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ABSTRACT
Performance Evaluation and Review Framework Of Robotic Missions

(PERFORM): Autonomous Path Planning and Autonomy Performance
Evaluation

by
Allisa J. Dalpe

University of New Hampshire, May, 2021

The scope of this work spans two main areas of autonomy research 1) autonomous path plan-

ning and 2) test and evaluation of autonomous systems. Path planning is an integral part of au-

tonomous decision-making, and a deep understanding in this area provides valuable perspective on

approaching the problem of how to effectively evaluate vehicle behavior.

Autonomous decision-making capabilities must include reliability, robustness, and trustwor-

thiness in a real-world environment. A major component of robot decision-making lies in intelli-

gent path-planning. Serving as the brains of an autonomous system, an efficient and reliable path

planner is crucial to mission success and overall safety. A hybrid global and local planner is im-

plemented using a combination of the Potential Field Method (PFM) and A-star (A*) algorithms.

Created using a layered vector field strategy, this allows for flexibility along with the ability to add

and remove layers to take into account other parameters such as currents, wind, dynamics, and the

International Regulations for Preventing Collisions at Sea (COLGREGS). Different weights can

be attributed to each layer based on the determined level of importance in a hierarchical manner.

Different obstacle scenarios are shown in simulation, and proof-of-concept validation of the path-

planning algorithms on an actual ASV is accomplished in an indoor environment. Results show

that the combination of PFM and A* complement each other to generate a successfully planned

path to goal that alleviates local minima and entrapment issues. Additionally, the planner demon-

strates the ability to update for new obstacles in real time using an obstacle detection sensor.

Regarding test and evaluation of autonomous vehicles, trust and confidence in autonomous be-

havior is required to send autonomous vehicles into operational missions. The author introduces

xx



the Performance Evaluation and Review Framework Of Robotic Missions (PERFORM), a frame-

work for which to enable a rigorous and replicable autonomy test environment, thereby filling the

void between that of merely simulating autonomy and that of completing true field missions. A

generic architecture for defining the missions under test is proposed and a unique Interval Type-2

Fuzzy Logic approach is used as the foundation for the mathematically rigorous autonomy evalu-

ation framework. The test environment is designed to aid in (1) new technology development (i.e.

providing direct comparisons and quantitative evaluations of varying autonomy algorithms), (2)

the validation of the performance of specific autonomous platforms, and (3) the selection of the

appropriate robotic platform(s) for a given mission type (e.g. for surveying, surveillance, search

and rescue). Several case studies are presented to apply the metric to various test scenarios. Re-

sults demonstrate the flexibility of the technique with the ability to tailor tests to the user’s design

requirements accounting for different priorities related to acceptable risks and goals of a given

mission.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Broader Impacts

With an increasingly automated world, Autonomous Vehicles (AVs) in water, land, and air, have

become a major area of study. With applications spanning science, commercial, and military

interests, billions of dollars have been invested in developing technology to build and deploy safe,

reliable, and practical vehicles. Current research still primarily consists of simulations and proof-

of-concept vehicles tested only in controlled laboratory or field environments due to the lack of

reliability in autonomous decision-making [75][116][43]. To transition these autonomous systems

into operational missions and public spaces, a quantifiable level of trust and confidence in vehicle

behavior requires validation.

Much like how the car industry forever changed the way people go about their lives, au-

tonomous vehicles have the potential to be just as revolutionary with improvements to safety and

efficiency [54]. With the benefits of new technology, however, also comes new issues and risks

[72]. The automobile industry has spent decades of time and resources to understand and mini-

mize risk factors for human driving behavior [1]. This need for reliability is accentuated by a 2015

National Highway Traffic Safety Administration report which found that 94 percent of traffic acci-

dents and 89–96 percent of ship collisions occur as a result of human error [114] [11]. Autonomous

vehicles present new safety threats, but they also show significant promise towards reducing the

number of accidents once the technology in this area has matured [72].

While the marine environment may not have the same vehicle density as that of a city street,

the ocean poses other unique challenges for AVs. Due to varying sea states and tidal currents and

marine vehicles often being underactuated, navigation and control quickly become complex and
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sometimes unstable. Obtaining a completely accurate model of this complex marine environment

is not only nearly impossible but also bears a high computational cost in the attempt, especially

to take into account the excessively high number of variables. Additionally, below the surface, if

working with underwater vehicles, the environment requires different approaches than land, ocean

surface, and air based vehicles due to the properties of water. Sensors such as Global Positioning

System (GPS) and Radar (Radio Detection and Ranging) have signals that are highly attenuated in

water, deeming them unusable.

Research cruises are costly (often tens of thousands of dollars per day), hard to reserve, and

have limited endurance capacity. These challenges have resulted in less than 15 percent of the

ocean being explored. A fleet of autonomous vehicles will improve scientific sampling efficiency

for increased data collection and take on longer duration missions. The vehicles can perform tasks

dangerous to human involvement, conduct search and rescue operations, enhance national security,

and provide shipping support as 90 percent of the world’s trade is carried by sea. Although this

research focuses on improving evaluation of autonomous technology in the ocean environment,

this work can also translate to land and air based applications.

The question now resides in how one may earn public trust in and acceptance of these vehicles

in day-to-day society and how should legislators form policy and regulations regarding these vehi-

cles operating without direct human control [72]. The answer lies in the new autonomy standards

and test protocols that must be created and put in place to assure AV capabilities and minimum

expected performances. No agreed-upon standardized metric yet exists to measure and rationalize

robotic decision-making in unconstrained environments. Autonomous ground vehicle companies

resort to driving millions of miles to perform validation tests which are generally economically

impractical [9][93][56]. Simulations, on the other hand, have the capability of testing a high quan-

tity of scenarios, but lack the rigorous high-integrity integration of all onboard system sensors and

hardware. They also have issues providing an environment with the requisite resolution, detail,

noise, randomness and other factors that are found in real-world environments, and this in par-
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ticular interferes with perception sensors. This is a key matter to note, as perception is often the

beginning point of failure across all known autonomous vehicles.

This work introduces the Performance Evaluation and Review Framework of Robotic Missions

(PERFORM) as a start towards standardizing autonomy evaluation with platforms of any domain

by providing a foundational and generic structure for constructing and evaluating autonomy test

missions. PERFORM demonstrates the feasibility of applying fuzzy logic, namely an Interval

Type-2 Fuzzy Logic (IT2-FL) strategy, as an effective and efficient evaluation framework for as-

sessing autonomous vehicles in a scalable testbed environment with the ability to further generalize

the methods for different mission types and scenarios.

A limiting factor in deploying these vehicles is reliable autonomous decision-making due to

the challenge of hierarchically prioritizing tasks and accounting for risk-assessment in an unpre-

dictable marine environment [116][43]. A major component of this decision-making process lies

in autonomous path planning. Intelligent path planning is crucial to autonomous mission success.

It makes use of all available sensor measurements of the surrounding environment and uses its AV

“perception” to determine the AV’s appropriate steps (and order thereof) to successfully accom-

plish a given mission. As such, intelligent path planning serves as the central neural core of an

autonomous system. Currently, most autonomous vehicles operate using scripted routines [72].

Improvements in self-learning and decision-making using Artificial Intelligence (AI) and Machine

Learning (ML) are gaining traction due to recent developments in available computational power

but still have not reached robust enough levels for reliable day-to-day use [72]. Autonomy is not

binary and, on the contrary, must be described using a spectrum based upon the amount and level

of the AV decision-making abilities. It is critical for testing protocols to acknowledge this spectrum

and, as such, must be designed accordingly.

For integration of autonomous vehicles in society, confidence and trust must be established in

this autonomous decision-making. To start, this work explores global path planning strategies and

builds with this foundation a novel global and local autonomous path planning approach. This work

also aims to develop methods for quantification of mission-specific performance parameters to
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provide an overall grade of autonomous mission execution in marine testbed environments with the

introduction of PERFORM. The existing gap between technological advancement and the effective

testing and evaluation of these systems [97] must be closed to make autonomous vehicles practical

for field use and not simply for an academic exercise.

1.2 Research Scope and Contributions

The scope of this work extends to two main areas of autonomy research 1) autonomous path plan-

ning and 2) test and evaluation of autonomous systems. Path planning is an integral part of au-

tonomous decision-making, and a deep understanding in this area provides valuable perspective

on approaching the problem of how to evaluate vehicle behavior. This knowledge is used in the

construction of the PERFORM framework for evaluating autonomous performance. Research con-

tributions are as follows and notated as research area (1) or (2):

1. Exploration of 3 different global path planners (1): Different preexisting global path

planners are explored, compared, and analyzed via numerical simulations and experimental

testing to determine the best fit for integration with a local planner.

2. Development of a novel hybrid (global/local) path planner (1): Using a multi-layered

vector-field approach, A-star (A*) algorithm is integrated with the Potential Field Method

(PFM) and tested both in simulation and experimentally. Particular attention is given to

analyzing the approach for feasibility on live platforms in areas such as computational load,

update rates, and handling sensor data.

3. Defining a generic mission architecture (2): To generalize the autonomy evaluation frame-

work, a generic architecture for defining the missions under test is first created. With a

mathematical representation, set operations may then be used to compare various generic

missions and tasks with the intention of limiting test redundancy and reducing the number

of test missions to a constrained number of critical tasks.
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4. Creating a generalized, flexible framework for evaluating autonomy (2): Using an In-

terval Type-2 Fuzzy Logic approach, a novel design procedure is developed that is flexible,

scaleable, and incorporates sensor uncertainty. Named the Performance Evaluation and Re-

view Framework Of Robotic Missions (PERFORM), the test environment is designed to aid

in (1) new technology development (i.e. providing direct comparisons and quantitative eval-

uations of varying autonomy algorithms), (2) the validation of the performance of specific

autonomous platforms, and (3) the selection of the appropriate robotic platform(s) for a given

mission type (e.g. for surveying, surveillance, search and rescue).

5. Testing and analysis of the developed autonomy evaluation metrics (2): The procedures

and metrics are tested and analyzed in several case studies. These case studies show the abil-

ity for the evaluation methodology to provide a high-level external view of the autonomous

system with which to measure and validate system proficiency (with respect to user-specified

mission tasks) and to analyze overall autonomous vehicle behavior.

1.3 Dissertation Organization

The dissertation is organized as follows:

• Chapter 2 presents general background on path planning as a research area. Three global

path planners are explored (A-star (A*), Rapidly Exploring Random Tree (RRT), and Prob-

abilistic Roadmap (PRM)) in both simulation and on an experimental platform to compare

planner behavior, computational load, and practicality for real-world application and inte-

gration with a local planner.

• Chapter 3 provides the methodology and application of the chosen A* and Potential Field

Method (PFM) path planners to use in development of a hybrid planner using a multi-layered

strategy. Simulations and experimental results are presented verifying the approach. The

developmental process of a small scale experimental platform is also explained.

5



• Chapter 4 addresses the definition of autonomy, mission design, autonomous system archi-

tecture, and current test and evaluation strategies. Current limitations in the verification and

validation of autonomous systems is discussed. The last part of the chapter introduces the

proposed mission design and definitions used for the evaluation framework in the following

chapters.

• Chapter 5 provides background on fuzzy logic and why it is chosen for the given applica-

tion. Type-1 and Type-2 Fuzzy Logic Systems are explained and a detailed explanation is

given for the selection of Interval Type-2 Fuzzy Logic specifically.

• Chapter 6 focuses on the design of the Interval Type-2 Fuzzy Logic framework for eval-

uating autonomous performance. A detailed generalized procedure is outlined in addition

to techniques for choosing performance parameters, modeling membership functions, and

creating a rule base.

• Chapter 7 presents selected case studies to demonstrate the capabilities of IT2-FL as a strat-

egy for assembling important metrics identified with respect to the mission framework and

the inherent tasks. These case studies focus on individual tasks and indicate the applicability

of PERFORM for comparing path planning algorithms.

• Chapter 8 presents three additional case studies to demonstrate the capabilities of PER-

FORM towards evaluating full missions. Analysis on the potential inferences that may be

stated from test results are examined along with the potential scope of applications.
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CHAPTER 2

COMPARISON OF GLOBAL PATH PLANNERS

2.1 Path Planning Introduction

The navigation of autonomous vehicles relies on robust and high-performance path planning. Sev-

eral strategies exist to approach this problem and may be classified into two groups based on the

type and amount of information that is made available to the vehicle [109]. Global path planning

refers to situations where complete information of the environment is available. Local path plan-

ning, on the other hand, requiring no memory, relies solely on reactive methods and is utilized in

unknown environments. Ideal AV applications use a hybrid (global/local) approach dependent on

such things as available memory, computing power and sensors, to name a few. This hybrid, hier-

archical paradigm fuses sensor observations into one global data structure, commonly referred to

as a “world model” [98]. Applications such as manufacturing may only need global methods if the

task is merely repetitive in nature and if the robot is not required to take into account unpredictable

situations. Figures 2.1 - 2.3 display the system architecture of these intelligent robot paradigms.

Figure 2.1. Global Path Planning Architecture

Figure 2.2. Local Path Planning Architecture
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Figure 2.3. Hybrid Path Planning Architecture

In describing the characteristics of a path planning algorithm, common terms include optimal-

ity, completeness, and complexity. Optimality refers to minimizing a specified condition. This

condition, for instance, could be total distance, battery usage, or required vehicle turning to name

a few. An algorithm is complete if for all instances a solution is found (if any exist) and other-

wise returns failure. This property describes whether or not the algorithm is dependable and will

work as expected given any set of inputs. Complexity, often referred to in order of magnitude (i.e.,

O(n)), describes the performance of an algorithm based on the amount of resources required. Time

complexity is often measured, although space and communication workloads are sometimes also

analyzed. The smallest execution time is highly desirable in real-time applications.

For the purposes of this chapter, obstacle avoidance is in reference to static obstacles within

an environment, while collision avoidance refers to dynamic obstacles which are defined as a

function of space and time. It is assumed that all obstacles are closed and untraversable. Also,

while this chapter focuses on autonomous path planning, the scope of this work does not address

motion planning. Here, the distinction lies in the fact that path planning does not take vehicle

dynamics into account, while motion planning takes the solution of the path planning algorithm and

converts it into a feasible trajectory [131]. Motion planning weighs more heavily on the controls

implementation. Note that Rapidly Exploring Random Tree (RRT) and Probabilistic Road Map

(PRM) can also be considered motion planning algorithms but are treated as path planners in the

context of this chapter.

The following sections focus on obstacle avoidance strategies beginning with the analysis of

three different global path planners 1) A star (A*) 2) Rapidly Exploring Random Tree (RRT) and
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3) Probabilistic Roadmap (PRM). The results of this analysis are used in the development of a

novel hybrid path planner which uses both A* and the Potential Field Method (PFM) [31] [30],

which is presented in Chapter 3.

2.2 Algorithm Background

Well known algorithms in the global path planning category include A star (A*) [48], Rapidly

Exploring Random Tree (RRT) [67] and Probabilistic Road Map (PRM) [61] [60]. A* is a node-

based optimal algorithm while PRM and RRT are sampling-based techniques. These algorithms

are chosen for comparison in this study due to their established literature, simulated studies, and

practicality for experimental testing. It is noted here that not a significant amount of work has

been published regarding field testing of autonomous surface vehicles [75][116][69]. The majority

of vehicles in the literature were built for specific research applications and, therefore, did not

necessarily undergo robust testing of various path planning algorithms.

One example of experimental verification was provided by Kim et al.[63] using an angular rate

constrained Theta* method. Other studies combined various planners into a hybrid form, such as

the one by Loe [76], which merged the A* and RRT global planners. Bertaska et al. [16] evaluated

the performance of four automatically generated path-planning behaviors via field-testing by using

a global lattice-based trajectory planner technique [121]. Field trials were accomplished by Song

et al. [117] to demonstrate a smoothed A* algorithm approach where a pre-generated trajectory

was calculated offline before the start of the test mission.

In this study, observations are made with regards to both transferability and practicality from

simulation to real-world application. Global path planner traits are also explored for future inte-

gration with local methods. In an environment with rapidly changing factors such as wind, waves,

and currents, this work considers approximate global planning solution as appropriate for practical

use. Different planner parameters, furthermore, are tested to include such factors as the number of

nodes, number of iterations, and maximum connection distances to observe the balance between

efficiency and feasibility in reaching a desired waypoint. System modularity and low cost com-
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ponents are a point of emphasis and are placed as a secondary goal in this research. Establishing

a reliable and robust surface vehicle autonomy system is the foundational initial stage of a UNH

research effort to establish a collaborative network of autonomous surface and underwater vehi-

cles. In this regard, modularity is considered a crucial component to facilitate expanding current

research to multiple platforms.

Variations of each of these classical path planning algorithms have been developed to address

inherent limitations. Details on each algorithm and discussion on related variations are provided

here. Generic and base forms of the algorithms are used for general comparison in this study, as

other specific variations thereof may always be chosen at a later time if it is so determined that

such modifications would further aid in local planner integration.

2.2.1 A*

The A star (A*) method [48] aims to minimize the total path cost using features from “uniform

cost search” with “best-first search.” Therefore, the algorithm converges to an optimal solution

quickly but has a sizeable memory requirement. The cost function is represented as:

F (n) = G(n) +H(n) (2.1)

Here, F (n) represents the total cost, G(n) the cost from the start node to the current node, and

H(n) the estimated cost from the current node to the goal node. The costG(n) typically represents

the distance traveled. Algorithm 1 displays pseudocode for A* path searching. Parameters such

as connection distance and method of distance calculation (e.g. Manhattan or Euclidian distance)

may be interchanged to find a balance of between optimization and efficient computing. In this

research, linear distance is used for numerical simulations. A* has space complexity of O(b(d+1))

and time complexity of O(bd) where b and d denote the average branching factor and tree depth,

respectively.

Daniel et al. introduced a variant of A*, referred to as Theta*, that does not constrain paths

to grid edges and therefore may plan an any-angle path [32]. The benefit of this strategy is the
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Algorithm 1 A* algorithm pseudocode
ClosedList = {}
OpenList = {Start}
while OpenList 6= ∅ do
CurrentNode = OpenListNode with smallest F(n) score
Remove CurrentNode from OpenList
Calculate neighbors of CurrentNode
for each neighbor of CurrentNode do

if Neighbor = Goal then
return Reconstruct Path

else
Neighbor.G = Distance Start to CurrentNode
Neighbor.H = Distance CurrentNode to GoalNode
Neighbor.F = TotalCost
if (Neighbor ∈ OpenList) ∧ (Neighbor.F > OpenList F score) then

Ignore Neighbor
else if (Neighbor ∈ ClosedList) ∧ (Neighbor.F > ClosedList F score) then

Ignore Neighbor
else

Add Neighbor to OpenList
end if
CurrentNode ∈ ClosedList

end if
end for
return Reconstruct Path

end while
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potential to find the true minimum path of travel. In classic implementations, A* grid paths are

artificially constrained to be integer multiples of a pre-determined angle (say, 45 degrees) with each

step, limiting the ability of the algorithm to find, let alone traverse, the shortest possible distance.

Choi and Yu [25] extended Theta* to work with non-uniform costmaps. Non-uniformity allows

for modeling grid cell cost on characteristics such as terrain, obstacles, and other environmental

attributes.

2.2.2 Rapidly Exploring Random Tree

The Rapidly Exploring Random Tree (RRT) method [67] randomly samples the configura-

tion space and finds a path from the nodes and connections generated. The maximum number

of samples and connection distances that the algorithm searches for are user-defined. RRTs are

generally found to bias largely unexplored portions of the state space but demonstrate consistent

behavior. This is because the number of distributed vertices approaches that of the sampling dis-

tribution [67]. As a single query algorithm, RRTs incrementally query the travel space of interest,

so the number of samples does not necessarily need to be determined a priori [57]. This method

may also be applied to online planning cases. The pseudocode and an example of the algorithm

node expansion are given in Algorithm 2 and Figure 2.4, respectively. RANDOM_STATE(),

NEAREST_NEIGHBOR(), and STEER() refer to functions that select a random configu-

ration, returns the nearest vertex, and calculates a new configuration for the direction of qrand,

respectively.

Kuffner and Lavalle [68] showed probabilistic completeness for the RRT algorithm. Typi-

cally, RRTs work well in situations of high-dimensionality, differential constraints, and nonlinear

dynamics [57] [68] [40]. The requirement of few parameters and heuristics also make RRT an

attractive choice. However, it also has drawbacks in its sub-optimality, its exploration of space

uniformly potentially leading to slow convergence towards the goal and possibly even entrapment,

and its high computational costs as a result of the set of nodes expanding with each iteration [45].
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RRT has space complexity of O(n) with time complexity of O(nlog(n)) for the processing stage

and O(n) for the query stage.

Algorithm 2 RRT algorithm pseudocode (qstart, qgoal, maxV ertices)
Initialize graph G(V,E) with start configuration qstart
for i = 1 to maxV ertices do
qrand ← RANDOM_STATE()
qnear ← NEAREST_NEIGHBOR(qrand, G)
qnew ← STEER(qnear, qrand)
if ObstacleFree(qnear, qnew) then
V ← V ∪ {qnew};E ← {(qnear, qnew)};

end if
end for
return G(V,E)

Figure 2.4. Example of RRT node expansion

Karaman and Frazzoli [57] contributed an updated version of RRT, referred to as RRT*, which

is asymptotically optimal while maintaining the computational complexity to within a given con-

stant factor of the classic RRT algorithm. Since RRT* searches for the optimal path, this variation

often shows slow convergence rates and memory issues when searching large spaces [45]. Another

variant, RRT*-FN [10], addresses some of these concerns by restricting the total allowable number

of expanded nodes in the RRT* algorithm.

2.2.3 Probabilistic Roadmap

Probabilistic Road Map (PRM) methods are similar to that of the RRT method, as it randomly

samples the configuration space but differs in how the node graph is constructed [57]. The user
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selects the number of samples and connection distance. This method utilizes a multi-query strategy

with a learning and query phase [61]. The learning phase samples the points and connects the

nodes, while the query phase determines feasible paths from a given origin to the goal waypoint.

The shortest path is then calculated. As nodes are increased, the probability of failure to find a

path decreases exponentially to zero [57] and and ensures that the algorithm is probabilistically

complete. Figure 2.5 provides an example of how the number of nodes affects the search path.

PRMs tend to perform best in highly structured and well-known environments [57]. PRM has

space complexity of O(n) with time complexity of O(nlog(n)) for both the processing stage and

the query stage. The pseudocode is provided in Algorithm 3 where NEAR() refers to all nodes

within a specified radius, r.

Algorithm 3 PRM algorithm pseudocode (pre-processing phase) [57]
Initialize graph G with start configuration qstart
V ← ∅
E ← ∅
for i = 1 to maxV ertices do
qrand ← a randomly chosen free configuration
U ← NEAR(G, qrand, r)
V ← V ∪ {qrand}
for each u ∈ U in increasing order of ||u− qrand|| do

if qrand and u are not in the same connected component of G then
if CollisionFree(qrand, u) then
E ← E ∪ {(qrand, u), (u, qrand)}

end if
end if

end for
end for
return G(V,E)

Similar to RRT*, PRM has a modified algorithm, PRM* [57], which addresses some of the

classic PRM algorithm disadvantages. Although this strategy increases the computational com-

plexity of the procedure, PRM* creates a dense graph where the number of edges approaches the

maximum possible in the graph, resulting in smoother planned paths.
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(a)

(b)

Figure 2.5. Example of the PRM algorithm with (a) a few nodes (b) many nodes. (Courtesy of
MathWorks Matlab documentation [82])
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2.3 Methods

A binary occupancy grid is used to differentiate between free space from obstacle locations in the

workspace. Grid resolution is set to 1m2 with a bounded operation area of 50x100m. The three

planners (A*, RRT, and PRM) are simulated under the same test conditions. 2-D movement is

assumed with the vehicle treated as a point mass. Three obstacle configurations are tested: a two

obstacle configuration, a U-shaped configuration, and a three obstacle U-shape configuration with

gaps. These test scenarios are chosen to analyze situations such as obstacles with local minima that

may confuse the algorithms. A 2m buffer zone surrounding each obstacle is applied for simulation

and field testing.

A West Marine 8ft. Rigid Hull Inflatable Boat (RHIB) is used as the experimental platform

(Figure 2.6). Navigational sensors include an Inertial Measurement Unit (IMU) and Global Po-

sitioning System (GPS). These sensors are connected to a laptop running Mission Oriented Op-

erating Suite - Interval Programming (MOOS-IvP) as the autonomy software [5]. Two Arduino

microcontrollers are used to control steering and thrust of a DC brushless trolling motor. The

electronics package is shown in Figure 2.7.

Figure 2.6. Platform ASV4 ready for testing
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Figure 2.7. ASV4 Electronics

MOOS-IvP, comprised of the MOOS-DataBase (MOOSDB) and the Interval Programming

(IvP) Helm, is an open source software platform that operates with a centralized database to pub-

lish and subscribe to data. Its “decisions” are based on its autonomy IvP helm. Several built-in

MOOS-IvP features and applications are used in addition to applications designed for an Arduino

microcontroller and a Razor Sparkfun IMU [18] [14]. These applications and corresponding soft-

ware architecture are shown in Figure 2.8. Waypoints are generated during numerical simulations

and input to MOOS-IvP for experimental verification. Open source code for each algorithm [10]

[122] [82] is modified for integration in this specific system. Offline waypoint generation is per-

formed a priori for the sake of computational efficiency and with the anticipation of incorporating

real-time on-board waypoint-to-waypoint generation in future work.
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Figure 2.8. MOOS-IvP architecture implemented on ASV4

2.4 Results

2.4.1 Analytical Simulations

The test conditions previously described are applied in analytical tests using numerical simula-

tion software. Figures 2.9 - 2.11 shows the simulation results of each algorithm for each obstacle

configuration. The start and goal coordinates are at (0,0) and (49,99), respectively. It should be

noted that multiple simulation runs are performed for the PRM simulations to show variance in

path planning inherent to the algorithm using a changing random seed value. A* consistently gen-

erates identical paths for each simulation run, since the algorithm is based on lowest cost. As

such, multiple runs are not shown. The RRT implementation utilized the same random seed, so

the random nodes generated are the same for all simulations, noting that RRT would also produce

different configurations, however, with varying random seed values. Simulation parameters are
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Table 2.1. Path Planning Testing Values

Algorithm Connection Distance (m) Number of Nodes/Iterations
A* 10 N/A
PRM 10 300
RRT 5 3000

chosen based on achieving a compromise between path speed and the ability to find a path and are

provided in Table 2.1.

These three figures (Figures 2.9 - 2.11) display the characteristics of each algorithm as ex-

pected. In all three obstacle configurations, A* provides a more direct route. PRM and RRT

demonstrate their sampling strategies as the calculated paths show evidence of how they sample

the space with less direct and suboptimal routing. These characteristics could be beneficial in

specific scenarios.

Figure 2.12 displays paths generated for each algorithm incorporating varying connection dis-

tances for each algorithm. 600 and 6000 iterations are used for PRM and RRT, respectively. A*

calculated a more direct route as the connection distance increased, however this might not be

the case in all obstacle configurations as the step size may not be of a small enough resolution to

handle several obstacles, especially in close proximity. PRM also displayed smoother path with a

higher connection distance, but would also have the same issues in tight spaces. RRT generated

the most indirect paths of the algorithms with all connection distances providing poor routing.

Figure 2.13 shows how the path changes as iterations increase for PRM. RRT is not included for

the iteration test because it generates the same path and is independent of iteration number as long

as there are enough iterations to determine a feasible path. With more iterations the algorithm can

improve sampling of the space as is shown with the path improvements as the iterations increase

in Figure 2.13

Figures 2.14 - 2.17 compares time and number of iterations for different connecting distances

and obstacle configurations. The number of iterations or nodes tested for PRM and RRT differ by

a factor of 10 due to what is determined as a practical range of values for each specific algorithm

through trial and error testing. As a result, direct comparisons of the number of iterations is not

19



(a)

(b)

(c)

Figure 2.9. Simulation results for the 2 obstacle configuration
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(a)

(b)

(c)

Figure 2.10. Simulation results for the U-shaped obstacle configuration
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(a)

(b)

(c)

Figure 2.11. Simulation results for the 3 obstacle configuration
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(a)

(b)

(c)

Figure 2.12. Simulation results for varying connection distances
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Figure 2.13. Simulation results from varying iteration values with the PRM algorithm
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possible, but algorithm qualities and speed for practical use may still be analyzed. The average

time is calculated for 10 simulation runs. The PRM algorithm begins to have positive slope as

iterations and connection distance increase. The RRT algorithm increases computation time as

the number of iterations increase as expected. Time did not significantly increase with increasing

connection distance. Computing time for A* increased slightly at higher connection distances, but

still remained faster than the other two algorithms.

To summarize, as expected, A* produces the smallest path times overall and is always success-

ful in finding a path. Average calculation time decreases with smaller connection distances. PRM

is able to find a path more quickly at lower connection distances. However, the lower iteration

threshold requires higher connection distances to find this path. RRT does not appear to depend on

connection distance, and its calculation time steadily increases as the number of iterations increase.

2.4.2 Experimental Results

Experimental field tests are used to observe the practicality of each of the path planning algo-

rithms. ASV4 is used as the test platform representing a generic ASV craft that is only minimally

tuned for speed and heading control, so as to mimic non-ideal mission conditions (e.g. poorly

controlled craft due to currents, winds, and high sea states). Due to time constraints, one set of

path planning parameters are used for each algorithm for experimental tests. Three field tests are

performed for each path planner per obstacle configuration. The same values of connection dis-

tances and number of nodes/iteration used for analytical simulations (those provided in Table 2.1)

are used for these experimental tests and are determined by selecting a mix of roughly tuned values

for calculation speeds and nodes.

Constant vehicle speed is maintained throughout field testing, as the main objective of the

experiments is to analyze the performance of the global planners during waypoint-following mis-

sions. As previously noted, waypoints are generated offline a priori, and the same points are used

as those in Figures 2.9 - 2.11. Since the map is known ahead of time, obstacles are placed virtu-
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(a)

(b)

Figure 2.14. Simulation results for computation time with the 2 obstacle configuration
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(a)

(b)

Figure 2.15. Simulation results for computation time with the 3 obstacle configuration
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(a)

(b)

Figure 2.16. Simulation results for computation time with the U-shape obstacle configuration for
(a) PRM and (b) RRT
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Figure 2.17. Simulation results for each obstacle configuration generated by the A* algorithm
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ally in MOOS to represent their location, and are not physically in the testing course. Testing is

performed at Swains Lake in Barrington, NH.

Experimental results show successful navigation for each algorithm about each type of obstacle

configuration (Figure 2.18). Smoothest trajectories are accomplished by the A* paths as the track

displays a fairly consistent wave pattern. PRM also remains close to the intended waypoints, but

the vehicle is observed to steer mostly on one side of the path. For the RRT method, the vehicle is

unable to follow the sharply placed waypoints precisely, but still displays proficiency in navigating

the path in a collision-free manner.

2.5 Discussion

Simulation and experimental testing compared fairly well. As expected, vehicle dynamics and en-

vironmental factors caused variance in following planned paths. However, proof-of-concept was

still shown for path-following robustness with a roughly tuned controller on an underactuated ve-

hicle. An algorithm that embraces change in dynamics more readily and can show adaptability

for different platforms is critical for a modular system. Ideally, parameter changes are minimized

transferring, so to speak, the autonomous system from one platform to another. Vehicle dynam-

ics, of course, must be taken into account, but by providing wide margins for control gains, the

controller performance burden is eased. Adding a path smoothing function via trajectory planning

would help create feasible waypoint navigation as well.

Longer connection distances will give straighter paths overall, which is ideal for maneuverabil-

ity but must also be balanced with computation time. Out of the three path planning algorithms

in the study, A* is found to be overall the most effective in determining optimal paths followed

by PRM. RRT consistently calculates more jagged paths (i.e. least direct paths) even with higher

numbers of iterations and connection distances. A* has a heavy memory requirement, but when

used as a global planner, this method does not require frequent updates. A* may offer additional

ease of use since the connection distance is the only parameter that requires tuning.

30



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.18. Experimental data from test runs at Swains Lake in Barrington, NH of the three
different algorithms for each obstacle configuration. Figures (a)-(c) show A star results, Figures
(d)-(f) show RRT results, and Figures (g)-(i) show PRM results. The blue dots represent the planner
generated waypoints and the white dots are the vehicle’s position during the test run.
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2.6 Conclusion

A comparative analysis of three different global planners (A*, RRT, and PRM) were explored via

simulation and experimental testing to investigate planner tendencies and readiness for real-world

scenarios. Three different obstacle configurations were analyzed for situational performance. Nu-

merical simulations and field testing demonstrated proof-of-concept of path following robustness

with a generic ASV with a roughly tuned steering control system. Given appropriate path plan-

ning parameters (i.e. connection distance, number of nodes, and iterations), numerical simulations

show that all three algorithms were able to find feasible paths. Each set of waypoints generated

were successfully transited by the ASV platform during field testing. A* and PRM methods cal-

culated paths inherently easier to follow, resulting in smoother trajectories from the start to goal

coordinates than that of the RRT method. As a result, A* and PRM displayed the most promising

potential for integration with a local planner, particularly to take into account new obstacles and

any resulting deviations from the initial globally planned path.

A* is ultimately chosen and utilized for the development of a hybrid planner (presented in

the next chapter). A graph search algorithm instead of a sampling based planner was chosen as

desirable due to how the author intends to build the environment using occupancy grids. With

the expectation that the test environment may be large, discretizing the space is advantageous.

Assuming the vehicle is constrained to the surface (i.e. 2-D space), high dimensions do not need

to be taken into account which are strengths of PRM, RRT, and sampling algorithms in general.

With fewer tuning parameters, more predictable output (due to no random sampling), and cost-

based functionality, A* is decidedly the best fit for the research goals in this study, which will be

discussed in more detail in the following chapters.
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CHAPTER 3

DEVELOPMENT OF A HYBRID GLOBAL LOCAL PLANNER

3.1 Background

Significant work has been done using A* [48](as discussed in Section 2.2) and the Potential Field

Method (PFM) [62] separately in the field of robotics. First introduced by Khatib [62] in 1986,

the PFM has been applied and further developed with various mobile robots since that time. When

applied to the ocean environment, several other challenges must be taken into account. Waves,

currents, and other environmental factors lead to difficulty in vehicle control. A path planner

requires robustness against changing conditions and new hazards. Additionally, vessels must obey

the International Regulations for Preventing Collisions at Sea (COLREGS). The PFM can provide

real time obstacle avoidance for local planning, but it can also act as a global planner.

Song et. al. [116] used weighted attractive and repulsive field construction and a Multi-layered

Fast Marching (MFM) method to account for currents and wind in a comprehensive environmental

framework. A paper authored by Wang et. al [124] also looked at environmental factors using

potential field techniques to improve energy consumption for USVs. Xue et al. [130] applied

the PFM to find safe passage for ships in possible collision situations. COLREGS constraints are

added via a repulsive potential field function in work presented by Lyu and Yin [80]. To date,

minimal work has been done and applied comprehensively in experimental testing in addition to

accounting for practicality of implementation on real platforms [43].

The foundational concept of the PFM relies on attractive and repulsive forces, much like the

concept of electrical charges. In PFM, obstacles and hazards act as a repelling force, while goal

locations act as an attractive force. Potential energy increases with proximity to obstacles and

decreases near goal locations. Therefore, in this artificially constructed field, the resulting force
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causes the robotic platform to navigate from high potential energy to low potential energy [132].

A major advantage of the PFM is its low computational cost even while using complex potential

functions [105].

The sum of the attractive and repulsive potentials gives the total potential of the robot where

U(q) denotes the total potential, Uatt(q) the attractive potential, and Urep(q) the repulsive potential

such that

U(q) = Uatt(q) + Urep(q) (3.1)

Uatt(q) =
1

2
αd2g(q) (3.2)

Urep(q) =


1
2
β( 1

do(q)
− 1

s
)2 if do ≤ s

0 if do > s

(3.3)

A parabolic well is chosen as the attractive and repulsive potential function given in (3.2) and

(3.3), respectively, where α and β are user-defined design parameters. The attractive equation is a

function of the distance, dg(q), and angle to the goal location. The repulsive equation is dependent

upon the distance, d0(q), and angle between the robot and the obstacle. s refers to the range of

influence of the repulsive field has around the obstacle. Outside of this range, the repulsive value is

considered to be zero. In practical implementation, the range of influence is equal to the maximum

reliable range of the obstacle detection sensors in use.

By taking the negative gradient of the potential U(q), the resulting force is:
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~F (q) = −∆Uatt(q)−∆Urep(q)

= ~Fatt(q) + ~Frep(q) (3.4)

~Fatt(q) = −αdgd̂g (3.5)

~Frep(q) =


β( 1

do(q)
− 1

s
)( 1
d2o(q)

)d̂o if do ≤ s

0 if do > s

(3.6)

Here, ~F (q) is a vector representing a direction and magnitude of force felt by the robotic

platform. d̂g and d̂o are unit vectors pointing in the direction of the goal and obstacle, respectively.

The attractive and repulsive components of the force correspond to ~Fatt(q) and ~Frep(q). ~Fatt(q) and

~Frep(q) can be calculated for each location in an occupancy grid to create a vector field map, or

in the case of local planning, only for the current position of the vehicle. The resulting occupancy

grid is a discretized grid space where each cell in the grid is either occupied (contains an obstacle

or hazard) or unoccupied (free space). Motion of the robot is produced in small steps in the

direction and magnitude of the force dependent on the vehicle’s current location. The user may

adjust the attractive and repulsive forces (or potentials) accordingly (i.e., being more conservative

or aggressive) to take into account any existing unmodeled disturbances/uncertainties by adjusting

alpha and beta appropriately.

3.2 Methods

3.2.1 Proposed Hybrid Implementation

A* and the PFM are stand-alone path planners. In this study, they are used in a hybrid imple-

mentation. The goal is to utilize both planners’ strengths, while reducing weaknesses inherent to

each. The vector field capability of the PFM is the basis for integrating the two algorithms. This

allows for adding several “layers” of vector field maps that are combined using vector summation.

Other layers could include various knowledge about the vehicle’s environment such as wind and

currents, various classifications of obstacles, COLREGS, etc. Figure 3.1 demonstrates a visual

representation of stacked two-dimensional vector fields.
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Figure 3.1. Visual representation of multiple two-dimensional vector fields
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Figure 3.2. Example of the field generated from the A* planned path: waypoints (black circles),
vectors along the path chosen by A* (red arrow), and the vectors attracted to the A* path (blue
arrows)

This layered method allows for the flexibility to balance and weight the relative importance

of each layer in relation to one another. This weighted hierarchy is critical, as in some scenarios,

such as when another vessel disobeys COLREGS, there is no concrete “correct" decision and a

combination of factors must be accounted for. The final trajectory update must be based on current

knowledge of the vehicle’s “world” and the hierarchy of priorities accompanying the vessel to

provide an acceptable path-planning decision.

A* is traditionally known as a computationally costly offline (global) planner. However, since

the global map is generated a priori, computation time and memory usage is less critical. As a

result, a matrix of heading and speed values are produced for use on the vehicle platform and no

further computations (or memory space for computation) are required. Unless obstacles are inflated
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in the configuration space, A*-generated paths typically tightly follow the obstacle perimeter. Due

to the use of Euclidean distance to calculate obstacle distance (to reduce computational complexity)

and the nature of the A* algorithm, paths with sharp corners between waypoints are often generated

depending on the connection distance chosen.

Two classic problems with PFM occur with U-shaped and narrow-passage type obstacle con-

figurations, as both configurations often suffer from local minima issues. The PFM is unable to

guarantee that its minimum found is the global minimum, thus leading to the possible entrapment

of the robot due to the attractive and repulsive forces effectively canceling each other [64]. In

narrow-passages (i.e. a river environment), PFM also tends to create an oscillatory trajectory as

the robot “bounces" from side to side [64].

Past studies and methods have proposed approaches to solve these issues. One method uses

Laplace’s Equation to impose constraints on the functions used in order to avoid spontaneous

creation of local minima [29]. Guerra et. al took a controls theory perspective, using an established

Input-to-State Stability (ISS) property to avoid unstable equilibria [44]. Another example uses a

“virtual hill” concept to escape local minima situations by repelling the robotic platform from the

minima locations [101].

In this study, an implementation of the hybrid planner includes both the global and local plan-

ning components. Here, the operation area is subdivided into a binary occupancy grid. This will

still allow for probabilistic methods to be applied in the future for determining obstacles and in-

corporating sensor models with the flexibility to switch to a probabilistic occupancy grid. The

combined A* and PFM planner uses previous knowledge of an area to plan an initial path. This

path is then updated in real time for newly discovered obstacles by adding new repulsive forces to

the current vector field.

The A* vector field is created by first producing waypoints to the goal location based on A*

planning. A vector field is then calculated that is attracted towards the generated path:

FA∗ = −kAdwptd̂wpt (3.7)
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Each grid location is attracted to the next closest waypoint. FA∗ is the force produced from the A*

layer, kA is a design parameter, dwpt is the distance between the current grid location and the next

closest waypoint, and d̂wpt is a unit vector pointing in the direction of the next closest waypoint.

Fig. 3.2 is an example of the generated A* field.

The proposed method is designed so that with the added bias towards the A* path, the combined

planner will alleviate common local minima issues. In addition, the PFM will generate paths with

“smoother corners,” creating an easier trajectory to follow than that of A* alone.

3.3 Simulation Results

Four different obstacle scenarios are simulated: 1) U-shaped obstacle 2) narrow-passageway 3)

application to Portsmouth Harbor (NH) and 4) obstacle with different starting locations. The de-

sign parameters (α, β, and kA) used in the proposed path planning method for each scenario are

provided in Table 3.1. These values are chosen through trial and error as there are currently no

techniques to optimize value selection.

Table 3.1. Gain Values for Each Simulation Scenario

Obstacle Configuration α β kA

U-Shaped 10 1,000 600

Narrow Passageway 10 1,000 600

Real Environment 100 20,000 1000

Path Convergence 100 15,000 600

In Scenario 1, the results of the Potential Field Method (PFM), the A* method, and the pro-

posed hybrid path planner applied to a U-shaped obstacle configuration are shown in Figure 3.3.

As expected, the PFM encounters a local minima and becomes trapped. However, with the addi-

tion of the A* generated vector field, the combined layers of the proposed hybrid method allows

the vehicle to successfully reach the desired waypoint. This combined trajectory takes a more

conservative path around the obstacle and also results in a smoother given trajectory.
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(a)

(b)

(c)

Figure 3.3. A simulation of the U-shape scenario (Scenario 1)
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(a) (b) (c)

Figure 3.4. A simulation of the narrow passageway scenario (Scenario 2)

The path generation for the narrow-passageway configuration of Scenario 2 is applied and the

results of all three path planners are shown in Figure 3.4. Similar to the results of Scenario 1, using

the PFM alone the vehicle platform suffers from entrapment in a local minimum upon the entrance

to the passageway is approached using the PFM alone. With the aid of A*, a path is created that is

biased towards the optimal A* algorithm waypoints and helps guide the robot to the goal circle of

acceptance.

In Scenario 3, the Portsmouth Harbor environment is shown in Figure 3.5, where a Google

Map image (Figure 3.5a) is converted to a binary occupancy grid to differentiate between occupied

and free space. A start point and desired waypoint are determined such that the planner must

provide a safe route without a direct line of sight as it navigates around the land mass. Figure

3.5(b)-(d) presents the results of all three respective path planners. Again, due to entrapment, the

PFM struggles to exit the cove. A* generates a path to the desired waypoint, but calculates a route
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very close to shore. By vector summation of the A* vector field with the PFM generated vector

field, a path is found consisting of a smooth path that takes a conservative route around the coast.

The hybrid A* and PFM strategy is also compared to PFM individually to explore different

trajectories and path convergence from each grid location on the map with results given in Figure

3.6. It is noted that A* individually is omitted as it does not provide any additional knowledge to

the comparison. As presented in Figure 3.2, the A* vector field layer is attracted to the generated

A* path. Exploring path convergence, it is found that, generally speaking, the PFM and the com-

bined fields produce similar trajectories from the starting location in this obstacle configuration.

However, the difference between the PFM and the hybrid planner lies in scenarios where the ASV

finds itself separated from this assumed initial starting location. This behavior would be beneficial

in scenarios such a seafloor mapping where deviations from the desired path could cause gaps in

coverage.

3.4 Experimental Platform Development

For experimental implementation, a small-scale ASV, “TUPPS" (Testing Unmanned Performance

PlatformS), is used (Figure 3.7). Two thrusters are used for steering and are controlled with an

Arduino microcontroller. Custom designed and built at UNH, this platform went through multiple

design iterations and sensor upgrades as research progressed. Platform development is presented

first and the corresponding test results are introduced in the next section. Vehicle design goals

are centered around an easy to build and replicate platform utilizing low cost components and

developing software modularity for rapid testing of different autonomies and sensors. Experiments

are performed in the indoor facilities at the Jere A. Chase Ocean Engineering Laboratory at the

University of New Hampshire (UNH)(Figure 3.8).
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(a) A Google Map image of the entrance to
Portsmouth Harbor.

(b) Trajectory generated by PFM

(c) Path generated by A* (d) Trajectory generated by combining the
PFM and A* layers

Figure 3.5. A simulation of the entrance to Portsmouth Harbor (Scenario 3)
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(a) Path trajectories produced from PFM (b) Path trajectories produced from the summation of
the PFM and A* layers

Figure 3.6. Exploring path trajectories from different locations (Scenario 4)

44



Figure 3.7. TUPPS, a small-scale ASV used for experimental testing

Figure 3.8. The UNH Jere A. Chase Engineering Tank
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3.4.1 TUPPS Version 1.0

For the first version of TUPPS 1, electronics include a Scanse Sweep Lidar for obstacle detec-

tion, an Adafruit LSM9DS0 Inertial Measurement Unit (IMU) for heading control, and a Rasp-

berry Pi for computation (Figure 3.7). Digi Xbees are used for wireless communication between

the Raspberry Pi and an external laptop. Constant magnitude of the thrust output is assumed for

experimental implementation and the test runs were run as discrete impulses (with delay and drift).

Figure 3.9. Software architecture implemented on the TUPPs platforms

A diagram describing the software architecture is given in Figure 3.9. The Raspberry Pi

with custom C++ programming performs the decision-making (Back Seat) duties of the auton-

omy, while the Arduino is responsible for the controls, and thus the Front Seat module of the

autonomous system. Applications are created to parse the raw Lidar data and provide information

1Developed with Alexander Cook, UNH Ph.D. Student in Systems Engineering
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Figure 3.10. Indoor GPS beacons [2]

to the Raspberry Pi on obstacle distance and relative angle to the ASV. This is classified as ex-

ternal data management (i.e., perception and world model building). The IMU (and/or any other

self-localization sensors) and associated processing are organized in the internal data management

module.

For implementing this on the experimental platform, a matrix containing heading values cor-

responding to each grid cell of size 1m2 is generated. The platform retrieves a desired heading

by indexing into this matrix based on the ASV’s current location. The vehicle receives sensory

feedback from the IMU in order to determine its current heading and this information is used to

output a thrust command using bang-bang control to correct the heading error.

3.4.2 TUPPS Version 2.0

The next iteration of the experimental platform utilizes a new indoor positioning system allow-

ing for better position feedback and data post-processing. This system, developed by Marvelmind

Robotics [2](Figure 3.10), uses 4 ultrasonic stationary beacons which are placed on each side of

the engineering tank (Figure 3.8), and a mobile beacon placed on the robot. With +/- 2cm preci-

sion, the mobile beacon’s location is calculated based on a propagation delay of ultrasonic pulses

(Time-Of-Flight or TOF) between stationary and mobile beacons using a trilateration algorithm

[2].
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Figure 3.11. TUPPS 2.0

For obstacle detection, the Scanse Sweep Lidar is replaced by 3 ultrasonic range finder sensors

facing forward (0◦), left (330◦), and right (30◦). This change was made due to unreliable data

generated by the lidar. Simple filters were added to try and improve the data consistency and

noisiness, however alternative solutions were eventually needed. The range finder sensors are

chosen as the alternative based on documented precision range-finding, low-voltage operation, and

low-cost, in addition to reducing data points and therefore processing as well. Due to the beam

pattern of the ultrasonic sensors, obstacle detection coverage spanned approximately +/-60◦ from

the centerline of the vehicle (Figure 3.12). This was considered sufficient for the purposes of

testing. Additional sensors may be added if a larger field of view is needed. Max range for the

range finder sensors is 5m, however this value was cut to 2m to minimize noise.

Other modifications include a small laptop to replace the Raspberry Pi for debugging conve-

nience when testing, Xbees replaced by using Secure Shell (SSH) from the shore station laptop for

better communication, and a second Arduino for processing the range sensor data (Figure 3.13).

48



Figure 3.12. Visual representation of the beam pattern for the ultrasonic range finder. Figure not
drawn to scale.

Previous code structure is converted to the Robotic Operating System (ROS) for increased code

modularity and to act as middleware for generalizing the process of integrating new sensors.

3.4.3 TUPPS Version 3.0

The next iteration of the platform involves minor electrical improvements. Previously, each

thruster used a separate battery for power. The setup is reduced to a single battery by using a

terminal block and the overall wiring is also consolidated. The IMU is replaced by using 2 indoor

GPS beacons spaced 0.2m apart on the vehicle. The amount of rebar in the Chase Ocean Engineer-

ing Tank was enough to cause a significant amount of magnetic interference and, in turn, affected

IMU reliability.

A major change to the system results from acquiring a Velodyne VLP-16 lidar, a commercial-

grade sensing device. A custom 3D printed mount is designed 2 and integrated with the electronics

box (Figures 3.14-3.15). Utilizing visualization tools from ROS, example lidar data is given in

2With the help of Michael Jenness, UNH ASV Team Member
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Figure 3.13. TUPPS 2.0 electronics box
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Figure 3.14. TUPPS 3.0

Figure 3.16. Several features can noted from the UNH engineering tank with a 360 degree hori-

zontal field of view and 15 degree vertical field of view. Data below 0 degree vertical field of view

is filtered out to reduce noise from the water surface. This noise became a common issue with the

range finder sensor on TUPPs 2.0.

To build the occupancy grid, a static and dynamic layer (Figures 3.17 - 3.18) are used and can

also be visualized using ROS tools. Here, the static layer contains the a priori knowledge of the

area (i.e. the empty tank) and the dynamic layer provides the real time information. Figure 3.18

shows, via the black cells, the occupied regions of the tank (1m2 resolution). In this example,
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Figure 3.15. TUPPS 3.0 electronics box
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Figure 3.16. Velodyne example data of the engineering tank
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Figure 3.17. Cost Map static

except for the bottom right corner of the image, the occupied regions correspond with the walls of

the tank. The bump out in the bottom right corner is from 2 side by side floating docks.

Several parameters may be modified to improve occupancy grid performance. A crucial param-

eter is the maximum update range, which is the maximum distance from the vehicle that the lidar

can “see.” When set too high, the data processing becomes too much of a burden for the laptop to

compute and provide coordinate transforms in a timely manner. It is found through testing that for

a Lenovo N23 laptop with 4GB of RAM and 1.6GHz of processing speed, this value is 8-10m (the

true maximum range for the Velodyne VLP-16 is 100m).

The transform tree allows for referencing vehicle and obstacle locations in the world frame

(Figure 3.19). The first transform converts the vehicle frame of reference to the world frame. This

is notated as T 1
0 , the transformation matrix from reference frame 1 (vehicle frame) to reference

frame 0 (world frame). The transformation matrix is made up of a rotation matrix, R1
0 appended

with a distance vector, D1
0:
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Figure 3.18. Cost Map dynamic

Figure 3.19. Diagram of the transformation tree for experimental testing
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T 1
0 =

R1
0 D1

0

0 1

 =


cos(θ) −sin(θ) xv

sin(θ) cos(θ) yv

0 0 1

 (3.8)

θ is the angle between the x0 axis and the x1 axis (Figure 3.20) which is found using a heading

sensor (i.e. IMU). xv and yv are the x and y coordinates of the vehicle given from the indoor GPS.

A second transformation is needed to account for the Velodyne sensor position on the vehicle. The

sensor is centered on the y1 axis translated 0.2m in the positive y1 direction. Since there is no

rotation and the transformation is static, the T 2
1 matrix, from the sensor frame (2) to the vehicle

frame (1), reduces to:

T 2
1 =


px

py

1

 =


0

0.2

1

 (3.9)

where px and py are the x and y position of the sensor in the vehicle reference frame. The last

transformation is the obstacle location relative to the Velodyne sensor. This becomes another

positional vector:

P2 =


obx

oby

1

 (3.10)

where obx and oby are the x and y positions of the obstacle relative to the Velodyne sensor. These

values are deduced from the range and angle data generated from the lidar. Combined, the equation

to transform the obstacle data to the world frame becomes:

T 1
0 T

2
1P2 =


cos(θ) −sin(θ) xv

sin(θ) cos(θ) yv

0 0 1




0

0.2

1



obx

oby

1

 (3.11)
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Figure 3.20. Coordinate transforms from the vehicle (local) frame to the map (world) frame

Table 3.2. Gain Values for Experimental Testing

α β kA

100 10,000 200

A Unified Robot Description Format (URDF) file is created for visualizing the platform and its

transform components (Figure 3.21). URDF is an XML format for representing a robot model. A

custom tool is also created to help visualize and analyze the PFM/A* vector field (Figure 3.22).

3.5 Experimental Results

Gain values used for testing are given in Table 3.2. A path is first calculated assuming no obstacles

are in the operation area (Figure 3.23). To test local replanning for new, unknown obstacles, an

obstacle is placed in the testing area. Here, the vehicle is required to detect the obstacle, calculate

a new heading based on Equation 3.6, update the map, and then steer in the new direction. For

the radius of obstacle influence, s, a value of 2m is chosen due to the determined best signal

to noise ratio results within the specifications of the Lidar sensor used. Figure 3.24 compares

the precomputed trajectory (Figure 3.23) under the assumption no obstacle was present against the

simulated and experimentally tested paths generated after obstacle detection and updating the map.

This testing was performed with TUPPs 1.0.

57



Figure 3.21. Custom URDF file for visualizing the platform and its transform components

Although resolution for the path traveled could only be resolved to 1m2 due to lack of an in-

door GPS signal and sensor constraints, simulation and experimental trajectories matched fairly

well. Jagged paths are produced in data post-processing due to the low resolution and quantity

of data points, however it is noted by observation that the vehicle responded to heading controller

commands in a timely fashion and in the correct direction based on its current position and match-

ing matrix index value. The vehicle possessed the capability of following the path with minimal

control implementation, thus potentially lessening the necessary controller tuning when moving

the system to different platforms.

Next, experimental testing focused on the convergence aspect of the algorithm and used TUPPs

2.0. This is first explored via simulation in Figure 3.6. In this scenario, experimental validation

is sought to confirm that at different start locations, the path will converge to the intended path

starting at (10, 1)(Figure 3.25). This is intended to replicate situations where the ASV is required

to stay as close to the intended path as possible while responding to perturbations due to obstacles

or environmental factors. Seafloor mapping is one instance that will necessitate this approach.

When mapping, track lines must be followed closely to minimize data gaps.
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Figure 3.22. Custom ROS tool developed for visualizing the PFM/A* vector field
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Figure 3.23. The path generated before obstacle placement
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Figure 3.24. Experimental testing results. The region covered by the obstacle is denoted in black.
The simulation path is based on the ideal scenario where the obstacle’s location is known a priori
and precomputed.

61



Results show consistency between simulation and experimental testing. Figure 3.25d follows

the streamlines provided in Figure 3.25. The vehicle also safely navigates around the obstacle

when necessary. The indoor GPS displays clear improvement in the data collected. Increased

resolution and update rate provides a smoother representation of the vehicle trajectory. A more

sophisticated controller would help smooth the tracklines further.

3.6 Discussion

The simulations produced in Figures 3.3-3.5 indicate that when implemented as additive vector

fields, A* and PFM complement each other and can construct a successfully planned trajectory

to goal. This lends to the potential to layer more fields to include other critical knowledge and

situational awareness influences to build a tailored decision-making hierarchy compatible to the

user’s mission goals.

Referring to Figure 3.6, the combined planner is influenced by the A* optimally found path,

and therefore is partial towards returning to this path. This may lead to more predictable autonomy

as assumptions can then be made that if vehicle strays from this path due to new obstacles or strong

current, it will be incentivized to either remain on or return to the originally planned path. This

will also minimize the amount of updating necessary when new obstacles appear by only needing

to change the values within the obstacle’s region of influence.

Results show that the planner displayed the ability in real time to avoid the newly detected

obstacle. It is additionally noted that computation and communication speeds are found to be

feasible for practical implementation.

It is found that the hybrid approach presented is highly dependent on the gains chosen. Further

work is necessary to normalize and optimize the gain values and find an approach accounting for

percentage of area covered by obstacles, the number of layers used, and the balance of importance

between the layers.
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(c) (d)

Figure 3.25. Simulation vs. Experimental Results for Analyzing Convergence
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3.7 Conclusion

Proof-of-concept testing of a hybrid A* and the PFM path planner was accomplished via simulation

and the approach was validated with an experimental platform. Algorithms show promise for use

in generating a pre-mission global path, accounting for different decision-making behaviors, and

updating the path (if needed) in real-time. Future work will involve further testing in an open ocean

environment with a large-scale ASV, adding more layers for different behaviors and environmental

influences, and extending the algorithm to three dimensions for the underwater domain. Work will

also include exploring ways to optimize the gains for each potential field layer and accounting for

vehicle dynamics.
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CHAPTER 4

MISSION PLANNING AND AUTONOMOUS SYSTEMS

4.1 Autonomous Systems

4.1.1 Defining Autonomy

In previous chapters, path planning, as a subcomponent of an autonomous system, was dis-

cussed. This will now be placed in context of an autonomous system as a whole so that approaches

and challenges to validating these systems may be considered. First, to understand the test and

evaluation problem, the word “autonomy” should be defined. With origins from the Greek lan-

guage, autos meaning “self” and nomos meaning “law”, something autonomous essentially means

to make its own laws, or, in other words, having independence from outside control [3]. Applied

to the realm of autonomous vehicles, this definition more narrowly means that a vehicle is nav-

igated by a computer without a need for human control or intervention under a range of driving

situations and conditions. While some subsystems of a vehicle could be considered “autonomous”

(for instance, cruise control), this study considers autonomy in the higher-level context of vehicle

decision-making. As such, path planning is an aspect of the decision-making process. The ability

to plan, update, adapt, and execute a route based on internal and external factors demonstrates a

certain level of decision-making proficiency.

True autonomy does not yet (and arguably cannot) exist [51][137], so the actual definition

becomes a broader (and more complex) scope of abilities. Thus, “autonomy” in the vehicle domain

exists as a spectrum [55]. Levels of autonomy have been previously defined in various ways.

However, at this point in time, no consensus on consistent terminology has thus far been accepted

[55][26][39][70][46]. Disagreements and challenges are posed in literature, some of which include
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how to characterize human/robot-coordinated operations, if and how to include automated robots,

and how many levels of autonomy should be included.

Efforts have been made in defining a core ontology for robotics and automation to help develop

a common language. An IEEE Working Group was formed, referred to as Ontologies for Robotics

and Automation (ORA), with the goal of standardizing knowledge representation in the Robotics

and Automation field [104]. This work, proposed as the Core Ontology for Robotics and Automa-

tion (CORA) in [104] and further extended in [39], defines a standard set of ontologies related to

robotics and automation and created the first-ever standard for the IEEE Robotics and Automation

Society [39][100]. While these ontologies make progress on defining a vocabulary and formally

specifying key concepts and relationships of robotics and automation, they still note difficulty in

formally defining degrees of autonomous capability precisely [104][39]. In the CORA framework

[39] (Table 4.1), their interpretation of autonomy aligns with the Autonomy Levels for Unmanned

Systems (ALFUS) framework [52][53], with the key difference being that CORA does not try to

characterize absolute levels of autonomy [39].

The ALFUS framework, designed to improve communication on operational and development

issues, analyze mission requirements, and evaluate the capabilities of unmanned systems [53], is

one of the most extensive and commonly referenced frameworks presented to date with involve-

ment from several government organizations and over seventeen workshops completed [36][37].

These methods use a contextual model that assesses performance as a function of autonomy level

[36]. ALFUS uses a 3-axis approach where levels of autonomy are decomposed into categories

of Mission Complexity (MC), Environmental Difficulty (ED), and Human Independence (HI) to

specify a Contextual Autonomous Capability (CAC) (Figure 4.1). This model captures require-

ments, capability, and complexity, in addition to characterizing the autonomous operating modes

of the system [53]. Autonomy is defined in this context as the ability of an unmanned system to

sense, perceive, analyze, communicate, plan, make decisions and act to achieve its defined goal

[53][46]. On the contrary, other definitions in literature sometimes focus, instead, on the amount

of human supervision as the main variable [46].

66



Figure 4.1. ALFUS framework concept [53]

While this framework provides a comprehensive approach toward how several different test

metrics may be combined to generate an autonomy level [36], it does not specify direct perfor-

mance measures for experimental test runs. It is also noted that ALFUS interchangeably uses the

term “modes of operation” and “level of autonomy” which, according to Gyagenda et. al is a com-

mon misconception [46]. Authors such as Clothier et al. argue that multiple levels of autonomy

can constitute a single mode of operation, thereby giving each of these terms distinct meanings

[26][46]. It is noted that to the writer’s knowledge, no further publicly available publications on

the ALFUS framework has been made since 2007.

Other autonomy level frameworks have been put forward, such as the Non-Contextual Auton-

omy Potential (NCAP) introduced by the Army Corps of Engineers [35], in response to ALFUS.

This strategy differs from other methods by treating autonomy level and autonomous performance

separately [36]. It is referred to as non-contextual since the autonomy level is measured without

taking into account mission and environmental specifics. The ultimate goal is “to provide a means

of combining component and engineering level tests into a predictive measure of UMS autonomous

performance [36].” Again, however, this framework does not provide an evaluation of an UMS’s
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Table 4.1. Levels of autonomy defined by CORA [39]

Autonomy Level Role Definition
Fully Autonomous Robots The role for a robot performing

a given task, in which the robot
solves the task without human in-
tervention, while adapting to op-
erational and environmental condi-
tions.

Semi-Autonomous Robot The role for a robot performing a
given task, in which the robot and
a human operator jointly plan and
conduct the task, requiring various
levels of human interaction.

Teleoperated Robot A human operator either directly
controls the actuators using sen-
sory feedback, or assigns incremen-
tal goals on a continuous basis. A
tele-operated robot will complete
its last command after the operator
stops sending commands, even if
that command is complex and time-
consuming.

Remote Controlled Robot The role for a robot performing a
given task, in which the human op-
erator controls the robot on a con-
tinuous basis, from a location off
the robot via only her/his direct ob-
servation. In this mode, the robot
takes no initiative, and relies on
continuous (or nearly continuous)
input from the human operator.

Automated Robot The robot acts as an automaton, fol-
lowing pre-defined (scripted) plans,
not adapting to changes in the envi-
ronment.
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Figure 4.2. NCAP autonomy level architecture [36]

actual autonomous performance, it considers the system’s potential to operate autonomously [36].

This is a subtle point, autonomous potential versus actual performance executing a task or mission,

but one that must be made clear when comparing other methods, proposing new frameworks, and

deciding on the goals of evaluating autonomy.

NCAP defines four autonomy levels in their framework. Ranging in discrete values from 0

to 3, the levels are fully non-autonomous (0), semi-autonomous (1), autonomous (2), and fully

autonomous (3). Intelligence level is used as the autonomy level benchmark. So, distinction

between perception, creating a world model, forming a plan of action from the world model, and

both planning and performing an action without human input are the markers for determining the

autonomy level classification [36] (Figure 4.2).

The U.S Army’s Mission Performance Potential (MPP) framework proposed in [37] uses a hy-

brid approach by combining contextual and non-contextual performance assessment methods. This

framework builds upon the previous work developed by both the ALFUS and NCAP frameworks

and focuses on the impact of an increase or decrease in autonomous capability on performance

specific to a mission. Durst et. al propose a metric for measuring the mission-specific fitness of a

UMS that is a function of the UMS’s level of autonomy [37]. Five levels of autonomy are defined
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for the MPP (Table 4.2). Three types of input data are required for this methodology: platform

physical parameters and sensing capabilities, the platform’s decision-making abilities, and envi-

ronmental conditions [37]. Due to the varying information types, a fuzzy inference technique is

used for the MPP calculation. Specifics are not given on how the rule base and the membership

functions are constructed. The predicted MPP score is compared to actual performance during a

field exercise to validate the methodology, but the authors state that field testing is not necessary

for this metric [37]. As discussed with NCAP, this is also looking at potential, with potential in

this particular case relative to mission specific performance, but not an assessment of system per-

formance. To the writer’s knowledge, no further publications have been made regarding the MPP

since this 2014 conference proceeding.

4.1.2 Autonomous System Architecture

In general, for a system to operate autonomously, sensors, actuators, and CPUs are required

to work together in a Sense-Plan-Act loop (Section 2.1). Design of these systems is highly driven

by deployment context as the majority of these systems are built for specific mission types and

environments. There is very little consensus on standard autonomous system design, limiting the

reusability and modularity of these systems [113]. A high level system diagram is shown in Figure

4.3 providing an overview of commonly found modules [108].

There have been some strides made from software middleware. Robotic Operating System

(ROS) is one notable highlight [8]. As an open source tool for robotics, it has been increasingly

accepted across robotic communities for land, sea, and air applications and environments. It’s

flexible framework allows for highly customizable implementations while encouraging community

collaboration. ROS’s strength lies in its communication and messaging structure that standardizes

interfaces between nodes and packages.

The perception module is often made up of various exteroceptive sensors (i.e. sensors focus-

ing on the external vehicle environment) such as depth cameras, Lidars, and sonars that allow the

vehicle to “see” and “understand” its surroundings. Proprioceptive sensors (i.e., sensors focusing
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Table 4.2. Levels of autonomy defined by the MPP [37]

Autonomy Level Definition
Higher Intelligence The operator is provided with the

vehicle’s relevant information for
decision making and tactical plan-
ning. The operator does not need
access to full vehicle’s sensor read-
ings or navigation sensors, and
instead focuses on the mission-
sensitive data collection.

Adaptive Autonomy The operator is provided with a
method for accepting the vehicle-
initiated changes to the initial task,
path, or goal. The vehicle is ca-
pable of suggesting, changing, or
overriding previous operator com-
mands, based on new situational
awareness. It is at the operator’s
discretion to manage the decision-
making process in the UMS.

Supervised Autonomy The operator is provided with a
method of controlling the vehicle’s
general behaviors. It is assumed the
operator can maintain communi-
cations with the vehicle for task
reallocation. This autonomy level
includes waypoint control, goal-
based control, and scenario-based
control.

Tele-operation The operator is provided with a
method of indirectly controlling the
actuators on the vehicle, through
control-by-wire or rates’ control.
They are also informed of the ve-
hicle’s status through communica-
tion subsystems and data visual-
ization techniques, i.e., visual an-
imated gauges, maps, arrows, or
heads-up- displays.

Radio Control The operator is provided with a
method of controlling the actuators
of the vehicle directly. Sensory
feedback is through human senses
(limited by visual range and noise).
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Figure 4.3. High-level system diagram of a generic autonomous system. V2V stands for vehicle-
to-vehicle communications [108]

on the vehicle itself) give additional information about the internal states of the robotic platform,

such as the vehicle battery level, heading, and position. Increasingly sophisticated systems fuse

several sensors together to create a “world” model that helps localize the vehicle and make in-

formed decisions based on external hazards and points of interest. Data from multiple sensors

improve redundancy and fault tolerance [108]. These sensor fusion techniques generally fall under

three categories: estimation based methods (e.g., Kalman filters), probabilistic calculations (e.g.,

Bayesian methodologies), and machine learning algorithms (e.g., un/supervised and reinforcement

learning) [108]. The capability for perception and situational awareness directly influences the

level of decision-making proficiency.

Processing this data, as one can imagine, can quickly become computationally expensive and

even impractical. To make real-time decisions, a compromise must be reached between the asso-

ciated computational requirements and the required data resolution and density necessary for ac-

ceptable real-time decision performance. Path planning, navigation, and motion control techniques

also depend on the available data quality and require its own portion of the available on-board com-

putational power. Environments also play a major role in processing data. For example, a busy

harbor will require much higher sensing capabilities than that of an open ocean environment.

72



To take into account the existing processing limitations, some systems use a layered hierar-

chical software architecture which sometimes involve “deliberative” and “reactive” layers (syn-

onymous with global/local methods as discussed in Section 2.1) and incorporates multiple control

loops. In this architecture, the platform has the ability to make quick decisions via the reactive

layer, while requiring no mission memory or previous knowledge necessary and being able to take

on more complex and heavy processing tasks (e.g. route planning) performed in the background

as the deliberative layer. Approaching the architecture in this manner results in software practices

where sequences may not be sequential and where asynchronous processing techniques (multi-

tasking, parallel threading, etc.) are used [98]. As will be alluded to in the following sections, this

type of hierarchical software architecture introduces significantly higher complexity to predicting

system behavior and results in added challenges with regards to testing and evaluating internal

autonomous processes.

One example of an established autonomy architecture using separate control loops is Mission

Oriented Operating Suite - Interval Programming (MOOS-IvP) [5]. Using a “backseat driver”

paradigm, vehicle autonomy (“backseat”) and vehicle control (“frontseat”) are separated. Each

uses a distinct processor. However, safety rules can trigger the front seat to perform the pro-

tocol in place (e.g., mission abort) and override the backseat commands in a reactive scenario.

The autonomous system architecture for the TUPPS also uses this approach and utilizes the back-

seat/frontseat architecture to decouple vehicle autonomy and vehicle control. The “world” model

is built using occupancy grids. The decision output is a desired speed and heading sent to the front

seat for execution. The TUPPs front seat controller is responsible for converting the desired speeds

and heading values into appropriate thrust values for the port and starboard motors.

4.1.3 Decision-Making Strategies

A well-known way to implement autonomy is using a behavior-based approach. Behaviors

are self-contained modules that are activated under specifically defined conditions. For example,

“Avoid Collision” or “Station-Keep” are behaviors that an ASV may select during a mission. An
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Figure 4.4. A graphical representation of the MOOS-IvP decision-making flow [4]

example of a system that uses this paradigm is Mission Oriented Operating Suite - Interval Pro-

gramming (MOOS-IvP), an open source set of C++ modules for providing autonomy on robotic

platforms [5]. This approach uses multi-objective optimization for selecting behaviors and sub-

sequent decision-making. An objective function maps a domain to a range where the domain in

this case refers to a “decision”. The “decision-space” outputs a desired heading, speed, and depth.

Since there are several objective functions defined for this domain, techniques are then used to

determine the location in the decision space that optimizes all functions simultaneously [6]. For

a solution to be calculated, users must assign weights to each function. This then reduces the

multi-objective optimization problem to that of a single objective optimization problem [6]:

~x∗ = arg max
~x

k−1∑
i=0

wifi(~x) (4.1)

where k corresponds to the number of functions and wi is the weight of the ith function. Figure

4.4 gives an overview of the behavior-based decision architecture for MOOS-IvP.
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Markov Decision Processes (MDPs) are another technique for solving optimal decision-making

problems using a probabilistic approach [69]. MDPs assume that the world consists of a finite

number of discrete states [113]. Since the state of the vehicle is not perfectly observable due to

imperfect measurements, MDPs are generalized to a partially observable MDP (POMDP) and are

dependent on state probability distributions [71]. POMDP was first presented in 1965 [13], but had

limitations in solving for real-time applications. Recently, new developments with computational

methods to approximate solutions has increased their potential [111][49]. Though theoretically

sound, there are some noted limitations when this approach is scaled to real-world scenarios [41].

As such, research is ongoing to further improve the efficiency of calculations. The PODMP is

mathematically represented by a tuple (S, A, T , O Z, R, B ) [113][111] where members are

defined as:

• s ∈ S : The set of all possible states

• a ∈ A : The set of all possible actions

• o ∈ O : The set of all possible observations

• T (s′, s, a) = P (s′|s, a) : The transition probability of reaching state s′ by action a in state s

• R(s, a) : The reward function for choosing an action a in state s

• b ∈ B : The belief estimate of the true state

and an optimal policy, π, may be calculated. This policy maximizes the expected sum of rewards

for an initial belief b0 [111]. And optimal value function Vπ(b0) can then be defined such that

Vπ(b0) = E

[
∞∑
t=0

γtR(st, π(bt))

]
(4.2)

where γ is a discount factor to incentivize early decisions and V denotes the optimal value function.

By using this probabilistic approach, events can be “anticipated” by the vehicle. For instance,

Schörner et al. [111] apply this technique to road vehicle intersection scenarios to demonstrate
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its validity. Other lanes can not be observed completely oftentimes due to buildings and other

vehicles. Using a POMDP, decisions can be made that include consideration of future observations

and uncertainty of hidden hazards in the process [111].

Generally, rule-based approaches consist of decision-making logic explicitly specified in ad-

vance [95]. A system of rules is built a priori and then used as a database for online decision-

making. While perhaps sufficient for simple cases, issues arise when scaling to larger, more

complex systems and generalizing scenarios as all potential scenarios must be considered when

constructing the system [95]. Accounting for every possible situation also quickly increases the

complexity in both the application and management of the system [95]. Learning-based methods

have been shown to outperform a majority of rule-based systems [95], but struggle with general-

izing to variations of a scenario and necessitating training data to take into account all possible

patterns, resulting in both time and robustness issues [41]. Autonomous road vehicles do have a

potential advantage in this regard over marine vehicles in that ground vehicles have much more

structured traffic patterns, established roads, and the ability to implement surrounding sensing in-

frastructure.

Many of these approaches incorporate predictive modeling, as in the examples above, as this is

considered the key to handling uncertain actions and evaluating any potential consequences [41].

For full reasoning, adaptability, and risk assessment capabilities of autonomous decision-making,

uncertainty must not only be taking into account for the vehicle itself but in the intentions of other

vehicles, pedestrians, animals, and moving objects. This is an area where autonomous vehicles

have not reached the level of human decision-making [112].

Ethical considerations are also warranted. In model based implementations, the human user is

responsible for creating the model and thereby developing the system’s “values,” a system which

can still produce unintended consequences. What is often described as a “gut feeling” decision

by a human does not involve definable calculations and are typically motivated by a mixture of

previous experience, cultural norms, among other factors [103]. AI algorithms present additional

complications to decision-making on attempting to obtain appropriate, unbiased, training data.
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As with strategies such as neural networks, full transparency is difficult and the networks reach

computational levels that make human tracing unfeasible [103]. Much work still lies ahead towards

formulating ethical values as quantifiable parameters that can be translated to machines [103][20].

Brutzman et al. state that human accountability is required to preserve ethical boundaries [20].

The operator must have a level of understanding of high-level mission flow, mission descriptions,

and that these missions only consist of trusted behaviors [20].

4.2 Mission Planning and Design

Mission planning for autonomous vehicles involves interactions from both human and robot. The

amount of freedom the robot is allowed to exercise largely depends on the level of abstraction (or

lack thereof) described in the mission plan in addition to a given prerogative to perform any task

prioritization and sequencing during a mission. At the highest hierarchical level, the mission has

a desired outcome which is then decomposed into an arbitrary number of tasks and low-level ac-

tions. Figure 4.5 places mission planning in context of the overall robot planning hierarchy and the

corresponding required high-to-low level decision-making required. In Figure 4.5, Route Planning

refers to a physical sequence of locations to visit, Path Planning denotes the spatial path generated

for the vehicle to follow, and Motion Planning takes into account vehicle dynamics and converts

the planned path into a feasible trajectory. These tasks can have various attributing characteris-

tics such as priority value, level of risk, and time constraints [137]. Many systems still rely on

preprogrammed commands with minimal decision-making authority causing limited adaptability

to situations that arise during mission run time [137]. AUVs, in particular, with the communica-

tion challenges of the undersea environment, could benefit greatly from becoming independent of

relying on operator commands.
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Figure 4.5. Robot Planning Hierarchy

Ideally, through a user interface, a mission planner should reduce operator input to higher-level

tasks in order to minimize planning errors [84]. Thus, a common “language” is needed so that

human language can be translated to robot actions [84][107]. Several works have proposed frame-

works to standardize vocabulary and mission terminology although none have been commonly ac-

cepted, especially across all domains of land, air, and sea ([104][21][65][84][102]). The taxonomy

developed by Gerkey and Mataric̀ [42] is considered to be the most widely accepted classification

method for multi-robot task allocation (MRTA) [99]. Their work defines a common vocabulary for

MRTA problems, but is constrained to systems where tasks are independent. Korsah [65] built on

this work by proposing another taxonomy, iTax, which extends the task allocation space to include

interrelated tasks. In a later work, Nunes et al. later proposed a categorized taxonomical approach

to the task allocation problem with temporal and ordering constraints [99].

Research in this area commonly draws from combinatorial optimization and operations re-

search with mission definitions providing temporal and ordering constraints [65]. As such, Zadeh

[137] treats mission planning as a both a Traveling Salesman (TSP) and a Binary Knapsack (BKP)

problem with scheduling split into vehicle task priority assignment and vehicle routing problem,

respectively. Task priority assignment is concerned with the combination of solutions as opposed

to the vehicle routing problem which is concerned with the order and sequence of solutions [137].
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This approach considers the effective management of resources (e.g., battery power) as the main

role for the mission planner. Mission success is directly dependent on operation productivity. So,

under the assumption that each task is distributed over a specific operation area, Zadeh designed

the scheduler as a network of waypoints allowing for the utilization of graph theory techniques.

Other graph theory approaches specific to task assignment include algorithms for Tabu search [50],

graph matching [66], and branch and cut [79], with extensibility for distributing tasks among sev-

eral agents [137].

4.3 Current Test and Evaluation Techniques for Autonomous Vehicles

Integration of autonomous vehicles into society will require Test and Evaluation (T&E) processes

that produce a quantifiable level of trust and confidence in robot actions [19][38] [108]. Current

research still primarily consists of simulations and proof-of-concept vehicles tested only in con-

trolled laboratory or field environments due to the lack of reliable autonomous decision-making

performance [19][75][116][43]. One of the main barriers of autonomous systems in civilian appli-

cations lies within questions of how safe these systems are [46][108], as studies have shown that

public acceptance of autonomous vehicles is low [138]. The existing gap between technological

advancement and the effective testing and evaluation of these systems must be bridged to make

autonomous vehicles increasingly practical and accepted for field use.

4.3.1 Experimental Testing

Current experimental test procedures for autonomous vehicles are usually conducted on a case-

by-case basis without mathematical rigor partly due to the lack of agreed upon standards and

definitions for autonomous systems and related performance metrics [100][51][36][43][75] (as

discussed in Section 4.1.1). Autonomous ground vehicle companies resort to driving millions of

miles to perform validation tests which is generally economically impractical [9][93][56]. Other

test range methods have been developed in response to ground vehicle competitions such as the

DARPA Grand Challenge [119][129]. These methods have applied a Type-1 Fuzzy Inference Sys-

tem (T1-FL) using an analytic hierarchy process (AHP) for weight distribution. T1-FL systems,
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however, do not take into account additional uncertainty in its given membership functions and,

therefore, have limited capabilities in minimizing the effects of such uncertainties [85]. These un-

certainties originate from such sources as (but not limited to) noisy measurements, the chosen lin-

guistic terms, and the user-defined rule-base, among other variables. These competitions typically

drive innovation and push technological boundaries, but do not necessarily push the boundaries of

certifying and assuring acceptable vehicle behavior at parallel speeds [106].

4.3.2 Modelling and Simulation

In terms of simulation based studies, standard T&E techniques (e.g., design of experiments

and Monte Carlo analysis) are unusable due to the excessive number of variables inherent to an

autonomous system [17]. One technique developed by the Johns Hopkins Applied Physics Labo-

ratory (APL) uses modeling and simulation to perform many iterations of particular scenarios and

then form scores to provide some means for evaluating a statistically large (or very large) number

of runs. This tool, referred to as the Range Adversarial Planning Tool (RAPT), searches for bound-

aries in capabilities to identify the most critical tests for test range operations [97]. Other work has

been done with developing methods using model-checking, finite state machines, and process al-

gebras, but these techniques require a model that completely describes the autonomy [97]. Due

to proprietary intellectual property with software and the complex nature of autonomous systems,

these modeling strategies have limited applicable use [97][106]. Additionally, these strategies test

the robustness of the software but do not give information about how the system will perform while

executing the mission (i.e. whether the vehicle will navigate to the left or right of an obstacle) [96].

4.3.3 Validation and Verification

T&E procedures usually include validation and verification of systems. Validation analyzes

whether or not the system meets the intended design objectives and desired uses (i.e., “Are we

building the correct product?”), while verification addresses whether the design specifications are

correctly implemented by the system (i.e., “Are we building the product correctly?”). These classic

techniques do not transition well for autonomy testing as these systems contain numerous interact-
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ing behaviors, many of which are not deterministic [106]. Autonomy development aims to even-

tually have vehicles handle situations that are unknown and not explicitly defined a priori [106].

This makes current verification strategies that require complete knowledge of how the system is

expected to behave in all situations unfeasible [106]. Additionally, by defining the requirements

on lower levels, it leads to the autonomy being designed as well, thereby limiting the system to

actually act autonomously [106]. Due to the challenges of proving reliability with exhaustive

verification and scenario-based testing, there has been a push to develop techniques where gener-

alizations can be made, an appropriate subset of conditions can be tested, and trusted conclusions

and inferences on autonomous behavior can be produced.

4.4 Discussion

The sections above speak to some of the varying approaches towards defining autonomy, system

architecture, decision-making, mission planning, in addition to test and evaluation challenges of

these autonomous systems. Common themes include a lack of accepted definitions and standards,

trust in safe operation, and managing uncertainty in an unpredictable world. All of these topics of

this chapter depend on one another to progress technologically. Effective decision-making, mission

planning, etc. can only advance with improvements to situational awareness and understanding the

environment as well. This chapter has covered a broad range of autonomous system topics to

demonstrate these deeper-level intricacies and the vast complexity that requires rigorous vehicle

and autonomy testing before field deployment can be made practical.

It is clear that autonomy cannot be tested as other systems are. The nondeterministic nature of

the algorithms causes increased difficulties localizing and diagnosing defects with unreproducible

sequencing. Ocean environments, especially, are inherently unpredictable and rarely produce iden-

tical conditions. Consider a driving license test where one scenario is typically tested. Not a perfect

measure by any means, but it comes with what one perceives as an “acceptable” level of risk. What

is acceptable risk for an autonomous vehicle? The answer is, of course, context-dependent but one

must realize that the minimum benchmark must be improved human performance (and/or safety).
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A large portion of the work accomplished thus far focuses on the tools to measure the vehi-

cle autonomy level and not the level of vehicle performance while attempting to accomplish its

pre-determined tasks [106]. Predicted capability does not necessarily signify that the vehicle can

actually perform up to those standards [46]. These techniques (as discussed in Section 4.1.1) pre-

dict expected performance for a mission set and level of autonomy but it does not directly compare

the performances of varying types of autonomy algorithms, nor does it provide a direct measure

of vehicle performance for individual iterations of a given mission scenario. Additionally, these

methods do not account for system faults and sensor perception issues.

The contributions presented here and in the following chapters approach autonomous system

evaluation differently from the stated norm. The proposed test and evaluation methodology in the

following chapters, referred to as the Performance Evaluation and Review Framework Of Robotic

Missions (PERFORM), addresses the above challenges by:

• Modular Scenario-Based Testing: Mission and task decomposition strategies with analysis

towards extrapolation to other similar tasks helps maximize data from each test. By mini-

mizing the scenarios necessary to test, the approach increases efficiency to the T&E process

and is easily scalable. Modularizing mission components adds flexibility to examine not

only individual tasks and behaviors, but to also examine overall missions.

• Incorporating Uncertainty: Acknowledging the uncertainty of a test run projects a mea-

sure of confidence in the determined level and repeatability of performance a vehicle has

demonstrated during testing. Variations in environmental conditions, trajectories of other

potential hazards (i.e. other vehicles), and perception of these situations will always exist.

Providing a quantitative view of test quality and limitations allows for better risk assessment

before field use.

• Performance Based Assessment: The proposed framework is a performance based assess-

ment. Evaluation, in this context, refers to measuring the ability of the vehicle to complete

the given mission and not its total (highest possible level) abilities. The metric for perfor-
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mance is the ability to successfully achieve the desire goal which is independent of autonomy

level [46]. Human and robot performance may be tested in the same framework. However,

the scope of this work does not include human/robot interactions. The end goal is to provide

a vehicle performance score for the test engineer to make an informed decision on a vehicle’s

fitness for a specific mission, but without predicting mission success (which is outside the

scope of this work).

• Independent of Internal Autonomy Architectures and Level of Autonomy: Maintaining

independence as an external observer from “black box” systems is critical for maintaining

flexibility of the framework and in ensuring its global applicability across varying types of

autonomous vehicles. Using system performance and autonomy as distinct measures permits

testing performance without requiring a priori knowledge of the Level of Autonomy (LOA),

thus, simplifying the performance evaluation problem. If a lower cost and simpler platform

can perform the mission on par with a more expensive and complex option, that provides an

important piece of information with cost and operational benefits.

• Real-Time Testbed Environment: While it is understood that live field testing is restricted

to far fewer test runs than that for simulation studies, it is still critical to confirm that hard-

ware, software, and the overall system-of-systems (SoS) are working cohesively. The testbed

acts as a “dress rehearsal” space providing, improvements to the end of the T&E spectrum.

4.5 Proposed Mission Design for Evaluating Autonomous Vehicles in a Testbed

Environment

4.5.1 Defining a Test Mission

For the purpose of generalizing the autonomy evaluation procedure, a generic architecture for

defining the test missions is proposed. In this work, it is assumed that any autonomous mission

may be subdivided into a set of generic (sub)tasks that autonomous missions often incorporate

(e.g., transit, conduct survey, station keeping, etc.). (For the remaining document, task will refer
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to both tasks and subtasks). These tasks are separated by time and order via the mission-scripted

programming but also by events which represent time-based changes in the environment (e.g., a

newly discovered obstacle, a sudden change in sea state, etc.) or within the autonomous platform

itself (e.g., low battery, faulty on-board sensor, etc.). Depending upon how/when these events

occur during the tasks being performed, specific mission behaviors should (or must) take place in

order to complete a specific task (or mission) or to prevent catastrophic system failure. In other

words, behaviors consist of actions and/or reactions conducted by the autonomous vehicle during

the execution of a task to aid in completion of the task. An important aspect of decomposing

a mission into tasks and events is that at the lowest level of the decomposition, there could be

significant overlap of tasks and reactions to events for a wide variety of missions. This enables

one to make inferences about future autonomous capability from the evaluation performed in this

environment for a set of canonical missions. Flexibility in mission definitions to capture a range

of operational scenarios (as opposed to testing individual scenarios) during evaluation is highly

desirable [107]. Describing a mission with tasks and associated events form the foundations from

which corresponding scenarios and metrics may be created.

In the proposed architecture, a mission (M ) is defined as a set of tasks that must be completed

to realize a specific goal or goals. Tasks (T ) are a set of data structures that define quantifiable

starting and ending states (as a function of time and space) and that can be combined with other

tasks to realize a mission goal. Tasks should be described through simple language (e.g., travel

to a desired waypoint), and they are conditionally dependent within a specific mission such that

relations between the order of tasks can be represented as a directed graph. Events (E) are defined

as a set of possible time-based changes (both internal and external to the given autonomous vehicle)

that occur during and/or as a result of a specific task. Behaviors (B) are defined as the actions

necessary to perform a given task (e.g., avoid known obstacle, no event occurring, etc.) or occur in

response to an event (e.g., avoid new obstacle, perform station keeping, etc.). Example parameters

used for performance evaluation may include elements such as the vehicle’s total time and distance

traveled to complete a task, the closest point of approach (CPA), and the total energy consumed.
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Scenarios become instances of a given mission and is defined such that S denotes a space of all

possible scenarios that can be “realized” with respect to the mission and the platform being used to

accomplish the mission. Each element Si ∈ S is selected by choosing values for a set of scenario

parameters that are derived from key aspects of the mission description. Scenario parameters may

encompass items such as survey areas (box size and location), launch/recovery points, time of day,

and starting battery charge. A metric function, β, maps elements of the scenario space Si to <

values:

∀Sik ∈ Si ∃ β : β(Sik) ∈ < (4.3)

thereby combining many aspects for evaluating performance of the autonomous vehicle as it reacts

to events and accomplishes tasks as it executes the Scenario. Essentially, this metric produces a

score for every scenario (a realized instance of the mission). Each Scenario should be considered

an instance of the execution of the mission by the given platform. In practicality, there are only a

finite number of scenarios that are actually executed, either in a simulation/modeling environment

or as live field tests. However, because of the way the scenario parameters can be specified, some

can take on a range of values, which allows the possibility of an infinite number of scenarios to take

into account the entire interval of values that could possibly be assigned to a particular parameter.

In set notation, the mission space with the associated T , E, B, and S may be represented as

follows:

M(Si) =



M1i =
{
T11(t, x, y, z, B,E), T12(t, x, y, z, B,E), ..., T1n(t, x, y, z, B,E)

}
M2i =

{
T21(t, x, y, z, B,E), T22(t, x, y, z, B,E), ..., T2n(t, x, y, z, B,E)

}
...

Mmi =
{
Tm1(t, x, y, z, B,E), Tm2(t, x, y, z, B,E), ..., Tmn(t, x, y, z, B,E)

}
(4.4)

85



where m, n, and i are mission number, task number, and scenario number, respectively. Figure 4.6

gives an overview of an example Autonomous Surface Vehicle (ASV) seafloor mapping mission

with the proposed architecture.

By representing a mission with this framework, set operations may then be used to compare

various generic missions and tasks with the intention of limiting test redundancy and reducing the

number of test missions to that of the most critical scenarios. The main goal here is to alleviate the

need to determine the exhaustive list of all possible scenarios and combinations of mission tasks,

events, and behaviors for which the performance of the vehicle autonomy must be tested against.

Instead, this mission framework provides an analysis platform with which to test/observe platform

autonomy and which is fully modular, versatile, and scalable.

Figure 4.6. Example seafloor mapping mission with associated tasks and behaviors

Another useful representation is expressing the mission as a directed graph such that M is

defined as the graph, T is the subgraph partitioned by tasks containing a set of vertices, VG, and a

set of ordered edges, EG (Equation 4.5). The subscript G differentiates the graph representation

from that of the set notation of Equation 4.4. Mission M may then be represented as:
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M(T1(VG, EG), T2(VG, EG), ..., Tn(VG, EG)) (4.5)

Figure 4.7 shows an example of this graph structure with the same mission as defined in Figure

4.6. In Figure 4.7, insight on relationships between tasks and possible events causing transitions

between tasks is observed. Here, the vertices correspond to the possible events and the edges

are the possible transitions between events. Behaviors, B, represent the underlying status of the

vehicle in response to events and are not shown explicitly in Figure 4.7 and Equation 4.5. Figure

4.8 shows a task and event path for an instance of mission failure versus mission success.

Figure 4.7. Graphical overview of the example mission for a given scenario
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Figure 4.8. Example of a task and event flow for mission failure (top) vs. mission success (bottom)

The concept of a Capability Space is also introduced here. Notated as Cik ∈ Ci, each element

is defined through a one-to-one mapping of Si to Ci where each element is assigned a score β(Sik).

The Capability Space, which contains different capability regions, is used to identify which scenar-

ios are considered successful, which are considered failures, and the potential boundaries between

these regions. The implementation of PERFORM is intended to act as this scoring metric, β. This

metric serves to provide a single score for each Scenario that takes on a range of values so that

different scenarios can be more easily compared to evaluate relative success/failure. The following

chapters will introduce and apply this proposed metric with the help of an Interval Type-2 Fuzzy

Logic approach.
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CHAPTER 5

FUZZY LOGIC THEORY

5.1 Overview

Fuzzy Logic (FL) systems and theory, a subset of AI, is employed as the basis for quantifying pa-

rameters that describe the performance of a task. FL is the chosen approach for this work due to its

ability to provide a strict mathematical framework in which vague and uncertain phenomena can

be precisely and rigorously studied [135][139]. A complete description of a real system requires

complete knowledge of the mission which is often not known a priori [139]. Due to the infinite

number of possible scenarios in a given mission, the impracticality of constraining the system,

and the prevalence of proprietary software, the approach for this research remains independent of

internal autonomy architectures [97][17] and defines boundaries on the scope of this work without

loss of generality. Additionally, this FL strategy allows flexibility for various definitions of “suc-

cess” between users (e.g. a defense employee as opposed to a scientist) by weighting performance

qualities the user deems important.

Unlike traditional binary logic (i.e., either “0” or “1”), FL utilizes the concept of partial truth

(i.e. values ranging between 0 and 1). This logic more closely resembles how the human brain

processes information [135]. The general FL procedure takes fuzzified input data (via linguistic

variables and user-determined membership functions) and processes them through an “if-then”

framed rule base, producing a set of fuzzy outputs. These outputs are then combined/weighted into

a single output, which is then defuzzified (via another set of membership functions) to produce the

final crisp result. First presented by Zadeh [134], this strategy is often employed in other sectors

such as medicine, manufacturing, and business with applications to control systems, decision-

making, evaluation, and management.
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5.2 Type-2 Fuzzy Logic

Type-2 Fuzzy Logic (T2-FL) was first defined in [135], but has gained significant research interest

in recent years [127][23]. T2-FL is also referred to as “General T2-FL (GT2-FL).” A special case

of GT2-FL systems is Interval T2-FL (IT2-FL). Both categories of T2-FL are parametric models

with additional design degrees-of-freedom to that of a T1-FL system [87] [22] and are useful

in situations where determining a definitive MF is difficult and where dynamic uncertainties in

unstructured environments must be taken into account [135][58][127][86]. With this additional

design degree-of-freedom, not only can the degree of membership of a given linguistic set be

modeled, but the uncertainty in the degree of membership as well. Basic terminology is reviewed

in this chapter to rationalize the use of Interval Type-2 Fuzzy Logic (IT2-FL) over that of other

forms of FL.

5.2.1 Membership Functions

In traditional T1-FL theory, a characteristic function allows for various degrees of membership

for the elements of a given set. A T1 fuzzy set, A, with a collection of objects X (also referred to

as the “universe of discourse”) and elements x, is defined as:

A = {(x, µA(x))|x ∈ X} (5.1)

where µA is the degree of membership of an element x in the set A [139]. These membership func-

tions (MFs) are user-defined, often (but not exclusively) incorporating triangular, trapezoidal, and

gaussian functions, among others. The MF itself is an arbitrary curve that is chosen for simplicity,

convenience, speed, and efficiency. For this application, the fuzzy sets for mission parameters is

assumed to have defined minimum and maximum thresholds based on the testbed space.

A T2-FL set is denoted as Ã. As opposed to T1 systems, additional Lower Membership Func-

tions (LMFs) and Upper Membership Functions (UMFs) must also be defined for T2-FL. The

corresponding MFs are denoted as µL
Ã

(x) and µU
Ã

(x) for lower and upper bounds, respectively. X
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now refers to the primary domain, and Jx is now defined as the secondary domain. Rewriting

Equation 5.1 as a General T2 system, Ã can be defined as (as shown in [23][115]):

Ã = {((x, u), µÃ(x, u))|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (5.2)

What differentiates IT2-FL from GT2-FL is that the IT2-FL uses a uniform secondary MF

(i.e., µÃ(x, u) = 1), whereas the MF of GT2-FL varies with its secondary membership. As such,

the resulting IT2-FL reduces the GT2-FL of Equation 5.2 to Equation 5.3 as exemplified in Figure

5.1, and Ã reduces to:

Ã = {((x, u), 1)|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (5.3)

Figure 5.1. Example of a GT2-FL (left) vs. IT2-FL (right) Fuzzy Set

Here, since the third dimensional value of the IT2-FL membership is constant, it can be more

conveniently represented as a reduced two-dimensional Field of Uncertainty (FOU). For added

accuracy and versatility in dealing with MF uncertainties (e.g., vehicle platform uncertainties and

sensor noise), the author chooses to implement T2-FL (over T1-FL), and selects IT2-FL (over

GT2-FL) in anticipation of possible data overload burden to maintain computational feasibility, as

the GT2-FL approach has been previously shown to introduce design issues and results in high

computational costs [87].
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As variance quantifies the uncertainty of a variable’s mean in probability theory, the use of

IT2-FL enables the quantification of existing uncertainties within a membership function. The

FOU is defined as the area bounded by the Lower Membership Function (LMF) and the Upper

Membership Function (UMF) and is depicted in the example MF in Figure 5.2, where the IT2-FL

MF is also differentiated from that of a T1-FL. A T2-FL design constraint is the LMF ≤ UMF for

the entire domain. The IT2-FL FOU may be expressed as the union of all primary memberships

such that

FOU(Ã) =
⋃
∀x∈X

(µL
Ã

(x), µU
Ã

(x)) (5.4)

Figure 5.2. Example membership functions for T1 (left) and T2 (right) Fuzzy Systems

5.2.2 Implication

The mapping of the input space to that of the output space is the result of processing the

input through a set of “if-then” linguistic rules (e.g. “If x is A, then u is B”). The Fuzzy Inference

System (FIS) begins with fuzzifying the crisp input values by using the LMFs and UMFs of the rule

antecedent to determine the corresponding degree of membership in terms of linguistic metrics.

This step produces two fuzzy values for each IT2-FL MF from the membership value of x = x′ at

the UMF and LMF of the activated fuzzy sets: fU(x′) and fL(x′) (Figure 5.3)[89]. With application

of the fuzzy operator min to all fU(x′) and all fL(x′), this creates a firing interval such that
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f ′U = min(fU1(x
′
1), fU2(x

′
2))

f ′L = min(fL1(x
′
1), fL2(x

′
2))

(5.5)

Figure 5.3. Firing interval of the IT2-FL system for two antecedents

Figure 5.4. Output FOU for the consequent fuzzy set after implication
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Here, the interval has a maximum value of f ′U and a minimum value of f ′L, and Figure 5.3 demon-

strates this two antecedent case.

From the firing interval for each rule, the output (i.e. the consequent of the rule) becomes an

IT2 fuzzy set (Figure 5.4). Mendel [89] stated that this fuzzy set is obtained because the firing set

is a continuous set of points between the UMF and LMF. The min implication method trims this

fuzzy set using the firing range interval.

Inference mechanisms in FL are divided between two well established methods: those from

Mamdani [81] and Sugeno [118]. The main difference between the techniques lies in the output

generation process [47]. Sugeno FIS relies on a weighted average for output computation as op-

posed to the defuzzification step utilized for a Mamdani FIS to obtain a crisp output. As such, the

Sugeno method outputs either constant or linear equations instead of a fuzzy set.

The Mamdani technique is selected for this work due to its demonstrated advantages over

that of Sugeno in intuitiveness, rule base interpretability, and when taking into account human

input and rules created from a priori knowledge and experience [83]. It is noted that the Sugeno

method is more computationally efficient. However, as stated previously, computational efficiency

is not considered critical since the intended use is for pre/post-processing and not for real-time

application.

5.2.3 Aggregation

In this step, the output fuzzy sets from applying the rule base is combined into a single T2 fuzzy

set. There are several different aggregation methods, but the “maximum” union operator will be

the assumed method for this work as it is the most commonly used. As an example, the output set

corresponding to a second rule is added to that in Figure 5.4 and is shown in Figure 5.5.
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Figure 5.5. Combined T2 output fuzzy set for two fired rules

5.2.4 Defuzzification

Under the assumption in using a Mamdani-based system, defuzzification is necessary to convert

the fuzzy output set to a crisp output value. The T2 output fuzzy set is reduced (via a “type

reducer”) to an Interval T1 fuzzy set resulting in a range (with cL being the lower limit and cR the

upper limit) and which is considered the centroid of the T2 fuzzy set. This refers to the average of

the centroids of all the Type-1 fuzzy sets embedded in the Type-2 fuzzy set. The centroid values

are calculated iteratively due to the inability to compute exact values for cL and cR. Methods

developed by Karnik and Mendel [59][88] are commonly used with the approximations for cL and

cR given as

cL ≈
∑L

i=1 xiµ
U
Ã

(xi) +
∑N

i=L+1 xiµ
L
Ã

(xi)∑L
i=1 µ

U
Ã

(xi) +
∑N

i=L+1 µ
L
Ã

(xi)

cR ≈
∑R

i=1 xiµ
U
Ã

(xi) +
∑N

i=R+1 xiµ
L
Ã

(xi)∑R
i=1 µ

U
Ã

(xi) +
∑N

i=R+1 µ
L
Ã

(xi)
(5.6)
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where N denotes the number of samples, xi is the ith output value sample, and L and R are the left

and right estimated switch points, respectively. The defuzzified crisp output value, y, is determined

by averaging the two centroid values such that

y =
cL + cR

2
(5.7)

The reader is referred to [88] for further detail on FIS. An overview of the architecture of T1 and

T2 Fuzzy systems is provided in Figure 5.6 and Figure 5.7, respectively.

Figure 5.6. T1-FL System

Figure 5.7. T2-FL System

In literature, studies have been performed comparing T1 and T2 systems. Castillo et al. [23]

completed a comparative study of T1-FL, IT2-FL, and GT2-FL systems in control problems. They

conclude through simulation that the IT2-FL controller showed marked improvement over the T1-

FL controller with and without generated noise perturbations. Linda and Manic [73] also analyzed

T1-FL and IT2-FL systems using fuzzy control in the context of learning behaviors for mobile

robotics. The IT2-FL membership functions were constructed by blurring the membership func-

tions of the original T1 system [73]. Findings included that the IT2-FL system out performed the

T1 system when handling noisy inputs, but a reduction in speed by the former. Since the pro-

posed application of IT2-FL for autonomous vehicle performance evaluation occurs during the
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post-processing stage, slightly longer calculation time is not of concern. The IT2-FL provides a

convenient compromise between design complexity and computational burden.
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CHAPTER 6

PERFORM: PERFORMANCE EVALUATION AND REVIEW
FRAMEWORK OF ROBOTIC MISSIONS

6.1 Background

Specific to performance evaluation studies, fuzzy logic has been utilized in selected applications.

Surya et al. [120] investigated the use of T1-FL for grading student performance. They argued

that classical methods inefficiently describe a student’s skill level. Through direct comparison of

the classical and proposed fuzzy approach, the flexibility and potential improvements of the fuzzy

methods were shown. FL techniques have also been applied to measure cloud computing perfor-

mance by defining different cloud performance parameters [110]. Saxena and Nanath chose FL for

that application specifically for its ability to describe complex systems with linguistic descriptions

[110]. Since the evaluation framework was constructed to help the users evaluate the performance

of the cloud, the linguistic descriptions provided an intuitive interface.

A study by Debnath et al. [33] performed air quality assessment using a weighted IT2-FL

inference system. Air quality assessments traditionally use an index with distinct boundaries,

and thus do not accurately depict existing boundary haziness [33]. Debnath et al. considered

evaluation of air quality as a problem of the degree of pollution, thereby pointing towards the use of

fuzzy logic techniques as an appropriate tool. They incorporate both Interval Type-2 and Analytic

Hierarchy Process (AHP) to provide additional uncertainty and parameter weighting management,

respectively.

Sun et al. [119] deployed T1-FL tactics to evaluate the DARPA Grand Challenge AGV compe-

tition. Combined with AHP for multilevel evaluation, this work analyzed five evaluation elements:

vehicle control behavior, basic driving behavior, basic traffic behavior, advanced driving behavior,
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and advanced traffic behavior [119]. The membership grade was determined by the evaluation of

10 experts on their assessment of task completion quality, rather than the input being dependent

upon data collection. Another robotic application by Chen and Zhang [24] combined FL, evidence

theory, and fuzzy neural networks to create an evaluation method for unmanned automotive robots.

This methodology used both subjective and objective evaluation measures to train the fuzzy neural

network model.

6.2 Performance Parameters

The performance parameters for the proposed framework in this work consist of quantitative char-

acteristics that describe aspects of a mission and/or task. Spatial measures, such as total distance

travelled by the vehicle between two waypoints, for instance, would provide a value that analyzes

both the path planner and the control system. Since the evaluation concern is on the execution level

(i.e., the actual performance), it is not necessarily important to make the performance parameters

distinct between the path planning and control subsystems. The proposed framework, instead, pro-

vides a comprehensive assessment that asks the question, “Can this vehicle adequately perform this

task and/or respond to a particular unexpected event?” As the mission architecture in Section 4.5.1

presents, the tasks may be decomposed into the mission’s description and potential scenarios to

the largest set of individual tasks that correspond to different behaviors and/or modules within the

autonomy software at the level it is being tested. If, for instance, a waypoint-to-waypoint behavior

is under test, then path planning, obstacle detection, and heading/speed control may all be appli-

cable subtasks. If, perhaps, the confidence in the platform’s control system is already established,

the task decomposition may simply address path planning and obstacle detection.

Decision-making may be measured in various ways depending on the context. An approach to

measure obstacle avoidance performance is to consider the Closest Point of Approach (CPA). For

example, vehicle approach and close proximity to an obstacle would demonstrate poor situational

awareness, and an incorrect decision for the calculation of a safe trajectory could result. On a

higher mission level, decision-making could also be considered from a mission planning perspec-
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tive, where the sequencing of tasks is the decision-making component under test. Here, selecting

the order of tasks for the best mission productivity could be measured by the number of tasks

completed within a given time constraint.

Due to the inability to completely control environmental test conditions, fuzzy logic may be

used to calculate a separate reference score in order to provide additional context to a particular

test run. This score could consist of some combination of Beaufort force, current speeds, water

turbidity, fog conditions, etc. The level of environmentally related challenges may change between

test runs, so this could be an additional quantitative value to differentiate performance scores.

6.2.1 Inputs

Each parameter, pi, are elements of the set p on the universe of discourse Ui and serve as the

inputs of the FIS:

p = [p1, p2, ..., pi] (6.1)

where the domain of each member of p is bounded such that

pi ⊂ [xmin xmax] (6.2)

The corresponding range is the fuzzy membership value, µ, which is bounded such that pi ⊂ [0 1].

The limits of pi are determined by the test engineer using expected or required results. Single-

valued inputs are assumed, meaning that some data may need to be a priori. Considering average

speed, for instance, one would first compile the logged speed data and then compute the mean to

use as the final input. The determination of performance is not a “per time step” calculation as with

that of FL-based control system type implementations. Figure 6.1 provides a visual representation

of a generic input parameter with associated triangular fuzzy sets Ã.
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Figure 6.1. Example input parameter with 5 MFs (represented by a T1 system for visual simplic-
ity)

Input parameters, p, may be assigned different weights for different priority levels as desired.

These levels of priority may also be modeled using the rule base (which shall be further discussed).

Assigning input parameter weights (as opposed to incorporating the weights into the rule base)

may be a more straightforward task, as the rule base becomes large and complex with increasing

number of inputs and correlating multiple antecedents. In assigning weights, wi, the combined

weights from input variables are such that they sum to 1 [123]:

i∑
i=1

wpi = 1 (6.3)

Here, each weight is used to distribute priority for each membership value used to determine the

antecedent score a for the rule base such that

a = wp1 ∗ µp1 + wp2 ∗ µp2 + ...+ wpi ∗ µpi (6.4)
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6.2.2 Output

The performance score, P ⊂ [ ymin ymax ], is a crisp value defined on a universe of discourse

V that is the output of the FIS. P can be numeric (e.g., ranging from 0 to 100) or mapped to a

linguistic term (e.g., the letter grades, A, B, C,...) and contains an arbitrary number of fuzzy sets

C̃k. Figure 6.2 shows an example output µ as a function of P using five MFs.

The Performance Evaluation and Review Framework of Robotic Missions (PERFORM) defines

performance in this context as the ability of the platform under test to achieve mission or task ob-

jectives using quantified measures. These measures determine fitness for real mission deployment

through satisfying defined standards or with demonstrated improvements in the case of comparing

platforms. For additional degrees of uncertainty, IT2-FL (via its FOU) is flexible enough to take

into account: (1) uncertainty directly associated with the input and (2) uncertainty from linguistic

vagueness in defining performance. This topic will be discussed further in Section 6.5.

Figure 6.2. Generic output parameter with 5 MFs (represented by a T1 system for visual simplic-
ity)
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6.2.3 Data Collection

Ideally, data for the input variables is collected using an external suite of sensors, so as to max-

imize data consistency between platforms and minimize dependency on the platforms themselves.

For underwater vehicles, some test ranges may have established underwater acoustic arrays or ac-

cess to ship-based Ultra Short Base Line (USBL) systems to determine local/inertial coordinates

and other navigational data. However, this may not always be possible for some desired data (i.e.

battery levels) or if the vehicle does not have the capacity to carry additional sensors. In addition,

sensor sampling rates should be consistent between test runs and set to an appropriate value that

achieves a balance between required resolution and data size.

6.3 Membership Function Construction

In a generic fuzzy system, the three main design considerations are: (1) the membership functions

themselves, (2) the number and nature of the selected rules, and (3) the inference technique [77].

Lotfi and Tsoi [78] found that adjusting the membership functions has a dominant effect over that

of the other two design considerations. Wu and Mendel suggested using no more than seven MFs

for each input to facilitate interpretation [128]. For the majority of FISs there are two strategies

to construct MFs: model-driven strategies and knowledge-driven strategies [126]. Model-driven

design usually occurs in the context of control systems where optimization algorithms to tune

parameters may be used under the assumption that the system plant is known (or that at least a

nominal model is known) [126]. The knowledge-driven approach utilizes an “expert” to design

appropriate parameter values (i.e., from prior insight and experience). PERFORM has the ability

to use either approach or a combination of the two. If simulations are available, that data can be

incorporated by providing expected parameter ranges. Having clearly defined mission specifica-

tions and testing goals will help direct the test engineer in the knowledge-driven approach. With

the flexibility of MF construction, one is able to model the quality of the performance, not merely

whether or not the mission was a success or failure.
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Although flexibility is provided in the implementation of PERFORM to account for various

definitions of success, the author argues that the lowest threshold for measurement is the comple-

tion of a task. In other words, the evaluation system is not intended to scale for partial completion

on a task level. To confidently deploy a vehicle for field operation, the vehicle must first demon-

strate it can, at a minimum, complete the required task(s). As such, the performance measure then

becomes the measure of the degree of success as defined and modeled via the input parameters and

MFs. If desired, the task can be further decomposed into smaller, more manageable, components

(i.e. subtasks) as necessary.

While any function may be implemented, this study will limit the MF shapes to triangular,

trapezoidal, and Gaussian for the sake of simplicity and without loss of generality. The membership

grades of pi on Ai (i.e., µAi(x)) for each shape are described as in Table 6.1,

MF µA(x) UMF µUA(x) LMF µLA(x)

Triangular
{

1− |x| x < 1
0 otherwise

{
1− |xU | xU < 1

0 otherwise

{
1− |xL| xL < 1

0 otherwise

Trapezoidal


x−a
b−a a < x < b

h b ≤ x ≤ c
d−x
d−c c < x < d

0 otherwise


xU−aU
bU−aU

aU < xU < bU
1 bU ≤ xU ≤ cU

dU−xU
dU−cU

cU < xU < dU
0 otherwise


xL−aL
bL−aL

aL < xB < bL
e bL ≤ xL ≤ cL

dL−xL
dL−cL

cL < xL < dL
0 otherwise

Gaussian e
−(x−m)2

2σ2


e

(xL−m1)
2

2σ2 xL < m1

1 m1 ≤ xL ≤ m2

e
(xL−m2)

2

2σ2 xL > m2

argmin(e
(xU−m1)

2

2σ2 , e
(xU−m2)

2

2σ2 )

Table 6.1. Membership function definitions for triangular, trapezoidal, and Gaussian functions

Figure 6.3. Three common MF shapes with associated UMFs and LMFs
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and the associated plots are shown in Figure 6.3. Note that the Gaussian shaped function is drawn

according to the mean as a design parameter, however the UMF and LMF may also be constructed

by using an interval for the standard deviation. While there is no standard overlap value, sufficient

overlap of the MFs is advised as it results in smoother functions, which are preferred over hard

nonlinearities. As such, 25% to 50% overlap is considered common. Figure 6.4 exemplifies the

effects of overlap (and lack thereof) on input-output curves. For this study, it is assumed each input

parameter has an equal number of a fuzzy sets to simplify the rule generation process [123]. Also,

for consistency, using identical MF shapes for each input and output is recommended [12].
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Figure 6.4. Various MF overlapping scenarios and the effect on the input-output relationship

6.4 Rule Base

Many FL systems use an Intersection Rule Configuration (IRC) [125]. This configuration uses

multi-antecedent rules with a single consequent subset, as they incorporate an expert’s perceived

correlation between antecedents (Equation 6.5)[125]:
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If p1 is Ãi and p2 is B̃j, then P is C̃k (6.5)

where Ã and B̃ denote the set of MFs associated with the input parameters p1 and p2, respectively,

and C̃ represents the set of MFs associated with the performance score, P. If there are p input

parameters, each with n MFs (under the assumption that each input is partitioned into the same

number of MFs), a complete system would contain np rules. This exponential growth can lead to

what is referred to as a “combinatorial rule explosion” where the number of rules and correspond-

ing rule matrix can grow quickly and, as a result, implementation becomes impractical [28][94].

Genetic algorithms and other machine learning techniques have been developed to address the is-

sue of rule base reduction with optimization [133]. However, these methods are not appropriate for

this intended application, as the intention is to keep the human operator in the loop for test design.

Combs and Andrews [28] proposed an alternative rule configuration, called the Union Rule

Configuration (URC), to address the aforementioned issue. Based on the proposition where s and

q are the antecedents and r is the consequent:

[(s ∩ q)⇒ r]⇔ [(s⇒ r) ∪ (q ⇒ r)] (6.6)

Combs and Andrews argued that a series of single antecedent and single consequent rule relations

provide comparable functionality (Equation 6.7), thereby increasing the rule base size linearly

instead of exponentially.

If p1 is Ãi, then P is C̃k

If p2 is B̃j, then P is C̃k
(6.7)

There was significant discussion among the FL community about the validity of the approach due

to equivalence (or lackthereof) between IRC and URC and whether the method could still model

an expert’s perceived correlation between antecedents. The method was eventually successfully

defended and accepted as a suitable technique [28][90][34][27][125].
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As an example, one may consider the following linguistic identifiers given to p1, p2, and P in

Table 6.2.

p1 p2 P
Very Fast VF

Fast F
Average Av

Slow S
Very Slow VS

Very Accurate VA
Accurate A

Satisfactory S
Inaccurate I

Very Inaccurate VI

Very Good VG
Good G

Satisfactory S
Poor P

Very Poor VP

Table 6.2. Linguistic identifiers and corresponding notation for p1, p2, and P

Using the IRC, each specific component of this 2-input and 1-output system contains 5 MFs. The

resulting symmetric rule matrix is of dimension 5x5 with 25 rules as shown in Table 6.3

VF F Av S VS
VA VG VG G G S
A VG G G S P
S G G S P P
I G S P P VP

VI S P P VP VP

Table 6.3. p1 − p2 rule matrix using the IRC. The horizontal axis refers to the p1 linguistic
identifiers and the vertical axis refers to the p2 linguistic identifiers.

as opposed to that URC which only necessitates 10 rules with two 1x5 matrices (shown in Table

6.4) using the following propositional rule structure 6.8 [27]:

[(s⇒ r) ∪ (q ⇒ r)]

[(p1 ⇒ P) ∪ (p2 ⇒ P)]

(6.8)

p1 p2
VF F Av S VS
VG G S P VP

VA A S I VI
VG G S P VP

Table 6.4. Rule matrix using the URC
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The two inputs are now considered as two single-input and single-output rules coupled by union.

It is noted that provided the aggregation method is commutative, the rules may be executed in any

order.

The performance evaluation application proposed can consider each input independently. In

other words, each parameter is an independent measure of performance and each antecedent has a

direct relationship with the consequent. As such, the URC is a valid selection under the constraint

of additive separability. By maintaining distinct input parameters, modularity of the framework

is supported and allows for the reuse of input parameter design for other tests. It is further rec-

ommended that the URC be used when scalability is necessary and when the number of inputs

exceeds three variables.

6.5 Incorporating Uncertainty

A major reason why IT2-FL was selected for the evaluation framework was for its ability to take

uncertainty into account. Two types of uncertainties are considered in the design of the FOU:

measurement uncertainties (from the testbed and data logging sensors) and linguistic uncertainties

(subjective views regarding performance and the linguistic definitions).

For this application, each testbed sensor used for the input parameters of the performance eval-

uation includes fuzzy MFs to account for specific sensor characteristics and uncertainties. For

example, total distance traveled is determined using GPS. The uncertainty in the GPS measure-

ment, found experimentally or provided by product specifications/documentation, is integrated

into the MF FOU. Sensor measurement quality can also be affected by sources such as high noise

levels and changing environmental conditions (e.g., humidity, rain, etc.) [88][15]. If desired, these

methods may also benefit from added knowledge from a priori simulations giving further context

to suitable measurement ranges/bandwidths and corresponding MF intervals for a given testbed.

Linda and Manic incorporated experimentally measured input uncertainty into the design of

IT2-FL systems for a fuzzy controller [74]. Most implementations interpret the output uncertainty

with the geometrical properties of the output centroid. However, Linda and Manic noted that
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although there is correlation between the input and output uncertainty distribution, oftentimes the

distribution is biased by the geometry of the MFs and not derived from the input data [74]. While

it may not be practical or feasible to calibrate every sensor for every testbed, this consideration is

an option if higher levels of accuracy are required using their design method.

For designing these uncertainty bounds related to linguistic terms, one strategy is to allow for

lower uncertainty at end/decisive points. The linguistic term “low,” for instance, if mapped to a

domain [0 10], would have the highest certainty at x = 0. As x increases, the less the certainty is

associated with “low.” In other words, the agreement of the description “low” between individual

users decreases with increasing x. The designed FOU would then increase accordingly. One way to

address the disparity in descriptive linguistics is to poll experts and other relevant parties regarding

their opinion of the association between select words and corresponding values. These polls could,

then, provide a basis with which to construct the MFs.

6.5.1 Fuzzy Logic vs. Probability Theory

A source of confusion, debate, and controversy is the linkage between FL and traditional proba-

bility theory (PT) [139]. The topic is worth acknowledging to provide clear reasoning for selecting

FL over PT and the specific type of uncertainty represented by FL. Zadeh [136] captures the diver-

gence succinctly:

Viewed through the prism of partiality, probability theory is, in essence, a theory of

partial certainty and random behavior. What it does not address—at least not explic-

itly—is partial truth, partial precision and partial possibility—facets which are distinct

from partial certainty and fall within the province of fuzzy logic (FL).

Generally, FL is used to manage uncertainty problems related to vagueness while PT is used to

measure uncertainty due to randomness [136].

Performance, as defined and implemented in this study, is largely a construct of perception-

based information. While the thresholds for “good” performance may be numeric and data-based,

the decision in choosing the actual threshold values originate from human perception of acceptable
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risk, behavior, and required capabilities. Probability may predict the chance of completing a mis-

sion or task. However, due to its limitation of bivalent logic where every proposition is either true

or false, probability is not able to provide the degree of quality from which to make well-informed

judgements. The predictions based upon probability would also require numerous assumptions on

precisely known values and information of these same probabilities, neither of which are practical

for an unpredictable real-world environment [136].

6.5.2 Field of Uncertainty Design

Linda and Manic discuss the relationship between input and output uncertainty in FISs [74].

Generally, for IT2-FL systems, input uncertainties have been implemented as analogous with the

input membership function FOU width [74]. From this information, Linda and Manic state the as-

sumption that the “ IT2 FLS also acts as a functional mapping between the system input and output

uncertainty. The application of such functional mapping is the presence of a correct uncertainty

measure in the output of the IT2 FLS, which constitutes additional and very valuable information.”

The principal MF is centered between the bounds of the FOU. The uncertainty bandwidth, µbw,

is the the distance limited by [µLbw µ
U
bw] at x = xo (Figure 6.5). Here, xo is a point on the universe

of discourse, and [µLbw µ
U
bw] denote the corresponding locations on the lower and upper membership

functions, respectively [12]. Oftentimes in literature, µbw is the value used in reference to FOU size.

A second bandwidth value is defined here, xbw, however, as this is considered more appropriate for

defining FOU size related to sensor uncertainty.

Increasing the area of the FOU corresponds to an increased uncertainty. In the two-step out-

put processing stage, type reduction is a mapping from a T2 fuzzy set to that of a T1 fuzzy set.

Defuzzification then maps the T1 set into a crisp value. Hence, the type-reduced set provides a

measure of the uncertainty similar (but not equal to [59]) a confidence interval in statistics where

the type reduced set and defuzzified value is analogous to that of the standard deviation and mean

of a random variable, respectively [89].
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AND operator method min
OR operator method max
Implication Method min
Aggregation Method max

Defuzzification Method centroid

Table 6.5. Matlab FIS settings

Figure 6.5. Visual representation of µbw and xbw

6.5.2.1 Simulations

To demonstrate the effect of FOU size on the FIS output, several simulations are provided in

Figure 6.6. The figure displays three example scenarios for a given SISO system: a small FOU

(top), a medium FOU (middle), and a large FOU (bottom). All three FOUs have a constant µbw.

The sub-figures in the left column represent the input MFs for a generic parameter, p1. The output

MFs (not shown here) are the same shape and size as that of the input MFs for each respective

FOU. The value p1 = 6 for this example demonstrates a point which lies on two overlapping MFs.

The right column is the output aggregation with the associated defuzzified crisp output. The FIS

settings used with Matlab software for all simulations in the section are given in Table 6.5.
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Figure 6.6. FOU and corresponding FIS output for constant µbw for p1 = 6: small FOU (top),
medium FOU (middle), large FOU (bottom)
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Figure 6.7 uses the input MFs from the example in Figure 6.6 and shows the output response

of the output for each location, xo, in the universe of discourse. The simulation uses a resolution

of 0.1 units.

Figure 6.7. FIS output-input relationship for varying FOU sizes and constant µbw

Monte Carlo analysis is also performed to observe the FIS response to varying FOU sizes and

the results are provided in Figure 6.8. N inputs are randomly generated between 6 and 7 (arbitrarily

chosen interval that contains 2 MF’s with sufficient overlap) with a uniform distribution to observe

output perturbations. The top, the middle, and the bottom plot correspond with the small, medium,

and large FOUs, respectively. The associated variance between the randomly generated input and

the output value is provided in Table 6.6.
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FOU size Variance
Small FOU 0.0057

Medium FOU 0.0092
Large FOU 0.0316

Table 6.6. Variance associated with each FOU size for a constant µbw

Figure 6.8. Monte Carlo results for small (top), medium (middle), and large (bottom) FOUs using
uniformly distributed random values between 6 and 7 and for a constant µbw
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The same set of simulations are performed for input MFs with increasing µbw (Figures 6.9 -

6.11). Table 6.7 provides the resulting variance values for Figure 6.11.

Figure 6.9. FOU and corresponding FIS output for increasing µbw for p1 = 6: small FOU (top),
medium FOU (middle), large FOU (bottom)
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Figure 6.10. FIS output-input relationship for varying FOU sizes and increasing µbw
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Figure 6.11. Monte Carlo simulation for a small (top), medium (middle), and large (bottom) FOU
using uniformly distributed random values between 6 and 7 for an increasing µbw

6.5.2.2 Analysis

Since no closed form solutions exist to calculate cR and cL (noting that the Karnik-Mendel

algorithm discussed in Section 5.2 provides only an approximation), it is difficult to characterize

exactly how these end-points are affected by the geometric properties of the FOU [92][91][12].

118



FOU size Variance
Small FOU 0.0327

Medium FOU 0.0188
Large FOU 0.0827

Table 6.7. Variance associated with each FOU size for an increasing µbw

Little research exists on the topic. But, while it is generally accepted that the area of the FOU, in

addition to the upper and lower MF centroids of the FOU, correlate to the degree of uncertainty, the

behavior of the system in response to different levels of uncertainty has not yet been generalized.

Some characteristics to consider include noting that the input and output mapping is continuous

when the input MFs fully span the domain space [128], as demonstrated in Figures 6.7 and 6.10.

Additionally, if the lower MF does not fully span the domain, the input-output mapping may have

“jump” discontinuities (i.e., hard nonlinearities) [128]. This behavior is demonstrated for the large

FOU in Figure 6.10. Jumps are noted at an input value of approximately 2 and 8 and correlate with

the gaps in the lower MF of the large FOU in Figure 6.6.

In Figure 6.6 & 6.9, it is observed that the spacing between the aggregated UMF and LMF in-

creases with increasing FOU size. This agrees with current literature, where the output uncertainty

is associated with a correct mapping of the input uncertainty. For constant µbw, the crisp output

is biased to the left of input value 6 with decreasing FOU size. In the increasing µbw scenario,

the same is true for the small and medium FOU. However, for the large FOU the output is biased

towards the right of the input. This may be due the lack of a LMF from both the medium and high

MF in the vertical slice at p1 = 6.

Observing the input vs. output relationships for constant µbw, the values for each FOU size

match fairly well, except for regions with MF overlap. The smallest FOU produces the smoothest

output. The largest FOU has regions of steep gradients and sudden plateaus. Increasing µbw gen-

erates significantly more variation between FOU sizes. It is seen that the smallest FOU produces

the smoothest output in this case as well.

119



The Monte Carlo simulations performed for constant µbw(Figure 6.8) show that variance in-

creases with increasing FOU size. In all cases, the output was reduced to roughly a range of 5.5 to

6.5 with inputs between 6 and 7. For the medium and large FOUs this range is decreased further to

a range roughly between 5.5 and 6.0. While the small FOU appears to have the most fluctuation in

values, this is most likely due to the output value having a smaller difference with the correspond-

ing input value as a result of having less uncertainty, as supported by the variance values in Table

6.6.

Analyzing the Monte Carlo results for increasing µbw (Figure 6.11), variance does not appear

to increase with increasing FOU size. The most obvious difference occurs in the bottom plot where

the output is constant for inputs between 6 and 7. This result matches the corresponding region

in Figure 6.10. For the small FOU, the output extends further toward 7 than that in the case of

a constant µbw. The medium FOU output is roughly bounded between 5.5 and 6.0 similar to the

constant µbw output.

From the gathering of published research and the simulation studies presented above, it is

recommended to design the FOU using a trial-and-error method. The appropriate input-output

mapping is expected to be context-dependent and is left to the user’s discretion according to his/her

desired modeling characteristics. Simulations as the above may be performed and manipulated to

help analyze and shape the output space.

6.6 Task Weighting

To weight the scoring parameters, an assessment is made as to the importance and the specific

aspect of each task used to generate a particular score to the overall successful completion of a

mission. Greater weights are allocated to tasks that hold higher importance with respect to mission

success. Analytic Hierarchy Process (AHP) is a method that could be used to rank and prioritize

(sub)tasks and is well established in literature. Even so, the process in determining specific weights

for each (sub)task is considered to be beyond the scope of this research.
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In this work, a normalized weighted mean is used to calculate a score for each level of (sub)task,

producing a final single score Ptotal given individual scores Pki such that

Ptotal =
N∑
n=1

wnP1
n (6.9)

Ptask =
N∑
n=1

wnPkn (6.10)

noting that this weight is the relative importance level of the task to the overall mission, not the

weighting for the MF input parameters. Here,N denotes the total number of scores in the weighted

sum, n refers to the (sub)task number, w is the weight associated with the specific score, and k

specifies the (sub)task level of the decomposed tree. Figure 6.12 presents an example flow chart

of the calculated scores. The fuzzy inference process used in the proposed autonomy evaluation

framework in this research (discussed in Chapter 7) occurs at the lowest level of the tree for each

respective (sub)task. In Figure 6.12, this translates into Task 1 and Task 3 of Level 1 implementing

a fuzzy process at Level 2, while Task 2 (as it is not further decomposed) would implement the

fuzzy process at Level 1.

Figure 6.12. Generic example of performance score calculations decomposed by task
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6.7 Generalized Design Procedure

For the proposed FL-based evaluation framework and given mission performance criteria, the Per-

formance Evaluation and Review Framework of Robotic Missions (PERFORM) autonomy evalu-

ation procedure is summarized as follows:

1. Determine user-specified testbed parameters (e.g., the size of the test area and its location,

choosing between a two or three-dimensional environment).

2. Select the input performance parameters (e.g., total distance, time, etc.) of interest.

3. Determine appropriate performance measurement tools/criteria (i.e., sensors) and corre-

sponding uncertainty levels (e.g., GPS accuracy limits for measuring navigational coordi-

nates).

4. (Optional) Use simulations (performed a priori) to provide further context to choosing suit-

able MF intervals and insight into expected parameter values.

5. Generate appropriate MFs using insight gathered from (3) and (4).

6. Construct a rule base to reflect the desired input-output mapping.

7. Perform autonomy test missions.

8. Gather and post-process data from (7) to use as inputs to the IT2-FL Fuzzy Inference System

(FIS).

9. Obtain overall performance score(s) from IT2-FL evaluation method for final evaluation/comparison

of autonomous platform(s)/engine(s).

It is of note that each parameter (performance criteria) may be individually analyzed, in addition to

the overall autonomy performance score represented by the final FIS crisp output. The autonomy

performance testing method proposed in this work is intentionally modular and scaleable in design,
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allowing for testing as simple (or as complex) as the test objectives warrant. The following chapter

will present a series of case studies to demonstrate various test scenarios as a proof of concept for

PERFORM.
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CHAPTER 7

APPLICATION OF PERFORM VIA SELECTED TASK-BASED CASE
STUDIES

7.1 Case Study Overview

For demonstration purposes (and without loss of generality), the Performance Evaluation and Re-

view Framework Of Robotic Missions (PERFORM) incorporates two different autonomous path

planning techniques for evaluation and direct comparison: (1) a multi-layered Potential Field

Method / A-Star (PFM/A*) approach [30] and (2) a Probabilistic Roadmap (PRM) method [61].

Details on both algorithms may be found in Chapters 2 & 3. The outline below provides the title

of each case study and the corresponding goal of each validation test for PERFORM (from a test

engineer’s point-of-view and without loss of generality), and the specific criteria for performance

parameters. The overall performance score of the path-planning autonomy is the output for all 3

cases.

• Case Study I: Waypoint navigation with single obstacle

– Evaluate a vehicle’s ability to detect an unknown stationary obstacle (if any).

– Re-plan a path to safely avoid any such newly discovered obstacles.

– Reach the goal waypoint(s) with an acceptable path length

– Input Parameters: the vehicle’s total distance traveled and the closest point of ap-

proach (CPA) to any existing obstacle

• Case Study II: Waypoint navigation with multiple obstacles

– Evaluate a vehicle’s ability to detect multiple unknown stationary obstacles.
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Table 7.1. Summary of gain values used for simulations

Case Study I II III
α 100 200 100
β 10,000 9,000 10,000
kA 300 100 300

– Re-plan a path to safely avoid any such newly discovered obstacles with more emphasis

placed on a conservative trajectory than that in Case Study I.

– Reach the goal waypoint(s) with an acceptable path length.

– Input Parameters: the vehicle’s total distance traveled and the closest point of ap-

proach (CPA) to any existing obstacle

• Case Study III: Area survey (i.e. lawnmower path survey)

– Evaluate how efficiently the autonomy engine is able to complete an area survey mis-

sion.

– Complete a lawnmower path while minimizing gaps in data coverage.

– Maintain an appropriate speed for high quality data collection.

– Input Parameters: path percent error and average speed

For the given test scenario, an analytical binary occupancy grid is generated a priori and pro-

vided to the path planners to allow them to differentiate between free and occupied space. It should

be noted that the path planners are deliberately left untuned to generate non-optimal paths to bet-

ter simulate experimental test data and provide higher-integrity data for observing the efficacy of

the proof-of-concept IT2-FL autonomy testing and evaluation framework. Routes given are not

intended to represent planner capabilities, but to give a reasonable representation of the actual path

a vehicle might take given commands generated from the path planners. The specific gain val-

ues used in the simulations for the PFM/A* algorithm in each case study are given in Table 7.1.

Specific tuning values for PRM used for the case study simulations are given in Table 7.2.
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Table 7.2. Summary of tuning values used for simulations

Case Study I II III
Number of Nodes 1000 2000 1000

Maximum Neighbor Distance (m) 1 1 1
Maximum Number of Neighbors 3 3 3

(a) (b)

Figure 7.1. (a) The Chase Engineering Tank located at the University of New Hampshire (b)
Small-Scale ASV Experimental Platform. Simulations are based upon the laboratory equipment
shown here.

Laboratory autonomy testing is performed at the Jere A. Chase Ocean Engineering Laboratory

(Figure 7.1a) at the University of New Hampshire (UNH). With dimensions of 18m x 12m x 6m,

the UNH Engineering Tank allows for rapid, multi-seasonal testing with both surface and underwa-

ter vehicles. The experimental platforms used for this research are small-scale, differential thrust

Autonomous Surface Vehicles (ASV), referred to as Testing Unmanned Performance PlatformS

(TUPPS). The testbed vehicle has a base width of 0.6m and a length of 0.9m and is outfitted with

a Velodyne VLP-16 lidar for obstacle detection (Figure 7.1b). This laboratory test environment is

used as the basis for the simulations in this Chapter to first demonstrate proof-of-concept of PER-

FORM. It is emphasized that all test data generated for this study are via analytical simulations

mimicking test data obtained from the UNH Engineering Tank.
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7.1.1 Testbed Data Collection

It is assumed that the sensors and vehicle are identical for all simulations so as to enable the

direct comparison of the path planning algorithms. The positioning system used for this testbed is

a Marvelmind HW v4.9-NIA indoor positioning system. By taking into account the measurement

noise produced from this signal, improvements are expected for the IT2-FL techniques [85]. Mar-

velmind company documentation gives a measurement uncertainty value of +/- 0.02m [2]. From

the obstacle configuration given in Figure 7.7, the shortest path to the goal location (including the

obstacle) based on Euclidean distance is used as the minimum of the input range for total distance.

The maximum distance used in the MF is arbitrarily defined to be twice the minimum distance and

can be adjusted depending on the user’s acceptable tolerance. Any test run value greater than the

maximum will automatically default to this saturated maximum value.

The “total distance” in this work is calculated by determining the overall sum of the changes

in position such that

n∑
k=1

dk =
√

(xk − xk−1)2 + (yk − yk−1)2 (7.1)

where k, n, and d represent the measurement number, total number of measurements, and cor-

responding distance, respectively. To determine an appropriate uncertainty value, the combined

uncertainty, uc, is calculated using an l2−norm such that

uc =
√
u2(x1) + u2(x2) + u2(x3) + ...+ u2(xn) (7.2)

where µ(xi) represents the uncertainty at position measurement xi.

The number of measurements for a given test run is dependent on two factors: the sampling rate

and total test time. It is assumed here that the sampling rate for the vehicle’s position is the same

for each specific mission or task. A value of +/- 0.75m is determined as a reasonable value for this

case study based on previously observed test platform speeds and time ranges (results not shown

here). Since determining the vehicle’s CPA from the obstacle relies on a singular measurement,
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the uncertainty value of +/-0.02m from the company’s documentation is used as the FOU width

for CPA-related MFs. Matlab settings for computing the FIS in this chapter are as follows:

Table 7.3. Matlab FIS settings

AND operator method min
OR operator method max
Implication Method min
Aggregation Method max

Defuzzification Method centroid

7.1.2 Input Membership Function Construction

A summary of the evaluation parameter ranges and uncertainties for both total distance and

CPA are provided in Table 7.4. From these values, the input MF’s for total distance and CPA are

given in Figure 7.2. The same input MF’s are used for Case Study I and II (with II using only the

5-MF system).

Table 7.4. Range of values for construction of Case Study I and II MFs

Evaluation Parameter Total Distance (m) CPA (m)
Range 16.00 - 32.00 0 - 4.00

Uncertainty +/- 0.75 +/- 0.02
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Figure 7.2. Membership functions for total distance and CPA

For Case Study III, the MFs are modified to represent the new parameters (path percent error

and average speed) under this test environment and is shown in Figure 7.3. Both parameters use

data from the testbed GPS unit, so the uncertainty bounds are designed taking this into account.

0.50% and 0.25m/s for path percent error and average speed, respectively, are deemed appropriate

for the level of accuracy warranted in this case study. Variable ranges for Case III are summarized

in Table 7.5.

Table 7.5. Range of values for construction of Case Study III MFs

Evaluation Parameter Path Percent Error Average Speed (m/s)
Range 0 - 10.0 0 - 4.0

Uncertainty +/- 0.50 +/- 0.25
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Figure 7.3. Membership functions for Case Study III to observe path percent error and average
vehicle speed.

7.1.3 Performance Score Poll Data & Membership Functions

For the construction of the performance score MFs, a different approach is used to show the

variety of factors that may be incorporated. The same performance MFs are used for Case Studies

I, II, and III. The uncertainty in these MF’s originate from the uncertainty in the linguistic terms.

Linguistic terms tend to be subjective, or rather that these terms have different meanings to different

individuals and thereby create yet another level of vagueness [88]. To address this, a separate study

was performed where several individuals (members of the University of New Hampshire marine

robotics teams) were polled to provide their opinions regarding the relations of linguistic terms to

numerical values in order to construct the MFs. The resulting MFs are shown in Figure 7.6.
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Figure 7.4. Histogram of polled data associating linguistic terms, relating overall performance
scores with numerical values for a 3-MF system
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Figure 7.5. Histogram of polled data associating linguistic terms relating overall performance
scores with numerical values for a 5-MF system

Figure 7.6. Membership functions for the performance score output
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7.2 Case Study I: Waypoint navigation with single obstacle

As the first case study, an obstacle configuration given in Figure 7.7 is simulated to generate ex-

perimental test data and analyze the evaluation framework.

Figure 7.7. Testbed for Case I (obstacle represented by the black box)

Two different FIS are analyzed (a 3-MF system and 5-MF system) to observe what effects may

result (if any) from varying the number of MF’s.

The rule bases for this mission evaluation (arbitrarily chosen and without loss of generality)

are summarized in Tables 7.6 and 7.7 for a 3-MF system and 5-MF system, respectively. The IRC

is used since the number of inputs is small. Here, the linguistic input terms are italicized with CPA

on the horizontal axis and path length given on the vertical axis. The linguistic pattern of Table 7.6

reads in the following manner:

1. If the total distance is short and the CPA is Close, then the performance score is Satisfactory.

133



2. If the total distance is short and the CPA is Adequate, then the performance score is Very

Satisfactory.

3. etc.

Table 7.6. Summary of rules used for a 3-MF system

Linguistic Term Close Adequate Far
Short Satisfactory Very Satisfactory Satisfactory

Medium Satisfactory Very Satisfactory Satisfactory
Long Poor Satisfactory Poor

Table 7.7. Summary of rules used in the example for a 5-MF system

Linguistic Term Very Close Close Adequate Far Very Far
Very Short Fair Good Very Good Good Fair

Short Fair Good Very Good Good Fair
Medium Poor Fair Good Fair Poor

Long Very Poor Poor Fair Poor Very Poor
Very Long Very Poor Poor Fair Poor Very Poor

To encourage the vehicle to remain a safe distance away from an obstacle, the linguistic term

"adequate" is mapped to a better performance score. The ideal scenario is to have the vehicle

remain a safe distance away from any obstacles while also maintaining the shortest possible path

to a given destination within the given test environment.

7.2.1 Results

The MF relationships between the input and output variables can be visualized as a 3D plot

(Figure 7.8). This view shows the ideal parameters value, designated in yellow on the color scale

and displayed as the maximum value on the z-axis. The objective for the vehicle in this case

study, reflected in the rule base and defined numerically in the MFs, is to maintain a safe distance

(determined to be 2m) while minimizing the total distance to the goal (i.e., desired waypoint). As

shown, the yellow portion of the plot corresponds to these goals spanning the area defined by a 2m

CPA and the region extending from 0m to roughly 24m of total distance traveled.
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Figure 7.8. 3-D MFs plots relating input variables (total distance and CPA) to corresponding
output variables (performance scores)

Figure 7.9 provides a side-by-side comparison between the PFM/A* path planning method

(left) and that of the PRM method (right). Table 7.8 summarizes the simulated performance pa-

rameter values. An additional route is given in Figure 7.10 for additional context to demonstrate

a path that would generate a poor score. This route (referred to as a “Generic Planner”) is sig-

nificantly more circuitous than either of the PFM/A* and PRM methods and also traverses much

closer to the obstacle than is desired.

Figure 7.9. PFM/A* generated path (left), PRM generated path (right)
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Table 7.8. Summary of simulated performance values for Case Study I

Evaluation Parameter Total Distance (m) CPA (m)
PFM/A* 19.28 1.50

PRM 21.52 2.48
Generic Path 31.92 1.00

Performance score results from applying the FIS to the input values in Table 7.8 are shown in

Table 7.9. The resulting output fuzzy set overlaid by the defuzzified outputs given in Table 7.9 are

shown in Figures 7.11 - 7.12 for both 3-MF and 5-MF based systems for the PRM and PFM/A*

planners, respectively. Visual observation shows that the PFM/A* route has the best performance

given the mission goals. As expected, the generic planner scores the lowest. The difference in

scores between the PRM and PFM/A* autonomy methods are negligible in the 3-MF case (0.03)

and more obvious in the 5-MF case (0.81).

Figure 7.10. Generic Planner: An example of a poorly traveled path
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Table 7.9. Performance Score Output for Case Study I

Path Planning Algorithm 3 Membership Functions 5 Membership Functions
PFM/A* 7.79 8.24

PRM 7.82 7.43
Generic Planner 3.67 3.30

Figure 7.11. Output set for the PFM/A* algorithm

Figure 7.12. Output set for the PRM algorithm
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7.3 Case Study II: Waypoint navigation with multiple obstacles

Similar to Case Study I, the second case study observes a waypoint-to-waypoint task (as shown in

Figure 7.13). In this scenario, two obstacles are present and positioned to analyze the decision-

making autonomy of the vehicle with regards to weighting the total distance traveled against vehi-

cle safety (as determined by CPA). To reach the goal, the autonomy engine must decide between

maneuvering between the two obstacles and increasing its safety risk or increasing the total dis-

tance traveled by taking a more conservative path to avoid the obstacles. Dependent on the intended

use of the vehicle, the scoring in the IT2-FL techniques may be modeled to reflect these test goals

with appropriate modifications to the rule base. CPA is chosen to be the minimum of the short-

est distance between the vehicle and each obstacle. The reader should note that this approach is

flexible in its application to an environment with varying numbers of obstacles and types of con-

figurations. For example, an average value calculated from the CPA to each hazard, for instance,

may be used instead.

Figure 7.13. Testbed for Case Study II (obstacles represented by black boxes)
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For Case Study II, the rule base (as shown in Table 7.10) is adjusted to incentivize a heavier

weighting of the safety of the vehicle. Here, a higher CPA score corresponds to the linguistic term

“far.”

Table 7.10. Summary of rules used for Case Study II.

Linguistic Term Very Close Close Adequate Far Very Far
Very Short Poor Fair Good Very Good Good

Short Poor Fair Good Very Good Good
Medium Poor Poor Fair Good Fair

Long Very Poor Very Poor Poor Fair Poor
Very Long Very Poor Very Poor Poor Fair Poor

7.3.1 Results

The 5-MF colormap for Case Study II is provided in Figure 7.14. In accordance with the test

goals for this case study, the MFs incentivize the more conservative CPA scores (roughly 3m dis-

tance) while again minimizing the total distance covered by the vehicle. The highest performance

score values are designated in yellow. The resulting simulated paths are shown in Figure 7.15. The

corresponding table, Table 7.11, presents the parameters values from the test run.

Figure 7.14. Case Study II 5-MF 3D plot relating the input variables (total distance and CPA) to
corresponding output variables (performance scores)
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Table 7.11. Summary of simulated performance values for Case Study II

Evaluation Parameter Total Distance (m) CPA (m)
PFM/A* 21.16 1.47

PRM 16.90 0.81

Figure 7.15. Case Study II: PFM/A* generated path (left), PRM generated path (right)

After applying the rule base and MF’s using the test run values given in Table 7.11, the eval-

uation results are given in Table 7.12. The output fuzzy set with the defuzzified value is shown

in Figure 7.16. While both planners succeed at avoiding the obstacle and arriving at the desired

waypoint, the more conservative route taken by the PFM/A* vehicle (although corresponding to a

longer distance traveled than that of the PRM vehicle) is given the better score which is consistent

with the modeled rule base MFs and mission objectives.

Table 7.12. Performance Score Output for Case Study II

Path Planning Algorithm Performance Score
PFM/A* 5.90

PRM 4.96
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Figure 7.16. Output set for Case Study II

7.4 Case Study III: Area survey (i.e. lawnmower path survey)

Case Study III analyzes a survey task using a lawnmower pattern (as shown in Figure 7.17), com-

mon for seafloor mapping operations. Different parameters are used to reflect the desired evalu-

ation attributes. Due to mapping operations relying on swath widths based on depth to minimize

gaps in coverage, path percent error, the percent error between the actual route the vehicle takes

compared to the desired lawnmower pattern, is one of the parameters measured. The second pa-

rameter is average vehicle speed. A consistent vehicle speed within the optimal range of the sonar

is also important for high quality data.
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Figure 7.17. Testbed for Case Study III: A lawnmower pattern to perform seafloor mapping oper-
ations

The rule base for Case III is constructed to reflect a narrower region for acceptable performance

and shown in Table 7.13. To receive a higher performance score, the vehicle’s average speed should

remain in the “good” range window while maintaining low error over the path taken.

Table 7.13. Summary of rules used for Case Study III

Linguistic Term Very Slow Slow Good Fast Very Fast
Very Low Poor Fair Very Good Fair Poor

Low Poor Fair Very Good Fair Poor
Medium Poor Poor Fair Poor Poor

High Very Poor Very Poor Very Poor Very Poor Very Poor
Very High Very Poor Very Poor Very Poor Very Poor Very Poor

7.4.1 Results

The resulting MF 3D plot for Case Study III depicts the correlations between the evaluation

parameters and the performance score (Figure 7.18). Noted in the colormap is the smaller, more

distinct area corresponding with the best performance scores (in yellow) meant to model stricter
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standards for performance. With the simulated path outputs given in Figure 7.19 and the resulting

parameters values (Table 7.14), the final scores are presented in Table 7.15 and the full output

fuzzy set is given in Figure 7.20. Both routes successfully complete the given seafloor mapping

mission. However, it is clear (as seen in Figure 24 and numerically indicated in Table 7.14) that

the PFM/A* vehicle takes a smoother and more direct path, resulting in a lower path percent error.

Figure 7.18. Case Study III 5-MF 3D plot relating the input variables (path percent error and
average vehicle speed) to the corresponding performance scores
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Table 7.14. Summary of simulated performance values for Case Study III

Evaluation Parameter Path Percent Error Average Speed (m/s)
PFM/A* 1.43 1.50

PRM 6.71 2.50

Figure 7.19. Case Study III simulated path output

Table 7.15. Performance Score Output for Case Study III

Path Planning Algorithm Performance Score
PFM/A* 6.94

PRM 2.78
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Figure 7.20. Output set for Case Study III

7.5 Discussion

This study presented the Performance Evaluation and Review Framework of Robotic Missions

(PERFORM), a flexible but rigorous method to validate autonomous vehicles in testbed environ-

ments using a novel IT2-FL performance evaluation framework. The use of FL allows for test

parameters that are tailored to the user’s design requirements and can account for different prior-

ities related to acceptable risks and goals of a given mission. The 3D renderings presented show

parameter values for a specific mission across the space of reasonable test results in relation to

a performance score output. This, in addition to the decomposition of a mission, M , into tasks,

T (Equation 4.4), reduces the number of test runs necessary with the ability to analyze different

scenarios taking on a range of values. Translating into both a time and cost savings, this may limit

the need to perform a large number of sets of simulations which can have difficulty modeling the

ocean environment accurately, testing sensor perception capabilities, and predicting other hardware

issues. Results indicate that these methods aid in direct comparison of path planning algorithms as

presented in the case studies with broader applications to other high-level validation test objectives

such as autonomous behavior analysis.
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In viewing the results for Case Study I, the 3-MF system results in a negligible difference in

scores. The 5-MF system, however, allows for an easier differentiation of scores due to increased

value sensitivity, producing a more substantial difference in value. One should weigh the number

of included MFs based on a balance of available test design time and desired score resolution. A

quick and simple study could utilize a 3-MF system, while a higher-MF system (in this case, a

5-MF system) can be designed if increased complexity is needed.

In Case Study II, analyzing behavior regarding balancing risk with efficiency, the PFM/A* path

taken to avoid the obstacles receives a better score than that of the PRM path. This was predicted

as the FIS was intentionally modeled to incentivize conservative decisions by the vehicle in the

final performance score. During general implementation, there may be test cases where evaluation

parameters will appear to have conflicting goals such as in this scenario, where one weighs safety

against efficiency. The user, then, must determine the acceptable risk and hierarchy of performance

priorities and reflect this in the modeling of the system.

The final scenario, Case Study III, takes a stricter approach to a vehicle receiving a desirable

score. As shown in Figure 7.18, there is a steeper decline to poorer performance values. In some

applications, there is a strict “cutoff” of acceptable performance. The National Oceanic and Atmo-

spheric Administration (NOAA), for instance, has set hydrographic surveying standards that are

required to be met for data to be utilized by the organization [7]. With this in mind, the evaluation

model has the ability to incorporate these standards in the design of both the MFs and the rule base.

PERFORM becomes streamlined once a testbed environment is established and common mea-

surement sensors are incorporated and calibrated. Many testing scenarios can be evaluated with

the incorporation of minor changes, which would depend on given specific testing goals. This

research envisions a library (expanded upon over time) of testing parameters with the x-axis MF

range being the only necessary change based on the specific task under test. Once the MFs are

created and test foundation constructed by a test engineer, the linguistic aspect of FL may be more

approachable for various parties to understand and to set vehicle autonomy expectations in order
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to show vehicle performance and “success.” The linguistic base encourages a common language

between engineers, operators, researchers, and program managers that all disciplines understand.

In perspective of other studies in the area of autonomous system test and evaluation, PER-

FORM may be useful as an extension of the JHU simulations [97] to define boundary cases. These

boundary cases are a subset of all possible scenarios and could provide a feasible number of cases

to undergo experimental testing.
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CHAPTER 8

APPLICATION OF PERFORM TO BUILDING MISSIONS

8.1 Case Study Overview

This chapter presents three additional case studies that build upon the task-based examples pro-

vided in the previous chapter. These case studies take the decomposed tasks and reconstruct them

into full missions to demonstrate the ability of PERFORM to serve as the framework for the metric

function, β, that provides a mapping from the scenario space to the capability space as introduced

in Section 4.5.1. The outline below provides the title of each case study and the corresponding

goal of each validation test for PERFORM (from a test engineer’s point-of-view and without loss

of generality).

• Case Study IV: Combining Canonical Tasks (Extension of Case Studies I and III)

– Compare scores from testing individual tasks with a multi-task mission while varying

scenario parameters.

– Analyze viability of decomposition methods and the ability to build missions from

individual tasks.

• Case Study V: Testing Endurance with Multiple Surveys

– Evaluate a vehicle’s mission planning capabilities at the highest level by testing opera-

tion efficiency.

– Complete as many surveys as possible while reaching the recovery point with greater

than 10% battery charge.

• Case Study VI: Full Mission with Multiple Platforms
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– Analyze a scenario with multiple tasks to gain insight on feasibility of the test methods

as the number of inputs increases.

– Construct a study with more than one platform.

8.2 Case Study IV: Combining Canonical Tasks (Extension of Case Studies

I and III)

Using the results from Case Studies I and III, Case Study IV combines these tasks together (i.e.,

waypoint navigation with obstacle and a survey). The goal is to observe if there is a substantially

different score between that of summing the results of the testing from each individual task and that

of testing the mission as a whole. Additionally, this will also investigate if changing the scenario

parameters significantly changes the score. The following scenario parameters are changed for the

combined mission: the number of obstacles, the location of the obstacles, and the survey size and

spacing.

The same vehicle and simulation setup is assumed as that from Chapter 7. The simulated

test location is a larger area (80m x 120m) to allow for testing with the increase of the scenario

parameters. The configuration for the mission is given in Figure 8.1. Three tasks are required: the

transit to the survey location (Task 1), the surveying of the area (Task 2), and the transit back to

the recovery point (Task 3). PFM/A* and PRM algorithms are again used to provide a source of

comparison and so that scores can be compared with results from that of Case Studies I and III. For

PFM/A*, the same gain values are used as that in Case Study I (Table 7.1). The values for PRM

are increased, however, due to the size of the area. Here, the number of nodes is set to 8000, the

maximum neighbor distance is set to 10m, and the maximum number of neighbors remains at 3.
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Figure 8.1. Case Study IV simulated environment configuration

The total distance input parameter is re-scaled to account for the larger area. As in Chapter

7, the domain for the MFs will range from the shortest possible distance to twice that amount (as

shown in Figures 8.2 and 8.3). The same rule base is used as that in Case Study I, and trajectories

around obstacles that balance safety and efficiency are more highly prioritized (Table 7.7, 5-MF

version). For the mapping portion, path percent error and average speed are again used. As such,

the same MFs and rules apply (Figures 7.3 & Table 7.13). The average speed input is arbitrarily

given the same values for each algorithm as in Chapter 7. The output performance score parameter

is also the same as that defined in Chapter 7 (Figure 7.6, 5-MF version). The 3-D plot for Task 1

is given in Figure 8.4 to show the similarity with Case Study I.
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Figure 8.2. Transit 1 MFs

Figure 8.3. Transit 2 MFs
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Figure 8.4. 3-D plot of Task 1 input parameters vs. the output performance score, similar to the
corresponding plot for Case Study I (Figure 7.8) with only a change in axis values

8.2.1 Results

The simulated results of the full mission are provided in Figure 8.5. The simulated travel path

is clockwise. The calculated input parameter values for each task are given in Tables 8.1, 8.2, and

8.3.
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Table 8.1. Summary of simulated performance values for Task 1, Case Study IV

Evaluation Parameter Total Distance (m) CPA (m)
PFM/A* 98.95 1.05

PRM 101.09 2.06

Table 8.2. Summary of simulated performance values for Task 2, Case Study IV

Evaluation Parameter Path Percent Error Average Speed (m/s)
PFM/A* 0.67 1.50

PRM 8.06 2.50

Figure 8.5. Simulated mission results for each algorithm.

Table 8.3. Summary of simulated performance values for Task 3, Case Study IV

Evaluation Parameter Total Distance (m) CPA (m)
PFM/A* 106.96 1.06

PRM 107.29 1.49
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Table 8.4. Performance Score Output for Case Study IV compared with the analogous tasks in
Chapter 7. Task 1, 3, and Case Study 1 are the waypoint-to-waypoint tasks (gray columns) while
Task 2 and Case Study 3 refer to the survey tasks

Path Planning Algorithm Task 1 Task 2 Task 3 Case Study 1 Case Study 3
PFM/A* 7.72 6.94 7.72 8.24 6.94

PRM 9.28 1.14 8.23 7.43 2.78

To compute the total mission score, Equation 6.9 is used. For this example, equal weights

(0.33) are used for each task. Equations 8.2 and 8.3 provide the final score for the PFM/A* and

PRM algorithms in this case study, respectively. These mission performance scores are compared

with calculating the mission performance score from the individually tested tasks in Chapter 7 in

Table 8.5 using the same equations. (It is noted that in compiling the scores from the individual

tasks, the score from Case Study I is used twice to account for the two waypoint-to-waypoint

tasks.)

Ptotal = w1PTask1 + w2PTask2 + w3PTask3 (8.1)

PPFM/A∗ = 0.33(7.72) + 0.33(6.94) + 0.33(7.72) = 7.38 (8.2)

PPRM = 0.33(9.28) + 0.33(1.14) + 0.33(8.23) = 6.15 (8.3)

Table 8.5. Comparison of the final mission score from testing individual tasks (Chapter 7) and
from testing the entire mission (Chapter 8).

Path Planning Algorithm Chapter 7 Combined Score Chapter 8 Mission Score Difference (%)
PFM/A* 7.73 7.38 4.63%

PRM 5.82 6.15 5.51%

Results support the hypothesis that for testing purposes, missions can be decomposed into in-

dividual tasks. The task-by-task score of the mission for PFM/A* is very similar to that in Chapter

7. This is partly due to the nature of the algorithm and how it calculates the path consistently each

iteration. It is noted that some natural variations will be seen with full vehicle dynamics and live
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field testing. While still reasonably similar, the PRM algorithm demonstrates more variability due

to the nature of how it explores a given search space. The randomness inherent with the algo-

rithm in addition to the intentional lack of vehicle control parameter-tuning allows the PERFORM

process to show its robustness to these variations. The other critical result supports the fact that

one does not need to simulate all possible scenarios and combinations of test scenarios. On the

contrary, changing the scenario parameters does not significantly change the performance scores,

and similar tasks also produced similar scores.

8.2.2 Discussion

Testing with PERFORM, as shown in Case Study IV, reduces redundancy by eliminating po-

tential overlaps of tasks. Here, for example, Task 1 & 3 are the same type of task. As such, the

tested mission could have removed Task 3 from the start, since it was shown that similar scores

were produced. One may question if adding an obstacle to the survey task would require changes

to the test. It can be argued that this addition would merely result in testing redundancy of obstacle

avoidance in the waypoint tasks (Task 1 & 3). If the vehicle already has proven obstacle avoidance

capability in the other tasks, this additional task would not necessarily provide any new informa-

tion to the survey task, especially since the survey task is already essentially waypoint-to-waypoint

navigation.

Another question that may be posed in regards to decomposing missions is whether or not one

can ignore the transitions between consecutive tasks. It is argued that since these transitions are

essentially software based and are not actually a physical parameter, they do not have a direct

effect on physical performance. These transitions are also verifiable via simulations and hardware-

in-the-loop testing due to the reducibility of the task into two components: the acknowledgement

that a task has been completed and the ability to transition to the next task/behavior.

The MFs are easily modified for slightly varying mission and scenario parameters (Figures

8.2 & 8.3), if modification is even necessary. As seen from the aforementioned simulations, there

were no changes in the CPA and path percent error parameters. The ability to find boundary cases
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(as in the JHU RAPT framework) in conjunction with the PERFORM framework introduced in

this work is designed to serve as a powerful combination of determining the capability limits of

changing the scenario parameters as well as identifying the mission-critical scenarios for which

field tests must be performed. Live testing, in turn, contributes additional information from which

a higher-integrity simulation environment may be established.

The sensitivity of the score can also be changed through the modeling component of PER-

FORM. Visually, the 3-D surface plots that have less steep gradients will be more robust in the

output to fluctuating inputs as they are less sensitive to changing inputs. As shown in Case Study

I with the comparison between 3-MF and 5-MF systems, the number of MFs can be changed to

reflect the desired resolution. For instance, we see Task 2 and Case Study III produced the same

individual task performance scores (6.94) for the PFM/A* algorithm even though Task 2 had a path

percent error of 0.67 while Case Study III has a value of 1.43. In Figure 7.18, those input scores

are located at the yellow ridge of the plot and at the same z-axis coordinate. Since the average

speed value is the same for both cases, the same score would be produced for a path percent error

value ranging from 0% to approximately 2% as in this case. This modeling capability could also

prove useful for cost benefit analysis. If an acceptable range is known for a scoring parameter

(e.g., maintaining a CPA distance no closer than 5m) it could provide a comparable score where

perhaps a lower cost platform can perform adequately for the defined standards of the mission.

Independent from the platform itself, the scoring mechanism produces similar scores regardless of

the platform’s hardware and specifications.

8.3 Case Study V: Testing Endurance with Multiple Surveys

This case study examines the PERFORM process for evaluating a vehicle’s decision-making pro-

cess towards efficient mission planning where the goal is to maximize productivity within a time

and battery level constraint. The time is bounded by the vehicle’s endurance (i.e., battery capac-

ity). Mission criteria involves conducting multiple surveys while monitoring remaining power,

using as much battery charge as possible, and still achieving safe recovery. While the mission
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can be further decomposed and evaluated by (sub)task, this case study remains at a high-level of

evaluation focused on mission planning. This also demonstrates the flexibility of the process by

decomposing the mission’s description and potential scenarios to the largest set of individual tasks

that correspond to different behaviors and/or modules of the autonomy software at the desired level

of autonomy that is being tested. For this case study, a REMUS 100 AUV with a generic sonar

payload is considered. (A specific vehicle is chosen so as to use given manufacturing specifications

for designing the test parameters.) The simulated test range is chosen to be at the Naval Undersea

Warfare Center - Division Keyport (NUWC-Keyport). As shown in Figure 8.6, the north operation

boundary of the testing area is 600m, the east is 3500m, the south is 1960m, and the west is 3000m.

The REMUS is provided with three survey regions and the corresponding sizes and locations

(also shown in Figure 8.6). Survey Region 1 and 3 have identical dimensions (approximately 525m

x 850m), and Survey Region 3 is approximately 650m x 950m. The battery is assumed to be fully

charged at the start of mission, the approximate endurance time of the vehicle is known (approxi-

mately 24 hours for a REMUS 100), and the desired lawnmower path spacing is determined a priori

to be 20m. Tasks must be completed in sequential order for this particular test, and the vehicle is

to return to the recovery point before the battery level reaches 10% capacity. Here, the REMUS is

permitted to stop a survey at any time as appropriate in order to return to the recovery point safely.

Failure of the vehicle to return to the recovery point or to reach the recovery point before the 10%

battery threshold is reached is considered a mission failure.

The two input parameters, battery level and survey completion percentage, are considered in-

dependently. Therefore, the REMUS not completing the entire survey does not necessarily indicate

mission failure, so long as the vehicle returns safely. In fact, the test setup is intended to push the

boundary between completion of the surveys and the available endurance of the vehicle to gauge

the safe decision-making ability of the autonomy. Survey Regions 1 and 3 require 26 tracklines

and Survey Region 2 requires 33 tracklines with 20m spacing. Assuming a desired average speed

of 1 m/s, 19.3 hours is the required time to complete the surveys (not including the turnaround

distance once a trackline is complete), in addition to the extra hour to complete the transits.
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Figure 8.6. NUWC-Keyport test range: the operation area (thin white line), the launch/recovery
point (solid red circle), and the transit lines (solid white arrows).

The scenario parameters are as follows:

• Launch/Recover Point (x,y)

• Survey Region 1 (Box Size, Location) (x,y), (x,y)

• Survey Region 2 (Box Size, Location) (x,y), (x,y)

• Survey Region 3 (Box Size, Location) (x,y), (x,y)

• Starting Battery Charge
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• Environmental Factors (Currents, Time of Day, etc.)

and the set of possible tasks, T , are defined as:

T = { Transit to Region 1,

Survey Region 1,

Transit to Region 2,

Survey Region 2,

Transit to Region 3,

Survey Region 3,

Transit to Recovery Point}

(8.4)

where the set of possible events, E, are:

E = { Launch,

Arrive Survey Region 1,

Finish Survey,

Arrive Survey Region 2,

Arrive Survey Region 3,

Detect Battery Charge Warning,

System Fault,

Arrive Recovery Point}

(8.5)

The structure of this mission is such that it is to observe the performance from the perspective

of Level 0, as shown in Figure 8.7. Here, the structure of this mission uses one Task (which, in

this case, is the overall mission objective) without loss of generality. However, the structure may
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be further decomposed into multiple (Sub)tasks (Level 1) as necessary. Since the purpose of the

simulation is to observe the the overall endurance of the vehicle, the implementation of the fuzzy

process to evaluate the REMUS autonomy performance occurs at Level 0.

Figure 8.7. Task decomposition structure for Case Study V

8.3.1 Metric Design: Case Study V

As stated previously, two inputs to PERFORM are considered here: battery charge percentage

and the percentage of surveys completed. The percentage of surveys completed is determined by

the number of completed tracklines with respect to the total number of possible tracklines for all

three surveys, which is 59 in this case. The transits are not directly evaluated via modeling a

specific performance parameter, but do have some influence in the amount of battery charge left.

To create the MFs, the FOU size for this example is dictated by linguistic vagueness, as sensor

uncertainty does not have a direct influence on the performance score for this case study. The

number of completed track lines may be obtained from the onboard data logging system after the

test run. Updates may also be relayed to the shore station during surfacing events. The MFs for

the performance score output used for this case study are the same as that in Chapter 7. The MFs

are provided again here in Figure 8.8 for ease of reference.
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Figure 8.8. Performance Score Membership Functions

The survey completion input parameter is shown in Figure 8.9 and is modeled with equally

spaced fuzzy sets except for that of “Very Low.” A trapezoid MF is used so that a higher degree

of membership can be extended to 20% of survey completion. Anything below this threshold of

completion is considered unacceptable, but this MF can be extended out further depending on the

level of performance needed. This narrows the available range for modeling the other four MFs

and, thus, results in a steeper gradient for the performance score mapping within that region.
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Figure 8.9. Membership functions for the survey completion parameter

For the remaining battery charge MFs, one may notice the binary nature of the function asso-

ciated with “Very Low” (Figure 8.10). In the initial mission description, the objective is to return

to the recovery point before the battery charge reaches 10%. This function describes this threshold

and has no uncertainty associated with it due to the strict threshold value. As such, this is a T1

fuzzy set. Since all T2 fuzzy sets reduce to a T1 fuzzy set as uncertainty decreases to zero (Chapter

5), using a combination of T1 and T2 sets is valid and does not change the calculations. The fuzzy

set for “Low” has a narrower base with which to capture the expected final battery level to com-

plete all of the surveys and therefore reserves the best performance scores for only a small range

of values.
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Figure 8.10. Membership functions for the battery charge parameter

The URC is used in this case study with the rule base for each input given in Table 8.6. The rule

matrix may seem counterintuitive for the battery charge level. However, if a vehicle terminates a

mission with a high to very high battery level, this infers that the mission ended prematurely due

to a system fault or other such issue. Again, one should note that the mission objective is to use

as much battery as safely possible to complete as much of the surveys as possible but still be able

to return “home”. With knowledge of the expected battery performance, completion of all surveys

should fall between the range of 10− 30%. The FOU bandwidth for each input increases slightly

as the function moves away from the center point of the MF in order to model the increasing

uncertainty between linguistic terms.
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Battery Charge Survey Completed Percentage
VL L M H VH
VP VG G P VP

VL L M H VH
VP P F G VG

Table 8.6. Rule matrix for the two input parameters: Battery Charge (left) and Survey Completed
Percentage (right). VL=very low; L=low; M=medium; H=high; VH=very high; VP=very poor;
P=poor; F=fair; G=good; VG=very good

The 3-D plot in Figure 8.11 shows the interaction between the input parameters and output

performance score. As intended, there is a steep gradient descent at the 10% battery level to

provide a definitive boundary between safe and unsafe operation. The highest scores correspond

to a battery level of 10 − 30% with all surveys completed. Lower scores are also associated with

higher battery charge but with a low percentage of surveys completed.

Figure 8.11. 3D plot for the input parameters of Case Study V
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8.3.2 Discussion: Case Study V

Through this case study, PERFORM demonstrates its ability to take into account endurance-

based missions scenarios and top-level mission planning behaviors. To increase the level of au-

tonomous capability at which the autonomy is tested, this scenario could, instead, provide survey

locations without a set of tracklines. In this case, the vehicle would need to make decisions on

the most efficient way to complete the survey depending on tide, currents, and any other relevant

weather conditions, in addition to appropriate trackline spacing. Another type of task that would

require a high-level evaluation is task scheduling, say, if the vehicle were also tasked with choosing

the order of the surveys.

Regarding the structure of the mission, if further mission decomposition is desired, say, due to

the test engineer’s concerns about the autonomy’s ability to carry out a survey, the fuzzy process

could instead be implemented at Level 1 of Figure 8.7. To avoid task redundancy at that level

(with 3 existing surveys), one could isolate a single survey to not only reduce redundancy but to

also focus on that specific capability. The mission could also be decomposed into an additional

level to, for example, analyze the vehicle control system or perhaps the motion planner and its

ability to generate feasible turns to move to the next trackline. Also, since 24 hours is a lengthy

duration for testing, to shorten the duration, the vehicle could start with a half-full battery charge

and a scaled-down survey size.

A mission with temporal constraints would be approached in the same way, where hard tempo-

ral deadlines can be modeled using a T1-MF (with binary functions as necessary), as was exempli-

fied by “Very Low” in Figure 8.10. Softer temporal deadlines (i.e. having a range with increasing

penalty) can easily be modeled using the T2-MFs. Each task with a temporal constraint would

have a time-based input parameter.

8.4 Case Study VI: Full Mission with Multiple Platforms

To show the PERFORM process in another context and to demonstrate scalability, Case Study

VI compiles multiple tasks into a full multi-platform mission. While the complexity of a mis-
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sion increases as a whole, the methodology still allows for the analytical decoupling of tasks. As

the size of the multi-platform system increases, it is helpful to organize the subsystems using a

systems engineering approach. Most missions have overlap (e.g., several waypoint-to-waypoint

tasks), leaving opportunity for the reduction of required test scenarios. The tested mission and the

actual mission do not need to be identical. This aspect is critical for practical implementation, as

mission time scales are sometimes measured in days, even weeks, usually making full-scale tests

impractical if not impossible. Testing individual tasks (i.e., Case Studies I-III) gives insight to

specific critical capabilities of the vehicle which can later be combined with higher level testing

(i.e., Case Study V).

Figure 8.12 shows an example of a mission categorized according to time-dependent mission

evaluation levels. At the mission planning level, the mission planner spans the entire mission. At

the task level, on the other hand, each task spans a subset of the mission length, and corresponding

subtasks occur within the timeframe of their associated task. Subtasks may be performed concur-

rently. For instance, the path planner and heading control are both needed simultaneously. The

monitoring of vehicle status (e.g., energy, conditions, system health, etc.) also spans the entire

mission and would also be placed at the highest level of the evaluation tree.

Logic dictates that, in the evaluation of the mission, the decomposition categorizes aspects of

the system that span the length of the mission as “top level,” as exemplified in Figure 8.13, where

mission objectives refer to the set of tasks that are necessary for mission completion (i.e., transit,

obstacle avoidance, surveying, etc.). The testing performed in Case Study V would fall under the

“Mission” planning category.
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Figure 8.12. Visual representation of the temporal constraints for various mission levels

Figure 8.13. Recommended structure for computing a single-mission performance score with
activities spanning the entire mission being placed at the top level

In Case Study VI, a multi-platform mission is investigated to validate the scalability and flex-

ibility of the PERFORM methodology. An ASV is tasked with finding an object of interest and

then deploying a small-scale AUV to visually document the object. While the sum of the capa-

bilities needed to complete this mission is complex, testing with respect to specific decomposed

components simplifies and reduces the necessary field testing. From Case Study IV, it is shown

that decomposition is a valid approach. The decomposition of tasks for each vehicle in this case

study is given in Figure 8.14.
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Figure 8.14. Case Study VI: Overview of task decomposition
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The mission is not simulated and arbitrary values are given for each task since the focus of this

case study is on the PERFORM calculation step and the structure of the mission decomposition.

The scenario parameters are as follows:

• Launch/Recover Point (x,y)

• Survey Region (Box Size and Location) (x,y), (x,y)

• Obstacle(s) (x, y, vx, vy)

• Object of Interest Location (x, y)

• Starting Battery Charge

• Environmental Factors (Currents, Time of Day, etc.)

The set of possible tasks for the ASV and the AUV are denoted as TASV and TAUV , respectively,

and are defined as:

TASV = { Transit to Search Region,

Search Region,

Deploy AUV,

Transit to Recovery Location,

Station Keep / Recover AUV,

Transit Home}

(8.6)

TAUV = { Transit to Object Location,

Image Area,

Transit to Recovery Point,

Dock with ASV}

(8.7)
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where the set of possible events, E, are:

E = { Launch,

Arrive at Survey Region,

Obstacle on Surface,

Detect Object of Interest,

Detect end of Mission Condition,

Detect Battery Charge Warning,

Arrive Recovery Point,

AUV Launched,

AUV Recovered}

(8.8)

For the purposes of the example, it is assumed that the test engineer has confidence in the

ASV’s ability to perform transit tasks (i.e., waypoint-to-waypoint navigation) proven through pre-

vious testing. For this particular example study, one may consider the case for these offline tests

produced, say, an average PERFORM score of 8.5 based on the output MF’s defined in Figure

8.8. This reduces the ASV test design for this mission to the following tasks “Search Region,”

“Deploy AUV,” and “Station Keep / Recover AUV.” The AUV is also assumed to have established

waypoint-to-waypoint capabilities. For this study, the AUV has earned a transit-task PERFORM

score of 8.2. It is noted here that testing for area imaging and AUV-ASV docking are still needed.

8.4.1 Metric Design: Case Study VI

8.4.1.1 ASV

Two of the tasks under test for the ASV use the IT2-FL approach: “Search Region” and “Sta-

tion Keep / Recover AUV.” “Deploy AUV,” however, is considered a binary parameter. (As an

AUV cannot be partially deployed successfully, it is either task success or task failure.) With
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the performance score range set between 0-10, a zero is assigned to failure and a score of ten is

assigned for success.

The scoring of the “Search Region” task is compiled from two input performance parameters:

detection accuracy and detection time. A low detection time is desirable, although not at the ex-

pense of accuracy. Detection accuracy is further decomposed into two scoring parameters, location

and false positives. Location refers to the accuracy with which the platform determines the posi-

tion of the object and false positives refer to the ranking of potential objects in terms of detection

probability. Data is extracted for a sorted list compiled by the autonomy platform that contains the

detected location, the probability of detection, and a timestamp. An example of how the detection

location input parameter may be designed is shown in Figure 8.15. Detection time can also be

modeled in a similar fashion, where time is the abscissa unit. A few approaches may be appro-

priate for the false positive metric. One strategy is to design a score based on where the actual

object is ranked in a sorted list by detection probability calculated by the vehicle’s autonomy. If

the correct object is first on the list, that would have the highest score, with the score decreasing

for each subsequent spot on the list.
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Figure 8.15. Example MF for the detection location parameter

For the “Station Keep / Recover AUV” task, the corresponding input performance parameter

is maintaining a location within an acceptable radius of the AUV recovery point. Data is analyzed

once the vehicle enters a specified radius of the recovery point, and the input value corresponds

to, without loss of generality, the furthest marked point of the vehicle during the task. (The mean

distance or Root Mean Square Error could also be used for the input value). As a location-based

parameter, GPS is a suitable data source. A generic GPS system with specifications of 1m accuracy

is used in the modeling of the example MFs. Due to the GPS accuracy limitations and expected

ASV maneuverability, the FOU width is set to 1m and domain is set to 0-20m, respectively. Fig-

ure 8.16 displays the MFs and the corresponding input/output relationship based on the rule base

presented in Table 8.7.

172



Table 8.7. Station-keeping task rule base mapping: input linguistic terms (italicized) to the corre-
sponding output performance linguistic terms

Very Close Close Satisfactory Far Very Far
VG G F P VP

Figure 8.16. Example membership functions for the station keeping task

8.4.1.2 AUV

Image clarity is a parameter that may be used to determine the performance of the vehicle’s

imaging capabilities. As a subjective and inexact parameter, FL allows a human-determined input

via a linguistic term to be mathematically translated into a compatible format with the other input

parameters and overall scoring framework. The test engineer has the ability to rank the AUV object
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image based upon five classifications: Very Clear, Clear, Satisfactory, Unclear, and Very Unclear.

Here, a guideline is required to define the classifications, an example of which is provided in Table

8.8.

Table 8.8. Example image classifications and their corresponding descriptions

Image Classification Description
Very Clear Object easily identified / no distortion of image

Clear Object easily identified / minor distortion and imperfections of image
Satisfactory Outline of object visible / some blurring of image

Unclear Object barely visible / substantial blurring of image
Very Unclear No object visible / major image distortion

For docking the AUV to the ASV, a time threshold is used as the input performance parameter.

Time starts when the AUV enters within a specified radius of and depth under the ASV and ends

when the AUV is successfully docked. A set of MFs for this input parameter may be designed as

in Figure 8.17. Since the time measurement is fairly certain, the FOU is modeled to account for

the linguistic uncertainty of defining the scoring regions. The FOU bandwidth takes into account

this linguistic uncertainty, as it increases as the docking time deviates from the MF median value.

Figure 8.17. Example AUV docking task MFs
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8.4.2 Scoring the Full Mission

Arbitrary values are given to each task (without loss of generality) to demonstrate the calcula-

tion process for the full mission and are provided in Table 8.9. The weighting terms, wi, all share

the same value. That is, each task is weighted equally. It is noted that the score for the “Search

Region” is the result of two input parameters, so it would have an additional calculation involved

such that

PTask2 = w1PDetectionAccuracy + w2PDetectionT ime

PDetectionAccuracy = w1PDetectionLocation + w2PFalsePositives
(8.9)

The resulting ASV and AUV performance scores may be calculated, respectively, as

PASV = w1PTask1 + w2PTask2 + w3PTask3 + w4PTask4 + w5PTask5 + w6PTask6

= (0.167)8.5 + (0.167)7.5 + (0.167)10 + (0.167)8.5 + (0.167)7.0 + (0.167)8.5

= 8.35

(8.10)

PAUV = w1PTask1 + w2PTask2 + w3PTask3 + w4PTask4

= (0.25)8.2 + (0.25)6.3 + (0.25)8.2 + (0.25)7.6

= 7.58

(8.11)

Ptotal = w1PASV + w2PAUV

= (0.5)8.35 + (0.5)7.58

= 7.96

(8.12)
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ASV Task Scores AUV Task Scores
Task Task ID P

Transit to Search Region 1 8.5
Search Region 2 7.5
Deploy AUV 3 10

Transit to Recovery Location 4 8.5
Station Keep / Recover AUV 5 7.0

Transit Home 6 8.5

Task Task ID P
Transit to Object Location 1 8.2

Image Object 2 6.3
Transit to Recovery Point 3 8.2

Dock with ASV 4 7.6

Table 8.9. Performance score values given for each task to demonstrate the process of calculating
a single mission score

As shown, the end result is a simple calculation that provides a single evaluation score built from

layered metrics. This score is the foundation for defining β in future work as the mapping from the

scenario space to the capability space (as shown in Chapter 4).

8.4.3 Discussion: Case Study VI

Case Study VI demonstrates the ability of PERFORM to build and score full missions in ad-

dition to being able to accommodate missions involving multiple platforms. Other potential input

parameters, such as image quality and object detection accuracy, are also introduced. As shown,

some tasks are more appropriately modeled as binary terms (e.g., “turn off payload”), while other

tasks are more appropriately modeled with fuzzy sets. The PERFORM methodology is versatile

enough to accommodate both data types and, as such, results in increased flexibility in test design.

In modeling and simulation, simplifications and assumptions are acceptable in areas that are

not deemed critical. These decisions are made based on some function of available time, resources,

and system requirements. Similarly, PERFORM is adaptable to the level of detail warranted. Of

course, since this involves live testing, safety becomes the most important factor. As a comple-

ment to simulation-based testing, where it is easier to simulate and verify components at lower

task levels, PERFORM provides data for higher level and system of systems (SoS) testing which

is difficult to achieve with simulation environments. As robotic systems become more and more

complex, methods that can scale to the evaluation of the systems coordination is critical to re-
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veal otherwise unexpected inter-system interactions. Again, it must be noted that clear guidelines

of what constitutes mission success (or failure) and a user’s level of acceptable risk both play a

significant role in the interpretation of performance scores.

With the modular structure of PERFORM, full-mission testing is no longer needed to update

(sub)task scores. For example, if a new path planner needs to be analyzed and compared to that of

the planner currently in use, one may simply isolate a transit task and implement the new algorithm.

Since the input parameter is decoupled from other input parameters, the score for that specific input

can be compared and updated to reflect the “better” path planner. This also applies to extrapolating

data for mission variations. Tasks may be added or removed without necessitating a full mission

re-run, while noting systems that span the entire mission, i.e. the mission planner, would, of course,

require testing a larger subset of tasks or full mission test.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 Summary

Through this work, contributions are made in the areas of autonomous path planning and the eval-

uation of autonomous systems. Three global path planners (A*, RRT, and PRM) are analyzed.

They are used as the basis from which a novel hybrid path planner is developed that combines A*

and PFM using a multi-layered vector-field approach. The effectiveness of this proposed multi-

layered path planning method is confirmed via both numerical simulations and experimental test-

ing. Results demonstrated improved routing compared to that using A* or PFM separately. Ad-

ditionally, in experimental validation testing, the algorithm showed its ability to perform real-time

path-planning updates to take into account newly discovered obstacles.

In developing the autonomous path planning methods, small-scale ASV platforms, referred to

as Testing Unmanned Performance PlatformS (TUPPS) were designed and manufactured to serve

as testbed platforms for rapid algorithm prototyping. A software architecture was constructed

and Robotic Operating System (ROS) was implemented as the software middleware framework

for the platforms. The software architecture was designed for the ability to interchange autonomy

modules. This interchange was accomplished by creating a standardized autonomy message passed

between the autonomy module and the “frontseat.”

This research introduces a generic architecture for mission design and definitions with the en-

abling concept being the decomposition of missions into associated mission tasks, behaviors, and

events. It also introduces the concept of scenario and capability spaces. These fundamental prin-

ciples and definitions are the building blocks for which the Performance Evaluation and Review
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Framework Of Robotic Missions (PERFORM), the underlying autonomy metrics and evaluation

framework, is established.

The PERFORM process incorporates AI-based evaluation methods. Here, the use of Interval

Type-2 Fuzzy Logic (IT2-FL) satisfies several criteria including: objectively taking into account

subjective data, providing flexibility with regards to defining testing goals, enabling scalability

of mission and task types, incorporating uncertainty, managing many different data types, and

maintaining independence from internal autonomy architectures – all while maintaining a mathe-

matically rigorous (and objective) structure.

Specific recommendations for the PERFORM design methodology, input parameter selection,

membership function construction, rule base designations and FOU design are provided. Here,

special care was given to observe the specific relationship between FOU size and output behavior.

The end result is a procedure for calculating an overall autonomy mission performance score based

upon decomposed mission sub/tasks and respective behaviors and events.

Several case studies are presented to demonstrate PERFORM’s efficacy, modularity, versatil-

ity, scalability, and overall versatility. The test cases specifically provide detailed examples of

PERFORM test design and modeling parameter customization to suit both user needs and his/her

corresponding priorities regarding mission goals and acceptable risks. PERFORM is shown to

also be applicable to high-level elements, such as in mission planning and for constructing full

missions from multiple tasks. The mission decomposition strategy (i.e., principle of superposi-

tion) was shown to be valid and effective, as simulation scores between the individual tasks and

that of the full mission were very similar.

9.2 Future Work

The future work resulting from this research can be summarized into the following investigations:

1. PFM/A* Path-Planning Techniques

The proposed path-planning algorithm would benefit greatly from an optimization technique

for α and β, the attractive and repulsive gain, respectively. In addition, a strategy is needed
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to fully integrate (1) the motion planning strategy that computes feasible trajectories for the

vehicle-based control system and (2) the path-planning vector field output. The incorporation

of additional layers to account for other forces (e.g., currents, wind, shallow areas) would

further contribute to the efficacy, versatility, and overall performance of the multi-layered

path-planning method. Here, one would also require a methodical process with which to

determine the relative “layer weighting” (i.e., to prioritize the effects of one layer over that

of another).

Further experimental testing is the next step to progress this research work. Additional test-

ing is necessary to investigate the Velodyne VLP-16 Lidar (or other applied sensor) param-

eter specifications (i.e., the number of available data points, the range of detection, etc.), so

as to determine the appropriate balance/compromise between map resolution and resulting

computational requirements.

2. PERFORM

Current PERFORM strategies dictate the need for a better understanding for and methods

of quantifying the relationship between the FOU input and output parameters. This problem

is currently an emerging area of interest within Fuzzy Logic research. In addition, a soft-

ware tool (i.e., user interface) with which to implement PERFORM would allow for efficient

MF design and would enable the construction of an input parameter library to further re-

duce excessive repetition. Database capability to streamline performance score tracking and

test data would also increase functionality and help efficiently compare autonomy systems.

One may also opt to incorporate stochastic techniques and, therefore, would require a large

dataset to apply the PERFORM process for appropriate statistical analysis. Regardless, com-

paring actual field test results with that of mission simulations would most certainly confirm

the validity and efficacy of PERFORM, in addition to improving the integrity of simulation

models.

180



9.3 Conclusions

With this research, insight and appreciation was gained for the deep complexity and potential

for autonomous vehicles as autonomous systems research pushes forward technologically. First,

a novel path planner implementation using a hybrid A* and Potential Field Method algorithm

resulted in improved routing compared to the two algorithms alone (i.e., a “best of both worlds”

scenario). In addition, broader impacts were shown for using layered vector fields to account for

various vehicle information.

To continue to build trust and confidence in these systems, an adaptable methodology is needed

to account for increasing system complexity and to adequately “test” the autonomous platforms

prior to use in actual missions. PERFORM is a significant step towards standardizing auton-

omy evaluation for most any type of robotic platform, as PERFORM provides a foundational and

generic structure with which to construct and evaluate autonomy test missions. Results demon-

strated the viability of IT2-FL for creating the metric functions. The results also showed the bene-

fits of the overall mission decomposition strategy.
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