
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

12-2008 

Uncertainty Minimization in Robotic 3D Mapping Systems Uncertainty Minimization in Robotic 3D Mapping Systems 

Operating in Dynamic Large-Scale Environments Operating in Dynamic Large-Scale Environments 

Sreenivas Rangan Sukumar 
University of Tennessee - Knoxville 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Sukumar, Sreenivas Rangan, "Uncertainty Minimization in Robotic 3D Mapping Systems Operating in 
Dynamic Large-Scale Environments. " PhD diss., University of Tennessee, 2008. 
https://trace.tennessee.edu/utk_graddiss/527 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F527&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=trace.tennessee.edu%2Futk_graddiss%2F527&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by Sreenivas Rangan Sukumar entitled 

"Uncertainty Minimization in Robotic 3D Mapping Systems Operating in Dynamic Large-Scale 

Environments." I have examined the final electronic copy of this dissertation for form and 

content and recommend that it be accepted in partial fulfillment of the requirements for the 

degree of Doctor of Philosophy, with a major in Electrical Engineering. 

Mongi A. Abidi, Major Professor 

We have read this dissertation and recommend its acceptance: 

Michael J. Roberts, Hamparsum Bozdogan, Hairong Qi, Andreas F. Koschan 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



 
 
 
To the Graduate Council: 
 
I am submitting herewith a dissertation written by Sreenivas Rangan Sukumar entitled “Uncertainty 
Minimization in Robotic 3D Mapping Systems Operating in Dynamic Large-Scale Environments.” I have 
examined the final electronic copy of this dissertation for form and content and recommend that it be 
accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in 
Electrical Engineering. 
 
 
 

 
Mongi A. Abidi, Major Professor 

 
 

 
 
We have read this thesis  
and recommend its acceptance: 
 
 
 
Michael J. Roberts 
 
 
Hamparsum Bozdogan  
 
 
Hairong Qi  
 
 
Andreas F. Koschan 
 
 

 
 
                                       Accepted for the Council: 

                            
 
 

Carolyn R. Hodges 
 
Vice Provost and Dean of the Graduate School 

 
 

(Original signatures are on file with official student records.) 
 



 
 
 

Uncertainty Minimization in  
 Robotic 3D Mapping Systems Operating 
in Dynamic Large-Scale Environments 

 
 
 
 
 
 

 
 
 
 

A Dissertation  
Presented for the  

Doctor of Philosophy  
Degree  

The University of Tennessee, Knoxville 
 
 
 
 
 
 
 

Sreenivas Rangan Sukumar 
December 2008 

 



 ii

Acknowledgements 

 
 
 
 
 
Before this document starts dwelling on technical details, I would like to express my gratefulness to the supporting 
pillars of this dissertation work. I have to begin from where I began; my parents Mrs. Malathi Sukumar and Mr. 
Chellappa Sukumar. They have always been there for me with all their love and affection whenever I needed them 
emotionally, financially and every possible situation I imposed upon them. I owe them indefinite gratitude for their 
contribution to my career and for stimulating the quest for knowledge from a very young age. They knew I dreamt 
of being a scientist as a child, and today with the PhD degree, if I am closer to becoming one, it is because, I 
dreamed and they made sure I had everything necessary to realize my dream.  

 
Dr. Abidi took over as the parent in graduate school, fuelled my quest for knowledge, supporting me 
technically and financially with the resources in the Imaging, Robotics and Intelligent Systems Lab (IRIS).  
Dr. Page, Dr. Koschan, Dr. Gribok and Dr. Besma were invaluable expertise that Dr. Abidi introduced me 
to and I attribute my technical development in the area of focus in this dissertation to them. In particular, I 
can never thank Dr. Page enough for the book-referrals, the brainstorming white board sessions, the 
personal career discussions and the weekly meetings inspiring the march towards “great” research; the 
impact of which, I am confident is dispersed in the content presented in this dissertation. I am also indebted 
to thank Dr. Bozdogan, Dr. Roberts and Dr. Qi, who in addition to serving on my committee, have been of 
significant influence in the development of the work presented. The foundation of this dissertation work 
builds over the concepts and tools learnt from their inspiring lectures. 
 
My peers in the IRIS lab have been a great learning source in this research journey. From 2002 until the 
day this document becomes official, the healthy competition and synergy in the lab in the form of “Have 
you read this interesting paper?”, “Have you heard of this algorithm?”, “Here is a smart programming 
hack!”, and “Here is what we can do?  How about working together on this idea?” “Did your paper make it 
to that journal?” and the umpteen “Eureka’s…!” have to be credited to fellow lab mates Brad Grinstead, 
Yohan, Faysal, Jessica (Yao Yi), Sijie, Cheng, Balaji, Santosh, Nikhil, Umayal and several others who I 
plead to kindly forgive me for not mentioning by name. It was a pleasure working with you all. Tak 
Motoyama, Doug Warren and Justin Acuff deserve a special mention. Thanks Tak and Doug for sharing 
your system instrumentation expertise in building our imaging prototypes and thanks Justin for 
meticulously solving one software system issue after another.  
 
 
Sincere thanks to you all. 
 
 
 
 
 
 
  

 
 



 iii

Abstract 

This dissertation research is motivated by the potential and promise of 3D sensing technologies in safety 
and security applications. With specific focus on unmanned robotic mapping to aid clean-up of hazardous 
environments, under-vehicle inspection, automatic runway/pavement inspection and modeling of urban 
environments, we develop modular, multi-sensor, multi-modality robotic 3D imaging prototypes using 
localization/navigation hardware, laser range scanners and video cameras.  
 
While deploying our multi-modality complementary approach to pose and structure recovery in dynamic 
real-world operating conditions, we observe several data fusion issues that state-of-the-art methodologies 
are not able to handle. Different bounds on the noise model of heterogeneous sensors, the dynamism of the 
operating conditions and the interaction of the sensing mechanisms with the environment introduce 
situations where sensors can intermittently degenerate to accuracy levels lower than their design 
specification. This observation necessitates the derivation of methods to integrate multi-sensor data 
considering sensor conflict, performance degradation and potential failure during operation.  
 
Our work in this dissertation contributes the derivation of a fault-diagnosis framework inspired by 
information complexity theory to the data fusion literature. We implement the framework as opportunistic 
sensing intelligence that is able to evolve a belief policy on the sensors within the multi-agent 3D mapping 
systems to survive and counter concerns of failure in challenging operating conditions. The implementation 
of the information-theoretic framework, in addition to eliminating failed/non-functional sensors and 
avoiding catastrophic fusion, is able to minimize uncertainty during autonomous operation by adaptively 
deciding to fuse or choose believable sensors. We demonstrate our framework through experiments in 
multi-sensor robot state localization in large scale dynamic environments and vision-based 3D inference. 
Our modular hardware and software design of robotic imaging prototypes along with the opportunistic 
sensing intelligence provides significant improvements towards autonomous accurate photo-realistic 3D 
mapping and remote visualization of scenes for the motivating applications. 
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Chapter 1: Introduction                                                                       1 

1 Introduction 

Targeting military safety and civilian security, we have witnessed the implementation of imaging and 
automation solutions in several public access points. Some that we notice in our daily life include X-ray 
baggage inspection and breach detection at airports, under-vehicle inspection at check-points, multi-camera 
surveillance for asset monitoring, and multi-modality biometric recognition among several others. This 
dissertation research is motivated by four such safety and security related projects. In Section 1.1, we detail 
the motivation behind this dissertation work along with the research objectives. Then, we formulate these 
objectives into a problem statement and summarize the solution this dissertation provides in Section 1.2 
before finally claiming system level and technical contributions for each one of these applications in 
Section 1.3. 
 
1.1 Motivation 
 
The four applications motivating this dissertation are (1) under-vehicle inspection, (2) robotic mapping in 
hazardous large-scale environments, (3) runway/pavement inspection and (4) terrain mapping for 
simulators in virtual proving grounds. We discuss the research objectives in each of these applications in 
the following paragraphs and establish a basis to showcase our research efforts.  
 

• Under-vehicle inspection: The goal of this research project under the United States (U.S) Army’s 
Security Automation for Future Electromotive Robotics (SAFER) program is towards the 
deployment of intelligent robots for under-vehicle inspection at check-points in war-torn countries, 
gate-entry terminals and parking lots (Figure 1.1). Using multi-modality measurements of 
temperature, range, color, radioactivity and with future potential for chemical and biological 
sensors, our work is a small part of the modular robotic “sensor brick” architecture (Sukumar et 
al., 2007a) that integrates multi-sensor data into scene intelligence in remote 3D virtual reality 
environments. In transforming the inspection task into an unmanned robotic mission, the focus 
related to this dissertation work is on the design, development and deployment of the 3D range 
“sensor brick” as a vital autonomous component in this multi-sensor robotics framework and also 
to demonstrate the potential of automatic threat detection using the geometric information from 
the 3D sensors (Sukumar et al., 2006a). 

 
• Robotic mapping in hazardous environments: The U.S. Department of Energy under the 

University Research Program in Robotics (URPR) requires autonomously navigating robots for 
mapping large-scale radioactive hazardous environments for future cleanup and maintenance 
(Figure 1.2). Considering the mature field of mobile robotics, the challenge we address is to 
extend beyond structured environments that present day robots can handle to unstructured 
dynamic environments (Sukumar et al., 2007b). The goal is to develop systems that can navigate, 
map and communicate in challenging environments without having to worry about sensor failure 
and insufficiencies. This dissertation presents a multi-modality multi-sensor data fusion solution 
for such a goal by implementing a statistical framework generic for fusing uncertain, imprecise 
and conflicting data demonstrating improved reliability in the autonomous operation. 
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   Areas for deployment: Gate-entry terminals, war zone check-points, parking lots 

 
 

 
Figure 1.1: The motivating application illustrated in this figure is under-vehicle inspection. We have 
shown the potential areas for the deployment of the technology in gate entry terminals, war-zone check 
points and parking lots. The contemporary approach for under-vehicle inspection is using a mirror on a 
stick or a mobile robot mounted with a visual camera. The mirror-on-the stick lacks the resolution and 
clarity for detecting threats while the camera approach has field of view and illumination issues. We 
overcome these limitations with several other enhancements with our robotic 3D mapping solution. 

 
 
 

State-of-the-art: Mirror on the stick, mosaic from video acquired by a robot 

Image from (Ng, 2003) 

Source : US Army 

View in the mirror 
Mosaic generated in a single pass. 

Our solution:  Autonomous mobile robot maps the entire under carriage 

Mapping robot 

Underside of a SATURN car Underside of a DODGE Van 
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   Areas for deployment: Robotic surveillance of hazardous environments 

 
 
 
Figure 1.2: The motivating application illustrated in this figure is autonomous localization and mapping in 
dynamic unstructured environments. With focus on environments where we cannot assume satellite 
reception of global position systems, we combine the state-of-the-art instrumentation-based approach with 
passive image-based localization and mapping techniques. The instrumentation hardware and the cameras 
along with the algorithms for smart integration of data from complementary sensors increase 3D mapping 
capability in dynamic operating conditions. 
 
 
 

State-of-the-art: Instrumentation approach, video-based systems 

High radioactivity zones Nuclear waste dump-sites 

Our solution:  System with autonomous navigation and mapping capability 

Images source: www.doe.gov 

Ayres Hall, aerial view Instrumentation-based approach Image-based approach 

Navigation and mapping in 
dynamic environments 
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• Airfield/Pavement distress: In a more relaxed form of robotic mapping, another application we 
address is airfield runway/pavement distress inspection (Figure 1.3). Traditionally, general 
aviation airfield pavements are maintained based on the inspection staff’s judgment and 
experience. The inspection personnel walk or drive slowly through asphalt and concrete 
pavements observing surface defects and degradation to make recommendations for immediate 
and long term maintenance. The manual inspection procedure is not only cumbersome, time 
consuming and expensive but is also susceptible to human error and inefficiency. With safety of 
aircrafts and passengers in mind, this functional and important process of inspection can be 
significantly improved using a formalized imaging system that will ease the effort required to 
inventory airfield conditions through periodic evaluations and subsequent surface distress 
management. We have demonstrated a 3D imaging system (Sukumar et al., 2006b and Yu et al., 
2007) that can measure the depth of cracks as a significant illumination independent improvement 
in automatically detecting and analyzing cracks compared to camera-based systems that are still 
under development. The important constraint with this application is to map large-scale 
environments with micro-scale accuracy. 

 
• Terrain mapping for simulators/ Virtual proving grounds (VPG): The U.S Army has constructed 

several proving grounds scattered all over the United States. The idea being that army vehicles 
(tanks and carrier equipment) can be tested for wear and tear on rough and uncertain terrain before 
deployment in real-world scenarios. The testing is performed by driving assembled and fully 
equipped vehicles across different types of surfaces taking measurements for fatigue, damage, and 
deformation of different components along with the driver behavior in the automobile. Recently, 
the U.S Army concluded that experiments using real vehicles is very expensive, placing the testing 
soldier safety under concern. The solution we proposed (Sukumar et al., 2006b) was to help the 
move towards virtual reality testing (Zhang et al., 1999) using vehicle dynamics models of 
automobiles on 3D models of real terrain. The terrain models for these vehicle-terrain simulators 
are presently generated using 1D profilometers that capture limited data and do not include the 
real-world uncertainty into the simulation. We address this need for generating immersive 3D 
models of large-scale dynamic environments such as hilly terrain, a speed breaker, and a gravel 
road etc. from the real world with sufficient accuracy for finite-element based simulations.  

 
Figures 1.1 through 1.4 illustrate the motivating application, the state of the art and the improvement that 
we provide as solutions for each of these applications. 
 
1.2 Problem Statement 
 
Initially, though the applications described in Section 1.1 appear unrelated, we note that the solutions we 
have demonstrated in (Sukumar et al., 2006a), (Sukumar et al., 2006b) and (Grinstead et al., 2006) for these 
applications involves the design of a manned/unmanned/tele-operated mobile platform, with a suite of 
sensors collecting data in real time, that on further processing, can deliver geometrically accurate, 
geographically meaningful photo-realistic 3D models of the scenes of interest. In studying the state-of-the-
art and identifying the potential enhancements with 3D imaging, we realize the need for the deployment of 
multiple multi-modality sensors like inertial navigation systems (INS), global positioning systems (GPS) in 
addition to vision-based systems for high accuracy self-localization, mapping and photo-realistic 
visualization. In this dissertation, we build prototypes for real time acquisition and processing towards 3D 
mapping and take on the challenge of implementing intelligence into these robots to operate autonomously. 
The intelligence that we desire is that of opportunistic sensing with the ability to evolve a belief and data 
fusion policy on sensors within a multi-agent framework to survive and counter concerns of failure in 
challenging operating conditions.  
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   Areas for deployment: Airport runways and road pavements 

 
 

 
Figure 1.3: The motivating application illustrated in this figure is road surface inspection for airport 
runways and distressed pavement highways. The aim is to automatically identify different types of cracks 
and recommend necessary action. Manual inspection by an expert appears to be the state-of-the-art. Video-
based image processing systems, still under development, are capable of detecting cracks but cannot 
recover the depth of cracks accurately. Our mobile mapping system that can scan asphalt surfaces at 
normal driving speeds avoids the difficulty and susceptibility with manual inspection and improves over 
video-based techniques by detecting even 2mm deep cracks. Crack classification over large areas is also 
possible with our approach. 

 

State-of-the-art: Manual inspection, video-based inspection 

Our solution:  Mobile van maps the asphalt surface to detect cracks in 3D. 

Different types of pavement distress Airport runway 
Source: (Walker, 2004) 

Image processing approach to crack detection 

Source: www.faa.gov 

Depth information is used for detection and classification. 
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   Areas for deployment: Terrain for virtual proving grounds and driving simulators 

 
 

 
Figure 1.4: The motivating application illustrated in this figure is real-world large-scale terrain mapping 
of environments for finite-element based vehicle-terrain simulators and driver-behavior analysis 
simulators. We have shown a picture of an army vehicle tested in the Aberdeen proving grounds in 
Maryland, USA along with the virtual proving grounds as a safe and inexpensive approach to vehicle 
testing and analysis. The bottom insets show our effort in mapping terrain from the real-world and 
delivering immersive 3D models for such simulators. 

 
 
 

State-of-the-art: Profilometers generate statistical models of terrain 

Our solution:  Our system generates real terrain for immersive environments 

Source: http://www.apg.army.mil Real environments in simulators 

http://www.drive.cranfield.ac.uk/cfml/ldorn.cf

Terrain generated from the statistical models of 
profilometer data 

Real 3D terrain for vehicle-terrain interaction analysis 
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The recent trend with building autonomous robotic navigation and mapping systems is to use multi-
modality multi-sensor systems (DARPA Urban Challenge, 2007). We follow the trend and design multi-
sensor systems that execute motion commands on the robot towards being in a required or pre-planned state 
exploiting its sensors for both gaining new information in an unknown environment and also as feedback to 
confirm the desired state. For example, with the 3D mapping systems that we have built, the mobile robotic 
platform would be loaded with pre-defined position landmarks that we intend the robot to visit sequentially. 
GPS sensors would indicate the global position of the system, a video camera in addition to details of the 
scene in combination with the ego-motion estimation algorithm would also provide estimates of relative 
position and motion. The robot, based on the feedback from the vision algorithm and the availability of 
GPS signals, would then decide what confident action to take to reach the desired next state. Such a 
scenario is popularly known as the recursive state-space estimation problem of global localization.  
 
In an ideal noiseless world, if all systems were perfect, there would be no need to handle uncertainty. But 
there is uncertainty about how the system changes its state and how the sensors measure state. Sensors are 
subject to situations that perturb their measurements in unpredictable ways. In addition, sensors fail in 
uncertain dynamically-changing environmental conditions and detecting such a fault is extremely difficult 
(Thrun et al., 2005). For example, the GPS depends on the number of satellites available at the time of 
operation and is known to operate with lesser accuracy in areas with tall buildings, while INS is notorious 
for the drift over time and temperature. Vision and range-based mechanisms depend on the environment 
also, but can be a reliable complementary pose recovery method in real world situations.  
 
The performance of these sensors being environment dependent, we have to realize that not all sensors can 
be believed at a particular instant. This necessitates the development of a procedure that can infer 
believable sensors on the go, minimizing global uncertainty introduced by the dynamism of the 
environment in real-world situations. The probabilistic Bayes network framework with Markov 
assumptions (Thrun et al., 2005) for noise-variance minimization includes methods for dealing with such 
situations and in maximizing belief about the state of the system.  Proven to be robust in most controlled 
structured environments, our experience with implementing the probabilistic algorithms discussed in 
(Thrun et al., 2005) to the large-scale real-world applications exposes the assumption about bounded effect 
of environment dynamism. Several researchers also agree with our observation. (Urmson et al., 2008; 
Bacha et al., 2008). Hence, we have developed the integration pipeline illustrated in Figure 1.5 that builds 
on the robust probabilistic reasoning methods. 
 
Our goal in this dissertation is towards the design of an algorithm for including uncertainty in sensors along 
with the inference about uncertainty introduced by the dynamic nature of the environment. We assume that 
we have several data sources (sensors) that measure the state of a system of which some sensors (at the 
least one) is/are operating with believable accuracy. We also allow sensors to operate with intermittent high 
belief with short-term failure and recovery. Our objective then is to find the state of the system with 
maximum belief while operating even in constantly changing environments.  
 
Mathematically, the problem that we are trying to solve can be formulated as shown in Equation 1.1. We 
only present the problem statement to introduce our solution in this Chapter but explain the procedure for 
implementation in detail in Chapter 4. 
 

iii x xSN,, i S ˆ)(  where,21 },    {  Given =…==S  (1.1) 

)~( max arg  Find
}{,,~ xBelief

)Bf(Sx ii
 (1.2) 

where f is the fusion functional, Bi is the belief about sensor measurements of state x =  from sensor Si 
and 

ix̂ 
x~  is the best estimate from sensor feedback after multi-sensor fusion. 
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Figure 1.5: Block diagram summarizing the efforts in this dissertation emphasizing contributions towards 
reconstructing 3D models of real world environments using mobile robotic platforms with autonomous 
capability. The data from multi-modality sensors like cameras, GPS, INS and laser range scanners are 
used for state and structure estimation. The contributions of this dissertation are in using the data from 
these sensors along with an uncertainty analysis framework to make these systems operational in dynamic 
unstructured environments with high degree of accuracy. Each of these contributions will be explained in 
detail in individual chapters. Chapter 3 covers the system architecture. Chapter 4 derives the selfish-
altruist uncertainty handling scheme for multi-sensor localization systems. Chapters 5 and 6 introduce the 
theory into the real world documenting our experimental success.  
 
 
 
 
 
 
 
 
 

Multi-modality sensors 

Visual Thermal Position and orientation sensors 3D range sensors 
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Towards the goal formulated in Equations 1.1 and 1.2 to choose believable sensors performing consistently 
at a given instant in time in an unknown environment, we derive scores for self confidence and co-
operative confidence to evaluate success in fusion. By including the best case apriori bounded-noise models 
to propagate belief as the system state changes, we provide definitions to estimate sensor measurement 
uncertainty and sensor validity in such state-space systems. Being able to infer sensor validity from the 
bounded noise belief is one of our major contributions with this work. For quantifying measurement 
uncertainty we score the Bayesian belief probability density using a model selection criterion, and for 
sensor validity, we evaluate belief on pose estimates from different sensors as a multi-sample clustering 
problem. The minimization of the combined uncertainty allows us to intelligently choose a subset of 
sensors that contribute to improved state estimation.  Our theory for determining the success in fusion is 
based on information complexity with an additional inference mechanism to resolve the dilemma of fusion 
versus selection. We demonstrate our approach in robot localization using GPS, INS, and video and range 
sensors in large-scale dynamic environments, robust feature selection for geometric inference and finally 
propose to apply the statistical framework for target localization in multi-camera networks.   
 
1.3 Areas of contribution 
 
Motivated towards addressing the needs in the applications mentioned in Section 1.1, our research 
demonstrates the convergence of relatively new 3D sensing technology, modular robotics, 3D computer 
vision algorithms and probabilistic reasoning. In making such a claim with this dissertation, we list the 
following contributions addressing key technical issues in 3D reconstruction using autonomous robotic 
systems. 

 
• 3D imaging and automation solutions: The system-level contribution that this dissertation claims 

is the readily deployable prototypes built as automation solutions to address safety and security 
applications described in Section 1.1. The evaluation efforts toward hardware design involving the 
choice of equipment mountable on mobile robotic platforms considering repeatability, reliability 
and robustness to structured and unstructured real world environments combines with the 
supporting software development for data acquisition, processing, data fusion and visualization in 
outperforming state-of-the-art and commercial systems with significant improvements. 

 
• Uncertainty management in multi-sensor state localization: Belief propagation methods are the 

state-of-the-art with multi-sensor state localization problems. However, when localization 
applications have to deal with multi-modality sensors whose functionality depends on the 
environment of operation, we understand the need for an inference framework to identify 
confident and reliable sensors. We derive an information-theoretic statistical framework to resolve 
sensors in conflict during autonomous operation in (Sukumar et al., 2007b). Such a framework 
helps eliminate failed/non-functional sensors from the fusion process minimizing uncertainty 
while propagating belief in real world multi-sensor state localization. 

 
• Reliability in image-based state estimation: Vision sensors being an indispensable component in 

our system, we study the key step of estimating the fundamental matrix in feature-based camera 
ego-motion computation for scene modeling and vehicle navigation. We present a new method of 
analyzing and further reducing the risk in the fundamental matrix due to the choice of a particular 
feature detector, matching algorithm, the motion model, and iterative hypothesis 
generation/verification paradigms (Sukumar et al., 2008). Our scheme makes use of model-
selection theory guiding the switch to optimal methods within the hypothesis-and-test architecture. 
We demonstrate our method for vision-based robot localization in large-scale environments where 
the target scene is dynamic and navigation within the environment becomes challenging. 
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1.4 Document organization 
 

The remainder of this document is arranged as follows: 
• Chapter 2 presents the background of how ideas in the literature help us design multi-modality 

multi-sensor 3D robotic mapping systems and emphasizes the need to handle uncertainty in real 
world situations for these robots to operate autonomously. 

• Chapter 3 discusses the system architecture governing our prototypes. We also document the 
characterization of the sensors, uncertainty propagation in how data from different sensors are 
aligned and integrated into a 3D virtual environment. 

• Chapter 4 takes over from the issues and shortcomings with implementing methods in Chapter 
3 amidst sensor conflict and derives the theory to handle information fusion in such situations. 

• Chapter 5 documents the implementation of the theory derived in Chapter 4 in simulated and 
real world situations. We present promising results in hybrid pose recovery for unmanned 
mobile robots in large-scale dynamic environments and improved image-based geometric 
inference. We show the improvement in global localization of mobile robots by demonstrating 
the ability to detect faulty sensors and also guide the switch to the available next best sensor.  

• Chapter 6 showcases the research impact of the work presented by deploying and 
demonstrating our methods in real-world situations directly relating to the motivating 
applications introduced in Chapter 1.  

• Chapter 7 concludes with the dissertation key points identifying avenues for extending our 
generic theory beyond multi-sensor state localization of mobile robots to other applications. 
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2 Background: Robotic Mapping 

In the previous chapter, we introduced the applications that motivate this dissertation and emphasized the 
need for imaging-based robotic automation solutions. In this chapter, we will briefly discuss the 
contemporary 3D sensing methods and dwell on the state-of-the-art with robotic mapping. The study helps 
us identify the gaps in the literature motivating our work towards claiming the convergence of 3D imaging 
techniques and mobile robotics for high accuracy mapping of large-scale environments. We begin with a 
survey of 3D sensing techniques in Section 2.1, brief 3D mapping methods using mobile robots in Section 
2.2 and document the different sources of uncertainty while mapping the real world in Section 2.3. Finally, 
we summarize methods to handle such uncertainty in large-scale environments in Section 2.4. 
 
2.1 3D sensing technologies 
 
In this subsection, we discuss 3D sensing methods and weigh their suitability for our mobile mapping 
robots. We begin by presenting a classification of different techniques in Figure 2.1. The classification is 
based on a study similar to Blais’s review (2004) on 3D range sensing in which different methods of 3D 
sensing fall into two categories as passive and active.  
 
 
 
 3D Sensing Methods 

Passive Sensing Active Sensing 

 Shape from stereo 

 Shape from motion 

 Shape from texture 

Passive Variants Time of flight 

Shape from focus 
/Defocus 

Shape from shading 

Triangulation 

Structured light 

Photometry 

Active depth 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1: The classification of popular 3D imaging methods based on the physics of range sensing. Of 
these methods, we find the time-of-flight approach and the triangulation approach meeting accuracy, 
resolution, and real-time acquisition requirements for our large-scale mapping applications. The passive 
image-based pose and 3D structure recovery, particularly shape from motion, shows immense potential as 
a relatively inexpensive solution for mobile robots. 
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Let us begin our discussion with passive techniques first. Passive triangulation by stereo is similar to the 
way humans perceive depth and involves two cameras taking a picture of the same scene from two different 
locations at the same time. Just like our eyes, image-based passive 3D reconstruction methods take 2D 
pictures as projective inputs of the 3D world and recover depth using computational substitutes of human 
perception. One computational approach is to estimate depth information by matching correspondences in 
the images from the two cameras and applying epipolar geometry. An extension of passive stereo that uses 
only a single camera is the shape from motion method. Shape from motion algorithm is also based on 
epipolar geometry, the difference being frames in a video are considered as data of the same scene taken 
from different viewpoints.  
 
The other computational approach avoids matching individual pixels and instead models disparity between 
stereo pairs into a regularized global energy function that is iteratively optimized for a tradeoff between 
intensity disparity and smoothness support from neighboring pixels. With additional knowledge of camera 
parameters and focal length the disparity at each pixel estimated using the energy function is converted to 
range measurements. Passive triangulation algorithms, both shape from stereo and shape from motion, are 
challenged by the ill-posed problem of correspondence in stereo matching. We will be discussing shape 
from motion algorithms and epipolar geometry in detail in the later sections of the chapter. We will attempt 
to address the reliability issues in recovering geometry amidst ill-posedness when we revisit the topic in 
Chapter 5.   
 
Another idea to extract 3D shape is by using the principle of focusing and defocusing. The method infers 
range from two or more images of the same scene, acquired under varying focus settings. By varying the 
focus of a motorized lens continuously and estimating the amount of blur for each focus value; the best 
focused image is determined. A model linking focus values and distance is then used to approximate 
distance. The decision model makes use of the law of thin lenses and computes range based on the focal 
length of the camera and the image plane distance from center of the lens. However, this method has its 
limitation on the fact that blur estimation influences the focal length computation and the derived range. 
The system required for the imaging process best suits microscopy applications but not mobile robots.  
 
While shape from stereo, shape from motion, shape from focus/defocus infer 3D geometry from two or 
more images, there exist methods for shape recovery from a single image. Shape from shading, for 
example, uses the patterns of light and shading for establishing a fundamental equation from a single image 
relating the image intensity and surface slope. The fundamental equation, the idea of the reflectance map 
and a Lambertian assumption about the surface helps approximate underlying shape by solving a set of 
differential equations (Trucco and Verri, 1999). In the real world on mobile robots, the physics and the 
mathematics required to solve for structure gets complicated. Also, shape from shading will not meet the 
accuracy requirements for our applications.  
 
Another method that tries to infer shape from a single image uses the distortion in texture created by the 
imaging process, when a 3D point in space is projected into a 2D plane. The method selects a 
representation scheme adequate for the texture cues in the image, computes the chosen distortion 
parameters in the representation scheme and combines the distortion with texture gradients to estimate local 
orientation of the surface at each pixel. Recently, interesting methods documented in (Saxena et al., 2008), 
(Hoeim et al., 2005) and (Criminisi et al., 2000) propose the estimation of 3D structure from a single 
image. Criminisi et al. (2000) recover 3D structure by computing the vanishing point and vanishing line 
using line segments in the 2D image. Hoeim et al. (2005) use spatial features to define superpixels and 
classify pixels in the image into different 3D planes. Saxena et al. (2008) implement a machine learning 
approach to estimating 3D structure by supervised learning of monocular depth cues using ground truth 
range data. The passive variants for shape recovery listed under the active sensing category in Figure 2.1 
improve upon the passive methods discussed thus far by introducing an additional source of illumination.  
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For example, the structured lighting approach projects a pre-designed pattern of pixels usually in the form  
of grids and bars and observes the deformation of the pattern on the surface of the object to learn about the 
3D shape.  
 
Photometric methods use additional hardware in the form of an optical receiver that includes a photo  
sensor configured to detect spatio-temporal modulated optical signals directed at the scene from a set of 
spatially dispersed optical transmitters. The receiver also converts the optical signals from each of the 
optical transmitters to a corresponding electronic signal that is further analyzed to determine geometric 
properties of the scene borrowing principles of interferometry. Active depth estimation using holography is 
another idea that uses a special interference pattern created in a photosensitive medium like photographic 
film. Depth is inferred from the combined beams of the interference pattern projected and reflected off the 
surface of interest. Spatial interferometry based sensors provide high accuracy for applications requiring 
short range (in the order of a few meters) but can have issues with dynamically changing scenes or when 
the scene is imaged using a mobile platform. 
 
We are left with two methods from the classification chart namely the active triangulation and time-of 
flight systems. Both these systems are laser-based. With the active triangulation scheme, a laser in the 
visible spectrum (usually a line laser) illuminates the scene. The laser line profiles a line of the surface in 
the scene that is imaged using a high speed camera. By using a special calibration procedure to estimate 
depth, the surface profiles can be accumulated into a metric 3D structure by moving the camera and laser 
arrangement over the scene of interest. This approach can be configured to a high degree of accuracy and 
readily lends to our application, where the scene is static and the mobile robot with the sensor can map the 
static scene real-time. Again, being camera-based, such a system will have the same field-of-view 
restrictions as the passive methods. On the other hand, the time-of-flight systems are based on physical 
principles of estimating distance from a scene by shooting out a laser and sensing the reflection. With the 
knowledge of the speed of the laser, the observed time taken for the laser to travel, reflect and return is then 
used to compute the distance from the laser source. The time-of-flight approach does not provide high 
accuracy as the laser triangulation methods but usually spans a larger field of view.  
 
With each acquisition method having its own advantages and disadvantages, we had to make several 
considerations in building a 3D imaging system for our applications of interest. We identified that the two 
most significant factors that determine the choice of the sensor for robotic data collection are the field of 
view and accuracy. For the under-vehicle inspection application, we realized that the field of view is 
limited by the ground clearance and the large variation in the size of the components that make up the 
scene. Hence, we require that our system accommodate the variance in the ground clearance of a variety of 
cars and automobiles from different manufacturers (typically varying from a minimum of 10 centimeters in 
compact cars to 90 centimeters in large trucks). We also require that the 3D data provide us high fidelity 
shape information from the scene for us to be able to perform automated shape analysis. Considering these 
factors, we narrow down our choice to the time-of-flight and laser-triangulation based scanners over other 
methods for under-vehicle inspection. 

 
Also, with the limited field of view with a single camera, multiple passes under the vehicle are required to 
reconstruct the entire undercarriage in 3D. Most of the passive methods discussed thus far, can be extended 
for better accuracy using an active source as an additional component with the camera. However, the only 
problem is that the passive variants of shape from images, may not serve well as a real-time acquisition 
approach for our application. For example, the depth estimation using structured light requires a stationary 
scene that a camera will have to image using different patterns of coded light. Imaging the same stationary 
scene with different patterns of structured illumination takes about 20 seconds for a relatively small area of 
interest (less than 1 square meter). Given the low clearance and limited field of view, in our application, 
mapping the entire undercarriage would become a tedious time-consuming task.  
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With the large-scale terrain mapping applications where centimeter accuracy is sufficient, time-of-flight-
based scanners appear to be the ideal choice. Vision-based systems, especially those using shape from 
motion algorithms, sound very promising for centimeter level accuracy also. But, for crack inspection and  
detection, millimeter accuracy is desired and only laser triangulation systems are able to digitize high 
accuracy high fidelity 3D geometry at the rate of a few thousand profiles in one second.  But, we already 
know that triangulation systems have a limited field of view. In such situations when large areas need to be 
digitized, our recommendation is to use an array of laser triangulation sensors.  On the one hand, laser 
scanners are very expensive costing a few thousand dollars at the least, vision-based 3D sensing using 
shape from stereo or shape from motion only costs as much as the camera, priced within a few hundred 
dollars. However, our survey study reveals that the accuracy and precision of active sensing methods is 
much more reliable than image-based passive 3D sensing methods.  
 
2.2 Robotic 3D mapping 
 
Robotic mapping has been an active research area in the last two decades bridging the mechanical mobility 
and artificial intelligence concepts in real world applications. The success with mobile robots towards 
reducing human efforts in performing hard tasks and also avoiding humans working in hazardous 
conditions has only encouraged ambitious ventures over the years. Some applications of that kind are mine 
mapping (Morris et al., 2005), industrial inspection using snake robots (Granosik et al., 2005), indoor 
mapping (Lu and Milios, 1997) and cleanup in nuclear facilities (Grinstead et al., 2004). As noted by the 
authors in each of these papers, the robotic systems still suffer from certain insufficiencies. The issues 
caused by such shortcomings in acquiring the spatial model of a robot’s environment are not only from the 
mechanical limitations of the robot, but also from sensors that perceive the outside world. Sensors used in 
mobile robots including vision cameras, range finders, sonar, lasers and infra-red sensors and even GPS 
and inertial navigation systems are prone to errors. The data from these sensors and the motion commands 
issued to the robot in navigating the environment are critical to the integrated map. With neither robot 
motion nor the sensors perfect; uncertainty is introduced in the pose (location and orientation) of a robot. 
The error in localization propagates as error in the integrated map.  
 
Most of the methods in existing robots for mapping real environments always address the self-localization 
problem in conjunction with the mapping problem. Localization is the procedure in estimating the position 
and orientation of the robot.  The reason for this conjunction is that robotic mapping and localization are 
like the chicken and the egg. Focusing and believing in robot motion alone would introduce systematic 
noise in the integrated map and believing in the sensory data alone without dealing with measurement 
uncertainty will also begin to guide the robot towards executing motion commands drifting from the 
desired goal. Looking at the same problem, from a different perspective, if we know the robot’s pose or 
path accurately, map building is a simple and trivial task. On the contrary, if we have an accurate map of 
the environment, then we can construct robust and elegant solutions to determine robot’s pose. But, the 
problem that we are trying to solve is a tough combination of simultaneously estimating the pose and the 
map. Also, with 3D mapping, the accuracy of the final integrated 3D model depends heavily on the relative 
motion between the sensors on the mobile platform and the scene. 
 
We will now very briefly trace through the history of robotic mapping beginning in the late 1980’s and 
through the early 1990’s to the mobile robots of today. The late 1980’s focused more on the construction 
and design of mechanical systems for mobile platforms capable of carrying a suite of sensors. Then, the 
mapping methodologies like occupancy grid mapping (Elfes, 1987), topological map building (Kuipers and 
Byun, 1991) and metric map building were derived. These algorithms assumed that the robot’s path is 
known with sufficient confidence and then balanced between world-centric versus a robot-centric metric 
representation of the map. Maps in these cases were usually in two dimensions (2D) considering motion 
only in 3 degrees of freedom for robot motion. After the success in building 2D maps, robot mapping  
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literature has been flooded with probabilistic methods that can deal with uncertainty in sensor  
measurements and robot motion relaxing confidence limits on robot path determination. Seminal papers 
from Smith, Self and Cheeseman (Smith et. al, 1990) introduced a powerful statistical framework for  
simultaneously solving the mapping problem and the induced problem of localizing the robot relative to its 
growing map. Since then, robotic mapping has commonly been referred to as SLAM, short for 
simultaneous localization and mapping. A robot that implements SLAM possesses sensors that detect 
spatial landmarks and algorithms that track the spatial landmarks to determine the position of the robot 
relative to the environment simultaneously constructing the map also. We note that our applications of 
interest require SLAM-based solutions with no apriori information about the environment. 
 
Recently, with the commercial availability of laser range sensors and relatively cheap vision sensors, 3D 
mapping has become feasible (Cole and Newman, 2006). Furthermore, we have seen more efforts towards 
mapping large-scale urban environments (Zhao et. al, 2005; Zhao and Shibaski, 2001b). The mapping 
motivation has led to the development of improved image-based methods for autonomous navigation of 
ground vehicles. In the success of the DARPA Grand Challenge Competition (DARPA Challenge, 2005), 
several cars such as the Volkswagen and Hummer were modified to operate autonomously on a 132 mile 
course in the Mojave Desert. The development of the system involved advanced control mechanisms along 
with 3D laser and vision sensors providing spatial feedback in following a sequence of GPS points of a pre-
defined path, avoiding obstacles and yet managing an average speed of 18 mph without any manual 
intervention from start to finish. Such intelligence was demonstrated by integrating data from an array of 
range and vision sensors using probabilistic methods (Thrun et al., 2006) of reasoning. However, the same 
autonomous mobility was presented as a bigger challenge in urban environments (DARPA Challenge, 
2007) with the possibility of GPS failing and the need for better mechanisms for robot self localization in 
such situations. This necessitates the mobile robot to have sensors and methods that can be used for 
simultaneous structure and state estimation. The systems that we will use to support this dissertation work 
possess sensors with such capability that we present in detail in Chapter 3. We will now explain different 
state and structure estimation methods to operate on data from such sensors. From here on, we will use the 
terms state estimation synonymous with localization and structure estimation synonymous with mapping. 
 
2.2.1 Instrumentation-based localization and mapping 
 
Typically, instrumented approaches for localization and 3D mapping in large-scale environments rely on 
GPS data for position information, and INS data for determining the orientation (Bretz, 2000).  Fusion of 
the two datasets is usually performed using Kalman filters assuming that sensors are characterized apriori.  
Kalman filtering takes advantage of the similar characteristics of INS and GPS data to provide an 
integrated ego-motion estimate, with performance superior to that of either individual system.  Kalman 
filter in this case is used to track the drifting parameters of the system to provide accurate estimates of the 
system’s position, orientation, and velocity and compensates based on the apriori noise model (Grewal et 
al., 2001).  
 
Several researchers have used instrumented approaches to define the scanner’s pose over the years.  One of 
the early efforts is the airborne scanning applications that use GPS/INS packages exclusively to estimate 
the pose of the cameras during the scanning process (Bossler & Schmidley, 1997; Frere, et al., 1998; 
Moons, et al., 1998).  These efforts were improved with further processing to correct for inter-scanline 
registration errors in (Fricker et al., 1999; Crombaghs et al., 2000).   Nygårds, et al. have implemented a 
different fusion scheme for integrating GPS, INS, and digital compass information for their Unmanned 
Aerial Vehicle (UAV) project (Nygårds et al., 2004). The air-borne instrumented approach for localization 
has been extended to ground-based vehicles also.  One such extension is Cui and Ge (2003) who propose 
the use of Extended Kalman Filter (EKF) in combination with linear path approximation to estimate the  
ego-motion of a vehicle in a cluttered urban environment. The method described by Julier and Durrant- 
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Whyte (2003) is another extension that integrates a vehicle model into their EKF-based pose estimator, to 
show improved performance in areas where GPS signal quality was low.  Masson, et al. (2003) also 
integrate GPS, INS, bearing and laser range data using an EKF to provide accurate positioning information,  
even in the cases where one or more of the sensors is not reliable. Direct pose estimation has also been used 
in ground-level urban scanning systems such as those of Zhao, Shibasaki, and Manandhar (Zhao & 
Shibasaki, 2001a; Manandhar & Shibasaki, 2000) for improved accuracy with 3D maps even though they 
have special schemes for pose recovery implemented to support their mapping scheme.  
 
This idea to measure global pose using specific hardware instruments is known as “direct” pose estimation. 
With the structure sampled as profiles by the laser range scanners, the alignment based on the localization 
data from the direct state measurement instruments simplifies the mapping problem. However, the 3D map 
becomes too dependent on the hardware which may be influenced by several environmental factors during 
operation. We will discuss challenges with this approach later in Section 2.4. We classify all these efforts 
into instrumentation-dependent localization in spite of these methods using specific fusion algorithms 
because the fusion scheme is still on data from sensors that directly measure the required “state” of the 
mobile platform and not infer state from passive or indirect means that we explain in the next few 
paragraphs. 
 
In 1991, Leonard and Durrant-Whyte introduced the idea of using a 2D range sensor to localize a robot and 
at the same time avoid obstacles and build a floor plan of indoor environments (Leonard and Durrant-
Whyte, 1991). His approach is now very common in robotic systems, where repeated horizontal range 
scans of an environment are matched together to estimate the motion of the sensing platform between 
successive scans. The salient features in the range scan, are also archived as the robot explores the 
environment and later used to build a comprehensive “map” of the environment to aid in matching further 
scans.  This process of matching successive scans to the online model can be seen in Figure 2.2. Matching 
the newest scan line to the model involves finding the transformation that aligns the new data with the 
model.  The rotation and translation represented by this transformation is the motion undergone by the 
scanning package. 
  
Many extensions have been made of the original SLAM theory based on laser scans to different 
environments and purposes.  Simon, et al. developed an extension of the SLAM algorithm to a single line 
range scanner (Simon et al., 1994), where the individual scans are matched to the developing model using 
the Iterative Closest Point algorithm (Besl & McKay, 1992).  The ICP algorithm was first introduced by 
Besl and MacKay (1992). Its basic version aligns a set S = {s1,s2,…,sN} of 3D scene points with a geometric 
model M = {m1,m2,…,mN}, by minimizing the sum of the squared distances between the scene points and 
the model. For every point si in S the distance to M is defined as:  d (si, M) = min ||si-mi||. In our case M 
refers to the points in the map. 
 
The algorithm is best summarized as the following procedure:  

Step 1: Start with an initial transformation .  ),( 00 tR
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      2.3. Using the pairs C  compute transformation (R, t) minimizing the sum of squared distances  
      (Horn, 1987).      

Step 3: Use the optimized transformation (R, t) to estimate motion in the global map co-ordinate 
system. 
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(a)       (b) 

 
Figure 2.2: Scan line (range profile) matching to estimate the motion of the robot.  (a) Successive profiles 
from a robot navigating indoors. (b) Result of aligning scans indirectly estimates the motion of the robotic 
platform. 
 
 
The urban scanning projects of Zhao and Früh (Früh & Zakhor, 2001a; 2001b; Zhao & Shibasaki, 2001b; 
Früh & Zakhor, 2002) also use orthogonally-mounted laser range scanners and the SLAM methodology to 
simultaneously capture urban geometry and perform pose estimation.  Some recent developments in scan 
line matching is documented in the paper (Martinez et al., 2006) that proposes speed up of pose recovery 
using genetic algorithm instead of the iterative search using gradient descent initially proposed by Durrant-
Whyte (1991). Früh and Zakhor (2002) have used their vertical laser scanner and the assumption that the 
buildings being scanned should be orthogonal to the plane of motion to some degree of success.  The laser-
based SLAM formulation has even been extended to any form of mobile mapping and self-localization, 
such as  using full 3D corridor scans to perform the SLAM duties (Surmann et al., 2003).  Hähnel, et al. use 
2 different configurations for their laser SLAM approach (Hähnel, et al., 2003).  The first is the orthogonal 
system similar to those above, and the second is a single scanner mounted on a pan-tilt unit.  Histogram 
analysis and planar approximations help their system efficiently store and process the 3D map. 
Unfortunately, due to the fact that this scan line matching process is restricted to the plane of the laser 
scanner, this method at best, can only provide positioning within a single plane, and orientation only about 
the plane’s normal, restricting its use to a planar environment such as hallways indoors, or a relatively flat 
outdoors environment such as a parking lot.   
 
2.2.2 Image-based localization and mapping 
 
Indirect methods of pose estimation include the scan line matching methods from laser range data and pose 
estimation from video methods. In the next few paragraphs, we will explain the pose from video approach 
that we will use for our work and then provide extensions such as the auto-calibration approach, and the 
factorization approach for structure estimation. Our inspiration to study video-based pose estimation for 
mobile robots in a variety of indoor and outdoor environments is after observing the implementation of 
visual servoing in papers (Shapiro et al., 1994; Johnson and Matthies, 2000; Pollyfeys et al., 2002; and 
Armangue et al., 2003).   
 
We will explain a two-frame method similar to that used by Johnson and Matthies (2000) for simplicity 
sake to obtain the 6 degree of freedom (DOF) position and orientation estimates. The idea on two frames 
extends to multiple frames also. We note that our pose from video algorithm incorporates an absolute  

Scan at t-1

Scan at time t
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distance measurement from the laser scanner present on the mobile scanning system to recover scale.  The  
block diagram in estimating ego-motion from video is illustrated in Figure 2.3. For each image pair in the 
sequence, discrete features are detected in the images, sifted to find the corresponding matches between the 
successive image frames, and then used to determine the motion estimate of the platform between the 
views.  We will use the calibration approach where we estimate the intrinsic parameter of the camera used 
in the system using Zhang’s method (Zhang, 2000). We like the calibrated approach because of the 
dependable accuracy with 3D structure and the computations we are able to save in real time localization 
compared to the uncalibrated approaches such as (Pollefeys, 1999). 
 
After offline calibration, the online motion and structure estimation from images begins with feature 
detection. There are a number of feature detectors available for this task, and the standard Harris corner 
detector (Harris and Stephens, 1988) appears to be the most common in the literature for its robustness to 
noise, stability and performance (Schmid et al., 1998; Roberts, 1994).  In Figure 2.4, we show the Harris 
corners as red and green markers on two successive frames on one of our experimental datasets in the 
downtown area of Knoxville, Tennessee. The Harris features are used as the starting locations for a 
window-based intensity correlation matching.  This matching process is typically an O (N2) operation, but it 
can be improved by reducing the search space.  We do this by restricting the range of search to those 
features in the second image that lie within R pixels of the same feature in the first image.  This radius is 
determined based on the assumed range of velocities of the mobile platform, as compared to the acquisition 
rate of the camera.  The resulting correspondences are then filtered using an algorithm based on common 
behavior of the correct matches, similar to that developed by Adam, et al. (2001).   
 
The bottom insets in Figure 2.4 show the image frame with the motion tracks of observed features 
superimposed.  Notice that while the majority of the feature tracks indicate motion along the same 
direction, some of them exhibit anomalous behavior.  Such anomalous motion tracks are called outliers. 
Experience has taught us that outliers surface mainly because of noise – either through the estimated 
motion of features in the scene or by false matches from the correlation stage.  Removal of these noisy 
feature tracks increases the video localization system’s robustness to noise, and provides a more accurate 
estimate of the platform’s pose.  
 
 
 

Feature
detection

Feature
matching

Geometry
estimation

Camera
calibration

Dense
matching

Bundle
adjustment

Feature
detection

Feature
matching

Geometry
estimation

Camera
calibration

Dense
matching

Bundle
adjustment

R, TR, T

Input video sequence Feature detection and matching Motion and structure estimation

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3: Block diagram for image-based motion and structure estimation following (Pollefeys et al., 
1999). 
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Structure and motion estimation from images
Frame 2 Frame 1 

Motion estimation using n-point correspondence Model fitting / Outlier rejection using RANSAC 

 
 
 
Figure 2.4: Pictorial description of structure and motion estimation algorithm on video frames. The top 
images represent two successive frames collected while experimenting in the downtown area of Knoxville, 
Tennessee. The bottom left image shows the motion vectors estimated from the image data and the bottom 
right image shows the result of outlier rejection. The inliers of the motion matches are then used to 
compute the 3D motion of the camera that generated these images. 
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The most common procedure to remove such outliers and make pose estimation robust to noise is through a 
random sample consensus algorithm (RANSAC). The RANSAC approach is a probabilistic solution, 
introduced by Fischler and Bolles (1981).  A small subset of feature correspondences are randomly selected 
from the set of all feature tracks estimated after correlation matching. This subset of correspondences 
defines a fundamental matrix F for the image pair. F is a rank 2, 3 by 3 matrix. For simple projection 
models, the minimum cardinality of the feature track subset is three. But based on the motion assumptions 
and the projection model, there are several options such as the 5-point (Nister, 2004b), 6-point (Hartley and 
Zisserman, 2000) and 8-point (Hartley, 1997) matching algorithms that will recover the matrix F as a linear 
system relating correspondences between successive image frames. Next, the epipolar error ei is computed 
for all feature tracks, measuring the distance of each feature from its corresponding epipolar line, defined 
by the computed Fi.  Since, the subset of correspondences can contain errors, we will have to evaluate a 
sufficiently large number of such feature subsets. Each evaluation will provide a hypothesis about the state 
of the camera system and the structure. The RANSAC procedure iterates through all these hypotheses to 
choose a set of feature tracks that have maximal support. The cost function in RANSAC is usually the 
mean epipolar error. If the mean epipolar error for a subset is less than that from previous iterations, the 
current fundamental matrix and its associated mean epipolar error become the best estimate for this two-
frame motion.  The process is then iterated until convergence within a threshold.  We illustrate this 
procedure in Figure 2.5 in a simplified line fitting example. 
 
The green markers in Figure 2.5 represent the inliers and the red the outliers. The problem of estimating F 
then in this simplified line-fitting example is to randomly select two points from the data of matches and 
then seek the support from other matches iteratively. The linear model F that relates the image features in 
successive frames is evaluated based on the distance between each feature track and the linear motion 
model. Through the iterative procedure, several hypotheses are evaluated and the one that converges to 
maximal support is chosen. The number of minimal subsets Mh (Equation 2.1) to evaluate depends on the 
feature detector. In Equation 2.1, p refers to the probability that a pixel in the image is a feature, ε is the 
error associated with the location of features detected by the feature detector and s is the choice of the n-
point matching algorithm. If using the 5-point algorithm, s = 5. When the threshold for support search is set 
appropriately in RANSAC, the algorithm has been proved to be robust in rejecting outliers as shown in 
Figure 2.5b. 
 
 
 

Threshold 

Hypothesis support search Hypothesis generation 

 
(a)                                    (b) 

 
Figure 2.5: Inlier classification using RANSAC. This n-point matching algorithm generates different 
hypotheses by randomly sampling the motion matches and fits a model-based on the minimal subset. 
Competing hypotheses are iteratively scored based on a threshold to choose the one with maximal support. 
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When the iterative procedure is complete, the best estimate of F is computed by removing all features that 
were considered outliers with epipolar error greater than 2 pixels and re-computing F using all the inlying 
feature matches.  Then, the camera’s pre-computed calibration matrix K is used to calculate the essential 
matrix E via  

FKKE T= (2.2) . 
 
The next stage of motion calculation is to extract the translation and rotation parameters from E.  It can be 
shown that the translation vector Ts is the solution to min||ETTs|| - the unit eigenvector with the smallest 
Eigen value of the matrix EET.  The sign of the translation vector can be determined using the constraint 
that the imaged scene must lie in front of the camera. 
 
Determining the solution to the rotation matrix R involves solving 
 

)][(min T
xs

T ETR −− , (2.3) 
 
which can be efficiently solved using the quaternion form.  The output of this motion estimation system is a 
5 DOF motion state, with an unknown scale factor γ.  We then use an absolute distance measurement from 
the onboard laser range scanner to provide the scale factor γ.  
 
So far, we have only described state estimation from images. We now describe the structure estimation 
process. Though several methods exist for 3D reconstruction from images (Ma et al., 2003), the fast 
factorization approach for projective reconstruction appears to be the most suited for our application. Please 
note that the structure estimation algorithm that we use is not a two-frame method but multi-frame method 
to counter the effect of vibrations in the robotic platform. The geometry estimation was explained based on 
the two frame method in earlier paragraphs for the sake of simplicity and is easily extendable to multiple 
frames. 
 
Let us now consider recovering the projective structure from matched features in a video frame. Suppose 
the jth point in the ith frame, xij is projected from the scene point Xj by , where and  
denote the projective depths and projection matrices, respectively.  Given Np matched points in Nf frames 
we have:  

iPjiijij XP=xλ ijλ
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 (2.4) 

 
where the matrix on the left hand side is the measurement matrix.  
 
The initial depths can be set to unity or obtained using Sturm and Triggs’ method (Strum and Triggs, 
1996).  After the depths are normalized, we find the nearest rank-4 approximation of the measurement 
matrix using singular value decomposition (SVD), based on which the camera matrices and 3D 
reconstructed points are derived.  These reconstructed points are re-projected into each image to obtain new 
estimates of the depths.  The process is repeated until the variations in the projective depths are negligible.       
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The step-by-step iterative projective reconstruction algorithm can be summarized as shown below.   
 

Step 1: Normalize the image data into homogenous co-ordinates using isotropic scaling.   
Step 2: Start with an initial estimate of the projective depths.   
Step 3: Normalize the depths  

(3.1) Rescale each column of the measurement matrix so that .   

(3.2) Rescale each triplet of rows of the measurement matrix so that .   

(3.3)   Repeat until there is no significant change in the measurement matrix. 
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Step 4: Form the measurement matrix, find its nearest rank-4 approximation using SVD and find the 
camera matrices and 3D points.   
Step 5: Re-project the points into each image to obtain new estimates of the depths.   
Step 6: If the variations in the projective depths are small enough, stop. Otherwise repeat Steps (3)-(6).  
The initial depths can be set to ones or obtained using Sturm and Triggs’ method or a method from 
(Mahmud et al., 2001).   

 
The output of the procedure is a projective reconstruction that we need to transform into a metric 
reconstruction. Towards that goal, we need to find a projective transformation matrix H  and update the 
projective reconstruction by .  Using the dual absolute quadric jHX *Ω  we have  where 

with Ki as the camera’s intrinsic matrices (Strum and Triggs, 1996).  A linear solution of 

T
ii PP *

1Ωωi
* ~

T
iii KK=*ω *Ω  

can be obtained by imposing additional constraints on the camera’s intrinsic parameters, such as zero skew, 
unit aspect ratio, and zero principal point, and the rank-3 property is applied for improved accuracy.  Please 
note that we already have the K matrix from apriori calibration. The projective transformation matrix is 
then obtained by forcing  and projective reconstruction is elevated to metric 

reconstruction by and .  Finally, bundle adjustment is carried out to minimize the 

projection errors over several frames by computing the 
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are reconstructed, dense matching (Strecha et al., 2003) is carried out to transform each pixel in the 2D 
image into a 3D point. Based on the sampling density requirement on the final 3D model, interpolation is 
also carried out. 
 
Our experience with implementing image-based motion estimation encourages the implementation of 
vision-based navigation in structured environments with buildings where GPS sensors can fail. However, 
we also realize that motion estimation from video can be perturbed by several factors also. Illumination 
change, wind, weather, type of motion (as in rotation only or translation only), moving objects in the scene, 
multiple layers of objects in the camera’s field of view can affect pose recovery. Further, we also note that 
there is error that propagates at each stage illustrated in the Figure 2.3. At the feature detection stage, there 
is error about the pixels that are mistakenly classified as features, and in environments with lot of 
vegetation, several features in the image could appear as potential matches in the correlation matching 
phase creating confusion with several hypothesis with support in the RANSAC stage. The structure 
estimation is completely dependent on the initial sparse reconstruction and the estimation of the 
fundamental matrix, and our observation is that if at all we can improve the accuracy in localization and the 
map, it has to be performed via uncertainty analysis at the geometric estimation stage. 
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2.2.3 Evaluation and summary 
 
In two broad categories as instrumentation-based and image-based localization and mapping, we presented 
a variety of ideas from different researchers in the previous sections. We were inspired by some of these 
ideas and decided to evaluate them for our applications of interest.  The goal behind such an evaluation was 
to gain experience on the 3D sensing methods and develop the expertise to design robust, efficient and cost 
effective 3D imaging systems given the requirements for a specific application. We document our 
experience in the following paragraphs in this section. We show the test area that we chose for our rigorous 
evaluation in Figure 2.6. The maps show the Ayres Hall building at the University of Tennessee, Knoxville.  
 
The techniques that piqued our interest with promise for robotic 3D imaging were (1) to use off-the-shelf 
laser scanners on a stop-scan-move strategy (2) use the scanners in a continuous profiling mode as the robot 
traverses an intended path (3) recover 3D structure from a single image for localization purposes and (4) 
recovering state and structure from continuous video. We show the results from each one of these 
techniques in Figure 2.7. The left insets of each figure 2.7 (a)-(d) shows the relative depth sensed and the 
right insets are screenshots of the rendered 3D model. The color code on the relative depth is used to enable 
emphasis on the geometric fidelity of the scene. We are able to see that the 3D scanners provide high 
accuracy. But, the stop-scan-move faces the problem of view occlusions that become visible in the 3D 
rendering. Also, the point cloud from the static scan mode is scattered and does not guarantee uniform 
sampling density suggesting that stop-move-scan mapping idea requires view planning to strategize our 
locations for optimal stopovers. Robotic mapping using a stop and scan strategy will require some apriori 
knowledge of the scene for autonomous mapping, which none of our applications can assume. Figure 2.7 
(b) is the result after integrating the localization data from GPS and inertial units with the 3D scanners 
operating in continuous profiling mode. This approach compared to the stop-scan-move has reduced view 
occlusion issues and promises uniform sampling throughout the scene. We are able to see even the 
geometry in the window panes in this dataset that was not obvious in the stop-move-scan result. Figure 2.7 
(c) and (d) are result of recovering 3D structure from a video sequence following (Pollefeys, 1999) and a 
single frame following (Saxena et al., 2008) respectively. The visual rendering is more photorealistic 
compared to the instrumentation approach, but we are able to perceive the geometric inaccuracies in the 
color-coded images. 
 
 
 
 

 
 

 
(a)                                  (b) 

 
Figure 2.6: Area of interest to evaluate different techniques for 3D mapping. (a) Aerial view of the Math 
department at the University of Tennessee, Knoxville. (b) The bird’s eye view of the building and the park 
in front of the building. (Original images courtesy of www.maps.live.com) 

http://www.maps.live.com/
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(a)

(b)

(c)

(d)

 
Figure 2.7: Comparison of 3D imaging techniques. (a) Static scanning using a laser scanner. (b) Mobile 
mapping using a laser scanner and instrumentation-based localization. (c) State and structure recovery 
from video frames only. (d) 3D structure from a single image. Laser scanners provide better geometric 
fidelity while image-based methods provide better texture fidelity. The left insets on figures (a)-(d) encode 
relative depth of the scene in color and the right insets are the screen captures of the rendered 3D model. 



Chapter 2: Background: Robotic Mapping                                                                       25 

 

 
We note that the results from the image-based recovery methods are up to a scale and not in global world 
co-ordinates as the instrumentation results. Image-based methods being several thousand dollars cheaper 
than the instrumentation approach can not guarantee dense sampling even after interpolation. Also, their 
accuracy is not always reliable and repeatable. Saxena’s method (Saxena et al., 2008) and Hoeim’s 
approach (Hoeim et al., 2005) to recover 3D structure from a single image succeeds only in 35-40% of the 
real world scenes. Though the shape from motion approach can do better, we still see the geometric 
discontinuities in Figure 2.7. Though the method is able to differentiate structure on the roof slope, the 
window panes and the trees in front of the building, we are also able to see that, many pixels are not 
consistent with the geometry expected from the scene. 
 
As any evaluation, we extended our experiments to several real world environments and concluded that the 
instrumentation approach to robotic mapping is best suited for application with high geometric accuracy 
requirements. We also learnt that the error in 3D models integrated using the instrumentation approach 
relies heavily on the state estimation hardware. Uncertainty in pose propagates as error in the 3D points of 
the integrated map. Image-based methods on the other hand can localize and map environments without 
expensive equipment, but error in the geometric optimization can lead to both localization and depth 
uncertainty distorting the metric structure of the scene. The error in the 3D model in the instrumentation 
approach can be as good as the pose hardware and the 3D scanner but the noise characteristics for image-
based methods are not predictable. With high accuracy 3D scanners and high precision pose estimation 
hardware we see the potential in being able to design systems to operate at a specified accuracy. It is not 
that simple with image-based methods. Though we can compute a worst case limit on the accuracy of the 
3D model, we observe recovered 3D points do not adhere to a bounded noise model. There is also the 
problem with the depth discontinuity and occlusions in the image-based approach. The models recovered 
from images will also be up to a scale factor, the determination of which requires additional information 
about the scene. Though these are some issues with the methods for large-scale mapping, the bigger 
challenges arise in situations from the dynamic nature of the environment. In the next section, we enlist 
such issues and also summarize the literature associated with potential solutions. 
 
2.3 Handling uncertainty in robotic mapping 
 
2.3.1 Sources of uncertainty 
 
In Section 2.2, we had presented several methods used in the localization and mapping. Here, we document 
some real world challenges that we face while implementing these solutions. We begin with the 
instrumentation approach and in particular the GPS and the inertial systems that we use with our 
prototypes. Both these systems though aid global self localization, depend on several environmental 
factors. GPS systems function based on signal reception from satellites orbiting the earth.  To be able to 
localize based on GPS alone, we require the availability of signals from at least four satellites. Our GPS in 
the differential mode is a 2 cm accurate system when the system receives signals from at least 6 satellites. 
Lesser number of satellites implies lesser accuracy. The signal availability is dependent on several factors, 
for example at any point in the day or night; satellites might not be in line of sight for communication.  
Sometimes, when navigating in areas with tall buildings, GPS signals can be attenuated. We show one such 
example in Figure 2.8. When our system receives signals from 6 satellites, the error of the system is as little 
as 3 centimeter, but the moment we get closer to tall trees in the test area as shown in the aerial image inset, 
the error unexpectedly blows ten-fold up to 3 m. While navigating in a highway, 3 m of drift can mean a 
completely different lane and can result in accidents during autonomous operation. This type of intermittent 
failure creates the need for building systems that can operate well amidst tall buildings and also handle GPS 
failures. 
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Larger ellipses indicate error ~ 3 m 

Cellular fields 

Small ellipses indicate error < 0.03 m 

 
Figure 2.8: GPS localization and the uncertainty about the position estimate in a test dataset in Knoxville, 
Tennessee. The aerial picture of the ‘U.S Cellular fields’ in Knoxville is a 2.2 mile long stretch we tried 
mapping using our system. 
 
 
 
The immediate hardware replacement to localization using GPS is the inertial instruments. But the inertial 
systems get perturbed by the vibrations in the robot’s motion and since the position and orientation are 
actually measured by integrating previous measurements over time, the small errors due to vibration 
accumulate and grow to large proportions over long periods of operation. Also, the very design of the 
gyroscopes in the inertial instruments on long usage get heated up and the temperature exponentially affects 
the accuracy of the measurements. Hence we are forced to look into vision-based systems as a dependable 
backup. 
 
The vision system that we described in Section 2.2 is a good candidate for localization in urban 
environments. But they also have environmental factors that influence its accuracy. Illumination change, 
dynamic moving objects in scene, and lack of traceable features are situations that arise while operating in 
real world environments. We show one such situation in Figure 2.9. The Harris corner based scheme that 
we described earlier in Figure 2.4 can lead to a different geometric inference. Image-based localization 
appears to have issues with vegetation because, green leaves and brown twigs that are the major features in 
the scene are detected as similar features creating confusion in the correlation based matching stage leading 
to a high percentage of outliers in feature tracks. We are able to see two major motion directions in the 
bottom left image, where the outlier tracks representing top-down motion appears to have as much support 
as the  actual translation motion from left to right. Such situations introduce uncertainty in the geometric 
inference and hence error in the motion and structure estimation. Falling back to the line fitting example 
again, the type of uncertainty that competing motion hypothesis can create is shown in Figure 2.10. We 
show the ideal case with structured environments and other possibilities. The degeneracy in model fitting 
could happen when the motion is strictly rotational without any translation. The vegetation case, the 
multiple motion layers or the dynamic objects in scene could potentially result in the multiple hypotheses 
as shown in the figure. 
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Feature detection 

Frame 1 Frame 2 

Motion estimation using n-point correspondence Model fitting / Outlier rejection using RANSAC 

 
 
 
Figure 2.9: Image-based pose recovery in a challenging environment. We saw that image-based pose 
recovery was very reliable with structure environments in Figure 2.4. In this figure, we observe that the 
exact same method might not work as efficiently as it did with buildings on vegetation, indicating the need 
for an improved state estimation procedure to handle such situations. 
 
 
 
 
 
 
 



Chapter 2: Background: Robotic Mapping                                                                       28 

 

 

Multiple hypothesesDegeneracyIdeal case  
 
Figure 2.10: The line fitting example to show inlier-outlier distributions that introduce uncertainty into the 
image-based geometric inference. In the ideal case with structured environments, only the inliers are used 
to compute the 3D motion, but because of the dynamic nature of the scene, we realize the necessity to 
handle degeneracy and multiple motion model hypothesis of 3D motion in the model fitting. 
 
 
 
We cannot depend on the other indirect pose estimation method from range data completely also because, 
the range data can utmost recover three degree of freedom motion with sufficient confidence. Also, range 
data while navigating in large-scale environments at high speeds can become unreliable with no correlation 
between successive profiles. In some cases, there may be too few features in the environment to sufficiently 
localize robot pose. Also, in large-scale environments, the scattered non-uniformly sampled 3D profile does 
not help either. The uncertainty analysis of scan line matching using ICP for localization (Censi, 2007) 
explores the statistical concern and supports our observation. 
 
2.3.2 Uncertainty minimization methods 
 
So far, we presented the options available for state and structure estimation towards mapping large-scale 
environments. We realized that sensors and sensing methods are noisy and can be perturbed by the 
unpredictable real world situations. The uncertainty in the sensor operation and its measurements propagate 
into the integrated 3D map. Our motivation being able to generate photo-realistic geometrically accurate 
3D models of environments for safety and security applications, we have to handle the uncertainty in the 
sensor measurements and make the mapping mission as stable and independent as possible to the 
environment of interest, before claiming break-through capability of our 3D mapping systems.  
 
Depending on the application and the environment to be digitized, we have argued that we require data 
from various types of sensors to correctly model the target scene. We justified the use of GPS and inertial 
systems as an easy but an expensive solution and suggested that image-based localization and mapping as a 
suitable inexpensive approach to operate when hardware solutions are drifting and/or are not functional. 
We also identified a method to recover pose and map structure from range sensors also. The next 
significant step is to register the data from the various sensors into a common coordinate frame for 
processing.  Data fusion is then necessary to combine the multi-modal data into a 3D model, which is ready 
for visualization or further processing.  A good fusion scheme should work synergistically with all these 
sensors combining aspects of redundancy, complementary, timeliness and cost for efficiency of operation. 
We summarize such smart integration methods for uncertainty minimization through multi-sensor  
localization and mapping into a classification chart as shown in Figure 2.11. The methods that we will  
discuss in the later paragraphs, decide the fusion of data based on the uncertainty that each sensor is 
propagating. These methods guide the convergence of different technologies for 3D sensing onto mobile 
robots. 
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Figure 2.11: Summary of uncertainty minimization methodologies used in robotic mapping and navigation. 
 
 
 
We should be beginning this discussion by describing the belief propagation framework for robot state 
localization. But, we will not discuss belief propagation until the next chapter. For now, we will assume 
that we have understood and implemented one of several methods such as Kalman filters (Kalman, 1960), 
extended Kalman filters (Cui and Ge, 2003), particle filters (Fox et al., 1999), sparse information filters 
(Liu and Thrun, 2003) operating on the state measured from hardware or estimated from range and vision 
sensors. The function of these algorithms is to provide an estimate of the most probable state as the robot 
moves and propagating uncertainty about the state using the apriori sensor’s noise characteristics and the 
robots motion model. Such methods are turning out to be ubiquitous on robotic systems to include the 
sensor measurement uncertainty. These mathematical methods help robotic systems decide when to use the 
complementary nature of different sensors and when to treat them as redundant information. In our 
application, with probable states from several sensors like the GPS, INS, vision and range, we now have to 
decide how to combine these states in such a way that it will minimize the error and the uncertainty about 
the 3D points in our integrated 3D models. Towards that goal, we discuss different fusion techniques in the 
following paragraphs. 
 
We will treat uncertainty minimization on multiple estimates of state and motion from several sensors as a 
special case of the algorithms defined for data fusion (Abidi, 1992) in multi-sensor systems. Based on a 
thorough study of the literature, we find that most methods are built around a probabilistic framework and 
broadly fall into one of three categories as reasoning methods that are primarily based on Bayesian or 
Dempster-Schafer evidence reasoning, estimation methods that include Kalman filters, particle filters and 
least squares methods and the artificial intelligence-inspired methods that use neural networks and fuzzy 
logic (Maskell, 2008). All these methods operate on a sensor model that represents the error in the data 
from each sensor. Usually, this is modeled as a Gaussian distribution and for most electronic instruments; 
the Gaussian assumption appears to be valid. The variance of the distribution provides the bound on the 
error for each sensor. Fusion methods operate on this sensor model only. We will survey methods in multi-
sensor fusion and describe the general idea behind each of these methods without going into 
implementation details.  
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Bayesian estimation is the most common formalism for multi-sensor fusion that helps combine data from 
multiple sensors based on the rules of probability (Durrant-Whyte, 1987). Within this framework, 
uncertainty is represented as conditional probabilities and the Bayes theorem is used to propagate belief by 
computing posterior uncertainty distributions. The redundant information from a group of sensors is then 
used using the odds and the likelihood ratio formulation of the Bayes rule. Durrant-Whyte describes his 
method based on Bayesian principles for a multi-sensor robotic application (Durrant-Whyte, 1988). But one 
of the drawbacks that Garvey (Garvey et al., 1995) improves over Bayesian reasoning in robotics is the 
inability to include level of detail from each sensor. In the Bayesian formulation, all propositions and 
hypotheses for which there is no priori available are considered equally likely. When additional information 
is available from a particular sensor and we are still evaluating different propositions without using the 
extra information, Bayesian estimates result in an intuitive undesired fusion result. Dempster-Schafer 
theory overcomes this aspect of Bayesian reasoning by assigning probabilities for ignorance that is updated 
as and when more data is available. Bogler (1987), Waltz (1995) and Buede (1988) have applied this theory 
to target identification applications.  
 
Recursive estimation methods for state estimation in robotics using the Kalman filter (Kalman, 1960) and 
its extensions (Fox et al., 2003) combine sensor data by weighing their posterior covariance uncertainty 
estimates. We note that the Kalman filter in this approach is used for fusion and not belief propagation. The 
sparse information filter (Liu and Thrun, 2003) is also a recent trend in robotics but is still facing problems 
in interpreting initial sensor modeling in the information theoretic sense. One of the issues with both the 
Bayesian reasoning and the evidential reasoning approach is the Gaussian assumption. Robust statistical 
methods (Borges & Aldon, 2003) like M-estimators, EM algorithms (McLachlan & Krishnan, 1997) are 
also used in multi-sensor robotics. They outperform Bayesian methods when some of the outliers that a 
Gaussian assumption would eliminate are actually new hypothesis and also need to be considered for 
fusion.  Some methods that use this idea are (Thrun et al., 2003; and Burgard et al., 1999).  
 
Uncertainty ellipsoids as proposed by (Nakamura & Zu, 1989) are also an interesting class of methods that 
aim to infer about reliability of data for fusion by computing the Jacobians of state estimate and computing 
the high-dimensional overlap as the decision criterion for fusion. The next class of methods is the artificial  
intelligence-based methods that try to bring in machine learning techniques into robotics. The idea to use 
neural networks (Capriglione, 2003) to learn about sensors though appears to be logical, faces several real-
time implementation challenges. Real-time implementation issues and a generic repeatable working 
methodology limits methods based on the fuzzy approach for localization also. There are several methods 
for multi-sensor fusion, of which we have only presented a few suited to our application. Hence, we refer 
the reader to the following seminal surveys on multi-sensor fusion (Luo et. al, 2002; Castellanos & Tardos, 
2000; Xiong and Svensson, 2002; Mitchell, 2007). In our case with large-scale mobile robot localization 
and mapping (Bailey, 2002), our experience indicates that fault detection instead of fusion as the promising 
direction.  We make such a statement because; we are trying to find a solution to the problem of 
intermittently operating sensors. Very few methods in the fusion literature fall into this category and are 
called fault detection methods. In the following sub-section, we present the literature on fault detection. 
 
2.3.3 Uncertainty minimization by fault detection 
 
We are able to find key sensor selection methods amidst the fusion papers addressing each one of the three 
categories. For the probabilistic approach, Isler and Bajcsy (2007) use entropy as the criterion to select a 
sensor for target localization using visual camera networks. This paper essentially follows the recent trend 
in using information theoretic formulation for sensor selection as published in (Denzler and Brown, 2002) 
and (Thrun et al., 2004). Luo and Lin (Luo and Lin, 1988) also previously used probability distribution 
functions to build a cost matrix whose coefficients are proportional to the area of overlap of the distribution  
functions in choosing functional and believable sensors. Addressing least squares-based methods Scheding  
et al. (Scheding et. al., 1998) utilize the frequency domain form of the Kalman filter to derive a metric for  
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detecting faults. (Koshizen, 2000a) proposes the expectation maximization algorithm for sensor selection 
and further include fusion techniques (Koshizen, 2000b) to prove that fusion of selected sensors can 
perform better than selection of a particular sensor. Kobayashi et al. (Kobayashi, 1999) has also formulated  
a possibility measure based on fuzzy logic that can automatically learn reliable sensors.  
 
A more recent paper that proposes artificial neural networks for sensor selection is (Capriglione, 2003). 
Novel methods that do not fall into any of these categories also exist. Some examples are the geometric 
approach for sensor selection proposed by (Giraud and Jouvencel, 1995) that considers the interaction of 
the sensor and the environment and the stochastic dynamic programming approach of Hovland and 
McCarragher (1997). The common aspect with all the aforementioned fault detection methods is their 
ability to evaluate and characterize sensor performance and establish confidence factors for the individual 
sensors. They present different methodologies for adaptively determining sensor confidence factors based 
upon evidential reasoning and statistical clustering which utilize the confidence factors. The advantage  
that fault detection methods provide over fusion methods is that the sensor confidence measures in fault 
detection include uncertainties due to the sensor characteristics and performance degradation due to 
environmental factors.  
 
2.3.3 Gaps to fill in the literature  
 
So far in this chapter, we studied different technologies for robotic 3D mapping. We started with 3D 
sensing methods and their deployment on mobile robots and enlisted the different sources of uncertainty 
that influence the accuracy achievable with these sensors. We realized that the error in the integrated map is 
not only because of measurement errors from the sensor, but also the localization error in the mobile 
platform and how these two errors combine in real world situations. Further, we discussed sensor fusion 
methods for combining pose estimates from several complimentary sensors towards better localization and 
mapping. We understood that current sensor fusion methods assume bounded nature of the sensor 
measurement uncertainty.  
 
In our example with the GPS, we illustrated that though the normal expected noise variance on a 
measurement is 3 cm, when non-functional it can be greater than 3 m. The error in a functional sensor is an 
order different in a situation when it is not functioning at the desired and expected accuracy. Also, adding 
to the problem, systems like the GPS can acquire more satellites and spring back functional as the state of 
the robot changes, rejecting the idea of fault isolation and thereby necessitating an inference framework to 
identify such intermittent failures. In addition, we have multi-path scenarios, where the system is very 
confident about a wrong state. Also, with the alternate vision-based localization and mapping methods, the 
performance degradation in unknown and unstructured environments is quite unpredictable.  
 
These situations pose several interesting questions. How should we design a 3D imaging system that can 
operate autonomously in a wide variety of environments? What sensors and how many to use accounting 
for the inevitability that sensors can degrade or fail? Does using several sensors guarantee better 
localization and better map accuracy? How to integrate uncertain, imprecise and conflicting data from 
several sensors imaging the same scene? How to integrate localization and map data measurements from 
sensors with different noise models as is the case with GPS, INS, vision and range? How to identify 
reliability of a sensor online during autonomous operation in unknown unstructured environments? How 
can we make these multi-sensor agents robust to the operating uncertainties of the individual sensors? At 
any instant in time, how do we identify believable sensors and isolate failed/failing sensors? How to 
implement opportunistic intelligence to adaptively decide between believing the best sensor versus fusing 
conflicting/complementary data from uncertain sensing agents while maintaining desired confidence 
levels?  Is it possible to decide when to fuse sensor data and when to selectively reject sensor data? Will it 
be possible to identify sensors springing back to normal behavior accommodating for intermittent failures?  
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Having studied the design of 3D imaging systems, we do realize that contemporary systems are specifically 
designed to operate in controlled environments. State-of-the-art systems have concentrated more on 
demonstrating feasibility with little attention to accuracy, precision, realism, capability and robustness to 
different environments. With global localization being the challenge in mapping, we recognize the need to 
develop methods that minimize localization uncertainty and also increase the reliability of existing 
localization methodologies. Furthermore, in handling situations of sensor performance degradation, current 
fusion methods are not able to decide on sensor functionality online during autonomous operation and 
adapt accordingly. They are not able to infer reliability of the sensor measurements when sensors operate 
beyond expected noise models. Though we did study a few methods in Section 2.3 that tried to evaluate 
sensor reliability based on consensus, the measurement uncertainty and the sensor consensus have always 
been treated and evaluated as two different entities, raising the question of statistical concern, when to fuse 
data and when to discard data and avoid catastrophic fusion. 
 
This dissertation attempts to fill these gaps through the design and development of a robust system for 3D 
imaging. We present the system design in the Chapter 3 justifying the choice of sensors and the 
communication/interaction architecture for each of our motivating applications. In Chapters 4 and 5, we 
present a statistical framework for reliable localization using multi-modality complimentary state 
estimation techniques and demonstrate our approach in several real world situations. 
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3 System: Modular Design 

This dissertation work was motivated by the need to build 3D models of dynamic large-scale environments 
using mobile robotic platforms. Towards that goal, we summarized the state of the art in 3D mapping in 
Chapter 2 and discussed methods for handling uncertainty in dynamic environments. In this chapter, we 
emphasize the need for a robotic architecture towards extracting scene characteristics using multi-modality 
sensors and provide the definition of a “sensor brick” architecture that showcases the potential of our 
robotic platforms as being robust, compact, modular and also autonomous independent units with high 
degree of interoperability. The deployment of multi-modality visual, range, position and orientation 
sensors, that can both act independently and in combination with one another, is a significant first step in 
achieving our goals listed in Chapter 1. We present our prototypes adhering to such a robust architecture 
that takes off-the-shelf hardware and through the efficient system design and requisite software 
development enables the integration of reconfigurable mobile robotic systems for the application in hand.  

 
3.1 Modular architecture in system design 
 
Our modular architecture in system design uses the idea of bricks as basic entities. A “sensor brick” is an 
autonomous platform promoting the notion of a three-module concept with mobility, sensing and 
communication capabilities. The sense-fuse-communicate (SFC) modules of each “sensor brick” have well 
defined functionalities. That is, the sensor module contains one or more sensors to collect data about the 
target environment, the fusion module processes this data and incorporates reasoning and analysis and the 
communication module transmits this information to appropriate end users. Thus, each “sensor brick” built 
on this SFC structure “sees”, “thinks” and “reports” as an independent, self-contained unit to a remote end 
user. The construction of such sensor bricks begins by first making the sensor component a “plug and play” 
device that when powered will automatically load in the information about the individual sensors in the 
brick and determine its functionality. A “mobility brick” is another basic entity that is a robotic platform 
capable of programmable locomotion at least by tele-operation if not completely autonomous. By such a 
construction, the task of improving functionality by combining the bricks is simplified because each sensor 
module is conscious about its composition and functionality, readily lending to interaction among sensor 
bricks within the architecture. We have pictorially depicted this concept in Figure 3.1. 
 
Each “sensor brick” utilizes primary subsystems to acquire data, interact with a “mobility brick”, as well as 
the artificial intelligence and computing resources that are necessary for navigation, data processing, and 
communication. Additionally, each brick also has an independent power supply system which consists of 
any batteries, converters, or other devices pertaining to the operation of other components in the brick. The 
specific choice of each component within this brick architecture is driven by an important design 
consideration to use readily available, reliable, time-tested, rugged and inexpensive technology that will 
facilitate maintenance of the system components and also minimize adverse effects due to a component 
failure. In our implementation, this design consideration explains the use of off-the-shelf components from 
commercial vendors allowing integration and improvement of our bricks with advanced technologies in the 
future. The architecture definition and the implementation details are documented elaborately by Wilson 
(2005) and Naik (2006). 
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Figure 3.1: The sensor bricks fit into mobility platforms without having to reconfigure hardware or 
software in communicating information. They are able to do because each one of the bricks has its own 
power, communication, processing and sensing module with delineated tasks and task definitions. 
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Based on our study of the state-of-the-art robotic systems for inspection purposes, we observe that vision-
based sensors provide useful information for humans to discern and make a decision about a threat in the 
scene. However, the threat may be in the form of explosives under the car or foreign object debris on the 
runway. In reducing the susceptibility to human carelessness or the failure to detect bombs that could cause 
destruction to property and life, we require “perception intelligence” from the mobile robot. By perceptual 
scene intelligence, we are referring to aspects of sensing abnormal “activity” in the scene.  
 
For example, with under-vehicle inspection, the activity in the scene could be in the form of an additional 
object that is not supposed to be part of the undercarriage but attached to the vehicle, or could be neutron 
radiations from a nuclear source, or free radicals from a chemical explosive. Such scene information can 
only be inferred using specific sensors. An anomalous component in the undercarriage could be detected by 
visualizing the geometry from a range sensor, or by searching for abnormal temperatures of the 
components in the undercarriage using a thermal imager. Nuclear radiations, chemical explosives and 
biological agents can be also detected using specific sensor packages. With such advanced sensing 
technologies available, we are now confronted by the challenge of how to use these sensors in a real-world 
environment for automatically localizing potential threat objects in the under-vehicle scene. Such 
automation calls for interaction and fusion of spatial data from vision-based 2D and 3D sensors with 1D 
measurements from the nuclear, chemical and biological detectors. The sensor brick architecture achieves 
synergy using several sensors by taking hardware off the market shelf and programming the functionality. 
 
The idea is illustrated for better understanding in Figure 3.2. As explained earlier, the modularity level 
determines the functionality of the system. Each brick can work on its own as an individual sensor and can 
co-operate with one another for automation requiring no new software. Operating individually as a “sensor 
brick” on a “mobility brick”, the mobility platform transforms into a visual inspection robot, or a thermal 
sensing robot with night vision or a path planning robot. When two or more of such bricks come together, 
in addition to increased functionality there is new software-based intelligence where the system 
automatically learns its capability to plan a course of action, map the underside in 3D and also take 
measurements of chemical activity to localize a threat. The robotic architecture monitors and ensures such 
synergistic sensor interaction, data fusion and communication. When a localization sensor like the SICK 
(SICK Laser measurement systems, 2006) scanner is included into the inspection robot, the configuration 
now realizes the potential to plan its own path, starts looking for the nearest car, gets close to the car based 
on the tire profile acquired and plans the navigation steps for mapping. Just before mapping, the 
architecture takes care of orienting the sensors and synchronizing the data collection from other sensors 
present in that level of modularity archiving multi-sensor data for threat localization. 
 
The architecture also extends to systems for mapping large environments as shown in Figure 3.3. 
Irrespective of the application in being able to measure depth of cracks along the road, or being able to map 
hazardous environments, or capture a road surface for a vehicle-terrain simulator the modular architecture 
in integrating hardware components with intelligent software brings together different types of 3D sensors 
for localization and mapping along with pose measurement hardware like the GPS and the INS. We have 
included three different 3D acquisition methods (triangulation-based, time-of-flight and structured lighting) 
into our architecture. The reason behind including these methods was through initial experiments, where 
we concluded that the triangulation-based 3D sensing matched our requirements for high speed and high 
accuracy crack inspection (though we realized we might have to use an array of sensors for larger fields of 
view); for urban terrain like buildings the RIEGL (RIEGL Laser measurement systems, 2000) time-of-
flight-based scanner was the better option, and for mapping terrain for simulators, the SICK scanner’s 
accuracy and resolution seemed to be sufficient. The SICK time-of-flight approach also is dependable for 
localization purposes. Hence, our software design accommodates all the three types of scanners and the 
architecture separates the data acquisition hardware and decides on their functionality making sure our 
integration methods accommodate several sensors. 
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Figure 3.2: The “sensor brick” architecture lends to different levels of modularity. The base level begins 
with mobility platforms capable of housing self-contained wireless-enabled sensor modules that can both 
function independently on its own as a mobile robot and also in combination with other sensor bricks. 
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Figure 3.3: The “sensor brick” architecture lends to different levels of modularity with large-scale 
mapping also. We have shown the sensors implemented into the “brick” architecture where the sensors can 
act synergistically and in a synchronized fashion. After testing a development prototype on a push cart, we 
have improved towards application-specific professional packaging. 
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3.2 Hardware and software 
 
In Section 3.1, we presented the implementation of different sensors into a common modular architecture 
simulating the device plug-and-play concept for robotic 3D mapping. In this section, we describe the 
hardware components used to digitize 3D environments as accurately and quickly as possible with 
available technology and processing equipment. Our focus is more on the image acquisition system than 
the processing. Earlier in Chapter 2, we had argued that the map of any environment can only be as good as 
the 3D sensing method and the localization hardware. The modular architecture was hence formulated to 
include different types of sensors making the 3D mapping process less dependent on the application in 
hand.  
 
There are different versions of the 3D mapping system that we have developed (Figure 3.3).  We call the 
right inset runway inspection system in Figure 3.3 as a “micro-scale” system that is capable of measuring 
the dense geometry (1mm between data points along a profile) with an accuracy of 2 mm, at the cost of 
having a limited field-of-view but potentially exorbitant size of raw data to process.  The other system uses 
laser range scanners designed to scan larger objects, similar to the RIEGL or the SICK scanner. The 
“micro-scale” system uses the IVP Ranger SC-386 (Integrated Vision Products, 2000) laser profiling 
system to acquire high-resolution 3D models of road surfaces.  This level of resolution is useful for tasks 
such as pavement inspection.  The macro-scale terrain scanning system uses a SICK LMS-200 and the 
RIEGL LMS–Z210 scanners to acquire large-scale terrain models. We use all three scanners in the 
continuous profiling mode while mapping. The sheet-of-light triangulation-based 3D sensor that we use is 
capable of acquiring 2000 profiles/second that corresponds to 6 mm separation between successive profiles 
driving at 30 miles/hour. In terms of accuracy, our system that was placed 70 cm above the road surface 
and configured for a baseline of 70 cm and a triangulation angle of 45 degrees gives 1 mm accurate depth 
information. The price that we however pay in using such a system is the field-of-view. We are able to scan 
0.6 m wide section of the road using a single sensor. We believe using an array of such sensors as a 
possible solution to large area micro-scale data collection. For other applications such as terrain and urban 
mapping, we list the specifications of the sensors we recommend in Figure 3.4.  
 
For our integrated maps to have global reference, we collect physical location information by setting up a 
GPS base station and placing a receiver on the mobile platform. The GPS data is accurate up to 3 cm in the 
motion direction and gives us 10 samples of position information in one second. The GPS can be thought of 
as sampling the 3D motion of the mobile platform that houses the sensors. In the prototypes shown in 
Figure 3.3, we see a video camera mounted on a rod, whose image axis is orthogonal to the surface of 
interest. We prefer the orthogonal field-of-view for generating texture because it makes the registration of 
range and intensity profiles trivial and considerably improves integration time without having to consider 
CCD calibration and rectification of images. In addition to using video for texture, we also use additional 
cameras to help estimate the motion of the sensor platform as back up to GPS satellite signals that may not 
be intermittently available during certain time intervals of the day. Also, as a backup localization system, 
and for compensating the vibrations and the resulting oscillations on the mobile platform caused by the 
suspension system in unstructured terrain, we have used the inertial measurement unit (IMU) for measuring 
the orientation Euler angles (roll, pitch and yaw) of the sensor mount during data collection.  Our IMU unit 
is manufactured by Xsens whose recent product is up to a-tenth of a degree accurate with its orientation 
measurements. 
 
We use two high performance multi-core computers with Pentium 4 processors supporting hyper threading 
with 1 gigabyte of memory along with special high speed serial interface cards as processing equipment. 
One computer hosts our acquisition programs (and the architecture) as multi-threaded, multi-document 
graphical user interfaces written in C++ capable of real-time buffer memory management and storage while 
the other computer takes care of the processing and integration we describe in the Section 3.3. 
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and antenna is mounted on the mobile platform (with a 
common axis and in line with 3D sensor) to communicate 
with the base station. With clear weather and satellite 
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The triangulation-based laser scanner can provide depth 
accuracy of 1 mm configured for a baseline of 70 cm and 
stand off 70 cm and a triangulation angle of 45 degrees 
gives 1m width of view at 2000 profiles/sec. We 
recommend the use of this system for applications like 
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instrument with an accuracy of 5 cm that can digitize 3m 
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JVC

Sensor Performance
LMS-Z210 LMS200 GS500 MT9 JVC-HD1

Measurement Range 300 m 8 m worldwide 300 deg/sec visible
Acquisition Rate 10K points/sec 35 Hz 10 Hz 100 Hz 30 Hz
Resolution 1 cm 1 cm 1 cm 0.5 deg 1280 x 720i
Accuracy 5 cm 1.5 cm 2 cm < 1 deg n/a
Computer Interface RS232/Parallel RS422 RS232 RS232 IEEE 1394
Operating Voltage 12 VDC 24 VDC 10.5-32 VDC 3.4-12 VDC 7.2 VDC
Dimensions (W x L x H) 21x21x44 cm 16x19x16 cm 13x13x9 cm 58x58x22 mm 12x27x10 cm
Weight 13 kg 4.5 kg 600 g 50 g 1.3 kg

RIEGL SICK Leica -GPS Xsens IMU Video camera

RIEGL

IVP

SICK

Leica -GPS

Xsens IMU

Placed on a rod for increased field-of-view orthogonal to 
the road surface and also pre-registered with the range 
profile. This high resolution video camera can provide as 
1024 x 720 image frames at a frequency of 30 Hz.

Is placed as close as possible to the 3D range sensor and 
measures orientation angles accurate up to a tenth of a 
degree. Inertial measurements are generally noisy and 
have to be characterized before we can use the data for 3D 
profile alignment.

Our differential GPS system consists a base station and 
the rover. The base station is placed in an area with no 
obstructions and the rover with one GPS radio receiver 
and antenna is mounted on the mobile platform (with a 
common axis and in line with 3D sensor) to communicate 
with the base station. With clear weather and satellite 
availability positional accuracy of up to 2 cm is 
achievable.

The triangulation-based laser scanner can provide depth 
accuracy of 1 mm configured for a baseline of 70 cm and 
stand off 70 cm and a triangulation angle of 45 degrees 
gives 1m width of view at 2000 profiles/sec. We 
recommend the use of this system for applications like 
crack inspection that require detail and accuracy.

The range accuracy of the high-speed, time-of-flight range 
scanner is up to 5 mm in mapping 16 m wide profiles of 
the scene at 30 profiles/sec. This scanner can be noisy and 
might require prior noise characterization. We use this 
scanner in mapping road terrain where cm accuracy is 
sufficient.

The time-of-flight range scanner is a large scale mapping 
instrument with an accuracy of 5 cm that can digitize 3m 
– 300 m far objects at 21 profiles/sec. This scanner is used 
for mapping large scale urban environments centimeter 
accuracy is sufficient.
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Figure 3.4: Specification of the components in our modular approach along with some design notes 
towards reproducing our system. We have included the size, weight factors to emphasize the portability and 
robustness. We have also provided the sensor characteristics and their expected accuracy that will later be 
used as a bound in the noise model for the sensors. 
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3.3 Multi-modality multi-sensor data integration 
 
We have built our system by choosing sensors based on the application requirements. These sensors fall 
into two categories as pose recovery sensors (GPS, INS, cameras) and structure recovery sensors (cameras 
and laser scanners) with the potential of using some structure recovery sensors to infer pose also.  Though 
the idea of mapping appears trivial once the GPS provides global location and IMU provides relative 
orientation information to align the 3D profiles from the laser scanners into a global co-ordinate system, we 
have to discuss several issues before we actually deliver an integrated 3D model. In this section, we 
describe the procedure for integrating the data collected from multiple sensors, into one complete single 
multi-modal 3D dataset. The processing steps that we implement are shown in a block diagram in Figure 
3.5. The task of spatial alignment is not trivial because; each of the measurement systems has their own 
reference co-ordinate system differently oriented in free space. Hence as a first step towards integration and 
fusion of the data, we need to choose a global reference co-ordinate system to represent our data. We use 
the GPS co-ordinate frame as our reference frame and transform the range and intensity profiles to that 
frame without losing geographic location information of the scene.  
 
We need to deal with another important issue before transforming the data to the real-world co-ordinates. 
We attribute this issue to different acquisition rates from different sensors. The GPS supplies data at a 
frequency of 10 Hz, video camera at 30 Hz, the IMU at 100 Hz, while the range profiles are acquired at 
nearly 2000 Hz. We have two ways of resolving this issue (1) to discard the range data and use the profiles 
that are time synchronized with the GPS data or (2) use all the points of the range data and align the  
profiles based on interpolated GPS path at time instants that we have acquired the range data. We lose more 
information in discarding acquired data by choosing the former solution. We hence suggest cubic spline 
interpolation of the GPS path as a 3D curve at time stamps recorded by the range sensor. The IMU 
orientation data also needs to be interpolated. But before that, having characterized our IMU sensor, we 
apply moving average smoothing techniques to reduce the noise in its measurements before interpolation. 
For pose recovery from images we have implemented (Nister, 2004a) and for pose recovery from range we 
have implemented (Martinez, 2006).  We implement passive pose recovery from cameras and laser 
scanners for complementary state estimation. However, the implementation of (Nister, 2004a) and 
(Martinez, 2006) can result in conflicting states differing from the GPS and INS measurements. The 
uncertainty analysis block takes care of the belief propagation on sensor data before spatial alignment in 
such situations. 
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Figure 3.5: The block diagram for integrating multi-sensor data into a 3D model. The sensors provide 
localization and structure information which is fused and aligned into a 3D model. We have included an 
uncertainty analysis step before the alignment to handle dynamic situations in the real world. 
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Towards the spatial alignment of data, if we can denote the Euler angles of roll, pitch and yaw from the 
IMU by ( ttt κφω ,, ) and 3D range measurements by Dt = (xt

r, yt
r, zt

r), at a particular time t , we assume that 
we have already interpolated localization sensor data to synchronize in time with the range profiles and let 
the GPS measurements, after considering the moment arm distance along each dimension of the range 
sensor from the GPS receiver be , the mapping to the real-world co-ordinate system Wt of the 
profile acquired for that instantaneous time t can be computed using Equation 3.1.  
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The transformation and alignment based on multi-sensor data (collected over a time period) gives us an 
unorganized point cloud of data that, for visualization purposes, we triangulate using the method described 
by Hoppe in (Hoppe, 1992). Our experience indicates that triangulation should be performed on smaller 
patches as the data is acquired and later merged into a large 3D dataset. We represent the final triangulated 
mesh as a VRML model that can be rendered in most computers that support OpenGL or DirectX. The 
dense point cloud is then converted into a mesh that can then be textured using the color images from the 
video. By the design of our setup and initial hardware registration step, we can actually map the color 
pixels in the CCD to the range profile as a quick method for multi-modal visualization. The process of 
digitizing a real world scene by sampling the geometry as points and profiles Dt, sampling color using 
cameras and aligning geometry and color in a global co-ordinate frame can be better understood from 
illustration in Figure 3.6.  
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Figure 3.6: Spatial integration of multi-sensor data requires a global reference frame and interpolation to 
consider different sampling rates of sensors. The range profiles are in a local co-ordinate frame that is 
transformed into the GPS co-ordinate frame based on the self-localization data and integrated as a 
textured 3D model 
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If the sensors are all functional and perfect, there would be no error in the integrated 3D map after spatial 
alignment. But the sensors are noisy and can fail.  The noise manifests in the localization measurements 
and also in the structure measurements as shown in Figure 3.7. Uncertainty in the state recovered during 
self localization propagates as uncertainty into the integrated map. Hence, before we claim robustness to 
noise and a bound on the error in the integrated 3D map using our systems, we have to handle uncertainty 
from both of these sources. Our modular design, to include different sensors, minimizes the measurement 
uncertainty in the geometric samples of the scene. But, we still have to deal with the uncertainty in 
localization. Also, if the mapping has to be performed autonomously, localization appears to be a much 
more significant and tougher problem requiring models for predicting expected uncertainty from the 
sensors. We present the uncertainty models for localization for a mobile robot with vision and range 
sensors in the following section. 

3.4 Belief propagation theory for modeling and handling uncertainty 
 
We have realized both from the literature and through our experience that there is uncertainty about how 
the system changes its state and how the sensors measure state, particularly, when we have to deal with 
sensors that may be subject to situations that perturb their measurements in unpredictable ways. Sensors 
can fail in uncertain dynamically changing environmental conditions that cannot be modeled apriori and 
detecting such a fault is the tough task in our hands. In this section, we present methods to formulate the 
autonomous localization and mapping problem as a recursive state estimation problem to deal with 
expected sensor noise. Then, we will discuss methods to model the noise characteristics of the sensors and 
the actuators to generate what is called belief distributions about the localized pose or state of the mobile 
platform in an environment. Following (Thrun et al., 2005), we introduce a model for the state transition 
that will include the uncertainty of the robot’s actuators and a sensor model that will include the noise 
characteristics for the measurements of robot pose. The problem of handling uncertainty and making 
decisions in dynamic situations gets simplified within the probabilistic framework. We build over the idea 
of state transition/sensor measurement models and belief propagation towards learning the performance of 
a particular sensor to handle situations beyond the expected noise levels in Chapter 4. 
 
 
 
 

 

Figure 3.7: Uncertainty in the 3D map is a combination of error in the localization and the measurement 
uncertainty in the structure recovery sensors. The measurement uncertainty is only as good as the sensor 
used and the best we can do is by choosing and implementing the right sensors into our architecture.  
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ε+= xx̂

x̂

With that motivation, let us begin with a sensor S that measures state x as  with error ε within a 
bounded noise model in the form of a conditional probability distribution. If the sensor is a direct 
state measurement device like the GPS or the INS that measures pose the bounded noise model can 
be empirically estimated through different characterization techniques before mounting on the robot or 
obtained from the manufacturer’s specifications. The typical state vector with robot localization is 
usually position and orientation with 3 to 6 degrees of freedom in motion. Sometimes, derivatives of pose 
are also included in the state vector for maintaining continuity and smoothness. 

)|ˆ( xxp
)|ˆ( xxp

 
We will assume that we are able to approximate the uncertainty Σ0 about the initial state and associate an 
initial belief distribution about the initial state x0 = Belief(x0). The initial belief distribution could be a 
uniform distribution if there is no prior knowledge or a tightly bound Gaussian based on sensor 
characterization. With most of our engineering equipment, we can assume that Belief(x0) is normally 
distributed with parameters (x0, Σ0).  Starting from initial state x0, we associate control commands the robot 
executes at time t as ut to propagate the uncertainty belief in the initial state. We also assume that the robot 
control systems are calibrated apriori and we have an approximation to , the state transition 
probability. The state transition probability  represents the probability that the system state is 
xt+1 given that the system executed the command ut while at state xt. 

);|( 1 ttt uxxp +
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Every time, the mobile robotic platform executes a motion command, we have to include the noise 
characteristics of the actuators before we can compute the uncertainty in the form of a belief distribution 
about the new state of the robot and  takes care of that. The sensor S is trying to help us avoid 
drifting from the goal due to the actuator noise by updating us with measurements of the state of the robot. 
The sensor measures the current state as  with the uncertainty as feedback to localize the robot. 
Then, the problem that we have in our hands is a recursive state estimation problem that we illustrate in 
Figure 3.8, where the state of the system changes from state by executing control signals to a new 
state  that is measured by sensors as . Since the measurements  are noisy too, we have to 
determine the new state and the uncertainty about the state by compensating for the noisy sensor feedback 
and the noisy actuator command executed. We describe the methods to propagate the belief and the 
uncertainty about the state in the following paragraphs. 
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Figure 3.8: The simplified Bayes network representing localization as a recursive state estimation 
problem. The dotted arrows are symbolic of the Markov assumption that the current state of the system 
depends only on the previous state and the most recent control command lessening the burden of having to 
integrate a history of measurements. 
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We have introduced two probabilities, the state transition probability  and the sensor 
bounded noise model probability . Belief propagation via Bayesian filtering techniques (Thrun et 
al., 2005) provide a powerful statistical tool to help manage uncertainty using these probabilities. Bayes 
filters represent the state at time t,  by random variables, and the uncertainty at each state by a 
probability distribution over all possible  called . The key idea being able to sequentially 
estimate such belief distributions based on the information contained in the sensor data. If the sensor 
measurements of state are indexed as , then the belief distribution is defined as the posterior density over 
the random variable , conditioned on all available sensor data up until time t by Equation 3.3. 
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(3.3) )ˆ|()( :1 ttt xxpxBelief =  . 
 
Intuitively, the belief distribution can be considered to answer the question “What is the probability that the 
robot is at location given the history of sensor measurements for all possible locations of x?” Because of the 
exponential nature of the problem to include history in computing the posterior distributions, we will make 
the assumption that the robot dynamics is sufficiently modeled as a Markov process, that is, all information 
about previous states is encapsulated in the current state . This assumption reduces the belief propagation 
considerably to a much familiar form of the fundamental Bayes theorem. Since in our case, we have two 
systems to monitor, namely the controls and the sensor feedback, belief propagation is carried out in two 
steps (i) prediction and (ii) correction. The prediction follows the rule in Equation 3.4 and the correction 
includes sensor models as shown in Equation 3.5. 

tx
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As mentioned earlier, describes how the state of the robot changes over time. With the state 
transition probability encapsulating the uncertainty in system dynamics, the predictor belief distribution is 
the conditional probability that answers where the robot might be given that the robot was previously in  
and it executed a motion command . But, since the robot motion controllers are not as accurate as one 
would expect, the robot will not reach the desired state . Over a period of time, these errors can 
accumulate taking us completely away from the desired goal. Hence we need to correct the posterior belief 
of the state by using sensor data as feedback using Equation 3.5. 
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Recollect that is the perceptual model determined apriori for each sensor used in the robot that 
describes the likelihood of making an observation  if the robot was actually at state . The term

)|ˆ( tt xxp

tx̂ tx η in 
Equation 3.5 is a normalizing constant which ensures that the posterior over the entire space sums to 1. 
With known apriori, (or at least modeled as a uniform distribution if we don’t have the required 
information), the performance of the belief propagation procedure depends on the accuracy of the 
perceptual model, the dynamics model  and the representation used for . With 

known apriori, (or at least modeled as a bound uniform distribution if we don’t have enough 
apriori information) the performance of the belief propagation depends on the accuracy of the perceptual 
model, the dynamics model  and the representation used for . That is, the success 
of belief propagation not only depends on the statistical parameters that describe distributions 
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the Bayes filter is the Kalman filter (Kalman, 1960). Kalman filter 
an distributions, parameterized by the mean  and the 

. Further, the 

The most commonly used form of 
pproximates belief as unimodal Gaussia tμ

covariance tΣ .  The mean of the posterior belief estimated using the Kalman filter is the expected location 
and the covariance representing the uncertainty in the mean estimate. In spite of the Gaussian assumption, 
Kalman filters have been applied successfully in robot localization tasks, the main advantage being their 
computational efficiency.  Multi-hypothesis tracking (Jensfelt and Kristensen, 2001) extends the Kalman 
filter to include multi-modal belief, by representing the belief distribution as a mixture of Gaussians, where 
each mixture is then tracked using a separate Kalman filter. Particle filters (Doucet et al., 2001) on the other 
hand represent beliefs by sets of weighted samples distributed according to the previous belief. The method 
based on sequential importance sampling can represent arbitrary probability densities, which makes them 
extremely robust compared to Kalman filter. However, the worst case complexity of the sampling-based 
particle filter is exponentially cumbersome as the dimensionality of the state increases. 
 
We will use Kalman filters in our implementation because the control system and the sensors that we use in 
ur system prototype follow Gaussian distributions for );|(  and )|ˆ( tt xxp

prop

f

1 ttt uxxp +

tions that gove

o
conclusions in Fox et al. (2003) supports our decision that Kalman filters are best suited for vision cameras, 
laser-range finders and GPS systems. We explain the equa rn belief agation using 
Kalman filters in Table 3.1. Kalman filters in addition to the state transition probability );|( 1 ttt uxxp +  
with covariance R and the bounded noise model )|ˆ( tt xxp  with covariance Q, requires also the motion 
model that decides how the state changes for an input command tu , and the sensor model o  
would measure the new state 1+tx . An example of  linear form for a motion model and a sensor 
model is Equation 3.6 and 3.7 respectively.   

 
Motion model: 1 ttt xFx +

 how a sensor
 a generic
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(3.7) )|ˆ(~;ˆ 111 ttttt xxpxHx εε+= +++  Sensor model: 
 
We explain the formula on model and the sensor model with the help of Figure 3.9
efore that, we note that the procedure listed in Table 3.1 does not necessarily indicate that for every action 

Table 3.1: Kalman filter algorithm adapted from (Thrun et al., 2005). 
 

tion of the moti . But 
b
(motion command) there is a sensor measurement update. There can be situations were there are several 
motion commands before one sensor update, or more sensor updates compared to the motion. Factors that 
decide the number of prediction cycles (Step 2) and sensor update cycle (Steps 3-5) to propagate belief are 
the velocity expected out of the robot and the sampling frequency of the sensors used. 
 
 
 

Kalman filter algorithm in equations What happens at each step? 
Input: ( ttt u,,Σ ) C rrent belief and the motion command. μ u
Step 1: ttttt uBF +=+ μμ 1  Naïve state ics. update based on system dynam

Step 2: t
T

tttt RF +=+1  ws. Motion model prediction: Uncertainty groFΣΣ

Step 3: 1
11111 )( −
+++++ +ΣΣ= t

T
ttt

T
ttt QHHHK  Kalman gain K estimates how much to correct. 1+

Step 4: )ˆ( 111111 ++++++ −+= ttttt HxK  μ μ μ Includes Kalman gain with residual error. t

Step 5: 1111 )( ++++ Σ−= tttt HKI  ent. Σ Uncertainty estimate shrinks based on measurem
Result: ( )  11 , ++ Σ ttμ Parameters of the belief distribution at t+1. 
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(a) (b) 
 
Figure 3.9: An example for formulating the motion model for a robot with three degrees of freedom in 
motion. (a) A robot and the reference axis. (b) The recursive state-space estimation framework that we 

ould like to use for localization and mapping. 

et us consider an example to understand the derivation of a state-space model for the robot locomotion. 
uppose, we had a robot like the one shown in Figure 3.9 in a global reference axis, the state vector of a 

w
 
 
 
L
S tx
robot considering three degrees of freedom can be assumed to have the following form. 
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here refer to the spatial position in a global co-ordinate frame, 
 
w ),( tt ji tφ is the instantaneous orien

f the se d is the magnitude of velocity at time t. 
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The motion dynamics for this robot can be modeled in the physical world as the following set of equations 
3.9, 3.10 and 3.11

itttt εφvii ++=+   cos 1 ; jtttt εφvjj ++=+   sin 1  (3.9) 
 ; 11 vtttttt vvvφ εεϕφ φ +Δ+=+Δ+= ++  (3.10) 

(
where 

); N(0,~ );N(0,~ )N(0,~ );N(0,~ φφεεεε QQQQ vvjjii  3.11) 

tϕΔ and are motion commands to the actuators and noise models ε follow a Ga
distribution. 
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Then th ear st space motion model tttt BuAxx ε++=+1 translates to Equation 3.12. 
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We note that the state transition probability  is incorporated into the motion model in the 

rm and variances.  
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We u r model as the one prese
motio e-scale mapping an

se a simila nted with our robots for small environments with three degrees of 
n. For larg d navigation, we allow six degrees of freedom for motion and derive the 

otion model in a complicated form of Equation 3.12. With that example of deriving the state model for  m
robot localization the next model that we discuss is the sensor model. The sensor model defines the 
relationship and interaction of how the state is estimated by the sensor as a measurement. The sensors in 
our application that provide estimates of the state vector in the form ε+= xx̂ are the GPS and INS 
instruments. The sensor model ε+= xx̂ is very straightforward and simple for direct pose measurement 
GPS and INS devices. But indirect pose estimation sensors like the range sensor and the camera, do not 
measure state directly.  
 
For the vision-based SLAM, the measurements are typically landmarks lt identified as pixels in an image 
sequence. In addition to the robot pose with six degrees of freedom (3D position and orientation), we 
onsider landmarks observed in the environment as part of the state vector also and model the relationship c

between the 3D co-ordinate of the landmark and the pixel measurement as ε+= )( tvisiont xHl in a similar 
form as Equation 3.7. If Xc = [xc, yc, zc] be a 3D landmark co-ordinate in the camera reference frame (not 
global latitude and longitude) and the landmark lt identified as pixel (u, v) in the image, the relationship 
between the measured landmark and the state of the system in the camera reference frame is modeled as 
Equation 3.13. 
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r and fx and fy are focal lengths in the horizontal and vertical directions, (θx, θy) 

ncipal point of the e
ion. ε is normally 

in the sensors taking measurements from the real world and relating the sensor 

xtended Kalman filter allows differentiable 
nctions for the state transition and sensor observation models allowing non-linearity in Equations 3.6 and 

is the pri cam ra and k1 is the radial distortion co-efficient estimated through apriori 
calibrat distributed sensor noise whose parameters are estimated through sensor 
characterization by imaging ground truth data at the same distance (range) as the scene. Davison et al. 
(2007) provides the details for monocular vision-based SLAM. We use Davison’s (2007) implementation 
in our systems. 
 
Thus far, we presented the idea to model the uncertainty in locomotion of the mobile robot and also model 
the uncertainty 
measurements to the scene for improved state and structure estimation. These models dictate the prediction 
correction stages in the algorithm summarized in Table 3.1. 
 
We implement the extended Kalman filters (Thrun et al., 2005) as our Bayesian filtering technique into our 
integration software for each sensor individually. The e
fu
3.7 presented earlier. The filter operating on each sensor will output the most likely state and the 
uncertainty about the state considering the state transition noise and the sensor noise while compensating 
for either.  We choose a sufficient time interval as a parameter in the architecture for deciding to fuse the 
state measurements after Bayesian filtering from the GPS, INS, vision and range sensors. The time interval 
tries to accommodate for the fact that sensors are operating at different sampling rates in our mobile 
mapping system by adjusting the number of prediction and correction cycles within the filter for each 
sensor. Within our modular approach each sensor brick is programmed for localization and mapping using 
an implementation of the SLAM procedure. The vision brick has an implementation similar to (Davison, 
2007) and the range brick implements (Martinez, 2006) without the genetic algorithms. The models for 
uncertainty within the SLAM modules are derived through extensive sensor characterization. 
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We would like to discuss a few issues about using the Kalman filter and the Bayesian filters in general 
efore concluding this chapter. The first one is about the error that is propagated. Theoretically speaking, 
e observe that Kalman filters eliminate the worst case performance of noisy sensors. They are able to 

sensor noise 
nd (ii) the validity of sensor measurements. Leonard and Durrant-Whyte (1992) also support our 

b
w
achieve such performance because of the fact that, if the actuator uncertainty is large, sensor updates  
dominate the propagation, and if the sensor uncertainty is large, the motion process propagation dominates 
the state estimate. However, there is an inherent problem as well, which is called the “health” of the Bayes 
filter when the residual in Step 4 of the algorithm in Table 3.1 blows above the Σ3  bound of the apriori 
uncertainty estimate. Such a case caused by sensor failure or performance degradation, results in erroneous 
estimates of the state and the uncertainty resulting in a rapidly diverging estimate of belief. This is the 
major concern with our mapping systems in large-scale environments. As emphasized in the concluding 
section of Chapter 2, the GPS system error can become 10-fold when not completely functional; the pose 
from video may also not be completely reliable in certain areas and such instances of performance 
degradation can contribute to the increased uncertainty in localization and the integrated map.  
 
Based on our experience, we are able to conclude that there are two types of sensor problems associated 
with position and orientation (pose) uncertainty in localizing a mobile robotic platform: (i) the 
a
conclusion. In the robotics literature, the uncertainty due to the sensor noise is well understood and is 
efficiently handled by using one of several Bayes filters by representing uncertainty using probability 
density functions under bounded noise models. However, the second problem of sensor validity attributed 
to the dynamic nature of environments poses a greater challenge because uncertainty due to sensor validity 
extends beyond the boundaries of modeling noise. In the following chapter, we describe a potential solution 
to robot localization by modeling and minimizing both types of uncertainty in dynamic environments. 
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4 Theory: Selfish-Altruist Fusion 

The problem we have in our hands is that of data fusion amidst sensor conflict and performance 
degradation in multi-sensor state estimation, with focus particularly on the state measurements meant for 
localization of 3D mapping mobile robots. We motivate our statistical solution to this problem from 
philosophical observations of survival and adaptation in Section 4.1 and derive a mathematical procedure 
for quantifying a sensor’s self and co-operative confidence. We discuss the idea to guide the fusion amidst 
uncertainty in Section 4.2. Further, we explain our approach for quantifying self confidence in Section 4.3 
and co-operative confidence in Section 4.4. Our formulation helps derive a criterion to resolve the dilemma 
between fusion and selection. We conclude this Chapter by discussing the criterion in Section 4.5. 

 
4.1 Philosophical inspiration for statistical inference 
 
We have already drawn inspiration from adaptive biological organization towards the design of our mobile 
robotic mapping systems. Particularly, the idea behind creating flexible subsystems in the form of sensor 
bricks is that the modular design enables the collective function of subsystems that is much more efficient 
and resilient, even in face of near-catastrophic failures. The inspiration is from the tiny ants, a colony of 
relatively simple individuals with delineated tasks that coordinate actions efficiently to locate food sources, 
relocate and survive in hostile dynamic environments. Though our sensor bricks (vision and range) try to 
simulate the ants as autonomous agents with SLAM capability, locating and memorizing spatial landmarks 
and relationships, we have a problem in dynamic situations exposing the need for implementing methods 
for intelligent behavior. 
 
The evolutionary stable solution (Krebs and Davies, 1997; Parker, 1984) studied in the analogous problem 
of intelligence among biological species is that of adaptation. Adaptation as Lerman (2004) notes is an 
essential requirement for systems composed of autonomous agents functioning in dynamic environments. 
By dynamic environments, we are referring to places like urban canyons, tunnels and mines of which we 
have no apriori judgment and are explored for the first time. Adaptation allows the system of agents, in the 
form of multi-modality sensors on a robot or nodes implemented into a sensor network to change their 
behavior in response to changes in the environment and actions/inactions of fellow agents. Such a behavior 
guarantees improvements on the overall performance of the system as a whole. In our case, the autonomous 
agents are the sensor bricks with sensors for pose and structure recovery that aims towards a higher 
autonomous behavior of robot localization in unknown environments. While localizing in such 
environments, autonomous survival implies constantly providing feedback in the form of a spatial map in 
dynamic environments while functioning at a higher level of self-realization than what is expected out of 
the sensor systems individually. 
 
The economics of survival with continuous resource management works best when the entities of the 
system or society act independently with a selfish attitude and evolve to make philanthropic decisions to 
co-operate for higher success (Axelrod, 1984; Chavas 1993). Fortunately for us humans, we have the 
survival machines in the form of the genes working “over time” (Dawkins, 1982) dictating the survival of 
the fittest through natural selection. How can we get computers to do this task for our mobile robots? 
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We begin by relating the survival of our mobile mapping system in an environment to its success in fusion 
of multi-sensor data. The sensors are the autonomous agents working towards better self-realization that in 
robotic terms is better state localization. We treat the sensors in a system like entities of a species allowing 
them the freewill to act on their ego, dispense their duty to localize, and also permit them to compete 
aggressively for leadership with fellow sensors in the system. In such a scenario, we would ideally want 
each sensor to diligently succeed individually in state recovery and in the face of trouble or changing 
environmental conditions evolve to co-operate with other sensors placing the survival of the imaging 
system ahead of them as individual bricks. This evolution is exactly how the human race has succeeded 
over the years by acting as individuals for most of their life time with sporadic acts of philanthropy and 
altruism towards bigger goals.  The bigger goal could be in the interest as big as the human presence on the 
planet or as trivial as the success of an organization. Targeting such success, we derive our selfish-altruist 
data fusion algorithm.  
 
The success principle behind companies that hire members capable of independent efficient work to fit a 
team (Collins, 2001) translates as the utility and importance analogue of how sensor agents are expected to 
behave in a robot. The utility is decided by how confident the sensor can act on its own and how willing the 
sensor is towards co-operating for the success of the robot.  These analogies establish an interesting avenue 
of thought to introduce a statistical perspective for success in fusion. We see the potential of an information 
theoretic approach, implementing intelligent adaptive behavior by associating a measure to quantify how 
much information a sensor provides about the state and another measure quantifying the information gain 
or synergy when the same sensor is working in a co-operative team with other sensors. Inspired by those 
thoughts, we derive mathematical formulae for evaluating the self confidence of a sensor about its state 
measurement and co-operative confidence the team associates with the sensor.  
 
4.2 Our proposed approach 
 
We have thus far discussed the philosophical inspiration to proceed towards implementing the inspiration 
as statistical inference for our mobile mapping applications. The key to achieving adaptive behavior using 
statistical data fusion is the representation of uncertainty towards extracting information from multiple 
sources.  A number of different paradigms using fuzzy logic, Bayesian reasoning, Dempster-Shafer theory 
and transferable belief models have been developed for modeling and handling uncertainty. We note that 
most if not all of these theories assume uncertainty models and representations of belief similar to the 
content presented in Chapter 3. We would like to briefly discuss and inspire the derivation of our approach 
from some of those ideas. The idea to use fuzzy logic approach represents belief by defining a mapping 
between state variables of interest and belief functions (Zadeh, 1975).  
 
Bayesian reasoning methods on the other hand, (Elfes, 1992; Mitchell 2007) assign probability mass 
functions to mutually exclusive hypotheses as belief distributions and propagate posteriors by incorporating 
apriori with evidence. The Dempster-Shafer theory (Zhang, 1994) which can be considered a generalization 
of Bayesian reasoning combines different sources of information and evidence by calculating the 
probability with upper and lower bounds on the variables of interest. The transferable model theory is a 
further generalization on the Dempster-Shafer theory by assigning probabilities to a power set of mutually 
exclusive hypotheses over the existing assignments of probability using the Dempster-Shafer theory. 
 
There are several arguments in the literature with regards to the application of these theories in real world 
situations (Maskell, 2008).  Bayesian statisticians consider Bayes approach as the only consistent reasoning 
methodology to manipulate belief whereas advocates of evidence reasoning (French, 1980; Zhang, 1994) 
vehemently point out the inability of the Bayesian approach to satisfactorily manipulate belief amidst 
uncertain, imprecise and conflicting data. Our approach leverages the Bayesian approach for uncertainty 
propagation and power set evidence reasoning as the statistical tool for implementing adaptive and stable 
behavior in unknown unstructured dynamic situations. 
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Let us consider a generic N-sensor system (N > 2) with several sensors Si providing state  (position and 
orientation estimates in our case) of d-state dimensions at time t. By feeding in apriori noise model 

 associated with the pose measurement using sensor Si to a Bayes filter (Extended Kalman filter 

in our case), we are able to associate a belief distribution , and hence a likely pose  and the 

uncertainty about that pose for each sensor Si. Each one of these estimates contributes to the most 

likely pose of the robot with the quantifying the doubt in that state. If not using the Kalman filter, both 

 and can be computed as the first two moments of the belief probability density function . We 
estimate the belief distributions using the procedure explained towards the concluding section of Chapter 4.  
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We have N distributions one for each sensor at regular instants of time as our input to learn and implement 
intelligent adaptive behavior.  Among those N distributions, the sensor conflict and performance 
degradation appear in two forms illustrated as a simple example in Figure 4.1, the conflict in the maximum 
likelihood state that we refer to as mean conflict and the conflict in confidence about the measured state 
that we call the covariance conflict. The Gaussian curves in Figure 4.1 are belief distributions of the state as 
measured by each sensor in a simple one-dimensional case.  When one sensor is operating with high belief 
but not in agreement with other sensors on the system, we need to decide which sensor(s) to believe before 
executing the next motion command.  How do we decide which sensor or set of sensors are believable? 
When should we fuse multi-sensor data and when should we perform sensor selection? How do we adapt 
and learn if the sensor is springing back to normal operation? Towards the goal of answering such 
questions, we formulate our objective function as shown below. 
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where f is the fusion functional (like a covariance weighted summation), Bi is the belief about sensor 
measurements of state x =  from sensor Si and x~ ix̂  is the best estimate from sensor feedback after multi-
sensor fusion in the N-sensor system. 
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Figure 4.1: Several sensors measure the state of our system with an uncertain belief. Using the middle and 
the right figures, we are able to visualize sensor conflict manifesting in two forms as the separability of the 
mean in the belief distributions and as the separability based on the variance. While trying to fuse sensor 
data based on sensor belief distribution during the operation of an unmanned vehicle, we would like to 
derive an algorithm that will guide us towards the choice of sensors that when integrated leads us as close 
and confident as possible to the actual state. 
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The functional f could be as simple as a weighted average of maximum likelihood state measurements or 
fusion using advanced probabilistic methods. In our implementation, we will use the weighted average as 
the fusion function because of the linearity in fusion and the theoretical strength that guarantees 
performance better than the best sensor (Rao, 2001). With that problem statement, we now derive the 
framework from first principles restating Equation 4.1 in words as:  “Success in fusing state information 
using several sensors can be achieved by maximizing the information about the state variables of interest 
using data from each sensor individually and also maximizing the information gain from fusing data from 
different sensors while penalizing for the information corruption.” 
 
Success in fusion  = Maximize( Information about state measurement from sensors individually 
                              + Information gain when sensor data is fused – Information corruption during the fusion) 
 
Mathematically, we evaluate the potential of each sensor during online operation by modeling success as 
shown in Equation 4.2. 
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With that formulation of sensor success, success in multi-sensor localization follows as Equation 4.3. 
 

Objective for success in fusion towards localization = max(Sensor Success) (4.3) 
 

))ˆ(|~( ii xSxBeliefWe note that both  and  are conditional probability distributions 

that have already accounted for the bounded noise characteristics of sensors. Our approach reduces 
Equation 4.2 and 4.3 whose components are random variables and probability distributions to numerical 
scores. We achieve that by defining an uncertainty term Ui for each sensor Si such that this term is a 
function of the measurement uncertainty or self-confidence Mi and the sensor validity or co-operative 
confidence Vi. We explain the derivation and implementation specification for Mi and Vi in the later 
sections of this chapter. 
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(4.4) 
                   =  -(Self-confidence + Co-operative confidence) 

 
With such a formulation of Ui the hope is to select the most reliable sensor(s) as the one with the minimal 
uncertainty 

 
(4.5) { }Nm UUUUmS ,,,min  s.t.  21 K=  . 

 
With those notations, we introduce our method as a block diagram in Figure 4.2.  Our approach evaluates 
the confidence of each sensor (self confidence) along with the reliability of sensors (altruist confidence or 
co-operative confidence) based on statistical clustering. The self-confidence is a Bayesian inspired measure 
and the reliability is a power set reasoning measure. The method we use for the statistical clustering and the 
confidence estimation is derived based on information theory helping us make the fusion decision 
physically meaningful unlike state of the art methods where reliability and confidence are treated as 
different entities.  The method that we propose for computing scores Mi and Vi are the result of statistical 
insight on uncertainty from methods in the literature. Before we get into the specifics of implementation; 
we discuss the insight for modeling information corruption and information gain and perceive the 
similarities of the inference required in the fusion problem with the statistical notion of information 
complexity.  
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Figure 4.2: Block diagram of the proposed selfish-altruist fusion algorithm. We presented the models of 
uncertainty modeling along with the idea of belief propagation using Kalman filters in Chapter 3. We 
discuss the procedure for sensor confidence evaluation in Section 4.3, sensor reliability evaluation in 
Section 4.4 and the criterion resolving fusion versus selection in Section 4.5. 
 
 
 
We borrow definitions of information gain and information corruption while integrating data from several 
sensors from (Gardner and Uhlmann, 2005). We illustrate their covariance intersection approach as a tool 
to model information gain and the covariance union definition as a tool to approximate the information 
corruption in Figure 4.3. Figure 4.3 is actually an extension of Figure 4.1 to two dimensional state with 
three sensors. We have illustrated typical situations that arise during state estimation from several sensors 
in this figure.  
 
The ellipses in Figure 4.3 are the 2Σ contours of the belief distributions of sensors S1, S2 and S3. We show 
three situations that are very typical of unmanned vehicle localization (1) sensors are all in agreement 
operating at similar levels of uncertainty (2) Sensors are in conflict on the state at same level of confidence 
and (3) when sensors are in conflict with different levels of confidence on the state. In real world situations, 
Case 1 can be interpreted as the ideal case, Case 2 the worst case and Case 3 the erratic behavior like multi-
path scenarios with GPS.  
 
The filled ellipses in Figure 4.3 (b) are the result of covariance intersection rule used as an optimistic state 
integration method for propagating belief by integrating the sensor state from several sensors. The rule is 
best summarized using the Equations 4.6 and 4.7. 
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where w1, w2…, wN are weights that can be associated with sensors individually for the fusion. If all sensors 

are to be treated equal wi = 
N
1 . The estimate of the fused state and the uncertainty about that state 

using this approach is an approximation to the optimistic estimate of the gain possible given the data 
and their uncertainty in the form of ellipses. We also note that this is the fusion scheme f we want to 
implement in Equation 4.1. This scheme is optimal as long as sensors do not violate apriori bounds.  
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Figure 4.3: Propagation of uncertainty in multi-sensor belief propagation systems. (a) Sensor situations on 
a two dimensional state illustrated as ellipses. (b) Multi-sensor state fusion using the covariance 
intersection rule. (c) Multi-sensor state fusion using the covariance union rule. Both the rules suggested by 
(Gardner and Uhlmann, 2005) are typical decentralized data fusion tools for propagating belief on state 
information from several sensors. We are able to see that the intersection rule is an optimistic estimation of 
state while the union rule appears to be a worst case pessimistic estimate. 
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But, for our applications, we have to allow sensor failure and erratic behavior with performance 
degradation. For such situations, covariance union is used to estimate the worst case corruption estimate. 
The ellipses in Figure 4.3 (c) illustrate this notion of information corruption. The filled ellipse even when 
sensors agreed on the state provides a worst case of belief to be propagated. The equations used to estimate 
the covariance union state and uncertainty are presented below. We note that initialization of the fused state 
with covariance union uses the covariance intersection estimate presented earlier.  
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The inequality is resolved using an optimized measure of size such as the determinant or trace of the 
estimated covariance in Equation 4.8. We are able to see the contrast between the union and intersection 
operations in Equation 4.6 and 4.8 in Figure 4.4. The focus of the intersection operation in Equation 4.6 
was on reducing the uncertainty and improving the information gain when sensors are operating at different 
covariance but converging and consistent on the state. The covariance union approach on the other hand 
tries to accommodate for the mean conflict and estimates the smallest covariance that is large enough to 
guarantee consistency regardless of which of the sensors is close to the truth. Similar to these scores, we 
would also like to estimate a state with unimodal belief (Denzler and Brown, 2002) and with as less 
variance as possible. The path that we are interested in taking is that of eliminating the sensors that do not 
contribute to information gain through unimodality. 
 
Several implementations of the idea of covariance intersection and union in belief propagation systems 
(Collins and Nicholson, 1998; Uhlmann, 2003) have proved successful. However, for efficient belief 
propagation amidst sensor conflict with our systems, we would ideally want to choose covariance 
intersection in Case 1 and covariance union for Cases 2 and 3. But such a goal requires the resolution of the 
mean conflict and covariance conflict from the belief distributions.  In Figure 4.4, we have traced the 2Σ 
probability space with individual sensor support and the probability space of the fused estimate using the 
intersection rule. We would like to use this figure to establish the basis of our approach. We have separated 
the data from sensors and perceive the fusion problem as an information complexity problem. By 
quantifying the size or area of the ellipses, taken one sensor at a time, we see that we are able to identify the 
sensor confidence conflict. By looking at the power set of combinations of sensors, we are able to visualize 
the increase in complexity of those the 2Σ curves indicating state conflict in the presence of covariance 
conflict. We try to use these cues to quantify the sensor self confidence and co-operative confidence. 
 
For quantifying measurement uncertainty as a measure of self confidence we score the Bayesian belief 
probability density using a model selection criterion. We use model selection theory that guides the choice 
of competing distribution models for given data towards quantifying the confidence among competing 
sensor belief distributions in our case. For sensor validity or the co-operative confidence, we evaluate belief 
on pose estimates from different sensors as a multi-sample clustering problem. Multi-sample clustering 
procedure provides the inference to the question, how many of the competing distributions are in agreement 
and how many are not? If they do differ, do they differ in the state or because of the conflict in confidence? 
We will be using the multi-sample clustering problem as a means to resolve the mean-variance conflict by 
statistically differentiating and grouping belief distributions. The minimization of the combined uncertainty 
(measurement uncertainty score + sensor validity score) allows us to intelligently choose a subset of 
sensors that contribute to accurate state estimation. We explain the implementation and theoretical 
specifications in the following paragraphs. We present the score of self-confidence quantifying the 
uncertainty in each sensor first. 
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Figure 4.4: Perceiving fusion as a model selection problem. (a) We take the Case 3 example from Figure 
4.3 to elaborate. (b) The uncertainty ellipses indicate the probability space after integration using 
covariance intersection and union methods. (c) Probability state space spanned with 2Σ confidence at least 
from one sensor. (d)  Uncertainty from each sensor taken individually. (e) Uncertainty when set of sensors 
are considered. The notion that we have illustrated here is that uncertainty propagates in different forms as 
the area of the ellipses, the shift in fused estimate, the belief strength and the shape of the contour. The 
shape of the contour becomes more and more complex with state and confidence conflict. Our approach 
will try to learn and infer the conflict by considering the sensor confidence individually and in combination 
with one another. 
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4.3 Quantifying sensor self confidence 
 
Based on the belief estimates alone, if we were to choose the best sensor in the system, we would pick the 
sensor that is indicative of maximum likelihood with minimum uncertainty. Hence, when sensors with 
measurements are indicating belief  within in an update cycle of the Bayes filter, the confidence can be 
measured as the information distance (Kullback, and Leibler, 1951), between the expected belief 
distribution and the estimated belief distribution as shown in Equation 4.10 where is the estimated belief 

based on state estimates  and the actual distribution on state x. G in Equation 4.10 is the belief 
representation model (Gaussian in the case of Kalman filter). 
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Equation 4.10 in the discrete finite sampling implementation form transforms to Equation 4.11. 
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where c is the sampling used for the belief estimation or can be the measurements for every cycle of the 
Kalman filter. yj refers to the actual measurements or the sampling from the belief distribution depending 
on the application and the sensor. We note in scoring the confidence of a belief estimate our interest by 
minimizing the information distance is only in the second term (the first term being the neg-entropy 
independent of the variable y) of Equation 4.11 that on simplification becomes 
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where E is the expectation operator.  
 
Now let us consider a simple 1D case, where the true belief of a particular state is  and 

the belief from Sensor #1 is calculated using c1 samples in the update cycle in the belief 

propagation,  be the belief calculated for Sensor #2 using c2 samples, we now have to 
choose the sensor that is the closest to the actual underlying belief. This can be achieved by computing the 
Kullback-Liebler (KL) distance in Equation 4.13. 
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For the simple 1D case, when B is Gaussian, Equation 4.13 reduces to the equation below. 
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For example, if , and , both the sensors with state 

(mean) conflict and variance conflict, we are able to calculate  

and infer that the sensor with belief  is more confident in itself than sensor . We extend this idea to 
multi-dimensional state vector to quantify self confidence. 

)1,5.0(~ˆ
1 NormalB

2B̂

)5.1,0(~ˆ
2 NormalB

.0),ˆ( *
1 =BBKL

)1,0(~* NormalB

036.0),ˆ(125 *
2 =< BBKL

1B̂

 
Towards that goal of trying to extend Equation 4.13 to include multi-dimensional state vector in the finite 
sampling discrete form, we realize that Equation 4.12 is the objective function for several statistical model 
selection criteria (Burnham and Anderson, 2002) such as the Akaike information criterion (AIC), 
Information complexity (ICOMP) and the Bayesian Information criterion (BIC) etc. summarized in Table 
4.1. L in Table 4.1 refers to the likelihood function, k the dimensionality of the parameter vector , c is the 
number of samples used to estimate the parameters of belief B , F-1 the inverse Fisher information matrix 
and C1 is the covariance complexity. 

θ̂

 
Each one of these criteria fall into a general form for modeling risk as shown in Equation 4.15. 

 
Overall Risk = Risk in modeling + Risk in estimation. (4.15) 

 
Risk in modeling refers to the choice of the model B and the risk in estimation refers to limiting ourselves 
in the number of computable parameters for the model B using maximum likelihood estimation. For 
example, if B was Gaussian, we have two parameters for the model representing the belief, and if we were 
using multi-hypothesis tracking for belief propagation, we will have several Gaussian mixture parameters  
that contribute to evaluating more parameters for better accuracy. We studied the derivation of several 
methods such as AIC (Akaike, 1974), minimum description length (Rissanen, 1978), BIC (Schwarz, 1978), 
CAIC (Bozdogan, 1987) and its more recent form ICOMP (Bozdogan, 2000) to minimize Equation 4.12.   
 
We observe that these criteria have a form as shown below. 

 
Model selection criteria = Lack of fit + Lack of parameter parsimony. (4.16) 

                      (4.17)                                                            = - log (Likelihood of model G)+Parameter penalty term 
 
The lack of fit part quantifies the strength about the state (mean) from the belief distributions, while the 
parameter penalty term takes care of the shape of the 2Σ curve. The more complicated the shape, the higher 
the value on the parameter penalty term. 
 
 

 
Table 4.1: Model selection criteria derived out of minimizing Equation 4.11. 

 

 

Name Formula 
( ) kBL 2;ˆlog2 +− θAIC (Akaike,1974)  

( ) ckBL log
2
1;ˆlog2 +− θ  MDL (Rissanen,1978) 

( ) ckBL log2;ˆlog2 +− θBIC (Schwarz, 1978)  

( ) ( )1log;ˆlog2 ++− ckBL θCAIC (Bozdogan, 1987)  

( ) ))ˆ((2;ˆlog2 1
1 θθ −+− FCBLICOMP (Bozdogan, 2000)  
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Following Bozdogan (2000), in a generic derivation without assuming anything about the parametric nature 
of the model G used in the estimation of B, the criterion we will use is ICOMP. ICOMP in its finite element 
derivation includes sensor bias, in addition to hinting us about the number of parameters by penalizing 
based on the curvature of the log likelihood function. We are particularly interested in this definition based 
on the Fisher information matrix because, in our case the parameter that we would like to penalize is the 
covariance indicating uncertainty and not the number of parameters as in AIC and its variants. Hence, in 
extending Equation 4.14 to a multi-dimensional state vector, we will use Equation 4.18. 
 

( ) ))ˆ((2;ˆlog2)( 1
1 θθ −+−= FCBLIFIMICOMP (4.18)  

 
We reformulate the derivation to define our measurement uncertainty term. Model selection criteria AIC, 
ICOMP, BIC in the statistics literature are used to select a model based on the goodness of fit and with 
minimal parameter complexity, minimizing KL distance between the estimated samples and the underlying 
probability density. Quantifying the uncertainty in robot self localization from competing belief 
distributions is also an analogous model selection problem, that ICOMP can be modified and applied. We 
hence derive the measurement uncertainty Mi as the score of confidence or the figure of merit on the belief 
distribution of each sensor as shown in Equation 4.19. Lower the magnitude of Mi, implies lesser the 
measurement uncertainty and greater self-confidence of the sensor. 
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where F -1 is the inverse Fisher information matrix and, 
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with s being the rank of F -1, |.| refers to the determinant and tr refers to the trace of the matrix. F -1 is 
computed as 
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with D+
p being the Moore-Penrose inverse of the duplication matrix Dp, ⊗  represents the Kronecker 

product and ci the number of samples used to compute the covariance uncertainty of Si. Dp is a unique 
)1(

2
2 +× ddd  matrix which will transform v( ) into vec( ) . vec (  ) denotes the vectorization operator 

that transforms a matrix into a vector by stacking columns, v( ) ) denotes the 

t
iΣ t

iΣ t
iΣ

1)1(
2

×+ddt
iΣ  vector obtained 

by eliminating the supra-diagonal elements of . F-1 gives the lower bound for the covariance matrix of 

the parameter estimates and measures the accuracy of the maximum likelihood estimators and . The 
C1 measure for penalizing uncertainty is obtained by maximizing mutual information in d-dimensions. The 
derivation behind Equations 4.20 and 4.21 can be obtained from Bozdogan (2000) and Van Emden (1971).   

t
iΣ

t
iμ t

iΣ

 
Though these equations appear complex, a distributional assumption, such as a Gaussian, reduces Equation 
4.19 to a much simpler finite sampling distributional form as shown in Equation 4.22. We do note that 
Equation 4.19 does not make assumptions on the functional form of the density and can be used on belief 
estimates from multi-hypothesis trackers or even particle filters. 
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where d is the dimensionality of the state vector and yj are the ci measurements of sensor Si used for 
estimating belief. 
 
We illustrate the function of the measurement uncertainty score in Figure 4.5.  We consider covariance 
conflict alone and assume that there is no conflict in the state estimate. Further, we have assigned each 
sensor’s Si covariance equal to iΣ. The reason behind this study is to prove that Mi can identify sensors 
operating at different levels and help eliminate them from the belief propagation. A typical real world 
example is the GPS outage or attenuation, when the sensor operating at 3 cm bound suddenly loses signal 
strength to operate at 3 m uncertainty. We propose to use the measurement uncertainty score to differentiate 
sensors operating in a desired bound from the ones that are not even though they may be in agreement with 
the state estimate from other sensors. Referring back to the covariance intersection and union rules, 
elimination of such sensors is significant because, they will unnecessarily increase the size of the 
uncertainty ellipse during belief propagation. 
 
We note that we do not require that all sensors provide the same number of samples for one propagation 
cycle. For example, suppose GPS sensors operate at 10 Hz and the vision at 20 Hz and a motion command 
is executed every second, 10 samples from GPS can be used in the belief propagation for the hardware 
sensor and 20 samples for the video in computing and representing the belief distribution. The other 
alternative is to adjust the prediction and correction stages within the Bayes filter based on the number of 
motion commands executed for every sensor update and estimate the parameters of the belief distribution. 
The samples of the underlying distribution can then be generated using pseudo random generators for the 
inference. We suggest and recommend the generation of equal number of samples from the belief 
distributions for consistency in the inference. Though the criterion we use is a bias correcting criterion and 
can include sensor bias in its computation, using a fixed number of samples for the inference provides 
better results.  
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Figure 4.5: Understanding the measurement uncertainty score using a simple example of covariance 
conflict with several sensors. (a) Each sensor Si is measuring the state μ with different covariance. 
Particularly, we force the covariance for sensor Si to be of i times Σ and observe the measurement 
uncertainty score Mi. (b) The plot of Mi for each sensor Si. The lesser the value of Mi the greater the self 
confidence of the sensor. We are able to show that the score Mi can be used to identify covariance conflict. 
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4.4 Quantifying co-operative confidence 
 
Our idea to approximate sensor validity as the cooperative confidence is based on the argument that the 
best that we can learn from conflicting multi-sensor measurements is by grouping sensors that work 
towards confident state estimation. The more sensors that provide the same information, the higher the 
sensor validity we can attach to sensor’s in agreement and its measurements. Though the logical argument 
sounds very easy, converting the argument into a mathematical form involves more work. The problem in 
our hand is that of comparative inference that has to resolve and quantify the conflict in the state and the 
covariance not only for sensors but all possible combinations of sensors. In the statistics literature, the 
commonly used technique is the analysis of variance (ANOVA) along with the f-statistics for univariate 
distributions. The multivariate extension of ANOVA, MANOVA uses the Wilks criterion in a multiple 
comparison procedure appears to be a potential solution. But there are several issues; the multiple 
comparison procedure using MANOVA (Montgomery, 1991) is a pair wise comparison procedure 
requiring apriori significance level determination. Saiki et al. (2008) have tried to use similar ideas with 
chi-squared statistics. But for our systems, we desire that the significance level be adaptive to the sensor 
performance.  
 
We need a method that can parsimoniously group these distributions associated with the robots pose from 
different sensors to quantify a measure that indicates optimal clustering in the probability space. For the N-
sensor system, this unwinds to a computationally prohibitive hypothesis testing problem that requires a 
fuzzy estimator as demonstrated in (Kobayashi et al., 1999). Our approach stays away from fuzzy logic and 
is inspired by methods described in the survey in (Rogova and Nimier, 2004) and information theoretic 
methods in (Denzler and Brown, 2002; Thrun et al., 2004) to formulate sensor validity in a novel 
information theoretic sense. 
 
Recollecting from Figure 4.4, we note the lack of co-operation gets exposed in the fused distributions as 
increased area of the probability space of interest and increased complexity of the shape of 2Σ contour. We 
illustrate a similar example in Figure 4.4 but show the fused distribution instead of the contour in Figure 
4.6.  Our idea is to estimate the information gain after fusion and compute the information corruption as the 
shape deformation from unimodality and combine them as a score of co-operative confidence. The hope is 
that by doing so, we will be able to identify the conflict among sensors and easily infer that sensors 2 and 3 
converge on the state estimate and hence can work together as a team for better state localization. 
 
 
 

 
 
 
Figure 4.6: Understanding sensor validity estimation.  We have shown the belief distributions when two 
sensors’ data are combined at one time to estimate a new belief. We see that when disparate sensors are 
integrated, several modes appear in the distribution indicating uncertainty, increasing the number of 
parameters required to represent the distribution while sensors in agreement increase the confidence in 
estimated state. Fusing sensors not co-operating with another not only spans a larger probability space but 
also has several modes.  
 

Sensor cluster [(S1, S2,S3)]  Sensor cluster [(S1,S3) S2)] Sensor cluster [(S1,S2), S3)] Sensor cluster [(S2,S3) (S1)]
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The problem of quantifying validity as co-operative confidence can be coined as follows: Given N sensors, 
and each of their belief distributions Bi and the fusion functional f on these belief distributions, we need to 
infer how many sensors boost the confidence of a particular state. We perceive the problem in our hands as 
a multi-sample clustering problem. We treat the belief distributions from different sensors as datasets from 
different sources and try to group sensors with similar localization result. For example, if c1 samples of 
Sensor 1 and c2 samples from Sensor 2 are considered for construction of B1 and B2, we try to measure the 
information distance in probability space by considering c1+c2 samples to construct another belief 
distribution B12 for localization. We measure the information distance between B12 and B1 / B12 and B2 as 
the significant new information gained after fusing data from both the sensors. That is co-operative 
confidence V1 of sensor S1 will be the information distance between B12 and B1 and V2 will be information 
distance between B12 and B2. Extending this simple example to an N-sensor system, we are able to 
understand that the information gain after evaluating all the combinatorial clusters of sensors will lead us to 
the maximal group of sensors that essentially converge on the state vector. We will use information gain as 
the yardstick to quantify co-operation.  
 
We get into the implementation specifics of our idea. Since the problem we have in our hands is that of 
classifying sensors into homogenous groups, let us begin the procedure by constructing a validity 
distribution , whose samples are the elements of matrix V. The validity matrix V is an inspiration from 
idea previously demonstrated in (Luo and Lin, 1988). As shown below in Equation 4.23, V includes 
samples Yi = { , j = 1, 2, 3…, ci} per update cycle from all sensors Si. Note that Yi is a ci by d sensor 

measurement matrix, d being the dimensionality of the state vector and is the d by 1 state measurement. 
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The goal of clustering is then to classify the N sensors (as samples used in the distribution Bi) into k -
groups, where k is unknown and variable. The procedure to infer about the minimal k and hence the 
maximal group of homogenous sensors should evaluate all possible clustering alternatives of sensor 
combinations and further determine the optimal partitioning of the N sensors into k groups. One among the 
k-groups in the optimal partition will have the maximum sensor cardinality κ indicating homogenous 
sensors. Our approach will make use of an information criterion to perform the clustering, find the 
κ homogenous sensors and finally associate a validity score to them. The motivation being, if we can 
opportunistically maximize the information gain while simultaneously penalizing the information 
corruption during the fusing process, fusion of data from one of the sensors clusters will perform better 
than each sensor and possible sensor teams. Such an inference using the criterion will also indicate that the 
κ homogenous sensors will work best as a team. In Table 4.2 below, we have shown a simple example 
using a 3 sensor system and explain the procedure in the following paragraphs.  

 
 
 
 

Table 4.2:  Co-operative team of sensor clusters in the validity inference for a 3-sensor system. 
 

k – How many groups? Sensor clusters (N =3) κ − Maximum sensors in group 
[(S1) (S2) (S3)] 3 1 

2 2 [(S1) (S2,S3) ] [(S1,S2) (S3)]  [(S1,S3) (S2)] 
[(S1,S2,S3)] 1 3 
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Matrix V is a mixture of N distributions, that can be partitioned into g (  ,  such 

that . Our goal then is to exhaustively search for all possible sensor clusters 

to determine the optimal k and κ.  

)Ng ≤ )( dcX gg ×
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=+++=
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gNtotal ccccc

1
21 ...

 
At this point, we recollect that the validity matrix V has samples of , the belief probability 
distribution after fusion that we are trying to represent using minimal number of parameters

)),(( ii BSfp
Θ . Then, 

essentially by evaluating the clustering alternatives, we are seeking ..,,[ 21 ΘΘΘ= ]kΘ for V such that Xg is 
completely described by parameters when k is optimal and each sensor in the group Xg with maximum 

number of κ sensors (highest cardinality) are homogenous. For example, in the 3 sensor case if sensor 
cluster [(S1, S2, S3)] is evaluated, to be optimal, k will be equal to 1, Xg will equal V and will 
require , with only 2 parameters if normality can be assumed. However, for the cluster [(S1) 

(S2) (S3)], we will have Xg=[X1, X2, X3], X1= Y1; X2= Y2; X3=Y3 and require 
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Generalizing the 3-sensor example to the N-sensor case, the number of ways of clustering N sensors into k-
cluster groups where such that none of the k-clusters are an empty set is given by Equation 4.24. The 
quantity w is also called the Stirling’s number of the second kind (Duran and Odell, 1974). 
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Equation 4.24 generates w clustering alternatives that can be classified into one of the following three cases 
as listed in Table 4.3. 
 
 
 

Table 4.3: Possible hypotheses to evaluate for sensor reliability. 
 

Case Hypothesis : Parameter vector form No. of parameters 
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Please note that when Case 1 occurs in real time, μ and Σ  are enough to describe the fused distribution 

 indicating that fusion of the sensors is only increasing the confidence in the localized 
estimate

)),(( ii BSfp
μ . In Case 2, each sensor is localizing the platform at a different location and fusion of data from 

such sensors is only going to increase the uncertainty of the fused estimate. Case 3 helps identify the 
necessity to evaluate w alternative clusters κ sensors (Case 4) through the combinatorial search that when 
fused will increase the confidence in localization. We illustrated this idea using a simple example in Figure 
4.6. By inferring the occurrence of Case 1, by evaluating the first three hypotheses in Table 4.3, can save a 
lot of time while operating in the real world by not having to evaluate the combinatorial case alternatives. 
 
We illustrate a simple example with uncertainty ellipses in Figure 4.7 for a three sensor system to 
understand the three cases better. We see that Case 1 refers to the possibility when all sensors are 
essentially indicating the same localization result. Case 2 points to ambiguity in the localization as sensors 
are indicating different robot pose with the same belief. In Case 3, when a smaller group of sensors are 
considered, we notice that a particular pose estimate appears more likely. We evaluate these three 
hypotheses first using the information criterion in Equation 4.25. The minimizer of the criterion identifies 
the situation and guides us towards Case 4, if necessary, to find group of sensors that are maximising a 
particular likelihood after the combinatorial analysis. Once the optimal sensor clustering is scored using the 
criterion, we are able to easliy find k, and the κ sensors in agreement. 
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where refers to the partitioning of the validity matrix V into various clustering alternatives and gX Θ is the 

parameter vector for . We provide the formulae to compute the log-likelihood and  for the 
different cases but direct the reader to (Bozdogan, 1986) for implementation details and the derivation of 
the formulae presented. 
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In Equations 4.26, 4.27, 4.28 we provide the generic form of the likelihood term and the model complexity 
term from criterion in Equation 4.28 to evaluate arbitary Xg, and then the case specific simplications in 
Table 4.4 and 4.5. These simplified equations assume all distributions Bi used in V to be normally 
distributed. 
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= mean (Yi’s in each Xg; g = 1,2,4..,k) gYwhere 
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Sensor   

 
 
Figure 4.7: Perceiving sensor validity computation as a multi-sample clustering problem. We have shown 
three possible cases of mean and covariance conflict that can occur during localization. The ellipses 
indicate the uncertainty from each sensor. By using multi-sample clustering we are able to infer and 
identify the case that best fits the sensor belief distributions. 
 
 
 
In our implementation, as soon as we infer one of the first three cases to minimize ICOMP, we assign all 
the sensors the ICOMP value of case hypothesis to be the sensor validity score. Then, for Case 2 and Case 
3 alone, we perform the sensor clustering and evaluate all cluster combinations. The minimizer of the 
ICOMP points us to the optimal clustering of κ valid sensors. We assign this minimized ICOMP value for 
only the sensors within the maximal sensor cluster as their corresponding sensor validity scores Vi 
according to the rules in Equation 4.30. Since ICOMP is an estimate of the KL distance between competing 
model distributions, our sensor clustering can be considered as based on information distances between 
belief distributions. 
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By assigning the validity score in the nested fashion, we have made sure that we are able to accommodate 
for sensor tendency and preference to succeed while working as a team preserving the robustness expected 
out of power set reasoning. We illustrate the impact of this approach in Figure 4.8. The red crosses indicate 
the Vi scores assigned to each sensor.  
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Table 4.4: Computing the log-likelihood term in Equation 4.25 for the sensor validity score. 
 

Case Reduced likelihood term (L) 
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||log

2
1 Tc

c
L total

total −−= ;  VVT '=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ΣΣΣΣ=Θ 443442144 344 21

timesNtimesN   

,.......,,,,......,,, μμμμ
 

 
∑

=

− =−=
N

g
gtotal

total AWWc
c

L
1

1 |;|log
2

 Case 2: 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ΣΣΣΣ=Θ 4434421

timesN
N

 
321 ,.......,,,,......,,, μμμμ

∑
=

−−=
gc

l
g

g
lg

g
lg YyYyA

1

)')((  
 
 

Case 3: 
[ ]NN ΣΣΣΣ=Θ ,.......,,,,......,,, 321321 μμμμ ||log

2
1 1

1
g

N

g
g AccL

g

−

=
∑−= ;  

 
Case 4: 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ΣΣΣΣ=Θ N

groupsk

sN

Ngg ,.......,,,).....,,(,),...,,( 321

 

ensors 
 times

44444 844444 76

44444 344444 21
43421

μμμμμμ
κ

Nested form of Case 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 4: Theory: Selfish-Altruist Fusion                                                                        67 
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Figure 4.8: Our formulation of Mi and Vi is able to identify the separability in the mean and the co-
variance. (a) Vi being nearly constant identifies sensor agreement on state μ while the Mi monitors the 
confidence levels. Our framework decides to use only Sensor 1 in the belief propagation. (b) Vi identifies 
two clusters of sensors agreeing on the same state, while Mi indicates that sensors are operating at the 
same confidence. We decide to fuse sensors 3, 4 and 5 as V(S*) < M(S*) for S* = Sensor 4. 
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4.5 Resolving the fusion versus selection dilemma 
 
We presented graphs simulating two situations in Figure 4.8. In Figure 4.8(a), we considered five sensors, 
and the corresponding uncertainty scores when each sensor agrees on the mean but the covariance on the 
Sensor Si is iΣ. For example, if Sensor 1 operates at Σ  , Sensor 2 operates at 2Σ, Sensor 5 at 5Σ. We are 
able to see that our validity score (score of co-operative confidence) for the sensors plotted as a red cross in 
Figure 4.8 (b) identifies sensors that are in agreement about the state. The measurement uncertainty score 
(score of self confidence) plotted as blue asterisk marks increases monotonically as expected.  In Figure 4.8 
(c), we showed another case where some sensors agree and some do not and interpret the results of our 
uncertainty handling framework in Figure 4.8 (d). In both the graphs, please note that the total uncertainty 
curve in black follows the trend as either validity or measurement certainty, clearly separating and handling 
both the kinds of sensor conflict, the separation in the mean and also the separation in covariance 
whichever one is significant.  
 
Both the measurement uncertainty score and the sensor validity scores being normalized information 
measures of complexity in our implementation, we use the sum of the two measures of sensor measurement 
uncertainty Mi=M (Si) and sensor validity Vi = V (Si) to choose the sensors with minimum total uncertainty. 
The sum operator on the uncertainties is justified because both Equation 4.19 and 4.24 are log likelihood 
functions. Adding two log likelihood functions is actually multiplying their joint likelihood assuming 
mutual independence. This formulation of Mi and Vi, helps us decide on the dilemma between fusion and 
selection. Following the rules in building fusers that perform better than the best sensor (Rao, 2001), we are 
able to derive the following condition. 
 
Condition: If C* represents the optimal cluster with maximal k reliable sensors identified in Section 4.2, 
and Vi and Mi the respective reliability and confidence scores of the sensors, find sensor S* with min (Vi 
+Mi). If M(S*) < V(S*) decide sensor selection and choose S*, else decide to fuse ‘k’ reliable sensors in 
cluster C*of which S* is a member for belief propagation. 
 
While formulating our approach we had argued that success in fusing state information is achieved if we 
maximize the information about the state variables of interest using data from each sensor individually and 
also maximizing the information gain from fusing data from different sensors while penalizing for the 
information corruption. The self-confidence score Mi is a measure of how much information does the 
sensor provide about the state individually. Vi monitors both the information gain in the fusion penalizing 
for the corruption in the form of number of modes and increased area of the fused distribution. Since the 
fused distribution is always expected to be more confident than the sensors taken individually, we expect 
that Vi scores be always less than the corresponding Mi scores except in the case of catastrophic fusion and 
a trivial case of a 1-sensor system where Mi and Vi would be equal. Our condition to resolve fusion versus 
selection makes sure, catastrophic fusion never occurs by eliminating sensors in state conflict and by 
avoiding sensors with uncertainty beyond expected levels from the fusion. 
 
We are able to demonstrate how our approach answers the selection versus fusion dilemma avoiding 
“catastrophic fusion” (Mitchell, 2007) in the same example as Figure 4.8. Starting with Figure 4.8(a), when 
sensors all agree on the state with different levels of confidence, our method is able to eliminate less 
confident sensors. Our criterion selects Sensor S1, keeping sensors with confidence less than 2Σ away from 
the belief propagation stage. In Figure 4.8 (b), we show 5 sensors, out of which 2 clusters agree on the 
state, but with the same level of confidence from all the sensors. Our framework is able to identify this 
situation in the reliability score and decides to fuse sensors S3, S4 and S5. This result is significant because, 
when we started, we desired that each sensing mechanism on our mobile platforms be productive to the 
best of its ability as an individual unit while making sure that the collective operation and success of 
individual sensing mechanisms will avoid the failure of the multi-agent system. The resolution of the 
dilemma is critical to the success of the initial desire. 
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In summary, we have derived an uncertainty minimization framework for robot self-localization that can 
simultaneously quantify the uncertainty due to noise associated with each sensor measurement and also 
infer evidence about sensor validity using belief estimates from multiple sensors. We have explained a 
procedure that uses the theory of information complexity in constructing scores for both the sensor validity 
and the measurement uncertainty from the Bayes belief distributions towards choosing a reliable subset of 
the multi-sensor data. Furthermore, by resolving the fusion versus selection dilemma, we are able to 
implement a self-correcting stability into the multi-agent scenarios guiding sensor adaptation in unseen 
unexpected operating conditions. 
 
Having explained the theory in this Chapter, we demonstrate promising results of implementing this 
framework in several real world situations in Chapter 5 to claim the following contributions: 
 

• An information theoretic framework to simultaneously score sensor measurement uncertainty as 
self confidence and sensor validation uncertainty as co-operative confidence in the context of data 
fusion. Thus far, though both these uncertainties have received attention, they have been considered as 
distinct and independent problems. 
 
• A new algorithm that can automatically detect performance degradation and sensor conflict during 
operation to eliminate failed sensors and bad pose recovery due to data association problems in a 
dynamic environment, guiding the switch to the next available good sensor. 
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5 Experiments: Handling Uncertainty 

In this chapter, we demonstrate the implementation of the uncertainty minimization theory developed in 
Chapter 4. We begin with Section 5.1 describing the simulation experiments that encourage the real world 
robot localization experiments. Then, we present real world deployment results emphasizing the 
improvements on the instrumentation-based localization in Section 5.2 and state estimation from images 
using the multi-feature consensus idea in Section 5.3.  
 
5.1 Simulation study 
 
We conduct the following experiments to demonstrate the capability of the statistical framework explained 
in Chapter 4. Our simulation results provide the proof of concept in handling dynamic uncertainty towards 
localization and mapping. We implemented a simulation environment by considering a three sensor system 
with sensors H, R and V measuring a d-dimensional state vector. We tested several motion paths under 
different noise models within the simulator to evaluate our method for efficiency and robustness. In Figure 
5.1, we have shown three different synthetically generated cases on 2-dimensional state vector that help 
visualize, understand and appreciate our algorithm. The ellipses simulate the uncertainty estimate output 
from a Kalman filter that we use for belief propagation. In some cases, these ellipses are not visible because 
of the high degree of certainty they encapsulate. We interpret the output of our data fusion algorithm in two 
forms: (i) which sensor to believe (bottom inset) and (ii) the number of sensors contributing to that belief 
(top inset) in the figure.  

 
Figure 5.1 (a) shows the case where the robot tries to stay on a sigmoid path with sensor H being more 
accurate at the first few samples (the red ellipses are not visible because of the high belief), while the other 
sensors converge on the localization information over time. Our sensor selection algorithm correctly picks 
up sensor H, switches to the next available sensor R, and also is able to infer that all three sensors are 
converging after the first few samples. In Figure 5.1 (b), sensors H, R and V are all in agreement on the 
localization data. Our algorithm successfully infers the agreement. The third example, in Figure 5.1 (c), is 
the closest to reality where some sensors can fail suddenly forcing the need to switch to a better sensor. We 
observe the likely pose estimate from the sensor H consistent and believable to begin with but deteriorating 
over time. Our sensor selection result automatically detects the deteriorating belief on sensor H, guiding the 
switch to sensor V as a better option. 
 
We compare our adaptive approach with covariance-weighted fusion for localizing the mobile robot in 
Figure 5.1 (d). We show the sum-squared error of the pose vector from the intended path in each of the 
three examples considered in Figure 5.1(a) (b) and (c). The time required for each of these approaches is 
also plotted in Figure 5.1 (d). We observe that the sensor selection performs better by minimizing 
localization error at each instant. However, the accuracy appears to come at the expense of a few extra 
computations compared to covariance weighted-fusion (Hackett and Shah, 1990). The extra computations 
that consume a few milliseconds more do not seem to impose a problem for real-time operation. Another 
interesting aspect to note from the error analysis graph is that our approach performs as well as the best 
sensor if not better. This means that our method can deal with possibly invalid data without compromising 
the best case performance.  
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Figure 5.1:  Localization in a simulation environment. (a) Example 1: Detecting intermediate failure. (b) 
Example 2: Self-localization when sensors are converging on a believable pose. (c) Example 3: Guiding 
the sensor switch when the belief in particular sensor pose deteriorates. (d) Error and timing analysis for 
sensor selection for the three examples presented. The top inset is the plot of sum-squared error over the 
entire intended path localized using the covariance weighted fusion method and our sensor selection 
method. The bottom inset is the timing analysis comparing fusion with selection.  
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On Example 2, when all sensors were essentially telling the same information, we see that sensor selection 
is not able to perform better than the covariance-weighted fusion while on cases with varying beliefs over 
time, selection leads to better localization. Our framework being able to decide fusion and selection is an 
added feature. Though these experiments provide the proof of concept, several questions arise in bridging 
the gap between the theory and practical implementation.  How many samples does our framework need for 
a confident decision? Will some sensors weigh more than others because of their sampling rates? What is 
the minimum sampling required to separate the sensors based on their uncertainty variance? Is our method 
capable of real-time operation? How many sensors can we accommodate for real time inference? What is 
the ideal dimensionality for the state vector? The next set of results in Figure 5.2 based on the simulation 
study tries to provide answers to those questions and identify the empirical bounds of the framework. 
 
Figure 5.2 (a) is a plot to reveal the minimal samples of the belief distributions required to separate sensors 
beyond a particular uncertainty level. We have plotted the sensor confidence score (the self confidence) for 
different sampling frequencies for a two dimensional state vector. The plot reveals that we require at least 
100 samples of belief distributions to separate a sensor with a preferred confidence Σ and eliminate the rest 
with confidence uncertainty greater than 2Σ. Once we decide the level of confidence to allow in the system, 
we study this plot, and empirically choose a value on the sensor confidence score, that can be used to 
normalize the confidence score when different sensors are operating at different sampling frequencies. 
Figure 5.2(b) takes care of resolving the sampling issue for different size of the state vector providing 
bounds for a particular system model. The magnitude of the confidence score from plots in Figure 5.2 (a) 
and (b) is the lower bound on the uncertainty achievable with a sensor operating at a predefined sampling 
frequency measuring p-dimensional state. 
 
Figure 5.2 (c) and (d) are timing results. Figure 5.2 (c) plots the time required to compute the total 
uncertainty for one sensor measuring states with varying dimensionality. We see that up to 15 variables in 
the state vector for belief propagation, our inference mechanism can keep up with real-time operation 
requirements. For systems that have to deal with larger state dimensions, we recommend that the model be 
broken down into smaller sub-models before using our framework. The next experiment we conduct is 
more significant and reveals a caveat. We evaluate the number of sensors the inference framework can 
handle and perform within real-time requirements. Since the clustering for the altruist confidence is a 
combinatorial process, we see that our framework can only handle up to 6 sensors within the real-time 
requirement of making a decision in less than a second. We tried to avoid the combinatorial evaluations 
using smarter search strategies like genetic algorithms and randomized search. Genetic algorithms on 
average reduce the search time for the optimal clustering by 15% and the randomized search with special 
stopping constraints was slightly better at 20%. However, for systems with more than 8 sensors, we 
recommend a binary search approach by first finding the cluster of half or more sensors in agreement and 
then directing the search based on the previous result. 
 
The next question that we try to answer is regarding the Gaussian apriori assumption. Since our motive 
with uncertainty minimization with state-space systems is to prefer unimodality, and the assumptions about 
all the noise models is Gaussian, we cannot be absolutely sure about the performance of the method in 
cases, where we cannot assume Gaussian apriori.  However, the information complexity criterion and its 
newer model misspecification tolerant version (Bozdogan, 2000) can help us deal with non-Gaussian prior. 
We propose to include this newer version into our framework and be able to at least quantify the error due 
to misspecification in belief propagation with the Cramer-Rao bound as the worst case limit. However, for 
the results presented in this dissertation, the misspecification implementation was not necessary because 
most of the noise models with our sensors indeed follow the Gaussian distribution. We have shown the 
impact of misspecification of the noise model when Gaussian assumption is made on uniformly distributed 
noise models in Figure 5.2 (e). We observed that the misspecification resistant implementation matched the 
ground truth expected result 95% of the time in 100 simulated trials. 
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Figure 5.2: The study on how the indirect parameters might affect inference. (a) Effect of sampling 
frequency (b) Effect of dimensionality on the state vector. (c) Timing analysis for state models of different 
dimensions (d) Timing analysis for as the number of sensors in the system increases. (e) Inference when 
noise models are not Gaussian. The dotted line is the ground truth generated from uniform distribution and 
the thick lines are estimate from the implementing the recent form of the information criterion (Bozdogan, 
2004). 
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5.2 Handling localization uncertainty in instrumentation-based 
mapping systems 
 
Moving away from simulations, the first real-world application that we discuss is on a mobile platform with 
laser scanners, video cameras, global positioning systems (GPS) and inertial equipment mounted on a van 
as shown in Fig. 5.3a. The noise models for these systems were built through extensive apriori 
characterization of each of the sensors. With the van, though not completely autonomous in its operation in 
urban environments, we use the position information from the GPS, orientation from the inertial 
measurement unit, recover pose from the 3D profile data (Martinez, 2006) and video data (Nister, 2004a), 
and use these datasets to automatically detect a GPS outage which is common in urban environments and 
switch to the next reliable sensor.  
 
We show our mobile scanning system along with the intended path overlaid on the aerial map of the city. 
The test course in Figure 5.3 is approximately 300 meters long. Figure 5.3 (c) shows the result of pose 
recovery from several sensors indicating areas that have error in the order of a few centimeters that later 
builds to the order of a few meters. Figure 5.3 (d) is the result of our data fusion algorithm indicating 
reliable pose recovery methods along the total path. We are able to see the areas in which pose from video 
was not a reliable method compared to pose recovery using hardware and range sensors. In Figure 5.3 (e), 
we compare the result from our approach to using a Kalman filter-based fusion (Gao and Harris, 2002). For 
a 300 m path, the fusion without sensor rejection produces a drift of 2 m which can be serious while 
operating autonomously in real world environments. That being the improvement in localization error, we 
further emphasize our improvement in the map in Figure 5.4. We show the bird’s eye view of the building 
and render the profiles after integrating by Kalman fusion and our proposed approach. Visually, we are able 
to see that our approach has eliminated several crisscrossing profiles in resolving the geometry at higher 
precision. 
 
The next set of experiments we conduct uses a small mobile robot navigating a corridor. The robot in the 
corridor shown in Figure 5.5 has five cameras. The idea is that one camera looks ahead in the path and 
avoids obstacles, while the other four look at different fields of view for localization. Our test environment 
has doors, windows, and objects like chairs, book shelves etc. in the path on either side. We use multiple 
cameras to accommodate for lack of features on painted walls and also for a larger coverage in the corridor  
looking for traceable features. A pose from video algorithm similar to (Nister, 2004a) and (Davison, 2007) 
provides the robot’s pose for localization using apriori calibration information. The uncertainty in pose is 
determined by estimating the confusion in converging to optimal relative pose as discussed in (Zhu et al., 
2005). Our sensor selection algorithm operated on these values in successfully localizing the robot through 
the entire intended path that we show in Figure 5.5 (b). We use this environment as a test bed for 
localization where we know that there may not be enough traceable features on all cameras (the field of 
views of the camera are shown in Figure 5.5 (c)) over the entire intended path at a given point of time. We 
expect that when one sensor is tracking features on doors and windows, the others might be struggling to 
locate interesting features on plain walls. 
 
We plot the number of oriented matches between successive frames in pose recovery using the images from 
these cameras in Fig. 5.5 (d). We are able to see that our sensor selection algorithm automatically switched 
to the available next best sensor, when the pose recovery was not within acceptable levels minimizing the 
overall uncertainty about the state. This emphasizes the capability of our method in automatically switching 
to a good sensor while navigating in a dynamic environment where pose recovery methods can fail due to 
data association problems or lack of features. We show results of another experiment in Figure 5.6. Here, 
laser range data and the vision data were used to generate the floor plan of the corridor. Our method 
performed the switch between video and range to localize and align the model range profiles in 
autonomously generating the map just like most animals do in unknown environments.  



Chapter 5: Experiments: Handling Uncertainty                                                                76 
 
 
 

  
(a) (b)  

Error in the
order of meters

Error in the
order of 
centimeters

Error in the
order of meters

Error in the
order of 
centimeters

All 3 sensors are selected.

Video not dependable

All 3 sensors believable

Only hardware is selected

All 3 sensors are selected.

Video not dependable

All 3 sensors believable

Only hardware is selected

 
 

(c) (d) 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

Our method
Kalman fusion
Our method
Kalman fusion
Our method
Kalman fusion

(e) 
 
Figure 5.3:  Localization in urban environments. (a) Our mobile platform with laser range scanners, 
video cameras, GPS and inertial measurement units. (b) Intended path (blue curve) in the city. (c) 
Pose recovery from hardware instrumentation (red curve), range scanner (green curve) and the video 
camera (blue curve). (d) Sensor selection result. (e) Drift produced in conflicting sensor data is not 
discarded. 
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Spatial alignment by fusion Spatial alignment using our approach 

(c) (d) 
 
Figure 5.4: Reducing the uncertainty about localization improves the integrated map. (a) The bird’s eye 
view of the Women’s Basketball Hall of Fame building, University of Tennessee, Knoxville from 
www.maps. live.com. (b) Screen capture after rendering our textured 3D result. (c) Profile alignment if 
data from all the sensors are fused together. (d) We see that profile alignment using our approach as 
compared with the image in 5.5 (c) has minimized the crisscrossing of the range data. 
 
 
 
 
 
 
 
 
 

http://www.maps.%20live.com/
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Figure 5.5:  Localization of a mobile robot with multiple cameras in an indoor environment. (a) Our 
mobile platform with five cameras (b) Intended path (blue curve) in the corridor and the localized path (red 
dotted curve). (c) Field of view of four cameras localizing the robot. As the robot navigates in the area, we 
expect that some cameras do not have sufficient feature correspondences for localization.(d) Number of 
mutual matches between successive frames in the video that can be loosely related to the confidence with 
pose recovery along with the sensor selection result. 
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Figure 5.6:  Localization and mapping of a mobile robot with a camera and a range sensor in an indoor 
environment. We have presented the output 2D floor plan of the corridor after simultaneous localization 
and mapping. 
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Animals have the survival instinct to adapt in any unknown environment. For example, a bee though does 
not possess several sensors like the humans, remembers and retraces the path traversed to localize, 
navigate, explore and learn an unseen environment in the absence of a global landmark like the sun (Dyer 
et al, 1993; Menzel, 1996). A rat uses a photographic technique to remember places of interest and recalls 
the iconic images from memory for surviving in the new environment searching for new food sources. 
Monkeys and humans remember informative features, combine several sensory mechanisms to navigate 
through an environment (Wang and Spelke, 2002; Touretzky et al., 1994). These ideas inspire a modern 
day robot that is built with range, vision and odometer sensors (Trullier, 1997).  The mobile robot in Figure 
5.6 with a laser scanner and a camera tries to emulate the capability of such animals and the goal with our 
algorithm is to help the robot make intelligent decisions while surviving to explore in an unknown 
environment. 
 
Our approach tries to make the robot behave like intelligent bees, rats and humans switching characteristics 
as the robot moves around. Animals while exploring for food use a variety of tools for landmark selection, 
archival and retrieval. A robot trying to map an area autonomously also implements the capability to select 
features in image and range data to use them in localizing itself. But the tougher question that we have tried 
to address in this dissertation is how a robot should behave in an unknown environment, where we are not 
sure that vision-based SLAM or range-based SLAM would work best. The implementation of our statistical 
approach to minimize uncertainty in localization imparts the intelligence by guiding the robot to behave 
like a bee when there are dependable range features in the scene, behave like a rat when image features are 
dominant and use a combination of both like the humans, when both are reliable maintaining high levels of 
certainty in the self localization of the robot. The map integrated in Figure 5.6 is by using such intelligence. 
The map of the floor plan generated in Figure 5.6 automatically switched sensors during localization along 
the trajectory (red curve) shown in the figure. The robot was programmed to dead reckon and move 
forward with a motivation to explore the corridor. 
 
We have tried to illustrate the situations faced by the robot where our inference framework guided the 
sensor switch. Close to the starting point marked as a red circle in Figure 5.6, the computer equipment on 
the floor provided reliable features in the range and vision sensors. The belief in the range sensor peaked 
around the corner marked “2” with interesting spatial corners. But immediately after the turn in the corner, 
range features were not distinct and distinguishable and the robot switched to vision-based navigation. The 
belief on the range sensor springs back again as the robot gets closer to corner marked “3”.  
 
So far, we presented a sensor selection algorithm based on information theoretic model selection criteria for 
robotic localization. Our approach to bring together measurement uncertainty and reliability using 
information measures for uncertainty minimization in localization is able to efficiently work on real and 
synthetic robot environments. Our results further encourage implementation on unmanned ground vehicles 
in following a well defined path where localization is necessary feedback due to the dynamic nature of the 
environment. An example of such a scenario is urban traffic, where an unmanned vehicle in addition to 
maneuvering amidst traffic should be able to switch sensors managing sudden unexpected GPS outage to 
stay on course towards the intended destination.  
 
Our method is particularly suited for such applications involving multi-modality sensors for navigation and 
localization. Furthermore, we also note that our method can also perform as good as the best sensor in the 
system and sometimes better than the best sensor as expected in an ideal case of information fusion 
discussed in (Rao, 2001). Such a success can be attributed to decision fusion criterion explained in the 
previous chapter. Our framework is generic to any multi-sensor state localization application and thus far 
we have discussed our implementation of multi-modality instrumentation-based localization. With a 
slightly different implementation, our framework can also improve the reliability in localization for image-
based systems also. We present the results on handling uncertainty in image-based systems in the following 
section. 
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5.3 Handling localization uncertainty in image-based mapping systems 
 
5.3.1 Revisiting image-based localization 
 
We introduced the algorithms for 3D inference from images in Chapter 2 and identified the suitability of 
shape from motion algorithms in vision-based navigation and mapping. We revisit the procedure for 
estimating pose and structure from image sequences described in Chapter 2 in the form of a block diagram 
in Figure 5.7. The volume of literature available in (Ma et al., 2006) and (Forsyth and Ponce, 2003) 
documents several methods based on the epipolar geometry (illustrated in Figure 5.8) for navigation and 
mapping purposes. We find several methods for feature detection, different methods for feature matching, 
different motion models for the features extracted from the scene and several minimal methods for inferring 
the 3D relationship between image frames in the form of a fundamental or essential matrix.  
 
The fundamental matrix F that relates two perspective images of a single rigid object/scene is estimated by 
solving the epipolar constraint in Equation 5.1, where im~ i'

~m and are corresponding points in two images 
and  respectively (Figure 5.8). Assuming that the calibration matrix (K) that includes CCD parameters 

including the principal point (θx, θy), the sensor size parameters (sx, sy, sθ) along with the focal length (f) of 
the camera acquiring images of the scene from different viewpoints is available through apriori calibration; 
F is instrumental in the estimation of the relative rotation (R) and translation (t) of the camera relating the 
two images. The notation refers to the anti-symmetric matrix form of the translation vector t in 
Equation 5.1. 
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In vision-based vehicle navigation/localization applications, we note that the uncertainty about the pose (R, 
t) is directly related to the uncertainty on F. Unfortunately, the accuracy and the uncertainty about F 
depends on the quality of feature correspondences im~ i'

~mand .  Though, theoretically all pixels in and  
are eligible to contribute to 

I 'I

im~ i'
~mand , for computational reasons and also for improved performance, we 

choose special interest points to build the list of correspondences im~ i'
~mand .  

 
 
 

( 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.7: There are several options available in the flow process for estimating the fundamental matrix. 
However, these options are scene and motion specific and the choice of these methods (pipeline) in a real 
world situation has to be adaptive to the environment. In this section, we propose a statistical decision 
procedure to increase the confidence and reliability of the fundamental matrix. 
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Figure 5.8:  Revisiting epipolar geometry. The figure shows the geometry relating the 3D point in the scene 
(M) based on the putative matches from the images and the equations explain how the 3D point is projected 
into the physical CCD camera. We estimate K using the calibration procedure in (Zhang, 2000). 
 
 
 

im~ i'
~mThe special interest points and  extracted are inspired by perceptual heuristics from human vision 

theory. For example, the Harris corners (Harris and Stephens, 1988) are intensity-gradient-based interest 
points, the curvature corner (He et al., 2004) is edge-based, the phase congruency corners (Kovesi, 1999) 
are spatial frequency inspired while SIFT (Lowe, 2004) is a multi-resolution feature. If all these feature 
point detectors extracted points with 3D characteristics that can be matched across images, the estimate of 
F would be independent of the interest point detector. But, in reality we observe that feature point detectors 
perform better in some situations while not meeting the expectations in some others. The reason behind 
such an observation is that each of these interest point detectors extract monocular depth cues from the 
image. From studies of human perception, the linear perspective which is the most mathematically favored 
depth cue looks for lines and orientation of the lines in the image to infer about the 3D projection. The 
aerial perspective depth cue is observed through the color differentiation particularly between the blue and 
green. Other monocular depth cues in addition to the ones discussed in Chapter 2 include relative size, 
interposition, lighting, shading and the monocular parallax. Different feature detectors are inspired by one 
of these monocular cues. We show a simple example in Figure 5.9. We show feature points extracted using 
(Harris and Stephens, 1988), (Kovesi, 1999), (Lowe, 2004) and (Rosten and Drummond, 2006) on a 
structured building scene with linear perspective and another scene with a lot of vegetation. With this 
example, we illustrate that feature detectors that extract pixels for perspective inference in certain scenes 
may not be best suited in other situations. So, how do we choose the right feature detector for the scene of 
interest? Is it possible to choose the feature detector as the scene changes on a mobile platform adaptively?  
 
Furthermore, there are two types of errors associated with image interest points from low-level feature 
detectors: (a) classification errors and (b) measurement errors. Classification errors occur when a feature 
detector incorrectly identifies a portion of the image as an interest point, while measurement errors occur 
when the feature is identified correctly but not at a precise repeatable location. The repeatability is a 
significant requirement while recovering pose from video frames. The measurement errors are usually 
smoothed by modeling the error as a normal distribution, but classification errors are gross deviations and 
cannot be averaged out. 
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Figure 5.9: Different feature detectors identify different monocular depth cue pixels (shown in red). (a) 
Feature points detected when the linear perspective monocular depth cue is available in structured 
environments. (b) Feature detectors in a challenging scene with vegetation. We are able to see that while 
some detectors are able to extract pixels with 3D characteristics in structured scenes, they are not as 
successful with vegetation and vice versa. 
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The error in the feature detection is significant for pose recovery in many ways. If ε  is the probability that 
a feature point is in error, and  is the probability indicative of a feature match error, the number of 
minimal hypothesis  of 

p
n s  sub-samples taken at a time to fit a motion model  of the fundamental 

matrix is shown in Equation 5.2. The confidence on the estimated geometry is based on an inlier bound 
condition modeled as the variance of a probability distribution (Equation 5.3).  

M
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Equations 5.2 and 5.3 hint at how the uncertainty on the corresponding points propagates as outliers in the 
subsequent matching stage corrupting the model parameters during the iterative hypothesis-verify scheme 
involved in solving the epipolar constraint.  
 
Over the years of computer vision research for feature-based 3D geometric inference summarized in Figure 
5.7, we have seen several interest point detection methods (Harris and Stephens, 1988; He and Yung, 2004; 
Kovesi, 1999; Lowe, 2004; Loy and Zelinsky, 2003) claiming the reduction of pixel localization error ε . 
We have seen improved matching methods based on correlation (Huang and Netravali, 1994) and 
monogenic phase (Kunio, 2007) to operate on those interest points trying to produce matches with minimal 
probability of error p.  Furthermore, there is also a recent body of literature on the s-point (s = 8, 7, 6, 5) 
algorithms (Nistér et al., 2004b; Stewenius et al., 2006; Hartley, 1997) for generating hypothesis model 
parameters M, along with several iterative verification improvements over RANSAC (CVPR Workshop, 
2006) to choose the best M and its parameters.  
 
The vast literature has forced performance evaluation publications comparing feature detectors 
(Mikolajczyk and Schmid, 2004; Zuliani et al., 2004; Rodehorst and Koschan, 2006), feature matching 
strategies (Kunio, 2007), hypothesis generators and the verification schemes (Hartley and Zisserman, 
2000).  Incongruously, comparisons from different authors conclude differently. For example, SIFT 
features performed the best in (Mikolajczyk and Schmid, 2004), Harris in (Zuliani et al., 2004), and 
Forstner in (Rodehorst and Koschan, 2006).  Another example is the comparison of hypothesis generators 
(Nister, 2004b) that shows Nister’s 5-point solver performing better in sideways motion while the 
traditional 8-point algorithms (Hartley, 1997) perform better for forward motion. There is another issue at 
the hypothesis generation phase, namely the choice of the motion model relating the two images. In Figure 
5.10, we present the structure of the fundamental matrix for different cases that we face while trying to 
localize in an unknown unstructured environment using image data. 
 
So, for an arbitrary video sequence, in addition to the risk in the choice of the feature detector, how do we 
decide which minimal hypothesis generator (as in 5 point, 6 point, 7 point or 8 point solver) to use for the 
varying and intangible quality of feature correspondence data? Which model best fits the correspondence 
for a particular feature detector? Do all the feature detectors agree on the structure of the fundamental 
matrix epipolar relationship?  
 
The observation that the performance of feature detectors, matching algorithms and hypothesis generators 
are data/scene and motion specific motivates the implementation of our theory developed in Chapter 4. In 
the following paragraphs, we discuss related work in handling the uncertainty in the fundamental matrix. In 
Section 5.3.3, we explain the theoretical inspiration for the inference engine and detail the implementation 
procedure in Section 5.3.4. We demonstrate our work in real world situations both in indoor and outdoor 
navigation applications and finally summarize our efforts. 
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Figure 5.10: Different forms of the motion model M for the fundamental matrix relating image frames. 
 

 
 
5.3.2 Related work on handling uncertainty in image-based pose recovery 
 
In the well researched area of camera ego-motion estimation, we begin by understanding methods 
discussed in (Hartley and Zisserman, 2000). Out of the several methods in that book, our focus is on the 
feature-based 3D geometric inference using a single camera. Mining the literature further, we realize that 
we are not the first to raise the concern about the uncertainty in the fundamental matrix estimation for pose 
recovery. Researchers over the last decade (Csurka, 1995; Zhang, 1998; Torr, 1998; Kanatani, 2004) have 
published ideas for dealing and quantifying uncertainty in the fundamental matrix from a statistical 
perspective.   
 
The seminal effort in (Zhang, 1998) addresses our specific concern with attention to uncertainty of the 
fundamental matrix explaining different methods to estimate the epipolar geometry. We use the methods 
described to estimate F and its uncertainty along with the normalization procedure FDiff to normalize 
fundamental matrices from the implementation in (Zhang, 1998). Kanatani (2004) proposes the idea of 
asymptotic analysis for uncertainty modeling and explains how to handle uncertainty in geometric fitting 
using model selection criterion. In the same paper, Kanatani modifies the Akaike information criterion for 
geometric inference and argues the need for a geometric extension from statistics. Using a similar model 
selection tool, Torr (1998) clusters feature matches for motion model determination detecting degeneracy, 
affine motion and even multiple motions between successive frames. Kanatani’s remarks in (Kanatani, 
2004) and Torr’s future directions in (Torr, 1998) act as inspiration for our work in considering the 
fundamental matrix estimation process as a random process of sub-systems where the choice of the model 
M is as important as its estimated model parameters that make F.   
 
5.3.3 Theoretical inspiration behind our approach 
 
The significant improvement that we provide over Torr (1998) is that we perceive the fundamental matrix 
solver as a stochastic process and the correspondence data as the excitation signal to the process. Now, the 
sub-samples drawn from the large set of noisy correspondence data for model fitting is analogous to the 
time-shifted signal input for the model-fitting random process to produce the same or equivalent 
fundamental matrix as output. The n different hypotheses that the solver generates before making a 
decision is indicating uncertainty on the estimated fundamental matrix in a time-stationary sense. 
 
Our proposed idea to increase the reliability on the fundamental matrix is by generating an uncertainty 
model in a space-ergodic sense. We excite the random solver with spatially different correspondence data 
generated by different interest point detectors to generate the ensemble uncertainty samples. Our method 
then tries to compensate the deficiencies (uncertainty) in time-stationary sense with space-ergodicity (and 
vice versa) with the objective of reducing the total uncertainty on the fundamental matrix. 
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This idea underlies our approach to uncertainty management on the fundamental matrix. We recollect that, 
in estimating F with noisy im~ i'

~mand  using the hypothesis-test-verify paradigm, there is two inherent 
embedded problems. The first one is the determination of the model M and the second, the parameters of 
M. While there has been considerable statistical attention on the estimation accuracy of the parameters of 
M, the validity for the model choice M is significantly ignored in the literature. Our approach generates 
statistics for the model validity using several interest point detectors and combines the model validity with 
the model fitting accuracy in choosing optimal minimal algorithms based on the scene and motion.  

 
im~ i'

~mSuppose correspondences and  are ideal as in a synthetically generated case, all the n different 
hypotheses would lead us to the same or equivalent F. But, in the noisy real world, robust model-fitting or 
hypotheses verification paradigms (inspired by RANSAC) can iterate to an estimate of F that is sub-
optimal or iterate to a non-acceptable result because of the outliers. If the quality of feature matches is 
good, the distribution of the model parameters during the iterative procedure will be confident and tightly 
bound. We model this convergence of the fundamental matrix parameters towards learning the optimal 
choice of methods that will lead to increased confidence in F.  
 
We illustrate this idea in Figure 5.11. We analyze the statistics of different hypotheses (f) that minimal sub-
samples generate given a set of correspondence data and compare the performance with the statistics 
generated during the convergence from correspondence data generated by different spatial feature point 
detectors. The convergence in Figure 5.11 (a) encapsulates uncertainty in the parameters of f through 
competing hypotheses and the convergence in Figure 5.11 (b) emphasizes the reliability in the model for f. 
To the extent possible, we desire the estimate of F to be both confident and reliable. We describe the 
statistical procedure and the implementation details in the following section. 
 
5.3.4 Learning the optimal minimal algorithm 
 

im~ i'
~mThe quality of feature correspondences  and contains two types of errors, localization errors and 

gross classification errors. The bad matches also called outliers infiltrates uncertainty into the model 
estimation and fitting process. Our experience with real world environments is that the variance bound in 
Equation 5.3, needs to be adjusted drastically in images with nice structural features and ones with poor 
structure. Even robust outlier rejection methods like MLESAC (Torr and Zisserman, 2000) are not able to 
handle such situations mostly because of the infinite possibilities to consider in real world dynamic 
situations. We will let the commonly implemented the model fitting method to consider modeling the error 
between re-projected interest points, while we consider the iterations of the consensus indicative of 
different hypothesis on vector form f of F as our uncertainty sample.  
 
A good feature detector, matching algorithm, and a robust hypothesis generation algorithm would produce 
equivalent fundamental matrices F with a majority of the n minimal hypotheses evaluated within the inliers 
bound. In other words, the confidence in the distribution of f measures the uncertainty over generating the 
model using the corrupt correspondence data.  Then, we look at the parameters generated by different 
pipelines (choice of different feature detectors, hypothesis generation schemes and motion models) and 
evaluate the different estimates of F for model support or reliability. This situation draws direct analogy 
with the selfish-altruist data fusion scheme described in Chapter 4.  
 
The vector form f is the state vector and different pipelines from Figure 5.7 are the sensors measuring f at 
different uncertainty levels. However, the difference is the fact that the dimensionality of f, (which depends 
on the choice of the model for the perspective relation between image frames) is not known and has to be 
learnt from the uncertainty samples. By observing the convergence to the parameters using different feature 
detectors and by also observing the statistics of the models generated by different hypothesis generators, we 
implement a variant of the theory developed in Chapter 4 to learn and minimize the uncertainty about the 
fundamental matrix.  
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Figure 5.11: Our approach to improve the reliability in the fundamental matrix by generating convergence 
uncertainty statistics. (a) The correspondence data as it iterates to the parameters of f seeking inlier 
support. We expect the converged result to be hypothesis-“3”. The uncertainty about f in the iterative 
convergence produces the time statistics. (b) The convergence of the parameters of f from different feature 
detectors. The convergence on the parameters of F, provides the space statistics. For reliable estimation of 
F, our framework helps choose the features that converge faster and with greater confidence adaptively 
and automatically. 
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Our proposed algorithm for adaptively leaning optimal methods assumes the implementation of methods in 
the shape from motion pipeline in Figure 5.7. With that implementation, we present the pseudo code of our 
procedure towards minimizing the uncertainty about the fundamental matrix below.  

 
Step 1: For each potential competing pipeline of methods Pi listed in Figure 5.7 where i = 1, 2, 3,..k 

a)    Use RANSAC and iterate to a convergence. Collect d-estimated parameters H of                  
model M fitted during the iterations of RANSAC.  

b)    Estimate d-variate probability distribution Bi based on j (j > 30) iterations of parameter 
estimates (H1…,Hn) collected. 

      End 
Step 2: Score Correspondence Outlier Consensus (COCi) using the model selection criterion in  
       Section 4.1. 
Step 3: Compute Model Consensus Score (MCSi) by evaluating competing distributions Bi as a multi- 
       sample clustering problem in Section 4.2.  
Step 4: Choose the optimal pipeline Pi with minimum COCi + MCSi. 
Step 5: Repeat Steps 1-4 every m frames 

 
 
As mentioned earlier, we are interested in the RANSAC convergence consensus and quantifying the 
confidence within the convergence process. Particularly, our interest is in identifying the pipeline that is 
indicative of maximum likelihood of the fundamental matrix parameters with minimum uncertainty, or in 
simpler words Bi with minimal variance. This can be mathematically expressed as the minimizer of the 
criterion (Equation 5.4) that simultaneously considers the likelihood and also penalizes the uncertainty 
associated with the likelihood of the parameters of model M.  
 
This model selection criterion in the statistics literature (Bozdogan, 2000) is popularly known as ICOMP 
and derives from the Kullback-Liebler (KL) distance between estimated and unknown underlying 
probability density. This criterion in theory is inspired from the same source as Kanatani’s geometric AIC 
(Kanatani, 2004) but is able to include the covariance of the model parameters. Without much 
modification, we are able to apply this criterion in evaluating the confidence in the model fit after the 
iterative convergence of RANSAC. We note that Equation 5.4 does not involve distributional assumptions 
and can be applied to even Parzen window estimates of Bi. The parameters f and in Equation 5.4 can be 
computed using one of several methods in (Zhang, 1998), though in our implementation, we use the 
moments of the distribution Bi. The correspondence outlier consensus (COC) is given by: 

FΣ̂
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where F -1 is the inverse Fisher information matrix, The C1 measure and the F -1is computed using 
Equations 5.5 and 5.6. 
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with s being the rank of F -1, |.| refers to the determinant and tr refers to the trace of the matrix. 
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with being the Moore-Penrose inverse of vectorized , ⊗ representing the Kronecker product. The 
C1 measure for penalizing uncertainty is obtained by maximizing mutual information in d-dimensions.  
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We direct the reader to (Bozdogan, 2000) for sampling bias compensating implementation details on the 
finite sampling form of Equation 5.4.  Equation 5.7 is the reduced form of Equation 5.4 for a normal 
distribution Bi generated using ni samples of converging f stored as y.  We would like to note that by 
choosing the pipeline with minimal COC score, we are able to learn the choice of methods, which require 
lesser number of hypotheses to evaluate at the same time penalize for the uncertainty in the estimated 
parameters. 
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Though we could stop with minimizing COC which is a minor improvement over (Torr, 1998), we note 
that the choice of the model M is a significant factor in the fitting process. For example, in an urban 
environment one feature detector could produce correspondence data that is tracking features far away like 
the sky and the clouds, while another might be tracking multiple objects such as cars moving in the scene. 
In the former case, we will end up choosing M with an affine structure with 5 parameters, and in the latter 
case up to 18 parameters on 2 fundamental matrices. To avoid this risk in the choice of the model itself, we 
will quantify the model support from competing pipelines. The model consensus score is obtained by 
evaluating the data from several pipelines Pi in a multi-sample clustering framework using Equation 5.8. 
The idea is to cluster Bi of each Pi using information distance between the distributions inspired by the 
method described in (Bozdogan, 1986). The model consensus score (MCS) is as shown below.  
 

g2) of Likelihoodlog(2 +−= MMCS  (5.8) 
penalizes for the parameter parsimony for M. gwhere

 
We begin by testing for the first three hypotheses listed below and in the occurrence of Case 2 or 3 alone, 
evaluate combinatorial subsets in Case 4.  The values of g for different cases are listed in Table 5.1.  
 
 
 
 

Table 5.1: Parameter parsimony penalty in the model consensus score. 
 

g of M Cases 

Case 1: All models M equivalent (f and are equal for all competing Pi) FΣ̂
Cluster : {P1,P2…Pk} 2

)1( +
+

ddd  

Case 2: Different M (Different f but equal for competing Pi) FΣ̂
2

)1( +
+

ddkd  
Cluster : {P1} {P2}…{Pk} 

Case 3: All M’s are different for competing Pi (Different f and different 
for competing Pi) FΣ̂

Cluster : {P1} {P2}…{Pk} 2
)1( +

+
dkdkd  

Case 4: Cluster of κ pipelines of k competing Pi are equivalent (κ  f’s are 
equivalent) 
Cluster: [{P1} {P2}..{Pκ}]..{Pk-1}{Pk} 2

)1( +
+

ddd κ
κ  
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The way we interpret these hypotheses is that when all pipelines are essentially leading us to the equivalent 
fundamental matrix, fusing correspondence data from two feature detectors for example, is not altering the 
convergence process or the end result. In such cases, the model fitting process can be inferred as stationary 
and ergodic with high reliability. We evaluate this condition in Case 1, where we treat all samples 
contributing to Bi of each Pi as drawn from a single distribution Bconsensus. This case usually occurs when we 
have interesting features like corners in buildings to track. 
 
However, our method is particularly useful only when Case 2 or Case 3 occurs. Case 2, tells us that the 
choice of the pipeline is influencing the estimate of F, and that we might have to be satisfied with the 
pipeline with minimal COC score. Case 3 forces us into the balancing act of which model and whose 
parameter estimates correspond to minimal uncertainty. We assign the minimal value of Equation 5.8 for 
the three hypotheses as MCS (Pi). Then, we try to learn the most efficient model by evaluating all 
combinatorial subsets for this purpose in Case 4, which is actually a nested form of Case 1, 2 and 3. We 
evaluate all possible clusters (subsets) and assign the minimum value of MCS over all clusters only to the κ 
pipelines with high model support. 
 
This procedure is comparable to modeling the convergence consensus into a mixture model and finding the 
order of the mixture similar to previous effort (Torr, 1998), the difference being that we can now 
accommodate for the risk in choosing a particular pipeline. The COC score quantifies the risk in the 
estimation and the MSC score quantifies the risk in the model. Our next step is to combine them with the 
objective of improving the reliability on the process of fundamental matrix estimation. 
 
The total uncertainty score that we will use to make a decision about the choice of algorithms combines 
two probabilities (uncertainties). 
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Both the COC and MCS scores are constructed using log-likelihood approximations of information 
complexity and the addition of these scores to decide on optimal Pi is intuitive. In addition, MCS and COC 
also provide an extra benefit of informing us, if we actually can improve the uncertainty over the 
fundamental matrix if we fused several pipelines instead of selecting pipelines. Since the MCS 
computation already considers the reliability aspect of fusion, we are able to note that if MCS of selected 
pipeline Pi is less than its COC score, we can improve by fusing the κ pipelines in the maximal cluster. We 
make this statement following the principles in the study of fusers better than the best sensor in (Rao, 
2001). However, in most real world situations that we experiment in the following section, pipeline 
selection proves to be the promising direction. 
 
In the following paragraphs, we consider navigation applications in indoor and outdoor environments. We 
present results in two scenarios using mobile robotic platforms. The first scenario is where the switch to 
better features helps self localization and the second scenario where the quality of features is not 
guaranteed and we have to learn to use the appropriate hypothesis generator adaptively. Our robotic 
platforms have direct pose recovery instruments either in the form of a laser range scanner and/or GPS/INS 
to provide us with a ground truth on the pose.  We will demonstrate our proposed framework adapting to 
monocular depth cues as the scene changes and also guiding the switch of hypothesis generators by 
learning the quality of the feature correspondences. We compare the results from image-based pose 
recovery with the hardware-based localization to show the effectiveness of our approach in 
opportunistically switching features towards better reliability on pose recovery. 
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We show our test area around Ayres Hall, the mathematics department building at the University of 
Tennessee that we had experimented earlier in Chapter 2. We deployed our vision-based mobile mapping 
robot letting the system track nice corners on the building and later encountering vegetation. The reason 
behind this experiment was to prove that our approach can guide the choice of better feature detectors as 
the monocular depth cues change in the image.  
 
We have shown the panorama generated using a separate set of images along with the corresponding video 
frames below the panorama in Figure 5.12 (a). The localization result along with the GPS ground truth in a 
7 m path in that area shown in Figure 5.12 (b) compares the deviation in vision-based pose recovery with 
our adaptive approach to using a single feature detector. We are able to see the drift when the vision-based 
inference lost linear perspective from the scene. By switching interest points in the scene, we are able to 
reduce the uncertainty and the drift in localization. In Figure 5.12 (c), we show the Monte-Carlo result of 
one switch in this dynamic environment to emphasize the uncertainty management. The graphs Figure 5.12 
(d) (e) and (f) indicate the reliability on the recovered pose after 100 iterations of convergence on the same 
frames but using different feature detectors. With these results, we are able to demonstrate that our method 
chooses feature detectors that guarantee reproducibility with better accuracy in pose recovery. From Figure 
5.12 (c), we deduce that, if we did not guide the switch, there is 50% greater chance that we did not 
estimate the optimal fundamental matrix. 

 
For the indoor case, our robot was equipped with a camera and SICK laser range finder and was intended to 
traverse a corridor as shown in Figure 5.13. During the course, the robot had to maneuver at different 
orientations during which our algorithm decided to use 5 point algorithm or 8 point algorithm based on the 
data. For comparison sake, on offline processing of the image data using each one of the algorithms 
separately, we realize the significant error we would have accumulated had we not countered for Nister’s 
dilemma in choosing between 5 point and 8 point hypothesis generators (Nister, 2004b). In Figure 5.13, we 
also tabulate the average error in recovered pose per frame following the definition of error provided in 
(Nister, 2004b) using the essential matrix. 

 
Our next experiment was to evaluate the robustness of the framework proposed in this paper. We selected 
16 video sequences (Figure 5.14), each with 2000 frames containing both man-made structures and natural 
vegetation. We show a plot of the average uncertainty score on each of these datasets with our adaptive 
method and a standard method (Harris+ 8 point + RANSAC) in Figure 5.14. From Figures 5.14 (b) and (c) 
we are able to visualize how the uncertainty management using our framework translates to reliability on 
the fundamental matrix. Our method is able to do as good as the standard method when the standard 
method is sufficient, and is able to further improve the reliability in other situations. Thus far, we presented 
results on real world environments both indoors and outdoors using the same mobile platform and pre-
programmed vision module. In the experimental phase we made two interesting observations. The first 
observation was that, when we replaced our high resolution camera with a noisy cheap one, our method 
automatically chose a different set of feature detectors and hypothesis generation algorithms adapting to the 
noise characteristics of the cheap camera.   
 
The second observation exposed a caveat. We realized that the time that we gain by minimizing the number 
of hypothesis to evaluate using our proposed method depends on how many competing models we evaluate 
and how often do we evaluate for a scene change.  Typically in our experiments, our inference engine feeds 
the vision system once every 300 frames to operate real-time. A drastically changing scene environment or 
a fast moving mobile robot might require more frequent updates demanding more computational overhead. 
In Figure 5.15, we show the overload our framework requires compared to believing one single feature 
detector and one estimation algorithm. Figure 5.15 (a) is a timing comparison analysis with and without our 
uncertainty handling scheme. We are able to see that the switch to the optimal features saves time while the 
statistics generated for guiding the switch is cumbersome depending on how many pipelines we seek for 
model support. However, the graph in Figure 5.15 (b) is encouraging showing that our proposed method is 
not going to challenge real-time operation when evaluating 20 pipelines every 50 frames. 
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Figure 5.12: Our mobile robotic platform with vision-based pose recovery navigates near the Math 
building in our University. (a) Our method guiding the switch from one feature detector to another as 
monocular depth cue changes from buildings to vegetation in this challenging scene of interest. (b) 
Localization result and comparison on a 7m path. (c) Percentage of equivalent F generated in 100 trials in 
scenes with vegetation and buildings to shows how much improvement we can expect by choosing the 
optimal feature points. (d) The Monte-Carlo analysis on the recovered pose and the error plotted as a 
distribution when tracking good corners. (e) Monte-Carlo analysis on the recovered pose when 
encountering vegetation.  
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Figure 5.13: Autonomous robot localization with a laser scanner and a vision sensor. (a) The robot trying 
to autonomously map a corridor at the Science and Engineering building at the University of Tennessee, 
Knoxville. The localization was performed based on the range and vision measurements. (b) The schematic 
of the floor plan. (c) The map in black and the localization result (intended path) for mapping. (d) By 
processing the visual data using our approach we tabulate error results in the frames to show that by 
switching methods, we can maintain the uncertainty levels across frames during real time localization. 
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Figure 5.14: Vision-based localization in dynamic environments. (a) Sample frames from several video 
sequences considered in our experiments. (b) The average uncertainty score after choosing optimal 
algorithms vs. using Harris corners + RANSAC + 8 pt algorithm. Our approach shows significant 
improvement over believing on a single pipeline (c) Reliability (Average count on convergence on true pose 
between frames) on the fundamental matrix after conducting the same experiment 100 times. 
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(a) (b) 

 
Figure 5.15: Timing analysis for learning competing models. (a) How much of a burden depends on the 
number of competing pipelines to evaluate. For this particular case, we had 20 competing pipelines, 
evaluated once every 50 frames. (b) This graph indicates using our framework every 50 frames is not as 
much as a burden compared to the pose recovery. 
 
 
 
We proposed a statistical procedure for uncertainty management when dealing with images from a 
calibrated camera in pose recovery using the fundamental matrix. We demonstrated results on pose 
recovery for navigation applications in indoor and outdoor environments. Our method reduces the 
uncertainty in the convergence of the parameters of the fundamental matrix with the uncertainty of the 
model itself. The different models generated in the hypothesis-test framework of pose recovery provide the 
statistics for the confidence in the matches while the models generated by different feature detectors 
provide the statistics for quantifying the uncertainty in the model. By combining both these uncertainties, 
we have formulated a generic scheme using model selection theory that will help us choose methods for 
reliable estimation of the fundamental matrix at the same time acting as a performance measure of pose 
recovery using image features. 
 
 
5.4 Summary 
 
We have implemented and demonstrated the intelligence for opportunistic sensing as the ability to evolve a 
belief policy on sensors within a multi-agent framework to survive/counter concerns of failure in 
challenging operating conditions. The challenge was to deal with heterogeneous sensing mechanisms 
functioning at varying degrees of performance and confidence while operating in dynamic conditions. The 
interaction of the sensors or the sensed object of interest with the environment introduced performance 
degradation issues were sensing paradigms degenerate to accuracy levels lower than the design 
specification. By implementing the theory developed in Chapter 4, we have provided a sensor adaptation 
solution focusing on the localization and mapping problem with mobile robotic platforms. Our objective 
function for sensor adaptation was formulated as that of ensuring success of a multi-agent system by 
maximizing information gain (income) considering each sensing unit individually and in synergy, while 
reducing the risk and cost of information corruption avoiding failure. With our experiments on mobile 
robotic platforms on both the instrumentation-based and image-based systems in dynamic large scale 
environments, this Chapter validated the theory further encouraging the potential for application in several 
critical real world scenarios. 
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6 Applications: Research Impact 

In Chapters 3 and 4, we presented the modular architecture underlying our system design and the methods 
derived to operate amidst uncertainty in dynamic environments. Rigorous experiments in Chapter 5 further 
encouraged the real world deployment of our work. This chapter showcases the application of the 
technology developed thus far in critical safety and security scenarios introduced earlier in Chapter 1. For 
each of those motivating applications, we brief the state-of-the-art, enlist the shortcomings and emphasize 
the improvements that our method provides over existing commercial systems. Section 6.1 deals with 
under-vehicle inspection, Section 6.2 is on road pavement/runway crack inspection and Section 6.3 
documents the deployment for large-scale urban and terrain mapping at high accuracy. 

 
6.1 Under-vehicle inspection 
 
In this section, we demonstrate the convergence of 3D sensing technology, modular mobile robotics and 
computer vision-based automation towards under-vehicle inspection and present the technology ready for 
deployment at gate-entry terminals, check points and parking lots with military and civilian interests.  
 
6.1.1 State-of-the-art methods 
 
The first idea implemented and marketed for under-vehicle inspection was to use a mirror at the end of a 
stick as illustrated in Figure 6.1. The mirror-on-a-stick inspection though deters potential attacks, is 
primitive and exhibits some drawbacks. First, if the security personnel are slow in detecting the bomb, then 
they are still vulnerable to detonation before the inspection is complete. This weakness is of major concern 
as the security personnel must be within physical proximity of the vehicle. Second, the physical constraints 
of the mirror only allow about 40-50% coverage of the vehicle undercarriage. The center line of the vehicle 
in particular is difficult to reach, and the subsequent viewing angles are oblique.  Also, the mirror-on-the-
stick system though inexpensive, is only a visual inspection scheme and does not readily lend to archival 
and automation.  
 
With the mirror-on-the-stick approach proving to be not so efficient with many limitations, the next logical 
evolution was the “buried sensors” approach. The idea was to embed cameras under ground and acquire 
images as the target vehicle drives over the sensor suite. The image data is further processed and visualized 
as high resolution mosaics (Dickson et al., 2002). With such a “buried sensors” approach, the motion of the 
target vehicle determines the resolution, coverage and completeness of the data required for inspection. 
Also, the embedded sensor approach consumes more time for operation and maintenance, leading towards 
the development of mobile robots such as the omni-directional inspection system ODIS (Freiburger et al., 
2003) and Spector (Autonomous Solutions Inc., 2005). These low-profile robots mounted with cameras and 
capable of sneaking under cars and trucks recording images as video frames have proven to be a significant 
improvement over the mirror-based systems (Smuda et al., 2005).  Due to the low clearance of most cars, 
the field of view using a single camera, as seen in Figure 6.2, becomes too restricted that some components 
cannot be discerned from the live video stream even by a human inspector. Using several cameras or omni-
directional cameras is an option that does not help much in visualizing the data in a meaningful form at the 
resolution required to identify components. 
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Figure 6.1: The traditional method for inspecting a vehicle undercarriage is to use a mirror attached to the 
end of stick. This mirror-on-a-stick approach enables security personnel to search wheel wells and other 
vehicle cavities. On the right, we show a picture of the scene the inspection personnel views on the mirror. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2: An alternative to a mirror-based inspection is a low-profile mobile robotic platform (called 
SafeBot) that can navigate under a vehicle while inspection personnel remain at a safe distance. On the 
right, we see a single frame from the camera on the robot. Due to low ground clearance of the automobile 
and restricted field of view of the camera on the robot, a single frame only shows a small section of the 
undercarriage. 
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Both the robotic approach and the “buried sensors” approach lend to remote inspection and flexibility for 
archival and automation. But the robotic solution is favored over “buried sensors” approach because the 
acquired sensor data is only dependent on the robot’s motion (which is measurable or can be controlled by 
the remote inspector) instead of the target vehicle’s motion. The robotic solution also lends easily to 
multiple inspections of the same vehicle and enables the inspector to focus on a particular area of interest 
on a case-by-case basis. Several robots have hence been designed and among several enhancements on the 
preferred robotic solution, mobile robots with intensity cameras were made independent of illumination and 
hence operable even during the night by mounting light sources or using night vision cameras or thermal 
sensors. We show some examples from the data that we collected using such a robotic platform with visual 
and thermal sensors (Koschan et al., 2004) in Figure 6.3. We observe that the mosaic generated using the 
images acquired in a single pass provides more coverage compared to the mirror-on-the-stick approach, at 
the same time, suggesting the need for a better system to maximize visual information from a single pass 
using as few sensors as possible. Our proposed 3D approach is one such enhancement that also fills most of 
the other gaps observed with the contemporary systems. 
 
6.1.2 Requirements 
 
The state-of-the-art systems emphasize that the visual cameras alone may not be sufficient for a robust 
under-vehicle inspection system. In addition to visual information, we see that a thermal sensor can help 
detect components that are not part of the exhaust system, chemical sensors can help sense explosives in 
the scene and nuclear sensors can detect radioactivity. The multi-modality sensor data can aid a human 
inspector and also contribute towards potential automation for the detection of bombs, explosives and 
contraband. The robotic mapping multi-sensor approach will put the multi-modality measurements in a 
spatially meaningful perspective reducing the burden of interpretation on the human inspector. We desire 
implementing such intelligence with the inspection robots reducing the susceptibility to error in any way 
possible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.3: The images on the right are high resolution mosaics of visual and thermal data from the robot 
scanning the carriage. The thermal mosaic at the bottom is color coded, with the hot regions appearing in 
red and the colder regions in blue. The red boxes show the thermal scene characteristics corresponding to 
the visual scene. The mosaics were generated using a phase-correlation-based method by (Koschan et al., 
2004). 
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The major contribution with our research is in enhancing existing inspection robots with 3D sensors to 
acquire geometric information of the under-vehicle scene and hence using the 3D data for automatic 
detection of anomalous objects in the scene as potential threats. In trying to provide such a robotic system 
as a reliable solution for under-vehicle inspection, we enlist the following characteristics expected of an 
under-vehicle inspection system: 
 

• Ability to acquire and communicate data from a safe stand-off distance. 
• Maximal coverage with minimal effort reducing the number of inspection iterations. 
• Independence from environmental conditions like illumination, temperature, humidity etc. 
• Rendering data in a visual and spatially understandable form for a remote inspector to make 

decisions. 
• Flexibility for digital archival and automatic threat detection using simple and efficient 

algorithms. 
• Inexpensive and less cumbersome maintenance and operation. 

 
6.1.3 Results 
 
We deployed two prototypes using two different 3D scanners as different sensor configurations for the 
SafeBot. We mounted a laser range finder (SICK LMS 200) and a laser-profile scanner (IVP Ranger SC-
386) on mobility platforms to acquire the under-vehicle scene data. The mobile robots in both 3D sensor 
configurations were capable of scanning most automobiles with enough ground clearance for our robotic 
imaging system to slip under. We have tested our robot under several cars inside parking lots, collecting 
and visualizing data almost in real time. We present some of those results in Figure 6.4. Using the time-of-
flight prototype we are able to model the complete structure information of the undercarriage with a single 
pass with the geometric accuracy in the order of a few (1-5) centimeters.  
 
A single pass along the center line of the vehicle takes about 30 seconds to map the entire undercarriage 
and the observed accuracy varies with the ground clearance of the automobile. We attribute the reason for 
the below par accuracy to the limitation in the timing electronics of the scanner. The time-of-flight systems 
also require a minimum stand-off of 25 centimeters at which we get 5-10 millimeters of accuracy which is 
good enough resolution for the threat detection. With the IVP range profiling sensor, we are able to achieve 
depth accuracy of 2-5 mm, but with limited field of view, requiring multiple passes under the vehicle and 
creating an issue of concern with view occlusions. 
 
Having presented the 3D data of the under-vehicle scene, we demonstrate how the 3D data can be used as a 
visualization bed for multi-sensor data from sensor bricks within the architecture and also localizing 
potential threat information from nuclear, chemical or biological detectors. The results that we will discuss 
in this section are based on a simple experiment that we conducted on the Dodge Stratus car. We attached 
two radioactive Cesium sources under the car, and then used our SafeBot with multiple sensors, to scan the 
vehicle. We measured the radioactivity in 16 locations around the car seen as blue squares in the Figure 6.5.   
 
Using a source localization algorithm similar to (Hayes et al., 2002), we were able to determine the number 
and the location of the radioactive sources in the 3D scene of the undercarriage. Such a capability is of 
significant assistance to a remote inspector to localize a threat in a physical and spatial sense and act on the 
potential threat accordingly. Furthermore, we are also able to provide a remote inspector the ability to focus 
on a particular region and visualize the visual image data and thermal data of the scene on the 3D model 
from a graphical user interface implemented within this framework. We have shown them separately on the 
image for clarity reasons though these datasets can be visualized as texture as shown in Figure 6.6. The 
images from the color cameras are textured on the geometry generated by aligning the profiles from the 
laser scanners in Figure 6.6.  
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Figure 6.4: 3D under-vehicle inspection using our prototypes. (a) Photograph of the under carriage of the 
Dodge RAM van and the rendered 3D scene acquired using the time-of-flight system.  The 3D models are 
color coded to emphasize depth. (b) A complete scan of a Dodge Stratus car. (c) Result from another 
vehicle using the laser profiling sensor configuration. 
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Figure 6.5:  Visualization of multi-sensor data on the 3D geometry helps isolate radioactive sources in the 
scene. We are also able to spatially relate the under-vehicle scene to visual and thermal data. These images 
show that the data collection using mobile robots and the visualization in a 3D environment brings 
together the functionality of each of the visual, thermal and range bricks into one single interface for the 
remote inspector for easy manipulation and interpretation with the multi-sensor data adding to extra scene 
intelligence. 
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(b) 

Figure 6.6:  Both the 3D scanners lend to easy texture mapping.  (a) Texture mapped 3D data from the 
SICK scanner. Though the entire under carriage is mapped in 3D, the field of view available to the camera 
on the robot does not span the entire scene in a single pass. Hence, from a single pass, only a part of the 
scene can be visualized as textured 3D models. (b) Texture mapped on the IVP data. The IVP laser 
scanning system is a camera-based system that was used to compute range and color maps simultaneously. 

 
We have thus far discussed the construction of the robotic platforms with interchangeable sensors capable 
of real-time acquisition, processing and integration of multi-sensor data visualized as 3D virtual 
environments. In the following paragraphs, we will present potential methods of using the 3D information 
towards scene inference. We will explain a method for scene verification using a popular 3D scene 
registration algorithm as a significant automation improvement over existing methods.  
 
6.1.4 Improvements over the state-of-the-art 
 
Let us consider the following scenario with John Q. Citizen who works as an analyst at a secure facility for 
some three-letter agency (TLA) within the U.S. government. John drives to work each day and passes 
through a security checkpoint to enter the facility. The TLA sticker that John has placed in the lower corner 
of his windshield validates his access. As he approaches the gate, the TLA security personnel observe the 
appropriate sticker and wave John into the secure area. This procedure is typical when terrorist threat levels 
are low, but when threat levels rise, TLA policy requires that security personnel check for the sticker and 
additionally inspect John’s vehicle a little more thoroughly. The assumption is that John is a trusted 
employee and that his sticker is valid, but the inspectors are looking for bombs or other contraband that 
may have been hidden on the vehicle without John’s knowledge. Essentially, John, and more precisely, his 
vehicle is a target of opportunity when the vehicle is outside the TLA facility. When John drives to a 
restaurant for lunch, his vehicle sits in the parking lot where the sticker advertises his association with  
TLA.  
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A terrorist might exploit this opportunity by planting a bomb under the vehicle and then waiting for John to 
return to the TLA checkpoint. At the appropriate moment, the terrorist could remotely detonate the  
bomb and thereby kill John and the security personnel. The loss of life and the associated destruction would 
compromise the perimeter security of the entire TLA facility. The 3D scene verification approach applies 
directly to such a scenario that assumes that we already have a scan of the underside of the automobile, and 
we are looking for potential modifications made to the undercarriage from the previously archived 3D 
scans.  This approach also extends to the scenario of inspecting unattended vehicles in war zones that may 
be tagged with improvised explosive devices. We demonstrate the difference shell idea applied to this 
scenario in Figure 6.7.  
 
A black electronic board that simulates a threat object was attached to the undercarriage of the Dodge van. 
The vehicle underside was then scanned using our robotic platform. The previously archived 3D dataset 
was then aligned with the freshly scanned scene with the simulated threat using our implementation of the 
Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992). Once ICP converged on the best possible 
alignment result, we computed the difference between the two aligned shells.  
 
We show the difference shell in the color coded image Figure 6.7 (d) that highlights the areas of the largest 
difference indicating the location of the simulated threat object. This approach can be used to detect 
arbitrary modifications made to the car, like a missing muffler for example. Such an automated approach 
provides reliable change detection which would have been extremely challenging even for a well-trained 
human inspector. This ability to quickly, reliably and automatically identify modifications in the under-
carriage is a significant additional feature with 3D sensors compared to the traditional camera approach.  
 
 

  
 

  
(a) (b) 

  

(c) (d) 

Figure 6.7:  Scene verification approach for detecting changes made to the vehicle by comparing with 
archived scans. (a) An electronic board attached along the center line shaft of the Dodge van. (b) Scan of 
the under-vehicle scene with and without the electronic board. (c) Registration result of the two shells in 
(b). (d) The difference shell highlights the anomalous object found. Detecting such a threat automatically in 
a single pass would have been very difficult using the mirror on the stick approach and the camera-based 
robots. 
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We have demonstrated a robotic multi-sensor solution for the under-vehicle inspection scenario to acquire 
and communicate data from a safe stand-off distance, rendering data in a visual and spatially 
understandable form for a remote inspector to make decisions. The multiple sensor approach that includes 
visual cameras, thermal imagers and radioactivity sensors with future potential for biological and chemical 
detectors in a robust modular architecture, enables visualization of scene characteristics that we call 
perception intelligence in virtual reality environments. In addition, with the 3D sensing enhancement on 
our mobile robot, we have shown how the flexibility for archival and automatic threat detection using 
specific algorithms as technology ready for deployment at places of military and civilian interest. The scene 
verification approach is also a promising direction for automatic threat detection and localization. 
 
6.2 Airport runway/Pavement crack inspection 
 
The key to successful road surface evaluation lies in identifying different types of distress and linking them 
to the cause. Recognizing the defects and also understanding the cause based on the appearance helps rate 
pavement conditions and select cost effective repair measures. To that end, we discuss our approach and 
present the results from our prototype described in Chapter 3 for mobile 3D data acquisition in this section.  
 
6.2.1 State-of-the-art methods 
 
Related work towards pavement distress, especially on airport runways and army maintained highways 
dates back to early 1980’s. The pavement management system (PMS) idea was proposed by the U.S Army 
(TM 5-623, 1982) and has since then undergone metamorphosis keeping pace with improving imaging 
technology. However, transportation departments met with limited real-time success using digital imaging 
techniques towards automatic crack detection and filling (McGhee, 2004), until the late nineties. Non-
visual sensors and several improvements on image-based methods were proposed during this period. We 
summarize these methods in Figure 6.8 and discuss the advantages and disadvantages of the different types 
of sensing methodologies.   
 
Analog films have been completely replaced by digital cameras. Among digital systems, video cameras are 
preferred to line scan methods for the ease of use without special illumination requirements, though line 
scan methods offer very high resolution data. Such video-based vision systems have two major drawbacks 
in extension to pavement inspection. They do not provide sufficient depth information and also have 
ambient illumination requirements. Range sensors that directly give depth measurements have limited field 
of view while profilometers and acoustic sensors though inexpensive can only provide low resolution and 
low dynamic range. 
 
In 1987, Mendelsohn listed several of these methods including acoustic sensors and profilometers and 
suggested that the imaging modality was a promising approach (Mendelsohn, 1987). At that time, the 
processing and image acquisition speeds challenged the feasibility of a fast and efficient inspection system. 
Several surveys were conducted to make an assessment of the feasibility of incorporating image acquisition 
and processing methods for both development and implementation of automated road surface inspection 
(Howe and Clemena, 1998; Wang, 2000).  
 
The conclusions of the survey encouraged by improving hardware and processing equipment have led to 
most of the commercial video-based systems available today that basically consist of an array of high speed 
imaging sensors supported with illumination equipment. The video data from such systems (Meignen, 
1997), though promises to be sufficient for distress detection requires spatial information for crack filling 
after detection and maintenance. A potential solution AMPIS (Chung et al., 2003) was proposed that 
combined GPS information with video to create GIS-like databases of road surfaces. AMPIS claims 
improved road network identification, pavement inspection for better maintenance and data management 
over the base framework of PMS.  



Chapter 6: Research Impact                                                                       105 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Road surface inspection technologies 

Vision-based methods Non-visual methods 

Acoustic sensing 

Profilometers 

Analog films 

3D range sensing 

Digital imaging 

Line scan Video 

Figure 6.8: Summary of technologies demonstrated for road surface inspection. 
 
 
 
Taking a robotic approach, Hass et al. (1992) proposed a system to overcome the shortcomings of the 
video-based system to make depth measurements by incorporating a laser range sensor. Hass et al. 
concluded that combining laser range data and video image data can provide overall better accuracy and 
speed of crack detection although due to the time consuming aspect of laser range sensing in 1992, they 
demonstrated range imaging for crack verification after the detection using the video-based system. Several 
3D approaches have been demonstrated since then. Laurent et al. propose a synchronized laser scanning 
mechanism to capture high precision 3D range and texture profiles. Bursanescu and Blais (1997) reiterate a 
3D optical sensor as the answer to high resolution and high accuracy acquisition and redesign a Biris sensor 
to meet the specific requirements of the pavement inspection application. They demonstrate six such 
sensors mounted on a mobile platform acquiring data at normal highway speeds.  
 
6.2.2 Requirements 
 
The main goal of road surface inspection is being able to identify crack patterns, rut depths and the 
roughness of the cracks. The depth information is of particular significance in airfields because the rating 
scheme for the runway surface (Walker, 2004) is not just dependent on the length and width of the cracks 
alone as is the case with pavement distress applications but also on the depth. Crack depths in the order of a 
few millimeters require high precision distance measurements. Hence, the design requirements for a 
comprehensive airfield data collection system should address accuracy and precision in three dimensions of 
measurement, speed of acquisition, time required for post processing, ease of visualization and evaluation.  
 
With current data collection methods conforming the necessity to integrate of several heterogeneous 
technologies, we further identify the scope for improvements in system design targeting the time of 
acquisition and processing and list the important characteristics of a real-time deployable system. An ideal 
road data collection system must operate in real time gathering and post processing speeds. The duration 
required for data analysis should not overwhelm the time required for acquisition. A single pass data 
collection should be sufficient for cost-effective distress identification and localization, the critical aspect 
being the accuracy and robustness of the system and its extendibility to arbitrary terrain. State-of-the-art 
methods appear to assume relatively planar surfaces in their design. We also note that not only is depth 
important for detecting and classifying cracks, but also for the detection of object debris and other 
anomalies like vegetation that one does not expect on an asphalt or concrete runway. Also, a system that 
can operate without illumination requirements and can accommodate for unexpected GPS failures is 
desirable for lesser down time for maintenance. 
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6.2.3 Results 
 
Our 3D imaging system was specifically designed with the requirements listed in Section 6.2.2 in mind. As 
proof of concept, we tested our system in several pavements with different kinds of cracks and present 
some of those results. One such area of interest is shown as an inset in Figure 6.9 along with the GPS path 
on a satellite map (Original image from www.maps.google.com) and the multi-modal integrated dataset in 
Figure 6.9. The discontinuity in the GPS path shown on the inset image is because we did not get back 
precisely to the starting point. To draw attention to the resolution at which we have imaged we show some 
zoomed in images of cracks and rough asphalt surfaces in the same figure.  
 
We have color-coded the depth to emphasize the cracks. The small cracks on the right inset are about 2 cm 
wide and 1 cm deep while the longitudinal crack in the top-left inset is 3 cm wide and 3 cm deep. We have 
not shown the entire path (75m) at that high resolution considering the size of the data and memory 
resources required to render the model. Having emphasized the accuracy that our system is capable of in 
Figure 6.9, we present the ability to digitize large swaths of data where even large-area alligator cracks can 
be detected in Figure 6.10. Figure 6.10 (a) zooms in on a small distressed section of a road digitized using 
our system. The deep alligator cracks and a longitudinal crack are visible in the 3D model. Figure 6.10 (b) 
demonstrates our ability to detect foreign object debris (red section of the color-coded image) with relative 
ease compared to commercial video-based systems. With the gray shaded inset, we also note that the 
dataset in Figure 6.10 (b) shows perceivable geometric details that can differentiate gravel and asphalt 
surfaces. Figure 6.10 (c) is a texture mapped 3D model of an area inside a parking lot. The video sensor in 
our system is used to generate the texture and is registered with the 3D range profiles.  
 
 
 
 Aerial view of area of interest 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.9: Multi-modal integrated 3D data of an area of interest with three small zoomed in sections of 
areas with different roughness and depth of cracks. The zoomed in sectional views show the color and the 
color-coded range data side-by-side. Our system is calibrated for high accuracy (order of millimeters) to 
even sense depth variations caused by the asphalt chips on the surface. 
 

http://www.maps.google.com/
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(c) 
Figure 6.10: Large areas digitized at very high resolution. (a) Alligator cracks detected on the road 
surface. (b) Detection of foreign object debris based on 3D information. (c) Textured visualization on the 
3D geometry still preserves the advantages of a vision-based system. The red contour indicates the path of 
the imaging system at the time of scanning. 
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6.2.4 Improvements over the state-of-the-art 
 
With the 3D models that we have integrated crack detection has become easy with simple threshold-based 
algorithms giving us fast and accurate results. We have overcome the illumination requirements of the 
contemporary systems and are able to scan driving at 30 miles/hour at 3 mm depth accuracy on the cracks 
and 6mm inter-profile distance. With data samples from four sensors supplying data at different rates, we 
have integrated accurate photo-realistic 3D models for surface condition archival and convenient 
visualization. Our modular design enables the replacement of sensors to map larger areas by sacrificing on 
the accuracy based on the requirements of the application in hand. Our datasets encapsulate color and 
geometric information and allow application of existing color-based and geometry-based crack 
detection/classification algorithms. The fusion of both these modalities guarantees better performance and 
reliability. Our output of real world terrain as triangle mesh datasets readily feed as input to finite element 
analysis based vehicle-terrain simulators. 
 
6.3 Large-scale terrain mapping 
 
The motivation for large-scale terrain mapping is towards strategic planning in security situations. 
Unmanned vehicles have been deployed in several defense and security applications to provide apriori 
information about unknown unstructured environments with minimal risk to human life (Gage, 1995). 
These vehicles armored with sensors are capable of avoiding obstacles to navigate in an unknown 
environment, reporting concerns in different scenarios such as a battlefield (Freiburger et al., 2003), 
civilian security (Courtright, 1991), disaster management (Murphy, 2004), or in a patrol/surveillance 
mission (Klarquist, 1999). In such missions, the 3D environment map of the surveyed area of interest is 
useful feedback for organizing future action and deployment of resources in a much more efficient manner. 
Hence, we require a modular multi-sensor system and processing package that can be mounted on 
unmanned vehicles/mobility platforms to generate photo-realistic, geometrically accurate geo-referenced 
3D models of the area of interest. Such a system should be able to generate 3D models without making any 
assumptions about the vehicle trajectory, ambient illumination and should also consider the uncertainties 
involved in a dynamic unstructured environment. Real-time data collection and processing is also desired. 

 
6.3.1 State-of-the-art methods 
 
In the early attempts towards terrain modeling, large swaths of coarse terrain data were acquired using 
airborne video systems (Baillard and Maître, 1999). Moving away from air-borne systems to easily 
accessible ground vehicles, an inexpensive approach of recovering 3D structure of buildings and cityscapes 
from video (Pollefeys et al., 2000) was demonstrated on cases where the shape could be recovered using 
stereo principles from successive image frames.  Zhao and Shibaski (1997) demonstrated that using range 
sensors and a line CCD as extra data for registration and integration to create textured 3D models of urban 
environments was a faster and efficient approach to urban scene modeling compared to the aerial survey 
that was the state-of-the art at that time.  
 
The MIT City scanning project (Antone and Teller, 2000) that inferred structure using spherical nodules 
was another effort in that direction. Inspired by Zhao and Shibaski (2001a), Christian Fruh (2001b) came 
up with the idea for urban mapping using two laser range profilers in an orthogonal arrangement along with 
digital cameras. He demonstrated the system mounted on a truck and driving at normal highway speeds to 
collect data that was processed offline. With his orthogonal arrangement, he was able to compute 
centimeter level accuracy by matching successive laser scans against each other and between the two 
sensors. The horizontal laser scans were used to approximate a component of the acquisition vehicle’s 
motion. With the vertical scanner providing the façade of the urban structure, he proposed two different  
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approaches in using information from aerial maps to minimize global localization error using laser scans 
alone. One of those methods was to use cross correlation and the other a Markov-Monte Carlo technique to 
acquire 3D models in a matter of few minutes subject to traffic conditions. The two major drawbacks of 
this approach being the availability of the aerial map and the magnitude of global error that accumulated 
over just 100m of data.  
 
Zhao and Shibaski (2001a and 2001b) further improved on Konno et al.(2000) who proposed three single-
row laser range scanners and six line cameras mounted on a measure vehicle (GeoMaster), with a system 
equipped with a GPS/INS/Odometer-based navigation system. Their sensor mount outputs three kinds of 
data sources: laser range points, line images, and navigation data. Either the laser range points or the line 
images are in the sensor’s local coordinate system at the time of measurement. They are synchronized with 
the navigation data using the sensor’s local clock and integrated into 3D models offline. The motivation 
behind these urban scanning projects described so far are more on digitization than accuracy of digitization 
with expected errors in the order of a few centimeters. Also these methods did not address the uncertainty 
in the measurement process and the dynamic environment towards map building. 
 
6.3.2 Requirements 
 
We are focused on digitizing the real world without having to worry about the failure of the GPS or the 
inconsistencies in vision-based recovery. Hence, an independent modular system with the processing 
interface dedicated for mapping can expedite the map building process and improve mapping accuracy. 
Based on the level of detail that we desire in the environment, such a system should be modular and 
flexible in the system design, making the data collection and processing less cumbersome. Also, the map 
building process using the unmanned vehicles that are usually operated in stealth mode should be 
independent of ambient illumination capable of acquiring visual results both during the day and in the 
night. The hope and promise is that such a system would be faster and more realistic than computer 
graphics based design. 
 
6.3.3 Results 
 
We tested our system acquiring several miles of data in and around Knoxville, Tennessee and present some 
of the interesting results using the RIEGL scanner in Figure 6.11. There are three examples shown in that 
figure. The first one (Figure 6.11 a) is that of a BI-LO shopping center digitized and textured by driving our 
imaging prototype along the road in the parking lot in front of the shopping center. The second one is the 
Women’s Basket ball hall of fame building near the University of Tennessee campus (Figure 6.11 b). We 
also show the path of our acquisition platform on a satellite image as an inset in the same figure. These 
models are accurate up to a few centimeters and extremely dense with each model consisting of a few 
100,000 points. Mapping the Hall of fame building was a challenge. The building is along the curve of the 
road and mapping using image-based techniques was not going to be easy. We also had doubts on the 
availability of GPS signals as the building was very close to the urban canyon in the downtown area. Our 
instrumentation and integration method handled the situation resulting in the accurate and photo-realistic 
model.  
 
We present another model integrated using our system in Figure 6.11 (c). We mapped along a 1 kilometer 
long path around the mall area on Chapman Highway without any prior knowledge about the area. We have 
shown zoomed in sections of the Goody’s store to indicate the sampling density achievable using our 
system without having to compromise on the texture quality. Our acquisition took about 10 minutes further 
emphasizing our capability to quickly produce 3D models of urban environments. For large datasets 
spanning several miles, we process datasets offline. Though the time taken for processing large datasets can 
be quite cumbersome, a mile of data usually takes about an hour of processing on off-the-shelf desktop 
computers.  
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Woman’s Basket ball Hall of Fame Building in Knoxville. 

Shopping mall in Knoxville.

Zoomed-in view of the Goody’s store inside the mall.

 
Figure 6.11: Large areas of urban environments digitized at very high geometric resolution with high 
fidelity texture. (a) BI-LO shopping complex in Knoxville. (b) The women’s basket ball Hall of Fame 
building. (c) The 3D rendering of a shopping mall with the zoomed inset of the Goody’s store on Chapman 
Highway in Knoxville. The sampling density of digitization and the photo-realistic rendering are key 
enhancements with our systems. Our output models are triangle meshes that are easy to embed in 
immersive virtual environments. 
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6.3.4 Improvements over the state-of-the-art 
 
In essence, we have documented mobile mapping prototypes consisting of 4 main components: hardware 
for 3D geometry and texture acquisition; hardware for positioning and orientation (pose and trajectory) 
measurement; a mobile platform which moves the sensing package past the environment to be digitized; 
and software to perform the necessary information fusion to combine the data from different sensing 
modalities and to process the resulting model to fit the application at hand.  While other researchers have 
developed 3D terrain acquisition systems, these tend to be fixed in regards to the hardware and the fusion 
methods used.  In contrast, our system treats the components independently with the following 
improvements in the following areas: 
 
• Accuracy, resolution and photorealism: Our system promises mm- to cm-level accuracy as required. 

Also, by using instrumentation for pose estimation and developing methods to handle uncertainty, our 
system is flexible in a variety of environments; making no assumptions about the environment to be 
digitized. We do not expect planar structures in the scene and can operate with expected accuracy in 
most real-world situations. Our contributions over the state-of-the-art is particularly with the accuracy at 
which we are able to image and simplicity in integration towards efficient processing and realistic 
visualization. 

 
• Modularity and robustness – The modularity inherent in our design allows the system to be as robust 

to real world environments as the individual components, at the same time being independent of 
application-specific hardware modifications. That is without too much reconfiguration, our design is 
capable of easy integration when mounted on an aerial vehicle or a ground vehicle based on the need. 
The modular design enables us to treat accuracy and resolution as parameters of the system to suit the 
application in hand. 
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7 Conclusions 

This dissertation work was motivated by the need to build 3D models of dynamic large-scale environments 
using mobile robotic platforms. We studied different 3D imaging techniques and documented our 
experience evaluating promising technologies. Our rigorous evaluation aided the design and demonstration 
of multi-modality multi-sensor system solutions with significant improvements over contemporary 
commercial systems. Our approach is easy to deploy, more accurate and lends to easier automation and 
remote visualization. We encountered several challenges in the form of noisy sensors, sensor conflict, 
performance degradation, potential sensor failure in dynamic environments and had to deal with the 
statistical validity of measurements from sensors before integrating and digitizing the real world into virtual 
3D models. This chapter summarizes the contributions made to the existing literature through our research 
efforts on automation issues for high accuracy photo-realistic 3D imaging of large-scale dynamic 
environments and envisions potential directions for future research. 

 
7.1 Dissertation key points 
 
The quintessence of the research effort in this dissertation is finding the answers to the following questions. 
What are the technologies available today for 3D mapping? How close to reality can we digitize the spatial 
world around us quickly and cost effectively? What sensors to use for required accuracy and how many? 
How to build a system that is generic with wide applicability? Is the multi-sensor system the way to go? 
How to integrate maps using complimentary sensors? How to handle sensor failure and performance 
degradation in multi-sensory systems? When should a multi-sensor system fuse data and when should it 
select a believable sensor? How to increase the reliability of 3D inference from image-based mapping? We 
believe the dissertation provided answers to those questions with efficient prototypes, theoretical derivation 
and real world experiments to claim the following contributions in system design, data fusion and 
uncertainty management for 3D imaging using mobile robotic platforms. 
 

• 3D imaging and automation solutions 
 
The system design contribution of this dissertation is the readily deployable system prototypes built as 
automation solutions to the applications described in Chapter 1. The modular hardware design 
architecture that we have implemented enables the trade-off between accuracy and cost for given 
application specifications. Our expertise in the choice of equipment on mobile robotic platforms 
combines with the supporting software development for data acquisition, processing and visualization 
in outperforming commercially available state-of-the-art systems in quickly and automatically 
generating accurate photo-realistic 3D models in critical safety and security applications.  
 
• Selfish-Altruist data fusion using information complexity 
 
The selfish-altruist data fusion scheme was motivated by the need to fuse multi-modal multi-sensor 
data for localization applications. With particular focus on the state localization of mobile platforms  
designed for 3D mapping, we realized the inadequacy with current belief propagation methods in two 
situations (1) when sensors are in conflict (2) when expected uncertainty levels of the sensors are  
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challenged intermittently while operating in dynamic environments. Our proposed inference 
framework  inspired by model selection theory is a solution that in addition to deciding between 
sensor fusion and selection identifies reliable and confident sensors online leading to increased belief 
in the estimated state. 
 
• Reliability in image-based 3D inference 
 
Image-based mapping using cameras is by far the most economical approach for vehicle navigation 
and 3D scene modeling. But current shape from motion algorithms though theoretically mature, have 
reliability issues. We studied every step in the pose and structure estimation process: the feature 
extraction, feature matching, motion model estimation, hypothesis generation and iterative refinement 
and proposed an idea to increase the reliability in pose recovery process by generating ensemble 
uncertainty samples using different spatial features. The ensemble uncertainty samples were then used 
to compensate the uncertainty in time-stationary convergence of parameters relating image frames.  
Our approach proved effective in adaptively switching monocular depth cues and choosing motion 
models making the shape from motion pipeline less dependent on the scene and relative motion. 
 
 

7.2 Future directions 
 
The contributions we have claimed in this dissertation appear as refereed technical publications in the form 
of journal articles and conference proceedings attracting interest both from the academic and industrial 
community. The positive feedback and the attention we have drawn motivates us further to explore other 
applications and also improve our current prototypes.  
 
The modular design of our 3D imaging prototypes has separated the hardware and software components in 
the system allowing the flexibility to function independently or in sync. Though the design was a deliberate 
and a conscious decision to ease trouble shooting and also enable offline data processing during the 
development phase, we believe, our integration method is mature and ready for implementation using 
graphics processing units (GPU). Introducing the GPU as the interface between hardware acquisition and 
software integration in addition to efficient parallel processing speed will also enable high quality rendering 
of 3D data. We are encouraged by the results in (Gong and Yang, 2005) to pursue this avenue in future. 
 
The selfish-altruist data fusion theory is inspired by information theoretic concepts with strong foundations 
in concepts of information complexity. The theory developed is generic for any state-localization problem 
and does not limit itself to self-localization in 3D mapping. One such immediate extension of our 
framework could be for tracking people/vehicles in crowded scenes using camera networks. Following the 
formulation of target localization as a recursive state estimation problem by Isler and Bajcsy (2005) and the 
in-house expertise in sensor placement and video tracking (Yao, 2008) we see the potential of a target 
tractability distribution, that includes affine floor plan occupancy, camera coverage, motion uncertainty and 
the camera load in successfully and consistently tracking multiple people while maintaining and 
propagating high levels of belief about each target. Our preliminary results in tracking a human in Figure 
7.1 are very encouraging. Our method is able to guide the camera handoff on a target adaptively with up to 
50% more confidence than a hard-coded switch. We see the potential and hope to pursue the 
implementation of our inference framework in target and source localization applications involving sensor 
networks in the future.  
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Figure 7.1: Preliminary results implementing our framework to guide camera hand over for target 
localization. We have plotted the uncertainty from the belief distribution of affine floor plan occupancy 
(Fleuret et al., 2008) in 80 frames before the complete handoff and show that our method is able to guide 
the smooth transition maintaining lower uncertainty levels on the target compared to a hard-coded camera 
switch. (a) The two camera setup and their individual fields of view. (b) The uncertainty score during the 
belief propagation of a target monitored in two cameras using the hard handoff approach compared with 
our adaptive framework. 
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