317 research outputs found

    Global-referenced navigation grids for off-road vehicles and environments

    Full text link
    [EN] The presence of automation and information technology in agricultural environments seems no longer questionable; smart spraying, variable rate fertilizing, or automatic guidance are becoming usual management tools in modern farms. Yet, such techniques are still in their nascence and offer a lively hotbed for innovation. In particular, significant research efforts are being directed toward vehicle navigation and awareness in off-road environments. However, the majority of solutions being developed are based on occupancy grids referenced with odometry and dead-reckoning, or alternatively based on GPS waypoint following, but never based on both. Yet, navigation in off-road environments highly benefits from both approaches: perception data effectively condensed in regular grids, and global references for every cell of the grid. This research proposes a framework to build globally referenced navigation grids by combining three-dimensional stereo vision with satellite-based global positioning. The construction process entails the in-field recording of perceptual information plus the geodetic coordinates of the vehicle at every image acquisition position, in addition to other basic data as velocity, heading, or GPS quality indices. The creation of local grids occurs in real time right after the stereo images have been captured by the vehicle in the field, but the final assembly of universal grids takes place after finishing the acquisition phase. Vehicle-fixed individual grids are then superposed onto the global grid, transferring original perception data to universal cells expressed in Local Tangent Plane coordinates. Global referencing allows the discontinuous appendage of data to succeed in the completion and updating of navigation grids along the time over multiple mapping sessions. This methodology was validated in a commercial vineyard, where several universal grids of the crops were generated. Vine rows were correctly reconstructed, although some difficulties appeared around the headland turns as a consequence of unreliable heading estimations. Navigation information conveyed through globally referenced regular grids turned out to be a powerful tool for upcoming practical implementations within agricultural robotics. (C) 2011 Elsevier B.V. All rights reserved.The author would like to thank Juan Jose Pena Suarez and Montano Perez Teruel for their assistance in the preparation of the prototype vehicle, Veronica Saiz Rubio for her help during most of the field experiments, Ratul Banerjee for his contribution in the development of software, and Luis Gil-Orozco Esteve for granting permission to perform multiple tests in the vineyards of his winery Finca Ardal. Gratitude is also extended to the Spanish Ministry of Science and Innovation for funding this research through project AGL2009-11731.Rovira Más, F. (2011). Global-referenced navigation grids for off-road vehicles and environments. Robotics and Autonomous Systems. 60(2):278-287. https://doi.org/10.1016/j.robot.2011.11.007S27828760

    Efficient human-machine control with asymmetric marginal reliability input devices

    Get PDF
    Input devices such as motor-imagery brain-computer interfaces (BCIs) are often unreliable. In theory, channel coding can be used in the human-machine loop to robustly encapsulate intention through noisy input devices but standard feedforward error correction codes cannot be practically applied. We present a practical and general probabilistic user interface for binary input devices with very high noise levels. Our approach allows any level of robustness to be achieved, regardless of noise level, where reliable feedback such as a visual display is available. In particular, we show efficient zooming interfaces based on feedback channel codes for two-class binary problems with noise levels characteristic of modalities such as motor-imagery based BCI, with accuracy <75%. We outline general principles based on separating channel, line and source coding in human-machine loop design. We develop a novel selection mechanism which can achieve arbitrarily reliable selection with a noisy two-state button. We show automatic online adaptation to changing channel statistics, and operation without precise calibration of error rates. A range of visualisations are used to construct user interfaces which implicitly code for these channels in a way that it is transparent to users. We validate our approach with a set of Monte Carlo simulations, and empirical results from a human-in-the-loop experiment showing the approach operates effectively at 50-70% of the theoretical optimum across a range of channel conditions

    Models of leader elections and their applications

    Get PDF
    New research about cyber-physical systems is rapidly changing the way we think about critical infrastructures such as the power grid. Changing requirements for the generation, storage, and availability of power are all driving the development of the smart-grid. Many smart-grid projects disperse power generation across a wide area and control devices with a distributed system. However, in a distributed system, the state of processes is hard to determine due to isolation of memory. By using information flow security models, we reason about a process\u27s beliefs of the system state in a distributed system. Information flow analysis aided in the creation of Markov models for the expected behavior of a cyber controller in a smart-grid system using a communication network with omission faults. The models were used as part of an analysis of the distributed system behavior when there are communication faults. With insight gained from these models, existing congestion management techniques were extended to create a feedback mechanism, allowing the cyber-physical system to better react to issues in the communication network --Abstract, page iii

    Application of a Layered Hidden Markov Model in the Detection of Network Attacks

    Get PDF
    Network-based attacks against computer systems are a common and increasing problem. Attackers continue to increase the sophistication and complexity of their attacks with the goal of removing sensitive data or disrupting operations. Attack detection technology works very well for the detection of known attacks using a signature-based intrusion detection system. However, attackers can utilize attacks that are undetectable to those signature-based systems whether they are truly new attacks or modified versions of known attacks. Anomaly-based intrusion detection systems approach the problem of attack detection by detecting when traffic differs from a learned baseline. In the case of this research, the focus was on a relatively new area known as payload anomaly detection. In payload anomaly detection, the system focuses exclusively on the payload of packets and learns the normal contents of those payloads. When a payload\u27s contents differ from the norm, an anomaly is detected and may be a potential attack. A risk with anomaly-based detection mechanisms is they suffer from high false positive rates which reduce their effectiveness. This research built upon previous research in payload anomaly detection by combining multiple techniques of detection in a layered approach. The layers of the system included a high-level navigation layer, a request payload analysis layer, and a request-response analysis layer. The system was tested using the test data provided by some earlier payload anomaly detection systems as well as new data sets. The results of the experiments showed that by combining these layers of detection into a single system, there were higher detection rates and lower false positive rates

    Trust Establishment Mechanisms for Distributed Service Environments

    Get PDF
    The aim and motivation of this dissertation can be best described in one of the most important application fields, the cloud computing. It has changed entire business model of service-oriented computing environments in the last decade. Cloud computing enables information technology related services in a more dynamic and scalable way than before – more cost-effective than before due to the economy of scale and of sharing resources. These opportunities are too attractive for consumers to ignore in today’s highly competitive service environments. The way to realise these opportunities, however, is not free of obstacles. Services offered in cloud computing environments are often composed of multiple service components, which are hosted in distributed systems across the globe and managed by multiple parties. Potential consumers often feel that they lose the control over their data, due to the lack of transparent service specification and unclear security assurances in such environments. These issues encountered by the consumers boiled down to an unwillingness to depend on the service providers regarding the services they offer in the marketplaces. Therefore, consumers have to be put in a position where they can reliably assess the dependability of a service provider. At the same time, service providers have to be able to truthfully present the service-specific security capabilities. If both of these objectives can be achieved, consumers have a basis to make well-founded decisions about whether or not to depend on a particular service provider out of many alternatives. In this thesis, computational trust mechanisms are leveraged to assess the capabilities and evaluate the dependability of service providers. These mechanisms, in the end, potentially support consumers to establish trust on service providers in distributed service environments, e.g., cloud computing. In such environments, acceptable quality of the services can be maintained if the providers possess required capabilities regarding different service-specific attributes, e.g., security, performance, compliance. As services in these environments are often composed of multiple services, subsystems and components, evaluating trustworthiness of the service providers based on the service-specific attributes is non-trivial. In this vein, novel mechanisms are proposed for assessing and evaluating the trustworthiness of service providers considering the trustworthiness of composite services. The scientific contributions towards those novel mechanisms are summarised as follows: • Firstly, we introduce a list of service-specific attributes, QoS+ [HRM10, HHRM12], based on a systematic and comprehensive analysis of existing literatures in the field of cloud computing security and trust. • Secondly, a formal framework [SVRH11, RHMV11a, RHMV11b] is proposed to analyse the composite services along with their required service-specific attributes considering consumer requirements and represent them in simplified meaningful terms, i.e., Propositional Logic Terms (PLTs). • Thirdly, a novel trust evaluation framework CertainLogic [RHMV11a, RHMV11b, HRHM12a, HRHM12b] is proposed to evaluate the PLTs, i.e., capabilities of service providers. The framework provides computational operators to evaluate the PLTs, considering that uncertain and conflicting information are associated with each of the PLTs and those information can be derived from multiple sources. • Finally, harnessing these technical building blocks we present a novel trust management architecture [HRM11] for cloud computing marketplaces. The architecture is designed to support consumers in assessing and evaluating the trustworthiness of service providers based on the published information about their services. The novel contributions of this thesis are evaluated using proof-of-concept-system, prototype implementations and formal proofs. The proof-of-concept-system [HRMV13, HVM13a, HVM13b] is a realisation of the proposed architecture for trust management in cloud marketplaces. The realisation of the system is implemented based on a self-assessment framework, proposed by the Cloud Security Alliance, where the formal framework and computational operators of CertainLogic are applied. The realisation of the system enables consumers to evaluate the trustworthiness of service providers based on their published datasets in the CSA STAR. A number of experiments are conducted in different cloud computing scenarios leveraging the datasets in order to demonstrate the technical feasibility of the contributions made in this thesis. Additionally, the prototype implementations of CertainLogic framework provide means to demonstrate the characteristics of the computational operators by means of various examples. The formal framework as well as computational operators of CertainLogic are validated against desirable mathematical properties, which are supported by formal algebraic proofs

    Measuring trustworthiness of image data in the internet of things environment

    Get PDF
    Internet of Things (IoT) image sensors generate huge volumes of digital images every day. However, easy availability and usability of photo editing tools, the vulnerability in communication channels and malicious software have made forgery attacks on image sensor data effortless and thus expose IoT systems to cyberattacks. In IoT applications such as smart cities and surveillance systems, the smooth operation depends on sensors’ sharing data with other sensors of identical or different types. Therefore, a sensor must be able to rely on the data it receives from other sensors; in other words, data must be trustworthy. Sensors deployed in IoT applications are usually limited to low processing and battery power, which prohibits the use of complex cryptography and security mechanism and the adoption of universal security standards by IoT device manufacturers. Hence, estimating the trust of the image sensor data is a defensive solution as these data are used for critical decision-making processes. To our knowledge, only one published work has estimated the trustworthiness of digital images applied to forensic applications. However, that study’s method depends on machine learning prediction scores returned by existing forensic models, which limits its usage where underlying forensics models require different approaches (e.g., machine learning predictions, statistical methods, digital signature, perceptual image hash). Multi-type sensor data correlation and context awareness can improve the trust measurement, which is absent in that study’s model. To address these issues, novel techniques are introduced to accurately estimate the trustworthiness of IoT image sensor data with the aid of complementary non-imagery (numeric) data-generating sensors monitoring the same environment. The trust estimation models run in edge devices, relieving sensors from computationally intensive tasks. First, to detect local image forgery (splicing and copy-move attacks), an innovative image forgery detection method is proposed based on Discrete Cosine Transformation (DCT), Local Binary Pattern (LBP) and a new feature extraction method using the mean operator. Using Support Vector Machine (SVM), the proposed method is extensively tested on four well-known publicly available greyscale and colour image forgery datasets and on an IoT-based image forgery dataset that we built. Experimental results reveal the superiority of our proposed method over recent state-of-the-art methods in terms of widely used performance metrics and computational time and demonstrate robustness against low availability of forged training samples. Second, a robust trust estimation framework for IoT image data is proposed, leveraging numeric data-generating sensors deployed in the same area of interest (AoI) in an indoor environment. As low-cost sensors allow many IoT applications to use multiple types of sensors to observe the same AoI, the complementary numeric data of one sensor can be exploited to measure the trust value of another image sensor’s data. A theoretical model is developed using Shannon’s entropy to derive the uncertainty associated with an observed event and Dempster-Shafer theory (DST) for decision fusion. The proposed model’s efficacy in estimating the trust score of image sensor data is analysed by observing a fire event using IoT image and temperature sensor data in an indoor residential setup under different scenarios. The proposed model produces highly accurate trust scores in all scenarios with authentic and forged image data. Finally, as the outdoor environment varies dynamically due to different natural factors (e.g., lighting condition variations in day and night, presence of different objects, smoke, fog, rain, shadow in the scene), a novel trust framework is proposed that is suitable for the outdoor environments with these contextual variations. A transfer learning approach is adopted to derive the decision about an observation from image sensor data, while also a statistical approach is used to derive the decision about the same observation from numeric data generated from other sensors deployed in the same AoI. These decisions are then fused using CertainLogic and compared with DST-based fusion. A testbed was set up using Raspberry Pi microprocessor, image sensor, temperature sensor, edge device, LoRa nodes, LoRaWAN gateway and servers to evaluate the proposed techniques. The results show that CertainLogic is more suitable for measuring the trustworthiness of image sensor data in an outdoor environment.Doctor of Philosoph

    PERFORMANCE EVALUATION AND REVIEW FRAMEWORK OF ROBOTIC MISSIONS (PERFORM): AUTONOMOUS PATH PLANNING AND AUTONOMY PERFORMANCE EVALUATION

    Get PDF
    The scope of this work spans two main areas of autonomy research 1) autonomous path planning and 2) test and evaluation of autonomous systems. Path planning is an integral part of autonomous decision-making, and a deep understanding in this area provides valuable perspective on approaching the problem of how to effectively evaluate vehicle behavior. Autonomous decision-making capabilities must include reliability, robustness, and trustworthiness in a real-world environment. A major component of robot decision-making lies in intelligent path-planning. Serving as the brains of an autonomous system, an efficient and reliable path planner is crucial to mission success and overall safety. A hybrid global and local planner is implemented using a combination of the Potential Field Method (PFM) and A-star (A*) algorithms. Created using a layered vector field strategy, this allows for flexibility along with the ability to add and remove layers to take into account other parameters such as currents, wind, dynamics, and the International Regulations for Preventing Collisions at Sea (COLGREGS). Different weights can be attributed to each layer based on the determined level of importance in a hierarchical manner. Different obstacle scenarios are shown in simulation, and proof-of-concept validation of the path-planning algorithms on an actual ASV is accomplished in an indoor environment. Results show that the combination of PFM and A* complement each other to generate a successfully planned path to goal that alleviates local minima and entrapment issues. Additionally, the planner demonstrates the ability to update for new obstacles in real time using an obstacle detection sensor. Regarding test and evaluation of autonomous vehicles, trust and confidence in autonomous behavior is required to send autonomous vehicles into operational missions. The author introduces the Performance Evaluation and Review Framework Of Robotic Missions (PERFORM), a framework for which to enable a rigorous and replicable autonomy test environment, thereby filling the void between that of merely simulating autonomy and that of completing true field missions. A generic architecture for defining the missions under test is proposed and a unique Interval Type-2 Fuzzy Logic approach is used as the foundation for the mathematically rigorous autonomy evaluation framework. The test environment is designed to aid in (1) new technology development (i.e. providing direct comparisons and quantitative evaluations of varying autonomy algorithms), (2) the validation of the performance of specific autonomous platforms, and (3) the selection of the appropriate robotic platform(s) for a given mission type (e.g. for surveying, surveillance, search and rescue). Several case studies are presented to apply the metric to various test scenarios. Results demonstrate the flexibility of the technique with the ability to tailor tests to the user’s design requirements accounting for different priorities related to acceptable risks and goals of a given mission

    Uncertainty Minimization in Robotic 3D Mapping Systems Operating in Dynamic Large-Scale Environments

    Get PDF
    This dissertation research is motivated by the potential and promise of 3D sensing technologies in safety and security applications. With specific focus on unmanned robotic mapping to aid clean-up of hazardous environments, under-vehicle inspection, automatic runway/pavement inspection and modeling of urban environments, we develop modular, multi-sensor, multi-modality robotic 3D imaging prototypes using localization/navigation hardware, laser range scanners and video cameras. While deploying our multi-modality complementary approach to pose and structure recovery in dynamic real-world operating conditions, we observe several data fusion issues that state-of-the-art methodologies are not able to handle. Different bounds on the noise model of heterogeneous sensors, the dynamism of the operating conditions and the interaction of the sensing mechanisms with the environment introduce situations where sensors can intermittently degenerate to accuracy levels lower than their design specification. This observation necessitates the derivation of methods to integrate multi-sensor data considering sensor conflict, performance degradation and potential failure during operation. Our work in this dissertation contributes the derivation of a fault-diagnosis framework inspired by information complexity theory to the data fusion literature. We implement the framework as opportunistic sensing intelligence that is able to evolve a belief policy on the sensors within the multi-agent 3D mapping systems to survive and counter concerns of failure in challenging operating conditions. The implementation of the information-theoretic framework, in addition to eliminating failed/non-functional sensors and avoiding catastrophic fusion, is able to minimize uncertainty during autonomous operation by adaptively deciding to fuse or choose believable sensors. We demonstrate our framework through experiments in multi-sensor robot state localization in large scale dynamic environments and vision-based 3D inference. Our modular hardware and software design of robotic imaging prototypes along with the opportunistic sensing intelligence provides significant improvements towards autonomous accurate photo-realistic 3D mapping and remote visualization of scenes for the motivating applications
    • …
    corecore