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Automation in the agriculture sector has increased to an extent where the accompanying 

methods for unmanned field management are becoming more economically viable. This 

manifests in the industry’s recent presentation of conceptual cab-less machines that 

perform all field operations under the high-level task control of a single remote operator. 

A dramatic change in the overall workflow for field tasks that historically assumed the 

presence of a human in the immediate vicinity of the work is predicted. This shift in the 

entire approach to farm machinery work provides producers increased control and 

productivity over high-level tasks and less distraction from operating individual machine 

actuators and implements. The final implication is decreased mechanical complexity of 

the cab-less field machines from their manned countertypes. 

An Unmanned Agricultural Ground Vehicle (UAGV) electric platform received a 

portable control module layer (CML) which was modular and able to accept higher-level 

mission commands while returning system states to high-level tasks. The simplicity of 

this system was shown by its entire implementation running on microcontrollers 

networked on a Time-Triggered Controller Area Network (TTCAN) bus. A basic form of 

user input and output was added to the system to demonstrate a simple instance of sub-



 

 

system integration. In this work, all major levels of design and implementation are 

examined in detail, revealing the ‘why’ and ‘how’ of each subsystem. System design 

philosophy is highlighted from the beginning. A state-space feedback steering controller 

was implemented on the machine utilizing a basic steering model found in literature.  

Finally, system performance is evaluated from the perspectives of a number of disciplines 

including: embedded systems software design, control systems, and robot control 

architecture. Recommendations for formalized UAGV system modeling, estimation, and 

control are discussed for the continuation of research in simplified low-cost machines for 

in-field task automation. Additional recommendations for future time-triggered CML 

experiments in bus robustness and redundancy are discussed. The work presented is 

foundational in the shift from event-triggered communications towards time-triggered 

CMLs for unmanned agricultural machinery and is a front-to-back demonstration of time-

triggered design.
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Chapter 1   Introduction 

Automating agricultural tasks for efficient food, fiber, and fuel production is one of the 

ways to address the demands of a rapidly increasing world population which is set to 

reach 9.1 billion people by 2050. Required food production increases could be up to 60 

percent of current production rates according to one estimate (Wise, 2013). Most of this 

increase is expected to occur in densely populated areas, and in still-developing countries 

of today (“FAO’s Director-General on How to Feed the World in 2050,” 2009). The Food 

and Agriculture Organization of the United Nations predicts a 70 percent increase in 

production demand as newly developed nations gain an increased affordability of meats 

for regular dietary consumption (U.N. Food and Agriculture Organization, 2009). 

Conventional row-crop agriculture has adapted well to its own automation and field 

management techniques for productivity gains. Commercial equipment manufacturers 

continue to develop and sell machinery on the basis that the producer’s productivity is a 

function of tractor size, power take off capacity, and auto-steering technologies of the 

machinery (Klopfenstein, 2016; Zhang and Pierce, 2016). Auto-steer retrofit kits, third-

party real-time kinetic global positioning system (RTK-GPS) receivers, and controller 

area network (CAN) bus monitors enable automation of less-popular machinery products 

so that many other producers can enjoy similar benefits, but a strong presence of these 

methods and machines remains to be seen in developing nations. 

Moving towards increased production in developing nations means restructuring the crop 

production automation methods where fields are smaller, hills are steeper, and the fuel is 

costly (Blackmore et al., 2008; Jensen et al., 2014; Katupitiya et al., 2007). In the push 
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for productivity however, the power output and weight of tractors has grown to where 

long term effects of soil compaction are negatively affecting yield (Billman et al., 2012; 

Klopfenstein, 2016). The overall approach to in-field food production may have to move 

towards a producer’s supervisory role over multiple, smaller machines performing field 

tasks in a coordinated and cooperative manner (Billman et al., 2012; Zhang et al., 2016). 

The cost benefits and productivity increases in using multiple, smaller autonomous 

machines for field tasks has been identified (Blackmore, Have, et al., 2002; Fountas et al., 

2007). The necessary system architectures and requirements have been proposed and 

presented (Biber et al., 2012; Brooks, 1986; Jensen et al., 2014; Pitla, 2012; V. Silva et 

al., 2006). These next-generation machines have smaller, lighter frames to reduce soil 

compaction and treats field tasks as scalable cooperative operations (Blackmore et al., 

2004, 2008). This enables the productive execution of any cooperative field-task defined 

by the number of machines required, and the defined deadlines for task completion. 

This evolution of agricultural machinery requires consideration of past agricultural 

machinery design. Much of the distributed control architecture of modern agricultural 

machinery was derived from those found in other industries and determining the next 

generation of agricultural machine design will likely be a matter of adopting methods 

found in similar places (Zhang et al., 2016). To begin with, the introduction of distributed 

electronic controllers on tractors rapidly revealed the need to standardize the 

communication infrastructure. The CAN bus became the communications link layer of 

choice, and the development of ISO 11783 as an extension to SAE J1939 enabled 
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widespread interconnect usability between differing tractor and implement manufacturers 

(Zhang et al., 2016, p. 104).  

The standardization of on-vehicle communications ushered the beginning of data-driven 

analysis of agricultural machinery and field tasks. Tractor characterization and testing is 

performed regularly (Marx et al., 2015; Pitla et al., 2014, 2016). The methods for data 

collection and interpretation have matured to where inexpensive 3rd party CAN hardware 

solutions are able to capture on-vehicle datasets (Darr, 2012; Marx et al., 2016). 

These distributed-controller architectures are customarily considered in the study of 

cyber-physical systems – where computer systems are tightly coupled to physical 

systems, and such control architectures are matured enough to where entire CAN bus 

networks are easily implemented with inexpensive hardware (Darr et al., 2005; Jadlovska 

et al., 2016). As both the number of electronic controllers on tractors and system 

complexity increases along with the necessary added constraints in safety and real-time 

requirements of autonomous heavy machinery, it becomes more fitting to classify these 

automated agricultural machines as cyber-physical systems (CPSs) (Herlitzius, 2017; 

Jacobs et al., 2017; Rad et al., 2015). The disciplines and methods used in the treatment 

of CPSs therefore, becomes more and more relevant to modern agricultural machinery. 

Simulation of a CAN-based tractor done by Hofstee and Goense (1999) carries a number 

of characterization similarities to the CPS architecture developed by Bae et al. (2015) for 

an aerospace control application. Relatively recent reviews of CPS architecture and 

applications include considerable mention of applications in agriculture systems (Ahmed 

et al., 2013; Hu et al., 2012). Center pivot irrigation systems are becoming further 
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instrumented with sensor networks, and modeled as CPSs (Dong et al., 2013; A. Silva 

and Vuran, 2010). Literature that exposes realistic scenarios where tractors can be 

characterized as CPSs include steering controllers by Bell et al. and Elkaim et al. (1998, 

1997). The second-order system modeling and control by Darr (2004, 2005) shows how 

small modifications to older, less instrumented machines enables a tight coupling 

between the physical mechanics of the machine and the computational resources – 

making a CPS. 

The CAN bus is commonly found in general-purpose (non-agriculture related) 

autonomous robot architectures (V. Silva et al., 2006). This makes modern tractors even 

stronger candidates for rigorous CPS treatment. Investigations of custom-built 

autonomous agricultural robots reveals a continued implementation of system backbones 

as CAN buses as seen in the beans harvester by Saito et al. (2013), and the crop row 

navigator by Godoy et al. (2010). Both machines are excellent candidates for CPS 

analysis. 

Real-time system safety and reliability of distributed agricultural systems is rarely 

considered in the context of agricultures’ unique operating challenges and conditions - 

likely since the distributed control methods tend to lag behind other distributed system 

research fields. However, the methods and considerations for distributed system safety 

are well published. Fault tolerance was formally outlined by Kopetz (1995) – from an 

automotive background. Design validation of distributed machines was discussed by 

Lundin et al. (1996) and a “High Assurance” software engineering workflow for 

distributed real-time CPSs was presented by Hissam et al. (2015). Finally, an excellent 
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overview a real-time distributed control system is outlined by Thompson et al. (1999), for 

a large engine. These discussions are not isolated instances of distributed systems design 

since they each include, or assume the inclusion of a CAN bus, or a CAN bus-like 

communications medium as the system backbone. These same methods are portable to 

the increasingly complex autonomous robots being developed in agricultural field robots. 

The next step in autonomous agricultural machinery is the establishment of a time-

triggered communications medium to increase bus efficiency and determinism. Further, 

as an effort to reduce message latency and bus design constraints. Likely link-layer 

protocol candidates for this design include time-triggered CAN (TTCAN), time-triggered 

flexible date rate CAN (FD-TTCAN), and Flexray (Zhang et al., 2016, pp. 104–105). 

Benefits of time-triggered communication architectures in machinery control systems 

becomes evident after a short overview analyzing event-triggered CAN bus shortcomings 

and the associated system design problems that result. These are exceptionally outlined 

by Al Saadi (2013) and Juanole, et al. (2005), and direct comparisons of event-triggered 

to time-triggered systems are both in-depth and ubiquitous (Albert, 2004; Amir and Pont, 

2013; Ataide et al., 2006; Cena et al., 2005; Leen and Heffernan, 2002). The case for 

message scheduling (which is the basis of time-triggered communications) reveals a great 

deal of literature that explores the methods which provide the system designer the 

communications assurances desired in complex systems.  

Scheduling analysis in real-time system design carries over from task scheduling in 

computer systems, to distributed communications systems as the communications bus is 

treated analogous to a central-processing unit (CPU) - a shared resource that only one 
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system component has access to at any given point in time. Rate-monotonic 

schedulability analysis was demonstrated by Liu and Layland (1973), and Y.T. Leung 

and Whitehead (1982), where each task (message) occurrence frequency was treated as 

an unchanging system requirement. Earliest-deadline-first methods described by Meschi 

(1996) were applied to CAN bus communications by several outstanding papers that 

prove the schedulability of a system with defined message deadlines (Fuster et al., 2005; 

Pedreiras and Almeida, 2002; Shoukry et al., 2011). The violation of priority-based ID-

field message arbitration to the CAN bus by some CAN controller hardware 

implementations was demonstrated by Davis et al. (2011), and discussed in texts by 

Lawrenze (1997), and Di Natale et al. (2012). Statistical and stochastic CAN message 

latency measurement methods have also been presented (Di Natale et al., 2012; Nolte et 

al., 2002; Rodríguez-Navas et al., 2003). Effects of component failure and the “babbling 

idiot” problem are outlined by Lari et al. (2007), and Kopetz (1995).  

A variety of time-triggered message scheduling techniques are described and 

demonstrated by a set of particularly helpful papers: Schmidt and Schmidt (2007) 

described the design of message scheduling matrices and their variants. Short et al. 

(2016) presented a time-triggered messaging technique for enhanced fault tolerance under 

statistical analysis. Tenruh (2011) presented an optimal scheduling technique that 

minimizes message latency for both time-triggered and event-triggered messages. 

Weidong et al. (2006) helpfully demonstrates TTCAN message scheduling on an 

underwater vehicle in a very practical design example. Analogous to the worst-case 

execution time of a computational task, Xia et al. (2013) showed the worst-case 

transmission delay of an event-triggered message that participates in a time-triggered 
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messaging scheme. For very complex systems, Almeida and Fonseca (2000) presented a 

dynamic scheduling method that treats a large number of system requirements as 

schedule parameters to produce a dynamic run-time scheduling algorithm that handles 

both scheduled and sporadic messages.  

Comparing these in-depth CAN bus communication considerations with those found in 

the agricultural equipment sector is difficult. J1939 and ISO 11783 high-level protocols 

were developed under the assumption that the CAN bus is just another “link-layer” to the 

OSI communication model. This is an unfortunate presumption, one which is evident by 

the missing references to any of the message reliability and determinism concerns in 

common outlines and implementations of these standards. It is apparent that modern 

tractors are made with event-triggered messaging techniques only, with the only 

commonly-cited performance metric as bandwidth percentage – or “bus load” (Zhang et 

al., 2016, p. 104).  

Derivations, descriptions, and implementations of ISO 11783 for instance, entirely omit 

any mention of communication deadlines, real-time consideration, message latency, fault 

handling, or safety assurances (McKee et al., 1999; Oksanen et al., 2005; Speckmann and 

Jahns, 1999). This leaves system design engineers in the agricultural machinery sector 

with only an ‘intuition’ method for assigning message priorities and payloads in these 

event-triggered standards. This leaves systems engineers little or no assurances or proofs 

about the schedulability and worst-case message latencies for systems that can contain 

hundreds of unique message identifiers and consequent bus priorities.  
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Simulations of a CAN-based tractor system operating on ISO 11783 done by Hofstee and 

Goense (1999) reveal message “transfer times” between 6 mS and 70 mS as a function of 

bus load and CAN bus component arrangement. When system requirements such as 

worst-case message latency are not defined for the system messages, these results may 

not appear to be concerning. Though, as hard real-time requirements of tractors manifest 

as the machines become fully autonomous, these results manifest as high levels of jitter - 

insufficient for systems safety assurance and the required variability of the tasks and 

implements for the large variety of autonomous tractor uses. A formalized consideration 

of system safety is required for autonomous robots and general control systems 

(Blackmore, Have, et al., 2002; Juanole et al., 2005). 

There are a number of robot control architectures described for a subset of a tractor-

derived agricultural operations. For instance, some architectures focus on robot 

navigation, with a subset of them considering the needs of autonomous agricultural 

steering (Bakker et al., 2010; Blackmore, Have, et al., 2002; Brooks, 1986; Will et al., 

1998). Control architectures described by Eaton et al. (2005) and Katupitiya et al. (2007) 

focus rather on implement and manipulator control, allowing for the inclusion of a wide 

number of agricultural tasks to have reliable control loops on the CAN bus. 

Other control architectures consider broader uses for the general-purpose autonomous 

agricultural robot. Chan et al. (2014) specified a wide area network communications 

infrastructure and Blackmore and Fountas et al. (2002) focused on a software-based 

object-oriented approach to central system architecture. Pitla (2012) developed a scalable 
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and hierarchal architecture, distinguishing hardware tasks, software tasks, robot tasks, 

and robot group tasks. 

When it comes to real-time considerations, many agricultural robot architecture 

developments do not include the important, yet hidden details. Some architectures make 

no claims of real-time considerations at all (Biber et al., 2012; Brooks, 1986; Godoy et 

al., 2010; Jensen et al., 2014; Saito et al., 2013). Other system descriptions include 

mentions of real-time communication mediums but do not specify messages, schedules, 

or system deadlines (Chan et al., 2014; V. Silva et al., 2006). There are a few agricultural 

system descriptions that include the system messages, but use an event-triggered 

communications scheme – which removes possibility for the inclusion of a messaging 

schedule (Pitla, 2012; Wei et al., 1998). 

Fortunately, within a majority of these architectures and robot descriptions, a common 

low-level control layer is consistently found. This system abstraction layer assumes 

closed-loop management of machine actuators and the capacity for high-speed sensor 

interfacing. This is typically described as a subset of the CAN bus network components 

that transmit sensor data to the CAN bus, and receive control set-point commands from 

other components on or off the bus. Beyond this level of description, this layer of system 

design (perhaps the most important to get ‘right’) is not commonly described and 

explained in detail – especially in the descriptions of agricultural robots. A very useful 

exception to these missing system details is found in the autonomous underwater vehicle 

by (Weidong et al., 2006) - which, unfortunately, is not a system typically used in the 

realm of agriculture. 
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Time-triggered communications in the lowest layer of proposed autonomous agricultural 

robot architectures have not been detailed and presented to the knowledge of the author. 

This component will be vital for a safe, and modular set of agricultural automation 

machines that operate as cyber-physical systems for the efficient and cost-effective 

increase of global agricultural production. 

This thesis is an exploration into the practical implementation of a time-triggered 

communications networked control system on an unmanned agricultural ground vehicle 

(UAGV). A number of the chapters are high-level overviews of topics for the agricultural 

mobile robotics researcher to become familiar with. This is an effort to accelerate the 

researcher’s perspective of a research field which tends to be two or three steps ahead of 

the current Agricultural and Biological Systems Engineering curriculum. 

1.1 Thesis Objectives 

1) Develop and demonstrate a control module layer on an inter-row agricultural robot 

(Chapter 2) 

2) Explain problems addressed by real-time system design (Chapter 3) 

3) Provide a background of CAN bus system design (Chapter 4) 

4) Introduce the UAGV and describe the development of its components (Chapter 5) 

5) Develop and demonstrate the hardware and software of the TTCAN communications 

protocol (Chapter 6) 

6) Design and demonstrate a basic state space control system on the UAGV with TTCAN 

Control Module Layer (Chapter 7) 
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Chapter 2   Event - Triggered Control Module Layer for 

Autonomous Inter-row Navigation during GPS Outages 

2.1 Introduction and Objectives 

Variable-rate precision agriculture techniques can increase the efficiency of material 

application on crops. Nitrogen, water, and herbicide applications use spatially sampled 

field data from remote sensing imagers on satellites and unmanned aerial vehicles 

(Sowers et al., 1994). The limitations of aerial imagery have been identified and remains 

as a bottle neck to the spatial resolution of field data. Typical pixel resolutions from 

image-based remote sensors are insufficient for plant-by-plant analysis (Moran et al., 

1997). Chemical content index derivation (NDVI, red-edge, etc.) relies on the absence of 

cloud cover, and a sufficiently developed crop canopy to be useful. Finally, soil-centered 

indices are difficult to obtain through late-stage crop canopies, requiring instrumentation 

below the canopy or in direct contact with sub-canopy soil.  

These imagery limitations reveal a level of crop sampling that never reaches 

consideration of the individual plant or of high resolution soil data during late stages of 

crop development. Consider the issue of plant spacing variation as an example. Corn 

yield models such as the one developed by Martin et al (2012) utilizes plant-by-plant 

spacing as input. Plant spacing is important in this model, as experiments done from 1966 

to present show that high variation in plant positioning negatively correlates to the yield 

of the crop and positively correlates to yield variation of the crop’s individual plants 

(Erbach et al., 1972; Krall et al., 1977; Lauer and Rankin, 2004; Mead, 1966; Soman et 

al., 1987; Thompson et al., 1999). These experiments used data collected by hand-made 
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measurements, which limited the number of samples taken. The development of the 

model by Martin et al. (2012) came from data collected from bicycle-mounted optical 

sensors which were pushed by a researcher through crop rows. 

As discussed in Chapter 1, agricultural data collection systems are strong candidates for 

machine automation. Larger fields could be sampled entirely and more often if the 

relevant instrumentation is mounted to an autonomous robot. One such instrument for 

precision spacing measurement developed by Shi et al. (2013) is a strong candidate for 

automation. In device experiments, only two experiment trials were used for instrument 

validation on a single 10 meter long corn row of 50 plants. A much stronger case for 

experiment validation is made by considering the additional number of corn plants that 

could be sampled by a ground robot that can drive past every plant in the field – The 

resulting statistical analysis would benefit from the much larger count of plant spacing 

samples. 

            

Figure 2.1 – Data collection cart and plant spacing data (Shi et al., 2013) 
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An autonomous machine capable of carrying sub-canopy crop sensors and instruments 

should be able to navigate crop rows in the presence of unreliable global positioning 

system reception. Overhang of the crop canopy in particular can easily be enough to 

interfere with field navigation instrumentation - preventing GPS-based navigation and the 

dependent steering algorithms from functioning properly. An additional requirement for 

such a machine would be the ability of the system to correct itself after unforeseen 

disturbances from the environment. If the vehicle is relatively lightweight, driving over 

ordinary dirt clods in its path is enough to suddenly change the robot’s pose, which can 

frustrate a state estimator and controller. This makes modeling such a system very 

difficult. The physical coupling between the machine and the uneven terrain includes 

very strong system disturbances that make it difficult to account for them. A row-

navigating robot can minimize these effects by using frame stabilization mechanisms 

such as a suspension system – either passive or active.    

The challenging environment of the single crop row represents the second great challenge 

to reliable robot operation in the field when coupled with considerations for reliability of 

GPS signaling during sub-canopy navigation. Ultimately, urban, indoor, and agricultural 

environments present navigation limitations of localization sensors that rely upon GPS 

satellites or the presence of steady lighting conditions. The addition of supplementary 

navigation mechanisms for improved navigation reliability of agricultural robots is 

recommended, and such implementations should be attempted while remaining sensitive 

to system costs (Tillett et al., 1998). 
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Objectives: 

Develop and demonstrate a control module layer on an inter-row agricultural robot (from 

Section 1.1). 

1) Explore the feasibility of short-term crop row navigation without available GPS input 

2) Develop a low-cost supplementary robot steering method for autonomous crop row 

navigation during GPS outages 

3) Present simplified control plant model for navigation control 

4) Demonstrate controllability of the controller model in a crop row 

2.2 Materials and Methods 

 Drive Chassis 

The drive platform (Figure 2.2) of the robot was a differentially driven set of 6 wheels 

with an aluminum frame and DC motors for each wheel. The platform dimensions were 

12 x 18 inches. Each motor-wheel assembly had a clamp spring for added suspension. 

The intent was to choose a platform that keeps the on-board crop-row sensing 

instrumentation stable during row navigation. Keeping the instrumentation steady was 

found to be important for accurate distance measurements of the row. Dirt clods, puddles, 

and pivot tracks are among the anticipated obstacles and disturbances to the controller. 

The platform was purchased from an internet-based vendor and assembled with 

additional hardware for mounting sensors and controllers.  
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Figure 2.2 - Dagu Wild Thumper Chassis (DAGU Robotics, Zhongshan City, China) 

Additional hardware installed on the chassis included a front bumper, a leaf guard ring, 

and mounting bracket for aiming the distance sensors. These parts were constructed from 

aluminum stock. The leaf guard (Figure 2.3) was particularly necessary to enforce a 

lower limit to the distances measured by the sensors, which would otherwise be exceeded 

if leaves were allowed to hang immediately in front of the sensor apertures. The sensors 

were pointed 45 degrees forward, across the chassis center such that their respective lines 

of sight intersected 7 inches in front of the chassis. This alignment was achieved via the 

visible laser dot generated by the sensors. 
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Figure 2.3 - Positioning and aiming of distance sensors behind leaf guard 

The top surface (Figure 2.4) of the chassis held mounts for the CAN controller circuit 

boards and a 433 MHz wireless general purpose input/output (GPIO) receiver (Adafruit 

Industries, NYC, NY). Compartments below the top surface housed a 13V 3-cell lithium 

battery (5000mAh 3S, Turnigy, Hong Kong, CN), a power unit, two DC motor drivers 

(Victor SP, Vex Robotics, Greenville, TX), and a voltage divider to reduce the sensor 

output voltages to safe levels for the CAN node analog input pins. The power unit 

supplied a regulated 24VDC to the distance sensors and 5V to the CAN nodes. Figure 2.4 

also depicts a CAN bus / power pigtail at the rear of the chassis for connecting a CAN 

message logging device (Memorator, Kvaser Inc., Mission Viejo, California). 
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Figure 2.4 – Completed CAN bus system mounted on chassis 

 Control Model 

Differential steering is the heading adjustment method of a vehicle by commanding a 

difference in wheel rotation rates between the left and right side wheels. Small mobile 

robots benefit from such simplified steering mechanisms that reduce the moving parts 

count, which in turn reduces the system complexity and cost. By simply commanding a 

speed difference, the robot can be steered left or right. This design benefit comes at the 

cost of complex system dynamics for vehicles with four or more wheels.  

Kinematic models assume a constant center of rotation to the chassis, which in reality is 

highly variable depending on a number of system states that change quickly, including 

the coefficient of friction between each tire and the ground, the incline angle of the 

chassis, and the looseness of the soil under the machine. The center of rotation is further 
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complicated by the design of the chassis wheels (Figure 2.2), where the middle axle of 

the machine is mounted lower – further away from the bottom of the chassis. This is an 

effort to guarantee that the middle axle is always in contact with the ground. This also 

causes only one of the two remaining axles (front or rear) to be able to strongly contact 

the ground at any time. This means the chassis behaves more similarly to two separate 4-

wheel differential drive systems (one towards the front of the chassis, the other towards 

the rear), where the shift between one set of 4 wheels to the other set can occur both 

frequently and randomly – depending on the distribution of weight on the robot and the 

robot’s angle of contact with the terrain. 

Dynamic models tend to rely on a constant center of mass of the vehicle, which is likely 

to change as the instrumentation payload of the robot changes. This would require a 

change to the system model and controller for every change of instrumentation on board, 

yielding a rather tedious workflow for the end operator of the robot. A more universal 

robot model could benefit the design of the steering controller and the end user. 

The model developed for inter-row navigation (Figure 2.5) is a kinematic model that 

assumes an operating environment of a crop stalk matured to at least 6 inches of stalk 

height - which is a superset of the use cases for a machine that initially operates 

underneath a crop canopy. Crop rows with short plants can benefit a robot with reliable 

GPS signal reception. The model treats the crop row as a pair of solid barriers to navigate 

the robot between – using two measured distances on either side of, and in front of the 

drive direction. The measured distances are 45 degrees forward from the perpendicular 

distance of the robot to the nearest plant in the row. This is a 1:1 coupling of row heading 
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state information and center-positioning state information. This dual-state coupling is 

possible because of the feedback direction required for each of the two states’ 

contribution to the error signal where: 

𝑒𝑟𝑟𝑜𝑟 = 𝐷𝑖𝑠𝑡𝑅𝑖𝑔ℎ𝑡 −  𝐷𝑖𝑠𝑡𝐿𝑒𝑓𝑡 (2.1) 

 

This effect is demonstrated with the step responses depicted in Figure 2.6, showing how 

an error signal derived from only heading error is of the same sign as the error signal 

resulting from only center positioning error. The error signal is then a superposition of 

the heading error and centering error. This is in effect, a system reduction from a two-

input, single output system to a single-input, single-output system. This simple single-

input, single-output model was paired with a proportional controller, and proportional-

integral controller to demonstrate controllability of the robot in the presence of large 

measurement disturbances. 

The inevitability of measurement noise due to inter-plant gaps and overhanging leaves 

was modeled as a strong disturbance with upper and lower bounds to its effect. That is, 

each measured distance presented to the feedback control algorithm was constrained 

between some minimum and maximum bounds. The “true” state is the sensor 

measurement of the barrier distance - when it is accurately aimed at the plant stalk. This 

instance is shown as Lest in Figure 2.5. A disturbance to this measurement is shown as 

Rest, where the sensor misreads the stalk location by reading overhanging leaves and 

objects beyond the barrier (crop row). 
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Figure 2.5 - Control Model including noisy crop row distance inputs 
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Figure 2.6 - Centering and heading error contributions to error signal generation 

 System Architecture 

A distributed system architecture was selected for the scalability it lends to system 

modification and maintainability, and for the simplification of the individual firmware 

tasks across the system. Figure 2.7 depicts the system’s organization across a CAN bus. 

The component interfaces are also shown. Interfacing all system components to the CAN 

bus also simplified access to central system variables being transmitted periodically to the 

bus, for both debugging and logging purposes. 

Left and right-side motor drivers were individually controlled by pulse-width modulation 

(PWM) on one CAN node. Distance sensors were interfaced to another CAN node with 

an analog signal proportional to the measured distance. A CAN message logger device 
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was connected to the bus for system analysis. Wireless control of the system was 

achieved with a pin toggle switch receiver (Adafruit Industries, NYC, NY) connected to 

the feedback node, which performed the feedback control calculations. The entire system 

performed control cycles at 200 Hz, sampling the distance sensors, generating a control 

error signal, calculating controller commands - actuating the motors in each cycle. 

 

Figure 2.7 - Row follower system architecture 

 System Components 

An overview of the system components is presented in an effort to describe 

implementation details that often get overlooked in the literature. 

    Microcontroller-based Controller Area Network (CAN) nodes 

To interface the system sensors and actuators to the centralized system, a microcontroller 

development board coupled to a CAN bus interfacing board was used (Figure 2.8). The 

development board is a low-cost microcontroller coupled with a target debugger device 

that works with computer-based software development environments to download and 

debug target firmware. This ST-Link debugger (ST Micro, Geneva, Switzerland) enabled 
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a USB interface for each CAN node, and simplified firmware development for each 

controller. The development boards were installed on a customized CAN interface board 

(CAN “sled”). The sled included screw terminals that connected microcontroller GPIO 

pins to external wiring for power, analog input, PWM output, and differential CAN bus 

signaling.  

     

Figure 2.8 – Board for interfacing to 1 x CAN, 2 x PWM outputs, and 2 x analog inputs 

Circuitry on the sleds included a CAN bus transceiver (Texas Instruments, Dallas, TX, 

USA) to translate microcontroller pin logic voltage levels (0V / 3.3V) to the differential 

signaling of the CAN bus (0V / 1.65V / 3.3V), two LED indicators for visual system 

feedback, a serial USART connector for terminal messaging to a computer, and input pin 

protection circuitry for two analog input pins on the microcontroller (Figure 2.9). The 

protection circuitry limited the voltages presented to the microcontroller pin to prevent 

damage. The circuit included a low pass filter, a current limiting resistor, and a Schottky 

diode pair for re-routing negative voltages and voltages above 3.3V. 
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Figure 2.9 - The clamping filter for protection of the microcontroller ADC pins. 

Wiring for power and CAN bus connectivity on the robot chassis was simplified by 

routing the traces straight across the board, enabling a daisy-chain connection for each 

node. Since CAN bus signaling is normally a twisted-wire pair to reduce the effect of 

additive signaling noise, the CAN traces through the board were bordered with vias to 

reduce the traces’ susceptibility to noise generation and collection. Figure 2.10 highlights 

the routing paths through the CAN sled. 

 

 

Figure 2.10 - Pass-through buses for power and CAN bus "daisy-chaining" 
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    Sensors 

The distance sensors selected (Figure 2.11) operated on 24VDC, and provided an analog 

voltage output proportional to the distance to nearest object in the sensor’s narrow line of 

sight. The output voltage ranged from 0-10VDC, but was divided down to 0-3.3V to 

maximize the usable range of the microcontroller’s analog-to-digital converter. The 2:1 

ratio of the resistor values made the division of 3 simple to implement with 3 resistors of 

equal value. These sensors operated on optical wavelengths appropriate for outdoor use 

as demonstrated by Pitla et al (2008). The sensor CAN node sampled both analog signals 

of the sensors autonomously with a 12-bit analog-to-digital converter operating in line 

with a direct memory access controller. The sampling process and the sample transfer 

process were both in continuous operation at 250 Hz, triggered by a hardware timer. 

After the transfer of both analog samples was completed, an interrupt handler converted 

the samples to voltage units, and then to centimeter distance units with a calibration 

equation before transmitting the distances to the CAN bus in a single, two-byte message. 

The distance values transmitted to the CAN bus were saturated to 150 cm to simplify 

signal processing down the signal chain. 

 

Figure 2.11 - O1D100 by Ifm-efector, Inc. (Exton, PA) 20 to 1000 cm range 
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    Actuators 

The DC motor drivers were selected for their flexible compatibility with a large range of 

DC motors, as well as for their compact size. The DC motors included with the chassis 

kit were characterized by their 34:1 gearboxes and the 12VDC operation by the 

manufacturer, but the remaining motor characteristics were not provided. It was also 

found that the set of motors included with the chassis were highly variable in their 

behavior steady-state response to spin commands - responding to identical 12V PWM 

inputs with high variability of resulting rotation speeds under both minimum and 

maximum load. The three motors of each left and right side of the chassis were connected 

to a motor driver in parallel in an attempt to minimize the deviance effects of any single 

motor to the sum of the robot’s resulting left and right side speeds. 

 

Figure 2.12 - Victor SP, Vex Robotics, Greenville, TX, 60A Continuous, PWM input 

 Communications 

    Protocol 

An event-driven message passing protocol was selected for data transfer over the CAN 

bus. The protocol was highly procedural, where each of the steps of system operation 

were dependent on the step previous to it. Beginning at the distance sensor CAN node, an 
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internal microcontroller timer triggered an analog-to-digital (ADC) converter peripheral 

at a rate of 200 Hz. At each trigger, the ADC began a fast sampling process on the sensor 

output voltage which repeated 50 times. After each sample was collected, an internal 

direct memory access peripheral on the microcontroller transferred each ADC conversion 

to a buffer. After all 50 samples were transferred, an interrupt generated for the processor 

calculated the mean of the contents of the buffer. After the mean result was converted to 

distance units of centimeters, the interrupt concluded by packing the results to a CAN 

message and then finally sending the message to the CAN peripheral for transmission on 

the bus. This was done for each sensor channel, resulting in two CAN messages being 

transmitted from the sensor node. This conversion and transfer of data was selected to 

simplify the microcontroller’s software, which only configured the internal peripherals 

and then handled a single interrupt. This kept the microcontroller very responsive and 

deterministic in execution of its tasks. 

The feedback CAN node received the distance measurements from the CAN bus and 

began a filtering process to determine the system state and to calculate the corresponding 

control signal. This process happens in a low-latency interrupt that responds to the arrival 

of the distance CAN message itself. The results of the controller computation in turn 

immediately get transmitted to the CAN bus.  

The final step of the protocol is the reception of the control message by the motor CAN 

node, and the resulting actuation of the motors via modification of PWM pin duty cycles. 

This event-triggered mechanism allowed for low-latency, high frequency system 

operation. This topology resulted in a small amount of message jitter visible on the bus 
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via oscilloscope. The transmission of the control message to the motor node was 

dependent on an internal computation of state performed by the feedback node. The 

response of the feedback node was then directly proportional to the time it took to 

compute the results. The system performance in this mode was sufficient given the low 

number of system messages and simplicity of the controller firmware. A system cycle is 

shown in Figure 2.13, depicting the two distance sensor CAN messages followed by the 

feedback node’s control message. The repetition of this cycle is shown in Figure 2.14 at 

100 Hz, though 200 Hz was used for the final tests. 

 

Figure 2.13 - View of CAN bus communications protocol - microscale 
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Figure 2.14 - View of CAN bus communications protocol - macroscale 

    System messages 

The defined system messages carried sensor and control data between system controllers, 

and also provided access to central system variables useful for characterizing system 

behavior and performance measures. Only two messages between the three CAN 

controllers were required for corn row navigation (Figure 2.15, Figure 2.16). Since the 

three CAN nodes represent only a subsystem to a larger robot, minimal use of the CAN 

bus was sought to demonstrate the lightweight requirements of the system. A third 

message was defined as a re-transmitted combination of the first two in order to simplify 

the use of the CAN message logging device. The control model and therefore the 

controller CAN node required only two system variables for state estimation, the left and 

right distances measured by the sensor CAN node. 
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Figure 2.15 - Unsigned distance samples were transmitted in centimeters. 

 

Figure 2.16 - Estimator results and feedback commands control message. 

    Signal Processing Chain 

Distance estimation occurred for both distance samples to enable possible differences and 

biases between the two sensor responses. After the initial reception of the distance 

samples, they were processed through a conditional zero-order hold filter that passed the 

previous valid sample to its output, if the current sample was not deemed valid, by 

exceeding a maximum threshold, or by falling below a minimum threshold (Figure 2.17, 

Figure 2.18). This filtering technique relied on the assumption that the robot’s position 

could not deviate very far from the center of the crop row between 250 Hz distance 

samples. This allowed the controller to ignore abrupt changes to the distance signals 

caused by overhanging leaves and air gaps between plants. After providing samples that 

fell into an acceptable range of values, the samples were filtered with a single-
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dimensional Kalman exponential filter to smooth the distance samples. The filter was 

chosen for its computational simplicity and tuning methods, as well as the signal’s lack of 

identifiable frequency ranges to block or pass that conventional digital filters are 

designed around. 

 

Figure 2.17 - Filtered signals better represent left and right side distances to the crop 

 

Figure 2.18 – Signal flow for distance estimator and PI controller 

 Feedback control system 

    Differences between controllers 

The filtering mechanism provided a “true” estimate of the crop stalk distances, which 

enabled the easy inclusion of a proportional and proportional-integral feedback controller 
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for steering down a crop row. Both the input and output side of the controller was 

saturated to install a hard limit to the still-present effects of error spikes from gaps in the 

crop row. The gains of the controller were gaining empirically, as an accurate plant 

dynamic model was unavailable in mathematic terms of the distances as measured. 

Tuning the controller was performed assuming perfectly smooth rows to isolate effects of 

the filter from the performance of the controller.  

Smooth parallel barriers were used to guide the robot toward a step input for the 

controller to respond to, as shown in Figure 2.6. The row width started as 100 cm and 

stepped up to 130 cm. A proportional gain was derived from halving the gain from 

instances of controller oscillation. The proportional-only response is shown in Figure 

2.19, and the final proportional-integral controller with a reduced steady state input 

shown in Figure 2.20.  

 
Figure 2.19 - Proportional controller response to step input 
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Figure 2.20 - PI response to step input, showing decreased steady-state error 

 Experiment Design 

The conclusion of controller tuning led to the formal observation of navigation 

performance in both simulated and actual rows of corn stalks. Navigation runs on 

simulated corn rows occurred indoors and tested the distance filtering techniques on level 

terrain, and the outdoor tests characterized controller error under maximum 

environmental disturbances including plant gaps, overhanging leaves, and uneven terrain. 

Simulated corn rows were constructed with PVC poles mounted with semi-regular 8 inch 

spacing, where the row width was 30 inches and row length was 15 feet. The outdoor 

corn row was 30 inches wide, 75 feet long at 8 inch spacing.  
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Figure 2.21 - Experiment layout for noisy input tests 

2.3 Results and Discussion 

Testing the filtering on the distance samples occurred in the simulated corn rows, where 

the robot started with smooth barriers on both sides, then transitioned to the corn row and 

back into smooth barriers again. The tests were an indication of mean controller stability 

and mean error. Error was simply taken as the difference between the two filtered 

distance samples since there was no other positioning reference. Around 20% of the test 

runs in simulated corn drove the robot into the simulated corn plants, indicating 

navigation failure. The failures did not appear to come from controller instabilities 

however, but rather from long row sections with overhanging leafs on only one side of 

the robot. The failed runs only occurred at slower navigation speeds of 0.4 m/s (Figure 
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2.22, Figure 2.23). Faster runs at 0.8 m/s displayed no improvement to the error mean, 

but produced no failed tests (Figure 2.24). Mean errors were gathered from only the 

samples contained in the corn row, see 5 – 16 second interval of test in Figure 2.22. 

 

Figure 2.22 – Test at 0.8 m/s with 9.1 cm mean error 
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Figure 2.23 – Test at 0.8 m/s with 4.0 cm mean error 

 

Figure 2.24 – Test at 0.8 m/s with 7.9 cm mean error 
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All test runs performed in the corn field were done at 0.4 m/s, and allowed for much 

longer tests (Figure 2.25, Figure 2.26, and Figure 2.27). The mean successful navigation 

time in the field was 39 seconds before some unrecoverable state was reached. The 

addition of uneven ground and in-row weeds larger than the robot were causes of failed 

tests. The mean errors from field tests were not significantly larger than in those of the 

simulated corn rows. This is likely an effect of the longer lengths of the tests. 

 

Figure 2.25 – Field test at 0.4 m/s with 5.8 cm mean error 
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Figure 2.26 – Field test at 0.4 m/s with 8.4 cm mean error 

 

Figure 2.27 – Field test at 0.4 m/s with 5.0 cm mean error 
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2.4 Conclusions 

The sub-canopy crop row continues to be an incredibly challenging navigation and 

localization environment for robots sized for the task. The recommendation from Tillet et 

al (1998) for supplementary sensing mechanisms for the crop row stands as a navigation 

approach that demands further exploration into weights of cost, computational effort, and 

performance between differing supplemental sensing technologies. This experiment 

showed that a low-cost sensor installation with low computational resources can provide 

short-term row navigation control for a large variety of row-following machines during 

GPS signal outages. The value in this low-cost, low computation GPS supplement is in 

the ease of integration for any row-following machine, and the low impact on system 

computation and communication resources. Supplementary sensing mechanisms to 

explore further might include low-cost cameras for machine vision row sensing (low-

cost, high computational effort), 2D LIDAR sensors (high cost, high computational 

effort), and sensor platform stabilization gimbals for each of the sensors evaluated.  

The transition from research machines to commercially viable row-following robots will 

be marked by the successful integration of cost-sensitive components that provide robust 

localization supplements to GPS signaling in the challenging environment of the crop 

row. The benefits of the successful implementation of these technologies will propagate 

from yield management of crops to the advantage of the producer and then finally 

consumers everywhere. 

  



40 

Chapter 3   Real-Time and Cyber-Physical Systems 

3.1 Introduction 

Consideration of the following topics is required for a meaningful understanding of the 

materials and methods sections of the document. These outlining sections are a 

complimentary guide of topics rarely included in an agricultural and biological systems 

curriculum. Engineering is the study and development of systems. Biological and 

agricultural systems are a little unique however, in that they tend to be complicated 

combinations of multiple, distinguishable subsystems – usually characterized by the other 

engineering fields (mechanical, electrical, chemical, etc.). Most research in biological 

systems even requires use of electronic sensing mechanisms and computational tools for 

processing data. This makes the field uniquely interdisciplinary – requiring the researcher 

to possess knowledge from a number of other engineering disciplines to further the 

research. 

The research outlined in this thesis work is a part of the beginnings of an intersection of 

cyber-physical systems with the unique automation challenges in agriculture. The 

automation of agricultural machinery will continue to require more and more computing 

and signals knowledge as the demand for system integration, connectivity, and autonomy 

increases.  

A cyber-physical system is the marriage of a computer system with a physical one, where 

each closely influences the behavior of the other. An understanding of real-time systems, 

the CAN bus, and feedback control systems will make the methods in this thesis work 

meaningful to the reader. A majority of treatment will be given to real-time systems and 
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time-triggered CAN communications, since those are the topics least covered by the 

agricultural automation research literature. 

Objective:  

2) Elucidate problems addressed by real-time system design (from Section 1.1) 

3.2 Real-Time Systems 

Ordinarily, a system (some translation of input to output) can be characterized solely by 

the correctness of the system’s output. In computing systems, only the low abstraction 

layers (capacitances and transistors) are characterized by physical limitations. For 

instance, the switching time characteristic of a transistor is dependent on the parasitic 

gate capacitances determined by the device’s chemistry, geometry, and operating 

conditions. As long as this physical layer of a computing system is used within these 

switching time constraints (e.g. accounting for signal propagation delays), the abstraction 

layer is considered “correct”, and all of the resulting upper abstraction layers of the 

system can be characterized by ‘correctness factors’ that are not centered on physical 

constants or the passage of time. The combinational logic, the finite state machines, and 

higher-level digital devices built on the physical layer can be characterized by logical 

response only, independent of their physical implementation (Figure 3.1). 
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Figure 3.1 - Abstraction Layers of a Controlled System 

For example, the user of a word processing application pays no mind to the underlying 

digital systems of the machine, and does not much care if the response of the system to a 

keystroke is 2uS or 2mS. Even if the machine took a full 2 seconds to display the 

character, (which indeed, sometimes happens) the system is still considered ‘correct’ in 

its behavior. Some manner of input was given (‘J’ key pressed), and the correct 

corresponding letter ‘J’ was still printed on the screen for the user. 

This sort of system response variation is unacceptable in many other systems. How quick 

to respond should the ABS brakes on a vehicle be? How reliable should the emergency-
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stop switch on a surgical endoscope be? What if the actuators on an assembly line took 

too long to stop operation during an emergency stop scenario? Some systems need to be 

made with the passage of real-time (RT) in mind. A real-time system (RTS) is a system 

that needs to meet its deadline requirements, or else suffer serious system breakdown or 

cause other serious consequences. Designing an RTS is ensuring the system meets its 

goals in the time domain, usually in the form of deadlines. This is the re-acquaintance of 

the overall system with the passage of time, something otherwise only considered on the 

low-level, physical layers of the system. A real-time system is evaluated on the 

correctness of its outputs and on the timeliness of the results. The output of an RTS 

should be correct, though it should also be “guaranteed punctual” to the degree of the 

system requirements or deadlines. Real-time systems are known to be difficult to design, 

and just as difficult to verify and test. 

In the context of agricultural machinery automation, “correct” behavior can also be 

defined as more than just correct agricultural task operation. Considerations for system 

safety, reliability, responsiveness, and failure modes introduces a set of deadlines to be 

met for the system to be considered “correct” in its behavior. 

Deadlines are sometimes also imposed onto a system from the physical dynamics and 

constraints surrounding the system. The deadlines are therefore not necessarily easy to 

define, and validation of an RTS can be extremely difficult. System design tools are not 

always configured to enforce hard deadlines of a system under design. For example, the 

programming language of C does not even have any construct or inclination of the 
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progression of time. A C program can execute perfectly, producing correct output, and 

yet fail to produce the needs of the system’s overall intent as a result.  

Consider a handheld calculator that is always correct in the mathematical results it 

produces, but requires 4 seconds to compute a single addition operation, 8 seconds to 

produce multiplication results, and 2 hours to generate a sin(x) approximation. While the 

output of the device is indeed correct, the output is hardly “on time” from the user’s 

perspective. The entire purpose of using the device is nullified by its failure to be useful. 

The point of using a handheld calculator is to get correct answers, but also to get them at 

a speed that saves the user from having to put in the time to compute the same results by 

hand. A calculator needs to be engineered to contain the appropriate computational 

resources for the correct behavior of the entire system – including the user’s needs. 

There is an important distinction to be made: optimization of computation time is not 

equivalent to real-time awareness. One is an end, the other is a means. If systems 

engineers wanted to improve the handheld calculator described above, they might want to 

improve the execution time of the computational tasks. This could mean changing 

computation algorithms, branching instruction count reduction, or increasing system 

clock frequencies. The continuation of this process eventually convinces the engineer to 

simply replace the hardware with a 2.0 GHz central processing unit (CPU), and call the 

device finished - albeit the device might now cost $200 and be a vast waste of 

computational potential and electrical power. RTS design is not simply a matter of 

“throwing” better hardware at the problem; it is about meeting output deadlines for the 

usefulness and safety of the entire system.  
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3.3 Cyber-physical Systems 

A computing system classification that attempts to include “real time” as a parameter for 

correctness is a cyber-physical System (CPS). CPS study formalizes for the coupling 

between a computer and a physical process. Usually, a CPS has a physical process in a 

feedback loop (Figure 3.2). The computer and the physical process have an 

interdependence on the other for correct operation. 

 

Figure 3.2 - Very Simple Cyber-Physical System Architecture 

The physical process here could be a simple system of thermal dynamics, such as a boiler 

tank interfaced to a microcontroller with a temperature sensor and a heating element, or 

an amplifier with a well understood frequency response. Many physical systems 

however, are much more complex. Consider an ammonia manufacturing plant - a vast 

machine sitting on a square-mile of concrete, delicately wrapped in aluminum walls of a 

building. The entire plant might consist of several hundred sensors for temperature, flow, 

and pressure - and there might be just as many valves, switches, and motors used to act 

on the system. Without even considering the RT needs of the system, consider how a 

controller / computer might be able to interact with, sense, and control the machine’s 

manufacturing process. Should all the sensors and actuators be under the control of one 

centralized controller?  
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Surely it is clear that some physical systems are complex enough to be broken down into 

a number of subsystems – each with their own system dynamics. The ammonia plant as 

described, is not only physically spread out, but actually contains a number of sub-

processes connected together. This is a good reason to consider the use of a distributed 

cyber-physical system architecture. 

In many industrial applications, a distributed system architecture is used to handle many 

concurrent sub-processes in real-time. This allows the system to sense, manage, and 

control the highly variable and sometimes vast scales of differing system architectures. 

Distributing a RTS improves the scalability and maintainability of the end system. 

Distributed RTS (DRTS) architectures are widely found in manufacturing systems, 

process controllers, automotive and agricultural, robotics, marine, and aerospace systems 

(Lee et al., 2015). Figure 3.3 shows an example physical process with its various sub-

processes or subsystems coupled to a distributed computing system. The figure goes so 

far as to abstract away the physical coupling and dynamics that are possible between the 

processes’ various subsystems, as well as the dynamics of the actuators.  
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Figure 3.3 - More Realistic Cyber-Physical System 

This results in changes to the software developer’s approach to solving problems and 

designing systems. The changes include a new awareness of the system’s dependability, 

safety, failure modes, output delivery guarantees, process triggering, and predictability / 

determinism. To assist systems engineers in the implementation and validation of these 

features, a model for distributed RT systems is often necessary. Using the model outlined 

by Kopetz (2011, pp. 80-81), we see a distributed real-time system model which 

separates the computational resources (components) for each of the sub-processes and 

subsystems into one domain of concern, and the communication medium that transfers 

messages between components into a separate domain of concern (Figure 3.4). The 

model also abstracts away any of the physical processes that exist behind each of the 

system components. 
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Figure 3.4 - Distributed Real-Time System Model (Kopetz, 2011, p. 81) 

With the DRTS components and communication medium distinguished for separate 

consideration, the models’ interactions between the two domains of concern can be 

characterized. In this model, multicasting is a requirement for component communication 

(Kopetz, 2011, pp. 80–81). Each component is able to send a message to multiple 

receiving components in a single message broadcast or transmit event. This is analogous 

to a radio broadcast over the air (a communication medium), allowing anyone with a 

tuned radio (receiver component) to receive the message. The transmitting component 

has no knowledge of which other components actually received and accepted the 

message. This is a requirement for the model because multicasting enables an external 

entity (such as an engineer with a logic analyzer, or a message recorder) to see all system 

messages and interactions from the same place. A consequence of the transmitting 

component having no knowledge of the reception status of the message is the need for 

system components to be aware of the passage of “real-time” for the purposes of error 

detection. A component should use its awareness of real-time to determine the difference 
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between message transmission corruption and serious system errors, such as dead 

components or “babbling idiots” (Di Natale et al., 2012; Lari et al., 2007). 

An additional requirement for the models’ communication medium is unidirectional 

atomicity (Kopetz, 2011, p. 81). This supposes that each component is able to transmit a 

message without the dependence on a properly operating receiver (other components). 

The message should be transmitted without the help or permission of another component. 

Finally, the message is to be transmitted completely, or not at all. There should never be 

partly-transmitted messages that arrive on the communication medium. This means that 

once a component begins message transmission, no other components can interfere with 

the process or interrupt the transmission process in any way. If the communication 

channel is unable to handle more than one message transmission at a time, then message 

atomicity implies that no component can transmit while one component is currently 

transmitting. 

Consider an alternative means of connecting components: multiple communication 

mediums of which some are un-directional, and some bi-directional (Figure 3.5). Where 

would the systems engineer “look” in order to observe overall system behavior? It would 

be difficult to observe and understand the system when some component interactions are 

exclusive and operate under different rules and assumptions. If one component fails, an 

error chain is produced - making this system difficult to troubleshoot. 
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Figure 3.5 – Example Alternative to Distributed Real-Time Model 
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Chapter 4   Controller Area Network (CAN) 

4.1 Introduction 

The widespread use of the CAN bus in agricultural machinery warrants a description of 

the technology. The detail of the description here focuses on CAN from the perspective 

of its usability in controlled machinery. 

Objective: 

Provide a background for basic CAN bus system design (from Section 1.1) 

4.2 Controller Area Networking 

The message abstraction described by Kopetz (2011, p. 80) defines a set of requirements 

that enables the design of a reliable distributed real-time system (DRTS). The features 

described fit remarkably well with the Controller Area Network (CAN) bus, a centralized 

communications physical layer and link layer for harsh automotive environments. 

Developed in 1986 by Robert Bosch GmbH, the CAN bus has found its way into a large 

number of industries outside the automotive sector because of its low cost and many 

advantages as a communications medium. 

To move from the abstracted domain of systems characterization to an actual robot 

control system, the discussion must shift from communication mediums to CAN busses, 

messages to CAN frames, and from real-time system components to CAN nodes. The 

equivalencies between these is obvious as the CAN bus becomes understood. 

The backbone of many industrial real-time systems is the CAN bus. The CAN bus is a 

serial bus protocol ubiquitous to many automotive, industrial, and aerospace systems. 
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Being message-based, the CAN bus allows systems engineers to coordinate a number of 

subsystems (real-time components) of a larger system into performing a working singular 

function. The 2.0b CAN specification allows devices to arbitrate bits to the bus at a rate 

as high as 1 Mbps (Bosch GmbH, 1991). Since bits are the basic symbols on the CAN 

bus, one bit equals one baud. In a typical CAN bus, multiple nodes (real-time 

components) are connected to establish a network of devices that can communicate in a 

timely manner. The nodes are typically microcontrollers (MCUs) or field-programmable 

gate arrays (FPGAs) that interface to sensors, actuators, or communication bridges.  

The centralized bus can be thought of as a shared resource that can only be “possessed” 

or “owned” by one node at a time. That is, if a node has a message to transmit on the bus, 

it must wait for the bus to be “quiet”. This is strikingly analogous to the fixed-priority, 

non-preemptive scheduling technique known to the shared resource problem and the 

schedulability problem discussed in RT scheduling theory (Fuster et al., 2005; Meschi et 

al., 1996; Pedreiras et al., 2002), where the CPU is modeled as a shared resource that gets 

used by only one computational task at a time. In the case of the CAN bus, each node that 

holds ready data waits for a currently transmitting message to complete transmission, and 

further, waits 7 bit-quanta of time before trying to take hold of the bus. This is to force all 

nodes that are ready to transmit by this time, to begin a new transmission attempt 

concurrently - in the same instant. This allows one of the CAN buses’ more interesting 

features to solve this shared - resource problem. To best illustrate this, we closely 

examine the structure of the CAN message packet (Figure 4.1). 
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The standard CAN data frame is structured similarly to other serial protocols, with a 

header, payload, and data integrity checks at the back-end of the frame (Cyclic 

Redundancy Check, – CRC). One particular field of note in the CAN data frame is the 

identification (ID) field. This field is meant to identify the frame’s contents. This means 

that in the absence of a higher-layer protocol, the base CAN data frame contains no 

sender/receiver information. CAN IDs are source and destination agnostic. This 11/29 bit 

field will inform all system nodes about what the message contains, but it does not imply 

which node transmitted the message, and for which node(s) the message is intended. This 

means it is possible for two or more nodes to transmit messages of the same ID onto the 

bus, but this aggravates the shared resource problem and quickly causes Error Frames to 

appear on the bus. The reason why is highlighted in a description of the protocols’ bus 

contention solution. This is the CAN answer to the shared resource problem. 

 

Figure 4.1 – CAN Data Frame (Di Natale et al., 2012, p. 14) 

An important premise for understanding the bus contention process is that two or more 

CAN nodes with ready data frames for transmission are able to begin transmission at the 

same time, and often do. Seven bit-periods after the last message completes transmission 

(the inter-frame space), all nodes with transmission data ‘ready’ (since before or during 

the last message transmission) simultaneously begin the arbitration process. The 

arbitration process begins by the CAN Low line dropping to 0.3V (CAN High rises to 

5V) for one bit time quanta. This is the Start of Frame bit (SoF). When SoF is detected by 
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other nodes on the bus, the bus is now considered to be “taken”, and no other nodes make 

an attempt to transmit until the CAN frame transmission completes, and 7 more bit 

periods pass. Any node which becomes “ready” for data transmission after the SoF 

remains in a receiving-only state until the next inter-frame period completes.   

Supposing two or more contending nodes drop the SoF bit to the bus simultaneously, 

they each suppose that the CAN bus is possibly theirs to transmit on. This is not a bus 

error condition, and the arbitration continues on by each of the contending nodes 

asserting the bits of the ID field of the message they intend to transmit in most-significant 

bit first order (MSB). As each next significant bit of the message ID is driven to the bus, 

each of the contending nodes except one (the winner of the bus), eventually gives up its 

attempt drive bits onto the bus (Figure 4.2). Only one node completes transmission of the 

entire ID field. The process that causes this effect occurs on a very low hardware level. 
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Figure 4.2 – CAN Arbitration with ID Field Contention (Di Natale et al., 2012) 

Every time a node shifts out an ID bit to the bus, the underlying digital logic monitors the 

resulting state of the bus – checking that the bus state matches that of the bit driven 

forward. If the controller sees the bus voltages differ in this instant from what it ought to 

be, it assumes that another node is also trying to transmit its message ID. More 

specifically, each contending message is simultaneously arbitrated to the bus in MSB 

order, until an ID field’s “1” bit results in a bus at a “0” state, or a “0” bit in the message 

ID results in a “1” on the bus (Kopetz, 2011). 

Numerically, this means the message with an ID that contains the least 1’s in the most 

significant bits of the ID field wins the bus at the end of arbitration; that is, the 

contending CAN message with the lowest unsigned numerical value in the ID field wins 

the bus. So between two contending messages, the first message to attempt to drive a “1” 
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from the ID field on the bus, gives up arbitration and allows the message with the lower 

ID field to continue transmission.  

It should now be evident why two contending messages with identical IDs should cause 

an error on the bus, since the two messages are not guaranteed to contain the same data 

payload, while coming from two different CAN nodes. It ought to be clear that it is 

unwise to design a system where two or more nodes are allowed to transmit messages 

with identical ID fields. This is why some high-layer protocols such as SAE: J1939 

reserve some of the least significant bits (LSBs) of the ID field to designate unique 

source and destination node addresses defined by the systems engineer. The idea here is 

that the most significant bits (MSBs) determine bus priority (as per usual), but that 

contention is secondly determined by a field called PDU format (next MSBs), thirdly by 

the destination field, and lastly by the source address field (ISO:11783 Part III, and SAE 

J1939) in the LSBs place. This preserves the requirement for unique ID bit fields across 

all system-wide messages. 

Considering the ubiquitous occurrence of ISO: 11783 in agricultural systems, most 

systems manufacturers use only a subset of the protocols features and message types. 

From the perspective of an embedded systems developer, it is easy to see why. A typical 

web search for a J1939 stack in C returns proprietary software libraries with significant 

costs, both in funds and system memory. Some J1939 stacks are found to be as large as 

5kb. This likely contributes to the ‘partial’ adoption of these standards for resulting 

systems. Only a subset of the standards’ messages is typically found in use on a given 
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system - used alongside a number of proprietary messages developed by the 

manufacturer. 

The CAN communications state machine built into the node uses message ID fields for 

priority levels as a solution to the shared resource (bus) problem. By defining message 

IDs as an inherent possession of a unique priority for CAN bus ownership, the nodes can 

all agree on which contending message ultimately gets rights to the bus, and which 

messages have a wait to try again later. While this priority-based message arbitration is 

powerful, it only happens when two or more nodes drop the SoF bit within the same bit 

quanta (for a 250k bus, the nodes would have to drop SoF within the same 4 nS period). 

A system should not be designed to rely on this occurrence, since worst-case message 

transmission latencies become difficult to predict. Where there is a lack of system 

determinism, there is a lack of real-time system guarantees. Figure 4.3 demonstrates the 

difficulty of predicting the transport latency of message with ID 253 contending for the 

bus through Node A. 
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Figure 4.3 - Expanded demonstration of bus arbitration between multiple nodes 

 

With CAN message priority as a direct function of the ID field, the systems engineer 

could define relative priorities to messages which are planned for the bus. Though as will 

be pointed out, the message ID should identify the contents of the message’s data fields, 

and no more. These definitions are left up to the systems engineer. The inclusion of 

source and destination information if needed, should be encoded into the message data 

payload fields, and not the ID field. 

4.3 System Design Using Time-Triggered Controller Area Network 

It turns out there is a more systems-conscious approach to CAN bus management that 

does not involve reliance on data frame ID fields for access to the bus. One solution for 

increased bus determinism and reliability is a time-triggered (TTCAN) approach to CAN-
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based DRTS design. TTCAN was developed as an extension to the original CAN 

specification as ISO11898-4 (Lawrenz, 1997).  

Before understanding how time-triggered systems work, it’s helpful to examine the 

alternative “triggering” mechanisms used in modern CAN systems. There are at least two 

approaches to the design of a CAN bus that should be mentioned, and then avoided at all 

costs in a DRTS design. 

 Self-Triggered Systems 

The first of these is what could be called the “Blind Node Bus”, or the Self-Triggered 

System. With the use a CAN bus monitor, an examination of the message activity on a 

commercial CAN system reveals that most messages on the bus appear periodically, 

though not always with the same frequency. Some system messages may appear every 

100 mS, while others appear every 2 seconds. This might lead a human observer to 

suppose that each node is independently transmitting messages periodically on its own 

time-base, or whenever new data is ready for the bus. This would, after all, be possible 

since bus collisions are avoided with the message arbitration protocol.  

One attempt at producing such behavior might be the following pseudocode (Figure 4.4) 

in the node’s firmware. 



60 

 

Figure 4.4 - Blind Node Pseudocode 

The Blind Node firmware relies heavily on the message arbitration process, and assumes 

that each message on the bus has a unique ID field (no other nodes ever try to transmit 

using the same ID). In addition, this approach to message transmission is not network-

aware, nor is it real-time aware. The firmware creates node behavior that is completely 

agnostic to other network activities, and is unable to enforce a deterministic reception of 

its message by the intended receiving node(s). This approach also includes no method of 

knowing how accurate its sense of time is, relative to the accuracy of the other nodes’ 

sense of time.  

Temperature fluctuations alone could be enough to cause the node to attempt 

transmission at deviant frequencies without any mechanism to inform the node of such 

errant behavior. Reception of CAN messages and commands from other nodes do not 

appear to be handled, and it is unclear where and when they would be, should the node 

need to receive messages. Blind Node firmware does nothing to time-align or correlate 

phases of its transmission with data instances already on the bus. Is the transmitted data 

relevant to events that occurred on the physical system 20 mS ago? Or those that 
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occurred 2 seconds ago? This is the result of losing message idempotency (Kopetz, 2011, 

p. 124). Blind nodes treat all received messages the same regardless of when they arrived. 

 Event-Triggered Systems 

The second approach is an effort to avoid the self-triggered approach by adding a small 

amount of “system-awareness” to each node on the bus. This approach becomes tempting 

to use when the CAN node has either a small number of messages to transfer to the bus in 

response to data read from the bus. Consider an example where a CAN node reads a 

sensor and transmits relevant data to the bus. But to retain some time-association of the 

payload with other messages on the bus, the controller waits for some specific message to 

appear on the bus as its trigger (an event). Only trigger-message reception causes the 

CAN node to attempt transmission. Replicating this transmission approach across the 

entire system allows for bursts of data to appear on the bus, with each message appearing 

on the bus in the order specified in the chain of nodes that trigger other nodes. Event-

triggered pseudocode firmware follows this simple logical flow in Figure 4.5. 

 

Figure 4.5 - Event-Triggered Communications Pseudocode 
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This approach assumes that each node has data perpetually immediately available, or 

ready at all times, since there is still no explicit construct of time in the hardware or 

software. Perhaps the first node in the message chain transmits the first trigger message 

similarly to the self-triggering scheme previously described. But the associated problems 

of such an approach cannot be assumed to be handled properly with the construct of real-

time. In the event-triggered approach, continued and reliable CAN network operation 

becomes entirely dependent on the correct reception of messages of other system 

components, other CAN nodes – meaning that each node only operates correctly because 

of some external dependency. This directly violates the communication medium 

requirements for the distributed real-time system model laid out by in Section 3.3. 

In an event-triggered system, error detection is in the responsibility of 

the sender who must receive an explicit acknowledgment message 

from the receiver telling the sender that the message has arrived 

correctly. The receiver cannot perform error detection, because the 

receiver cannot distinguish between no activity by the sender and loss 

of message… The sender must be time-aware, because it must decide 

within a finite interval of real time that the communication has failed. 

This is one reason why we cannot build fault tolerant systems that are 

unaware of the progression of real time. (Kopetz, 2011, p. 91) 

The problem with breaching this violation becomes clear after considering what happens 

to a system designed entirely in an event-triggered communications approach. The 

unpredicted loss of one system node produces an error chain that propagates down to the 
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most-dependent node, still waiting for an event that is either unlikely to occur, or occur 

unpredictably. Put simply, this approach is not robust to failure of other system 

components. Failure of one node in the message chain causes a trickle-down of system 

failure and no single node has any reason to assume responsibility for repairing the 

message chain. The occurrence of this malfunction is called an error propagation. 

Message data preparation in event-triggered buses includes a generation-to-transmission 

latency, or a transport latency which has an effect on the system that is entirely at the 

mercy of the message arbitration process and the processing time required to handle 

message reception events. Both of which are poorly characterized processes since bus 

arbitration loss for any non-top-priority message can occur for an unpredictable number 

of instances, and the required processing time for any given message depends on the 

processor and the application (Kopetz, 2011, p. 178). Software may request that the 

hardware begins the efforts to place a message on the bus, but a node’s lack of system 

knowledge results in actual message transmission at “some point in the future, ” 

including a significant amount of jitter depending on the bus load. So while software may 

request message transmission, the execution of the request is still performed by the CAN 

hardware, which must contend with the rest of the system components in a competitive 

environment over a limited resource. This makes for a non-deterministic system - 

unsuitable for real-time applications where the control of machinery is involved. 

Finally, it should be noted that event-triggered systems do not operate on the progression 

of real time. The worst case transport latency of an event triggered message is sum of the 

transport latencies for each message in the system, since simultaneous events presented to 
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the system can trigger an avalanche of messages on the central bus which can lead to 

communication medium overloads (Kopetz, 2011, p. 178). This scenario is well 

illustrated for the possible instance on the bus where all system messages become 

“ready” with data in the same instant. 

 Time-Triggered Systems 

Time-Triggered architectures are a preferred approach towards safe, reliable, and 

deterministic system design (Lawrenz, 1997, pp. 26–27). Many complex, controlled 

systems employ the signal processing techniques of discretely sampled system states 

from periodically queried sensors. This fact hints at the potential benefits of using a 

communication protocol which is also highly periodic in nature. Since the signal 

processing and control algorithms run on periodically sampled system states, a strong 

portion of the state communication protocol should be assumed to be periodic. System 

events however, only require sporadic message transmission for signaling changes in the 

system – meaning the same protocol should also deliver sporadically occurring messages. 

In a time-triggered system, there is still room for event-triggered messaging, but only in a 

very specific way (Di Natale et al., 2012, p. 210); namely the communication of events.  

1) Event-triggered messages then become more narrowly defined as a message unit 

meant to signal the occurrence of system-wide events or changes to the system.  

2) A time-triggered message is then defined as a message unit for the periodic 

communication of system-wide states (Kopetz, 2011, pp. 90–91).  



65 

Distinguishing these types of messages enables the systems engineer to layout a very 

predictable messaging schedule obeyed by all system components. This converts the 

system from a machine that responds to the occurrence of events, to a machine that 

responds to triggers defined in the context of the passage of real-time (Kopetz, 2011, p. 

91). This is not to claim that event-triggered messages are prohibited in a safe system 

architecture, but that they should not be the basis for system-critical information transfer. 

This treatment of time-triggered communication ultimately assumes the inclusion of 

event-triggered messages as a part of a higher communication protocol construct called 

the basic period (BP). 

A time-triggered communication bus is typically a periodic arrangement of scheduled 

messages. Each integrated system component can safely participate in this scheduled 

exchange of messages with the knowledge of the system time, and the schedule to be kept 

for its highly specified, defined, and enforced pattern for message transmission. 

 System Time 

The system-wide basis for the measurement and tracking of time is called the ‘global 

clock, or the ‘system time’ (Kopetz, 2011, p. 52). This is the time basis used to enable 

real-time awareness in each of the system components. The unit in which a system-wide 

clock should be measured is in physical multiples or fractions of seconds of time 

(seconds, milliseconds, microseconds, nanoseconds). Using CPU cycles to track time, or 

other relatively arbitrary event-period units makes little sense especially when the system 

in question interacts with physical objects in real-time which is normally measured in 

seconds, like those found in a CPS (Kopetz, 2011, p. 52). Ideally, the system time is 



66 

maintained in each of the system components, and exists either physically in digital 

hardware, or virtually in software. An additional ideal is that measurements of the system 

time from within any of the system’s components are identical to system time measured 

from any other component; that is, each of the system components agrees on what the 

system time is - to a fine level of resolution, even when each of the measurements come 

from independently maintained clocks. The system clock is typically just a counter which 

gets incremented or decremented very periodically. Tick frequency of the system clock 

should be selected to achieve a fast response to schedule progression, but not to disregard 

the “Reasonableness Condition” described by Kopetz (2011, p. 58). Capturing fast events 

and sticking to a tight messaging schedule requires a fine granularity of the system clock. 

Fast dynamics of a CPS require higher system clock frequencies, while slow system 

dynamics allow system clock frequencies to relax.  

 Clock Synchronization and the Time Master 

In implementation, the internal system clock fails to meet the ideal system-clock 

characteristics, thereby failing to support the system’s real-time requirements. Even just 

the thermal dependence of electrical system dynamics and manufacturer variability 

ensures a system-clock drift and offset to be present on any DRTS. Temperature-

compensated oscillators as internal system-time references are increasingly a viable 

alternative for increased time keeping accuracy, but are still insufficient without some 

kind of time correction algorithm that enforces synchronization between system 

components for indefinitely long periods of operation.  
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The addition of an external time source or a “time server” for time corrections can enable 

highly accurate, low-drift system-clock implementations. This works by the inclusion of 

a time master – defined as a system component that acts as a centralized source of system 

time (Kopetz, 2011, p. 68). While the system time can be derived from a number of 

different sources such as the Internet (a source of multiple time references) or global 

positioning satellite networks (a source of coordinated universal time (UTC) time), the 

system’s time-master’s primary functions are to receive time data from the time server, 

convert it to system time, and serve the system time to the entire system of components. 

The time master converts some external or internal clock source into system time, then 

distributes that system time to the entire system uniformly. This distributed system-time 

is used by each of the components to derive and compensate for the time differences 

between the time master and the component’s local version of system-time. This 

centralized time server method is a reliable way to ensure that each system component 

simultaneously receives identical clock updates. 

The message used for distributing the system time is then defined as the time reference 

message (TRM). Clock synchronization and correction occurs when a system component 

periodically receives the TRM from the time master. In the DRTS with a centralized 

communication bus, the TRM can be effectively received by all nodes simultaneously. 

The reception of the TRM by any system component also marks an epoch in the 

scheduled round of messages. 

Consider the DRTS system in Figure 4.6, where the time master generates a TRM from 

the output of the time server, and transmits the time to components A, B, C, and E. Each 
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of the system components includes an internal time reference (crystal oscillator) used to 

track the system time in-between reception events of the TRM. The internal time 

references differ slightly from one another, and vary depending on the environments’ 

temperature, so the reception of the TRM ensures all the internal components completely 

agree on the system time – limting the effects of unchecked long-term clock drift. 

Psuedocode that shows a simplified TRM reception with time adjustment and message 

transmission scheduling based on the system-time is shown in Figure 4.7. A more 

accurate method of clock correction would use the time-stamp of the TRM SoF bit, 

which arrives at each CAN node within the same bit-time, indpendent of the message 

reception hardware and corresponding interrupt handling latency. 

 

Figure 4.6 - Distributed RTS with time master 
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Figure 4.7 - Simple time-triggered message transmission 

 Messaging Schedule 

To meet the highly periodic needs of system state communications, a system matrix is 

developed. The system matrix describes the periodic messaging schedule in the time 

domain. However, there are usually two levels of periodicity built into the matrix. The 

first is that the entire system matrix is a timeline which is itself, repeated. This is 

analogous to a week of time passing, because the second periodic aspect of the system 

matrix is in the basic period, which is repeated within each passage of the system matrix. 
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    Basic Period 

The basic period (BP) is a unit of time described by some integer number of system time 

ticks, and is an unchanging system-wide constant defined as the time between 

consecutive TRMs (Lawrenz, 1997, p. 211)(Figure 4.8). 

 

Figure 4.8 – The Basic Period is measured between TRMs 

During the offline system design process, every instance of a BP is divided into an 

arranged sequence of messaging windows that define the type of messaging allotted 

during each window. There are three basic types of messaging windows used in a basic 

period: 

1) Exclusive Schedule Window (ESW) 

2) Sporadic Arbitration Window (SAW) 

3) Free Window (FW) 

Additional variants of these window types can be allocated for a basic period design, but 

should only be used to serve some unique, system-specific needs of the design. The 

number of instances of each window type allowed in a single BP is not limited to one, as 
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is depicted in Figure 4.9. The ESW is a period when only a pre-determined sequence of 

scheduled messages may propagate to the CAN bus in a timely manner. This is the same 

window in which system states are pushed to the bus. In this window, each message can 

only be transmitted to the bus during its own exclusive time slot. If the node misses this 

time slot, it keeps the message off the bus to prevent collision with other scheduled 

messages in the ESW. 

The SAW can be allocated for sporadic messages, meant to communicate system changes 

and events. Since events such as button presses do not need to be continually 

communicated, the SAW can be used to allow ordinary bit-wise CAN message ID 

arbitration to give the bus to whichever message arbitrates first, or arbitrates with the 

lowest ID. Scheduled messages that missed their time slot in the ESW can use the SAW 

to send data even if late. This is a possible error detection mechanism. 

The FW is used as a system design margin, and enforces a limit to the overall bus load. 

Messages that appear on the bus during this period are instant indicators of a system 

error, enabling the offending node a chance to off-bus at the request of other system 

components. System nodes such as bus monitors can employed to watch and enforce the 

schedule in a TTCAN protocol. Bus monitors can even be placed in control of a system 

component’s access to the CAN bus, enabling remote physical off-bussing of offending 

and non-complicit nodes such as babbling idiots (Di Natale et al., 2012, p. 214). 
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Figure 4.9 – Two example arrangements of the basic period 

    System Matrix 

A system matrix represents the periodic communications schedule of the system; it is the 

highest level of periodic activity on the bus, as it is a representation of a cycle-of-cycles, 

or rather, a schedule of basic periods - each of which are a schedule of message time 

slots. Just as a month is a cycle of weeks, a system matrix is a cycle of basic periods. 

A system matrix is typically a statically-sized length of real-time transmission windows 

that can be characterized by its transmission frequency (Freq_SM) and dimensions. The 

dimensions of the system matrix are determined by the number of basic periods 

(Num_BP), and the number of message windows in the constituting basic periods 

(Num_MW) – making the dimensions of a system matrix sized as a [Num_BP x 

Num_MW] matrix of real-time units (uS, mS, S). This requires the length of all 
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comprising basic periods be equal, even if their transmission window arrangements are 

not identical to each other. For example, if the two difference basic period arrangements 

in Figure 4.9 had equal lengths (equal to Num_MW real-time units), they could feasibly 

be part of the same system matrix, each with any number of instances (Num_BP). 

Consider the example system matrix in Figure 4.10, which accommodates 5 messages 

between 3 transmission frequencies. Note the allocation of ESW, SAW, and FW periods 

in each of the basic periods. This example system matrix shows the entire system 

schedule – a complete accommodation of system message needs, and full allocation of 

basic periods including FW periods for system expansion. This matrix represents a 

relatively simple time-triggered system organization. 
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Figure 4.10 - Example of a system matrix (Lawrenz, 1997, p. 31) 

    Scheduling Techniques 

The development of a TTCAN schedule can be done offline or online, and can be 

designed as static or dynamic. The goals of the schedule include the guaranteed allocation 

of message slots in the system matrix, for all sporadic and periodic system messages - 

each with some transmission frequency. Scheduling techniques are thoroughly discussed 

in the literature, and a review of Chapter 1 points out some of the more commonly 

explored techniques, including dynamic earliest-deadline-first (EDF) methods. 
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One scheduling method relevant in this work uses the set of time-triggered message 

frequencies to derive a schedule that ensures the schedulability of time-triggered 

messages and a static, unchanging system matrix – simplifying schedule management for 

each of the participating nodes in the network. The method requires each message 

frequency in the message set, be an integer power of 2 of the lowest message frequency 

(FL). Consider the message set given in Figure 4.10, and assume the lowest and highest 

message transmission frequencies are FL and FH, respectively. 

To ensure the scheduled occurrence of messages with transmission frequency FL, the 

transmission frequency of the system matrix is set equal to FL. Scheduling messages with 

transmission frequency FH is ensured by allocating a transmission window in each basic 

cycle where: 

𝑁𝑢𝑚 𝐵𝑃 =
𝐹𝐻

𝐹𝐿
 

As depicted in Figure 4.10, the window arrangements of the included basic periods of a 

system matrix do not need to be identical, and the inclusion of at least one instance each 

of ESW, SAW, and FW periods is also not required, but is recommended for the 

minimization of event-message latency and the maximization of system matrix 

expandability for future system matrix additions. 

 



76 

 Fault Tolerance, Missed Deadlines, and Error Handling 

The intent of time-triggered communications do not address the reliability of the 

individual nodes on the bus. Rather, the focus is on the ability to detect and handle errors 

caused by individual nodes. This is an acknowledgement of the instances where system 

failure can originate from poorly behaving system components. In assuming a non-zero 

probability of some component failure, the design of a robust bus can be made to handle 

the failure, either enabling a fail-safe or fail-functional system response. Fault detection 

and handling in event triggered and time-triggered systems are treated heavily by Kopetz 

(2012). 

Node failure can assume a variety of modes, and can be handled appropriately according 

to the mode. It is important to point out, that node failures can be easily detected on a 

time-triggered system as opposed to the self or event-triggered systems. The modes of 

node failure are easier to identify when system components are “system-aware”, in that 

they possess knowledge of the system-matrix. Any detected deviation from the expected 

pattern of the system matrix can then be characterized as some node failure under some 

failure mode: 

1) Dead nodes – A mode of component failure that indicates an absence of messaging 

activity from the bus. This can result from halted firmware execution, unreliable 

power, or loss of a physical connection to power or the bus. Node death is difficult to 

recover from without physical system inspection, meaning that the system has to 

resort to either a crippled mode of operation or a fail-safe mode, depending on the 

relative importance of the data provided from the absent messages. 
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2) Lost nodes – Indicates that a node is lost in the schedule. A transmission effort is 

detected (the correct messages are being produced), but the messages do not adhere to 

the system matrix. This naturally results from the loss of correct system-time either 

from missed time-reference reception, or a damaged internal time reference. This 

failure mode is very dangerous to system health since the node forces its messages to 

the bus in a way that forces other nodes to compete for their own allotted 

transmission time windows in the standard bit-wise arbitration fashion. This 

forcefully causes other nodes to miss their message schedules. Handling this mode of 

failure requires a fast response in the form of a power reset to the node or, in extreme 

cases, a physical disconnect from the bus in an effort to preserve the still-functional 

parts of the system matrix. 

3) Babbling Idiot – This mode of failure is similar to the lost node mode, but far more 

extreme in scope. Usually caused by a software bug, a node might enter a looping 

state that randomly and frequently transmits garbage or randomized CAN packets to 

the bus. This blocks error-handling messages and other important time-triggered 

messages from running on schedule, and can even interfere with transmission of the 

time-reference message. Detection of the babbling idiot failure can be difficult to 

detect and difficult to respond to, since the effect is akin to the theft of the 

microphone by an auctioneer at a presidential debate. While handling the condition is 

similar to the how lost nodes are managed, timely detection can be the difference 

between a robust and non-robust error handling mechanism. 
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Detection of node failure can be performed by any or all of the system components. The 

offending behavior of a babbling idiot in a system failure can be detected by any other 

node, but it is more common to dedicate a single system component on the bus called a 

“bus arbiter” to detect and characterize node failures, and then coordinate the measures 

needed to minimize “system down time, ” or failure repetition, depending on the mode of 

the component failure. The bus arbiter can be thought of as a bus manager that tracks 

each component’s adherence to the system matrix, and drives the system to some failure-

handling state (fail-safe, fail operational) either restoring correct system behavior, 

enabling system services at a reduced quality, or safely halting all system operations. Any 

time-triggered system can benefit from the inclusion of a bus arbiter, though the 

additional cost to the system, and development time required for verifiable and repeatable 

robust performance deserves a discretely pursued research focus. Inclusion of a bus 

arbiter in this work was skipped for this reason. 
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Chapter 5   Unmanned Agricultural Ground Vehicle (UAGV) 

5.1 Introduction 

The demonstration of a time-triggered communication bus did not require a complex 

vehicle as the system basis. The pervasive use of Ackermann-steering configurations on 

mobile agricultural machinery indicated the availability of many control models that 

could be used to demonstrate a basic navigation feedback controller; so an Ackermann 

steering solution was preferred. The platform selected was an accessible size; 

appropriate, as was suitable for prototyping system architectures at minimal safety risk to 

the testing environment and the users.  

Objective: 

Introduce the UAGV and describe the development of its components (from Section 1.1) 

5.2 Materials and Methods 

 System Architecture 

The platform was manufactured at the Agricultural Machinery and Research Laboratory 

on the University of Kentucky campus. Originally made for multi-robot cooperation 

demonstrations, the platform has been proven suitable for scaled-down demonstrations of 

FSM and Behavioral layers of multi-robot control architectures (Figure 5.1) in previous 

work (Pitla, 2012). The wheelbase of the chassis was 109 x 79 cm (Figure 5.2). The 

chassis was fitted with a 24V DC drive motor (Model NPC 41250, NPC Robotics, 

Mound, MN)) coupled to a differential on the rear axle – providing rear wheel drive with 

minimal tire skid. A 24V linear actuator (Model 85915, Motion Systems Corporation, 



80 

NJ) was installed on the Ackermann steering pinions, enabling electronic control over the 

steering angle of the front wheels (Figure 5.3). Position feedback was available with the 

built-in linear potentiometer. Power was provided by two 12V rechargeable lead-acid 

automotive batteries in series for a system power bus of 24-28 VDC (Figure 5.4). Power 

was distributed first through a resettable 80A circuit breaker, and through a screw 

terminal array underneath the batteries. 

 

Figure 5.1 - Individual Robot Control Architecture (IRCA) (Pitla, 2012) 
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Figure 5.2 - Chassis layout 

 

Figure 5.3 - Linear Actuation for Steering (Pitla, 2012) 

 

Figure 5.4 - Robot chassis including batteries, motors, and emergency-stop switches 
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From a control architecture perspective, it can be said that the entire system’s foundation 

operates on the lowest hierarchy levels – the hardware, which is to acknowledge that the 

robot ultimately runs on wheels, propellers, motors, rudders, and blinking lights – are all 

mechanically or electrically coupled to a mobile chassis. This structure is very similar to 

the hierarchy found in the description of system abstractions (Figure 3.1). This works to 

the advantage of the systems engineer, since these architecture descriptions can be easily 

divided into the various computational resources required for a complete system 

implementation. That is, the computational tasks done at the Behavior level of the 

system, differ greatly enough from the tasks on the Sensing layer, such that the two layers 

can assumed to be performed on two distinct computational nodes as tasks. System 

design can then proceed with the assumption that each of the architecture layers is 

implemented on a separate computer; this provides the benefits of using a distributed 

system design. The distributed design of the system was implemented on a CAN bus 

because of the availability of CAN network development tools, the already ubiquitous 

use in agricultural systems. The arbitration of CAN ID fields to the bus as the means for 

bus access prevents TTCAN from being truly deterministic, since modes of CAN node 

failure can block critical messages from access to the bus (Ehrl and Auernhammer, 

2007). A Flexray implementation would enable a very deterministic system, but 

demonstration of a simple time-triggered communication protocol can be done on a CAN 

bus. 
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 Controller Area Network Node Hardware Environment 

    A Case for Custom Hardware 

CAN systems have been around for over three decades now, and getting started with 

CAN node development has become far easier than it used to be, and the tools available 

for doing this range from drag-and-drop graphical programming interfaces, to hardware 

description languages (HDLs). Each solution applies some level of abstraction to the 

node developer - giving a range of control of system details to the system developer. 

For very simple applications on blind-node or event-driven CAN protocols, a node based 

on the ubiquitous Arduino (Turin, Italy) boards could be used as a simple and 

inexpensive CAN system development platform. However, the Arduino’s microcontroller 

has no CAN transceiver or CAN peripheral. For an added cost, a CAN interface board or 

“shield” can add all the required hardware to the microcontroller over a Serial Peripheral 

Interface (SPI) bus (Figure 5.5). While the included CAN controller is rich in features, 

the software libraries available do not make use of the entire feature set, and often hide 

system details that greatly impact network performance. For control applications on 

potentially dangerous systems, this solution is not recommended. 

 

Figure 5.5 - Arduino with CAN controller interface 
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Single-board computer platforms however, have a much larger computational capacity 

for complex applications, and the well-supported CAN hardware interfaces and software 

libraries offer a high-performance solution to CAN system design and implementation. 

Devices similar to the Raspberry Pi and the Beaglebone run a supported Linux kernel and 

a rich set of digital interfaces available through a large number of programming 

languages. However, serious consideration of chapter Chapter 3 reveals a jump from 

these device’s intended roles. Simply put, the Linux Kernel was not made for real-time 

applications. While a substantial amount of hardware might reassure the system 

developer about meeting system deadlines, the ability to make a deterministic system 

remains out of reach. The Linux operating system is complex, and the number of sub-

processes it runs are likely to pre-empt user-level applications at any time. Additional 

considerations such as startup/reset time and file system corruption prevention further 

complicate the system design. The control module layer of the robot control architecture 

is supposed to be deeply embedded with the machine actuators, so using single-board 

computers at this layer seems inappropriate. Consideration of these devices in other 

control architecture layers however, demands different parameters. 

Further searching for a more appropriate CAN hardware solution returns what the 

industry uses in commercial applications. Consider the industrial microcontrollers 

manufactured by Danfoss (Nordborg, Denmark, Figure 5.6): the devices are available in a 

wide range of available internal features, available GPIO pins, and operating voltages. 

The GPIO pins are heavily protected with surge protection and level shifting converters, 

and are shrouded in an automotive-compliant connector hood. The internals consist of 

one or two high-performance microcontrollers that run the application. While the 
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hardware of these controllers is unquestionably most-suited for commercial products, the 

application development workflow is fundamentally constraining to the systems designer 

for two primary reasons: 

1) The media access layer (MAC) protocol is either “Blind-Node” or event-triggered 

only. There are no software constructs for time-triggered system design in the 

workflow. This is inherently a major roadblock when researching time-triggered 

communication modes. 

2) Limited support for external device interfacing greatly constrains the types of sensors 

and devices that the controller can use. Standard interfacing to PWM, PPM, analog, 

binary state switches, and encoders are simple to implement with the included 

development tools, but when considering access to an external device’s digital 

protocols over serial port, SPI, I2C, LIN and parallel ports, access becomes significantly 

more difficult. This includes access to MEMS inertial sensors, digital thermocouple 

interfaces, GPS receivers, and other commonly-needed devices for robot navigation and 

control. 

 

Figure 5.6 - Model: MC024-010 (Danfoss, Nordborg, Denmark) 
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A well-balanced solution to the CAN system hardware problem should include the 

flexibility to interface to any external analog or digital device with enough computational 

resources to ease software constraints in meeting real-time deadlines. Lastly, a free and 

open development toolchain that enables an easily documentable workflow, development 

methods, and simplified project collaboration. This balance can be implemented with a 

microcontroller with more computational power and more digital interfacing peripherals 

than is found on the Arduino, yet has a large amount of available resources for software 

development at a low cost. 

In an attempt to satisfy these requirements, a re-examination of the robot control 

architecture is recommended. The entire robot system is divided into several hierarchal 

subsystem layers that can be individually developed and then integrated into a single 

system to produce a working robot. The control architecture (Figure 5.1) under further 

consideration was developed and more fully described in associated work (Pitla, 2012). 

The actuator layer of the demonstrated system was introduced in Section 5.2.1, meaning 

the next steps of system development involve the control module layer, and its interface 

to the FSM and actuator layers. Consider the highlights to Figure 5.1 shown in Figure 

5.7. The control layers are encompassed inside distinct “domains of computation, ” which 

divide all the control tasks between different types of computational resources that make 

up the robot control system. This is done to prevent a single, complex computer from 

holding responsibility for the entire system, but also allocates tasks to appropriately 

scaled processors and software frameworks. This is not to be confused with the standard 

distributed system architecture described in Section 3.3 – which corresponds to the 
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implementation of the Control Module Layer only. For the remaining layers of the 

control architecture, a distributed processing mechanism serves the purpose of assigning 

specific architecture layers to appropriate computational resources. For example, this can 

be expressed as an acknowledgement that according to the given robot control 

architecture (Figure 5.1), the computational resources (processors, threads, software 

libraries) that run the Control Module Layer are not likely to be the same as those 

assigned to the tasks in the Behavioral Layer, and vice-versa.  

In Figure 5.7, the solid blue outline denotes a set of tasks appropriate for a remote 

computational resource, an off-machine computer dedicated as a mission/task server, and 

communications bridge to other machines. The green dashed boxes encompass tasks that 

are well-suited to on-machine, embedded applications processors capable of advanced 

inferencing and mass data processing. These are likely single-board computers running 

advanced software specializing in machine vision, machine learning, complex FSMs, 

path planning, obstacle avoidance and system-level watchdogs. Finally, the red dotted 

boxes denote the tasks well-suited to simpler processors dedicated to deterministic sensor 

sampling and actuator feedback control, which streams lightly processed robot states to 

the upper layers on other computational resources. This method of task division is found 

on cyber-physical architectures meant for a wide variety of applications (Hehenberger et 

al., 2016). The following implementation of the Control Module Layer on the UAGV 

follows this pattern by assigning actuator feedback control to a family of CAN connected 

microcontrollers suited to providing a stream of robot states to upper layers of the control 

architecture. 



88 

 

Figure 5.7 - Domains of computation across the control architecture 

The Danfoss industrial controllers contain STM32F205 microcontrollers manufactured 

by ST Microelectronics (Geneva, Switzerland). This led to the selection of inexpensive 

STM32 development boards as the basis for a CAN node with the right combination of 

features. The “Nucleo” development board line is a very widely-ranging set of 

development boards available between $10 and $25 each. These boards are essentially 

the digital internals of the Danfoss industrial microcontroller “broken-out” on a more 
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accessible board. Each board includes an Arduino-compatible pinout, and a complete 

debugger / flash downloader device that interfaces the target microcontroller to the 

development toolchain on a PC. As a complete development platform, the Nucleo boards 

are remarkably inexpensive.  

Two development boards were selected for the robot CAN bus implementation. The 

F303k8 board was chosen for motor control nodes because of its small form factor, 

enabling it to fit into small enclosures where motor drivers were likely to be housed. The 

F3 family of the STM32 includes a 72 MHz, 32-bit ARM Cortex M4 processor, and 

includes a peripheral set for “mainstream” applications as described by ST Micro. The 

other development board selected was the F446RE for its extremely fast processor clock 

in a 64-pin package, and it’s inclusion of 2x memory-mapped CAN peripherals (Figure 

5.8). The F446 has a 180 MHz, ARM Cortex M4 processor with a set of peripherals 

designated by ST Micro for “high-performance” applications. 

 

Figure 5.8 - ST Microelectronics microcontroller development board (F446RE) 
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This part focuses on the implementation of a control module layer since an actuator set 

was already in place on the robot chassis. It is common for a controls engineer to be 

commissioned for the design of a controller, given an already-existing control plant. 

 System Node Allocation 

Identifying the needs of the system is important to the allocation of system resources. As 

will be shown in chapter 7, a typical kinematic steering model includes cross track error, 

heading, steering angles, and sometimes other states to provide a sufficient feedback 

signal for a steering controller. To collect this minimal information, sensors can be 

interfaced to the CAN bus with a microcontroller as the gateway. Depending on the type 

of state data needed, many sensors may be required to collect one system state. It is also 

possible to derive many states from a single sensor. 

To act on a system, a control algorithm must have access to actuators that influence the 

system states either directly, or through some coupled relationship described by the 

system model. Dedicating a CAN node to each actuator is likely necessary to abstract 

actuator control signals to a simple CAN message definition. To satisfy the needs of the 

UAGV system with 3 states and 2 actuators, 4 CAN nodes were allocated: 

1) GPS Node – Provides position data needed to derive 2 controller state signals (cross 

track error, and heading). 

2) Drive Motor Node – receives and executes drive speed commands on the drive motor 

from the controller node. 

3) Controller Node – receives sensor data, calculates systems states, generates control 

messages, and performs user interfacing to robot. 
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4) Steering Node – receives steering rate commands from controller node and provides 

steering angle sensor data. 

This results in the CAN bus network as shown in Figure 5.9. A CAN logger device is 

shown for completion. 

 

Figure 5.9 - UAGV CAN bus view 

 Design of Universal Inexpensive Node Hardware 

    Board Requirements 

Exposing the benefits of the STM32 microcontroller required the development of an 

interfacing board to adapt the CAN bus and power sources of the system to the 

requirements of the microcontroller. The STM32 device required a 3.3V supply, which 

was provided with a 3.3V voltage regulator on the Nucleo board. To power the regulator 

along with the ST-Link debug device on the Nucleo board, a 5V power supply was 

required. The addition of an over-current safety mechanism was added as a requirement 
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since the variety of different power buses and a common chassis ground increased the 

risk of short-circuit connections as the result of unintended debris in contact with the 

board.  

The board required the ability to interface to two CAN buses simultaneously to 

accommodate both controller peripherals available on the STM32. This increased the 

board’s usability in future systems with two system buses present. The ability to access 

the Nucleo board’s original GPIO pin arrays was considered a secondary, though 

desirable feature. 

    Layout and Parts Selection 

To enable universal use of the CAN node, a wide-input (6.5 – 32VDC) switching power 

supply module (CUI V7805-1000R, CUI Inc, Tualatin, OR) was included to provide the 

5V bus of the design. A 1-amp ATO fuse mount was added to the interface board design 

to prevent excessive current draw, and enable fast fuse replacement. The SN65HVD250 

CAN bus transceiver (Dallas, TX, USA) was selected to perform the bidirectional 

conversion between single-ended signaling of the microcontroller and differential logic of 

the CAN bus supported the decision to operate the CAN bus with 3.3V transceivers. 

These major board components are shown in Figure 5.10. 

There were few, yet important circuit layout design considerations in the CAN sleds. 

Beyond supplying the device power requirements, shielding the CAN signaling traces 

and enabling easy connectivity informed the choices in the board layout. CAN signaling 

is differential, which encodes symbols into the difference between two voltages, rather 

than the absolute value of one voltage. Differential signaling relies on both signaling 
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conductors to be tightly electromagnetically coupled. This is typically done by twisting 

the wire pairs together to ensure they are equally affected by noise. If the wires of the pair 

are unequally affected by noise, the benefits of differential signaling are reduced. The 

CAN specification calls for the use of twisted pair for this reason. 

Preserving the effects of a twisted wire pair is not typically done on the printed circuit 

board, due to the planar arrangement of the board’s conducting mediums. To preserve the 

signal quality of the CAN bus as it passed through the board, the bus conductors were 

increased in width to minimize overall impedance and were surrounded by vias to shield 

the bus from noise (Figure 5.11).  

 

Figure 5.10 - CAN bus "sled" assembly 
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Figure 5.11 - Pass through traces for power and 2 x CAN buses 

The development board mounted to the CAN sled by the GPIO pin arrays. This was an 

important feature in implementing a modular control module layer. The boards can be 

easily swapped without having to break CAN bus connections of an already-installed 

system. The bus connectors also functioned as a place to install bus-terminating resistors 

(Figure 5.12).  
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 Figure 5.12 - Development board and debugger installed onto the CAN sled 

    Board Testing 

The CAN sleds were tested by the application of power without any Nucleo development 

board installed. This tested the on-board power circuitry including the voltage regulator, 

main fuse, and “fuse-out” indicator lights. 

 User Interface and Finite State Machine (FSM) System Modes 

The interface to the user was kept simple. The control module layer of the robot being 

presented is a layer of control not normally available to the user of the robot. Normally, 

an FSM layer or Behavioral layer (Figure 5.7) running on a separate computing system 

would be the “user” in control of the control module layer operations. The provision of 

GPS waypoints, start/stop commands, and behavioral inputs needed to be simulated to a 

degree that demonstrates how the robot’s control module layer can be easily interfaced. A 

very lightweight FSM layer was implemented in the controller node’s firmware, and 
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inputs to the system for other modes of operation were provided with wireless buttons, a 

joystick, and an LCD display. 

The wireless pin toggle module functioned very similarly to a commercial vehicle’s key 

fob remote (Adafruit Industries, NYC, NY). By pressing a button on the remote, a 

corresponding pin of the receiver module could be toggled low/high (Figure 5.13). This 

enabled easy FSM layer control by a human. This setup required the human to act as the 

Behavioral layer of the control architecture (Figure 5.7), but was sufficient for control 

module layer demonstration. 

 

Figure 5.13 - 4 button remote controller for mode switching  

An additional simulation of the behavioral layer was required for robot usability in 

control layer demonstrations. The use of a speed and steering input sensor enabled 

effective reactive/deliberative sets of user influence to the system. A joystick (Adafruit 

Industries, NYC, NY) with two analog outputs enabled basic speed/direction and steering 

control to the system (Figure 5.14). The joystick included a momentary switch “J”, which 

was interpreted in software as equivalent to a “D” button as found on the remote 

controller. This allowed the user to steer the robot to and from testing sites, and to pose 
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the robot for initial conditions of the experiments. The joystick was interfaced to the 

controller node.  

 

Figure 5.14 - User joystick for manual actuator control 

For feedback to the FSM and behavior layers (the user), a thin-film transistor liquid 

crystal display (TFT LCD / LCD) was installed (Best Circuits Inc., LakeZurich, IL). See 

Figure 5.15. The LCD visually provided the user a large number of internal system states. 

Among the printed states were waypoint coordinates, northing-easting position, cross 

track error, heading, heading error, speed, steering angle, system time, operation mode, 

state of the CAN bus, and state of the CD-GPS fix. All these states represent information 

shared to the middle layers of an automated control architecture, which in the case of the 

UAGV was the human user. 
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Figure 5.15 - Liquid crystal display for system state visualization 

The operation modes of the robot were controlled by a finite-state machine that pointed 

the robot’s full set of possible behaviors to a specific context. The FSM layer could be 

represented as a multiplexer switch that routes outputs of the behavioral layer to the 

inputs of the control module layer (Figure 5.16). It governed which control inputs possess 

the steering actuator and the drive motor at any given instant. This simplified FSM layer 

for the robot was controlled by the behavioral layer (the remote control) and routed 

(multiplexed) the control layer inputs (joystick and GPS position) to the robot’s motors 

(Figure 5.17). 

 

Figure 5.16 – Simple behavior layer as a multiplexer 
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State transitions were produced by remote control (Figure 5.13) button events and 

internal system states. This allowed a user to remotely control the behavior of the robot 

while avoiding bad undesirable behavior due to the environment. For example, the FSM 

locks out the “Autonomous Mode Run” state from being reached if the GPS receiver has 

not yet found a positioning lock. It also automatically leaves the “Autonomous Mode 

Run” state if the GPS lock is suddenly lost during runtime. Emergency button presses 

were also handled in each state to allow the robot to reach a “safe state” from any other 

mode. 

 

Figure 5.17 - Finite state machine for operation modes 

 Steering Actuator Calibration and Modeling 

Mapping the voltage from the steering position potentiometer (built into the actuator) to 

steering angle of the front wheels required the collection of CD-GPS position data while 
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the robot was manually driven in circles of varying diameters. This was done with a 

Memorator CAN data logger (Kvaser Inc, Mission Viejo, California). The points of the 

circles were measured from the robot position plot, and correlated to the ADC samples 

measured by the steering CAN node, and transmitted to the bus. A linear relationship was 

used for the calibration, and allowed access to the steering angle “δ” state (Figure 5.18).  

 

Figure 5.18 - Relationship between Steering Angle and 12 bit ADC Output 

To produce meaningful commands for the steering actuator in units of degrees per 

second, the steering angle was collected to relate its derivative to the PWM commands 

routed from the joystick. Figure 5.19 shows the steering angle as some scaled integral of 

the command value. 
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Figure 5.19 - Steering speed was linearly coupled to the PWM commands 

Collecting the slopes of the delta series in Figure 5.19, and plotting them as the 

independent variable produces the linear relationship with dead-band shown in Figure 

5.20. Commanding the steering actuator was then implemented with the use of two 

resulting first-order calibrations, each selected during runtime for the sign of the speed to 

be commanded. 
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Figure 5.20 - PWM command vs desired steering rate 

5.3 Results and Conclusions 

The completed UAGV (Figure 5.21) was capable of a 2 m/S driving velocity, ±25 degree 

steering angles, and ±25 degree/S steering rates. The platform operating modes could be 

controlled from the wireless remote control, and steered/driven with the joystick. The 

CAN bus relayed all system variables, set-points, commands, and states at 10 Hz, making 

the system responsive to user input and emergency-stop button events. Manual operation 

of the vehicle did not require a GPS connection of any kind, but still used the GPS CAN 

node as the CAN bus time reference. 

 

y = 141.19x - 407.08 

R2 = 0.9971 

y = 144.76x + 301.42 

R2 = 0.9947 
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Figure 5.21 - Completed UAGV on the Nebraska Tractor Test Track 
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Chapter 6   Control Module Firmware Layer 

6.1 Introduction 

In Section 4.3.6, the basic period and system matrix of a time-triggered communication 

schedule was defined and presented with basic examples. In this section, the 

implementation of these design principles on the UAGV is presented to give a complete 

sense of scope required to benefit from deterministic communications and to document 

the technical details implemented for future researchers. 

Objective: 

Develop and demonstrate the hardware and software of the TTCAN communications 

protocol (Section 1.1) 

1) Outline the system messages (6.2.1) 

2) Present the basic period and system matrix of the TTCAN protocol (6.2.2) 

3) Describe the CAN peripheral on the STM32, and derive it’s configuration for the 

application (6.2.3) 

4) Show the CAN peripheral’s interfaces to memory and other microcontroller 

peripherals  

5) Present the software architecture and it’s memory interface to input and output data 

(6.2.4) 

6) Describe the design of firmware drivers for configuration and control of key 

peripherals and sensors 
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6.2 Materials and Methods 

 System Message Definitions and Data Encoding 

The design of a system matrix requires a definition of the system messages and their 

frequencies. In this application, all system messages shared the same 10 Hz frequency, 

which simplified the system matrix which is shown later. First, each system message and 

their contents along with the data packing operations are outlined (Figure 6.1 - Figure 

6.12). The byte order is described by labels that defined the least significant byte (LSB) 

and the most significant byte (MSB) of a multi-byte digital vector. The byte ordering for 

each vector was arranged as a matter of convenience and could easily be modified in 

software to run in a reversed direction. 

 

Figure 6.1 - GPS fix flag and system time reference message 

 

Figure 6.2 - GPS latitude with available 10 decimal places of precision 
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Figure 6.3 - GPS longitude with available 10 decimal places of precision 

 

Figure 6.4 – Northing-easting position message 

 

Figure 6.5 - Northing-easting velocity vector message 
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Figure 6.6 - Heading angle in milli-degrees 

 

Figure 6.7 - ADC samples from the steering actuator potentiometer message 

 

Figure 6.8 - Actuator commands in feedback message 

The firmware of the microcontrollers directly interpreted data marked as “signed integer” 

types (int_xx_t) as two’s compliment for negative integer representation, so transferring 

signed data on messages between microcontrollers was a very efficient bit-wise copy 

operation (Messages 200, 201, 300). Some internal system variables were shifted into in 

an unsigned (positive) number range in message packing for simplified interpretation of 

the data logging messages by MATLAB, which unpacked the same system variables with 
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the reverse of the procedures shown for messages 401, 402, and data messages 0-3. Four 

logging messages were produced and transmitted by the Control Node”, which were 

logged and used for system data collection. 

 

Figure 6.9 - Robot x and y coordinates in the D0 message 

 

Figure 6.10 - Heading, PSI, and speed in the D1 message. 

 

Figure 6.11 - Cross track error, steering angle, and command in the D2 message. 
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Figure 6.12 - Controller input signal U and steering pot ADC count packed into D3. 

 Basic Period and System Matrix 

A [1 x 100] system matrix to handle all system messages was defined. Considering the 

worst-case CAN message transmission time of 520 uS (8 byte CAN data frame, 11 bit 

ID, maximum stuff bits, 250 kbps), a delay margin was included by defining the 

transmission window to be roughly double this length of system time (1 mS), which was 

a conservative margin because of a low number of system messages. This enabled a CAN 

node to have a maximum of 480 uS to respond to the beginning of a message window for 

the longest possible message on the system. 

 

Figure 6.13 - UAGV time-triggered system matrix design 
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Each transmission window is 1 mS wide. Since each system message frequency was 

equal to Freq_SM (10 Hz), Num_BP was equal to 1. The end result was a greatly 

simplified system matrix design. This simplification was reached by matching all state 

message frequencies to 10 Hz. 

 Controller Area Network System overview 

To enable an accessible and flexible CAN bus interface to the software developer, a C 

library of CAN related functions was developed. The library was written to accommodate 

the CAN bx peripheral found in the STM32 microcontroller family, enabling the 

development of time-triggered CAN nodes using any of ST’s economy, access, low 

power, or high performance lines of microcontrollers. The library handled the 

simplification of the CAN bx controller configuration, automatic buffer management for 

transmission and reception message buffers, transmission window tracking, and system 

time correction.  

The library was written on top of the Standard Peripheral Library provided by ST 

Microelectronics, which is a layer that abstracts away the system peripheral accesses to 

well-documented C functions. This was the only major dependency of the developed 

TTCAN stack. 

    Controller Area Network Peripheral configuration 

The CAN bx peripheral of the STM32 microcontroller line provides a large number of 

options for optimal communications configurations for many applications. The STM32F4 

part used has errata material describing that the time triggered communications mode is 

not implemented. This mode enabled a dedicated 16 bit timer that stores timestamps on 
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each SoF bit that arrives through the ID filters. This was meant to enable very high 

accuracy tracking of system time drift, since the reception of the SoF bit is a more 

accurate instant of time to capture, rather than the interrupt processing method used in the 

end application. The relatively large messaging window (1 mS) used in the final system 

prevented the need for such accurate time keeping requirements on each of the nodes. A 

peripheral time managed in the CAN message interrupt handler proved to be sufficient 

for system time tracking. 

Additional important settings for the implementation of time-triggered communications 

included activating non-automatic retransmission mode, which prevents the CAN 

controller from violating the system matrix schedule should its first attempt to write to 

the bus fail. Leaving this mode off would cause catastrophic system communication 

schedule failure. Disabling Tx FIFO by priority was also done to prevent the same issue. 

To keep a transmission schedule, the CAN bx module must not be allowed to re-arrange 

the order of transmission given by the application. FIFO Lock Enable was disabled to 

allow the application to process the newest buffered CAN messages in the receive FIFO, 

instead of the oldest messages. 

The remaining settings used the application included turning off the automatic bus-off 

management, which is capable of physically removing the controller from the bus should 

the count of errors it causes on the bus exceeds some threshold. Automatic wake-up mode 

was not used since the processor was never placed into a low-power state. Figure 6.14 

contains the summary of CAN bx peripheral settings that can be configured by the 

TTCAN C library. 
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Figure 6.14 - CAN module settings 

Setting the baud rate of the CAN peripheral was a process that required knowledge of the 

CAN bit segments defined in ISO11898, and the clock speed of the associated CAN 

peripheral. The clock tree as depicted in Figure 6.15 shows the system clock settings used 

in the CAN node application. The Advanced Peripheral Bus 1 (APB1) is shown to be 

clocked at 45 MHz, which was the source clock for the microcontrollers CAN peripheral 

circuitry. This was the “seed” of the CAN bus baud rate derivation. 
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Figure 6.15 - STM32F446RE system clock tree (ST Micro, Geneva, Switzerland) 

The algorithm for setting the CAN timing register (CAN BTR) of the peripheral required 

the speed of the APB1 bus and the desired baud rate of the CAN bus as inputs. The 

segments of the CAN bits were then derived using the constraints of the CAN bx 

peripheral. 

First, a bit frequency (BF) was derived from the ratio of the input clock to desired baud 

rate. 

𝐵𝐹 =
𝐴𝑃𝐵1_𝐹𝑟𝑒𝑞

𝑆𝑒𝑡_𝐵𝑎𝑢𝑑𝑅𝑎𝑡𝑒
 

Next, the BF was divided down with a prescalar that clocks the CAN peripheral to derive 

the number of time-quantas (TQ) that sum to a single CAN bit of time. A single CAN bit 

period is the sum of the 3 ISO11898 segments, tq, BS1, and BS2. The rest of the 

configuration process was mapping these segments into the TQ time period. The CAN bx 

peripheral can satisfy this allocation within the constraints on the following definition: 
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𝑇𝑄 =  
𝐵𝐹

𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟
= (1 + 𝐵𝑆1 + 𝐵𝑆2) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑇𝑄 𝑖𝑠 𝑠𝑜𝑚𝑒 𝑤ℎ𝑜𝑙𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑎𝑛𝑑 8 < 𝑇𝑄 < 25 

TQ can be divided into the three time periods defined by ISO11898, where tq is always 

one, and BS1, BS2 set the sampling point of the bit. A desired bit sampling point is 

informed by the baud rate, bus voltage, and bus length to allow for bit propagation 

delays. In this application, the CAN bus length was very short (< 10m), and the baud rate 

was set to 250 kbps (25% of max baud), so a sampling point between 70 and 80% was 

chosen for all system nodes. This was achieved by choosing bit segments BS1, BS2 such 

that 

𝐵𝑆1 ≅ 0.75 ∗ (𝑇𝑄 − 1) 

since  

0.70 − 0.80 ≅  
𝐵𝑆1

𝐵𝑆1 + 𝐵𝑆2
 

𝑤ℎ𝑒𝑟𝑒 𝐵𝑆1 𝑎𝑛𝑑 𝐵𝑆2 𝑎𝑟𝑒 𝑤ℎ𝑜𝑙𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 

Finally, the second half of the bit time segment can be derived by 

𝐵𝑆2 = (𝑇𝑄 − 1) − 𝐵𝑆1. 

For the final application, this process used the following calculations: 

𝐵𝐹 =
45 𝑀ℎ𝑧

250 𝑘𝑏𝑝𝑠
= 180, 
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𝑇𝑄 =  
𝐵𝐹

𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟
 =

180

12
= 15 𝑡𝑖𝑚𝑒 𝑞𝑢𝑎𝑛𝑡𝑎 𝑝𝑒𝑟 𝐶𝐴𝑁 𝑏𝑖𝑡 

𝐵𝑆1 =  0.75 ∗ 14 = 10.5 ≅ 10 𝑡𝑖𝑚𝑒 𝑞𝑢𝑎𝑛𝑡𝑎 𝑏𝑒𝑓𝑜𝑟𝑒 𝑏𝑖𝑡 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 

𝐵𝑆2 = (15 − 1) − 10 = 4 𝑡𝑖𝑚𝑒 𝑞𝑢𝑎𝑛𝑡𝑎 𝑎𝑓𝑡𝑒𝑟 𝑏𝑖𝑡 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 

This produced a bit sampling point at 

𝐵𝑆1

𝐵𝑆1 + 𝐵𝑆2
=  

10

14
= 71.4% 

The contents of the CAN BTR register contained the values: 

Prescalar = 12 

BS1 = 10 

BS2 = 4 

These values were fixed to the CAN bx peripheral using the Standard Peripheral Library 

functions. The result produced a bus baud rate of 250 kbps when the CAN bx peripheral 

was clocked on APB1 bus at 45 MHz. 

The entire CAN bx peripheral of the STM32 microcontroller handled the bit-wise 

message arbitration to the bus, and the message filtering and buffering from the bus. It 

can do so independently for two CAN buses in simultaneous connection to the device 

(Figure 6.16). Each of the two controllers in the CAN bx module had two pin connection 

options for each transmit and receive pin. Making the final connection to the CAN 

transceiver from the microcontroller pins required shorting a solder jumper on the CAN 
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sled that matched the user’s choices for pins. This enabled more pinout flexibility in the 

final design of the CAN node. 

 

Figure 6.16 - The CAN bx peripheral 
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    Interrupts and Message Buffering 

The CAN bx module has the ability to generate a hardware signal to the processor called 

an interrupt. Interrupts typically occur in response to events caused by systems external to 

the processor to signal the need for an event to be handled. By activating this interrupt 

signal, the processor forcibly jumps from its current section of program memory to run a 

short section of code before returning to its original task. These short sections of code are 

called interrupt handlers. Interrupts are needed to describe the functionality of the STM32 

CAN library. 

In short, the interrupts handlers of the CAN stack do all the TTCAN related tasks of 

timely message reception, and timed transmission. An interrupt that runs in response to a 

new message in the CAN bx Rx FIFO copies the message to a message ring buffer in the 

application memory for later processing by the application. The same interrupt updates 

the system time when a time reference message arrives and also starts a timer that tracks 

the application’s current time-window position in the system matrix. When the timer 

expires, a timer interrupt handler runs to transmit a CAN message from the Tx Ring 

Buffer. If there is more than one message in the Tx Ring Buffer to transmit, the timer 

interrupt can reset the timer to the length of the time window (1 mS), allowing the next 

CAN message to be transmitted by the same interrupt handler when it runs 1 mS later – 

in the next time-window of the basic period. Figure 6.17 shows the interrupt signals and 

how they enable the processor to time access to messages that need to be transmitted or 

received. 
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Figure 6.17 - A representation interrupt events produced by peripherals 

 Peripheral Firmware Components 

    Controller Node Firmware Structure 

The peripheral configurations in the Controller CAN node enabled a particularly simple 

software architecture for easy modification and simplified performance verification. Most 

of the digital peripherals were configured for fully autonomous operation, where they 

only required attention from the CPU during start, stop, and configuration steps of the 

peripheral setup. This meant that once the peripheral was configured and started, the 

results of the peripheral were placed in memory automatically without the help of the 

processor. The advantages of this configuration showed the usefulness of the 

microcontroller’s ADC, which autonomously placed signal samples of all system buttons, 

switches, and joystick pins into a single memory array – keeping the samples up-to-date 

at all times. Additionally, non-critical functions of the serial communications peripheral 

were able to send large chunks of data to the LCD without requiring constant time and 
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attention from the processor – letting the more time-critical tasks have the processor more 

often. The key to this autonomous peripheral configuration was use of the direct memory 

access (DMA) peripheral. This peripheral enabled semi-concurrent streams of data to 

move from system input/output peripherals to specified locations in memory – statically 

allocated as variables and arrays of variables in the C language. 

The peripherals that ran only semi-autonomously were central to the CAN node 

application, and required use of the processor only during critical instances of time. The 

CAN bx and two timer peripherals required the use of interrupts to operate, though only 

one of the timers was needed for the time-triggered schedule tracking and system time 

keeping, while the other timer interrupted the processor at only 5 Hz to periodically 

toggle a global system flag. The resulting application was a “round robin with interrupts” 

architecture (Figure 6.18 and Figure 6.19). This means there was no centralized task 

allocation, scheduling, or operating system to manage the application.  

 

Figure 6.18 – Generalized model of Round robin with interrupts task execution 
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Figure 6.19 - Model of finalized application tasks and interrupts 

The processor only had to read the memory objects provided by the autonomous 

peripherals to check for system state changes, data processing tasks on incoming data. 

Infrequently the processor handled an interrupt by copying data between memory buffers. 

The resulting number of “blocking” tasks was zero, meaning that no single process was 

able to cause the processor to stay in some single subroutine for too long (Figure 6.20). 

Application task execution order was preserved from Figure 6.19 to show the order in 

which memory objects were accessed and modified. 
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Figure 6.20 - The microcontroller firmware was structured as a memory interface 

There were four enabled interrupts in the Controller Node application. Three of the four 

occurred in 1 mS intervals, and two of those occurred only in short bursts every 100 mS. 

The remaining interrupt raised an “lcd_update” trigger flag every 200 mS. The worst case 

execution time was then measured as sum of the execution times of all functions in the 

mode loops and interrupt handlers, accounting for the possibility that all interrupts 
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become “ready” simultaneously. A “tail chaining” feature of the ARM Cortex processor 

enabled direct jumping to successive multiple interrupt handlers, without restacking 

registers from the originally interrupted context. This saved restacking time and allowed 

for deterministic execution of interrupt processing. The worst-case execution times of the 

update task was measured to be 8 uS, which was significantly faster than the 100 mS 

deadline imposed by the system requirements. This is the result of the decision to 

dedicate a powerful processor for these low-level tasks. The low interrupt handling 

latency is shown in Figure 6.21 and Figure 6.22. 

 

Figure 6.21 – The basic period of the bus was visible in the task execution of the 

software. The LCD device's 5 Hz update rate was also visible. 

 

Figure 6.22 - The update() function ran longest when it processed an LCD update event, 

which required under 400 uS to execute, and the update() function was still called many 

times during bursty CAN message reception. 
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    Analog to Digital Converter Driver 

Use of the DMA extended to the analog-to-digital converter of the microcontroller, which 

was able to sample multiple channels in a specified order, each at 200 Hz, causing a 

DMA transfer request after each conversion. The DMA stream left the processor with an 

automatically-updated array of memory to read asynchronously, instead of a hardware 

peripheral (ADC) to manage for every channel conversion process. The array of memory 

contained the 12 bit samples of pins connected to user buttons, emergency stop buttons, 

and joystick. 

    Carrier Differential Global Positioning System Serial Byte Protocol Driver 

The carrier-differential GPS devices were configurable from the vendor supplied 

windows application, which controlled update rates, message types, message frequencies, 

and a wide host of other settings (Swift Navigation, San Francisco, CA). The vast 

majority of the factory-default settings were retained in the final application of the GPS 

CAN node. The CAN sled was able to supply the required 5V rail to power the GPS 

receiver, and only a serial interface was used to collect positioning data. The GPS node 

acted as the time master of the CAN bus, and derived master system time from the highly 

reliable 10 Hz update rate of the of the GPS receiver.  

All GPS state and event information was automatically sent to the microcontroller at the 

1 Mbps baud rate specified by the configuration software. This baud rate was possible 

because of the short serial wire length between the GPS device and the STM32 

microcontroller. All GPS data arrived in packetized bursts of data, which could not be 

transmitted on the 250 kbps CAN bus as quickly as it arrived over serial protocol. This 
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was remedied with a classical buffering technique, which allowed the firmware to 

process the serial GPS packets as they arrived, and store results in a CAN message 

transmit buffer, to be transmitted as a function of system time in 1 mS transmission 

windows according to the time-triggered system matrix. 

The arrival of GPS data from the receiver was plotted in Figure 6.23 along with the 

transmission of CAN messages in 1 mS windows. Events and durations were timed on a 

logic analyzer to capture how the buffering process is able to start immediately after the 

reception of GPS time information. 

 

Figure 6.23 - The GPS node buffers the incoming serial GPS data, and transmits at fixed 

transmission window intervals to meet the system schedule. Data was sent to the 

microcontroller in 3.15 mS. 
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The CD-GPS receivers were able to resolve position estimates at a rate up to 10 Hz. 

Position readings of the rover-side CD-GPS receiver (Figure 6.24) were in a Northing-

Easting-Down (NED) coordinate system (Figure 6.25) relative to the stationary CD-GPS 

receiver with coordinate (0,0) in millimeters as the base. As opposed to using an Earth-

centered earth fixed (ECEF) or latitude / longitude coordinate system, the NED 

coordinates greatly simplified the calculation of cross track error, the definitions of robot 

and waypoint positions, and required no floating point calculations in the processing 

operations of the microcontroller. 

 

Figure 6.24 - Carrier-differential GPS CAN node (Swift Navigation, San Francisco, CA) 



126 

 

Figure 6.25 - A representation of the coordinate system established by the CD-GPS 

receivers. 

    Motor Control Driver 

Software-control of the UAGV motors was achieved with SyRen 50 (Dimension 

Engineering, Hudson, OH) 50-amp motor drivers. The drivers were commanded with a 

simple, unidirectional single-byte serial UART protocol. The serial transfers were single 

byte, and therefore required no DMA stream or interrupts. The microcontroller firmware 

simply sent “stop” commands to the motor driver on startup and on the repeated CAN 

message reception timeout. If the motor node (Figure 6.26) misses either the time 

reference CAN message or the feedback command message in two consecutive basic-

periods of time, the software sent the robot’s motors into a safe stopped state. This safety 

feature was tested by holding down the “reset” switch on the GPS CAN node 

microcontroller, causing an absence of time-reference messages on the bus. 
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Figure 6.26 - Motor control CAN node 

    Liquid Crystal Display (LCD) Driver 

The thin-film transistor (TFT) LCD (Figure 6.27) driver responded to the periodic setting 

of a global flag representing the passage of 200 mS of time. The driver formatted a long 

character string of all LCD cursor and color commands, then printed the system variables 

in the ordered required to write to the screen from top-down, left to right. After string 

formatting was complete, the command string and it’s length was passed to the DMA 

peripheral which streamed the data to the LCD serial port, relieving the processor from 

having to handle the transmission of every individual character. Transfer of the entire 

string to the LCD took 78 mS, which was sufficiently short for the required 5 Hz update 

rate which imposed a 200 mS deadline for the entire transfer. Figure 6.28 shows the 

beginning of the byte-by-byte serial transfer process over the LCD serial pins. The LCD 

module can be seen to acknowledge every successful command reception by replying 
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with ‘0x55’. Binary states were encoded into a character color scheme, where red 

indicated a “not ready” state, and green indicated a “no error” state. 

 

Figure 6.27 - Remote control receiver, reset button, and LCD interface circuit on the 

"Controller" CAN node 
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Figure 6.28 - Byte stream of serial LCD commands managed by direct-memory-access 

peripheral 

    Serial Console Output Driver 

Each CAN node utilized a hardware USART peripheral of the microcontroller to output 

software status and variables to a serial stream. The streams were accessible with a 

standard serial-to-USB converter by opening COM ports on a PC. The stream of 

variables and system status was reformatted and re-printed to the console at 10 Hz so that 

every state change could be visibly captured or recorded. The driver for the USART was 

non-blocking, and utilized a DMA stream to manage the transfer of each byte. A two-

dimensional character array was statically allocated in the firmware to buffer any 

messages it sent to the stream while previously-started DMA stream were still 

incomplete. This enabled the application to use a low-priority “DMA Transfer complete” 

interrupt to handle the creation of streams for the waiting buffered messages. 

6.3 Results and Discussion 

The deployment of software involves a large amount of testing and the development of 

the C modules in use on the microcontrollers was no exception. The firmware had to 
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sample from a number of sensors, communicate them over a distributed link, process 

them to produce state variables in the desired engineering units, and do something 

reasonable after detecting that something has gone wrong – all in a timely manner 

dictated by the definition of the system matrix. 

The resulting performance of embedded software can be difficult to characterize and even 

interpret in a meaningful way. To show what the software is capable of, an oscilloscope 

and logic analyzer were both used to verify system performance on virtually all levels. 

General-purpose output pins of the microcontroller were toggled at the beginnings and 

ends of application function calls to characterize task execution in the time domain 

(Figure 6.29). The CAN bus was monitored with an oscilloscope and a CAN bus analyzer 

to verify the basic period of the system matrix (Figure 6.30 - Figure 6.33). 

 

Figure 6.29 - The handling of all CAN messages was handled in under 7 mS 
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Figure 6.30 - The 100 mS basic period is visible on an oscilloscope 

 

Figure 6.31 – Basic period capture during GPS signal loss 
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Figure 6.32 - 1 mS message windows 

 

 

Figure 6.33 - CAN bus activity of one basic period. Position and heading messages are 

not present when the GPS lock is not “fixed”. 

ID 100 401 402 200 201 202 206 300 450 451 452 453 
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6.4 Conclusions 

The control system requirements of the UAGV were satisfied within the constraints of 

the hardware selected, and were implemented with a TTCAN software stack that was 

verified to successfully schedule system messages even during predicted instances of 

missed message deadlines. Each of the UAGV components was integrated into a 

functional time-triggered system architecture, demonstrating a measure of system 

robustness, an awareness of message losses, and a user interface, validating the intended 

design. 
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Chapter 7   Control Design for Unmanned Agricultural 

Ground Vehicle 

7.1 Introduction 

In Agricultural and Biological Systems engineering curriculum, any exposure (if there is 

any at all) to control systems is usually a presentation of PID control, where the student is 

given three tuning parameters that are heuristically adjusted on the basis of some 

generalized tuning guidelines - or on no basis at all. This method of exposure leaves the 

impression that PID control is a silver bullet – the ultimate control solution that should be 

sought-after first. Something lost in this attitude is the analytical consideration of system 

dynamics with the compensator. 

Objective: Design and demonstrate a basic state space control system on the UAGV with 

TTCAN Control Module Layer (from Section 1.1) 

1) Introduce state space modeling and feedback control concepts 

2) Show controllability of UAGV and the convergence of system states 

3) Comment on implications for future control module layer research 

7.2 State Space Modeling and Feedback Control Design 

 Continuous and Discrete-time Linear Time Invariant System Representation  

As discussed in Chapter 2, the dynamics in an agricultural vehicle can be difficult to 

determine due to the easy slide into excessive system complexity. Consider the following 

scenario in the automatic steering control of a tractor (Figure 7.1). 
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Figure 7.1 – Derivation of a 1-dimensional error signal. The resulting position and angle 

of the velocity vector allows for straight steering travel on level ground. 

A single cross track error signal, error(t), is described by the scenario as the magnitude 

and direction of the cross-track error of the GPS antenna from some straight line defined 

by a pair of waypoints. This cross track error signal is commonly used as feedback in 

agricultural vehicle controllers. Darr (2004) derives a complete PID controller, step by 

step – demonstrating the effects of each successive control design step. This controller 

was shown to work for some forward driving speed. It enabled tight cross-track error 

regulation. Assuming a PID controller is sufficient for control of the vehicle using this 

cross track error signal presumes assumptions about the dynamics of the error signal, 

implying that the cross track error signal can be modeled to behave as a low-order plant 

with constant delay. This approach to control comes with no formal performance 

guarantees for system stability or parameter sensitivity. 

When considering a wider scope of navigation scenarios, it can be beneficial to control 

the vehicle under a wider variety of operational states. Consider the positioning of a 
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vehicle when a strong disturbance (steep lateral slope) to the system causes errors not 

measured by the GPS position. A controlled steady state cross track error signal only 

assumes the heading direction of the vehicle to be parallel to the desired path of travel 

(Darr, 2004, p. 57). If the vehicle is on a steep incline with considerable tire slip, a 

controller that lacks vehicle heading information might allow the vehicle’s rear hitch 

position to stray from the desired path – offsetting any hitched agricultural implement 

equipment (Figure 7.2). Including additional error signals could remedy the additional 

errors simultaneously. 

 

Figure 7.2 - A control error of zero is achieved while the rear hitch position is 

considerably offset and the velocity vector still indicates straight line travel from the 

perspective of the error signal. 

Other forms of control however, take advantage of more advanced system models that 

account for multiple system inputs and outputs. Modeling the system involves deriving 

equations of motion using laws of kinematics and dynamics. The equations may be 

nonlinear, and therefore are often linearized around a small operating point. The resulting 

model is a linear time-invariant (LTI) system for which a controller may be easily 
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designed. For an LTI system with p inputs, q outputs, and n states, the system parameters 

can be organized into a set of system matrices: 

A – System matrix [n x n]: Describes the current system states’ contribution to the 

current rate of change of the system states. 

B – Input matrix [n x p]: Describes the weight of the system inputs’ contribution to the 

rate of change of the system states. 

The rate of change of the current states is described by the sum of these matrices’ weights 

on the systems’ current states and inputs that give the control engineer a model for the 

system’s behavior, where the weights are the physical system parameters. Powerful 

simulation and control design techniques for the system can be done when it can be 

described by the continuous time state space LTI representation in equation 7.1: 

𝑥̇ = A𝑥 + B𝑢 (7.1) 

 

The continuous rate-of-change of the system states is simply the sum of the weights 

(system parameters / coefficients of the linearized differential equation) on the current 

states with the weights (gains) on the current inputs. 

System states are not always physical states to begin with, so control design needs to be 

done with the help of a system output equation, which describes the outputs of the system 

as the sum of the linear combination of the availability of the system states, and the direct 

influence of system inputs. Together, C and D describe the output of the continuous time 

system in equation 7.2: 

𝑦 = C𝑥 + D𝑢 (7.2) 

 

where 
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C – Output Matrix [q x n]: Describes the linear combination of system states that 

contributes to the outputs of the system; which may include the variables that are to 

be controlled, (temperature, speed, angle etc.) 

D – Feedthrough Matrix [q x p]: Describes the linear combination of input signals that 

directly add to the outputs of the system. In most cases, this is the zero matrix. 

Graphically, the state space equations (state and output equations) can be represented as a 

flow signals between operators, as shown in Figure 7.3. The nature of the system model 

as a multivariable differential equation becomes evident. The feedback across an 

integrator operator shows a system that is described by both a state vector and their 

derivatives. 

Reviewing the matrix descriptions of the continuous time state space equations reveals 

their graphical equivalence in Figure 7.3. Both A and B contribute to the state derivative 

ẋ, the representation of state change. C and D contribute to the representation of the 

system output y. We see two sums of the state space equations as the intersecting 

summation nodes. Additional examination of the state space equations shows two uses of 

the signal vectors x and u, which manifest in the diagram as signal branches. 

Vector/matrix multiplication is then the operator described by a vector signal pointing to 

a matrix. 

While noise in the system is not represented in the figure, it is often considered in control 

design techniques. For presentation simplification, this basic model of a linear time-

invariant system does well enough for basic simulation demonstration purposes, but is 

likely not sufficient for a full stability or parameter sensitivity analysis. 



139 

 

Figure 7.3 - Continuous-time, linear time-invariant system 

In the control design process, it is common to use this continuous-time model, but in the 

implementation of state feedback controllers on computers, the continuous process is 

sampled as shown in Figure 7.4.  

 

Figure 7.4 - Conversion to a discrete-time system to by sampling  

From the sampled system outputs, a controller in the computation node generates the 

control signals that drive the system through a digital to analog converter or actuator. The 

controller parameters can be designed according to simulations of the sampled 

continuous time system, or by converting the continuous time system to a discrete time 

system by defining a discrete time model where 
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𝑥[𝑘𝑇 + 𝑇] = 𝐹𝑥[𝑘𝑇] + 𝐺𝑢[𝑘𝑇] (7.3) 

and 

𝑦[𝑘𝑇] = 𝐻𝑥[𝑘𝑇] + 𝐷𝑢[𝑘𝑇] (7.4) 

for 

 

𝐹 =  𝑒𝐴𝑇 (7.5) 

and 

𝐺 =  ∫ 𝑒𝐴𝜏

𝑇

0

𝐵𝑑𝜏 (7.6) 

and 

𝐻 = 𝐶 (7.7) 

 

where k is the sample count and T is the sampling period. Equation 7.3 is noticeably 

analogous to the system equation 7.1, where F is simply the state transition matrix 

𝛷(𝑡) =  𝑒𝐴𝑡 (7.8) 

 

for the discrete time instant of T. This conversion process can be easily done with 

computational tools such as MATLAB’s c2d(sys, T) function. 

F[n x n] is then a specific of instance of the state transition matrix; a description of the 

contribution of the current state sample x[kT] to the changes observed on the next sample 

of the state vector x[kT+T], given some sampling period T and initial condition x0. The 

integrator of the continuous-time system can be represented as a delay in the discrete time 

system as shown in Figure 7.5. The delay element has a delay of one sample, which has 

the time-equivalent value of the sampling period T of the discrete system. 
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Figure 7.5 - Discrete-time linear time-invariant system representation 

 System Characterization 

Given any system initial state x0, if the inputs to an LTI system can be used to drive the 

states to zero (𝑥0 → 𝟎), then the system is said to be fully controllable. Controllability 

can be determined using the system’s controllability matrix (eq. 7.9). 

𝐶𝑂 = [𝐵|𝐴𝐵|𝐴2𝐵| … |𝐴𝑛−1𝐵] (7.9) 

 
The system is fully controllable is CO has full rank, or, with A of dimension n x n 

𝑟𝑎𝑛𝑘(𝐶𝑂) = 𝑛 (7.10) 

  

where n is the number of system states.  

The dual to system controllability is system observability. When dealing with LTI 

systems, some of the states might not be available for direct measurement. For state 

feedback control of LTI systems, the states can be derived from the outputs of the system 

if the system is fully observable. If a system is observable, then 7.11 holds true, and a 
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state estimator, or observer can be used to provide state feedback using the available 

system states and inputs. 

rank [

C
CA
⋮

CA𝑛−1

] = 𝑛 (7.11) 

 

 State Feedback Control 

Feeding back some linear combination of the system states (Kx) to the input can enable 

the input signal to drive the output y to the zero vector by driving the states x towards the 

zero vector (Figure 7.6).  

 

Figure 7.6 - State feedback 

Meaning that the feedback signal is now a linear combination of the measured states x, or 

estimated system states x̂, and the feedback gains (K), assuming the state regulator 

scenario where r = 0.  

𝑢 =  −K𝑥 (7.12) 
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Note there are some system model parameters that are required to make the feedback 

signal this simple to produce:  

1) All the system states are directly measureable. 

2) The LTI system has full controllability. 

If these conditions can be met according to the system model, equation 7.12 can be 

substituted into equation 7.1, resulting in an LTI system (Figure 7.6, equation 7.13) with 

state feedback to regulate the system. 

ẋ =  (𝐴 − 𝐵𝐾)𝑥 (7.13) 

  

where K is the feedback gain matrix. The stability of the LTI system can be greatly 

influenced by K, which needs to be designed such that the system poles are in the left-

half of the complex plane, or: 

𝑅𝑒𝑎𝑙(𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠(𝐴 − 𝐵𝐾)) < 0 (7.14) 

  

Modern state space control methods deal with the derivation of K, given some well-

characterized system defined by A, B, C, and D. For optimal control design given a 

continuous-time fully controllable and fully observable LTI system, the dlqr() function in 

MATLAB (The Mathworks Inc.) returns the controller gains Kd for digital control of a 

continuous time LTI-modeled system. 

This control technique among others deserves a more detailed treatment due to the 

variety of complex systems to model and control. The methods extend further to deal 

with system identification, estimation, and optimal control in the realms of offline, 

online, and adaptive control scenarios. Some of the same methods even extend to deal 

with time-variant linear systems, and the broad scope of non-linear systems. Excellent 
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treatments of the topics can be found by (Brogan, 1991) and (Franklin, 1998). A more 

specific treatment of the topics in the context of vehicle steering control, as well as a 

derivation of the model used for control simulation in the next section was done by 

(O’Conner, 1998). 

 Kinematic state space model 

Kinematic models of line-following vehicles tend to share a few common system states in 

the feedback controller. The models usually include some form of the cross track error 

measured from some point on the vehicle as a system state, a heading angle state, and a 

steering angle state (Bell et al., 1998; Elkaim et al., 1997; O’Conner, 1998). These states 

as shown in Figure 7.7, can be thought of as individual error signals that, when regulated 

to zero by a controller, describe a vehicle that perfectly follows the line described by 

waypoints Wa and Wb. The linearized model of system kinematics is shown in Figure 7.8 

and a detailed derivation of this model is described by O’Conner (1998). 

 

Figure 7.7 - State-space model for navigation (O’Conner, 1998) 
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In using this model for control design on the UAGV, simulation of the model 

demonstrates some of the systems requirements and a good starting point in selecting the 

feedback gains for the navigation controller, even if the model is fairly inaccurate. This 

also demonstrates the controllability of the UAGV from gains informed by the simulation 

points to some degree of validity to the model. 

First, the full model shows that the system input is a steering speed command to the 

steering actuator. This is also how a human driver would actuate, or influence the states 

of the system. The model also shows that a constant low driving velocity is assumed with 

no tire slip present. Violating these assumptions makes the model very inaccurate, and 

likely takes the system to some non-linear range of operation. This model supposes that 

the machine operates as a linear system if the states remain relatively close to zero. This 

means that letting one or more of the states become large enough in magnitude could 

send the system into instability, which manifests itself as steady or growing system 

oscillations. For a robot navigating on a line, this might mean that the vehicle would 

wiggle across the line back and forth, without ever steadily tracking the line, or driving 

all the states to zero. 

 

Figure 7.8 - System Model (O’Connor, 1998) 

For V = 2 meters/second, L1 = 0.5 meters, and L2 = 0.5 meters, A and B produce a 

controllability matrix CO with full rank. Since all system states of the UAGV are 
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measured using GPS and a steering actuator sensor, H (the observability matrix) is full 

rank. The system is shown to be both fully controllable and fully observable – 

simplifying the control design. The system also has no D matrix, which means there is no 

feedthrough control effort accounted for. The combination of these model observations 

results in a system where C is abstracted away since all system states are directly 

observable and considered the same variables as the outputs, and where D = 0.  

Simulating this system in software was done with a set of initial conditions and a loop 

that performed the Euler integration method to derive future system states to estimate the 

behavior of the model at a frequency of 10 Hz. An example system step response (Figure 

7.9) was generated to demonstrate convergence of the system model states using a gain 

matrix K, derived from the dlqr() function in MATLAB (The Mathworks Inc.). State 

convergence is simulated in Figure 7.9 with the following parameters: 

Td = 0.1 s 

V = 0.25 

L1 = 0.255 

L2 = 0.845 

K = [ 5.0 4.0 3.0 ] 

X0 = [ 1.0 0.0 0.0 ]’ 
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Figure 7.9 - Simulation of state convergence for the O'Connor UAGV model. 

 State Estimation and Augmented Models 

The lack of state availability from a system model can yield a need to estimate the 

unavailable states. This can be done with the addition of an estimator or observer, which 

monitors the current system states and inputs, and computes state estimate vector (x̂) from 

an internally simulated version of the system model (Figure 7.10). An estimator can 

provide state estimates usable for full-state feedback control. Some types of estimators 

can utilize sensor noise and modeling inaccuracies as parameters of the system to 

estimate the state vector from noisy sensor measurements. 
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Figure 7.10 - Addition of a state estimator 

Additionally, estimators can utilize augmented system models to estimate and capture 

offsets and biases in sensor measurements when modeled as observable (added to 

observability matrix H), non-controllable states (no dynamics in system matrix A). If a 

poorly calibrated compass and misaligned steering angle sensor on a UAGV caused 

steady state error in controller performance, the offsets could be estimated and then 

compensated for in the state estimate (Figure 7.11). 

 

Figure 7.11 - Estimator model can be augmented to include bias states 

If the incline on a hill is enough to cause a steady-state error on the cross track distance 

state, the addition of a controllable, non-observable state that accumulates with the 
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magnitude of the cross-track error in every time step can serve as a state integral that can 

be fed back to the actuator through an augmented feedback matrix (K) to account for the 

new state (Figure 7.12). Notice that such an integrator state includes no element in H 

since it is not observable, even though it can contribute to the feedback signal with an 

augmented K. The addition of an integrator state can increase the tracking performance of 

a controller with a non-zero reference input r in Figure 7.10. 

 

Figure 7.12 - Estimator model can be augmented with an integral state 

Simulating state estimation can be done with the addition of noise in the sensor 

measurements, and use of an augmented model in an estimator. See an example of the 

previous simulation with included noise, and the resulting estimated states in (Figure 

7.13). 
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Figure 7.13 - Simulated state estimation to remove measurement noise 

7.3 Materials and Methods 

Demonstration of state space feedback control was decidedly necessary to show 

successful utilization of the TTCAN-based control module layer of the UAGV. A line 

defined by two waypoints with NED coordinates on the Nebraska Tractor Test Track was 

used to validate the control module layer’s ability to retain controllability of the UAGV 

for each time step of feedback control (Figure 7.14). The line was 243 meters long, and 

enabled the controller to reach steady state conditions. Manual operation of the CD-GPS 

system was used to measure the waypoint coordinates ahead of time. 
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Figure 7.14 - Nebraska Tractor Test Track route for autonomous navigation tests 

Feedback gains were derived from MATLAB’s (The Mathworks, Inc.) implementation of 

linear quadratic regulation (LQR) methods ( dlqr() ). Resulting system behavior with the 

generated gains were simulated in MATLAB before uploading the gains to the Controller 

CAN node. To show the transparency of the control module architecture during test runs, 

no state estimator was used for the generation of the feedback signal. Controllability was 

sought to be retained through the control module layer running the control algorithm in 

real-time. Consistent convergence of the system states and system stability was desired 

for step inputs on single states and on multiple states. Tests for state convergence at 1 m/s 

were arranged for an initial cross track error of 1.0 meter, and heading error and steering 

angle at zero degrees.  
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7.4 Results and Discussion 

The states converged (Figure 7.15) to nominal minimum values after 15 seconds of travel 

time, and followed the waypoint line (Figure 7.16). 

 

Figure 7.15 - State convergence from step response test 

 

Figure 7.16 - NED coordinates of step response test 

The mean of the cross track error was -2.7 cm during steady state, which was evident 

from distribution of the error (Figure 7.17) and in the steady state value of the error 

visible from (Figure 7.18). This offset could be reduced with a state integrator on an 

estimator, but would obscure presentation of the plant’s available controllability from just 
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noisy sensor measurements alone. Another step response is depicted I (Figure 7.19), 

where the elements of the gain matrix had about half the magnitude of the original 

controller due to LQR parameter adjustments. The step response is noticeably less 

aggressive. 

 

Figure 7.17 - Cross track error distribution 

 

Figure 7.18 - Cross track error time domain response 



154 

 

Figure 7.19 - Position control with less aggressive controller gains 

To evaluate controller performance under less convenient initial conditions, the robot was 

posed facing Southeast and 5 meters off the waypoint line (Figure 7.20). The states were 

still found to converge after a period of actuator saturation (Figure 7.21). The steering 

wheels were commanded to steer as far as they could before the steering CAN node 

limited the actuator position, and the controller CAN node firmware saturated its own 

command output to the CAN bus. The UAGV made a turn as tightly as could be 

commanded and reached steady state regulation after 15 seconds of run time. The mean 

cross track error was -4.4 cm during steady state conditions (Figure 7.22). 

 

Figure 7.20 - Travel path from 'inconvenient' initial state 
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Figure 7.21 - State convergence from larger variety of state vectors 

  

Figure 7.22 - Cross track error steady state was reached in 15 seconds of time, and had a 

very similar error distribution to the first test 

For a third variety of verification tests, the UAGV was loaded with a filled water sprayer 

on the hitch to informally identify any obvious model parameter sensitivities (Figure 7.23 

and Figure 7.24). The model was kinematic, not accounting for mass distributions, 

accelerations, or forces. Identifying any major model sensitivities to parameters other 

than velocity and sensor positioning would indicative of very poor modeling. LQR 
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parameters were adjusted to favor the cross track error state in an attempt to reduce the 

steady state cross track error quickly. The complete cancellation of steady state error was 

unlikely without an integrator state added to a state estimator. The new gains commanded 

the actuator harder during steady state and likely required far more energy to satisfy 

regulation (Figure 7.25 and Figure 7.26). The mean cross track error for the loaded test of 

1 cm during steady state was indicative of better steady state performance from previous 

tests (Figure 7.27 and Figure 7.28). 

 

Figure 7.23 - Test setup for loaded UAGV runs 

 

Figure 7.24 - Spray pattern from straight line navigation control 
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Figure 7.25 - The UAGV position still tracked quickly while load 

 

Figure 7.26 - Small errors still caused bang-bang-like control efforts because of the 

deadband compensation built into the steering actuator command calibration 
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Figure 7.27 - Cross track error performance for the entire run 

 

Figure 7.28 - Cross track error distribution during steady state was close to a normal 

distribution 

7.5 Conclusions 

None of the controllers developed were demonstrably optimal, only optimal as far as the 

system model was accurate. Performance of the controller could easily be enhanced with 

an active state estimator on the controller CAN node to help alleviate some of the sensor 

noise, and estimate system parameters. Augmenting the model in the estimator with a 

cross track error integrator state would improve steady state cross-track error without 

having to increase controller gain, risking actuator saturation. While the state evolution 
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curves of the UAGV look similar to those of the simulated model, further scrutiny would 

likely reveal that most of the track tests started with initial conditions outside of the 

intended linearly-valid operating point of the model. Modeling from sampled state data 

and an assumed model structure could yield better models for controller and estimator 

design than what was used straight from literature. Though, this solution is not 

guaranteed to be fully controllable or fully observable. Better modeling of the steering 

actuator could also lead to improved performance, but should be considered a desperate 

means towards navigation precision since the steering actuators of the same manufacturer 

model appeared to vary in performance from each other. The demonstrated controllability 

of the UAGV on the digital time-triggered controller architecture is an encouraging step 

towards widespread use of a robust and deterministic controller communication standard 

for unmanned agricultural ground vehicles in research and commercial settings. 
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Chapter 8   Contributions and Innovations 

The widespread adoption of unmanned agricultural ground vehicles in production 

operations both large and small will occur after two important measures are taken: The 

long process of defining and testing system architectures for inexpensive and modular 

machine design, and an arduous period of development and adoption of infrastructure 

standards provably appropriate for unmanned real-time networking and control of 

agricultural machinery components. The deeply ingrained practices of event-triggered 

ISOBUS implementations for increasingly autonomous heavy agricultural machinery will 

need to be replaced with one of determinism and safety in mind. This shift should take 

place or fully autonomous machines will be ever-slower to contribute to the increasingly 

large production processes that make or break growing agricultural economies. 

8.1 Contributions 

The front to back implementation of a complete controlled machine acts as a resource for 

researchers upon which a new time-triggered standard can be developed and tested for 

autonomous agricultural machinery and hitched implements. This work shows the system 

design considerations starting with the architecture’s intent and philosophy, and finishing 

with a demonstration of a time-triggered network that carries system states and events 

that allow for modern control techniques as a common use case. The board designs and 

firmware descriptions serve as a reference design of a minimalistic time-triggered 

networking experimentation platform, and is intended to be a starting point and not a 

final implementation of a proposed industry standard. 
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8.2 Innovations 

This work is a call to the agricultural machinery industry to begin the development of a 

controller network that supports the safety and determinism requirements for autonomous 

field machines. A reformation of the agricultural machinery system design standards is 

imminent as autonomous machinery becomes common place. Knowledge of these 

deterministic system design techniques has accumulated from decades of work done in 

the automotive and aerospace industries, but is largely unconsidered by the agricultural 

machinery industry. The benefits remain untapped by a sector of automation that most 

stands to profit. This work demonstrates the applied benefit of modern control techniques 

on an electric test platform that is made possible by an inexpensive and modular 

implementation of a time-triggered network with more determinism than a modern 

commercially-implemented event-triggered CAN bus. This base layer of network time-

awareness is demonstrated to be relatively simple to implement on a basic 

microcontroller platform. This is a strong case for the continued experimentation with 

link layers (CAN-FD, Flexray) for the development of deterministic agricultural 

machinery networking standards (ISOBUS-TT). 
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Chapter 10   Appendix 

10.1 Schematic Designs 

 

Figure 10.1 - CAN sled for F446 
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Figure 10.2 - Simple sub-system description of CAN interface 
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Figure 10.3 - F303 CAN sled schematic 
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10.2 Board Designs 

 

Figure 10.4 - Board layout for F446 CAN sled 
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Figure 10.5 – Board component description of F446 CAN interface board 

 

Figure 10.6 - F303 CAN sled board layout 
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