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Network-based attacks against computer systems are a common and increasing problem. 

Attackers continue to increase the sophistication and complexity of their attacks with the 

goal of removing sensitive data or disrupting operations. Attack detection technology 

works very well for the detection of known attacks using a signature-based intrusion 

detection system. However, attackers can utilize attacks that are undetectable to those 

signature-based systems whether they are truly new attacks or modified versions of 

known attacks. Anomaly-based intrusion detection systems approach the problem of 

attack detection by detecting when traffic differs from a learned baseline. In the case of 

this research, the focus was on a relatively new area known as payload anomaly 

detection. In payload anomaly detection, the system focuses exclusively on the payload 

of packets and learns the normal contents of those payloads. When a payload’s contents 

differ from the norm, an anomaly is detected and may be a potential attack. A risk with 

anomaly-based detection mechanisms is they suffer from high false positive rates which 

reduce their effectiveness. This research built upon previous research in payload anomaly 

detection by combining multiple techniques of detection in a layered approach. The 

layers of the system included a high-level navigation layer, a request payload analysis 

layer, and a request-response analysis layer. The system was tested using the test data 

provided by some earlier payload anomaly detection systems as well as new data sets. 

The results of the experiments showed that by combining these layers of detection into a 

single system, there were higher detection rates and lower false positive rates. 
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Chapter 1 

Introduction 

 

Background 

 As modern society makes use of computing technologies in more ways, the usage 

of computers to store sensitive or critical data continues to increase. Computers are used 

for operations critical to the functions of modern society such as the power grid and air 

traffic. Similarly, computers are used to store sensitive government documents and 

national security information such as a design for a new fighter plane (Souren, 2013). 

These computers are often networked to other computers and these networks may be 

connected to external networks through the Internet. With this increasing connectivity 

comes the added risk of attackers making use of this connectivity to tamper, disrupt, or 

gain access to this sensitive or critical data. 

 The most basic attackers are often thwarted because of their use of familiar 

attacks. Familiar attacks can be detected through the use of attack signatures. Attack 

signatures are a mechanism that specifies key components of the attack in order to 

accurately identify the attack with as little chance as possible for a false positive 

(Denning, 1987). However, more advanced attackers that use unfamiliar attacks are not 

so easily stopped by the use of signatures. The attacks used by an advanced attacker will 

be specifically designed to avoid detection and will not be found by signatures. 



 

 

2

 A common advanced attack methodology used is that of the 0-day attack (Wang, 

Cretu, & Stolfo, 2005). A 0-day attack is named such because it is an attack that has not 

yet been disclosed and thus cannot be adequately mitigated or detected through signature 

methods. All programs have the possibility for code-based vulnerabilities with the 

possibility increasing as the complexity of the code increases. Because of this, the 

continued discovery of new 0-day attacks is a virtual certainty. Another advanced attack 

methodology may consist of familiar attacks that are restructured in some way to evade 

detection from attackers. These attacks are named variant attacks (Wagner & Soto, 2002). 

At a holistic level, the attack may be the same attack as before but the variation in its 

construction allows it to become undetectable by standard signature-based methods. 

 The typical means for detecting attacks, whether familiar attacks, 0-day attacks, or 

variant attacks, is by using an intrusion detection system (IDS) (Heberlein et al., 1990). A 

Network-based IDS (NIDS) scans network traffic for potential attacks. Should the IDS 

detect an attack, it creates an alert that notifies the operator for further investigation. A 

variation on the IDS allows for it to sit in-line with the network traffic and add the 

functionality of immediately blocking any attack detected. This variation is called an 

intrusion prevention system (IPS) (Plato, 2004). At its core, an IPS behaves similarly to 

an IDS with the addition of the active mitigation features that allow an IPS to block the 

detected attacks.  

An IDS typically performs attack detection using one of two methods. The first 

method is known as a signature-based method (Kemmerer & Vigna, 2002). The 

signature-based method matches an operator-created signature in traffic to identify 

attacks. The other method is an anomaly-based method (Marin & Allen, 2006). The 
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anomaly-based method examines all traffic to learn what is typical for a network then 

will detect deviations or anomalies from the normal traffic. When one of these anomalies 

is detected, the system creates an alert for an operator to investigate.  

A recent offshoot of anomaly detection is the subfield payload anomaly detection 

in which the payload contents of packets are analyzed to detect attacks at the application 

layer. A model for comparing the payload anomaly detection system against the 

traditional NIDS is the OSI Model. The OSI Model is a model which characterizes 

network traffic into different logical layers (Day & Zimmermann, 1983). In terms of the 

OSI Model, a typical NIDS will operate at the third layer, the network layer. A payload 

anomaly detection system will operate at the seventh layer, the application layer.  

The first major payload anomaly detection system was the PAYL algorithm. The 

PAYL algorithm created an intrusion detection system focused on detecting 0-day worms 

essentially using a histogram of bytes or n-grams of size 1 (Parekh, Wang, & Stolfo, 

2006; Wang et al., 2005; Wang, Parekh, & Stolfo, 2006). Anagram followed up on PAYL 

by granting the ability to handle n-grams greater than 1 (Wang et al., 2006). The next 

major system was the McPAD system (Perdisci, Ariu, Fogla, Giacinto, & Lee, 2009) 

which built upon the n-gram model using a size of 2 and added the capability for space of 

varying size between the bytes while also modeling the collected n-grams in a Support 

Vector Machine (Scholkopf, Platt, Shawe-Taylor, Smola, & Williamson, 2001). The next 

two systems, Spectrogram (Song, Keromytis, & Stolfo, 2009) and HMMPayl (Ariu, 

Tronci, & Giacinto, 2011), were developed in parallel and focus similarly on using 

Markov Models (Markov, 1971) to detect attacks. A major difference in the two is that 

Spectrogram has knowledge of the structure of an HTTP payload and learns the specific 
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parameters while HMMPayl learns the entire request payload. As a whole, these detectors 

have been shown to be far more capable of detecting application layer attacks than the 

prior approaches taken in anomaly detection.  

 Additionally, other variants of network-based IDS exist that use other models for 

detection, such as biologically inspired IDS. Some examples of the biologically inspired 

model are provided by the human body’s immune system (Hofmeyr, Forrest, & 

Somayaji, 1998) or the concept of danger theory (Aickelin, Bentley, Cayzer, Kim, & 

McLeod, 2003). Researchers have created many different models for attack detection. 

Each model has its own successes or lessons learned. These lessons have been 

incorporated in subsequent IDS to refine and improve upon the concept of attack 

detection. 

 

Problem Statement 

 Current network-based anomaly detection systems suffer from high false positive 

rates and high false negative rates and thus are unreliable in production usage, either 

providing analysts with too many false alarms or failing to alert analysts to significant 

attacks. High false positive rates create significant amounts of noise for an analyst to 

investigate and determine if the alert is a legitimate attack or not. This amount of extra 

work can lead to missed true attacks. Low detection rates means true attacks have no 

corresponding alert and are not properly classified as anomalies therefore it is highly 

unlikely the analyst will have the ability to detect them (Axelsson, 2000).  
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 With each generation of IDS and refinement of the underlying models, the false 

positive rates are reduced and the detection rates are improved. While the users’ 

expectation is not for an oracle that provides a perfect assessment of every packet, there 

is a reasonable expectation for high levels of accuracy. Though current systems have 

advanced significantly over prior systems in their accuracy, they have not yet reached a 

high enough level of accuracy (Ingham & Inoue, 2007).  

  

Goal 

 The goal of this research was to construct a payload anomaly detection system by 

combining multiple techniques of detection in a layered approach combining the 

requested URLs, request payloads, and a combination of the requested URLs and the 

responded payloads, demonstrate the system’s viability, and demonstrate the increased 

detection capabilities the layered model had over current state of the art detection systems 

that typically use just one of the layers. Experiments using both the system created 

through this research and state of the art payload anomaly detection systems allowed for a 

direct evaluation of the system created through this research in comparison to other 

systems. The systems were evaluated using the receiver operating characteristic model 

which presents a simplified graph showing the detection capabilities of a system by 

plotting the false positive rate against the detection rate (Green & Swets, 1966).  
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Relevance and Significance 

 As long as there are assets of value, there will be attackers who want to take those 

assets. This axiom applies to physical objects of value such as jewelry as well as digital 

objects of value such as a person’s bank account information or sensitive government 

communications. These examples are a small subset of all possible digital assets that 

might be of value to an attacker. To protect those digital assets, network owners employ 

many different attack detection and defense mechanisms. The focus of this work is on 

anomaly detection systems specifically detection within the payload. 

 Earlier anomaly detection systems focused on characteristics of the traffic 

contained within the header or high level statistics about the packet such as number of 

bytes (Wenke, Stolfo, & Mok, 1999). This was a logical decision at the time as many of 

the attacks were present in the header of a network packet or not well disguised. 

However, as the avenues of attack in the header were closed, attackers shifted their 

method from the header to the content of the packet in the payload. The payload is the 

communication that is being delivered from one host to another specifically at the 

application layer: allowing an application on one host to communicate to the application 

on the other. Attackers found a fertile ground for attacks in the application layer as each 

application introduces a new set of potential vulnerabilities.  

 Anomaly detection systems shifted their focus from the headers to the payloads 

and began detecting application layer attacks to match the attackers’ shift. The payload 

anomaly detection systems evolved from the statistical modeling of single bytes (Parekh 

et al., 2006; Wang et al., 2005; Wang et al., 2006) to multiple bytes (Wang et al., 2006) to 

byte pairs separated by some distance (Perdisci et al., 2009). The next and current 



 

 

7

generation of payload anomaly detection systems added complex statistical models to the 

detection mechanism favoring the Markov models (Markov, 1971) whether in Markov 

Chains (Song et al., 2009) or Hidden Markov Models (Ariu et al., 2011). Payload 

anomaly detection systems are the state of the art in anomaly detection intrusion 

detection as they represent the best detection mechanism for application layer attacks.  

 This research aimed to improve upon those state of the art systems by combining 

multiple layers of detection. The layers are a high-level navigation layer, a request 

payload analysis layer, and a request-response payload analysis layer. The high-level 

navigation layer is an approach that has been proven in the context of distributed denial 

of service attacks (Yi & Shun-Zheng, 2009). The request payload analysis layer has also 

been proven in the detection of attacks (Ariu et al., 2011). The request-response payload 

analysis layer is a novel detection mechanism that was tested through this research. 

Further, the combination of these three layers is also a novel combination and was tested 

through this research.  

 As attackers increase in sophistication, focus, and resources, the need for more 

accurate detection mechanisms protecting networks increases. Anomaly detection 

systems must improve their detection performance by lowering false positives and 

increasing true positives in order to best protect digital assets. 

 

Barriers and Issues 

 The area of anomaly-based intrusion detection is a challenging area of study due 

to the expansiveness of the possible attacks. Accurately and consistently detecting the 



 

 

8

elusive parameters that characterize an attack with perfect accuracy for all attacks 

remains an unachieved goal. The possibility of ever achieving this goal was posited as a 

question in the infancy of the study area (Denning, 1987). In 2007, Gates and Taylor 

followed up on Denning's goals and questioned whether Denning’s goal of accurate and 

consistent attack detection is even achievable (Gates & Taylor, 2007). Similarly, 

Axelsson (2000) has indicated that accurate intrusion detection is a very hard problem 

due to the difficulty in minimizing the false alarm rate. The challenge of building good 

enough intrusion detection as outlined by Axelsson is not one to be taken lightly. The 

lesson taken from Axelsson that minimizing false positive rates is a significant criterion 

for usefulness for all anomaly-based intrusion detection systems. As stated previously, 

the goal of this research was to minimize the false positives and maximize the true 

positives meeting or bringing the state of the art closer to Axelsson’s criterion for 

successful intrusion detection. 

 Testing an intrusion detection system is a difficult task. The testing of anomaly 

detection systems is a disputed area. There is no agreed upon approach or data set that 

allows for consistent testing. The data sets from the KDD Cup in 1999 (Lippmann et al., 

2000; Newman, 1999) were used for test purposes at the time of the competition but have 

since been refuted as poor representations of actual data (Brugger, 2008; Mahoney & 

Chan, 2003; McHugh, 2000). This leaves a gap with no widely accepted benchmark data 

in the intrusion detection research community. Consequently, the KDD Cup ‘99 test set is 

often still relied upon to provide test data and comparisons between detection methods. 

This research presented a testing approach that was consistent with the test approaches 

published for prior payload anomaly detection systems (Ariu et al., 2011; Perdisci et al., 
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2009). Further, it made use of the same attack data as was used in testing those systems to 

provide a representative comparison between systems. 

 

Assumptions, Limitations, and Delimitations 

 A limitation of this study is that the testing was not performed using real-time 

data. It instead used offline data. This is part of a natural evolution of the system and does 

not represent a permanent limitation of the system rather a limitation of this initial study. 

A possible extension of this work is to optimize and enhance the system for real-time 

data. When designing the system, the possibility of extension to a real-time detection 

system was kept in mind during the design process. It is expected that the modifications 

required to support real-time detection would be minor. 

 Another consideration for this system is the nature of attacks can be difficult to 

identify. This creates a limitation for the study in that traffic may appear to be normal and 

benign to the researcher performing classification but may actually be an attack. This can 

lead to false classifications in both training and testing results. Given this limitation, the 

traffic and attacks will be classified using the best available knowledge at the time of 

classification to determine if an attack is present in the traffic.  

 

Summary 

 The focus of anomaly detection systems have evolved along with the evolution of 

attackers and their targets. Early attacks tended to be hidden in the headers of packets or 

detectable by broad statistical measures. Attackers have evolved to place their attacks in 
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the application layer and avoid detection by broad statistical measures. To combat this 

evolution, detectors have had to shift their focus to packet payloads. This evolution has 

led to a new subfield of anomaly detection called payload anomaly detection. This field is 

still relatively young but has benefited greatly from the advancements in the broader 

parent field of anomaly detection. Payload anomaly detection has evolved from its earlier 

focus on the statistical distributions of bytes to more complex statistical models such as 

Markov models. With each evolutionary step, the detection characteristics improved. 

This research continued the advancements of payload anomaly detection by increasing 

the detection performance of the system through the application of multiple layers of 

detection combined as well as considering response payloads to provide a more accurate 

result in detecting attacks.   
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Chapter 2 

Review of the Literature 

 

Overview 

 This chapter is organized into two sections. The first will be a review of major 

milestones in intrusion detection starting from the initial research in the field to recent 

milestones. The second section will be a review of literature directly relevant to this 

research.  

 

History of Intrusion Detection 

 This section is a breakdown in chronological order of the history of intrusion 

detection from start to the current point in time.  

 

Origin of Intrusion Detection Systems 

 The concept of intrusion detection was first introduced by Anderson (1980). 

Anderson proposed intrusion detection as a method to identify when a system was 

compromised. This focus of detection would later become known as host-based intrusion 

detection as opposed to what would be created later as network-based intrusion detection 

where the focus was on network traffic. To identify intrusions, the review of audit trails 
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could be used to identify behaviors that represented misuse of the system. The different 

forms of intrusions were enumerated as internal penetration, external penetration, and 

misfeasance (J. P. Anderson, 1980).  

 Internal Penetration was defined as the case when a user with legitimate access to 

internal resources attempts to gain access to additional resources they are not authorized 

to access. This attempt may occur through the usage of credentials belonging to other 

users. This illegal access could be identified through logs that would show a user account 

behaving in a manner inconsistent with its typical behavior. 

 External Penetration was defined as the case when an unauthorized user attempts 

to access protected resources. This could be a user accessing a system through direct 

physical access to the system or through networked connections. External penetrations 

could be detected by repeated failed access attempts to protected resources.  

 Misfeasance was defined as the case when a user attempts to circumvent 

protections in place on the system to gain additional access. This might be making use of 

incorrect file permissions or errors in the operating system that grant additional access. 

Misfeasance could be detected through audit logs that show users gaining access to files 

or systems that they should not have access to.  

 These intrusions could be statistically identified as deviating from the observed 

ordinary behavior through the review of audit logs. For example, an external penetration 

attempt might be identified by a series of failed login attempts. An internal penetration 

attempt or misfeasance might be identified by noting users that vary from their normal 
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activities. This concept, though visionary as the original publication of intrusion 

detection, was labor intensive and an inefficient method to detect intrusions.  

 

Intrusion Detection Expert System (IDES) 

 The concept of intrusion detection was expanded upon, refined, turned into a 

model at SRI International, and then published by Denning (1987). At the time of 

Denning's publication, networks consisted of far fewer components and a smaller variety 

of components than they do in modern networks. The system created, the Intrusion 

Detection Expert System (IDES), used an expert system to evaluate log data and 

determine potential intrusions or misuse. Like Anderson’s work, the focus on specific 

logs and audit data from servers is representative of what was later named host-based 

intrusion detection. Denning's system consisted of five primary elements. Those elements 

follow: 

• subjects - the users of the system or processes initiated by the users 

• objects - the various pieces of the system that the subjects interacted with 

• profiles - characterizations of the interactions between subjects and objects 

• anomaly records - records describing the abnormal behaviors not contained in the 

profile as detected by the system 

• activity rules - actions taken by the system in reaction to some stimulus 
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Analysis of all these elements allowed the system to detect anomalies in behavior that 

may have represented an intrusion. 

 While Anderson’s work described the concept in an ideological form, Denning’s 

work created a system that implemented the concept. This concept created a model that 

was built upon for all future anomaly detection systems.  

 

Haystack 

 The Haystack IDS was developed by Smaha (1988).  Among other things, 

Haystack had innovative and effective data reduction techniques. Haystack was designed 

for use in the U.S. Air Force to help System Security Officers detect and investigate 

intrusions. The Haystack system was specifically designed for use in the Air Force but it 

was designed with the intention that its applicability could be extended to other systems. 

Being designed for the Air Force allows the system an advantage in detecting intrusions 

over other types of networks: Air Force systems have rigidly defined acceptable use 

scenarios. Other networks tend to be more open and the administrators have less ability to 

specify and enforce rules over their users. The goal in designing Haystack was to 

augment not replace the existing security tools and personnel. The system analyzes the 

raw audit trail of the target system, processes that audit trail into canonical events, and 

then generates a security incident report to present to the security officer. The security 

officer then investigates the incident and determines if it is a legitimate alert or false 

alarm. Examples of security incidents that are reported by the system are variations from 
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normal behavior such as spikes in usage or known bad behaviors such as printing 

password files.  

 To handle the large amounts of throughput necessary to be processed by the 

Haystack system, the designers implemented data reduction techniques. Specifically, the 

Haystack analysis system is significantly less powerful than the mainframe system it was 

intended to monitor. To maintain the throughput necessary to monitor audit logs in a 

reasonable timeframe as well as maintain a historical trail of audit logs, the system 

performs data reduction techniques on those logs. Rather than maintaining the full audit 

trail, the system extracts the significant components of the audit trail and preserves those 

for detecting intrusions. This feature extraction methodology made sense and increased 

efficiency. It was adopted in most intrusion detection systems that followed to reduce the 

storage necessary to record logs and provide throughput improvements.  

 

Network Security Monitor 

 In 1990, the concept of intrusion detection was modified to look at networks 

creating the network-based intrusion detection model (Heberlein et al., 1990). This was 

done through a program called Network Security Monitor (NSM) that evaluated network 

traffic for intrusion attempts. This program differed from the IDES model in that the 

focus of this IDS was analyzing the traffic flowing across the network and identifying 

that portion of the traffic that was anomalous traffic with the assumption that anomalous 

traffic is worth investigating further. This represented a novel approach to intrusion 

detection. No other system was focusing on the network data but instead focused on 
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auditing the data local to the systems. The goal of a network-based IDS is to identify an 

intrusion based on network traffic alone. This type of IDS focuses either on readily 

apparent characteristics of the traffic or the way the traffic differed from the normally 

observed traffic rather than the end effects as reported by the target systems.  

 The NSM work was later expanded upon and further described by Mukherjee, 

Heberlein, & Levitt (1994) to better define the concept of network-based intrusion 

detection. NSM collected network traffic and classified it into four layers. The four layers 

approach allowed the system to characterize the traffic. The first layer was at the packet 

level and analyzed the individual packets. The second layer built upon the first to create a 

unidirectional network traffic stream. The third layer built upon the second layer to create 

a bidirectional traffic stream. The fourth layer built upon the third layer to identify the 

activities of each host in the network. The collected outputs of the third and fourth layers 

as well as a profile of the typical traffic of the network are then fed into an expert system. 

The profile of the typical traffic is created by monitoring the network activity over time.  

 The concept of network-based intrusion detection is also the method used in this 

research. However, the method of traffic inspection differs greatly between the two 

systems. NSM used an approach demonstrated in previous host-based systems to inspect 

network traffic. This method consists of constructing a model of normal traffic from host 

to host. This concept, while still valuable, is prone to false positives. Attempting to 

catalog all standard network traffic flows in a network leads to a challenge due to the 

changing nature of networks. New hosts can be created and new users can make use of 

existing hosts. When these changes to the network occur, the traffic profile will be 

different creating a false positive. The method presented in this research is network-
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agnostic to avoid these false positives. It focuses on the contents of the packets traversing 

the network rather than the source and destination of those packets. 

Mukherjee, Heberlein, & Levitt urged the use of benchmarking methods to test 

and compare IDS as well as the development of better and more accurate models. Both 

goals remain relevant to this dissertation research. While there have been attempts at 

creating universally accepted test methods such as the DARPA data set (Lippmann et al., 

2000), there  still remains no widely accepted method by which every IDS can be 

compared in an unbiased manner. Additionally, while modern IDS have become more 

accurate in their detections, there is no single system that is accepted as the best detector. 

Each of the intrusion detection systems have different strengths and focus areas requiring 

tradeoffs and the evolution of attacks has led to the degradation of older systems. 

  

Distributed Intrusion Detection System (DIDS) 

 Distributed intrusion detection systems, systems that collect data from multiple 

points in a network to combine data from different perspectives rather than from a single 

independent monitoring point, were a natural next step after network-based IDS. A 

specific distributed IDS known as Distributed Intrusion Detection System (DIDS) was 

created to expand the ability to monitor systems and networks from a single monitored 

entity to multiple monitored entities controlled from a single location (Snapp et al., 

1991). DIDS had the capability to remotely monitor heterogeneous computer systems 

then perform data reduction to collect all that data at a central point for data processing 

and correlation. The distributed nature of the system was limited to a local area network 
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and did not include hosts located on different network segments. An interesting element 

of this system is that it is capable of uniquely identifying network users using traffic 

analysis then assigning each identified user a Network User Identifier (NID). This NID is 

capable of following the user despite any attempts to circumvent the tracking such as 

multiple accounts or lateral movement in the network. 

 DIDS consisted of several components: host-based monitors on each host to be 

monitored, a network-based monitor, and a director to coordinate the components (Snapp 

et al., 1991). The host-based monitors each track the audit trails of their host systems to 

identify anomalous behaviors. The network-based monitor observes the network traffic to 

detect what systems connect to each other. Both of these monitor types report their 

collected data to the director. The director consists of an expert system that analyzes the 

information provided by the monitors. Further, it can request additional data from each of 

the monitors as needed. 

 DIDS is interesting in the fusion mechanics of its data feeds – both host-based and 

network-based monitoring. The systems that existed prior to DIDS focused on the 

paradigms independently while DIDS combines its view of both the network and the 

hosts. This model is not one commonly seen in intrusion detection systems even since the 

creation of DIDS. Even at the time of performing this research, a more common 

deployment scenario is independent deployment of host-based and network-based 

intrusion detection systems allowing for networks to benefit from the best of class in both 

networks. This data from both types of intrusion detection systems, however, is typically 

collected in a central log collection and correlation system external to the detection 
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systems. This external system allows for correlation of the data it receives from all 

sources and can perform a similar fusion as was introduced in DIDS. 

 

Next-generation Intrusion Detection Expert System (NIDES) 

 Recent research has created a new category of IDS that blends attributes of both 

signature-based detection and anomaly-based intrusion detection called hybrid intrusion 

detection. As an editorial note, other definitions exist for hybrid intrusion detection that 

include the blending of mobile, embedded, or visual detection mechanisms (Alam & 

Vuong, 2007; Lauf, 2007; Peng, Feng, & Rozenblit, 2006). Hybrid systems tend to focus 

on improving the accuracy of detection by both increasing the detection rate and reducing 

the false positive rate using a combination of the signature-based and anomaly-based 

methods. 

 The first true hybrid system was the Next-generation Intrusion Detection Expert 

System (NIDES) (D. Anderson, Frivold, & Valdes, 1995), which represents an evolution 

of IDES. NIDES is a hybrid in that it combines both the misuse detection that existed in 

IDES with statistical analysis to perform anomaly detection. NIDES was designed to 

detect intrusions, as identified by the data differing from the historical norm, and 

intrusion scenarios, known system vulnerabilities, and other violations of a systems 

security policy. 

 The statistical algorithms included in NIDES allow it to exceed the capabilities of 

a typical misuse system by detecting unknown attacks. A future extension of the NIDES 

system suggested by Anderson, Frivold, and Valdes would be to create a hierarchical 
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structure to allow the system to better detect collaborative attacks. Additionally, NIDES 

uses audit records like IDES did rather than including any form of network data.  

 

Graph-based Intrusion Detection System (GrIDS) 

 A Graph-based Intrusion Detection System (GrIDS) was created at the University 

of California at Davis in 1996 with an interesting and unique approach to intrusion 

detection (Staniford-Chen et al., 1996). GrIDS makes use of activity graphs to define the 

permitted behaviors in a network. The activity graphs are created automatically by the 

system after analysis of activity on the hosts and network traffic.  

GrIDS operates in a hierarchical fashion using reduction techniques allowing the 

system to scale to large networks. This is an enhancement on previous detection systems 

in that it can collaboratively detect attacks from large networks. GrIDS is also capable of 

incorporating data received from external monitoring sources. Further, the system is 

controlled by a graphical interface that allows drag-and-drop capabilities to reconfigure 

the system - even in real-time. While presenting many novel and unique detection 

capabilities, this model was not built upon much by later research.  

 

Event Monitoring Enabling Responses to Anomalous Live Disturbances (EMERALD) 

 A system that was developed by SRI International for monitoring large-scale 

networks is the Event Monitoring Enabling Responses to Anomalous Live Disturbances 

(EMERALD) (Porras & Neumann, 1997). EMERALD is a highly-distributed system that 

makes use of the object oriented paradigm to perform network surveillance, attack 
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isolation, and automated response. EMERALD also includes a recursive framework that 

can share the analysis results from the distributed monitors to provide a global detection 

and response capability that can counter attacks occurring across an entire network 

enterprise.  

 EMERALD consists of three monitor types that service three different levels of 

the network hierarchy. The types of analysis are enterprise-wide, domain-wide, and 

service analysis. The information feeds up and is correlated from the service level to the 

domain level and finally to the enterprise level. The service monitors review audit logs 

and probe the domain for intrusion data. The domain monitor handles the reports from 

the service monitors and alerts the system administrators of threats. The enterprise-wide 

monitors correlate the reports from the domain monitors to detect distributed attacks. 

 A novel component introduced in EMERALD is its communication capabilities. 

EMERALD can have system monitors in one domain communicate with another domain. 

Additionally, the system monitors can communicate with third party analysis tools. The 

communication occurs using a subscription-based scheme where both a push and pull 

mechanism exists. For example, a client monitor can subscribe to receive analysis from a 

server monitor in order to provide better correlation. This allowed the intrusion detection 

systems to provide broader detection coverage. 

 

Hummingbird 

 Frincke, Tobin, McConnell, Marconi, and Polla (1998) wrote about the lack of 

collaboration in intrusion detection lamenting that law enforcement investigation work 
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has used these techniques for a long time but they have not been implemented in an 

automated manner previously. To meet this goal, they proposed a framework for 

cooperative intrusion detection. The framework does not account for multiple distinct 

IDS but rather the interaction guidelines for multiple systems using the same IDS, 

Hummingbird, which uses the previously proposed Hierarchical Management of Misuse 

Reports (HMMR) protocol (Frincke, Evans, & Aucutt, 1996). The HMMR protocol 

funnels information from various sources under different administrative control to a 

central reporting system. This allows correlation among the various alerts at a higher 

level but does not allow various administrators to modify or configure systems that they 

do not control.  

The Hummingbird work highlights the benefits that can be gained by sharing data 

between systems especially when there exists dependencies between the two systems. In 

relationships where the sharing benefits both sides, symbiotic relationships, there is a 

strong incentive to share data between the systems. Hummingbird facilitates these 

symbiotic relationships. 

 To protect the data flowing between systems, the framework implements a few 

key measures. The first measure is access control, specifically a weakened Bell-LaPadula 

(Bell & LaPadula, 1973) model and Biba (Biba, 1977) model. Further, the system 

protects the sensitivity of the data exchanged through data filtering techniques. The 

techniques used are data reduction and data sanitization. While these techniques create 

additional processing on the source host, they do provide the additional benefit of 

reduced communication load.  
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 The introduction of sharing and collaboration introduced new risks to the 

paradigm of intrusion detection (Frincke, 2000). There is a local decision of how much 

trust is placed in the remote sites that share data with the local site. Additionally, there is 

a concern of how much data can be safely shared to a remote site without divulging 

secrets. Multiple security policies must be managed to address the varying security 

profiles of each partner site.  

 A major advantage in collaboration lies in detecting what is termed as widespread 

attacks (Frincke, 2000). Widespread attacks require collaborative efforts across multiple 

domains to detect them. Those domains could represent a single site, network, or an 

enclave. The categories of widespread attacks are defined as simple attacks, repeated 

pattern attacks, and multipoint attacks. Simple attacks are attacks that come from a single 

attacker or point of entry. Repeated pattern attacks are repeated simple attacks that are 

generated from multiple attackers independently. A multipoint attack is an attack that 

consists of many component actions that make up an attack. Each of those component 

actions are separated and performed by separate attackers. Through the use of multiple 

collaborative detection points, a detection system could detect the more complex attacks 

such as a multipoint attack whereas a non-collaborative system would be limited to 

simple and selected repeated pattern attacks. 

 

Coordinated Attack & Response Detection System (CARDS) 

 Another collaborative system that was intended for a large-scale distributed 

system is called Coordinated Attack & Response Detection System (CARDS) (Yang, 
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Ning, Wang, & Jajodia, 2000). This system was created to detect signature-based alerts in 

a large distributed network. The monitored network was directly connected and centrally 

managed by a single administrator. The data was centrally correlated and the alerts jointly 

compiled and managed. This allowed the systems to perform correlated attack detection 

with centralized response. Additionally, the signatures could be created uniformly 

through the entire system. 

 CARDS consists of three main components. The first component is the signature 

manager. The signature manager generates specific signatures from generic signatures, 

decomposes specific signatures into intrusion detection tasks, and distributes these tasks 

to the involved monitors. Monitors are responsible for the observation of the target 

systems. The monitors perform the intrusion detection tasks and cooperate with other 

monitors if attacks are distributed. Coordinating all of these components is the directory 

service. The directory service provides information to each of the signature managers and 

monitors. Aside from the directory service, the signature managers and monitors are not 

required to collaborate and can operate independently. These elements only collaborate 

when investigating a distributed attack. The communication between elements uses 

Extensible Markup Language (XML) (Bray, Paoli, Sperberg-McQueen, Maler, & 

Yergeau, 2008). 

 Prior to CARDS, other collaborative intrusion detection systems had been created. 

However, those systems all were created with the assumption that they were under the 

control of a single administrator and reside in a single internal network but have different 

perspectives of that same network. Typically, the collaborative systems assume similar 

network structures such as subnets and hosts. Without this common reference point, the 
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data from most collaborative intrusion detection systems are incompatible with other 

collaborative IDS even those of the same type. 

 Extending the CARDS system, Ning, Jajodia, and Wang (2001)researchers 

created what they term abstraction-based intrusion detection. This is based on the earlier 

work of the Adaptable Real-time Misuse Detection (ARMD) system (J.-L. Lin, Wang, & 

Jajodia, 1998). The CARDS method is essentially a hybrid intrusion detection technique 

that combines abstraction with signature-based methods in order to increase the detection 

rate by allowing the system to detect unknown variations on known attacks. That 

abstraction is important because the systems that are being observed and monitored are 

disparate systems with different operating systems. Additionally, abstraction can be used 

to filter irrelevant details so that systems can ignore irrelevant details and focus on the 

relevant traffic information that could contain the anomalies. 

 Abstraction is frequently used as a preparation process and the abstraction is 

performed ad hoc. An example of how this usage of abstraction could create a problem 

lies in detecting an attack such as the Mitnick attack (Northcutt, 2002). In this attack, the 

attacker first creates a SYN flood attack to disable the incoming Transmission Control 

Protocol (TCP) (Postel, 1981) port then connects to another host spoofing the flooded 

host's IP address and TCP port as the source IP and port. If a user were to create a 

signature based on that attack, the signature might look for a SYN flood then the 

subsequent TCP connection. While this signature would detect the attack described 

above, a new method to disable the TCP ports other than a SYN flood would render the 

signature ineffective. To combat this, a better alternative would be to create a generic 

signature that replaces the SYN flood with any attack that disables TCP ports. No 
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detection system prior to CARDS could detect this attack. The best alternative to creating 

a generic signature would be to write programs that support this generalization but those 

programs would require constant updating as new methods were identified and observed. 

The application of abstraction in this system led to two conclusions: abstraction is an 

error-prone process and there is not enough support for effective and efficient abstraction 

in current IDS. Using Ning, Jajodia, and Wang’s extension of the ARMD system, the 

above signature generalizing the disabling of TCP ports would be possible.  

 ARMD falls short when applied to a distributed environment because it does not 

account for distribution and coordination mechanisms. The design of this system did not 

make use of the existing hierarchical approaches as they were considered inefficient. 

Should two distant IDS need to communicate on a distributed attack in a hierarchal 

system, their communications would need to be forwarded through multiple levels of 

hierarchy before they reach the other host. It would be more efficient if the IDS could 

communicate with each other directly. The ARMD model allows IDS to communicate 

directly when that communication is essential to detecting attacks. To this end, a 

framework extending ARMD was created by Ning, Jajodia, and Wang that performs 

distributed attack specification and event abstraction. Further, the model can detect 

distributed attacks using a decentralized approach by decomposing signatures into 

"detection tasks". The end result is a system that can detect variants on known attacks but 

not detect completely unknown attacks. The variants on known attacks must share 

essential features of an existing signature. Abstraction was shown to be a powerful 

technique for increasing the detection rate of an IDS yet must be used carefully as it can 
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also increase the false-positive rate. While the feasibility of abstraction-based detection 

was demonstrated, additional research is necessary to refine this work. 

 

Snort-based Hybrid Intrusion Detection Systems 

 A common platform used for hybrid intrusion detection systems is the Snort 

signature-based IDS (Roesch, 1999) with features of anomaly detection added to it 

(Aydin, Zaim, & Ceylan, 2009; Gómez, Gil, Padilla, Baños, & Jiménez, 2009; Hwang, 

Cai, Chen, & Qin, 2007). These modifications to Snort have increased the detection rate 

and false positive rate of Snort against their test data under controlled circumstances.  

 Snort is a signature-based IDS (Roesch, 1999). It is an open-source tool that is 

provided for free and is also available in a commercial form. Snort is often used for 

research as its open-source nature makes it very accessible and easy to extend. Snort, in 

its default state, operates in the standard signature-based method. Signatures are defined 

and provided to the system. Then the system monitors for traffic that matches the pattern 

defined in a signature. If a match occurs, the system will then create an alert and present 

it to the operator. It is also possible for Snort to operate in a blocking or IPS mode.  

 Aydin, Zaim, and Ceylan (2009) improved Snort by combining packet header 

anomaly detection (PHAD) (Mahoney & Chan, 2001) and network traffic anomaly 

detection (NETAD) (Mahoney, 2003). These anomaly detection protocols are inserted as 

preprocessor components to Snort. In the testing against the hybrid IDS, the test results 

show that the aggregated detection totals of the Snort detection combined with both 

PHAD and NETAD improves over the detection rates of any of the components on their 
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own. The hybrid IDS does not appear to be collaborating among the detection protocols 

though but rather appears to be multiple engines running on the same data in sequence. 

 Gómez, Gil, Padilla, Baños, and Jiménez (2009) created a system called H-Snort, 

a hybridization of Snort with anomaly detection. They also chose to add their anomaly 

detection capabilities as a Snort preprocessor. A statistical anomaly detection method was 

chosen though a future goal is to improve their system later with a data mining 

preprocessor. Two observations about H-Snort were noted through testing. The first 

observation is that a longer training period lowers the number of false alarms. The second 

is that as the number of elements increases, the sensitivity of the detection mechanism 

decreases thereby reducing the total efficiency as it misses detecting attacks.  

Hwang, Cai, Chen, and Qin (2007) modified Snort to create a feedback loop 

allowing the anomaly detection piece to generate signatures which are then fed into the 

Snort signature detection system. In this scheme, they hope to leverage the ability of the 

anomaly detection to identify unknown attacks while relying on the signature detection to 

have low false positives. The scheme they use to detect attacks is that of episodes. 

Episodes are a sequence of network events with rare episodes representing the anomalous 

activity which is possibly an attack. When using their hybrid methods, the detection 

capabilities significantly increased averaging a doubling of attacks identified versus Snort 

alone.  
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Fuzzy Logic Hybrid Intrusion Detection 

 Other research has combined fuzzy logic methods with intrusion detection to 

allow signature-based methods to have an anomaly-based characteristic to them. Fries 

(2008) combines fuzzy logic and genetic algorithms (GA) to produce strong results on 

both the detection rate and false positive rate. This system takes advantage of the genetic 

algorithm's capability to identify solutions through unsupervised learning.  

 Fries uses the Intrusion Detection Based on Genetic Clustering (IDBGC) 

algorithm developed by Liu, Chen, Liao, and Zhang (2004). IDBGC provides a two-stage 

approach that establishes clusters of network traffic features and then detects intruders by 

classifying traffic into one of the clusters. The first stage establishes a set of clusters 

using the nearest neighbor method. In the second stage, the clusters are then combined 

using a GA to obtain a near-optimal result. Additionally, the rules are optimized using a 

principal component analysis (PCA) proposed by Bankovic, et al. (2007). PCA 

significantly reduces the number of features needed for rules by extracting the subset of 

features that preserves the most significant information. This is accomplished by 

identifying a few orthogonal linear combinations of the original variables with the largest 

variance. To improve the rules' detection capabilities, fuzzy logic is applied. This is done 

through the use of trapezoidal fuzzy sets. The test results show that the application of 

fuzzy logic to traditional GA intrusion detection methods has increased the detection 

capabilities. 

 Another method makes use of the ensemble feature selection technique of fuzzy 

belief k-NN classification algorithms to create a hybrid IDS (Chou & Chou, 2009). This 

ensemble method yields efficient results that perform better than individual feature 
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selection techniques. The hybrid model created uses an ensemble feature selecting 

classifier with four base classifiers. Each base classifier uses a subset of traffic features to 

derive an independent decision about the network traffic. The decision obtained from 

each classifier is combined to improve the detection capabilities of the system. The base 

classifier makes use of the fuzzy belief k-NN classification algorithm. The goal with this 

detection system was to improve detection of attackers gaining access to systems and 

further exploiting vulnerabilities of that system. To further improve the detection 

capabilities by reducing the false positive rate, a data mining technique, the C4.5 decision 

trees algorithm (Quinlan, 1993), created rules for normal behavior. Using the normal 

behavior rules as a filter, the ensemble classifier generated an output indicating if the 

behavior is anomalous.  

 

A Collaborative Distributed Intrusion Detection System 

 Lin, Xiang, Pao, and Liu (2008) created an interesting distributed and 

collaborative method by which IDS in a large network, such as a single ISP, can share 

packet analysis data rather than replicating effort. To accomplish the notification and 

identification of previously analyzed packets, the system modifies the packets at the 

border routers to mark the packet as analyzed. It does so by using the Differentiated 

Services Code Point (DSCP) field, an IP header field typically used for Quality of 

Service (QOS) purposes. This field is initially populated with a value of zero. After an 

internal router analyzes the packet, that field is then set to one. This method of checking 

the packet only once internal to an autonomous system (AS) assumes that the routers and 

IDS inside a network can share signatures internal to that network. This methodology was 
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not done to increase the detection capabilities of the IDS but rather to improve the 

detection throughput throughout the network. The simulation of this technique indicated 

that an overall increase in throughput was observed. 

 

A Correlation Extension to CounterStorm-1 (CS-1) 

 Cullingford (2009) describes a scheme by which IDS can work together within a 

single distributed network by sharing alerts but does not describe a scenario with 

disparate networks. The system is implemented by modifying an existing commercial 

IDS called CounterStorm-1 (CS-1) (Trusted Computer Solutions, 2001). Those 

modifications shared alerts between the different networks to correlate the various alerts. 

The modification introduced to the CS-1 system was extending the correlation idea to 

contain information from disparate engines possibly running on disparate networks. To 

this end, the system implemented a new anomaly detection algorithm, Rogue Ports (RP), 

in CS-1 to share data between CounterStorm’s disparate internal detection engines, RP 

and Statistical Payload Anomaly Detection (PAYL). The two engines shared data at the 

Command Center level, the central control mechanism for the CS-1 system, though 

sharing between multiple CS-1 installations was also possible. Testing with CS-1 and the 

RP and PAYL engines showed that collaboration and cross-correlation among different 

engines was a powerful technique to reduce false positives. These correlation techniques 

were found to be effective and improve the CS-1 detection system so further efforts were 

expected to productize this capability into the system. 

 



 

 

32

Intrusion Detection Interoperability 

 Multiple frameworks for creating intrusion detection interoperability have been 

constructed and shared. Those frameworks have all focused on creating a collaborative 

network of disparate intrusion detection sensors. This would be beneficial in the scenario 

of a business evolving in the choice of their typical IDS as time went on leading to 

multiple different IDS existing at the same time. The Common Intrusion Detection 

Framework (CIDF) is the earliest example (Kahn, Porras, Staniford-Chen, & Tung, 1998; 

Staniford-Chen, Tung, & Schnackenberg, 1998). As far as status on this work, Staniford-

Chen most recently publicly posted that this work was never intended to create a standard 

and is currently dormant (Staniford-Chen, 2008). 

 Subsequent to CIDF, an Internet Engineering Task Force (IETF) working group, 

Intrusion Detection Exchange Format Working Group (IDWG), was created. This 

working group's mission was "to define data formats and exchange procedures for 

sharing information of interest to intrusion detection and response systems, and to 

management systems which may need to interact with them" (Erlinger & Staniford-Chen, 

2002). This working group appears to be idle since 2002 with no further action taken. 

The results of the working group have been published as IETF Request For Comments 

(RFC) 4765 (Debar, Curry, & Feinstein, 2007), 4766 (Wood & Erlinger, 2007), and 4767 

(Feinstein & Matthews, 2007).  

 Reviewing the documentation that is still available from both the CIDF and IETF 

intrusion detection working group, it is apparent that the scope of the attempted solution 

is very broad. The contributors to the proposed standards had attempted to create a 

method by which all IDS could work in a concerted manner while still processing data in 
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a distinct manner. Their specifications allowed the systems to command other systems 

and specify the actions and reactions that should occur. This goal would require the 

participation of all IDS creators, both commercial and academic, to ensure that the 

requirements of the standard were maintained and interoperability of the IDS was 

available. The two bodies achieved significant milestones in defining the IDS messaging 

scheme but never took the task to completion. 

 

Areas of Research Directly Relevant to This Research 

 This section focuses on research that provides the foundation for the concepts and 

methodologies that will be employed in this research. First, detection systems using 

payload anomaly detection to detect attacks are discussed. This is followed by an analysis 

of some specific techniques that were incorporated into this dissertation research.  

 

Early Payload Analysis Systems 

 In a system proposed by Kruegel, Toth, and Kirda (2002), a detector can make 

use of application layer protocols to identify anomalous traffic. By monitoring protocols 

such as HTTP, DNS, SMTP, and FTP, that covers a large portion of all anonymous 

traffic available on the internet. The prototype system specifically modeled traffic from 

the DNS and HTTP protocols. In the evaluation of this approach, one of the factors 

considered was the payload distribution. It was hypothesized that the distribution of a 

payload is not evenly distributed and each protocol has a distinct distribution that can be 

evaluated against. This approach was shown to have limited success. 
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 In the system LERAD, anomaly detection was extended to the payload (Vargiya 

& Chan, 2003). These researchers discussed the rationale as to why it is more reliable to 

evaluate payloads without making use of explicit knowledge of the protocol 

specifications. A primary motivation for this lays in the challenge of hard-coding the 

specification for each protocol. Further, the nature of protocols and their constant change 

means that this specification must be maintained and regularly updated. The usage of four 

distinct algorithms on marking boundaries within the payload was evaluated in this work. 

Within each pair of boundaries lies a token that can be used to model the behavior of the 

payload. It is these tokens that are analyzed for anomalous behavior. 

 These two early payload analysis systems set the foundation for later payload 

analysis systems. Prior to this point, as discussed in the previous subsection, most 

network-based intrusion detection was focused on headers rather than the application 

layer content or payloads. The focus on payload analysis represents a shift in detection 

strategies.   

 

Payload Analysis 

 The PAYL algorithm created an intrusion detection system capable of detecting 

0-day worms and creating signatures based on those worms for detection elsewhere 

(Parekh et al., 2006; Wang et al., 2005; Wang et al., 2006). Their system detects worms 

through anomalous behavior, namely the propensity for worms to repeat uncommon 

behaviors on certain ports in a nature that is unusual for the network being monitored. 
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Further, worms tend to have the same traffic repeated on both ingress and egress. Once 

an attack is identified, the algorithm creates a static signature for detection of this attack.  

 PAYL has a mechanism used to share attacks without oversharing and violating 

the privacy of the sharing parties. To do so, the payloads are compared between different 

sites to confirm the existence of an attack rather than purely sharing information about an 

attack. Should two sites share payloads that are sufficiently similar, the attacks are 

considered to be confirmed and the signature is more trusted and reliable. The methods 

discussed for the comparison of attacks are String Equality (SE), Longest Common 

Substring (LCS), Longest Common Subsequence (LCSeq), Manhattan Distance (MD), 

and LCS of Z-String (Zstr) (Wang et al., 2005).  

 String equality is a method by which two strings are compared for an exact match 

(Wang et al., 2005). As applied to the problem of worm detection, the strings compared 

would be the payload coming in and the payload going out. If the payloads are the same, 

then a worm is likely detected. The challenge with SE is that it is a very strict detection 

method. If a single byte differs between the two payloads or the packet is fragmented 

differently, then the match will not be found. 

 The Longest Common Substring method behaves in a similar manner as SE but 

rather than requiring the full string to match, there can be substrings matching  (Wang et 

al., 2005). This makes the method less exact than SE but allows it to overcome the 

problem of fragmentation. With longer matching substrings comes higher confidence in 

the match. However, the challenge with this methodology is that it is computationally 

expensive to execute. 
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 The Longest Common Subsequence method is similar to LCS with the difference 

that the subsequence does not have to be a contiguous block of characters as in the 

substring  (Wang et al., 2005). The advantage of this approach over LCS is that it can 

detect a polymorphic worm. However, there is also the risk of increased false positives. 

To prevent the sharing of private information and only allow sharing of potential 

worm information, the two sites compare the potential attacks to look for confirmation 

using a reduced form. This removes the first three metrics, SE, LCS, and LCSeq, from 

consideration as useful comparisons using those metrics because they require actual full 

content to do a comparison. The remaining methods are MD and Zstr. 

The MD method requires a byte distribution of the payloads be exchanged 

between the two sites  (Wang et al., 2005). The distributions are considered similar if 

they have a small MD. The actual MD is computed as the distance between two points 

measured by only taking paths consisting of right angles (Black, 2006). This distance 

measure originated from considering the grid-like streets of Manhattan. When computing 

a path between two points, since one cannot traverse city blocks diagonally, the distances 

between two points are equivalent across many distinct paths consisting of only right 

angle turns. 

The Zstr method is actually an LCS against the Z-String of the two payloads  

(Wang et al., 2005). The Z-String is defined as the 1-gram frequency distribution ordered 

by rank. Essentially, this is a descending ordered frequency list of distinct bytes. The 

LCS is performed against the Z-string providing the longest substring in common 
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between z-strings. This in turn provides a similarity amongst the distributions of the two 

payloads.  

To perform the payload analysis, PAYL extracts n-grams  from the payloads. An 

n-gram is a sequence of n sequential bytes (Shannon, 1951). The n-grams are statistically 

analyzed to determine the distribution. This mechanism is language independent and 

requires no parsing, no interpretation, and no emulation of the content. In other words, 

this mechanism can function as the detection mechanism on its own. The original usage 

for n-grams was in language independent categorization of text, essentially determining 

the similarity of one block of text to another. The concept of n-grams continues to be a 

common theme in payload anomaly detection and will be seen again in the systems 

discussed later as well as in the system introduced in this dissertation research.  

In PAYL, the n-gram is specifically extracted from the payload and the value of n 

is set to 1, essentially making 1-grams or single bytes. Then a basic statistical analysis is 

performed on the 1-grams storing their mean and variance each in a 256 element vector 

(256 being the full set of symbols used to represent the content of a payload). To make 

use of this data, PAYL trains on these values with normal traffic and establishes 

thresholds. If those thresholds are exceeded during detection, an alert is generated. The 

conclusion is that content-based alert correlation is a promising direction for intrusion 

detection. By sharing attack data between sites, stronger defense against attacks and 

better identification of attacks is possible. 

 



 

 

38

Anagram 

 Anagram (Wang et al., 2006) was built by the same creators as PAYL.  The goal 

of Anagram was extending the capabilities of payload anomaly detection to defeat a 

weakness in PAYL identified by Kolesnikov, Dagon, & Lee (2006). This weakness was  

a mimicry attack, a way by which attackers can cause their attack traffic to mimic the 

byte distributions of normal traffic. To defeat this attack, Anagram makes use of n-grams 

with values of n greater than 1.  

To illustrate the value of using n-grams with values of n greater than 1, there is a 

discussion about the construction of buffer overflow attacks. Considering the nature of a 

buffer overflow attack, the buffer is typically overflowed with a single character repeated 

many times (J. P. Anderson, 1972). However, the choice of a single character repeated 

many times is one of convenience and not necessity. The characters repeated are simply 

needed to fill space and can be replaced with randomized characters if desired or even a 

construct such as a NOP sled, a sequence of no operation byte code commands. To avoid 

the propensity of looking for the buffer overflow mechanism, the detection mechanism 

used invariants in the packet payload that will always be present for the attack to work. 

These invariants are exploit code, a sequence of commands, or a URL. By identifying 

these invariants through the higher value of n in n-grams, the system will mark the 

packets as anomalous and create an alert. 

A risk of using higher values of n in the n-grams is that the space needed grows 

exponentially with n. To reduce this large amount of space, the system makes use of a 

Bloom filter (Bloom, 1970) to store the features of the n-grams. A Bloom filter operates 

by having an array of bits initially with a value of 0 and a set of hash functions with 
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results that correspond to the elements of the array. For every element of the set to be 

recorded in the Bloom filter, it is run through each of the hash functions and the 

corresponding array bit is set to 1. This leads to a situation where multiple hash bits are 

set to 1 and there may be overlap. In cases of overlap, the bits remain set to 1. To 

determine if an element is part of the set, the element is run through the hash functions 

and the corresponding array bits are queried. If any bits are 0, the element is not present. 

If all bits are 1, the element may be present though there is a chance for false positives in 

this method. A visual example of a Bloom filter can be found in Figure 1. In this 

example, the Bloom filter is being checked for the presence of elements x, y, z, and w. 

The element z is not present in the original set because it hashes to a bit set to 0. 

However, both elements y and w hash to the same bit in the filter. This may be an 

indicator of a false positive or both elements may be present in the original set. The rate 

of false positives is dependent on the size of the array. A larger array is less likely to have 

false positives but utilizes more system memory while a smaller array reduces the 

memory footprint but is more likely to have false positives. 
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Figure 1. A sample Bloom Filter. 

 While testing Anagram, it became apparent that traffic tended to follow a 

distribution where a small amount of data was very common and a large amount of data 

was very infrequent as shown in Table 1. Their expectation was that a 0-day attack would 

have no occurrences prior to its detection by their system and that would indicate its 

presence. The reasoning behind this expectation is that the 0-day attack is exploiting 

some error condition in the application and this data has never been processed by the 

application prior to the introduction of the 0-day attack. This assumption creates risk 

outside of the controlled testing environment in that the 0-day attack could be pre-

existing and part of the training data. This would lead to it being learned as normal 

traffic.  
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freq count 3-grams 5-grams 7-grams 

>=5 58.05% 39.13% 32.53% 

2 to 4 22.17% 28.22% 28.48% 

1 19.78% 32.65% 38.99% 

Table 1. Anagram traffic mix (Wang et al., 2006). 

 To test Anagram, network traffic data was collected from outside of the authors’ 

department’s web servers. This data serves as the normal traffic that is used to train the 

system. For the purpose of test data, they use worm samples either collected by the 

research team or obtained from third-party repositories.  

 Anagram not only detects anomalies but can perform a known attack detection 

filter as well. Wang et al. used a list of rules obtained from Snort as well as a collection 

of virus samples to construct a Bloom filter of n-grams contained in this malicious set. 

This creates a profile of “known bad” traffic that they term a “bad content model”. To 

enhance their analysis, the system analyzed the bad data to identify known and expected 

n-grams and removes them from the set prior to being stored in the Bloom filter. This 

prevents the system from classifying a standard aspect of the protocol as an attack. For 

example, an exploit may be delivered through a standard HTTP command consisting of 

the text “HTTP GET”. They would filter the “HTTP GET” command out of the bad 

content model while focusing on the parameters of the command. 

 The bad content model is used to enhance the accuracy of the training results. The 

system considers any packets that match at a level of 5% or higher to the bad content 

model to be potentially malicious and discard it from the training set. The system makes 

use of the bad content model again during detection. If the system detects an n-gram that 
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has never been seen during detection and that n-gram is present in the bad content model, 

that detection is weighted higher in considering it malicious. 

 Due to the nature by which the system identifies malicious traffic, by identifying 

suspicious n-grams, a side effect of the system is that it can generate signatures of the 

malicious traffic at no additional cost. The system can make use of the suspicious n-

grams to generate a signature identifying those suspicious n-grams. To create these 

signatures, it makes use of a wildcard and create a packet specification that has each 

suspicious n-gram identified separated by the wildcard. Further, the Bloom filters could 

be shared between networks allowing for the detection mechanism to be shared with a 

reasonable expectation of privacy. This expectation of privacy is derived from the use of 

one way hashes and the set of all possible n-grams being so large. A collaborating site 

could make use of those Bloom filters to identify if suspicious n-grams have been 

detected elsewhere. 

 To combat the criticism against PAYL regarding its susceptibility to mimicry 

attacks, Anagram was tested against a polymorphic engine (Kolesnikov et al., 2006). The 

polymorphic technology they used was intended to have malicious traffic blend in with 

normal traffic. It accomplished this by mimicking normal traffic through padding the 

malicious strings with benign strings. Anagram performed well in detecting these attacks 

because the presence of the malicious strings meant that the n-grams of interest were still 

present despite the added noise of the benign strings. However, the bad content model 

approach did not benefit in this area of detection because of the modification to the n-

grams contained in that model. Additionally, Anagram was tested against CLET-

generated worms (Detristan, Ulenspiegel, Malcom, & Underduk, 2003). It was found that 
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the system performed well in detecting the CLET-generated worms because CLET is 

simply encrypted content rather than different content.  

 

Multiple Classifier Payload-based Anomaly Detection (McPAD) 

 The McPAD system (Perdisci et al., 2009) refines the n-gram detection approach 

presented in PAYL and Anagram. The goal of anomaly detection using payload analysis 

remains the same. Building upon the PAYL and Anagram method of detecting n-grams, 

McPAD makes use of the n-grams differently. Rather than using a fixed size of 1 for n or 

varying sizes of n as in Anagram, McPAD uses a fixed value of n at 2. Again differing 

from the prior model, the bytes used to construct the n-gram are not necessarily 

consecutive. They are separated by some distance that is referred to as ν which represents 

the distance between the two bytes. This construction is called a 2ν-gram. Using multiple 

values of ν, a set of 2ν-grams is useful in that it can represent a richer feature space than 

the standard 2-gram by providing data on the structure of the payload beyond the adjacent 

bytes. Further, this method uses a fixed amount of space for each value of ν of 256
2 

with 

2 representing the value of
 
n in use. Using a higher value of n would increase the space 

used exponentially. 

 To reduce the dimensionality of the feature space, the system used a clustering 

algorithm. The inspiration for this algorithm was drawn from the paradigm of text 

classification in selecting an approach. To fit this paradigm, n-grams are considered to be 

the words and the payload is considered to be the full document. Typically, in the text 

classification paradigm, training only uses the words that are present. However, the 
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presence of an n-gram in the training set is not sufficient to exclude the n-grams not part 

of the training set. This is due to the expansiveness of the set of all n-grams and the 

variability of training data. In other words, it is very likely that any given training set will 

not contain all possible “normal” n-grams. If this were the case, there would be no need 

for complex classification algorithms and IDS could simply measure for the presence of 

certain n-grams.  

 To classify each payload as benign or anomalous, the system makes use of the 

varying parameter ν and the dimensionality reduction clustering algorithm to have 

different representations of each payload in different feature spaces. Each of those 

representations has a model and classifier constructed. The set of all those classifiers is 

combined to form a Multiple Classifier System (MCS) as shown in Figure 2. In an MCS, 

each of the classifications has a vote on whether the analyzed payload is benign or 

anomalous (Xu, Krzyzak, & Suen, 1992). The votes are combined by using the average, 

product, minimum, and maximum probabilities. Once combined, the determination 

comes from comparing the result with a threshold. If the probability exceeds the 

threshold, then the packet is considered anomalous. 
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Figure 2. Overview of McPAD multiple classifier system (Perdisci et al., 2009). 

 The usage of an MCS for McPAD can be understood by decomposing it into its 

component parts. The concept of anomaly detection is a two-class classification problem 

where one class is well known, the normal traffic, and the other is poorly sampled, the 

anomalies. In this case, the approach best used is one of one-class classification. In one-

class classification, the well-known group is used to identify those members not part of 

that group. This paradigm best fits the typical anomaly detection mechanism of taking 

unlabeled training data (data that does not have the attacks identified) and detecting 

anomalies on the network. The specific one-class classification technique in use in 

McPAD is the one-class Support Vector Machine (SVM) (Scholkopf et al., 2001). This 

technique was selected by Perdisci et al. because of empirical evidence about the strength 

of this technique in text classification problems. The SVM technique takes a set of data 

points and constructs a hyperplane intended to be used to separate the set of data points 

into two distinct sets. 
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 Perdisci et al. provides a very thorough description of their experimental 

approach. A large benefit to this dissertation research is that they chose to share their test 

data. Their test data includes a full set of attacks and the variations of those attacks. They 

limited their testing to the HTTP protocol because of the difficulty they observed in 

obtaining comprehensive sets of attacks for other protocols. For training data, this 

experiment used the typical DARPA set, but also makes use of a specific data set 

consisting of traffic to and from their college’s web server.  

 For the McPAD attack data, the data set began with non-polymorphic HTTP 

attacks made available by Ingham and Inoue (2007). They add to the attack data set an 

additional attack that exploits a vulnerability in the Windows Media Service (Perdisci, 

Gu, & Lee, 2006). In total, the set has 66 HTTP attacks. Of the attacks, 11 are shell-code 

attacks. Other attacks fall into other categories such as denial of service. Further, 8 of the 

11 shell-code attacks were used to create 96 CLET polymorphic versions of those 8 

chosen shell-code attacks. Of the shell-code attacks, 3 were chosen to be used in a 

polymorphic blending attack (PBA) (Fogla & Lee, 2006; Fogla, Sharif, Perdisci, 

Kolesnikov, & Lee, 2006). A tabular form of this data has been replicated as Table 2.This 

data set is fully available through a McPAD project web page (Perdisci, 2009). These 

attack sets were incorporated into this dissertation research’s experiment discussed later. 
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Type Attacks Attack Packets 

Generic 66 205 

Shell-code 11 93 

CLET 96 792 

PBA 6,339 71,449 

Total 6,512 72,539 

Table 2. The attacks dataset characteristics of McPAD (Perdisci et al., 2009). 

 The results of testing showed that McPAD outperformed PAYL in detecting the 

shell-code attacks and polymorphic shell-code attacks. In general, McPAD was able to 

detect attacks better than PAYL as the false positive ratio decreased. For the PBA, 

McPAD was able to detect the attacks when they were spread over a low number of 

packets. For larger numbers of packets, neither detection system was capable of detecting 

the attacks. Computational results showed that the performance of PAYL was 

significantly better than McPAD. However, McPAD was a proof of concept written in 

Java that could be optimized for better performance. 

 

Spectrogram 

 Spectrogram takes a slightly different approach to attack detection and payload 

analysis than previous payload anomaly detection systems (Song et al., 2009). 

Spectrogram focuses on defending a specific web server against attack. To do so, it trains 

a specific model against that server to learn the legitimate traffic types. However, 

Spectrogram was intended to improve upon PAYL’s inability to scale to higher n-grams 

and to improve upon Anagram’s inability to handle dynamic content as is the case in web 
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traffic. To achieve these goals, it uses Markov Chains (Markov, 1971) to handle the 

detection of attacks. 

 Spectrogram operates by focusing on the application layer, specifically the HTTP 

requests. Spectrogram is protocol-aware and thus can parse HTTP and break down the 

requests into their component pieces. Because Spectrogram focuses explicitly on HTTP 

traffic, Markov Chains were chosen as the analysis mechanism because of its ability to 

consider the position of the content in the HTTP traffic. Markov Chains are a set of states 

that are memoryless in the sense that they only depend on the current state and do not 

depend on a past state. For each potential state change, there is a probability associated 

with it. To enhance their detection capability, mixtures of Markov Chains are utilized 

which is a fundamentally similar approach to MCS as described in the McPAD system.  

 Song et al. tested Spectrogram against the PAYL and Anagram systems. In 

testing, it was observed that a larger value of n in the n-grams increases the detection 

capabilities of the system. Test results showed that the system performed better than the 

prior systems, detecting more attacks at lower false positive rates. However, even more 

notable is that it succeeded at detecting the semantic attacks, such as cross-site scripting, 

better than the other systems. This strength in detection is due to the system’s HTTP-

aware design. An interesting design consideration that can be used to improve results is 

that the system is capable of whitelisting, allowing certain known good traffic through 

without marking it as a possible attack. 
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Hidden Markov Model Payload Analysis (HMMPayl) 

 The Hidden Markov Model Payload Analysis (HMMPayl) (Ariu et al., 2011) 

builds off of the methods used in McPAD and takes it in a different direction. Where 

McPAD used SVM in the classification of packets, HMMPayl makes use of Hidden 

Markov Models (HMM) (L. E. Baum & Petrie, 1966; Rabiner, 1990).. Both models make 

use of an MCS to combine their classifiers to create a higher confidence in the 

classification results. Also of interest to this dissertation research is that the testing of 

HMMPayl is directly compared against McPAD even using the same data. The testing 

methodology of HMMPayl was adapted for use in this dissertation research. 

 The HMM is a model that defines states and their transitions (L. E. Baum & 

Petrie, 1966; Rabiner, 1990). As the name implies, some of those states are hidden or 

unobserved. From each state, there is a transition to the next state and each transition has 

an associated probability. The only information that factors into that probability of the 

next state is the current state. The probability in a HMM is only affected by the current 

state and not by a past state or a future state. An advantage of using an HMM in the 

application of anomaly detection is that they are robust against noise allowing the overall 

detector to be robust against noise. 

 As a tangent, a prior detection system called HMM-Web (Corona, Ariu, & 

Giacinto, 2009) was created by members of the same lab as HMMPayl. HMM-Web 

makes use of HMM and payload analysis with a goal of detecting web application 

attacks. This detector uses knowledge of the HTTP protocol to detect specific attacks 

such as Cross-site scripting (XSS) (Fogie, Grossman, Hansen, Rager, & Petkov, 2007) 

and SQL Injection (Litchfield, 2005). This detector lays some of the foundation for 
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HMMPayl but is not considered deeply in this research because of its concrete nature of 

detecting attacks through knowledge of the protocol specification rather than abstract 

investigation of the payload traffic. The end result is similar to a web application firewall 

(Cheswick, Bellovin, & Rubin, 2003) that is also capable of detecting some 0-day 

attacks. 

 Ariu et al. tested the HMMPayl system in a manner similar to the way Perdisci et 

al. tested the McPAD system. Ariu et al. used the same datasets as Perdisci et al. as well 

as an additional dataset that included XSS and SQL injection attacks. The results of the 

HMMPayl system were compared to the McPAD, HMM-Web, and Spectrogram systems. 

In testing against the McPAD system, HMMPayl proved to be a more accurate detector. 

When compared against Spectrogram, HMMPayl performed better at low false positive 

rates but was outperformed by Spectrogram at higher false positive rates. An example of 

the results of all four systems when tested against the XSS-SQL injection attack dataset 

can be found in Figure 3. However, the HMMPayl approach had with it a high 

computational cost. One way to overcome this was to make use of a low level language 

such as C (Kernighan & Ritchie, 1978) to implement the system rather than the scripting 

language chosen for the proof of concept. Additionally, employing the concept of random 

sampling 
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Figure 3. HMMPayl test results against the XSS-SQL Injection test set (Ariu et al., 2011). 

 

could aid in reducing the computational cost. Another suggestion for improvement was 

considering the payload length in the analysis. Since payloads can vary in length, 

maintaining different models for different lengths may create a more accurate detector.  

An important note considered in this dissertation research regarding HMMPayl is 

that it functions exclusively at the packet level and does not reconstruct HTTP sessions. 

This method of evaluation must be considered when evaluating the detection rate. An 

example might be that all benign requests are a single packet while all attacks span 

multiple packets. Compared against a detector that does reconstruct HTTP sessions but 
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has the same detection capabilities, the results would be skewed in favor of the packet-

based detector over the session-based detector. This is due to the packet detector 

reporting multiple detections for the same session while the session detector only reports 

a single detection. Similarly, a packet detection mechanism that does not reconstruct 

sessions could be evaded through evasion attacks such as those presented by Ptacek and 

Newsham (1998). 

 

Anomaly Detection of User Browsing Behaviors 

 User browsing behaviors across a web site as a whole tend to be fairly 

predictable. Using the hidden Markov model, it was shown that it is possible to model the 

browsing behavior and detect anomalies when the browsing behavior varies from the 

normal behavior (Yi & Shun-Zheng, 2009). The model was used for detecting distributed 

denial of service attacks utilizing the application layer they termed “App-DDoS attacks”.   

 A user’s browsing sequence is described by three elements: the HTTP request 

rate, the page viewing time, and the requested sequence of pages. The system assumes 

that an attacker can mimic a user’s request rate and page viewing time but not the 

sequence. The sequence of a user can be very dynamic and an accurate simulation of that 

behavior in scale is unlikely. Thus, the model focuses on modeling the sequences. By 

modeling typical users’ sequences, a Markov model can be constructed allowing for the 

behavior that does not fit the model to stand out as anomaly. The model yielded results of 

approximately 98% detection with a false negative rate of approximately 1%. This 
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approach to attack detection was used in this dissertation research to create a layer of the 

attack detection system. 

   

Kolmogorov–Smirnov Test 

 The Kolmogorov-Smirnov test is a statistical test that can be used to determine if 

a sample matches a distribution (Kolmogorov, 1933; Smirnov, 1948). Additionally, a 

two-sample version of the test exists which can be used to determine if two samples are 

derived from the same distribution. The Kolmogorov-Smirnov test is a very useful test 

for comparing samples because of certain characteristics. One significant characteristic of 

the Kolmogorov-Smirnov test is that it makes no assumptions about a distribution 

whether the distribution is normal or not normal. However, if data can be assumed to be 

normal, there are tests that can provide more sensitive results. Because of the nature of 

the test, it compares more than just a mean and variance and actually compares the entire 

distribution by examining the location and shape of the empirical cumulative distribution 

functions of the two samples.  

 The Kolmogorov-Smirnov test has applications in intrusion detection previously 

(Caberera, Ravichandran, & Mehra, 2000; Estevez-Tapiador, Garcia-Teodoro, & Diaz-

Verdejo, 2004). In Caberera et al. (2000), the test was used to determine if statistical 

values related to both normal and attack data have the same distribution. The test was 

used not as an intricate part of the detection mechanism but rather as a characteristic of 

the design of the detection system. In a system by Estevez-Tapiador et al. (2004), the 

Kolmogorov-Smirnov test was used to determine if the mean and standard deviation for 
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each symbol in HTTP request payloads was significant. Additionally, the Kolmogorov-

Smirnov test was used to perform the final classification if a packet was normal or 

anomalous.  

The usage of the Kolmogorov-Smirnov test in the system created in this 

dissertation research used it in a distinct and novel way to evaluate if test response 

payloads for a given URL had the same distribution as trained response payloads. This 

differs from the prior usage of the test in literature where it is a methodology evaluation 

tool and not a detection tool.  This statistical test was specifically selected because of its 

non-parametric characteristics and its capability to perform a comparison of distributions, 

in this case against payloads.  

 

  



 

 

55

 

Chapter 3 

Methodology 

 

Overview 

 The research method that was used to perform this research was experimental 

design. This research created an anomaly detection system named the Layered Hidden 

Markov Model Payload Anomaly Detection System (Layered) then tested it against 

network traffic consisting of both attacks and benign normal traffic. This methodology 

of creating a system and testing it is typical of how a new intrusion detection system is 

created and evaluated. Further, the methodology can be expanded to increase 

functionality or add additional detection capability to the system. To compare and 

improve the system created through this research, the newly created system was 

executed in parallel with existing peer-reviewed and accepted systems considered to be 

the state of the art using the same test data. 

 The intrusion detection system was created as a network-based system. It is a 

system created in software that resides on a single host machine. At the highest level, the 

system behaves like previous network-based intrusion detection systems in detecting 

attacks and creating alerts when that attack detection happens. The system follows the 

general detection mechanisms as described by the Spectrogram (Song et al., 2009) and 
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HMMPayl (Ariu et al., 2011) systems focusing on the payload content for anomaly 

detection.  

System Design 

The system consists of three detection layers with the results of each combining to 

classify traffic as an anomaly or normal. The first layer is a high level navigation model 

similar to that described in Yi and Shun-Zheng (2009). The second layer is a request 

payload analysis method similar to the one implemented in the HMMPayl system (Ariu 

et al., 2011). The third layer is an analysis that will consider both request and response 

traffic rather than just request traffic. The final piece is the combination layer that takes 

the output from all of the layers and yields a final determination as to whether the traffic 

being evaluated is anomalous or normal. All of these layers were constructed for this 

dissertation research and either represent new analysis methods or the enhancement of 

previously used analysis methods.  

The general form for the analysis layers is the same for all three layers. Each layer 

has a training and testing procedure. For the training procedure, the algorithm will 

process through all the network flows provided from the training data and then perform 

analysis once the end of the training data has been reached. For the testing procedure, the 

algorithm will process each flow upon receipt. However, the Navigation Layer and the 

Request Layer both use the Hidden Markov Model (L. E. Baum & Petrie, 1966; Rabiner, 

1990) for analysis while the Request-Response Layer uses the Kolmogorov–Smirnov test 

(Kolmogorov, 1933; Smirnov, 1948).  

 For each layer, an element of the packet is being analyzed. For the Navigation 

Layer, that element is the requested URL. For the Request Layer, it is the request 
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payload. For the Request-Response Layer, the elements are the requested URL and the 

associated response payload. The element under analysis in the layer is turned into a 

unique integer. For example, a URL of “index.html” has a value of 0 while “about.html” 

has a value of 1. For the Request Layer, that element is a byte within the payload which 

can be readily converted to an integer value. Repeated instances of an element will use 

the previously established value. These integer values are collected in a sequence across 

the flow. For the Request-Response Layer, since it is not utilizing the Hidden Markov 

Model, the elements being analyzed are preserved in their original form: a URL and a 

payload consisting of multiple bytes. 

 The sequences for the Navigation Layer and Request Layer are collected in a set 

of sequences for the training procedure and used to train a Hidden Markov Model using 

the Baum-Welch algorithm (L. Baum, Petrie, Soules, & Weiss, 1970). At the conclusion 

of the training procedure, the trained model is written to disk. The general form of a 

trained model is shown in Figure 4. 

 

 

 

 

 

 

 

Descriptive line indicating the number of states 

State number 

 Pi (π) value – The probability of this being the initial state 

 Aij value array – The probability of transitioning from state i to state j. 

Probability distribution array – the type of distribution followed by the 

probability of an element belonging to this particular state 

Figure 4. The general form of a trained Hidden Markov Model. 
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An actual example of a trained Hidden Markov Model is in Figure 5. 

 

 

 For the testing procedure, the system will load the previously trained model.  

 

 

 

 

The Layered Hidden Markov Model Payload Anomaly Detection System tests for the 

probability that a given sequence was produced by the model. Consider a sample 

sequence of 1, 2, 3, 4, 5, 6, 7, 8. The general form of a set of sequences of n-grams where 

n equals 5 follows: 

{(1, 2, 3, 4, 5), (2, 3, 4, 5, 6), (3, 4, 5, 6, 7), (4, 5, 6, 7, 8)} 

Each element of the set yields a probability and the presented result is the average of the 

probabilities across the sequence. The probability of a set will be skewed lower if the 

individual sequences have probabilities of 0 indicating that the training model has never 

seen them. The actual n value used in the n-grams of the system is 10 for the Request 

Layer and 2 for the Navigation Layer. The value of 10 was shown in HMMPayl to be 

optimal with the best tradeoff between detection accuracy and memory utilization across 

a payload (Ariu et al., 2011). This was validated through empirical testing. The value of 2 

HMM with 5 state(s) 

 

State 0 

 Pi: 0.2 

 Aij: 0.2 0.2 0.2 0.2 0.2 

 Opdf: Integer distribution --- 0.001 0 0 0 0 0 0 0 0 0 0.018 0 0 0.018 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.052 0 0 0 0 0.003 0.001 0 0.004 

0.004 0.004 0 0.005 0.013 0.045 0.022 0.023 0.03 0.024 0.017 0.018 0.016 

0.007 0.007 0.009 0.009 0.017 0.015 0 0.012 0 0 0 0.019 0.003 0.014 

0.008 0.012 0.006 0.005 0.006 0.008 0.002 0.004 0.008 0.008 0.009 0.004 

0.008 0.003 0.007 0.01 0.014 0.003 0.001 0.002 0.001 0 0 0 0 0 0 0.009 0 

0.03 0.004 0.033 0.011 0.051 0.008 0.014 0.011 0.03 0.001 0.004 0.014 

0.016 0.025 0.029 0.021 0.002 0.031 0.022 0.035 0.012 0.004 0.015 0.002 

0.001 0.004 0 0.002 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Figure 5. An example of a trained Hidden Markov Model. 
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for the Navigation Layer was chosen because it best captures the nature of a transition 

between web pages. In other words, the Navigation Layer represents the likelihood of a 

user browsing from one web page to the next given the trained likelihoods of web 

browsing. This layer is not analyzing a full sequence of web pages as the Yi and Shun-

Zheng system did. The Request Layer is the likelihood of a flow containing a given 

sequence of 10 bytes in a particular order in a sliding window across an entire payload 

given the contents of payloads trained into the model. If a transition between two web 

pages does not exist in the training data, the probability of that transition will be 0. 

Similarly if a sequence of bytes does not exist in the training data, the probability of that 

sequence will be 0. However, since a probability of 0 could be a training problem, the 

averaging helps to eliminate any false positives caused by bad training data thus requiring 

multiple low probability events to bring the average down and cause an anomaly to be 

identified.  

The probability of a given sequence coming from a model is derived from the 

information contained in the model combined with the sequence itself. Considering the 

sample model displayed previously, the Opdf value is the probability of a specific value 

belonging to that state. Recall that all values are discrete numbers uniquely assigned to 

some element of a flow so these probabilities are also discrete and not a continuous 

function. The Aij value is the probability of a transition from state i to state j. The Pi 

value (π) is the probability of starting in a given state. Because the set of values provided 

to the model is finite and discrete, it is safe to assume that the typical probability of a 

normal sequence tested against a model with a lower number of states will be larger than 

that of a normal sequence tested against a model with a larger number of states. Therefore 
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it is not inherently meaningful to compare the probability values of two different state 

size models against each other.  

 

Navigation Layer 

The first layer, the navigation analysis, focuses on analyzing the order in which 

web pages are requested. A depiction of the scope of this layer is in Figure 6. The URLs 

of web pages requested are fed into a Hidden Markov Model with the goal of 

constructing a model of the typical navigation patterns throughout the web site. The 

output is the likelihood of a user having browsed in that manner. If the likelihood is low, 

the indication is that this is an atypical browsing pattern and therefore anomalous. That 

feedback value is fed into the combination layer.  This layer differs from Yi and Shun-

Zheng’s work in a few key ways.  

 

Figure 6. The high level navigation analysis layer looks at the order of URLs requested 

by the client. 

 

For this layer’s analysis, the URLs are stripped of any command parameters such 

as “?getdoc=25”. This is done to generalize the URLs and aid in training and testing. For 

the example “?getdoc=25”, assume the purpose of the page is to retrieve some sort of 
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document and each integer value provided retrieves a different document. In this case, the 

base URL is a valid URL and the differentiation of each parameter value is overly 

specific creating the likelihood of poor results whereas generalizing the URL by 

removing the parameter keeps with the spirit of the layer. Yi and Shun-Zheng did not 

explicitly state that they generalized the URL so it is assumed they used the full URL.  

Further, this layer is only considering primary web pages such as HTML pages or 

ASP pages and not considering child objects such as images or scripts. This decision was 

made to eliminate false positives created by the various caching schemes in use such as 

proxies, browser-based caching, web accelerators, and content distributors. Depending on 

the placement of the sensor, the sensor may see all of the child object requests, none of 

the child object requests, or some fraction in between and all of those scenarios are 

potentially legitimate because of caching. However, the sensor will always see the 

primary web pages particularly in the case of a new request that would lead to an 

anomaly. Yi and Shun-Zheng considered all elements of web pages and not just the 

primary pages in their analysis. 

 

Request Layer 

The second layer, the request payload analysis layer, focuses on analyzing the 

contents of the payload in the requests. This layer follows the HMMPayl model and feeds 

the payloads into a Hidden Markov Model by breaking them up into segments derived 

from a sliding window. However, the key difference between the Request Layer and 

HMMPayl is that the payloads used in the Request Layer are combined across TCP 

payloads while HMMPayl used each individual packet’s payload. A depiction of the 
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scope of this layer is in Figure 7. The size of the sliding window is a configurable 

parameter. Parameter values determined empirically through the HMMPayl research 

were used as a starting point for this development (Ariu et al., 2011). The output of this 

layer is the likelihood that the payload could have come from the constructed model. That 

value is fed into the combination layer. 

 

Figure 7. The request analysis layer looks at the payloads of the request. 

 

Request-Response Layer 

The third layer is an analysis of the request and response payloads. For this 

analysis, the input is the requested URL and the response payload in its entirety. A 

depiction of the scope of this layer is in Figure 8. The intention of this layer is to 

determine the likelihood that the response is a typical response and not the result of an 

attack such as a SQL Injection attack. For this layer, the only URLs considered are those 

that contain user-based input such as GET requests with parameters or POST requests. 

This layer also strips off any parameters for analysis. For example, a URL such as 

“/user_profile.php?user=john” would be considered for analysis but would be evaluated 

equivalent to “/user_profile.php?user=bob” because the parameters are stripped. 

The Request-Response layer differs significantly from the other two layers 

because it does not rely on the Hidden Markov Model for its analysis. Thinking about it 
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abstractly, analyzing an isolated sequence of two elements is not an effective use of the 

Hidden Markov Model. The rough equivalent of doing so would be asking, “Given URL 

X, is the response payload Y’ equal to trained response payload Y?” The answer to this 

question is very unforgiving and cannot account for dynamic web pages or unique user 

accounts. A more thorough analysis was created by the use of the Kolmogorov–Smirnov 

test performing an analysis of the bytes in the trained response payload against a test 

response payload. Using this test is equivalent of asking “Given URL X, do the bytes of 

response payload Y’ have the same distribution as trained response payload Y?” In the 

case of an attack that would cause a web server to provide new, different, or unexpected 

response data, this data would create a different distribution of bytes in the response 

payload that would be detected through this test. The result of this layer is fed into the 

combination layer. 

Client
Server

Request

Response
 

Figure 8. The request-response analysis layer looks at the payloads of both the request 

and response. 

 

Combination Layer 

The combination layer takes the results of all three detection layers and combines 

them to yield a final determination whether a packet is anomalous or normal. A depiction 

of the combination of all three layers is in Figure 9. The combination layer was chosen to 
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yield a determination of anomalous if any layer identified the given packet as anomalous. 

This provides the maximum sensitivity for the detection system and fits logically because 

the three layers do not significantly overlap in detection focus. 

 

Figure 9. The combination of all three layers yields the final determination whether 

traffic is anomalous or normal. 

 The Combination Layer’s output is a single determination of normal or 

anomalous. To achieve this determination, the system must interpret the inputs from each 

of the three analysis layers, the system requires thresholds for the analysis layers. For the 

Request Layer, the system performs a validation with normal labeled data to determine 

the threshold probability required to achieve a false positive rate specified by the user. 

For the Navigation Layer, the analysis is binary so a specific threshold is not necessary. 

For the Request-Response Layer, the threshold was determined empirically through 

analysis of data.  

 

Software Design 

The Layered Hidden Markov Model Payload Anomaly Detection System was 

created in software using the Java programming language (Gosling, Joy, Steele, & 

Bracha, 2005). Java was chosen from the perspective of simplicity and portability 
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allowing it to be easily used on different hardware platforms. The system created is not 

dependent on the underlying hardware with the stipulations that the hardware is capable 

of performing the processing requirements of the line speed parsing of the selected 

network traffic and capable of receiving data into the system at a modern line speed’s 

data rate. No special computer hardware was needed and all development and testing 

occurred using standard retail components. 

 A significant component of the system is that of network traffic processing. The 

network traffic processing component was handled by the standard libpcap traffic 

capture library (Jacobson, Leres, & McCanne, 1994) as translated to Java to become 

Jnetpcap (Bednarczyk, 2012). This library allows for both reading and parsing of live 

network traffic from an Ethernet interface as well as offline traffic stored in the pcap 

format as well as standard network interfaces. The system is capable of taking network 

attack traffic from any source device or system so long as it is in the standard pcap 

format. The pcap format is a frequently used standard for traffic capture data, therefore it 

allows for greater flexibility and sourcing of attack traffic among a wide variety of 

capture sources. 

 For performing the analysis, the system uses the Jahmm software library 

(François, 2006). Jahmm is a Java Hidden Markov Model library implemented 

following the theory of Hidden Markov Models. Jahmm was designed with the goal of 

ease of use and code readability making it very useful for research purposes. For the 

Kolmogorov–Smirnov test, the Java Statistical Classes were used (Bertie, 2004). This 

library includes a wide variety of statistical methods.  
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The system design is clearly delineated into four layers making it a natural 

candidate for execution on a quad-core system. The implementation took that into 

account to ensure that the system was efficient and timely. The system was designed to 

avoid deadlocks and allow for parallelization of the multiple layers of analysis. However, 

due to memory limitations in the test system, large training sets were executed through 

the analysis layers training routines in series rather than in parallel. 

 

Experiment 

 The test approach used in this research was similar to that of previous research of 

payload anomaly detection systems, specifically following the methodology laid out for 

HMMPayl. The experiment made use of two datasets consisting of normal baseline data 

and a third that was custom generated using WebGoat (OWASP, 2012). The first was the 

publicly available DARPA 1999 dataset. Despite the criticisms lodged against this 

dataset, it is a useful evaluation tool because it represents a commonality amongst the 

testing of most intrusion detection systems since it was released. The second dataset was 

captured from a Fortune 500 company. This dataset was captured through a network tap 

located outside of the firewalls and in line with the primary web server. Due to privacy 

reasons, the company has requested no attribution of the dataset. The third dataset was 

constructed using the WebGoat server.  

To test the detection capabilities of the system, multiple attack datasets were used. 

These attack datasets are targeting the specific detection capabilities of the different 

layers. The Navigation Layer specific set of attack traffic was constructed by manually 

creating navigation-based attacks and capturing the traffic. The Request Layer specific 
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set of attack traffic was sourced from the data provided by the McPAD project team 

(Perdisci, 2009). Their freely available attack dataset consists of multiple attacks as 

captured and the variants of those attacks. The base attacks in the McPAD dataset were 

sourced from a comprehensive study that constructed and tested various different attack 

detection mechanisms proposed in literature using a consistent data set of attacks 

(Ingham & Inoue, 2007). The Request-Response Layer specific set of attack traffic was 

constructed by manually querying web servers with a variety of inputs and capturing the 

traffic. 

To construct a comprehensive attack test set that would test all three layers of 

analysis in a natural browsing session, particularly the Navigation and Request-Response 

Layers, WebGoat was used to create a new attack data set. WebGoat is an intentionally 

vulnerable web server used for learning web-based penetration testing. It has various 

lessons that allow the user to learn attack skills across the spectrum of web attacks.  The 

WebGoat data set consists of a normal training set and an attack set. Both sets were 

constructed by navigating the WebGoat site following the same script. For the training 

set, legitimate inputs were provided. For the attack set, successful attack inputs were 

provided. For example, the “String SQL Injection” lesson had a successful legitimate 

input of “Erwin”. The successful attack input was “Erwin' OR '1'='1”. Both data sets are 

bidirectional filtered to consist only of the web application traffic. Table 3 presents a 

tabular view of the WebGoat data set. Attack packets were determined through manual 

analysis of the packet capture. Attacks in this data set consist of navigation-based attacks 

and input validation attacks (SQL injection and cross-site scripting). 
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 Training Set Attack Set 

Total Packets 2252 2644 

Request Packets 1160 1322 

Attack Packets 0 140 

Table 3. The packet breakdown of the custom WebGoat dataset. 

The training and test normal data were constructed from the Fortune 500 company 

data. This data is approximately 8GB per day of traffic. Because of the challenges in 

handling a data set of this size using standard tools, the data set was then split into chunks 

of 1,000,000 packets. Those chunks were then used for training or test data. When used 

for training data, the first 50,000 packets of a chunk were used to train the system (50,000 

was selected as a number that allowed the Request Layer to fit within memory constraints 

of the test system). The test data used the first 500,000 packets of a different chunk. The 

experiment results showed that these sizes were satisfactory for the testing performed. 

The results of the analysis layers were combined into the combination layer for a 

determination of whether or not the session represented anomalous behavior or normal 

behavior.  

The system was compared against the state of the art payload anomaly detection 

system, HMMPayl, which was shown to generally outperform all prior systems. Since 

HMMPayl is a request only system, the datasets required a request only copy be made. 

To ensure that testing was equivalent, the datasets of request only was reduced from the 

50,000 training packets and 500,000 test packets mentioned above to be only the 

appropriate portion of those packets that were requests. This number tended to be 

approximately a third of the total packets though this number was always determined 

exactly for each dataset. 
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To evaluate the system, the principle of Receiver Operating Characteristic (ROC) 

was employed (Green & Swets, 1966). The ROC is a graphical display of the sensitivity 

of a receiver. For a binary classifier, it plots the true positive rate against the false 

positive rate as the discrimination threshold varies. The worst case classifier is indicated 

by a line from the 0, 0 point to the 1, 1 point and represents the random chance results of 

guessing. This line is presented as a dashed line in the ROC charts. To mirror the results 

presentation of HMMPayl, the ROC curve will not have a false positive rate range from 0 

to 1, rather it will focus on the range from 0 to 0.1 or a false positive rate of 10%. This 

limits the presentation of results to those areas where the false positive rate is relatively 

low. In intrusion detection, the true positive is called the detection rate (DR) and the false 

positive rate is called the false alarm rate (FAR). The goal of intrusion detection is 

maximization of the DR and minimization of the FAR.  

 

Resources 

 This research required the usage of a computer capable of executing the software 

developed for this research and processing that data at a rate that is close to real-time. 

The system used consisted of an Intel Core i5-2500k processor and 8GB of RAM. 

Because the availability of hardware was limited, it was often necessary to improve the 

efficiency of the algorithms running on the system. One limit often encountered was the 

size of RAM. The size of RAM available created a limit on the size of the training set 

that could be used in the system. However, the results of testing proved to be satisfactory 

despite this limit. 
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 To complete the testing aspect of this research, valid network traffic was 

necessary to provide the basis for testing the detection capability of the system. This 

traffic must include both attacks and valid network data. The attacks were either sourced 

from the McPAD test data or created manually. Valid network data came from the 

Fortune 500 dataset described previously in the testing section and the DARPA 1999 

dataset which provides a comparison against other intrusion detection methods. 
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Chapter 4 

Results 

 

Data Analysis 

 The analysis of the results looks at the individual layers of the layered system in 

turn. Then the analysis focuses on the combined results of the three layers to analyze the 

overall performance of the system and the synergy of the three layers. The following 

results were all taken directly from the layered system created in this research. 

 

Navigation Layer 

 The Navigation Layer focuses on the analysis of the browsing patterns a user 

follows when browsing the web site. Web sites have links that allow users to traverse 

from one page to another. When an anomaly is identified by this layer, it is an indication 

that the path from one page to the next is unlikely according to the training data used to 

train the model. 

 Consider the following example constructed using actual data and model training 

with a sequence size of 2 using the system created through this dissertation research. 

Suppose a user visits the web site home page followed by viewing a company press 

release then visits the company about page. The probability derived from this model is 

0.022 of this sequence being legitimate. While this is a low probability, compare this 
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against a user now attempting to find a directory traversal vulnerability (Holub, 1986) 

and is trying arbitrary variations on a URL such as “/../../passwords.html”. Assuming 

good training data, these obvious attack URLs would not have been trained into the 

system during the training phase as they are not legitimate web pages that a user would 

visit through standard means. The user’s sequence of URLs visited in this case is two 

non-existent web pages or potential directory traversal attacks. The probability of this 

sequence being legitimate is 0.0 representing that this sequence could never have been 

generated from the trained model.  

Should this user desire to hide their actions, they could have repeatedly visited the 

home page by hitting refresh in their browser. Suppose the attacker performs refresh five 

times on the home page prior to attempting the directory traversal. The probability of 

simply refreshing the home page five times is 0.056 while adding in the directory 

traversal at the end only brings it down to 0.045. These seemingly illogical probabilities 

are a result of the navigation analysis taking place in sequences of 2. A model configured 

for larger sequences would identify the behavior of constantly reloading the home page 

as unlikely rather than taking each occurrence as independent. Suppose that the model is 

trained to a sequence length of 5. The probability of the five refreshes becomes 9.90E-4 

while the probability of the full sequence including the two directory traversals at the end 

drops to 3.30E-4.  

Considering the two previous probabilities, the ratio of 3 can be explained very 

neatly in that a sequence of 5 refreshes of the home page has a probability of 9.90E-4 

while adding 2 instances of browsing to non-existent web pages increases the total of 

number of sequences of 5 in the total sequence of 7 to 3. In other words, the probability 
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of the first 5 URLs, URLs 0 through 5, being browsed is 9.90E-4 while the probability of 

URLs 1 through 6 (including the first directory traversal) and URLs 2 through 7 

(including both directory traversals) are both 0. To average out the probability, the total 

probability is divided by 3 leading to a probability of 3.30E-4. Essentially, for every non-

trained web page visited in a sequence, the probability is 0 which is averaged in with the 

overall probability.  

Considering the probabilities discussed as a result of the Navigation Layer, it is 

apparent that this usage of the Hidden Markov Model is not sufficient for the purposes 

for anomaly detection. The probabilities are not sufficiently distinct between normal and 

anomaly and between different instances of sequences to make accurate determinations. 

However, with confidence that the training data encompasses all paths in which a user 

might legitimately traverse the web site, the model can be used in another manner which 

gives very accurate results. The system is configured to alert on all sequence probabilities 

of 0 which means those alerts are any attempts for a user to visit a web page that is not 

present in the training data. With incomplete training data, this analysis approach runs the 

risk of creating a very noisy alerting mechanism rife with false positives. With good 

training data, this layer is highly accurate and precise with its alerts. This layer is highly 

dependent on good coverage in the training data to be successful in detecting attacks. 

 

Request Layer 

 The Request Layer focuses on the analysis of the requests made to the web server. 

Standard HTTP requests follow a few patterns based on the request method. However, an 
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attacker might introduce unusual or atypical symbols into the request in an attempt to 

create an attack on the server. This layer focuses on the request at the individual byte 

layer and an anomaly indicates that the sequence of bytes in the request is unlikely 

according to the training data used to train the model.  

 The behavior of the request layer follows a similar methodology as the Navigation 

Layer but on a larger scale as most payloads tend to be relatively very large as compared 

to URL navigation sequences. Consider the simple case of a buffer overflow attack where 

the request is padded by 100 instances of the character A. Using a sequence segment size 

of 10, this means that there will be 91 instances of 10 character segments consisting 

entirely of “AAAAAAAAAA”. Assuming the padding sequence was never seen in the 

training data, the result would be 91 counts of a probability of 0. These results would be 

averaged with the probabilities of all the other segments of the request payload. This 

would significantly reduce the overall probability of the payload.  

Using the approach discussed in the Navigation Layer of relying on good training 

data and alerting on any 0 probability sequences is unlikely to be successful simply 

because the state space of all sequences of bytes is so broad that not all valid sequences 

may be trained into the model. In other words, legitimate sequences of bytes may exist 

that are not indicators of attacks but were not trained into the model meaning alerting on 

that sequence alone would be a false positive. 

 Since the Request Layer is so comparable to the analysis performed in HMMPayl, 

a direct comparison against HMMPayl can be performed. The HMMPayl detector was 

graciously provided by the creators of the system for use in comparison testing. To 

perform this comparison, the testing methodology of HMMPayl was adopted, using the 
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same data derived from the DARPA ’99 dataset as was used in HMMPayl testing for 

both training and normal data. The attacks used in comparison testing were the same as 

used in the Generic and Shellcode attack sets. However, when comparing the two 

systems as is, it became obvious that a direct comparison of the results was not 

meaningful because of the different interpretations of packets. The HMMPayl system 

treats each packet as an individual element while the Request Layer in this system 

handles reassembled TCP payloads as an individual element. This caused a disparity 

between the results in that HMMPayl reported results for attacks or normal packets 

multiple times when the Request Layer only reported one. This disparity was remedied 

by normalizing the HMMPayl results to have only one result per TCP payload as 

identified by the Request Layer. This normalization tends to lower the apparent 

performance of the HMMPayl system as compared to the performance reported in 

literature. However, this is not a criticism of the system’s detection mechanism but rather 

normalization to a different scale. 

 Once normalized, the results between the two systems tend to be comparable with 

the primary distinction that the Request Layer has a better true positive rate at a slightly 

lower false positive rate than HMMPayl. For the generic attack set, at lower false positive 

rates, the Request Layer shows an 86% detection rate performance improvement. At the 

higher false positive rates, the results tend to become more equivalent and are only 

approximately a 4% detection rate performance improvement over HMMPayl. For the 

shellcode attack set, the results follow a similar trend with the lower false positive rates 

having a greater performance gain. At the higher false positive rates, the shellcode attack 

set data has an equal detection rate of 0.91 at a false positive rate of 0.002. The results of 
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the comparison testing can be seen for the dataset referred to as Generic Attacks in Figure 

10 and for Shellcode Attacks in Figure 11. The convention of HMMPayl reporting is 

adopted with the Receiver Operating Characteristic graphs here in that the graph is 

presented with a logarithmic scale for the false positive rate and only for the range of 

0.0001 to 0.1 with 0.1 representing an arbitrary point where false positives outweigh the 

usefulness of the system. The “Layered” data series references the Request Layer in this 

system while the “HMMPayl” data series references the HMMPayl results. For Figure 

10, the chart shows the Layered system outperforming the HMMPayl system in the 

generic attack dataset with the difference in detection rate greater in the lower false 

positives range and the gap narrowing as the false positive range approaches 0.1. This 

performance gain can be attributed to the Request Layer recombining TCP streams into 

single payloads. 
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Figure 10. The ROC graph of the Layered system Request Layer as compared to 

HMMPayl for the Generic attacks dataset. 

 

For Figure 11, the Layered system outperforms the HMMPayl system in the lower false 

positive range and the two systems have equivalent performance at false positive rates of 

approximately 0.002 and higher. This performance gain can also be attributed to the 

Request Layer recombining TCP streams into single payloads. 
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Figure 11. The ROC graph of the Layered system Request Layer as compared to 

HMMPayl for the Shellcode attacks dataset. 

 

Request-Response Layer 

 The Request-Response Layer focuses on the individual transaction of a requested 

URL followed by a returned web page. In a normal, static web page case, requesting a 

URL will always return the same page. With a typical dynamic web page, results for a 

requested URL may differ. However, in the case of an attack, such as a SQL Injection 

attack in which an attacker enumerates the contents of a table in a database, the page 

returned may differ significantly from the normal pages returned. An anomaly in this 

layer indicates that the returned web page for a given URL differs significantly from the 

trained web page according to the training data used to train the model. 
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 The Request-Response Layer behaves differently from the Navigation and 

Request layers. It does not utilize the Hidden Markov Model for its training and testing. 

Rather, it trains to learn a distribution of bytes for a payload based on the requested URL. 

For every tested response payload, a probability is generated that the tested payload’s 

distribution of bytes is similar to the trained payload’s distribution of bytes. Consider the 

case when the trained and test web page response for the URL are identical. In this case, 

the distributions are exactly identical. The probability returned from the test is 1.0. That 

result is saying that the two distributions are equal which is intuitive since the data sets 

are the same. Consider the opposite end of the spectrum where a script is queried to 

randomly select and return a CAPTCHA image. When two different particular 

CAPTCHA images’ byte distributions are compared, the result is very unlikely with a 

probability of 5.32E-24 which means that the distributions have a low probability of 

similarity.  

 Using valid attacks against WebGoat (OWASP, 2012), a deliberately insecure 

J2EE web application, tests for Cross-Site Scripting and SQL Injection were created. 

These tests followed the lessons of “Stored XSS” and “String SQL Injection”. For the 

Stored XSS lesson, a JavaScript alert is stored in a user profile and then viewed by 

another user. The viewing of the infected profile containing the alert by the second user 

was measured to have a probability of 2.33E-8 as compared to the original viewing of the 

benign profile without the attack present. The String SQL Injection lesson has a field in 

which a user can view credit card numbers by last name when providing a valid last name 

but can be injected to display the whole table of credit card numbers. The viewing of the 

entire table as opposed to just the valid individual has a probability of 0.02. Alternatively, 
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viewing the data for a valid last name but not the same last name as was trained into the 

system yields a probability of 0.94. 

The next step for evaluating this layer was with blind SQL injection attacks. Blind 

SQL injection attacks are SQL injection attacks that do not provide direct results but 

rather provide a logical indicator if the SQL query is true or false. The web page is a 

simple login prompt that is vulnerable to SQL injection but does not provide the results 

of the query. The only indicator of success is that it allows a user to log in if the query 

evaluates to true. The trained case was a successful login. In the case of a successful 

login, the response page matches the trained case and the result is 1.0. In the case where a 

single tick mark (‘) is used to test for a potential SQL injection condition, the response is 

a database error message that significantly deviates from the standard login messages and 

yields a probability of 0.26. In the case of an unsuccessful login, a simple message stating 

there was an error logging in yields a probability of 0.33. In the case of a successful login 

through SQL injection, the probability is 0.99 which seems alarming because this layer 

failed to detect the attack. However, a blind SQL injection returns only success or failure, 

in this case by logging a user in or indicating an unsuccessful login. Therefore, the 

returned page for a successful SQL injection is virtually indistinguishable from a 

successful valid login and this result is expected. Further, when checking the results of 

the request layer, the requests containing SQL injection attempts are identified as the 

least probable requests meaning that the two layers are able to complement each other in 

this form of detection. 

Figure 12 shows a ROC curve for the Request-Response Layer as tested on the 

WebGoat attack data set. This curve was used for the selection of a probability threshold 
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value that can be used to determine if the result is anomalous or normal. The selected true 

positive rate of 0.5 yielded a threshold probability value of 0.40. All results with 

similarity probabilities less than 0.40 are classified to be anomalous. This threshold 

choice was used in the overall combination layer for classification of the results of the 

Request-Response Layer. Based on the goals of detection, this threshold might be 

modified to a different value and might not necessarily be the proper threshold value for 

all detection scenarios. 

 

Figure 12. The results of testing the Request-Response Layer with the WebGoat test set. 

 

Combination Layer 

 The Combination Layer represents the combination of the results of all three 

analysis layers into a single determination of whether the TCP stream is anomalous or 
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stream indicated as an anomaly by any layer is reported as an anomaly by the 

combination layer. 

 The most comprehensive experiment executed against the system created in this 

dissertation research was using packet captures generated by testing against WebGoat. 

The captures consist of a training set where normal queries are executed against the 

server and a test set consisting of normal navigation of the server interspersed with 

various SQL Injection attacks executed against the server and some navigation-based 

attacks. The SQL Injection attacks followed the scripts provided by the solutions pages of 

the server. In this dataset, many of the attacks provided limited deviation compared to the 

normal responses as determined both visually and through the request-response layer’s 

analysis. However, for those attacks that had a large variation in the response, such as 

enumerating tables or executing commands on the web server and printing the output, the 

request-response layer did identify the attacks. Finally, the request layer was provided 

with significant deviation between the normal requests and the attack requests. The attack 

requests had uncharacteristic symbols representative of a SQL injection attack, such as 

apostrophes, semi-colons, and SQL query language. The results can be seen in Figure 13. 

For comparison, the results of HMMPayl against the same data sets are provided on the 

same graph. The graph shows that at a 0.008 false positive rate, the layered system has a 

detection rate of 0.91 while the HMMPayl system has a 0 detection rate until reaching a 

false positive rate of 0.12. For this reason, the false positive rate is reported in a linear 

scale on this graph. The results of HMMPayl are poor with this test set not as a reflection 

of the system’s capabilities but rather a reflection of the test set chosen as a combination 

of the layers that extend beyond the detection mechanisms included in HMMPayl. 
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Figure 13. The results of testing against a WebGoat test set. 

 The next experiment used the Fortune 500 data in concert with the McPAD attack 

sets. In this experiment, the detection system was put up to a challenging task because it 

was heavily dependent on the detection mechanisms of only the Request Layer. The 

attacks of the McPAD attack sets only exist as requests and have no response components 

making the Request-Response Layer unable to contribute to the detection of attacks. 

Further, there were no navigation-based attacks present. Any Navigation-layer attacks 

identified were false positives due to bad training data. In this comparison, the layered 

system significantly outperformed the HMMPayl system as well. The results of this 

experiment can be seen in Figure 14 for the Generic attack set and Figure 15 for the 

Shellcode attack set. In Figure 14, for the generic attack set, the graph shows the Layered 

system having a detection rate of approximately 0.46 at a false positive rate of 0.015 

while the HMMPayl system has a detection rate of 0.18 at the same false positive rate.  
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Figure 14. The results of testing against the McPAD Generic attack set and the Fortune 

500 normal data set. 

In Figure 15, for the shellcode attack set, the graph shows the Layered system having a 

detection rate of approximately 0.85 for a false positive rate of 0.015 while the HMMPayl 

system has a detection rate of 0.27 at the same false positive rate. For both attack sets, the 

Layered system shows higher detection results over HMMPayl.  
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Figure 15. The results of testing against the McPAD Shellcode attack set and the Fortune 

500 normal data set. 

 

Findings 

Navigation Layer 

 The results have shown that the Navigation Layer can successfully identify 

deviations from standard browsing patterns. When an attacker attempts to identify non-

public portions of a web page or otherwise traverses a web page outside of the traditional 

links, this creates an anomaly that is reported to the combination layer. This layer is very 

sensitive to those attacks and with comprehensive training data can identify all attacks 

accurately. This layer has limited breadth though and cannot detect a subtle attack against 

a normal web page or otherwise identify a payload-based attack. However, this layer is 

not intended to detect those sorts of attacks.  
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Request Layer 

 The results have shown that the Request Layer can successfully identify 

deviations from standard request payloads by analyzing the individual bytes in the 

requests. Through this layer, attacks such as buffer overflow, shellcode attacks, cross-site 

scripting, and SQL injection attacks can be identified. When an attacker alters the 

contents of the request payload so that it no longer fits the profile of a normal request, 

this layer detects that attack. However, in the case of an attack that blends in to the 

normal byte patterns of request payloads, this layer will not detect the attack.  

 

Request-Response Layer 

 The results have shown that the Request-Response Layer can successfully identify 

when the response payload for a given requested URL deviates significantly from the 

response payload that was trained. Through this layer, attacks such as SQL injection, 

cross-site scripting, and other parameter manipulation attacks can be detected. However, 

these attacks can only be detected when they cause a substantial deviation in the behavior 

of the web application and its response payload. For example, it was shown that a blind 

SQL injection, when successful, may not be detected by this layer but this could be 

compensated for by the Request Layer.  

 

Combination Layer 

 The combination layer provides a combination of all three previous layers to 

effectively detect a large set of attacks. Working in isolation, the layers are each capable 

of detecting a subset of attacks. However, working in concert through the combination 
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layer, the system is capable of detecting broader attacks and even compensating for the 

weakness of layers toward certain attacks. As an example, blind SQL injection was 

referenced previously as an attack that is often not detected by the Request-Response 

Layer but often is detected by the Request Layer.  

 

Summary of Results 

 The Layered Hidden Markov Model Payload Anomaly Detection System has 

been shown to be successful in detecting attacks and outperform the current state of the 

art detection system, HMMPayl, in the experiments performed. The individual layers 

were all tested with their results analyzed in turn. Then the combination of the layers was 

tested as well and demonstrated to be successful in detecting attacks. 
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Chapter 5 
 

Conclusions, Implications, Recommendations, and Summary 

 

Conclusions 

 Through the results reported in the prior chapter, it has been shown that the 

system created for this research has met the goals of this study. In the case of the request 

layer, where a parallel with detailed testing results exists in published literature, 

HMMPayl (Ariu et al., 2011), that layer was shown to always perform at least 

equivalently and often outperform existing systems. When combining the three layers 

into a single anomaly determination of a packet, the Layered system was shown to 

outperform the current state of the art intrusion detection system, HMMPayl, in detection 

performance.  

 

Implications  

 This work has expanded the state of the art in payload anomaly detection, an area 

which is still very young in its study. Most significantly, this work has opened new doors 

as far as examining the response packets. Prior intrusion detection systems have typically 

focused on the request packets when looking for attacks and eschewed the response from 

the server. Through this dissertation research, the response from the server has been 
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shown to be a worthwhile area to point sensors at for the identification of attacks. While 

the detection of an attack in the response packet might be too late to save data if it is a 

destructive attack, it is still better to detect the attack than not detect it. Further, if the 

attack is some sort of exfiltration or information gathering activity, an attack detected in a 

response packet can still be blocked (assuming the system is an active system and 

properly placed in the network path) from going out of the network borders and thus 

hinder or possibly prevent the attacker’s activity.  

 Another contribution through this work is in exploring the reassembly of TCP 

packets’ payloads into a single stream. Prior payload analysis systems have been 

individual packet based in their analysis and have not performed the reassembly of TCP 

payloads. However, not combining payloads into a stream makes those systems 

susceptible to well-crafted evasion attacks (Ptacek & Newsham, 1998). The design 

principles of the Layered Hidden Markov Model Payload Anomaly Detection System 

were created with the stance that the analysis of packets should be performed with the 

same content as presented to the web server application. 

 Further, a layered system has been shown to improve detection capabilities in the 

payload anomaly detection field. Each layer has a focus on a different piece of the 

packet’s payload and complements the other layers in detection capabilities. Through this 

complementary behavior, the different layers can work together to improve detection 

capabilities over any one layer independently. Additionally, a one size fits all approach to 

modeling is not the answer as demonstrated in the Layered system. Attempting to use one 

panacea for the solution to detecting all attacks would leave the Layered system crippled 

in the Request-Response layer. 
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Recommendations 

 Though the Layered system performs quite well in the experiments devised to test 

its performance capabilities, there are still opportunities to improve on its performance in 

future research. Some of the following recommendations will be specific enhancements 

to this detection mechanism while others will be more general to the anomaly detection 

field of research. This list of recommendations is not intended to be fully comprehensive 

or all-encompassing but rather a small slice of lessons learned from the development and 

testing of this system. 

 While the Layered system was deliberately built as a network-based detection 

system, a possible enhancement to this system would be to insert its functionality into a 

popular web application server and having it behave as a module in-line to the server 

rather than an external network-based sensor. This modification allows the intrusion 

detection system to see exactly what the server sees without the risk of evasion attack 

trickery or the challenges of implementing the TCP packet reassembly method to mimic 

the assembly performed by the server. Addtitionally, there could be distinct but subtle 

differences in how network devices and application servers handle the TCP packet 

reassembly (perhaps due to an attacker’s wile). This could lead to a network-based 

detection mechanism incorrectly reassembling an attack and therefore not detecting the 

attack. 

 The layers selected in this study are by no means a comprehensive set of all 

potential layers. However, as shown by the combination layer, they do work well in 

harmony to identify different attacks. Other layers might be added to the system that 

would complement the existing layers or even overlap the existing layers in detection 
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capabilities to further reduce false positive rates in the system. One layer worth exploring 

in a future system would be focused on the time of the traffic. Consider that a simple 

denial of service attack might merely attempt to exhaust all available bandwidth or 

processing power on the server by repeatedly making rapid requests at a rate far faster 

than a human could click links or even mash the refresh button on their keyboard. In this 

case, the time between requests would be at computer speeds (order of milliseconds) 

rather than the typical human speeds (order of seconds). 

 A major challenge with the execution of this study was in the gathering of data for 

testing the system and comparing it against previous systems. Captured network data has 

a sensitivity to it that prevents researchers from sharing live network data. Fellow 

researchers were unable to share the captured data used to test their systems just as the 

captured data used to test this system cannot be shared. On the other hand, simulated or 

artificial network data is very difficult to make legitimate. The end result is that intrusion 

detection systems are difficult to test and particularly difficult to test in comparison with 

other systems. Further, it becomes challenging to compare systems when evaluation 

methods vary. Specifically, comparing a system that combines TCP payloads into a 

stream for analysis against systems that analyze individual TCP payloads requires 

normalization before a valid comparison can be made.  

 Evaluating the state of the art models, there are various enhancements to detection 

accuracy that exist though they typically include tradeoffs to gain that increased accuracy 

such as complexity, memory consumption, or performance. Some examples of those 

enhancements include using the Multiple Classifier System paradigm as in HMMPayl, 

deeply understanding the structure of the application layer requests as in Spectrogram, 
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the combination of the TCP payloads across packet boundaries as presented in this 

system, or the addition of multiple parallel layers of analysis as presented in this system. 

All of these enhancements have been shown to provide detection benefit. As future 

researchers consider the problem of anomaly detection, they should evaluate the various 

available enhancements to detection accuracy and consider their place in future systems. 

While these enhancements may not be necessary to prove the viability of a particular 

paradigm of detection, they might allow a system to better make the leap from laboratory 

experiments to real world detection usage. 

 A final recommendation is a word of caution to developers utilizing external 

libraries to implement functionality in their systems. Many of the external libraries 

encountered for potential inclusion in this system were found to be abandoned with no 

further development years ago. While their base implementation might be sound, there 

were challenges of edge case defects that created minor obstacles to identify. 

Identification of these defects can be challenging when having to debug someone else’s 

code, particularly when they often do not provide source. Keep a decompiler such as JAD 

(Varaneckas, 2001) handy along with a debugger. Some of the libraries included in this 

system’s code required minor fixes to ensure they worked as expected. On the other hand, 

a library that should be considered for any network-based system is the Jnetpcap 

(Bednarczyk, 2012) library which is regularly updated, actively supported, and very 

feature rich.  
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Summary 

 Attack detection has evolved to meet the parallel evolution of attacks in an arms 

race between the attackers and the defenders. Attack detection can take the form of 

signature-based detection where a specific signature of a known attack is written and 

traffic is compared against the signature. It can also take the form of anomaly detection 

where a detector learns the normal baseline of traffic and then creates alerts when traffic 

deviates significantly from that baseline. Attack detection in its earliest form involved 

system logs and characteristics. As attackers expanded to take advantage of the 

networking of computers, attack detection had to focus on detection of attacks in the 

network layer. Even within the focus on the network layer, detection has had an evolution 

of focus. Initial detection mechanisms focused on the header and evolved to look at areas 

like statistical aspects of the traffic. The most recent evolution is to look at the payload of 

network packets as the attackers have evolved their attacks to hide in the application 

layer.  

 This evolution has led to an area of study termed payload anomaly detection. This 

is an area that focuses on attacks at the application layer, often but not exclusively web or 

HTTP attacks. Payload anomaly detection is very concerned with the bytes of the payload 

and their specific ordering. A parallel can be drawn between the field of payload anomaly 

detection and the field of natural language processing. Many of the techniques used in 

payload anomaly detection are derived from earlier work in the field of natural language 

processing.  

 This research was performed with the goal of improving upon the current state of 

the art in payload anomaly detection. Payload anomaly detection has been shown 



 

 

94

empirically to be very effective at detecting attacks making the margin for improvement 

very slim. To achieve this improvement, a system composed of multiple layers of 

analysis was proposed. The analysis layers all analyze the same data independently and 

then provide a result to a combination layer that combines the layers’ results into a single 

determination of normal or anomalous traffic. The individual layers proposed for this 

system were a high level Navigation Layer, a Request Layer, and a Request-Response 

Layer. An important distinction between this system and prior systems is that the Layered 

system was constructed with the design principle to combine TCP payloads into the full 

stream ideally in the same manner as would be presented to the web server. Prior systems 

treated each TCP packet as an independent entity. This allows the system to be more 

accurate in its detection of attacks in the Request Layer. Without this mechanism, the 

system would not be effective in the Request-Response Layer. 

 The Navigation Layer focuses exclusively on the order of navigation of a web 

site. An ordinary web site can be mapped thoroughly through automated means or it can 

be mapped passively by monitoring the aggregate traffic of many users accessing the site. 

This mapping comprises the training data of the layer. Attacks are detected when a user 

attempts to browse to pages of the site that do not exist in the training data, such as a 

directory traversal attack or an automated mapping attempt to detect hidden pages like an 

administrator control panel. For the passive mapping method, this can result in false 

positives. For the automated mapping method, this should be comprehensive and not 

yield any false positives. This layer was shown to be very accurate when provided with 

all-inclusive training data. However, with limited training data, this layer presented false 

positives in its results. 
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 The Request Layer focuses exclusively on request payloads. Request payloads in 

the terms of a web page are the manner in which different pages or components of a web 

site are retrieved for viewing on a local computer. Additionally, request payloads can 

contain data that a local computer is providing to the web site in the manner of POST 

requests. The best way to obtain this training data is through a large amount of actual 

request packets. These payloads are analyzed in the form of n-grams which break the 

bytes of the payload up into n-sized chunks then feed them into a Hidden Markov Model. 

The model learns the typical contents of payloads and their ordering to allow it to detect 

anomalous requests. Some examples of anomalous requests might be a SQL injection 

attack where the request includes various symbols and parameters that are not typically 

found in a request or a buffer overflow attack where the request includes many repeated 

characters that are not found in a typical request. The end result is a system that is 

capable of identifying various different application layer attacks that are carried in the 

request payload. 

 The Request-Response Layer focuses on a requested URL and a responded 

payload pair. Whenever a user requests a valid URL, the server responds with the 

contents of that page. The system tracks those pairs in training. As with the Navigation 

Layer, this information can be obtained through automated means or through passive 

means. However, this layer behaves differently than the Navigation Layer when faced 

with inadequate training data. If a requested URL has not been seen in the training data, 

this layer will not report an anomaly. If a requested URL has been seen in the training 

data, the test response will be compared against the trained response using the 

Kolmogorov-Smirnov test. This test determines if the distribution of the bytes in the test 
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response payload is equal to the distribution of the bytes in the trained payload. This layer 

was shown to be good at detecting deviating responses as the result of a SQL Injection 

attack or Cross-Site Scripting attack while allowing for normal deviations such as two 

different users providing valid credentials. 

 Finally, the three analysis layers provide their analysis results to the Combination 

Layer for the final determination of normal or anomaly. This layer collects the layers 

from the analysis layer and then makes a determination based on the values provided. If 

the results of any analysis layer indicate that a packet is anomalous, the determination is 

that the packet is an anomaly. If none of the analysis layers indicate that the packet is 

anomalous, then the packet is determined to be normal. This characterization behavior is 

the most sensitive and takes advantage of the complementary nature of the three layers. 

There was some overlap in detection capabilities of the three layers that was observed 

during testing as a natural benefit of the layered system.  

 The Layered system was tested against multiple data sets. For the sake of 

comparison against prior systems, this system was tested against a DARPA ’99 data set. 

For the sake of realistic normal data, it was tested against a private data set provided by a 

Fortune 500 company that is comprised of normal traffic from the internet to and from 

their primary web server. For the sake of comprehensive attack data, a custom dataset 

was constructed against the WebGoat test server. This comprehensive attack data 

includes attacks that span the detection capabilities of all three layers of the system, 

including navigation-based attacks and SQL Injection attacks. In the instances of the 

DARPA data and the Fortune 500 data, the attacks presented are request only attacks that 

were provided by the McPAD team and included shellcode-based attacks, buffer 
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overflow attacks, and various web server specific attacks. A more comprehensive 

description of the attacks in the McPAD data set is referenced previously in this 

document. 

 In the cases of the DARPA and the Fortune 500 datasets, the system was observed 

to be effective at detecting the McPAD attacks at a rate exceeding that of the prior state 

of the art systems. In the case of the WebGoat dataset, the system was observed to be 

superior in detecting the attacks than the prior state of the art systems.  

 The Layered Hidden Markov Model Payload Anomaly Detection System has 

expanded the state of the art in payload anomaly detection. The system has been shown to 

exceed the detection performance characteristics of prior systems and is capable of 

detecting additional attacks that prior systems could not detect. Further, the system has 

introduced two important characteristics of detection in the TCP stream reassembly and 

the response payload analysis.  
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