1,087 research outputs found

    Composition of Near-Earth Asteroid 2008 EV5: Potential target for Robotic and Human Exploration

    Full text link
    We observed potentially hazardous asteroid (PHA) 2008 EV5 in the visible (0.30-0.92 microns) and near-IR (0.75-2.5 microns) wavelengths to determine its surface composition. This asteroid is especially interesting because it is a potential target for two sample return mission proposals (Marco Polo-R and Hayabusa-2) and human exploration due to its low delta-v for rendezvous. The spectrum of 2008 EV5 is essentially featureless with exception of a weak 0.48-microns spin-forbidden Fe3+ absorption band. The spectrum also has an overall blue slope. The albedo of 2008 EV5 remains uncertain with a lower limit at 0.05 and a higher end at 0.20 based on thermal modeling. The Busch et al. (2011) albedo estimate of 0.12 is consistent with our thermal modeling results. The albedo and composition of 2008 EV5 are also consistent with a C-type taxonomic classification (Somers et al. 2008). The best spectral match is with CI carbonaceous chondrites similar to Orgueil, which also have a weak 0.48-microns feature and an overall blue slope. This 0.48-microns feature is also seen in the spectrum of magnetite. The albedo of CI chondrites is at the lower limit of our estimated range for the albedo of 2008 EV5.Comment: Pages: 19 Figures: 6 Tables:

    Recovery of surface orientation from diffuse polarization

    Get PDF
    When unpolarized light is reflected from a smooth dielectric surface, it becomes partially polarized. This is due to the orientation of dipoles induced in the reflecting medium and applies to both specular and diffuse reflection. This paper is concerned with exploiting polarization by surface reflection, using images of smooth dielectric objects, to recover surface normals and, hence, height. This paper presents the underlying physics of polarization by reflection, starting with the Fresnel equations. These equations are used to interpret images taken with a linear polarizer and digital camera, revealing the shape of the objects. Experimental results are presented that illustrate that the technique is accurate near object limbs, as the theory predicts, with less precise, but still useful, results elsewhere. A detailed analysis of the accuracy of the technique for a variety of materials is presented. A method for estimating refractive indices using a laser and linear polarizer is also given

    Three-dimensional scanning of specular and diffuse metallic surfaces using an infrared technique

    Get PDF
    For the past two decades, the need for three-dimensional (3-D) scanning of industrial objects has increased significantly and many experimental techniques and commercial solutions have been proposed. However, difficulties remain for the acquisition of optically non-cooperative surfaces, such as transparent or specular surfaces. To address highly reflective metallic surfaces, we propose the extension of a technique that was originally dedicated to glass objects. In contrast to conventional active triangulation techniques that measure the reflection of visible radiation, we measure the thermal emission of a surface, which is locally heated by a laser source. Considering the thermophysical properties of metals, we present a simulation model of heat exchanges that are induced by the process, helping to demonstrate its feasibility on specular metallic surfaces and predicting the settings of the system. With our experimental device, we have validated the theoretical modeling and computed some 3-D point clouds from specular surfaces of various geometries. Furthermore, a comparison of our results with those of a conventional system on specular and diffuse parts will highlight that the accuracy of the measurement no longer depends on the roughness of the surface

    Linear Differential Constraints for Photo-polarimetric Height Estimation

    Full text link
    In this paper we present a differential approach to photo-polarimetric shape estimation. We propose several alternative differential constraints based on polarisation and photometric shading information and show how to express them in a unified partial differential system. Our method uses the image ratios technique to combine shading and polarisation information in order to directly reconstruct surface height, without first computing surface normal vectors. Moreover, we are able to remove the non-linearities so that the problem reduces to solving a linear differential problem. We also introduce a new method for estimating a polarisation image from multichannel data and, finally, we show it is possible to estimate the illumination directions in a two source setup, extending the method into an uncalibrated scenario. From a numerical point of view, we use a least-squares formulation of the discrete version of the problem. To the best of our knowledge, this is the first work to consider a unified differential approach to solve photo-polarimetric shape estimation directly for height. Numerical results on synthetic and real-world data confirm the effectiveness of our proposed method.Comment: To appear at International Conference on Computer Vision (ICCV), Venice, Italy, October 22-29, 201

    Asteroid surface materials: Mineralogical characterizations from reflectance spectra

    Get PDF
    Mineral assemblages analogous to most meteorite types, with the exception of ordinary chondritic assemblages, have been found as surface materials of Main Belt asteroids. C1- and C2-like assemblages (unleached, oxidized meteoritic clay minerals plus opaques such as carbon) dominate the population throughout the Belt, especially in the outer Belt. A smaller population of asteroids exhibit surface materials similar to C3 (CO, CV) meteoritic assemblages (olivine plus opaque, probably carbon) and are also distributed throughout the Belt. The majority of remaining studied asteroids (20) of 65 asteroids exhibit spectral reflectance curves dominated by the presence of metallic nickel-iron in their surface materials. The C2-like materials which dominate the main asteroid belt population appear to be relatively rare on earth-approaching asteroids

    Effects of Turbid Media Optical Properties on Object Visibility in Subsurface Polarization Imaging

    Get PDF
    doi:10.1364/AO.45.005532We studied the effectiveness of using polarized illumination and detection to enhance the visibility of targets buried in highly scattering media. The effects of background optical properties including scattering coefficient, absorption coefficient, and anisotropy on image visibility were examined. Both linearly and circularly polarized light were used in the imaging. Three different types of target were investigated: scattering, absorption, and reflection. The experimental results indicate that target visibility improvement achieved by a specific polarization method depends on both the background optical properties and the target type. By analyzing all polarization images, it is possible to reveal certain information about target or the scattering background.The authors acknowledge financial support by a research board grant from the University of Missouri-Columbia

    Estimating Index of Refraction from Polarimetric Hyperspectral Imaging Measurements

    Get PDF
    Current material identification techniques rely on estimating reflectivity or emissivity which vary with viewing angle. As off-nadir remote sensing platforms become increasingly prevalent, techniques robust to changing viewing geometries are desired. A technique leveraging polarimetric hyperspectral imaging (P-HSI), to estimate complex index of refraction, N̂(ν̃), an inherent material property, is presented. The imaginary component of N̂(ν̃) is modeled using a small number of “knot” points and interpolation at in-between frequencies ν̃. The real component is derived via the Kramers-Kronig relationship. P-HSI measurements of blackbody radiation scattered off of a smooth quartz window show that N̂(ν̃) can be retrieved to within 0.08 RMS error between 875 cm−1 ≤ ν̃ ≤ 1250 cm−1. P-HSI emission measurements of a heated smooth Pyrex beaker also enable successful N̂(ν̃) estimates, which are also invariant to object temperature
    corecore