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Abstract5

Automated robotic weeding of grassland will improve the productivity of dairy and sheep farms6

while helping to conserve their environments. Previous studies have reported results of machine7

vision methods to separate grass from grassland weeds but each use their own datasets and8

report only performance of their own algorithm, making it impossible to compare them. A9

definitive, large-scale independent study is presented of all major known grassland weed detec-10

tion methods evaluated on a new standardised data set under a wider range of environment11

conditions. This allows for a fair, unbiased, independent and statistically significant comparison12

of these and future methods for the first time. We test features including linear binary pat-13

terns, BRISK, Fourier and Watershed; and classifiers including support vector machines, linear14

discriminants, nearest neighbour, and meta-classifier combinations. The most accurate method15

is found to use linear binary patterns together with a support vector machine.116

1This research was supported in part by the InnovateUK project IBEX2: Autonomous robot weed spraying
for less favoured areas, grant number 131790.
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1 Introduction17

Automated robotic weeding of grassland will improve the productivity of dairy and sheep farms18

while helping to conserve their environments. At present grassland weeding is typically per-19

formed in two styles. Tractor-mounted bulk spraying of selective herbicides is expensive due to20

the volume, and cost per unit of selective chemicals. Manual backpack-mounted spraying uses21

lower, targeted spot spray doses of generic herbicides such as glyphosate, but requires more22

expensive manual labour time. Precision robots [4, 6] present an opportunity to use similarly23

low and targeted doses of cheap generic herbicides as in the manual case, but at much lower24

cost as they can drive, detect and spray automatically without the need to pay manual sprayers25

by the hour. Precision robots could further eliminate the need for chemical herbicide altogether26

by destroying detected weeds with mechanical or other non-chemical methods. Data collected27

about weed locations by robots can be fed into geospatial weed mapping systems to enable28

ecological analyses.29

Autonomous weeding robots must first detect weeds at a suitable resolution and accuracy.30

Machine vision provides many tools and algorithms for detection, with varying performances,31

and can be cheap to operate using consumer-grade cameras. Several previous studies have32

reported results of machine vision methods to separate grass from grassland weeds, typically33

Rumex obtusifolius (dockleaf). But as is common in early stages of artificial intelligence research,34

they each use their own datasets and report only performance of their own algorithm rather than35

presenting controlled trials testing methods against one another. As proof of concept studies,36

many used only small data sets, did not report confidence intervals on their accuracy rates,37

and have not yet tested methods across lighting and weather conditions which are known to38

affect many vision algorithms. It is well known in artificial intelligence that unintended author39

bias and bottom drawer effects can creep into studies when the same author both designs and40

tests an algorithm, so there is a need for independent validation. We present a large-scale (tens41

of thousands of images), independent study of all major grassland weed detection methods42

evaluated on a new standardised data set, under a wider range of environment conditions. This43

allows for a fair, unbiased, independent and statistically significant comparison of the methods44

for the first time.45
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1.1 Previous work46

Previous studies can be grouped roughly into those which classify individual windows (patches)47

of images (e.g. tens of pixels square) independently of one another, and those which apply mor-48

phological operations to whole images (e.g. hundreds or thousands of pixels width and height).49

Window-based methods compute features of the windows such as spectra or texture descriptors,50

while whole-image methods try to isolate shapes via segmentation algorithms. Window-based51

methods include: [10] used local binary pattern (LBP) texture features with a per pixel threshold52

Rumex/Grass classifier, under controlled artificial lighting conditions, to report between 87%-53

97% accuracy on a test set of 941 images of 50x40 pixels. [2] uses very large windows to obtain54

high accuracy, 98.5%, using texture features and support vector machine (SVM) classification.55

Whole-image segmentation methods include: [12] segmented images into regions of similar tex-56

ture then classified the shapes of these regions, reporting 71%-95% accuracy in Rumex/(Grass57

and mixed herbs) classification under constant lighting conditions. [27] used thresholded and58

segmented Fast Fourier Transforms (FFT) to detect Rumex in grass on 161 images, reporting59

94% accuracy. [33] used a similar setup to report accuracies 82%-89% for Rumex/Grass. [31]60

used segmentation (erosion and dilation). [17] use Gray Level Co-occurrence Matrix and Laws’61

filter mask texture features with linear discriminant analysis (LDA) and segmentation to report62

90% Rumex/Grass. [18] use Markov Random Field based texture features and segmentation to63

report a 97.8% accuracy on 92 images. A summary of the key properties of each method is64

given in table 1 (plant types are R=Rumex, G=Grass, U=Urtica, H=mixed herbs).65
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66

study method classes reported number of illumination window

accuracy test images size

[10] LBP+threshold R/G 87%-97% 941 artificial 50× 40

[12] Segment+shape R/(G+H) 71%-95% 3681 windows constant n/a

[27] FFT+segment R/G 94% 161 images constant 8

[33] FFT+segment R/G 82%-89% 56 images constant 8

[31] Segment R/G 89% 240 images constant n/a

[17] GLCM+LDA+segment R 90% 92 images constant n/a

[18] MRF segment R/G 97.8% 92 images constant n/a

[2] LBP+SVM R 98.5% 400 images varied 320× 240

67

From the table, it is clear that making a fair comparison of these algorithms is difficult68

or impossible from publicly available data. Each study uses its own data sets, comprising69

completely different images and conditions. In many cases the separation of training and test70

data is not clear, with studies reporting best results having optimised parameters over the71

same test set used in the final result, rather than making a clean train/test separation. It is72

well-known [11] that optimising parameters to the test set tends to yield over-optimistic results73

compared to performance on new data. Some studies do not describe the variation in the74

lighting conditions, but are assumed to be constant conditions because they use small numbers75

of test images collected, presumably, on the same day. Window-based methods have used76

different window sizes, while whole-image segmentation methods make use of data from across77

the whole image to classify each local pixel, which is hard to meaningfully evaluate against78

windowed results. Window size is important because it represents a fundamental trade-off79

between detection accuracy and spatial resolution. A large window contains more information80

which will yield high accuracies, but at the cost of a lower spatial resolution, for example in81

determining what area of ground to spray with herbicide.82

In our native UK grassland, Rumex is not the only common weed and almost always co-83

occurs with similar populations of Urtica diotica (stinging nettle). As such, any automated84

grassland weeding system needs to work with both Rumex and Urtica together. If Rumex85

only was precision sprayed, then a selective bulk spray for Urtica would still be needed which86

negates the utility of the Rumex precision system, as combined Urtica and Rumex selective87
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chemicals are available. Previous work on automatic detection of Urtica in grassland has relied88

on non-visual spectral methods including near infra-red and full hyper-spectra [23, 24, 38], but89

these sensors are more costly than simple visual cameras. Urtica has smaller leaves than Rumex90

which makes it harder to detect with machine vision alone, in particular some Rumex detection91

methods rely entirely on obvious features of the large, smooth Rumex leaves, which may not92

carry over to the Urtica case. However Urtica has distinctive jagged edges on its leaves which93

suggest that methods based on such local shapes (rather than texture) features may be useful94

for detection.95

With the exception of [2], all the systems in table 1 rely on vertical camera angles, i.e.96

cameras mounted to look directly downwards at the ground. This simplifies recognition as there97

is no perspective, and all parts of the ground look the same. However this imposes physical98

limitations on precision robots, which must either mount a camera physically outside the robot’s99

base footprint, or inside the body of the robot looking directly under its base. Much UK100

grassland is found in less-favoured areas, including hilly and rocky terrain such as sheep farms.101

These terrains often include obstacles which robots must navigate around, and such navigation102

is complicated by physical extrusions beyond robot platform bases such as cameras on arms or103

beams. Similarly, robots designed for these terrains may need heavy, protective bases which104

prevent cameras or sprayers from being mounted directly downwards from them. To generalise105

operation beyond flat grassland to cases such as these, it is more convenient and lower-cost to106

use more standard camera mountings on top of the robot body, with cameras facing forwards107

and tilted down, as in [2]. While this is a more robust physical solution, it makes the machine108

vision problem harder as it must now deal with perspective. Further, the previous studies all109

use clean images taken by stationary cameras to ease recognition. In practice, precision robots110

operating in generalised terrains will be moving at speed, capturing images during motion. It is111

not practical to stop every time an image must be taken. While camera stabilisation systems are112

available at a cost, grassland and especially hill farmers typically require lower budget solutions113

than arable farmers, so it is of interest to test algorithms on data collected from similar moving114

robot platforms as would be used in practice, which can include motion blur.115

Recent work has begun to explore the use of 3D lidar based sensing and detection of Rumex116

in grassland [3, 29, 30]. While a similar independent evaluation of such data would also be of117
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interest, it is beyond the scope of the present machine vision study. Also beyond our scope118

are non-visual approaches to weed detection including hyper-spectral [23, 24, 38], and chemical119

sensing methods [26]. Our scope of detection of weeds in grassland is a particular sub-field of120

automated weed detection in general, which has developed a wider range of methods applicable121

to simpler cases of crops and weeds growing in flat, row-crop settings, which can typically122

simplify the task by initial segmentation into green and brown discrete plant and soil regions,123

unlike the grassland case where everything is green [7, 14, 21,32,36,36].124

1.2 Data and algorithm requirements125

To make a fair and useful comparison between the different algorithm types proposed for UK,126

less-favoured area grassland weed recognition, and to extend the robustness of previous studies,127

the following requirements were taken into account. 1. Data should be clearly split into training128

and test sets. 2. Only a single run should be allowed of each algorithm on the test set. 3. The129

algorithms should be implemented and tested independently of their original proposers. 4.130

testing should be on Urtica as well as Rumex. 5. Data should be collected from a moving,131

robust platform, with cameras mounted on top of its body and pitched downwards from the132

plane. 6. Data size should be in the order order of thousands of image windows. 7. Classification133

should be performed on standard sized windows, including for morphological methods which134

should be restricted to run on the same windows as feature-based methods. 8. Windows should135

be of a suitable spatial size and resolution to enable precision spraying. 9. Data should be136

collected over a representative variety of different days, illumination, and weather conditions.137

Taken together, these requirements are more challenging than settings used in the previous138

studies. An independent evaluation should not seek to ‘sell’ any one algorithm with high rates,139

and should not shy away from reporting low accuracies when they occur. This helps to avoid140

any publication bias [28] which may have acted as a filter on previous tests. Due to interactions141

between the requirements and differences in data types, we do not re-implement algorithms142

directly but instead use similar or closely related methods. This is required in particular for143

the morphological approaches which do not transfer directly to window classification, such as144

the use of watershed segmentation to represent region based methods previously run on whole145

images. We test classifiers that are based on and inspired by the collection of previous studies146
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as a whole rather than directly re-implementing and competing between them.147

2 Methods148

The objective of the experiments is to report, to a statistically significant level, the classification149

performance of various classification methods for grass vs weed detection, i.e two-way classifi-150

cations representing spray/no-spray decisions for a general herbicide. In general this is distinct151

from the problem of recognising individual weed species. A ‘classification method’ or ‘method’152

means a combination of one feature type with one classifier type. Care must be taken to avoid153

contamination of classifier training with any information from test data.154

2.1 Image acquisition and pre-processing155

Test plots of weeds in grass were constructed on a dairy grassland farm in South Yorkshire, UK.156

Slabs of Urtica approximately 0.2m squared were extracted from working fields and transplanted157

into a 3m squared trench (Figure 2a). This process was repeated for Rumex. Transplanting real158

slabs from areas of the working farm ensures maximum realism and avoids problems of growing159

the weeds artificially, which could lead to unrealistic soil backgrounds in images. In particular,160

the transplanted slabs also contain grass, soil, rocks, and other surface features of the real work-161

ing grassland farm, though only in 0.2m squared slabs which human transplanters considered to162

be fully ‘sprayable’. To make this decision, the human transplanters were instructed to collect163

only slabs which they would be happy to completely spray with a manual backpack sprayer if164

they were being employed to manually destroy weeds. The weedy turfs were watered daily for165

two weeks to allow the plants to stabilise before data collection. Plots were located in a region166

of the farm that is in direct sunlight (not in shade) throughout the day.167

Stereo pair images2 were acquired in 1080HD from each plot using auto-focusing cameras3168

2Only the mono, left camera images are used in this study. Stereo images were captured for use in future
comparison studies and are also made available as part of the dataset.

3After evaluating several industrial and consumer cameras, a pilot experiment determined that the C920
is sufficient and lowest cost for our purpose, having sufficient depth of field to cover the region of interest, and
default shutter speed sufficient to give sharp images when driving the robot at around 4km/h. This camera’s auto-
focus is also useful as we operate on somewhat uneven terrain, sufficient to sometimes blur images with a static
focus. The auto-focus explores and adjusts different settings of the focus and chooses the one which minimises
the blur (maximises entropy) near the center of the image, before taking and saving the final image. 1080HD
(=2megapixels) was used as we assume that real-time processing above this resolution is difficult with currently
available on-board hardware. Manual inspection of the pilot images suggested that distortion from depth-of-field
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(C920, www.logitech.com) mounted on a tracked robot as in fig. 1. The cameras were fixed169

to the robot’s left side, facing out at right angle yaw to the direction of travel, and at π/8170

radians (22.5 degrees) pitch down, to give a view over a roughly 1m square area of ground. The171

robot drove in circles around the plots whilst capturing pictures, randomised between 0m and172

1m from the edge of the plots (figure 2b). This guarantees an equal balance of lighting and173

shadow angles in the data, because each drive around the plot contains images of the plot from174

all ground angles. The size of the plots, robot, and camera positions were selected such that175

the plot contents fill the images. This setup removes the need for manual annotation of weed176

classes in images, as we are assured that every part of every image is full of a weed class. One177

image was taken every second.178

Image acquisition was arranged into epochs, where a single epoch consisted of making re-179

peated revolutions of each plot for a period of ten minutes (yielding twenty minutes of weed180

image acquisition from the two weed types together), followed by fifteen minutes of grass image181

acquisition. The open grassland contained a mixture of grasses including Lolium multiflorum,182

Festuca pratensis, Phleum pratense, and Holcus lanatus with some Trifolium repens (clover).183

Approximately half of the epochs were acquired under overcast weather conditions, whilst the184

other half was acquired under bright or sunny weather conditions. Data capture was staged185

over four days, with 10 epochs in total captured at random times of day from sunrise to sunset186

during May 2016. Images were inspected manually and a small portion (< 0.1%) removed due187

to recording problems. Approximately a third of a terabyte of usable image data was thus188

acquired in total, to our knowledge this is the largest and most multi-conditioned data set of189

its kind.190

Images were pre-processed in three steps: colour calibration, perspective dewarping, and191

windowing.192

In colour calibration, images are transformed to compensate for variations due to lighting193

and weather conditions. Colour calibration acts to colour-standardise images (to a certain194

extent) to simplify classification. It was performed using a colour bar present in all images,195

recorded as part the robot camera frames (Figure 3). The colour bar was composed of five196

coloured squares (red, blue, yellow, white and green) using standard colours of paint. A single197

and motion-blur effects were usually small compared to other factors such as perspective distortion. The camera
also makes adjustments for lighting but we override these with our own colour normalisation as detailed below.
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Figure 1: Camera geometry. Showing position of camera on tracked robot (viewed from the
front), facing sideways. The thick black square shows the area on the ground, in perspective,
used later in the perspective transform.

(a) (b)

Figure 2: Image acquisition. a) Weed plot construction. b) Images were obtained using
cameras mounted to the side of a tracked robot. The robot repeatedly made revolutions of each
plot whilst taking pictures.

reference image was selected to calibrate all other images to. A measure of the blue, red and198

green light intensities from each coloured square on the bar was obtained as the mean value of199

the red, green and blue channels within the square. For each channel a vector of intensities was200

constructed with values for each coloured square, yielding the vectors br, gr and rr for the blue,201

red and green channels, respectively. The subscript r indicates that these values are from the202

reference image. Repeating this procedure for a comparison image c (i.e. an image that is to203

be colour calibrated) gives vectors bc, gc and rc. A linear relationship between the intensities204

of the blue, red and green channels is assumed, measured from the reference image and the205

intensities of the blue, red and green channels measured from the comparison image. Given this206

assumption, the parameters for each channel, for example blue, are obtained as β̂(b),207

β̂(b) = (X(b)TX(b))−1X(b)Tbc, (1)
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(a) (b) (c)

(d) (e) (f)

Figure 3: Colour Calibration. Figures a, b and c are raw images of dock leaves before any
pre-processing has taken place. Figures d, e and f are colour calibrated versions of figures a, b
and c, respectively.

where208

X(b) =
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

















, (2)

where the values in the left hand column of the matrix X(b) is the vector br. These parameters209

are used to colour calibrate the blue channel of the comparison image as:210

I ′c(b) =
Ic(b)− β̂(b)[1]

β̂(b)[2]
, (3)

where the term in square brackets indexes a value in β̂(b), I is the original intensity and I ′ is211

the adjusted intensity. Performing these operations for the green and red channels also yields a212

fully colour calibrated image.213

Perspective normalisation was performed via the projective transform shown in fig. 4a to214

those in fig. 4b. This maps a 1.16m width by 1.0m depth ground area into a 700 pixel width215

by 600 pixel height image, whose geometry is identical to that of a vertical, overhead camera216

as used in previous studies. However the image is not exactly the same as that of an overhead217
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(a) (b)

Figure 4: Perspective normalisation. a) Raw image from left camera, with grid annotation
showing 1.16m width x 1m depth on the ground. b) Affine transformation to remove perspective,
grid annotation showing locations of the same rectangle after perspective transformation into a
600x700 pixel image.

camera due to the three dimensional structure of the plants. In particular, tall plants at the218

front of the image are inflated in size because they are warped as if they were further back.219

A key research question asks whether this will have a detrimental effect over pure overhead220

imaging.221

Finally the dewarped image was split into regular 28×28 square or 64×64 square pixel win-222

dows for classification, corresponding to 46mm or 106mm squares of ground space respectively.223

Windows were contiguous and non-overlapping, and were stored for analysis. (These sizes were224

chosen to be around the scale of a single spray target radius, or ground size of a single weed or225

clump of weeds. 64 is a power of two which speeds up FFT based methods; 28 rather than 32 is226

chosen for the smaller window size to enable future comparisons with neural network methods,227

where 282 pixel windows are a common standard for historical and technical reasons [16].)228

2.2 Dataset definitions229

To avoid test data contaminating training processes, the set of epochs was first partitioned into230

training epochs and test epochs. This prevents, for example, classifiers from learning to recognise231

the lighting conditions rather than the weed types. Partitioning was performed manually to232

ensure a balance of weather conditions and weed types in each partition.233

After partitioning the epochs, we defined training and hyper-training datasets by sampling234

random windows from the training epochs, and test and hyper-test data sets by random sampling235
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windows from the test epochs. (Separate hyper-training and hyper-test sets are used during236

hyper-parameter optimisation before training proper, to avoid contamination by test set data,237

as described in section 2.5.) A data set consisted of a set of images, where half of those were238

images of grass and the other half were images of weeds. A data set could contain an individual239

weed type (Rumex or Urtica) or a mixture of weed types (Rumex and Urtica). Similarly, a data240

set could contain images obtained under individual weather conditions (overcast or sunny) or a241

mixture of weather conditions (overcast and sunny). The data set sizes are shown in the table242

below,243

Table 1: Dataset sizes.244

Window size Dataset type Epoch set sampled Number of windows

282 Hyper-training Training 10,000

282 Hyper-test Test 1,000

282 Training Training 200,000

282 Test Test 20,000

642 Hyper-training Training 2,000

642 Hyper-test Test 200

642 Training Training 40,000

642 Test Test 4,000

245

These sizes are still small compared with the total amount of raw data collected, but are246

orders of magnitude larger than data used in previous studies.247

4 The test set size was chosen to yield significant confidence in the results, while the training248

set size was selected to enable all the software implementations to train within one day of249

processing on a single 3GHz Intel core. Test and hyper-test datasets are 10% size of their250

corresponding training and hyper-training sets. The 282 sets are set to contain 5 times as many251

images as the 642 sets so that they contain the same amount of total pixel data (282 ≈ 642/5),252

4While the number of images is large, the number of actual plants imaged is smaller, because the many images
are obtained by driving many times around the same plots of plants. However it is unlikely that images of the
same plant are ever identical due to several factors. First, images were taken over several days, with collection
days spaced several days apart. This allows the plants time to grow and move around between epochs. Second,
within epochs, the plants are outdoor and exposed to wind, which moves their leaves constantly. Third, epochs
are taken at different times of day, with different weather and light conditions. Fourth, the radius of the robot
around the plots was randomised to +/-0.5m from the center line on each drive, ensuring different views. Fifth,
the angles of the cameras shifted slightly between epochs during robot maintenance; this was deliberately not
reduced, to introduce addition variation. Sixth, images were taken once per second, and it is unlikely that the
robot would be at exactly the same angle around the plot at any two imaging moments. We assume that the
additional variability from using more individual plants would be small compared to the variability introduced
by these factors.
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to allow results to be meaningfully compared across window sizes.253

2.3 Feature extraction254

The windowed images contain 642 or 282 pixels of RGB data, which are too large to use directly255

as input vectors to most classifiers. Therefore, features were first computed from the data, as256

in the previous studies. The selection of features used is detailed below and was selected to257

represent most previously proposed feature choices. All features ran on greyscale versions of258

the windows (obtained as the mean of the RGB channels), which is justified as all images are259

primarily all the same shade of green (unlike the case in detection studies of arable crop weeds260

in brown soil).261

2.3.1 Fourier Transform262

The Fourier Transform [39] represents an image in the basis of its orthogonal harmonic frequency263

components. For digital images the discrete Fourier transform (DFT) is used, whose basis is a264

set of two dimensional harmonics large enough to fully describe the spatial domain image. The265

number of frequencies corresponds to the number of pixels in the spatial domain image. For a266

square image of size N ×N , the two-dimensional DFT is given by:267

F (k, l) =

N−1
∑

i=0

N−1
∑

j=0

f(i, j)e−ι2π( ki
N

lj

N
), (4)

where f(i, j) is the image in the spatial domain and the exponential term is the basis function268

corresponding to each point F (k, l) in the Fourier space. The basis functions are two dimensional269

sinusoidal waves of increasing spatial frequencies, i.e. F (0, 0) represents the DC-component of270

the image which corresponds to the average brightness and F (N − 1, N − 1) represents the271

highest frequency. The absolute values of the DFT yield the image’s magnitude of frequency272

spectrum which is used as the feature vector for classification. We denote this method of feature273

extraction as FT. The Fourier transform is illustrated in figure 5, which shows that broad leaves274

tend to contain stronger low spatial frequencies while grass’ thin blades give rise to higher spatial275

frequencies.276
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2.3.2 Local binary patterns277

Local binary patterns (LBP) are a texture description feature [15]. Local means they are278

computed on local sub-windows of an image only, as a function of a center pixel and either its279

immediate or r pixel radius neighbours; binary means that the feature vector is binary, with280

each feature classed as either present or absent. Windows are converted to greyscale, then for281

each pixel xi,j in the window, LBP computes an 8-element binary vector,282

[(xi,j > xi,j+r), (xi,j > xi−r,j+r), (xi,j > xi−r,j), (xi,j > xi−r,j−r), (xi,j > xi,j−r), (xi,j >283

xi+r,j−r), (xi+r,j > xi,j), (xi,j > xi+r,j+r)].284

There are 28 = 256 possible values of this feature vector, with oriented edge and corner285

detection present as special cases. LBP computes feature vector for each pixel in the window,286

then computes a 256-point histogram of the obtained values over the window. The shapes of287

these histograms are considered to be characteristic of the texture classes and are given as input288

to classifiers. As well as using the eight near neighbours as above, a hyper-parameter npoints289

can also be used to generalise to other numbers of quantised comparison points equally spaced290

on a circle around the center. (Many other variations on the LBP concept have also been291

proposed [13] but are beyond the scope of the present comparison study.)292

2.3.3 Interest points and k-means293

The above features treat every pixel in the window as equally important, and are considered to294

represent texture-like properties. An alternative approach is to locate only ‘interesting’ points295

within the window and base classification on these. In particular, weeds such as Urtica have296

many distinctive jagged corners which might form useful points on which to base classification.297

Interest point method contain two feature extraction steps prior to classification. First, interest298

points are located; second, the local region at each of these points is used to extract a feature299

descriptor. Points are considered interesting if they contain a mixture of colours and can be300

uniquely located, i.e. a corner is interesting because there is only one location where it exists,301

while an edge is less interesting because it exists along a line of locations. Feature classes used to302

describe these points are usually wavelet-like, combining color, frequency and size information.303

Precise definition of useful interest point detectors and descriptors normalising these prop-304
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erties has been and remains an active area of machine vision research [25], but the present study305

arbitrarily selects the state-of-the-art Scale-Invariant Center-Surround Detectors (CenSurE) [1]306

interest point detector and the Binary Robust Invariant Scalable Keypoints (BRISK) [20] de-307

scriptor to represent the general class of methods. CenSurE finds an approximation to the set308

of corner-like points defined by,309

{λd(H(x)i,j) > t, d ∈ {1, 2}}, (5)

where λd are the two eigenvalues of the Hessian matrix H of the image x at each pixel i, j, and310

t is a threshold. Both eigenvalues are maximal at corners of any rotation. Rather than compute311

this computationally intensive (due to eigenvalue finding) test for every pixel, CenSurE first312

performs a faster pre-screening step, using a set of scaled filters to approximate the Laplacian313

(total curvature) at each pixel, then only computing the Hessian test at local maxima of this314

curvature [1].315

BRISK descriptors are similar to the LBP vectors above, but using pixel intensity compar-316

isons,317

fn = (xi,j > xi′n,j′n), (6)

at a larger set of 256 offsets {an, bn} giving (i′n = i+ an, j
′

n = j + bn). Unlike LBP, these offsets318

are not equally spaced around a circle, but may form any arbitrary pattern. Together with the319

larger number of points, this may capture potentially higher-order information than in LBP.320

Standard values of the offset patterns are used as provided in [20].321

When BRISK feature vectors have been computed for all images in the training set they are322

passed to the k-means algorithm which clusters them into K regions in feature space, where323

feature space is a finite p-dimensional vector space with each dimension representing a BRISK324

feature of an image. Initiating K random clusters we firstly calculate the Euclidean distance325

between the ith BRISK vector xi and the kth cluster Ck326

di,k =





p
∑

j=1

(xij −Ckj)
2





1/2

. (7)

After performing this operation for all clusters we can then assign the BRISK vector to the327
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cluster that minimises d (Equation 7). This operation is then performed for each BRISK328

vector. Knowing the members of each group we can now compute the new centroid of each329

group based on these new memberships. New centroids are the average coordinates among new330

members,331

Ck =

∑Nk

n=1Xn1

Nk
, ...,

∑Nk

n=1Xnp

Nk
, (8)

where Nk is the number of BRISK vectors in cluster k. This whole process is then repeated until332

the BRISK vectors cease to move groups (i.e. until the computation of the k-means clustering333

has reached stability).334

Clustering observed BRISK vectors in this way defines K discrete types of BRISK feature.335

For any given image, we may now extract each of its interest points, compute a BRISK descriptor336

at these points, then replace each of their BRISK descriptors with one of these quantised types.337

This allows us to then count how many ck of each discrete BRISK types k = 1 : K appear in338

the image. The vector of these counts, {ck}k=1:K is then used as a feature descriptor of the339

whole image.340

We refer to this feature as B > K, (for ‘BRISK followed by k-means’).341

2.3.4 Watershed segmentation342

We wish to test window-based features against region-growing type methods as proposed in343

previous studies. To make a fair comparison it is necessary to substitute pure region growing344

with a similar but window-based method. Otherwise the region growing methods could be345

accused of accessing more data to make classifications of each region, from the whole image,346

rather than just from its local window. For this purpose, we use a watershed method as a close347

substitute. Watershed segmentation [37] was originally developed for the purpose of separating348

touching objects in an image rather than for classification, but may also be used as a region-349

growing type classifier. The watershed transform finds ‘catchment basins’ and ‘watershed ridge350

lines’ in an image by treating it as a surface where light pixels are high and dark pixels are low.351

Segmentation using the watershed transform works better if a human operator can first identify,352

or ‘mark’, pixels from foreground objects and background locations. The marker-controlled353

watershed segmentation used in the present study follows a multi-step procedure.354
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Feature extraction. Figures a, d and g are fully pre-processed images containing
grass, Urtica and Rumex leaves, respectively. Figures b, e and h are the local binary patterns
(LBPs) of images a, d and g, respectively (with n = 24, r = 4). Figures c, f and i are the
magnitude of frequency spectra of images a, d and g, respectively.

Given a grey-scale image as input, we apply Otsu’s thresholding [37] to segment the back-355

ground from the foreground. Then we compute the Euclidean distance transform which com-356

putes the Euclidean distance to the closest zero (i.e. background pixel) for each of the foreground357

pixels. Doing this yields the distance map d. Next we apply a function f(d, dmin) that finds the358

peaks (local maxima) in the distance map, and ensures that we have at least a dmin pixel dis-359

tance between each peak. Then we apply a connected component analysis using 8-connectivity360

to the output of f , the output of which gives us our markers, which we then feed in to the361

watershed function. The watershed function returns a matrix of labels, an array with the same362

width and height as the input image. Each pixel value has a unique label value. Pixels that363

have the same label belong to the same object. For a given image, we then count the number364

of unique labels or segments. Performing these operations for multiple values of dmin yields365
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multiple counts of segments for a given image, and thus a feature vector for classification. We366

denote this method of feature extraction as W.367

2.4 Classifiers368

The following classifiers were used to represent previously proposed architectures. Each classifier369

(SVM, LDA, NN) can take as its input any feature type obtained from windows (LBP, FT, B〉K,370

W). This yields 12 distinct classification methods, LBP〉SVM, FT〉SVM, B〉K〉SVM, W〉SVM,371

LBP〉LDA, FT〉LDA, B〉K〉LDA, W〉LDA, LBP〉NN, FT〉NN, B〉K〉NN andW〉NN. For example,372

LBP〉SVM means that we pass the local binary pattern feature vector as input to a support373

vector machine, whilst FT〉LDA means that we pass the image’s frequency spectrum magnitude374

feature vector as input to linear discriminant analysis.375

2.4.1 Support Vector Machines376

A Support Vector Machine [35] models the a classification problem as finding a non-linear377

partition of the feature vector space into classes (e.g. grass or weeds), formed as a linear378

partition of a higher-dimension space formed by non-linear high-dimensional projection of the379

feature vectors. To understand how SVMs work it is useful to first briefly describe the support380

vector classifier (SVC). The SVC separates images into their classes by finding the linear affine381

hyper-plane that maximises the distance (known as the margin M) between the two image382

classes in feature space. Observations that fall on the boundaries of the margin are the support383

vectors.384

The linear affine hyper-plane is defined by the following inner product,385

b · x+ b0 = 0, b0 6= 0, (9)

where x is a p−dimensional training image feature vector with associated weights b. Now386

consider a set of n p−dimensional training image feature vectors, xi, each with an associated387

class label yi ∈ {−1, 1}. Introducing new hyper-parameters; n ǫi values (known as slack values)388

and a hyper-parameter C (known as the budget), then we wish to maximise M across b1, ..., bp,389
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ǫ1, ..., ǫn such that390

p
∑

j=1

b2j = 1, (10)

391

yi(b · x+ b0) ≥ M(1− ǫi), ∀i = 1, ..., n, (11)
392

ǫ ≥ 0,
n
∑

i=1

ǫi ≤ C, (12)

where C, the budget, is a non-negative ‘tuning’ hyper-parameter and hyper-parameters ǫi allow393

the individual observations (i.e. training images) to be on the wrong side of the margin or394

hyper-plane. C collectively controls how much the individual ǫi can be modified to violate the395

margin.396

SVMs are an extension of SVCs that results from a non-linear enlargement of the feature397

space through the use of functions known as kernels. This enlargement of the feature space398

means that observations from different classes can be separated in many more ways than they399

could be otherwise. To obtain the SVM, firstly we note that it is possible to show that a linear400

support vector classifier for a particular observation can be represented as a linear combination401

of inner products for the subset ℓ of training observations that represent the support vectors,402

f(x) = b0 +
∑

i∈ℓ

αi〈x,xi〉, (13)

where αi are the coefficients. Replacing the inner product 〈xi,xk〉 with a more general inner403

product ‘kernel’ function K = K(xi,xk), we can modify the SVC representation to use non-404

linear kernel functions. One example is the radial (RBF) kernel,405

K(xi,xk) = exp



−γ

p
∑

j

(xij − xkj)
2



 , γ > 0. (14)

Intuitively, the γ parameter defines how far the influence of a single training example reaches,406

with low values meaning ‘far’ and high values meaning ‘close’. The γ parameter can be seen as407

the inverse of the radius of influence of samples selected by the model as support vectors.408

The algorithmic solution for the SVM is one that finds optimal values for the coefficients α409

and the slack variables ǫi. Typically gradient decent algorithms are used. The hyper-parameters410

C and γ are set/optimised by the user.411
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Finally, a test image is classified according to whether its feature vector x∗ results in a412

positive or negative sign when passed into the function f(x∗). Note that feature vectors were413

normalised before being passed into the support vector machine. We denote this classifier as414

SVM.415

2.4.2 Linear Discriminant Analysis416

As with SVCs/SVMs, Linear Discriminant Analysis [22] models the classification problem by417

creating a feature space with a dimension for each feature. However, in LDA, observations from418

2 separate classes are assumed to be sampled from 2 separate multivariate Gaussian distributions419

in feature space with different means but the same covariance matrix. Given those assumptions420

we have a linear hyperplane perfectly separating the means of the 2 distributions. This means421

that any observation that is situated above the hyperplane has a higher probability of being a422

sample from the Gaussian whose mean is situated above the hyperplane than being a sample423

from the Gaussian whose mean is located below the hyperplane.424

To explain LDA in some more detail, firstly we write Bayes’ rule for the classification prob-425

lem426

P (i|x) =
P (x|i)P (i)

∑

j P (x|i)P (i)
, (15)

where the likelihood function P (x|i) gives the probability that the observation x is a sample427

from the Gaussian representing the class i and P (i) is the prior probability of the class i. From428

Bayes’ rule and the assumptions outlined we can derive the linear discriminant analysis formula429

fi = miC
−1xT

k −
1

2
miC

−1mT
i + log(pi), (16)

where mi is a vector containing the mean of each feature for the class i and C is the pooled430

within group covariance matrix which is a weighted mean of the covariance matrix Ci for each431

class. For a total of n observations, N classes and ni observations in each class C is432

C =
1

n

N
∑

i=1

niCi. (17)

Then we simply assign a test image k to group i that has maximum fi. We denote this classifier433
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as LDA.434

2.4.3 ‘Nearest Neighbour’ Classifier435

Nearest neighbour is a very simple classifier, used here to provide a baseline to compare with436

the two more sophisticated classifiers (SVM and LDA) above. In its training phase, the nearest437

neighbour classifier computes the median feature vector for each class (grass or weeds). A test438

image is then classed as grass if its feature vector minimises the sum of absolute errors between439

it and the median feature vector computed from grass images. Likewise a test image is classed440

as containing weeds if its feature vector minimises the sum of absolute errors between it and441

the median feature vector computed from images containing weeds. We denote this classifier as442

NN.443

2.5 Hyper-parameter optimisation444

Some of the classifiers and features have hyper-parameters which define how training is com-445

puted. Previous studies have mostly reported the best obtained results of methods on test sets,446

and stated the hyper-parameter values used to give them. However it is unclear whether the447

hyper-parameters in these cases have been set in advance of the evaluation on the test sets, or448

if they have been fit to the test data by running method multiple times on the test data and449

reporting only the best result.450

To avoid this potential bias, careful use was made of hyper-training and hyper-test datasets,451

independent of both training and test datasets, to select hyper-parameters in advance of the452

main training and test phases. Hyper-parameters were optimised on these sets, so that each453

system only saw the final test set only once for its reportable evaluation score.454

In theory, hyper-training could be performed by training many versions of a classifier on the455

full training dataset, then scoring them against a hyper-test set, and selecting the best performer.456

(The hyper-test sets are sometimes known as ‘validation sets’). However this requires running457

time-consuming training many times. So given the large ratio of data to compute resources458

available for this study, a smaller hyper-training dataset, of 5% size of the full training dataset,459

was used in place of the training dataset. This greatly reduces the required computation time460

but was found to still give a reasonable indication of good hyper parameters to use within461
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available compute resources.462

SVMs have two hyper-parameters (C and γ) that should be optimised. We set C and γ463

in exponentially growing sequences, C = 2−5, 2−3, ..., 215, γ = 2−15, 2−13, ..., 23, which has been464

shown to be a practical method for identifying good parameters [19]. In addition the parameters465

(number of points npoints and radius r) of the LBP should also be optimised. For all experiments466

we set npoints = 2, 4, ..., 30. For experiments with 282 pixel windows we set r = 1, 2, ..., 8 while467

for experiments with 642 pixel windows we set r = 2, 4, ..., 16 (r has maximum value equal to a468

quarter of the image width). For all experiments involving the B〉K method of feature extraction469

we optimised K for values K = 1, ..., 28. For all experiments involving the W method of feature470

extraction we optimised the minimum distance term dmin in growing sequences of integers471

[1], [1, 2], ..., [1, ..., 15]. For the sequence [1, 2], for example, we would generate a feature vector472

by first setting dmin = 1, passing an image into the W method and retrieving the number of473

segments. Then the process would be repeated for dmin = 2 and both segment values would be474

appended, yielding a feature vector of length 2. Thus the length of a particular sequence is the475

length of the feature vector generated by the W method of feature extraction.476

In addition to numerical hyper-parameters, SVMs can further use various kernels and LDA477

can further use various types of ‘solver’ and both SVMs and LDA have an option to apply a478

‘shrinking’/‘shrinkage’ heuristic. For the LBP〉SVM method we reduced the number of param-479

eter permutations to consider by assuming some independence between parameters. Thus we480

first optimised C and γ, (considering all permutations of C, γ) for a fixed npoints = 15, r = 4481

for 282 pixel windows and a fixed npoints = 15, r = 8 for 642 pixel windows, for each kernel with482

the shrinking heuristic turned on and off. Then we fixed C, γ and the kernel at their optimal483

values and optimised npoints and r (considering all permutations of npoints, r). For all other484

classification methods we considered all possible parameter permutations.485

LDA’s r and BRISK’s CenSurE approximation variables were also treated as hyper-parameters.486

Details of the results on the hyper-test set from hyper-training that are used to set hyper-487

parameters for full training are shown in the Appendix.488
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2.6 Experiments489

After hyper-parameter optimisation, we evaluated the performance of each feature-classifier490

combination by training from scratch on the full training dataset and testing for the first and491

only time on the test dataset.492

To enable a fair comparison of systems running on the two different window sizes, more493

windows were present in the 282 pixel training and test sets than in the 642 pixel sets. This is494

because each 64 pixel image contains roughly five times as much visual information as each 28495

pixel image (282/642 = 0.19); each 642 pixel image is effectively five 282 pixel windows joined496

together. Therefore, in the 282 pixel case, we used a training set of 200,000 windows and a test497

set of 20,000 windows, each comprised of half grass and half weed windows; while in the 642498

pixel case we used 1/5 as many windows: 40,000 training and 4,000 test, also comprised of half499

grass and half weeds.500

The most important practical question for weeding robots is the performance in mixed weeds501

(Rumex+Urtica) and in mixed weather (sunny+overcast), for the two window sizes. Window502

size is important because it controls the spatial resolution at which the robot could spray the503

weeds – in square windows of 106mm or 56mm. As the key research question, performance was504

evaluated for every one of the twelve feature-classifier combinations on both window sizes.505

It is sometimes the case in machine learning that improved accuracies can be obtained by506

fusion results from multiple methods into meta-classifiers (also known as ensemble learning).507

Many combination algorithms are available with different and subtle assumptions which are still508

sometimes debated [8, 9].5 To give a simple illustrative, though non-optimal, idea of what per-509

formance improvements could be available, three simple, standard fusion methods were tested.510

First, a simple voting scheme, META-VOTE, assigns an equal weight to each classifier’s output,511

and yields the classification with the most votes. (In the case of a tie, the best classifier’s output512

is given the deciding vote.) Second, META-ACC weights the votes of each classifier by its ac-513

curacy. Finally, META-LDA considers the output of each classifier as an element of a Boolean514

5Until recently it was often assumed that optimal combination could be achieved via Bayesian Model
Averaging (BMA), which makes class predictions c of input x from models Mi and training data D as
P (c, x) =

∑
i
P (c|Mi, x)P (M |D). However it is now known that for large data sets, BMA simply converges

to the outputs of the single best classifier in the ensemble, ignoring this others [9], hence it is not used here. This
problem with BMA is caused by its underlying assumption that the ensemble contains the perfect, ground-truth
model rather than just a set of approximations.
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feature, and trains a new LDA classifier to predict ground truth class from these vectors.6515

Secondary questions of interest include the effects of perspective, weather type, weed type,516

and windowing. As a full training process can take several days, these questions were examined517

using only the best feature+classifier system and assumed to be independent of one another.518

To examine the effect of perspective unwarping, the test set (containing grass under mixed519

weather conditions, and mixed weeds under mixed weather conditions), was split into new test520

sets according to their windows’ vertical locations (row numbers) in the camera images for indi-521

vidual scoring. Low row numbers indicate windows from the base of the image, corresponding522

to space close to the robot cameras, while high row numbers indicate windows at the top of the523

image, from space furthest from the robot cameras.524

To examine the effect of weather, each epoch was classified as sunny or overcast, and the525

original test set was split into two test sets comprised of windows of these weather types for526

individual evaluation.527

To examine the effect of weed type on classifier performance, two set sets were created which528

contained only grass-and-Urtica and grass-and-Rumex respectively, for individual evaluation.529

To give an idea of performance in the limiting case of large windows full of weeds or grass,530

we assessed the performance of the B〉K〉SVM classification method on full sized (600 × 700)531

pixel windows from data sets containing grass vs mixed and individual weed types under mixed532

weather conditions. We conducted this experiment because BRISK features are more usually533

extracted from full-view images than from the standardised windows used in the rest of this534

study. Thus we wished to asses the performance of this particular classification method under535

its own ideal conditions. As with other experiments, hyper-parameters were optimised on536

hyper-training and hyper-test datasets (though of new 600× 700 windows and set sizes hyper-537

training=1000, hyper-test=200, training=10,000,test=2000 , before training and testing on the538

training and test datasets.539

6To estimate META-LDA performance on new data without corruption by training the meta-classifier on test
data, the test set was split into two random partitions with one used to train the new LDA and the other to test
it. This means the result quoted from only a subset of the original test set. However the original and partitioned
test sets are sufficiently large to maintain tight Bayesian confidence internals in the accuracy posteriors to be
comparable with the other results.
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Table 2: Results of applying all 12 classification methods to 282 pixel window test dataset
containing grass vs mixed weeds, mixed weather, after training on 282 pixel window training
dataset. ACC is over all accuracy, i.e. the probability that a random image is correctly
classified. CI is the confidence interval in the estimate of ACC. GRASS and WEED are
probabilities that images of grass, or weed, respectively, are correctly classified. ‘NA’ stands for
‘Not Applicable’, ‘shk’ for ‘shrinking’.540

541

METHOD ACC CI GRASS WEED PARAMETERS

LBP〉SVM 68.75 3.27× 10−3 74.1 63.6 npoints = 20, r = 5, kernel=RBF(shk), C = 213, γ = 2−1

B〉K〉SVM 52.70 3.53× 10−3 38.8 67.1 K = 4, kernel=linear(shk), C = 2−5

FT〉SVM 71.80 3.18× 10−3 79.0 64.7 kernel=RBF(shk), C = 21, γ = 23

W〉SVM 64.67 3.38× 10−3 72.1 57.1 dmin = [1, ..., 11], kernel=RBF(shk), C = 215, γ = 2−3

LBP〉LDA 65.25 3.37× 10−3 71.1 59.1 npoints = 28, r = 3, solver=svd

B〉K〉LDA 53.97 3.52× 10−3 63.6 44.1 K = 20, solver=lsqr(shh)

FT〉LDA 68.54 3.28× 10−3 78.9 63.2 solver=lsqr(shk)

W〉LDA 61.63 3.44× 10−3 69.4 53.8 dmin = [1, ..., 5], solver=lsqr(shk)

LBP〉NN 62.93 3.41× 10−3 69.6 66.3 npoints = 2, r = 4

B〉K〉NN 50.00 3.54× 10−3 0.0 100.0 K = 17

FT〉NN 61.79 3.44× 10−3 62.3 60.8 NA

W〉NN 65.77 3.35× 10−3 65.6 66.1 dmin = [1, ..., 10]

META-VOTE 71.38 3.20× 10−3 76.5 66.3 NA

META-ACC 71.90 3.18 ×10−3 76.5 67.3 NA

META-LDA 73.47 4.41× 10−3 75.8 71.1 NA

542
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Table 3: Results of applying all 12 classification methods to 642 pixel window test dataset
containing grass vs mixed weeds, mixed weather, after training on 642 pixel window training
dataset. ACC is over all accuracy, ie. the probability that a random image is correctly classified.
CI is the confidence interval in the estimate of ACC. GRASS andWEED are probabilities that
images of grass, or weed, respectively, are correctly classified. ‘NA’ stands for ‘Not Applicable’,
‘shk’ for ‘shrinking’.543

544

METHOD ACC CI GRASS WEED PARAMETERS

LBP〉SVM 82.88 5.96× 10−3 87.1 78.7 npoints = 24, r = 4, kernel=RBF(shk), C = 29, γ = 23

B〉K〉SVM 69.15 7.27× 10−3 70.4 69.0 K = 17, kernel=RBF, C = 21, γ = 28

FT〉SVM 79.40 6.39× 10−3 84.6 74.2 kernel=RBF(shk), C = 23, γ = 21

W〉SVM 73.23 7.00× 10−3 79.0 67.5 dmin = [1, ..., 10], kernel=RBF(shk), C = 211, γ = 23

LBP〉LDA 75.50 6.80× 10−3 82.3 68.7 npoints = 16, r = 4, solver=lsqr(shk)

B〉K〉LDA 70.65 7.16× 10−3 81.6 60.9 K = 17, solver=lsqr(shk)

FT〉LDA 73.15 7.01× 10−3 82.6 63.7 solver=eigen(shk)

W〉LDA 63.13 7.63× 10−3 88.1 38.2 dmin = [1, ..., 15], solver=svd

LBP〉NN 72.43 7.06× 10−3 77.0 68.0 npoints = 10, r = 12

B〉K〉NN 70.55 7.40× 10−3 71.5 63.7 K = 18

FT〉NN 63.08 7.63× 10−3 58.7 67.5 NA

W〉NN 74.48 6.89× 10−3 76.0 73.1 dmin = [1, ..., 5]

META-VOTE 78.63 6.48× 10−3 89.4 67.9 NA

META-ACC 80.90 6.21× 10−3 88.4 73.8 NA

META-LDA 83.40 8.42× 10−3 i84.9 81.9 NA

545
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(a) (b)

Figure 6: Covariance Matrices. a) Covariance between the 12 classification methods when
applied to 28 pixel squared windows (grass vs mixed weeds, mixed weather). b) Covariance
between the 12 classification methods when applied to 64 pixel squared windows (grass vs
mixed weeds, mixed weather).

3 Results546

Tables 2 and 3 give the results for training and testing the 12 classification methods on 282 and547

642 pixel windows, respectively, both with mixed weather and mixed weed types. ACC shows548

the overall accuracy of each method, as the proportion of images correctly classified. Bayesian549

confidence intervals (CI) computed as standard deviations of the Beta distribution posteriors550

over belief in the accuracy [5], assuming flat priors, are also given for each classification method,551

which justify the significance of the accuracy percentages to two decimal places. (We also list552

breakdown accuracies for grass and weed image presentations, which indicate rates of false553

positive and false negatives.) These experiments were conducted to determine which classifier554

was the most accurate in predicting test images from data sets containing mixed weeds and555

mixed weather conditions.556

The LBP〉SVM method performed better than the other classification methods for experiments557

using 642 pixel windows, with an accuracy of 82.88%. This was achieved with the SVM kernel558

set to RBF with the shrinking heuristic turned on, the hyper-parameters of the LBP set to559

npoints = 24, r = 4 and the hyper-parameters of the SVM set to C = 29, γ = 23. The FT〉SVM560

method performed better than the other classification methods for experiments using 282 pixel561

windows, with an accuracy of 71.80%. This was achieved with the SVM kernel set to RBF with562

the shrinking heuristic turned on, and the SVM hyper-parameters set to C = 21, γ = 23.563

The META-VOTE meta-classifier yielded worse results than the single best method in both564
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282 and 642 pixel windowed cases. This may be due to averaging of the best method with the565

less good methods dragging down the overall result. This typically occurs when all or most566

classifiers are acting on the same inherent information in the data but with different accuracies,567

rather than acting on different types of information per method. Similarly, META-ACC gives568

on a tiny improvement over the best method for 282 windows (71.90 vs 71.80), and is worse569

than the best 642 pixel method (80.90 vs 82.88). META-LDA is the best of the meta-classifiers,570

and is the only one to give significant improvements in both the 282 pixel (73.74 vs 71.80)571

and 642 pixel (83.40 vs 82.88). (Significance can be seen by comparing the small CIs with the572

larger accuracy differences). META-LDA’s weights are more principled, and optimal under its573

assumptions, than the heuristic META-VOTE and META-ACC, so its better performance is574

expected. However the gain from using META-LDA over using just the single best method, in575

each window case, is small. Again, this suggested that all the methods are operating on similar576

information within the images rather than with different information. Further insight into this577

possibility is gained by examining the correlation matrix of the 12 methods’ predictions in fig.578

6. Here, each grass/weed classification in the test set is considered to have a value of 0 or 1 for579

grass/weed, and correlations over the test data are presented. It can be seen that the methods580

are less correlated with one another in the 282 pixel case than in the 642 pixel case, which581

explains why meta-classification works better for 282 than 642 windows. There are stronger582

correlations between methods sharing the same feature type than methods sharing the same583

classifier type, as can be seen by the secondary diagonal patterns. The FT>NN method has a584

low correlation with the others because it is a very poor accuracy method.585

Results for the distance experiment are shown in Figure 7a. The best performing feature-586

classifier combination - the LBP〉SVM method - is here run again on mixed weed and weather587

test sets, separated as a function of the distance of the window from the robot camera’s ground588

location (for both 282 and 642 pixel-squared windows). Classification performance decreased589

smoothly as the distance increased, for both 282 and 642 pixel windows, by a considerable590

amount (by around 15% absolute for 642 windows, and 10% absolute for 282 windows.) Weeds591

closest to the cameras were predicted with a 87.85% accuracy (for 642 pixel windows), which592

is more in line with the high accuracies reported by the previous studies than with accuracies593

at far distances. It should also be noted that this result was obtained for a mixture of Rumex594

and Urtica under a mixture of weather conditions, unlike those studies.595
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(a) (b)

Figure 7: Effects of distance, weed type and weather. a) Classification performance of
LBP〉SVM as a function of the distance from the robot cameras (experiments on grass vs mixed
weeds, mixed weather). b) Classification performance of LBP〉SVM as a function of weed type
(W: mixed weeds, R: Rumex, U: Urtica) and weather type (M: Mixed weather, O: Overcast, S:
Sunny).

Results of the weed type and weather experiments are shown in 7b, again using the LBP〉SVM596

method. Here W stands for mixed weeds, R stands for Rumex and U stands for Urtica; M597

stands for mixed weather, O stands for overcast weather and S stands for sunny weather.598

Rumex classification was more accurate than Urtica or mixed weed classification, and mixed599

weed classification was better than Urtica classification. For 282 pixel windows classification600

under sunny weather conditions was better than classification under overcast weather conditions.601

For 642 pixel windows the opposite weather pattern was found.602

Finally, table 4 gives the results of applying the B〉K〉SVM classification method on full sized603

(600 × 700) windows for data sets containing grass vs mixed and individual weed types under604

mixed weather conditions. Again Rumex classification was the most accurate (97.9%), while605

Urtica classification was the least accurate (94.65%).606

Table 4: Results of applying the B〉K〉SVM method to full sized (600 × 700) windows (mixed
and individual weed types, mixed weather).607

Experiment Accuracy Optimum K Optimum C Optimum γ

WM 95.1 16 2−3 23

RM 97.9 19 211 21

UM 94.65 28 21 23

608
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4 Conclusion609

For our data set and the requirements upon which it is based, the best performing method610

for the overall spray/no-spray decision is Linear Binary Patterns with Support Vector Machine611

classification on 642 pixel windows.612

LBPs are texture-based, rather than shape-based, features, and SVM is a highly nonlinear613

model. This suggests that when a mixture of Rumex and Urtica is present and spray/no-spray614

decisions are required, texture is more informative than shape, and that the discriminating615

distribution of texture features has some nonlinear component. In particular, linear classification616

of the same features with LDA performs less well.617

All the accuracies in our independent re-implementations are lower than those reported in618

the papers which originally proposed them. This may be due to several factors. First, our619

data is more difficult to classify, even by human eye, than data used in the original studies.620

Apart from [2], previous work has used vertical, downward-pointing cameras giving clear and621

equal views of each point on the ground by removing the need for perspective correction. Our622

data is more challenging, requiring additional invariance to perspective distance due to the623

requirement to operate with cameras mounted on top of robot bodies rather than protruding624

from them. Second, we required our data to come from a moving vehicle without expensive625

image stabilisation, so intentionally included some blurred images which confuse edge-based626

detection methods in particular, as these edges become blurred and no longer trigger these627

detectors. Third, our data is required to come from a wide mixture of lighting and weather628

conditions as would be encountered in real-world applications. Fourth, we did not allow fitting629

of any parameters to the test set, and allowed each algorithm to see the test data only once, and630

report only these results. Fifth, we have removed all possible experimenter, data set selection,631

and publication bias by operating as an independent controlled study rather than setting out632

to show the benefits of any one method.633

For some applications, such as treatment by individual species-selective herbicides, finer classi-634

fication of weed type into Rumex and Urtica may be required. Correct classification of Urtica635

is harder to achieve than of Rumex, using the overall best LBP-SVM method. This is likely636

because Rumex has larger, flatter leaves which present more obvious differences to most features637

than Urtica’s smaller and more contoured leaves. The BRISK-KMEANS-SVM method shows638
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less difference in performance between Urtica and Rumex when run on very large windows, as639

expected this may be due to its ability to pick up the jagged edges of Urtica leaves. However640

it does not work well for the regular 642 and 282 pixel windows, because it depends on the641

ability to select good interest points from a large image. With 642 pixels the choice of interest642

points is very limited and with 282 is almost non-existent, resulting in few or no interest points643

being found to classify. LBP and BRISK are closely related, with LBP viewable as a special644

case of BRISK that treats every pixel as an interest point and forces it to be included in the645

classification, which explains why LBP outperforms BRISK for the smaller windows. The fact646

that Rumex is in general easier to classify than Urtica may explain the existence of the many647

more published method-proposing studies of Rumex vision than Urtica vision.648

Evidence for the contribution of perspective effects to reducing accuracy is given by the distance649

experiment result, which shows a considerable drop in accuracy as a function of distance from the650

camera. If all plants were part of a perfectly flat ground surface then the affine transformation651

would yield identical images to those taken by a vertical overhead camera as used in previous652

studies. However real plants and ground are not flat and in particular the vertical structure653

of plants near the camera results in them being enlarged out of proportion by the perspective654

transform. The distortion is tolerable for short distances but makes the system less useful beyond655

distances of around 1.5m. This suggests that for robots that are not able to mount vertical656

overhead cameras, for example rough terrain specialist robots for which it is undesirable to have657

overhanging parts that could be damaged by collisions, it may be preferable to concentrate visual658

processing power only on nearby regions of ground space. Computation is a limited resource659

for most mobile robots, which must trade off frame rate for size of spatial area to process and660

battery power consumption. Designers of these robots should consider increasing frame rates661

to obtain multiple views of the same nearby terrain up to around 1.5m away, at the expense of662

ignoring further away terrain. It is possible that some improvements to distant recognition will663

be possible using higher resolution cameras, to produce less pixel distortion during dewarping;664

by using cameras with smaller apertures to gain deeper depth of field; and/or by mounting665

cameras at higher positions such as one poles above the robot.666

The effect of weather conditions on classification appears somewhat ambiguous from the tests667

conducted here. The classifiers were trained on mixed sunny and overcast data, then tested on668

mixed, sunny-only and overcast-only data. Overcast weather yields mostly diffuse lighting from669
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the whole sky, while sunny weather comprises mostly directional light from the sun’s position670

in the sky, which gives rise to distinct shadows. In some cases the shapes of shadows may assist671

classification (eg. the shapes of Urtica leaf shadows include the same distinctive jagged edges672

as the leaves themselves), while in other cases shadows may act as noise over the features of the673

real leaves. There is no clear contributing weather factor to these results, unlike the weed type674

breakdown which gave clear evidence that Urtica are more responsible than Rumex for lowering675

performance. Future work could try training classifiers on sunny-only and on overcast-only676

data, or on more nuanced partitions of weather type, and test them on matched conditions.677

However unlike the present experiment, this would require online robots to first classify the678

overall weather condition in order to choose which classifier to use, which introduces further679

complexity.680

More fine grained weather and time-of-day classifications could be made. These can affect both681

the spectrum of light illuminating the plants, and how the light interacts with the plants, for682

example casting shadows, or cases of viewing low sunlight through leaves. The current dataset683

contains time-of-day information which could be used to break down performance in this way;684

epochs might also be further sub-classified into more detailed weather conditions, or more epochs685

obtained from new weather and time-of-year conditions. The data sets are all collected from686

the same weeds plots, and while we have argued that these do produce substantial variation687

in the images, it would be useful to validate the methods on completely separate plots in the688

future.689

Window size is obviously an important factor on accuracy, because larger windows contain more690

information than smaller ones. However there is a trade off because they represent larger spatial691

regions which reduce the available accuracy of precision spraying. Robot designers can choose692

between 83% accuracy at 106mm resolution, or 72% accuracy at 56mm resolution, from the693

present studies. Very large windows can give near-perfect results as in the large-window BRISK694

experiments yielding 95% accuracy for mixed weeds and 97.9% accuracy for Rumex. In practice695

of course, classifications of single windows are unlikely to take place completely independently696

of one another. Rather, in the field, a live robot would perform both spatial averaging of697

neighbouring window classes, as well as temporal averaging as multiple images of the same698

regions are taken over time from moving robot locations, for example via Markov Random699

Fields as in [18], which would improve accuracy. The windows used here are non-overlapping700
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Figure 8: Multi-observation fusion. Showing the effect of Bayes-fusing multiple observations
of a window. A live moving robot is likely to make several observations and classifications of
each window from different poses, which when fused together will increase accuracy. Each line
represents fusion of n observations of equal accuracy, whose per-observation accuracy is seen in
the ‘number of observations = 1’ case ranging from 0.5 to 0.9 in steps of 0.1.

and live robots could further make use of overlapping windows to provide additional information701

about the spatial frequencies across window boundaries that is not used in the present study. An702

indication of the strength of accuracy amplification by multi observation fusion (which could be703

temporal or spatial or both) is shown in fig. 8. This shows that the present LBP-SVM accuracy704

is easily amplified into the mid or high 90s percentages by 2 to 5 observations, as could be705

obtained by a moving robot. This is computed by Bayes-fusing accuracies with themselves706

repeatedly, where the Bayesian fusion of two evidence probabilities p and q is given by,707

pq

pq + (1− p)(1− q)
(18)

It can be seen from fig. 8 that fused data from two or three windows, observed over time708

and/or space, is sufficient to bring mot methods to 95%+ accuracy which is generally sufficient709

(e.g. [34]) for spraying use in the field.710

Running multiple classifiers and combining their results with an LDA meta-classifier yields a711

slightly higher accuracy than pure LBP-SVM. The effect is only slight because all the feature-712

classifier methods mostly work with similar image information to each other, with varying713

levels of success, rather than working with different types of information. This information is714

presumably Fourier or wavelet-like, and mostly linear, though with some nonlinearities which715

enable the nonlinear SVM to outperform the other methods. All of the classification methods716

tested here run comfortably in real time for live use, however running them all simultaneously717

for meta-classification on a mobile robot platform would likely require parallel processors which718
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consume additional and valuable battery power.719

As part of this publication we are making our training and test sets available for non-commercial720

research by others under Creative Commons licence CC BY-NC 3.0 US. We hope that the721

standardised setup presented here will enable performance to be improved upon through fair722

evaluation of new methods and implementations, and though other researchers adding data723

from new conditions to the set.724
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Appendix830

Here we give the intermediate results used for the parameter optimisation stage of classification831

for all 12 methods when trained on hyper-training and tested on hyper-test datasets containing832

grass vs mixed weeds under mixed weather conditions. This gives an indication of the effect of833

hyper-parameter optimisation on performance.834

Tables 5 and 12 give the results for all classification methods except those involving the NN835

classifier (results for the NN classifier are given in the text) used on 282 pixel windows. ’nan’836

indicates an experiment abandoned due to unreasonable computation time, while NA stands837

for ‘not applicable’. Tables 13 and 20 give the equivalent results for 642 pixel windows. For838

LBP〉SVM, tables 5 and 13 give the results for the first stage of hyper-parameter optimisation,839

in which the hyper-parameters of the SVM C and γ were optimised. The second stage of840

optimisation for this method yielded optimised values for the hyper-parameters of the LBP841

(npoints=20,r=5,accuracy=72.50% for 282 pixel windows, npoints = 24, r=4,accuracy=88.00%842

for 642 pixel windows). For LBP〉NN, optimised parameters for the LBP were npoints = 2, r = 4843

for 282 pixel windows and npoints = 10, r = 12 for 642 pixel windows. For B〉K〉NN, the optimal844

value of K for the B〉K method of feature extraction was 17 for 282 pixel windows and 18 for845

642 pixel windows. For FT〉NN there were no parameters to optimise. For W〉NN, the optimal846

value of dmin for the W method of feature extraction was [1, ..., 10] for 282 pixel windows and847

[1, ..., 5] for 642 pixel windows.848

Table 5: Results for the classification method LBP〉SVM with hyper-training and hyper-test
datasets, on 282 pixel windows.849

Kernel Shrinking Accuracy(%) Optimum C Optimum γ

linear off 65.6 211 NA

linear on 65.6 211 NA

rbf off 68.3 213 2−1

rbf on 68.4 213 2−1

850

Table 6: Results for the classification method B〉K〉SVM with hyper-training and hyper-test
datasets, on 282 pixel windows.851
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Kernel Shrinking Accuracy Optimum K Optimum C Optimum γ

linear off 53.1 4 2−5 NA

linear on 53.1 4 2−5 NA

rbf off 53.1 4 2−5 2−15

rbf on 52.5 4 2−5 2−15

852

Table 7: Results for the classification method FT〉SVM with hyper-training and hyper-test
datasets, on 282 pixel windows.853

Kernel Shrinking Accuracy(%) Optimum C Optimum γ

linear off 67.1 23 NA

linear on 67.1 23 NA

rbf off 69.3 21 23

rbf on 69.4 21 23

854

Table 8: Results for the classification method W〉SVM with hyper-training and hyper-test
datasets, on 282 pixel windows.855

Kernel Shrinking Accuracy (%) dmin Optimum C Optimum γ

linear off 65.7 [1, ..., 9] 23 NA

linear on 65.7 [1, ..., 9] 23 NA

rbf off 66.6 [1, ..., 11] 215 2−3

rbf on 66.7 [1, ..., 11] 215 2−3

856

Table 9: Results for the classification method LBP〉LDA with hyper-training and hyper-test
datasets, on 282 pixel windows.857

Solver Shrinkage Accuracy(%) Optimum n Optimum r

svd off 67.6 28 3

lsqr off 67.6 28 3

lsqr on 67.6 28 4

eigen on 67.6 28 3

858

Table 10: Results for the classification method B〉K〉LDA with hyper-training and hyper-test
datasets, on 282 pixel windows.859

Solver Shrinkage Accuracy Optimum K

svd off 54.3 4

lsqr off 54.1 23

lsqr on 54.9 20

eigen on 54.9 23

860

40



Table 11: Results for the classification method FT〉LDA with hyper-training and hyper-test
datasets, on 282 pixel windows.861

Solver Shrinkage Accuracy(%)

svd off 65.5

lsqr off 65.5

lsqr on 65.6

eigen on 65.4

862

Table 12: Results for the classification method W〉LDA with hyper-training and hyper-test
datasets, on 282 pixel windows.863

Solver Shrinkage Accuracy dmin

svd off 63.1 [1, ..., 5]

lsqr off 56.5 [1]

lsqr on 63.3 [1, ..., 5]

eigen on nan nan

864

Table 13: Results for the classification method LBP〉SVM with hyper-training and hyper-test
datasets, on 642 pixel windows.865

Kernel Shrinking Accuracy(%) Optimum C Optimum γ

linear off 80 25 NA

linear on 80 25 NA

rbf off 82 29 23

rbf on 82 29 23

866

Table 14: Results for the classification method B〉K〉SVM with hyper-training and hyper-test
datasets, on 642 pixel windows.867

Kernel Shrinking Accuracy Optimum K Optimum C Optimum γ

linear off 59 17 23 NA

linear on 61.25 17 25 NA

rbf off 68.5 17 21 28

rbf on 63 17 23 23

868

Table 15: Results for the classification method FT〉SVM with hyper-training and hyper-test
datasets, on 642 pixel windows.869

41



Kernel Shrinking Accuracy(%) Optimum C Optimum γ

linear off 76.5 25 NA

linear on 76.5 25 NA

rbf off 79 23 21

rbf on 79 23 21

870

Table 16: Results for the classification method W〉SVM with hyper-training and hyper-test
datasets, on 642 pixel windows.871

Kernel Shrinking Accuracy (%) dmin Optimum C Optimum γ

linear off 72.5 [1, ..., 10] 213 NA

linear on 72.5 [1, ..., 10] 213 NA

rbf off 76.5 [1, ..., 10] 211 23

rbf on 76.5 [1, ..., 10] 211 23

872

Table 17: Results for the classification method LBP〉LDA with hyper-training and hyper-test
datasets, on 642 pixel windows.873

Solver Shrinkage Accuracy(%) Optimum n Optimum r

svd off 81.5 28 4

lsqr off 81.5 28 4

lsqr on 82 16 4

eigen on 81.5 16 4

874

Table 18: Results for the classification method B〉K〉LDA with hyper-training and hyper-test
datasets, on 642 pixel windows.875

Solver Shrinkage Accuracy Optimum K

svd off 76.5 20

lsqr off 77.5 17

lsqr on 78 17

eigen on 77.5 22

876

Table 19: Results for the classification method FT〉LDA with hyper-training and hyper-test
datasets, on 642 pixel windows.877

Solver Shrinkage Accuracy(%)

svd off 55.5

lsqr off 53

lsqr on 61

eigen on 62

878
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Table 20: Results for the classification method W〉LDA with hyper-training and hyper-test
datasets, on 642 pixel windows.879

Solver Shrinkage Accuracy dmin

svd off 67 [1, ..., 15]

lsqr off 57 [1, ..., 13]

lsqr on 66.5 [1, ..., 13]

eigen on nan nan

880
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