160,290 research outputs found

    The Construction of Verification Models for Embedded Systems

    Get PDF
    The usefulness of verification hinges on the quality of the verification model. Verification is useful if it increases our confidence that an artefact bahaves as expected. As modelling inherently contains non-formal elements, the qualityof models cannot be captured by purely formal means. Still, we argue that modelling is not an act of irrationalism and unpredictable geniality, but follows rational arguments, that often remain implicit. In this paper we try to identify the tacit rationalism in the model construction as performed by most people doing modelling for verification. By explicating the different phases, arguments, and design decisions in the model construction, we try to develop guidelines that help to improve the process of model construction and the quality of models

    Systematic innovation and the underlying principles behind TRIZ and TOC

    Get PDF
    Innovative developments in the design of product and manufacturing systems are often marked by simplicity, at least in retrospect, that has previously been shrouded by restrictive mental models or limited knowledge transfer. These innovative developments are often associated with the breaking of long established trade-off compromises, as in the paradigm shift associated with JIT & TQM, or the resolution of design contradictions, as in the case of the dual cyclone vacuum cleaner. The rate of change in technology and the commercial environment suggests the opportunity for innovative developments is accelerating, but what systematic support is there to guide this innovation process. This paper brings together two parallel, but independent theories on inventive problem solving; one in mechanical engineering, namely the Russian Theory of Inventive Problem Solving (TRIZ) and the other originating in manufacturing management as the Theory of Constraints (TOC). The term systematic innovation is used to describe the use of common underlying principles within these two approaches. The paper focuses on the significance of trade-off contradictions to innovation in these two fields and explores their relationship with manufacturing strategy development

    Energy-efficient and high-performance lock speculation hardware for embedded multicore systems

    Full text link
    Embedded systems are becoming increasingly common in everyday life and like their general-purpose counterparts, they have shifted towards shared memory multicore architectures. However, they are much more resource constrained, and as they often run on batteries, energy efficiency becomes critically important. In such systems, achieving high concurrency is a key demand for delivering satisfactory performance at low energy cost. In order to achieve this high concurrency, consistency across the shared memory hierarchy must be accomplished in a cost-effective manner in terms of performance, energy, and implementation complexity. In this article, we propose Embedded-Spec, a hardware solution for supporting transparent lock speculation, without the requirement for special supporting instructions. Using this approach, we evaluate the energy consumption and performance of a suite of benchmarks, exploring a range of contention management and retry policies. We conclude that for resource-constrained platforms, lock speculation can provide real benefits in terms of improved concurrency and energy efficiency, as long as the underlying hardware support is carefully configured.This work is supported in part by NSF under Grants CCF-0903384, CCF-0903295, CNS-1319495, and CNS-1319095 as well the Semiconductor Research Corporation under grant number 1983.001. (CCF-0903384 - NSF; CCF-0903295 - NSF; CNS-1319495 - NSF; CNS-1319095 - NSF; 1983.001 - Semiconductor Research Corporation

    Ecodesign of Batch Processes: Optimal Design Strategies for Economic and Ecological Bioprocesses

    Get PDF
    This work deals with the multicriteria cost-environment design of multiproduct batch plants, where the design variables are the equipment item sizes as well as the operating conditions. The case study is a multiproduct batch plant for the production of four recombinant proteins. Given the important combinatorial aspect of the problem, the approach used consists in coupling a stochastic algorithm, indeed a Genetic Algorithm (GA) with a Discrete Event Simulator (DES). To take into account the conflicting situations that may be encountered at the earliest stage of batch plant design, i.e. compromise situations between cost and environmental consideration, a Multicriteria Genetic Algorithm (MUGA) was developed with a Pareto optimal ranking method. The results show how the methodology can be used to find a range of trade-off solutions for optimizing batch plant design

    Computer-Aided Conceptual Design Through TRIZ-based Manipulation of Topological Optimizations

    Get PDF
    Organised by: Cranfield UniversityIn a recent project the authors proposed the adoption of Optimization Systems [1] as a bridging element between Computer-Aided Innovation (CAI) and PLM to identify geometrical contradictions [2], a particular case of the TRIZ physical contradiction [3]. A further development of the research has revealed that the solutions obtained from several topological optimizations can be considered as elementary customized modeling features for a specific design task. The topology overcoming the arising geometrical contradiction can be obtained through a manipulation of the density distributions constituting the conflicting pair. Already two strategies of density combination have been identified as capable to solve geometrical contradictions.Mori Seiki – The Machine Tool Compan

    Tensions and paradoxes in electronic patient record research: a systematic literature review using the meta-narrative method

    Get PDF
    Background: The extensive and rapidly expanding research literature on electronic patient records (EPRs) presents challenges to systematic reviewers. This literature is heterogeneous and at times conflicting, not least because it covers multiple research traditions with different underlying philosophical assumptions and methodological approaches. Aim: To map, interpret and critique the range of concepts, theories, methods and empirical findings on EPRs, with a particular emphasis on the implementation and use of EPR systems. Method: Using the meta-narrative method of systematic review, and applying search strategies that took us beyond the Medline-indexed literature, we identified over 500 full-text sources. We used ‘conflicting’ findings to address higher-order questions about how the EPR and its implementation were differently conceptualised and studied by different communities of researchers. Main findings: Our final synthesis included 24 previous systematic reviews and 94 additional primary studies, most of the latter from outside the biomedical literature. A number of tensions were evident, particularly in relation to: [1] the EPR (‘container’ or ‘itinerary’); [2] the EPR user (‘information-processer’ or ‘member of socio-technical network’); [3] organizational context (‘the setting within which the EPR is implemented’ or ‘the EPR-in-use’); [4] clinical work (‘decision-making’ or ‘situated practice’); [5] the process of change (‘the logic of determinism’ or ‘the logic of opposition’); [6] implementation success (‘objectively defined’ or ‘socially negotiated’); and [7] complexity and scale (‘the bigger the better’ or ‘small is beautiful’). Findings suggest that integration of EPRs will always require human work to re-contextualize knowledge for different uses; that whilst secondary work (audit, research, billing) may be made more efficient by the EPR, primary clinical work may be made less efficient; that paper, far from being technologically obsolete, currently offers greater ecological flexibility than most forms of electronic record; and that smaller systems may sometimes be more efficient and effective than larger ones. Conclusions: The tensions and paradoxes revealed in this study extend and challenge previous reviews and suggest that the evidence base for some EPR programs is more limited than is often assumed. We offer this paper as a preliminary contribution to a much-needed debate on this evidence and its implications, and suggest avenues for new research
    corecore