263 research outputs found

    Design, Fabrication, and Control of an Upper Arm Exoskeleton Assistive Robot

    Get PDF
    Stroke is the primary cause of permanent impairment and neurological damage in the United States and Europe. Annually, about fifteen million individuals worldwide suffer from stroke, which kills about one third of them. For many years, it was believed that major recovery can be achieved only in the first six months after a stroke. More recent research has demonstrated that even many years after a stroke, significant improvement is not out of reach. However, economic pressures, the aging population, and lack of specialists and available human resources can interrupt therapy, which impedes full recovery of patients after being discharged from hospital following initial rehabilitation. Robotic devices, and in particular portable robots that provide rehabilitation therapy at home and in clinics, are a novel way not only to optimize the cost of therapy but also to let more patients benefit from rehabilitation for a longer time. Robots used for such purposes should be smaller, lighter and more affordable than the robots currently used in clinics and hospitals. The common human-machine interaction design criteria such as work envelopes, safety, comfort, adaptability, space limitations, and weight-to-force ratio must still be taken into consideration.;In this work a light, wearable, affordable assistive robot was designed and a controller to assist with an activity of daily life (ADL) was developed. The mechanical design targeted the most vulnerable group of the society to stroke, based on the average size and age of the patients, with adjustability to accommodate a variety of individuals. The novel mechanical design avoids motion singularities and provides a large workspace for various ADLs. Unlike similar exoskeleton robots, the actuators are placed on the patient\u27s torso and the force is transmitted through a Bowden cable mechanism. Since the actuators\u27 mass does not affect the motion of the upper extremities, the robot can be more agile and more powerful. A compact novel actuation method with high power-to-weight ratio called the twisted string actuation method was used. Part of the research involved selection and testing of several string compositions and configurations to compare their suitability and to characterize their performance. Feedback sensor count and type have been carefully considered to keep the cost of the system as low as possible. A master-slave controller was designed and its performance in tracking the targeted ADL trajectory was evaluated for one degree of freedom (DOF). An outline for proposed future research will be presented

    Super Ball Bot - Structures for Planetary Landing and Exploration, NIAC Phase 2 Final Report

    Get PDF
    Small, light-weight and low-cost missions will become increasingly important to NASA's exploration goals. Ideally teams of small, collapsible, light weight robots, will be conveniently packed during launch and would reliably separate and unpack at their destination. Such robots will allow rapid, reliable in-situ exploration of hazardous destination such as Titan, where imprecise terrain knowledge and unstable precipitation cycles make single-robot exploration problematic. Unfortunately landing lightweight conventional robots is difficult with current technology. Current robot designs are delicate, requiring a complex combination of devices such as parachutes, retrorockets and impact balloons to minimize impact forces and to place a robot in a proper orientation. Instead we are developing a radically different robot based on a "tensegrity" structure and built purely with tensile and compression elements. Such robots can be both a landing and a mobility platform allowing for dramatically simpler mission profile and reduced costs. These multi-purpose robots can be light-weight, compactly stored and deployed, absorb strong impacts, are redundant against single-point failures, can recover from different landing orientations and can provide surface mobility. These properties allow for unique mission profiles that can be carried out with low cost and high reliability and which minimizes the inefficient dependance on "use once and discard" mass associated with traditional landing systems. We believe tensegrity robot technology can play a critical role in future planetary exploration

    Dynamic Characterisation of the Head-Media Interface in Hard Disk Drives using Novel Sensor Systems

    Get PDF
    Hard disk drives function perfectly satisfactorily when used in a stable environment, but in certain applications they are subjected to shock and vibration. During the work reported in this thesis it has been found that when typical hard disk drives are subjected lo vibration, data transfer failure is found to be significant at frequencies between 440Hz and 700Hz, at an extreme, failing at only Ig of sinusoidal vibration. These failures can largely be attributed to two key components: the suspension arm and the hard disk. At non-critical frequencies of vibration the typical hard disk drive can reliably transfer data whilst subjected to as much as 45g. When transferring data to the drive controller, the drive's operations are controlled and monitored using BIOS commands. Examining the embedded error signals proved that the drive predominantly failed due lo tracking errors. Novel piezo-electric sensors have been developed to measure unobtrusively suspension arm and disk motion, the results from which show the disk to be the most significant failure mechanism, with its First mode of resonance at around 440Hz. The suspension arm movement has been found to be greatest at IkHz. Extensive modelling of the flexure of the disk, clamped and unclamped, has been undertaken using finite element analysis. The theoretical modelling strongly reinforces the empirical results presented in this thesis. If suspension arm movement is not directly coupled with disk movement then a flying height variation is created. This, together with tracking variations, leads to data transfer corruption. This has been found to occur at IkHz and 2kHz. An optical system has been developed and characterised for a novel and inexpensive flying height measurement system using compact disc player technology

    Super Ball Bot - Structures for Planetary Landing and Exploration

    Get PDF
    Small, light-weight and low-cost missions will become increasingly important to NASA's exploration goals for our solar system. Ideally teams of dozens or even hundreds of small, collapsable robots, weighing only a few kilograms a piece, will be conveniently packed during launch and would reliably separate and unpack at their destination. Such teams will allow rapid, reliable in-situ exploration of hazardous destination such as Titan, where imprecise terrain knowledge and unstable precipitation cycles make single-robot exploration problematic. Unfortunately landing many lightweight conventional robots is difficult with conventional technology. Current robot designs are delicate, requiring combinations of devices such as parachutes, retrorockets and impact balloons to minimize impact forces and to place a robot in a proper orientation. Instead we propose to develop a radically different robot based on a "tensegrity" built purely upon tensile and compression elements. These robots can be light-weight, absorb strong impacts, are redundant against single-point failures, can recover from different landing orientations and are easy to collapse and uncollapse. We believe tensegrity robot technology can play a critical role in future planetary exploration

    System data communication structures for active-control transport aircraft, volume 2

    Get PDF
    The application of communication structures to advanced transport aircraft are addressed. First, a set of avionic functional requirements is established, and a baseline set of avionics equipment is defined that will meet the requirements. Three alternative configurations for this equipment are then identified that represent the evolution toward more dispersed systems. Candidate communication structures are proposed for each system configuration, and these are compared using trade off analyses; these analyses emphasize reliability but also address complexity. Multiplex buses are recognized as the likely near term choice with mesh networks being desirable for advanced, highly dispersed systems

    Topobo : a 3-D constructive assembly system with kinetic memory

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2004.Includes bibliographical references (p. 114-116).We introduce Topobo, a 3-D constructive assembly system em- bedded with kinetic memory, the ability to record and playback physical motion. Unique among modeling systems is Topobo's coincident physical input and output behaviors. By snapping together a combination of Passive (static) and Active (motorized) components, people can quickly assemble dynamic biomorphic forms like animals and skeletons, animate those forms by pushing, pulling, and twisting them, and observe the system repeatedly play back those motions. For example, a dog can be constructed and then taught to gesture and walk by twisting its body and legs. The dog will then repeat those movements and walk repeatedly. Our evaluation of Topobo in classrooms with children ages 5- 13 suggests that children develop affective relationships with Topobo creations and that their experimentation with Topobo allows them to learn about movement and animal locomotion through comparisons of their creations to their own bodies. Eighth grade science students' abilities to quickly develop various types of walking robots suggests that a tangible interface can support understanding how balance, leverage and gravity affect moving structures because the interface itself responds to the forces of nature that constrain such systems.by Hayes Solos Raffle.S.M

    Corseto: A Kinesthetic Garment for Designing, Composing for, and Experiencing an Intersubjective Haptic Voice

    Get PDF
    We present a novel intercorporeal experience - an intersubjective haptic voice. Through an autobiographical design inquiry, based on singing techniques from the classical opera tradition, we created Corsetto, a kinesthetic garment for transferring somatic reminiscents of vocal experience from an expert singer to a listener. We then composed haptic gestures enacted in the Corsetto, emulating upper-body movements of the live singer performing a piece by Morton Feldman named Three Voices. The gestures in the Corsetto added a haptics-based \u27fourth voice\u27 to the immersive opera performance. Finally, we invited audiences who were asked to wear Corsetto during live performances. Afterwards they engaged in micro-phenomenological interviews. The analysis revealed how the Corsetto managed to bridge inner and outer bodily sensations, creating a feeling of a shared intercorporeal experience, dissolving boundaries between listener, singer and performance. We propose that \u27intersubjective haptics\u27 can be a generative medium not only for singing performances, but other possible intersubjective experiences

    Cyber-Physical Systems: A Model-Based Approach

    Get PDF
    In this concise yet comprehensive Open Access textbook, future inventors are introduced to the key concepts of Cyber-Physical Systems (CPS). Using modeling as a way to develop deeper understanding of the computational and physical components of these systems, one can express new designs in a way that facilitates their simulation, visualization, and analysis. Concepts are introduced in a cross-disciplinary way. Leveraging hybrid (continuous/discrete) systems as a unifying framework and Acumen as a modeling environment, the book bridges the conceptual gap in modeling skills needed for physical systems on the one hand and computational systems on the other. In doing so, the book gives the reader the modeling and design skills they need to build smart, IT-enabled products. Starting with a look at various examples and characteristics of Cyber-Physical Systems, the book progresses to explain how the area brings together several previously distinct ones such as Embedded Systems, Control Theory, and Mechatronics. Featuring a simulation-based project that focuses on a robotics problem (how to design a robot that can play ping-pong) as a useful example of a CPS domain, Cyber-Physical Systems: A Model-Based Approach demonstrates the intimate coupling between cyber and physical components, and how designing robots reveals several non-trivial control problems, significant embedded and real-time computation requirements, and a need to consider issues of communication and preconceptions

    Event and Time-Triggered Control Module Layers for Individual Robot Control Architectures of Unmanned Agricultural Ground Vehicles

    Get PDF
    Automation in the agriculture sector has increased to an extent where the accompanying methods for unmanned field management are becoming more economically viable. This manifests in the industry’s recent presentation of conceptual cab-less machines that perform all field operations under the high-level task control of a single remote operator. A dramatic change in the overall workflow for field tasks that historically assumed the presence of a human in the immediate vicinity of the work is predicted. This shift in the entire approach to farm machinery work provides producers increased control and productivity over high-level tasks and less distraction from operating individual machine actuators and implements. The final implication is decreased mechanical complexity of the cab-less field machines from their manned counter types. An Unmanned Agricultural Ground Vehicle (UAGV) electric platform received a portable control module layer (CML) which was modular and able to accept higher-level mission commands while returning system states to high-level tasks. The simplicity of this system was shown by its entire implementation running on microcontrollers networked on a Time-Triggered Controller Area Network (TTCAN) bus. A basic form of user input and output was added to the system to demonstrate a simple instance of sub-system integration. In this work, all major levels of design and implementation are examined in detail, revealing the ‘why’ and ‘how’ of each subsystem. System design philosophy is highlighted from the beginning. A state-space feedback steering controller was implemented on the machine utilizing a basic steering model found in literature. Finally, system performance is evaluated from the perspectives of a number of disciplines including: embedded systems software design, control systems, and robot control architecture. Recommendations for formalized UAGV system modeling, estimation, and control are discussed for the continuation of research in simplified low-cost machines for in-field task automation. Additional recommendations for future time-triggered CML experiments in bus robustness and redundancy are discussed. The work presented is foundational in the shift from event-triggered communications towards time-triggered CMLs for unmanned agricultural machinery and is a front-to-back demonstration of time-triggered design. Advisor: Santosh K. Pitl
    • …
    corecore