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Abstract: Artificial intelligence (AI) involves the development of algorithms and computational
models that enable machines to process and analyze large amounts of data, identify patterns and
relationships, and make predictions or decisions based on that analysis. AI has become increasingly
pervasive across a wide range of industries and sectors, with healthcare, finance, transportation,
manufacturing, retail, education, and agriculture are a few examples to mention. As AI technology
continues to advance, it is expected to have an even greater impact on industries in the future. For
instance, AI is being increasingly used in the agri-food sector to improve productivity, efficiency, and
sustainability. It has the potential to revolutionize the agri-food sector in several ways, including but
not limited to precision agriculture, crop monitoring, predictive analytics, supply chain optimization,
food processing, quality control, personalized nutrition, and food safety. This review emphasizes
how recent developments in AI technology have transformed the agri-food sector by improving
efficiency, reducing waste, and enhancing food safety and quality, providing particular examples.
Furthermore, the challenges, limitations, and future prospects of AI in the field of food and agriculture
are summarized.

Keywords: machine learning; smart farming; internet of things; sustainable management; food
quality; food safety

1. Introduction

The world’s population is rapidly growing and is expected to reach around 9.7 billion
by 2050 [1]. As a result, there is a growing concern about how to meet the increasing
demand for food while also ensuring food security and sustainability. In this regard, the
use of artificial intelligence (AI) applications in the agri-food sector has the potential to
revolutionize the industry and increase sustainability in several ways. It can help farmers,
food manufacturers, and distributors make more informed decisions, improve efficiency,
reduce waste, and improve food security and sustainability.

The Nobel-prize-winning economist Herbert Simon in 1965 said, “Machines will
be capable of doing any work a man can do”. His visionary perspective has come true
today through the remarkable achievements that occurred through AI applications [2]. AI
refers to the ability of machines or computer programs to perform tasks that normally
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require human intelligence, such as learning, reasoning, problem-solving, and decision-
making. There are various subfields of AI, including machine learning (ML), deep learning,
natural language processing, computer vision, robotics, and cognitive computing. There are
several algorithms, for instance, reinforcement learning [3], swarm intelligence, cognitive
science, expert system, fuzzy logic (FL), Artificial Neural Networks (ANN), and Logic
Programming, that can be used in AI technology [4]. Each of these algorithms has its own
unique advantages and limitations, and the choice of algorithm will depend on the specific
task or problem at hand. AI is being used in a wide range of applications, such as speech
recognition, image and video analysis [5], autonomous vehicles [6], medical diagnosis,
financial forecasting, and many others [7]. Similar to any other industry, AI can also be used
in the agri-food sector to improve efficiency [8] and develop new, more nutritious crops [9],
reduce waste [10], and ensure safety [11]. AI can be used to optimize crop yields [12] and
improve distribution and logistics [13]. Table 1 presents summary of the equipment and
product’ developed by various AI technologies and their domains.

Table 1. Summary of the equipment and product’ developed by various AI technologies and
their domains.

Domain/Sector Technology Equipment/Products Developed References

Smart farming
- Soil monitoring: IoT
- Robocrop: SVM
- Predictive analysis: ML algorithms

NPK soil sensors, temperature sensors,
moisture sensors, etc.; Adaptive Robotic
Chassis (ARC), dual arm harvesting robot;
Learning models are constructed to follow
and forecast several environmental effects
such as climate variation during
crop production

[8,9]

Supply chain quality data
integration method - Blockchain technology Logistics of agriculture products raising

water availability [12,13]

Product sorting/packaging - Sensor-based sorting system
- Tensor flow ML-based system TOMRA [14,15]

Fruit safety and quality

- Gaussian Mixture Mode and IR
vision sensor
- Fourier Based separation model
- Multi-resolution Wavelet transform and AI
(classifier)of SVM and BPNN
- FNN and SVM

Smart refrigerator; Intelligent refrigerator [15–17]

Food Quality ANN Forecast the quality loss as weight loss of
frozen dough using ANN [18]

Quality control - X-ray detection
- MRI

X-ray imaging detects defects and
contaminants in agricultural commodities [19]

Image processing
- CNN
- Hyperspectral imaging
- PCANet

Food tray packaging system; Food tray
sealing fault detection [20,21]

Forecasting of food production - Fuzzy logic
- ML

Predict the production and consumption of
rice using ANN, SVM, GP, and GPR to
predict future milk yield

[22,23]

Supply chain optimization - Evolutionary ML Scheduled transportation; reduced held
inventory; cost in supply chain [24,25]

Preparing and dispensing food - Robotics Food applications, drone and robotic
deliveries, and autonomous cars [26]

New food product development - ML
- Deep learning algorithms Self-service soft drink corner [27]

Identification of taste
characteristics

- Convolutional Neural Networks (CNN)
- Multi-layer perceptron (MLP)-Descriptor
- MLP Fingerprint

MLP-Fingerprint model showed the best
prediction results for bitterant/non-bitterant,
sweetener/non-sweetener, and
bitterant/sweetener

[28]

In precision agriculture, AI can be used to analyze data from sensors, drones, and satel-
lites to optimize farming practices, such as irrigation, fertilization, and pest management.
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This can lead to higher yields, lower costs, and reduced environmental impact [29,30]. In
crop monitoring, AI-powered cameras and sensors can monitor crops in real-time, detecting
diseases, pests, and nutrient deficiencies. This allows farmers to take action quickly and
prevent crop loss [31,32]. AI algorithms can analyze weather patterns, soil conditions,
and historical data to predict crop yields and market demand. This can help farmers plan
their planting and harvesting schedules and optimize their pricing strategies [33]. During
supply chain optimization, AI can help streamline the supply chain by predicting demand,
optimizing logistics, and reducing waste. For example, AI algorithms can be used to predict
the optimal time to harvest crops and route trucks, and optimize inventory levels [34,35].

In the food processing industry, AI can be used to optimize food processing operations,
such as sorting and grading, and to detect defects or contaminants in food products [30,36].
AI can also be used to identify and sort fruits and vegetables based on their size, color,
and other attributes [37]. This can help improve the quality and consistency of food
products and reduce waste. AI can be used to monitor food safety by analyzing data from
sensors and cameras to detect potential contaminants or other hazards. This can help
prevent foodborne illness and improve public health [38,39]. In addition, AI can be used
to analyze individual consumer data, such as age, gender, and activity level, to provide
personalized nutritional recommendations. This can help consumers make more informed
choices about their diet and improve their overall health [40]. While these studies provide
some valuable insights into AI applications in the agri-food sector, a detailed review is
still needed to understand the current advancements of AI technology in the agri-food
sector. Therefore, the objective of this review is to highlight the recent developments in
the food and agriculture sector along with the application of AI technology, providing
specific examples by the databases during 2010–2023. The review also summarizes the
future prospects, challenges, and limitations in the field.

2. Role of AI in the Agriculture

The food industry has always been dependent on the agriculture sector since its
inception. An increase in food production by the agriculture sector can lead to a larger
supply of raw materials for the Fast-Moving Consumer Goods (FMCG) industries, which
rely on these raw materials for processing and manufacturing products [26]. The COVID-19
pandemic has significantly affected innumerable lives and the supply of these industries
pessimistically [41,42]. The government’s decision to declare a state of emergency led to
the closure of numerous industries worldwide, which had an effect on the entire supply
chain, from the farmer to the consumer [43]. The unexpected decline in output and income,
the drop in oil prices, the drop in tourism receipts, the issues with climate change, and
other reasons are all connected to the COVID-19 pandemic [44]. According to the FAO,
the number of people suffering from hunger and malnutrition has been on the rise in
recent years [45]. However, by introducing AI and ML in crop management and using
high-tech automated systems, the agriculture industry can tackle many of the problems
that affect crop production and improve the quality and quantity of raw materials available
to the food industry. Figure 1 depicts the impact of AI on the Argo food sector and FMCG.
Some of the ML technologies introduced in the agriculture sector that have contributed to
improving crop management are discussed in this section.

2.1. Grain Quality

Manual grain inspection is a time-consuming process and is prone to human error,
which can result in the selection of lower-quality grains. This is because manual inspection
relies on human visual acuity and can be affected by factors, such as fatigue, distractions,
or variability in lighting conditions. Therefore, the use of computer vision systems in
grain inspection is becoming increasingly popular. These systems use advanced imaging
techniques and ML algorithms to analyze images of grains and identify defects or impu-
rities, such as broken kernels, foreign materials, or fungal infestations [46]. ANN, dense
scale-invariant feature transform (DSIFT) algorithm, and support vector machines (SVM)
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are ML techniques that have been successfully applied in the agriculture sector for the
classification and identification of grains and other agricultural products.
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ANNs are used to classify different wheat species based on their visual characteristics,
such as shape, size, and color [47]. DSIFT algorithm is a computer vision technique that can
identify features, such as the size, shape, and texture of the wheat grains, and use them to
classify the grains into different categories [48]. SVM is another ML technique that is used
for the categorization of wheat grains, identification of fungal species in rice, germinated
wheat grains, and analysis of milled rice grains.

Some technologies apply computer vision systems for the inspection of grains in the
agricultural sector: (i) examination of milled rice grains using SVM, (ii) computerized wheat
quality assessment system, and (iii) development of a method using hyperspectral imaging
system for the detection of Fusarium infected wheat grains [49,50]. Computer vision
systems can help in the accurate and automated monitoring of various plant phenology
stages, such as seedling emergence, leaf unfolding, flowering, and fruit ripening. They can
also aid in the early detection of plant stress and diseases, allowing for timely interventions
and preventing crop losses. In 2015, researchers proposed a computer vision system that
uses disease-specific image processing algorithms to identify the presence and severity
of leaf spot diseases in rice plants [51]. Backpropagation neural networks (BPNN) have
been used in conjunction with other technologies, such as wavelets and fuzzy inference
systems, for crop disease detection and classification [52]. In 2017, a study was conducted
to investigate the risks of chlorosis due to iron deficiency in soybean plants using real-time
phenotyping and ML techniques [53]. This approach allowed for the early detection and
monitoring of iron deficiency stress in soybean plants, enabling researchers to optimize
iron fertilization strategies and improve crop yields [54–57].

2.2. Pest Detection and Weed Management

Accurate identification of insect species, size variation, and stage of development is
crucial for effective pest management in agriculture. By identifying the type and number
of insects present in a crop field, farmers can take appropriate measures to control the pest
population and prevent damage to their crops. Several AI and ML technologies are being
developed and tested for insect detection and counting. Some of these technologies use
computer vision algorithms, while others rely on ML algorithms to identify and classify
different insect species [58,59]. However, it is important to note that these technologies are
still in their testing stages and have not yet been widely adopted in the agricultural industry.
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Similarly, herbicides have been widely used by farmers for many years to control
weeds and improve crop yields. However, the overuse or improper application of herbicides
can have negative impacts on both human health and the environment. To minimize the
negative impacts of herbicides, there is a growing need for more precise and accurate
application methods [60]. Precision agriculture techniques, such as site-specific application,
can help farmers apply herbicides only where they are needed, reducing the amount of
chemicals used and minimizing the risk of contamination. The development of AI-based
technologies which use ML algorithms and computer vision techniques to detect and
classify different types of weeds in crop fields has the potential to improve the efficiency
and sustainability of agriculture while also reducing the need for herbicides and improving
crop yields [61].

Unmanned aircraft systems (UAS) and counter propagation-artificial neural networks
(CP-ANN) were used for the detection of the weed Silybum marianum [62]. The use of ANN
and Multispectral/Hyperspectral imaging technologies can be very effective in detecting
and recognizing weed species in crop fields. CP-ANN and multispectral imaging captured
by UAS were used to detect the weed Silybum marianum [63]. CP-ANN is a type of artificial
neural network that can be used for pattern recognition tasks, while multispectral imaging
involves capturing images of crop fields at different wavelengths of light. The combination
of these technologies allowed the researchers to identify the presence of the weed with high
accuracy and precision. In another research, hyperspectral imaging and ML techniques
were used to develop a method for crop and weed species recognition [3]. Hyperspectral
imaging involves capturing images of crop fields at many different wavelengths of light,
which can provide more detailed information about the spectral properties of different
plant species. ML algorithms were then used to analyze these images and classify different
plant species, including both crops and weeds. Researchers have also developed SVM
based algorithm for the classification of different types of weeds in grassland cropping
systems based on images captured by unmanned aerial vehicles (UAVs) [64].

Robotic weed control is also an emerging technology that shows great promise for
the future of agriculture. Robotic weed control systems typically use computer vision
and ML algorithms to detect and identify weeds in crop fields, then use robotic arms or
other mechanical tools to remove or destroy the weeds. These systems can operate in a
wide range of crop environments, including greenhouses, where traditional weed control
methods, such as herbicides, may not be effective or appropriate [65]. There is the possibility
of cultivars being equipped with finger weeders or elastic tines for both inter and intra-
row types of weed control [66]. For analyzing site-specific weed control, precision weed
management as a part of precision farming is grounded on the utilization of information
technology [67]. Although intelligent mechanical weed control would be more felicitous
than weeding devices with cutting action, contrary to time-based weed removal [68], it is
possible to remotely regulate the tendency of tines of spring-tine harrow prototype systems
based on the conditions of soil, the density of weed, and crop production [69].

2.3. Crop Selection and Yield Improvement

Agricultural planning performs an important role in food security around the world,
especially in countries with the agro-based sector. The challenge in selection of suitable
crops with improved yield is critical as this could be varied depending on numerous condi-
tions, such as weather, soil quality, water access, and pests and diseases [8]. AI and ML
technologies are being increasingly used in crop selection and yield improvement in agricul-
ture. These technologies are particularly useful in crop breeding and genetic improvement.
By analyzing genetic data from different crop varieties and using ML algorithms to identify
key traits associated with yield and other desirable characteristics, plant breeders can
develop new crop varieties that are better adapted to specific environmental conditions
and produce higher yields. Automation technologies, such as robots, are being increasingly
used to improve crop yields by reducing labor costs and improving efficiency in various
agricultural tasks, including spraying herbicides, removing weeds, and harvesting fruits
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and vegetables [4,7,8]. Robots, such as the Berry 5 Robot from Harvest Croo Robotics
(Tampa, FL, USA), are designed to automate the harvesting of strawberries, which is a
labor-intensive and time-consuming process [12]. The robot uses computer vision and ML
algorithms to identify and pick ripe strawberries at a faster rate than humans can. This
can help farmers to reduce labor costs and improve their yields by ensuring that more
strawberries are harvested at the optimal time.

Similarly, robots, such as the “Robocrop”, are being developed for specific agricultural
tasks, such as pruning flowers on strawberry plants. Furthermore, the image-processing
robot being developed for picking ripened strawberries uses computer vision and ML
algorithms to identify and pick the strawberries, reducing labor costs and improving the
speed and efficiency of the harvesting process [70]. The National Physical Laboratory
(NPL) in London is developing robots that use computer vision and ML to identify water
and nutrient levels, control weeds, and perform sorting and packaging [71]. Researchers
have developed a method for measuring plant water retention using image processing
techniques in combination with software, such as Adobe Photoshop CC 2021 (version
22.0.0.) and MATLAB (version R2022b (9.13)). For the purpose of using X-ray CT to study
unsaturated Hostun sand and its water retention behavior, a complete configuration and
setup were created. A “step-by-step” technique for obtaining sufficiently high-quality
reconstructions that allow the three phases of the material (grain, water, and air) to be
differentiated was also provided. The visualization and characterization of the three stages
inside the specimen were made easier using picture post-processing. This made it easier
to create a measuring map that encompasses the full specimen field [72]. Robotic chassis
are developed for robot software where they are assigned their specific tasks. This robot
system includes navigation through a field, robotic arms to eliminate unwanted flowers,
and image capturing [70]. Similarly, Agboka et al. [73] applied Agroecological breeding
methods, such as maize–legume intercropping (MLI) and push-pull technology (PPT), that
have been found to be effective in minimizing the losses due to insects. Two simple and
explainable models, namely, the hybrid fuzzy logic combined with the genetic algorithm
and symbolic regression, are used to forecast maize production. This study also reported
that the scale-up of MLI and PPT systems improved productivity in sustainable farming.

2.4. Big Data and IoT in Smart Farming

With the use of modern technology called the Internet of Things (IoT), gadgets may
link remotely to enable smart farming. To improve efficiency and performance across all
sectors, the IoT has started to have an impact on a wide variety of businesses, including
those in health, trade, communications, energy, and agriculture [8]. The adoption of
modernized technologies in agriculture has led to the emergence of “smart farming”, which
is a revolutionary approach that leverages advanced technologies to increase the quality and
quantity of agricultural production. AI encourages smart farming, a sustainable technique
that helps to avoid resource waste (such as fertilizers and pesticides) and achieve sustainable
development, to replace conventional agricultural practices and methodologies [62]. By
providing farmers with detailed information on specific crops, such as soil nutritional
deficiencies, and moisture levels, and hyper-spectral data to prevent damage, smart farming
enables farmers to make more informed decisions about their crops and to optimize their
production processes [9]. According to research, the Supply Chain Big Data Analytics
Market will climb to $9.28 billion by 2026 [74]. The Agri-IoT framework has the potential
to significantly benefit farmers by providing them with real-time data and alerts. By
integrating social media trends, farm council alerts, and automatic reasoning, the platform
can help farmers to make informed decisions and take action to mitigate the impact of
climatic conditions on their crops [75].

Another aspect of smart farming is climate condition-based irrigation. The Specialty
Crop Research Initiative-Managing Irrigation and Nutrients with Distributed Sensing
(SCRI-MINDS) project is a great initiative aimed at improving plant production. It has been
developed to increase efficiency in plant production while controlling the excessive use
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of irrigation water and nutrients [8]. Microsoft (Redmond, WA, USA) has also developed
an AI-based sowing application that provides recommendations, such as the optimal
period for sowing seeds, preparing land for cultivation, etc. The model by mobile phone
app uses remote sensing data from geo-stationary satellite images to predict crop yields
through every stage of farming. To determine the optimal sowing period, the moisture
adequacy index was calculated. The input data include historical sowing area, production,
yield, and weather. The app sends sowing advisories to participating farmers on the
optimal date to sow. The farmers do not need to install any sensors in their fields or
incur any capital expenditure; they just need a feature phone capable of receiving text
messages [76]. It is thus imperative that smart solutions are being developed for global
food safety and security, sustainability of food consumption, and the well-being of society.
Likewise, environmentally friendly strategies could reduce the use of resources (water,
fertilizers, herbicides, etc.) for agriculture, reduce losses, and shelf-life extension of food
products for global food security [77]. Low altitude spectral imaging for identifying pest
infestation, nutrient or moisture deficiency, and many more computer-aided systems are
being introduced for the protection of natural resources and sustainable agriculture. The use
of sensors deployed to monitor farm conditions and low-altitude air-borne hyperspectral
imaging is an example of smart farming [78].

Smart farming is one of the biggest methods or systems of precision farming. Precision
farming involves the precise number of inputs, such as soil, water, fertilizer, etc., to be
distributed in an accurate time and at an accurate place, such as weed control [79]. Trimble
Agriculture (Westminster, CO, USA), an industrial technology company, has developed
a system called WeedSeeker spot spray which is an innovative solution for efficient and
targeted weed control. By using sensors to detect the presence of weeds and a spray
nozzle to deliver a precise amount of chemicals, the system can help reduce the use of
herbicides and minimize the environmental impact of weed control [65,66]. This system
can be mounted even on traditional spraying machines with some modifications and is
most effective in areas with intermittent growth of weeds. Precision Agriculture (PA)
can be described as a management concept having the ability to recognize variability
within the soil environment and maximize agricultural production while minimizing
environmental concussion, i.e., temperature and humidity changes, for a particular location.
Yield Technology (Carrollton, MO, USA) and Bosch (Stuttgart, Germany) have developed a
range of technologies that can be used in precision agriculture to optimize crop yield and
reduce resource waste. These technologies include drones, computers, data analytics, and
robots, among others [77].

3. Role of AI in the Food Processing

AI and ML technologies are being increasingly adopted in the food processing industry.
These technologies are helping to optimize various processes and improve overall efficiency
and quality control. The capabilities of the intelligent systems in various tasks, such as
intelligent food packaging, product sorting, foreign object detection, new food product
development, equipment cleaning, and supply chain management, are elucidated along
with the equipment and products developed by various AI technologies.

3.1. Intelligent Food Packaging

The proper arrangement and packing of food products are among the challenging
tasks and time-consuming processes in the manufacturing sections of the food industry.
Food packing has four vital roles—protecting the food, displaying the product, sanitation,
and transportation ability [80]. It protects the food from damage caused by biological,
chemical, and physiological reasons during the complete food logistic system. The visual
appearance of the package helps consumers to judge the quality of the food and is the first
impression about the product. Therefore, effective packaging is an essential part of the
food manufacturing sector [81].
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AI and ML are increasingly being used in the food packaging industry to improve the
design, production, and functionality of packaging materials. AI and ML technologies are
being used in the food packaging industry to improve packaging design. Liu [82] applied a
packaging design model based on deep convolution generative adversarial networks (DC-
GAN). A packaging design image can be enhanced using visual communication technology,
resulting in better visual communication ability, a higher degree of image information
fusion, and an improved packaging design effect. However, the development of AI-based
systems is a tedious task in the fruits and vegetables sector owing to the inconsistency in
shape, color, and size [83]. Thus, a copious quantity of data is required to train the system
properly and perform the task in a structured manner.

Intelligent tools, such as robotics and drones, can also perform a critical role in reducing
the packaging cost significantly [14,84]. For instance, robotics can be used to automate
the packaging process, reducing the need for human labor and improving the speed and
efficiency of the process. Robots can be used to sort and inspect food products to ensure that
they are properly packaged and meet quality standards. Robotics can be used to manage
inventory, ensuring that packaging materials are available when needed and reducing
the risk of shortages or excess inventory. In addition, drones can be used to deliver food
products directly to consumers, reducing the need for packaging and transportation [85].

3.2. Product Sorting

AI-based systems can incorporate a variety of technologies, such as laser technology,
X-ray systems, high-resolution cameras, and infrared (IR) spectroscopy, to evaluate the
parameters of products at the input level [86]. These technologies can help identify defects,
contaminants, and inconsistencies in the products, enabling intelligent decision-making
and improving the overall quality of the products. However, the inconsistent product ho-
mogeneity can be a major drawback for sorting methods that rely on input-level evaluation.
Inhomogeneous products may result in inaccurate sorting decisions, leading to increased
waste or lower product quality [15]. To overcome this challenge, some sorting systems
use multiple sensors or technologies to assess product quality and identify defects from
multiple perspectives. Additionally, ML algorithms can be trained to recognize patterns
and variations in product properties, helping to improve accuracy and consistency in
sorting decisions. TOMRA (Asker Municipality, Norway), the global provider of advanced
collection and sorting systems, has developed an AI system that can efficiently perform the
sorting task with 90% efficiency. Industries, by utilizing such systems, have gained some
advantages, such as increased production, high-quality yielding, and reduced labor cost. It
has been reported that the segregation and arrangement issues can be enhanced by 5–10%
in the case of potatoes [14].

In the apple processing industry, deep learning, a subdivision of ML, and a sub-field
of AI help to categorize the apples with the help of datasets through pattern recognition
and decision-making. Similarly, Deep Convolutional Neural Network (CNN) assists in
identifying the type of apple with the support of CVS (Concurrent Versions System). The
deep learning model was processed by the data from image processing, apple detection,
and ripeness classification. The classifiers are able to achieve the best result, i.e., the ripeness
class of an apple from a given digital image [15]. In addition, coffee beans are classified
based on the standards, category, defects, and nature of the beverage produced. The types
of Arabic espresso are numbered from the grouping by type or imperfection, from two to
eight [87].

3.3. Foreign Object Detection

Contamination by foreign objects causes major issues, including food recalls, rejection
by consumers, harm to customers, and leads to a fall in brand reliability. Foreign matter,
including insects, glass, metal, or rubber, may accidentally enter the food or packing
material during food processing, handling, or preparation. Although the magnitude of risks
associated with foreign matter depends on the size, type, clarity, and hardness of the object,
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the consumption of food contaminated with such objects could lead to choking or other
complications [88]. As identification of such contaminants with the unaided eye is tough, AI
and ML technologies can perform an important role in their detection by analyzing images
of the food products to identify any foreign objects that may be present [47]. One approach
to foreign object detection using AI and ML is to use image recognition algorithms that are
trained on large datasets of images of contaminated and uncontaminated food products.
The algorithm can then analyze images of the food products in real-time and identify any
foreign objects that may be present [89].

Shimonomura et al. [90] applied a cylindrical tactile image sensor for detecting foreign
objects in food based on differences in hardness. Small, hard foreign bodies that were
sub-millimeter in size and mixed in with soft food could be successfully detected by using
a reflective membrane-type sensor surface with high sensitivity. Through investigations
to find shell pieces left on the surface of raw shrimp and bones left in fish fillets, the
effectiveness of the suggested method was confirmed.

3.4. New Food Product Development

As new product development in the food industry completely relies on the consumer’s
perspectives, the data collected by the various decision-making systems are useful in the
launch of new products. By analyzing the data gathered by the system, the ML-based
module could answer the question “what exactly the consumers are looking for” and make
proper decisions. One of the multinational companies has installed automatic vending
machines throughout the USA for delivering soft drinks, and consumers have thousands
of options to select their favorite flavors. The information stored by the machine could be
analyzed by the ML module and deep learning algorithms for the development of a new
product; one such example is Cherry Sprite, launched by the company. It has also been
proposed that, in the upcoming decades, many of the food industries will benefit from the
ML-based decision-making system for the launch of new food products [91].

A biotechnology company has launched the world’s first bioactive peptide through AI
technology. A sports nutrition ingredient is a unique peptide network derived from rice
protein for alleviating inflammation via modulating cytokine responses and for improving
immune activity. The company has become the world’s first company to demonstrate the
potential of AI in improving human health [92]. Another US-based IoT-focused technol-
ogy company has introduced AI-powdered ‘home cooking sidekick’, a web and mobile
application that integrates with smart kitchen assistant Hello Egg to fully automate kitchen
needs. The home assistant is powered through voice technology to recommend a diet plan
based on the preferences of an individual. This can also manage the pantry, categorize
shopping cart, exhibits video recipes, and assists in the delivery of groceries [93]. The role
of sensory panelists employed in food and beverage industries aim to sensory evaluate the
new products based on the flavor preferences of consumers. Unfortunately, it is difficult to
predict the perception and preferences of the target group. This led industries to develop
a robust methodology for measuring and predicting consumer preferences through an
AI-based Gastrograph system which uses ML and predictive algorithms to understand
market preference [94].

3.5. Equipment Cleaning and Maintenance

Pieces of machinery and processing tools used in food processing industries must be
cleaned regularly for proper maintenance. AI-based systems, such as Cleaning in place
(CIP) and Clean-out-of-place (COP) systems, assist the food industry to ensure hygiene and
maintain product quality at high standards. For its implementation, various cameras and
sensors are installed to carry out the tasks. Currently, a European company specializing
in providing cleaning solutions has introduced SOCIP, a Self-Optimizing-Clean-In-Place
system to autonomously optimize the cleaning process for food manufacturing equipment
using AI technology. SOCIP employs ultrasonic sensing imaging methods and optical
fluorescence methods to assess the number of food particles and microbial debris that
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is present inside the equipment. The SOCIP system works by using sensors to scan the
inside of the equipment and create a real-time image of the surface. This information is
then used to determine how much cleaning is necessary to achieve the desired level of
cleanliness [36,74].

3.6. Demand-Supply Chain Management

Presently, food industries are concerned about food safety policies, which are necessary
for the transparent execution of all food logistic activities [2,62]. To monitor every stage
of the process, for instance, from cost regulation to resource management, AI is being
employed. It manages and predicts the passage of possessions from where they are grown
to the place where consumers gather them [95].

One company provides integrated AI-enabled solutions for the retail industry. Their
solutions can help to optimize various aspects of retail operations, including transportation,
billing, resource management, and inventory control. The system can improve the retail
industry using AI algorithms to optimize packaging and improve shelf life [96].

By analyzing data on product characteristics, environmental conditions, and other
factors, AI algorithms can help to identify the optimal packaging materials and designs
to improve product quality and extend shelf life. Additionally, AI can help to improve
food safety by providing greater transparency and visibility into the logistics and supply
chain process. By tracking products from farm to table, retailers can identify and address
potential food safety issues before they become a problem. There will be a need for more
contributions that make use of a variety of data sources in order to realize the goal of an
expanded agri-food supply chain that involves more stakeholders and the whole supply
chain lifetime. Additionally, to complete the loop in sustainable agri-food, the extended AI
support for agri-food needs to increase the use of contextual information, food consumption,
and food waste reduction [97].

3.7. 3D/4D Food Printing-Extrusion Technology

AI can be of particular interest when combined with 3D and 4D printing technologies.
By integrating AI into 3D/4D printing process, it is possible to increase the performance of
the printers, reduce the risk of errors, and facilitate automated production. The combina-
tion of AI and 3D/4D printing technologies can lead to the establishment of start-ups and
research projects that integrate AI into 3D/4D printing products and services [98,99]. The
food processing sectors worldwide are now adopting 3D food printing technology to engen-
der operations more systematically and independently. This technology can cause active
food value chains more client-friendly and viable by delivering on-demand food manufac-
turing, empowering computerized food customization, and reducing food wastage.

A 3D/4D food printer operates in a similar way to a regular 3D printer, with the
primary difference being the printing medium used. Instead of using melted plastic,
a 3D/4D food printer uses a food material as the printing medium. Consumers can
materialize designs from an e-commerce platform via websites or mobile applications, and
this would minimize warehousing, packaging, and delivery charges [100]. The effectiveness
of printing food is improved while food processing expenses and time are minimized, and
time is saved by refining 3D printing techniques and equipment [101]. An additional aspect
is that personalized products will be delivered very quickly using 3D printing technology
than regular food processing technology. As the products are delivered much faster, the
need for synthetic polymer-based packing materials and chemical preservatives could be
eliminated, and this will also improve food safety. Furthermore, multiphase processing of
food products could be minimized to a single stage [102].

4. Role of AI in Food Quality and Food Safety

AI’s captivating capability has made it an extremely appealing technology to use
in industries not only for decision-making, process estimation, cost savings, and high
profitability but also for overall quality improvement [103]. AI, combined with data science,
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has the potential to improve the quality of food and service offered by cafes, restaurants,
online food delivery systems, and food stores, leading to increased sales, profitability, and
customer satisfaction. By analyzing data and applying algorithms, AI can help to improve
sales prediction, menu optimization, personalized recommendations, and supply chain
optimization [16]. AI has made significant contributions to various aspects of the food
industry, and these contributions can be broadly classified into three main categories, food
quality management, food security management, and food waste management [74]. AI
has significant roles and potential applications in several food sectors, including dairy,
beverage, and bakery, and are presented in Figure 2.
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AI can be used to analyze large amounts of data from dairy production processes to
identify patterns and make predictions that can optimize production and improve product
quality. By using AI tools, such as fuzzy logic and ANN, dairy producers can make more
accurate predictions and adjust their processes accordingly, leading to more efficient and
higher-quality production. Similarly, AI tools, such as e-nose, e-tongue, CVS, and image
analysis, can help producers optimize their production processes and understand consumer
preferences in the beverage industry. AI can also help the bakery industry to improve
product quality, increase productivity, and by using AI-powered tools, such as robots and
visualization, bakeries can create more innovative products and optimize their production
processes [85].

4.1. Food Quality Management

Fresh fruits and vegetables are highly perishable and can quickly spoil if not stored
and monitored properly. In the past, many vendors did not have access to the necessary
tools to monitor the real-time condition of fruits in storage, which resulted in significant
food waste. However, with the advancements in technology, there are now several solutions
available that can help vendors to monitor the condition of fresh fruits and vegetables in
real-time [104].

Digital twin (DT) technology is a promising tool for monitoring the quality and
condition of fresh fruits and vegetables throughout the cold chain. The extent of tissue
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damage that occurs in fruits depends on several factors, including physical and biochemical
properties, and environmental factors, such as temperature, humidity, and postharvest
treatments. By using DT technology to monitor these factors, it is possible to identify
potential issues early on and take corrective action to prevent further damage [17].

In addition to monitoring the cold chain, DT technology can also be used to optimize
the storage and transportation of fresh fruits and vegetables [17,105]. Thermal imaging
is a non-contact and emerging technology that is becoming increasingly popular for fruit
quality examination in the fruit and food industry. It offers a non-destructive way to
examine a product without the need for extraction, which could cause permanent damage.
Infrared thermal imaging detects the presence of damage or defects in fresh fruits and
vegetables by measuring the change in temperature between undamaged and damaged
tissues, which is caused by the variation in thermal diffusion coefficients [105]. Likewise,
CVS technologies are increasingly being used in the food industry to examine the quality
of different kinds of food products. By using different types of CVS, including traditional
CVS, hyperspectral CVS, and multispectral CVS to examine the exterior quality of food
products, it is possible to identify potential issues early on and take corrective action to
prevent further deterioration or contamination [106].

Electric noses (Ens) and electric tongues (Ets) are among the most promising inventions
of AI in the food industry [107]. EN is an instrument that consists of an array of electronic
chemical sensors with an appropriate pattern recognition system and partial specificity,
capable of recognizing complex or simple odors and Ets are multisensory systems for liquid
analysis based on chemical sensor arrays and pattern recognition [108]. The sensors used in
Ens are able to collect data on the different smells and flavors present in the food or beverage
being analyzed. This data is then transferred to a data center, where it can be accessed by
ML algorithms [109]. These algorithms are able to analyze the data and make decisions
based on the information gathered. In addition, EN technology can also be used to improve
the overall quality of food products. By detecting subtle differences in the smells and flavors
of different batches of food products, companies can make adjustments to their production
processes to ensure that their products are consistent and of the highest quality [110]. The
coffee cupping method was developed by the Specialty Coffee Association of America
(SCAA). It is a well-established process for assessing the quality of roasted coffee, and it
involves steeping ground coffee beans in boiling water and evaluating the aroma, flavor,
and other sensory characteristics of the resulting brew. In recent years, AI technologies,
such as Ens and ANNs, have been used to enhance the coffee cupping process. E-noses can
be used to detect and analyze the volatile organic compounds (VOCs) that are responsible
for the aroma of coffee. By using an EN in combination with an ANN, it is possible to
predict the quality and flavor of roasted coffee with a high degree of accuracy [111].

Ets are another promising technology in the food industry that can be used to assess
the qualities of various types of beverages, including dairy and alcoholic beverages. Ets can
detect different taste characteristics, such as sweetness, saltiness, sourness, and bitterness,
which can be important factors in determining the overall quality of a product. For
example, in the case of tea, there are certain flavor compounds, such as theaflavin (TF)
and thearubigin (TR), which can vary in concentration depending on the age of the tea.
By using a pulse voltametric ET in combination with a UV-VIS spectrophotometer-based
analysis, these compounds can be measured and used to identify the type of tea being
analyzed [112,113].

One of the key advantages of the e-tongue is its ability to detect dissolved solids
and volatile compounds that are responsible for the aroma and can give off odors after
evaporation. This makes it a useful tool for analyzing the overall flavor profile of a sample,
and its aroma [114]. The use of Ets for food recognition has been studied extensively,
including for the differentiation of liquid and flesh foods. In a study by Rudnitskaya
et al. [113], an ET was used to analyze a range of liquid and flesh food samples, including
juices, wines, and meat products. The results of the study showed that the ET was able
to successfully differentiate between different types of liquid and flesh foods based on
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their taste profiles. The study conducted by Tan and Xu [114] reviewed the applications of
electronic noses (e-noses) and electronic tongues (e-tongues) in the determination of food
quality-related properties. The study found that e-noses and e-tongues are increasingly
being used in the food industry due to their ability to detect and identify various volatile
and non-volatile compounds that contribute to food aroma and taste.

4.2. Food Safety Management

Food safety ensures the absence of any harmful/toxic substances in it and fulfills the
obligatory nutritional requirements. A multidisciplinary approach is necessary to ensure
food safety and good hygiene during food processing, storage, and sale, and to eliminate
the risk of biotic and abiotic contaminants, which causes food poisoning.

Image processing techniques can be used to analyze various characteristics of food
products, including size, shape, color, and texture. By estimating the projected area and
perimeter of food items, one can quantify their size and shape, which can be useful for
quality control purposes [115]. However, it is worth noting that image processing tech-
niques alone cannot detect the presence of harmful microorganisms or other potential food
safety hazards. That is where next-generation sequencing (NGS) comes into perform by the
determination of the whole genome sequence of a single cultured isolate (e.g., a bacterial
colony, a virus, or any other organism), also known as “whole genome sequencing” (WGS),
and “metagenomics”, in which NGS is used to generate sequences of several microorgan-
isms in a biological sample [11]. Furthermore, the use of AI and automation can greatly
speed up the analysis of NGS data, allowing for more rapid identification of potential food
safety hazards. This can help prevent widespread illness by allowing for quick intervention
before contaminated products reach consumers [116].

4.3. Food Waste Management

Food waste is a significant issue that affects not only the environment but also food
security and financial sustainability. It is estimated that 1.6 billion tons of food are wasted
annually, and most of this waste (81%) is made up of inedible by-products of food produc-
tion practices. There is a growing recognition within the food industry that food waste is
not just an unavoidable cost of doing business but also a significant sustainability issue and
an underutilized resource [85]. According to McKinsey & Company (New York, NY, USA),
a consulting firm that has been at the forefront of researching and implementing AI in
various industries, AI could offer a $127 billion opportunity by reducing food waste by
2030 [74]. Modern techniques, such as omics, can be exploited to overcome food waste
reduction and management challenges. For example, metagenomics, proteomics, tran-
scriptomics, waste omics, and disease omics can be used to understand the biochemical
processes that occur during food waste decomposition and identify potential hazards and
contaminants in food waste [10].

There have been various conglomerate concepts and solutions developed and tested
by researchers and government organizations to mitigate and manage food waste issues.
For instance, Black Soldier Fly (BSF) farming is a promising practice for its versatility and
multi-roles in various applications, such as sustainable food production and food waste
management. The implementation of Internet of Things (IoT) technology in BSF farming
can offer significant benefits in terms of efficient production and waste management.
By integrating sensors and devices with software and mobile applications, farmers can
remotely monitor and control various parameters of BSF farming. This allows for more
precise and customized control over the growing conditions of the BSF larvae, leading to
higher yields and better-quality biomass [117,118].

4.4. Predicting Shelf Life

AI and ML techniques, including ANNs, have been widely applied to predict the
shelf life of foods. These techniques use mathematical models and data from various
physicochemical and sensory parameters of the food product to develop predictive models
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that can estimate the expected shelf life [18,119]. A research study conducted by Goyal
and Goyal [120] proposed the use of time-delayed neural network (TDNN) models for
predicting the shelf life of processed cheese. The study aimed to develop a model that
could accurately predict the shelf life of processed cheese and reduce the need for time-
consuming physical testing. The results of the study showed that the TDNN model was able
to accurately predict the shelf life of processed cheese. AI models for shelf-life prediction of
mangoes stored under different conditions were developed based on respiration rate and
ripeness levels under different supply chain scenarios. A deep-CNN was fine-tuned on
1524 image data of mangoes that can classify the ripeness levels of mangoes [121].

5. Role of AI in the Personalized Nutrition

Nutrition can be a complex and individualized aspect of life, and what works for one
person may not work for another. Personalized nutrition is an approach that considers
an individual’s unique nutritional needs, preferences, and health goals. Advancements in
technology, such as AI and ML, are enabling the development of personalized nutrition
solutions. These solutions use data about an individual’s genetics, microbiome, lifestyle,
and dietary habits to provide personalized nutrition recommendations [122].

One example of a personalized nutrition solution is a digital health company that
offers personalized nutrition solutions for individuals and healthcare organizations, which
uses ML to analyze an individual’s dietary habits and provide personalized food rec-
ommendations. Another example is a biotechnology company that offers personalized
nutrition solutions based on an individual’s microbiome. The company uses AI and ML
to analyze an individual’s gut microbiome and provide personalized dietary recommen-
dations based on the types and amounts of gut bacteria present [123]. Similarly, another
digital health company offers a range of personalized health coaching solutions, including
personalized nutrition coaching, weight management, diabetes management, and hyper-
tension management. This company uses speech recognition and voice AI technologies
to provide personalized health coaching to individuals. The company’s mobile app uses
speech recognition technology to analyze an individual’s voice and provide personalized
coaching based on their responses.

One is a mobile app and website that allows individuals to track their daily food
intake and monitor their nutrition goals. The app provides users with access to a database
of over 800,000 food items, allowing them to easily log their meals and track their calories,
macronutrients, and micronutrients. Im2Calories uses a combination of computer vision
algorithms and deep learning to analyze the visual features of food images and estimate
the number of calories in the food [124].

6. Conclusions and Future Perspectives

AI has the potential to revolutionize the food and agriculture sector by improving
efficiency, increasing productivity, and promoting sustainability. However, the future of
AI in the food and agriculture sector also raises some concerns. For example, there are
concerns about the potential for AI to increase inequality and reduce jobs in rural areas.
A major constraint is the high cost of implementing AI systems. AI requires significant
investment in hardware, software, and training, which can be prohibitively expensive for
small and medium-sized businesses. Additionally, there are concerns about the reliability
and accuracy of AI systems, particularly when it comes to making decisions about crop
management and food safety.

Smart, robotic farming and factories are just some of the ways in which AI and ML are
being used to improve efficiency, productivity, and sustainability in the Agri-food industry.
The future of the agriculture and food industry is likely to be shaped by AI and ML
technologies with a range of potential applications across farming, pest management, food
processing, packaging, quality control, shelf-life extension, and supply chain management.
While there is a lot of potential for AI to revolutionize the agri-food sector, making it
more efficient, sustainable, and innovative, it also raises important ethical, legal, and social
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implications that need to be carefully considered and addressed. It is important to ensure
that these technologies are developed and used in a sustainable and ethical manner to
ensure their long-term benefits.

The sustainability of AI will depend on a range of factors, including the development
and deployment of AI technologies, the policies and regulations that govern their use, and
the way in which society adapts to the changes that AI brings. The sustainability of AI
encompasses a range of environmental, social, and economic factors. There are several key
considerations that need to be considered when it comes to the sustainability and future
of AI. There is a need to address the skills gap and to ensure that there is a sufficient pool
of talent to develop and deploy AI systems in a sustainable and responsible manner. This
requires investment in education and training programs that can equip individuals with
the skills and knowledge needed to work in the field of AI. While there are still challenges
to be overcome, such as data privacy concerns, high cost, ethical issues, and the need for
specialized training, the future looks promising for AI in this industry. As more and more
farmers adopt AI-powered technologies, one can expect to see significant improvements
in food production and distribution in the years to come. Future works could include a
comparison of different ML algorithms in terms of predictive performance on operational
processes in the agri-food sector.
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