classifiers in detectingA.myosuroides in cereal
fields from images captured using a UAV; and finally to investigate
if these models could be transferred across fields. Accurate
predictions for weed detection are important for the widespread
deployment of UAV imagery for precision weed detection and
management.

The results of the best-performing classification methods tested
are shown in Tables 1 and 2. The tables illustrate the different
classifiers, data sets, resampling methods and image sets used for
each test, with data from all twelve fields where samples from the
field being classified were removed in turn from the data set.

In our tests, the MLP classifier consistently outperformed
gradient boosting across all data and image sets. Additionally, MLP
classification required considerably less time to process the data,
taking only half to a twentieth of the time compared with gradient
boosting. Our performance results indicate that this method of
classification is effective at identifying larger A. myosuroides plants
(larger than 3 g or 5 g). The accuracy for the two-classes threshold
at 3 g ranges between 64% and 67%, and with the threshold at 5 g,
the accuracies improve to 64% to 72%. However, the classifiers
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encountered difficulty distinguishing between no–A. myosuroides
quadrats and quadrats with very smallA. myosuroides plants. With
the threshold at 0 g across both the classifiers, resampling methods,
and image sets, the accuracies are around 50%, which is no better
than guessing. Increasing the threshold from 0 g to 5 g produces a
large increase in the performance of the classifier, accuracy
increases by 25% and BA by 40%. The classifiers also have difficulty
with the four-classes data set. Table 3 shows this result, which has
trouble separating no–A. myosuroides samples and small
A. myosuroides plants, class 1 and class 2, but have more success
with larger plants, class 4. As shown in Figure 2, a majority of
A. myosuroides samples collected are small plants (<3 g). The
classifier has difficulty with these, because the area within a 1 m by
1 m quadrat that contains a small A. myosuroides plant (e.g., <3 g)
looks almost identical to a 1 m by 1 m quadrat with no–A.
myosuroides. These small A. myosuroides plants only occupy a few
pixels within the quadrat, with the rest of the pixels being soil and

crop. This can cause the classifiers to try and discriminate on
features that are not only the weeds but also the surrounding area
of soil and crop. Larger weeds are going to be easier to detect, as
there are more pixels in the quadrat that have features that relate
only to the weed, and not the crop or soil. That is, quadrats with
larger weeds are more distinct from the background crop than
quadrats with smaller weeds, and thus the classification task is
easier.

Table 4 shows two of the best-performing results from the
classifiers (Tables 1 and 2). The table shows the results of the true
and false rates and the three metrics calculated comparing the
RGB, NDVI, and NDRE images with only RGB and RGB-derived
VARI. The two results are: theMLP classifier with SMOTE-Tomek
resampling on the two-classes 5 g data set using the RGB images,
NDRE, and NDVI; and the MLP classifier with SMOTE-ENN
resampling on the two-classes 5 g data set using the RGB images
and VARI. Using this method, the classifier effectively ignores any

Table 1. Performance of classifiers for gradient boosting and the multilayer perceptron (MLP) under different resampling strategies and data sets for the color,
normalized difference vegetation (NDVI), and normalized difference red-edge (NDRE) images.

Classifier Data set Resampling methoda Accuracy Balanced accuracy MCCb Cohen’s kappa

Gradient boosting Two classes: 0 g SMOTE-Tomek 0.5419 0.5033 0.0068 0.0067
Two classes: 3 g SMOTE-ENN 0.6425 0.6516 0.2025 0.1546
Two classes: 5 g SMOTE-Tomek 0.6874 0.6927 0.2218 0.1558
4 class Random oversampling 0.3225 0.3572 0.0230 0.0210

MLP Two classes: 0 g Random oversampling 0.6139 0.4957 −0.0188 0.0340
Two classes: 3 g SMOTE-Tomek 0.6582 0.6798 0.2407 0.1835
Two classes: 5 g SMOTE-Tomek 0.6989 0.7213 0.2553 0.1804
Four classes Random undersampling 0.3375 0.3855 0.0706 0.0630

aSMOTE-ENN, SMOTE-Tomek: resampling techniques that generate or remove samples in the data set to balance the classes.
bMCC, Matthews correlation coefficient.

Table 2. Performance of classifiers for gradient boosting and the multilayer perceptron (MLP) using the color and visible atmospherically resistant index (VARI)
images.

Classifier Data set Resampling methoda Accuracy Balanced accuracy MCCb Cohen’s kappa

Gradient boosting Two classes: 0 g SMOTE-ENN 0.5469 0.5213 −0.0138 0.0419
Two classes: 3 g SMOTE-ENN 0.6656 0.6587 0.2147 0.1685
Two classes: 5 g SMOTE-ENN 0.6447 0.6928 0.2157 0.1398
Four classes SMOTE-Tomek 0.3183 0.3703 0.0534 0.0470

MLP Two classes: 0 g SMOTE-ENN 0.5443 0.5150 0.1655 0.0298
Two classes: 3 g SMOTE-ENN 0.6852 0.6654 0.2269 0.1833
Two classes: 5 g SMOTE-ENN 0.6853 0.7262 0.2580 0.1772
Four classes SMOTE-Tomek 0.3316 0.3712 0.0641 0.0560

aSMOTE-ENN, SMOTE-Tomek: resampling techniques that generates or removes samples in the data set to balance the classes.
bMCC, Matthews correlation coefficient.

Table 3. Confusion matrix andmetrics of the multilayer perceptron (MLP) with SMOTE-Tomek resampling, a technique that generates or removes samples in the data
set to balance the classes, of the data set with four classes of Alopecurus myosuroidesweight using the color, normalized difference vegetation (NDVI), and normalized
difference red-edge (NDRE) images.

Predicted class

1 (0 g) 2 (0 g–5 g) 3 (5 g–10 g) 4 (≥10 g)

Actual class 1 (0 g) 24.05% 36.01% 15.67% 24.27%
2 (0 g–5 g) 29.03% 39.05% 13.02% 18.90%
3 (5 g–10 g) 15.43% 17.85% 26.25% 40.48%
4 (≥10 g) 4.66% 3.54% 28.89% 62.91%

Accuracy 0.3316
Balanced accuracy 0.3712
MCCa 0.0641
Cohen’s kappa 0.0560

aMCC, Matthews correlation coefficient.
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A. myosuroides less than 5 g and treats the area as having no
A.myosuroides; however, this produces the best-performing results
of the metrics and correctly predicts the absence of A. myosuroides
(class 1) 69.46% and the presence of A. myosuroides above 5 g
(class 2) 74.79% when using the RGB images, NDRE, and NDVI.
A surprising result is (b), which only uses the RGB images and the
RGB-derived VARI; the performance of this index is almost the
same as (a). Using the RGB and VARI images (b), the classifier
correctly predicts the absence of A. myosuroides (class 1) 67.74%
and the presence of A. myosuroides above 5 g (class 2) 77.51%.

Across all twelve fields, the classifiers performance metrics are
high; however, the performance varies when looking at individual
fields. Figure 3 and Table 5 show the accuracy and true and false
rates of the twelve fields individually using the best-performing
classifier for each data set. (We do not show BA per field because
this estimator is not meaningful for small class sample sizes.)

As expected from the overall metrics (Table 1) the results for the
two-classes threshold at 0 g (Figure 3A) are poor with accuracies
around or below 50%. As the threshold is increased to 3 g
(Figure 3B), and 5 g (Table 5), the accuracy and true and false rates
vary but are on the whole higher than those for the 0 g data set, with
most field accuracies greater than 70%. With the latter two sets of
results, the reason the accuracy varies so much is that very few
fields contained an abundance of A. myosuroides and amounts
above the thresholds of 3 g and 5 g to test the classifiers.

Fields 3 and 6 in Table 5 have a reasonable balance of ground-
truth data, representing most of the A. myosuroides sample data
overall. When these fields are being classified and their data are
removed from the training data, most of the A. myosuroides data is
removed from the training data. As a result, the resamplingmethods
have a very small number of samples to generate from. The classifier
also has high accuracy at predicting no–A. myosuroides areas across
most of the fields, apart from fields 3, 6, and 9 (Table 5), because the
colors of the images in these three fields are darker and browner,
whereas the other nine fields are lighter and greener; the training
data contain mostly lighter areas for no A. myosuroides, so the
classifier confuses these darker areas. The performance of the
classifiers exhibits minimal variation based on the crop type, as both
wheat and barley fields demonstrate both high and low accuracies.
There is no single crop type that consistently exhibits either high or
low accuracy across the classifiers.

The main result is that UAV images and machine learning
methods are capable of accurately predicting the presence and
absence of A. myosuroides in out-of-sample fields. Across twelve
fields, the classifiers correctly predicted no A. myosuroides 69.46%
and A. myosuroides 77.51%. However, the accuracy for individual
fields is low. Overall, the classifier is accurate with out-of-sample
new fields, but this could be improved by increasing the number of
fields sampled in the data set. Some of the fields sampled contained
high densities ofA.myosuroides, whereas others contained very little
or no A. myosuroides, and this skews the data set. A wider variety of
fields that contain more and various sizes of A. myosuroides should
be sampled to improve the classification. Lower reliability and
accuracy predictions are useful to indicate the areas with and
without weeds so weed management can be focused on those areas
with predicted weeds. A robotic weed management platform can
spend more time in the areas with predicted weeds rather than
covering the entire field, which will be mainly weed-free.

The use of RGB-only images and the calculated VARI results in
comparably good predictions: no A. myosuroides = 67.74%
correctly and A. myosuroides = 77.51% correctly (Table 4).

The data sets with RGB, NDRE, and NDVI images have five
features on which the classifiers are trained: the five pixel values
taken from the aerial images. Each image contains RGB colors and
the two indices, NDVI and NDRE. The data sets with RGB and
VARI images contain four features. Figure 4 shows the importance
of these four and five features to the gradient-boosting classifier
and how they influence its predictions. The most important being
the NDVI and VARI indices followed by green light; as expected,
the two indices highlight the A. myosuroides and the green of the
A. myosuroides plant is picked out against the background of the
soil and crop. Previous studies of multispectral images on weed
detection have reported that NIR light is important for this task
(López-Granados et al. 2008; Smith and Blackshaw 2003).
The classifiers can be used to generate prediction maps of
A. myosuroides locations. Figure 5 shows one of the fields surveyed
using the two-classes MLP classifier with the threshold at 5 g.
Figure 5a is prediction map overlaid on the aerial image; the
red areas are where the classifier predicts the location of
A. myosuroides with a probability greater than 75%, and the
locations have been grouped into clusters to more clearly show the
areas with weeds. Figure 5A shows the map of the classifier’s
prediction probability, demonstrating the classifier is confident
across most of the field. These maps could be used to remove
A. myosuroides more efficiently by focusing weed management
methods on the highlighted areas rather than the whole field.

We have shown UAV imagery and machine learning can be
used to accurately classify and predict the presence and absence of
A. myosuroides. Across twelve out-of- sample fields, our classifier
predicts the absence (69.46%) and presence (77.51%) of
A. myosuroides correctly, with Cohen’s kappa from 0.177 to
0.186. Other studies have higher kappas, 0.22 to 0.32. Direct
comparison of metrics is hard, as these studies used visual
observation to classify A. myosuroides abundance (Lambert et al.
2018, 2019) and larger sample areas. In our study, larger weed
plants (>3 g) can be more accurately detected, as smaller plants are
harder to distinguish against the background of soil and crops.

Our results show that using only a RGB color camera and
deriving the VARI yields accurate results as good as those
produced using multispectral cameras. This may be useful where
only RGB color images are available and to reduce costs and weight
by not using multispectral cameras on UAVs. Of the two machine
learning methods shown, MLP was slightly more accurate than

Table 4. The true positive (TP), false positive (FP), true negative (TN), false
negative (FN) rates (P is Alopecurus myosuroides ≥ 5 g; N is no Alopecurus
myosuroides <5 g) and metrics (accuracy, balanced accuracy [BA], Matthews
correlation coefficient [MCC], and Cohen’s kappa) of two results from the
classifiers of all twelve fields, multilayer perceptron (MLP) with SMOTE-ENN
resampling, a resampling technique that generates or removes samples in the
data set to balance the classes, of two classes threshold at 5 g comparing the
RGB, NDVI and NDRE images and only using the color images and visible
atmospherically resistant index (VARI).

RGB, NDVIa, and NDREb RGB and VARI

TP 74.79% 77.51%
FP 30.54% 32.26%
TN 69.46% 67.74%
FN 25.21% 22.49%
Accuracy 0.6989 0.6853
BA 0.7213 0.7262
MCC 0.2553 0.2580
Cohen’s kappa 0.1804 0.1772

aNDVI, normalized difference vegetation index.
bNDRE, normalized difference red-edge index.
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gradient boosting at classifying pixels as either a weed or not a weed
for both multispectral and RGB images.

The classifier’s accuracy is low in individual fields, as in other
studies (Lambert et al. 2018, 2019), due to fields not containing
abundant and varying amounts and sizes of weed plants. As with all
machine learning tasks, the main limitation is the availability of a
large amount of relevant, labeled data, in this task, collected across
multiple fields at different growth stages of the crops and weeds.
The method may work better if samples and images are collected
slightly earlier in the growing season (early June to July) when
previous studies collected data (Lambert et al. 2018, 2019; Su et al.
2022) or from a longer period of time across the growing season.
Like other studies in this area, our classifiers are unlikely to work
well outside the context in which they were trained (Lambert et al.
2018, 2019). This is especially true with respect to the growth stage
of the crop. The data we trained on were collected late in the season
(late July) when the crop was yellower (more senesced) than the
weed. As a result, this approach is highly unlikely to work before
senescence has begun without additional data and model training.
We also targeted fields with known A. myosuroides infestations. So
most green weeds in these fields were A. myosuroides. But this is

Figure 3. Accuracy and true positive (TP) and true negative (TN) rates for the twelve individual fields sampled using the multilayer perceptron (MLP) classifier with (A) random
oversampling of the two classes data setwith the threshold at 0 g and (B) SMOTE-Tomek resampling, a resampling technique that generates or removes samples in the data set to balance
the classes, of the two-classes data set with the threshold at 3 g, both using the color, normalized difference vegetation (NDVI), and normalized difference red edge (NDRE) images.

Table 5. Classification accuracy, true positive (TP), false positive (FP), true negative (TN), and false negative (FN) rates and ground-truth data (P is Alopecurus
myosuroides≥ 5 g; N is no Alopecurus myosuroides< 5 g) of the twelve individual fields using themultilayer perceptron (MLP) classifier with SMOTE-Tomek resampling,
a resampling technique that generates or removes samples in the data set to balance the classes, of two-classes threshold at 5 g using the color, normalized difference
vegetation (NDVI), and normalized difference red-edge (NDRE) images.

Field
number Crop Accuracy TP FP TN FN

Ground
truth (P/N)

1 Spring barley 0.9540 4.18% 95.82% 96.29% 3.71% 1/102
2 Winter wheat 0.8574 0.00% 0.00% 85.74% 14.26% 0/73
3 Winter wheat 0.2717 96.65% 3.35% 1.82% 98.18% 27/74
4 Winter wheat 0.8411 9.15% 90.85% 89.67% 10.33% 6/81
5 Spring barley 0.5884 0.00% 0.00% 58.84% 41.16% 0/62
6 Winter wheat 0.4135 86.13% 13.87% 15.23% 84.77% 35/60
7 Spring barley 0.9604 0.00% 0.00% 96.04% 3.96% 0/62
8 Spring wheat 0.8949 0.00% 100.00% 90.98% 9.02% 1/60
9 Winter wheat 0.1792 85.94% 14.06% 14.57% 85.43% 4/81
10 Spring barley 0.5529 50.61% 49.39% 55.58% 44.42% 6/95
11 Winter wheat 0.9903 0.00% 100.00% 99.97% 0.03% 1/102
12 Spring barley 0.9269 0.00% 100.00% 95.91% 4.09% 0/73

Figure 4. Feature importance of the gradient-boosting classifier with SMOTE-Tomek
resampling of the two-classes threshold at 5 g data set using the color (RGB) images,
normalized difference red-edge (NDRE), and normalized difference vegetation (NDVI) and
SMOTE-ENN resampling, a resampling technique that generates or removes samples in the
data set to balance the classes, of the two-classes threshold at 5 g data set using the color
images and visible atmospherically resistant index (VARI) averaged across all twelve fields.
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not always going to be the case, and in fields with large populations
of other weed species, greener areas are more likely to be patches of
other species. Collecting data to train classifiers across multiple
species would be a valuable, if expensive, project.

However, our classifiers worked successfully even very late in
the season just before harvesting. The efficacy of our method in
detecting larger weeds highlights its suitability for utilizing UAV
imagery and implementing weed management later in the growing
season when the weeds are larger. Most common herbicides used
to stopA.myosuroides are preemergence herbicides, applied before
the crop and weeds emerge. As these images are taken at the end of
the season, the model presented can be used to predict weed
distributions at the end of the growing season. Late-season images
can be used to track the progress of weed control programs both in
season and over longer time periods. Also, if only large patches
require control, weed maps from the previous year can be used for
variable herbicide application in the following rotation, because
large weed patches do not movemuch from year to year. But if very
high levels of weed control, with even small individual plants
targeted, are required, the classifier used would have to have very
low FN rates, even for small plants, much lower than the best
classifier we present here. Such a classifier could be built but will
require higher-quality images (possibly collected from ground
vehicles) and much larger and more diverse annotated data sets.
Future work could also involve agricultural economics surveys to

determine the best time to capture UAV images, use the
classification method, and apply herbicides. There are no major
technical barriers to achieving this, but it would require sustained
investment over multiple years.
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Granados F (2018) Is the current state of the art of weed monitoring
suitable for site-specific weed management in arable crops? Weed Res
58:259–272

Gitelson AA, Kaufman YJ, Stark R, Rundquist D (2002) Novel algorithms for
remote estimation of vegetation fraction. Remote Sens Environ 80:76–87

Hall D, Dayoub F, Kulk J,McCool C (2017) Towards unsupervisedweed scouting
for agricultural robotics. Pages 5223–5230 in 2017 IEEE International
Conference on Robotics and Automation (ICRA). Singapore: IEEE

HuangH, Deng J, Lan Y, Yang A, Deng X, Zhang L (2018) A fully convolutional
network for weedmapping of unmanned aerial vehicle (UAV) imagery. PLoS
ONE 13:1–19

iRed (2023) Thermal Imaging, Remote Sensing and IntegratedDrone Solutions.
https://ired.co.uk.Accessed: February 8, 2023

Kim J, Kim S, Ju C, Son HI (2019) Unmanned aerial vehicles in agriculture:
a review of perspective of platform, control, and applications. IEEE Access
7:105100–105115

Lamb DW, Brown RB (2001) PA—precision agriculture: remote-sensing and
mapping of weeds in crops. J Agric Eng Res 78:117–125

Lambert JP, Childs DZ, Freckleton RP (2019) Testing the ability of unmanned
aerial systems and machine learning to map weeds at subfield scales: a
test with the weed Alopecurus myosuroides (Huds). Pest Manag Sci 75:
2283–2294

Lambert JPT, Hicks HL, Childs DZ, Freckleton RP (2018) Evaluating the
potential of unmanned aerial systems formappingweeds at field scales: a case
study with Alopecurus myosuroides. Weed Res 58:35–45

Leica Geosystems (2023) Leica GS07. https://leica-geosystems.com/en-gb/
products/gnss-systems/smart-antennas/leica-gs07-made-for-you. Accessed:
February 8, 2023
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