41 research outputs found

    VThreads: A novel VLIW chip multiprocessor with hardware-assisted PThreads

    Get PDF
    We discuss VThreads, a novel VLIW CMP with hardware-assisted shared-memory Thread support. VThreads supports Instruction Level Parallelism via static multiple-issue and Thread Level Parallelism via hardware-assisted POSIX Threads along with extensive customization. It allows the instantiation of tightlycoupled streaming accelerators and supports up to 7-address Multiple-Input, Multiple-Output instruction extensions. VThreads is designed in technology-independent Register-Transfer-Level VHDL and prototyped on 40 nm and 28 nm Field-Programmable gate arrays. It was evaluated against a PThreads-based multiprocessor based on the Sparc-V8 ISA. On a 65 nm ASIC implementation VThreads achieves up to x7.2 performance increase on synthetic benchmarks, x5 on a parallel Mandelbrot implementation, 66% better on a threaded JPEG implementation, 79% better on an edge-detection benchmark and ~13% improvement on DES compared to the Leon3MP CMP. In the range of 2 to 8 cores VThreads demonstrates a post-route (statistical) power reduction between 65% to 57% at an area increase of 1.2%-10% for 1-8 cores, compared to a similarly-configured Leon3MP CMP. This combination of micro-architectural features, scalability, extensibility, hardware support for low-latency PThreads, power efficiency and area make the processor an attractive proposition for low-power, deeply-embedded applications requiring minimum OS support

    Real-time operating system support for multicore applications

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro TecnolΓ³gico, Programa de PΓ³s-Graduação em Engenharia de Automação e Sistemas, FlorianΓ³polis, 2014Plataformas multiprocessadas atuais possuem diversos nΓ­veis da memΓ³ria cache entre o processador e a memΓ³ria principal para esconder a latΓͺncia da hierarquia de memΓ³ria. O principal objetivo da hierarquia de memΓ³ria Γ© melhorar o tempo mΓ©dio de execução, ao custo da previsibilidade. O uso nΓ£o controlado da hierarquia da cache pelas tarefas de tempo real impacta a estimativa dos seus piores tempos de execução, especialmente quando as tarefas de tempo real acessam os nΓ­veis da cache compartilhados. Tal acesso causa uma disputa pelas linhas da cache compartilhadas e aumenta o tempo de execução das aplicaçáes. AlΓ©m disso, essa disputa na cache compartilhada pode causar a perda de prazos, o que Γ© intolerΓ‘vel em sistemas de tempo real crΓ­ticos. O particionamento da memΓ³ria cache compartilhada Γ© uma tΓ©cnica bastante utilizada em sistemas de tempo real multiprocessados para isolar as tarefas e melhorar a previsibilidade do sistema. Atualmente, os estudos que avaliam o particionamento da memΓ³ria cache em multiprocessadores carecem de dois pontos fundamentais. Primeiro, o mecanismo de particionamento da cache Γ© tipicamente implementado em um ambiente simulado ou em um sistema operacional de propΓ³sito geral. Consequentemente, o impacto das atividades realizados pelo nΓΊcleo do sistema operacional, tais como o tratamento de interrupçáes e troca de contexto, no particionamento das tarefas tende a ser negligenciado. Segundo, a avaliação Γ© restrita a um escalonador global ou particionado, e assim nΓ£o comparando o desempenho do particionamento da cache em diferentes estratΓ©gias de escalonamento. Ademais, trabalhos recentes confirmaram que aspectos da implementação do SO, tal como a estrutura de dados usada no escalonamento e os mecanismos de tratamento de interrupçáes, impactam a escalonabilidade das tarefas de tempo real tanto quanto os aspectos teΓ³ricos. Entretanto, tais estudos tambΓ©m usaram sistemas operacionais de propΓ³sito geral com extensΓ΅es de tempo real, que afetamos sobre custos de tempo de execução observados e a escalonabilidade das tarefas de tempo real. Adicionalmente, os algoritmos de escalonamento tempo real para multiprocessadores atuais nΓ£o consideram cenΓ‘rios onde tarefas de tempo real acessam as mesmas linhas da cache, o que dificulta a estimativa do pior tempo de execução. Esta pesquisa aborda os problemas supracitados com as estratΓ©gias de particionamento da cache e com os algoritmos de escalonamento tempo real multiprocessados da seguinte forma. Primeiro, uma infraestrutura de tempo real para multiprocessadores Γ© projetada e implementada em um sistema operacional embarcado. A infraestrutura consiste em diversos algoritmos de escalonamento tempo real, tais como o EDF global e particionado, e um mecanismo de particionamento da cache usando a tΓ©cnica de coloração de pΓ‘ginas. Segundo, Γ© apresentada uma comparação em termos da taxa de escalonabilidade considerando o sobre custo de tempo de execução da infraestrutura criada e de um sistema operacional de propΓ³sito geral com extensΓ΅es de tempo real. Em alguns casos, o EDF global considerando o sobre custo do sistema operacional embarcado possui uma melhor taxa de escalonabilidade do que o EDF particionado com o sobre custo do sistema operacional de propΓ³sito geral, mostrando claramente como diferentes sistemas operacionais influenciam os escalonadores de tempo real crΓ­ticos em multiprocessadores. Terceiro, Γ© realizada uma avaliação do impacto do particionamento da memΓ³ria cache em diversos escalonadores de tempo real multiprocessados. Os resultados desta avaliação indicam que um sistema operacional "leve" nΓ£o compromete as garantias de tempo real e que o particionamento da cache tem diferentes comportamentos dependendo do escalonador e do tamanho do conjunto de trabalho das tarefas. Quarto, Γ© proposto um algoritmo de particionamento de tarefas que atribui as tarefas que compartilham partiçáes ao mesmo processador. Os resultados mostram que essa tΓ©cnica de particionamento de tarefas reduz a disputa pelas linhas da cache compartilhadas e provΓͺ garantias de tempo real para sistemas crΓ­ticos. Finalmente, Γ© proposto um escalonador de tempo real de duas fases para multiprocessadores. O escalonador usa informaçáes coletadas durante o tempo de execução das tarefas atravΓ©s dos contadores de desempenho em hardware. Com base nos valores dos contadores, o escalonador detecta quando tarefas de melhor esforΓ§o o interferem com tarefas de tempo real na cache. Assim Γ© possΓ­vel impedir que tarefas de melhor esforΓ§o acessem as mesmas linhas da cache que tarefas de tempo real. O resultado desta estratΓ©gia de escalonamento Γ© o atendimento dos prazos crΓ­ticos e nΓ£o crΓ­ticos das tarefas de tempo real.Abstracts: Modern multicore platforms feature multiple levels of cache memory placed between the processor and main memory to hide the latency of ordinary memory systems. The primary goal of this cache hierarchy is to improve average execution time (at the cost of predictability). The uncontrolled use of the cache hierarchy by realtime tasks may impact the estimation of their worst-case execution times (WCET), specially when real-time tasks access a shared cache level, causing a contention for shared cache lines and increasing the application execution time. This contention in the shared cache may leadto deadline losses, which is intolerable particularly for hard real-time (HRT) systems. Shared cache partitioning is a well-known technique used in multicore real-time systems to isolate task workloads and to improve system predictability. Presently, the state-of-the-art studies that evaluate shared cache partitioning on multicore processors lack two key issues. First, the cache partitioning mechanism is typically implemented either in a simulated environment or in a general-purpose OS (GPOS), and so the impact of kernel activities, such as interrupt handlers and context switching, on the task partitions tend to be overlooked. Second, the evaluation is typically restricted to either a global or partitioned scheduler, thereby by falling to compare the performance of cache partitioning when tasks are scheduled by different schedulers. Furthermore, recent works have confirmed that OS implementation aspects, such as the choice of scheduling data structures and interrupt handling mechanisms, impact real-time schedulability as much as scheduling theoretic aspects. However, these studies also used real-time patches applied into GPOSes, which affects the run-time overhead observed in these works and consequently the schedulability of real-time tasks. Additionally, current multicore scheduling algorithms do not consider scenarios where real-time tasks access the same cache lines due to true or false sharing, which also impacts the WCET. This thesis addresses these aforementioned problems with cache partitioning techniques and multicore real-time scheduling algorithms as following. First, a real-time multicore support is designed and implemented on top of an embedded operating system designed from scratch. This support consists of several multicore real-time scheduling algorithms, such as global and partitioned EDF, and a cache partitioning mechanism based on page coloring. Second, it is presented a comparison in terms of schedulability ratio considering the run-time overhead of the implemented RTOS and a GPOS patched with real-time extensions. In some cases, Global-EDF considering the overhead of the RTOS is superior to Partitioned-EDF considering the overhead of the patched GPOS, which clearly shows how different OSs impact hard realtime schedulers. Third, an evaluation of the cache partitioning impacton partitioned, clustered, and global real-time schedulers is performed.The results indicate that a lightweight RTOS does not impact real-time tasks, and shared cache partitioning has different behavior depending on the scheduler and the task's working set size. Fourth, a task partitioning algorithm that assigns tasks to cores respecting their usage of cache partitions is proposed. The results show that by simply assigning tasks that shared cache partitions to the same processor, it is possible to reduce the contention for shared cache lines and to provideHRT guarantees. Finally, a two-phase multicore scheduler that provides HRT and soft real-time (SRT) guarantees is proposed. It is shown that by using information from hardware performance counters at run-time, the RTOS can detect when best-effort tasks interfere with real-time tasks in the shared cache. Then, the RTOS can prevent best effort tasks from interfering with real-time tasks. The results also show that the assignment of exclusive partitions to HRT tasks together with the two-phase multicore scheduler provides HRT and SRT guarantees, even when best-effort tasks share partitions with real-time tasks

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    병렬 및 λΆ„μ‚° μž„λ² λ””λ“œ μ‹œμŠ€ν…œμ„ μœ„ν•œ λͺ¨λΈ 기반 μ½”λ“œ 생성 ν”„λ ˆμž„μ›Œν¬

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :κ³΅κ³ΌλŒ€ν•™ 컴퓨터곡학뢀,2020. 2. ν•˜μˆœνšŒ.μ†Œν”„νŠΈμ›¨μ–΄ 섀계 생산성 및 μœ μ§€λ³΄μˆ˜μ„±μ„ ν–₯μƒμ‹œν‚€κΈ° μœ„ν•΄ λ‹€μ–‘ν•œ μ†Œν”„νŠΈμ›¨μ–΄ 개발 방법둠이 μ œμ•ˆλ˜μ—ˆμ§€λ§Œ, λŒ€λΆ€λΆ„μ˜ μ—°κ΅¬λŠ” μ‘μš© μ†Œν”„νŠΈμ›¨μ–΄λ₯Ό ν•˜λ‚˜μ˜ ν”„λ‘œμ„Έμ„œμ—μ„œ λ™μž‘μ‹œν‚€λŠ” 데에 μ΄ˆμ μ„ λ§žμΆ”κ³  μžˆλ‹€. λ˜ν•œ, μž„λ² λ””λ“œ μ‹œμŠ€ν…œμ„ κ°œλ°œν•˜λŠ” 데에 ν•„μš”ν•œ μ§€μ—°μ΄λ‚˜ μžμ› μš”κ΅¬ 사항에 λŒ€ν•œ λΉ„κΈ°λŠ₯적 μš”κ΅¬ 사항을 κ³ λ €ν•˜μ§€ μ•Šκ³  있기 λ•Œλ¬Έμ— 일반적인 μ†Œν”„νŠΈμ›¨μ–΄ 개발 방법둠을 μž„λ² λ””λ“œ μ†Œν”„νŠΈμ›¨μ–΄λ₯Ό κ°œλ°œν•˜λŠ” 데에 μ μš©ν•˜λŠ” 것은 μ ν•©ν•˜μ§€ μ•Šλ‹€. 이 λ…Όλ¬Έμ—μ„œλŠ” 병렬 및 λΆ„μ‚° μž„λ² λ””λ“œ μ‹œμŠ€ν…œμ„ λŒ€μƒμœΌλ‘œ ν•˜λŠ” μ†Œν”„νŠΈμ›¨μ–΄λ₯Ό λͺ¨λΈλ‘œ ν‘œν˜„ν•˜κ³ , 이λ₯Ό μ†Œν”„νŠΈμ›¨μ–΄ λΆ„μ„μ΄λ‚˜ κ°œλ°œμ— ν™œμš©ν•˜λŠ” 개발 방법둠을 μ†Œκ°œν•œλ‹€. 우리의 λͺ¨λΈμ—μ„œ μ‘μš© μ†Œν”„νŠΈμ›¨μ–΄λŠ” κ³„μΈ΅μ μœΌλ‘œ ν‘œν˜„ν•  수 μžˆλŠ” μ—¬λŸ¬ 개의 νƒœμŠ€ν¬λ‘œ 이루어져 있으며, ν•˜λ“œμ›¨μ–΄ ν”Œλž«νΌκ³Ό λ…λ¦½μ μœΌλ‘œ λͺ…μ„Έν•œλ‹€. νƒœμŠ€ν¬ κ°„μ˜ 톡신 및 λ™κΈ°ν™”λŠ” λͺ¨λΈμ΄ μ •μ˜ν•œ κ·œμ•½μ΄ μ •ν•΄μ Έ 있고, μ΄λŸ¬ν•œ κ·œμ•½μ„ 톡해 μ‹€μ œ ν”„λ‘œκ·Έλž¨μ„ μ‹€ν–‰ν•˜κΈ° 전에 μ†Œν”„νŠΈμ›¨μ–΄ μ—λŸ¬λ₯Ό 정적 뢄석을 톡해 확인할 수 있고, μ΄λŠ” μ‘μš©μ˜ 검증 λ³΅μž‘λ„λ₯Ό μ€„μ΄λŠ” 데에 κΈ°μ—¬ν•œλ‹€. μ§€μ •ν•œ ν•˜λ“œμ›¨μ–΄ ν”Œλž«νΌμ—μ„œ λ™μž‘ν•˜λŠ” ν”„λ‘œκ·Έλž¨μ€ νƒœμŠ€ν¬λ“€μ„ ν”„λ‘œμ„Έμ„œμ— λ§€ν•‘ν•œ 이후에 μžλ™μ μœΌλ‘œ ν•©μ„±ν•  수 μžˆλ‹€. μœ„μ˜ λͺ¨λΈ 기반 μ†Œν”„νŠΈμ›¨μ–΄ 개발 λ°©λ²•λ‘ μ—μ„œ μ‚¬μš©ν•˜λŠ” ν”„λ‘œκ·Έλž¨ ν•©μ„±κΈ°λ₯Ό λ³Έ λ…Όλ¬Έμ—μ„œ μ œμ•ˆν•˜μ˜€λŠ”λ°, λͺ…μ„Έν•œ ν”Œλž«νΌ μš”κ΅¬ 사항을 λ°”νƒ•μœΌλ‘œ 병렬 및 λΆ„μ‚° μž„λ² λ””λ“œ μ‹œμŠ€ν…œμ„μ—μ„œ λ™μž‘ν•˜λŠ” μ½”λ“œλ₯Ό μƒμ„±ν•œλ‹€. μ—¬λŸ¬ 개의 μ •ν˜•μ  λͺ¨λΈλ“€μ„ κ³„μΈ΅μ μœΌλ‘œ ν‘œν˜„ν•˜μ—¬ μ‘μš©μ˜ 동적 ν–‰νƒœλ₯Ό λ‚˜νƒ€κ³ , ν•©μ„±κΈ°λŠ” μ—¬λŸ¬ λͺ¨λΈλ‘œ κ΅¬μ„±λœ 계측적인 λͺ¨λΈλ‘œλΆ€ν„° 병렬성을 κ³ λ €ν•˜μ—¬ νƒœμŠ€ν¬λ₯Ό μ‹€ν–‰ν•  수 μžˆλ‹€. λ˜ν•œ, ν”„λ‘œκ·Έλž¨ ν•©μ„±κΈ°μ—μ„œ λ‹€μ–‘ν•œ ν”Œλž«νΌμ΄λ‚˜ λ„€νŠΈμ›Œν¬λ₯Ό 지원할 수 μžˆλ„λ‘ μ½”λ“œλ₯Ό κ΄€λ¦¬ν•˜λŠ” 방법도 보여주고 μžˆλ‹€. λ³Έ λ…Όλ¬Έμ—μ„œ μ œμ‹œν•˜λŠ” μ†Œν”„νŠΈμ›¨μ–΄ 개발 방법둠은 6개의 ν•˜λ“œμ›¨μ–΄ ν”Œλž«νΌκ³Ό 3 μ’…λ₯˜μ˜ λ„€νŠΈμ›Œν¬λ‘œ κ΅¬μ„±λ˜μ–΄ μžˆλŠ” μ‹€μ œ κ°μ‹œ μ†Œν”„νŠΈμ›¨μ–΄ μ‹œμŠ€ν…œ μ‘μš© μ˜ˆμ œμ™€ 이쒅 λ©€ν‹° ν”„λ‘œμ„Έμ„œλ₯Ό ν™œμš©ν•˜λŠ” 원격 λ”₯ λŸ¬λ‹ 예제λ₯Ό μˆ˜ν–‰ν•˜μ—¬ 개발 λ°©λ²•λ‘ μ˜ 적용 κ°€λŠ₯성을 μ‹œν—˜ν•˜μ˜€λ‹€. λ˜ν•œ, ν”„λ‘œκ·Έλž¨ ν•©μ„±κΈ°κ°€ μƒˆλ‘œμš΄ ν”Œλž«νΌμ΄λ‚˜ λ„€νŠΈμ›Œν¬λ₯Ό μ§€μ›ν•˜κΈ° μœ„ν•΄ ν•„μš”λ‘œ ν•˜λŠ” 개발 λΉ„μš©λ„ μ‹€μ œ μΈ‘μ • 및 μ˜ˆμΈ‘ν•˜μ—¬ μƒλŒ€μ μœΌλ‘œ 적은 λ…Έλ ₯으둜 μƒˆλ‘œμš΄ ν”Œλž«νΌμ„ 지원할 수 μžˆμŒμ„ ν™•μΈν•˜μ˜€λ‹€. λ§Žμ€ μž„λ² λ””λ“œ μ‹œμŠ€ν…œμ—μ„œ μ˜ˆμƒμΉ˜ λͺ»ν•œ ν•˜λ“œμ›¨μ–΄ μ—λŸ¬μ— λŒ€ν•΄ 결함을 κ°λ‚΄ν•˜λŠ” 것을 ν•„μš”λ‘œ ν•˜κΈ° λ•Œλ¬Έμ— 결함 감내에 λŒ€ν•œ μ½”λ“œλ₯Ό μžλ™μœΌλ‘œ μƒμ„±ν•˜λŠ” 연ꡬ도 μ§„ν–‰ν•˜μ˜€λ‹€. λ³Έ κΈ°λ²•μ—μ„œ 결함 감내 섀정에 따라 νƒœμŠ€ν¬ κ·Έλž˜ν”„λ₯Ό μˆ˜μ •ν•˜λŠ” 방식을 ν™œμš©ν•˜μ˜€μœΌλ©°, 결함 κ°λ‚΄μ˜ λΉ„κΈ°λŠ₯적 μš”κ΅¬ 사항을 μ‘μš© κ°œλ°œμžκ°€ μ‰½κ²Œ μ μš©ν•  수 μžˆλ„λ‘ ν•˜μ˜€λ‹€. λ˜ν•œ, 결함 감내 μ§€μ›ν•˜λŠ” 것과 κ΄€λ ¨ν•˜μ—¬ μ‹€μ œ μˆ˜λ™μœΌλ‘œ κ΅¬ν˜„ν–ˆμ„ κ²½μš°μ™€ λΉ„κ΅ν•˜μ˜€κ³ , 결함 μ£Όμž… 도ꡬλ₯Ό μ΄μš©ν•˜μ—¬ 결함 λ°œμƒ μ‹œλ‚˜λ¦¬μ˜€λ₯Ό μž¬ν˜„ν•˜κ±°λ‚˜, μž„μ˜λ‘œ 결함을 μ£Όμž…ν•˜λŠ” μ‹€ν—˜μ„ μˆ˜ν–‰ν•˜μ˜€λ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ 결함 감내λ₯Ό μ‹€ν—˜ν•  λ•Œμ— ν™œμš©ν•œ 결함 μ£Όμž… λ„κ΅¬λŠ” λ³Έ λ…Όλ¬Έμ˜ 또 λ‹€λ₯Έ κΈ°μ—¬ 사항 쀑 ν•˜λ‚˜λ‘œ λ¦¬λˆ…μŠ€ ν™˜κ²½μœΌλ‘œ λŒ€μƒμœΌλ‘œ μ‘μš© μ˜μ—­ 및 컀널 μ˜μ—­μ— 결함을 μ£Όμž…ν•˜λŠ” 도ꡬλ₯Ό κ°œλ°œν•˜μ˜€λ‹€. μ‹œμŠ€ν…œμ˜ 견고성을 κ²€μ¦ν•˜κΈ° μœ„ν•΄ 결함을 μ£Όμž…ν•˜μ—¬ 결함 μ‹œλ‚˜λ¦¬μ˜€λ₯Ό μž¬ν˜„ν•˜λŠ” 것은 널리 μ‚¬μš©λ˜λŠ” λ°©λ²•μœΌλ‘œ, λ³Έ λ…Όλ¬Έμ—μ„œ 개발된 결함 μ£Όμž… λ„κ΅¬λŠ” μ‹œμŠ€ν…œμ΄ λ™μž‘ν•˜λŠ” 도쀑에 μž¬ν˜„ κ°€λŠ₯ν•œ 결함을 μ£Όμž…ν•  수 μžˆλŠ” 도ꡬ이닀. 컀널 μ˜μ—­μ—μ„œμ˜ 결함 μ£Όμž…μ„ μœ„ν•΄ 두 μ’…λ₯˜μ˜ 결함 μ£Όμž… 방법을 μ œκ³΅ν•˜λ©°, ν•˜λ‚˜λŠ” 컀널 GNU 디버거λ₯Ό μ΄μš©ν•œ 방법이고, λ‹€λ₯Έ ν•˜λ‚˜λŠ” ARM ν•˜λ“œμ›¨μ–΄ 브레이크포인트λ₯Ό ν™œμš©ν•œ 방법이닀. μ‘μš© μ˜μ—­μ—μ„œ 결함을 μ£Όμž…ν•˜κΈ° μœ„ν•΄ GDB 기반 결함 μ£Όμž… 방법을 μ΄μš©ν•˜μ—¬ 동일 μ‹œμŠ€ν…œ ν˜Ήμ€ 원격 μ‹œμŠ€ν…œμ˜ μ‘μš©μ— 결함을 μ£Όμž…ν•  수 μžˆλ‹€. 결함 μ£Όμž… 도ꡬ에 λŒ€ν•œ μ‹€ν—˜μ€ ODROID-XU4 λ³΄λ“œμ—μ„œ μ§„ν–‰ν•˜μ˜€λ‹€.While various software development methodologies have been proposed to increase the design productivity and maintainability of software, they usually focus on the development of application software running on a single processing element, without concern about the non-functional requirements of an embedded system such as latency and resource requirements. In this thesis, we present a model-based software development method for parallel and distributed embedded systems. An application is specified as a set of tasks that follow a set of given rules for communication and synchronization in a hierarchical fashion, independently of the hardware platform. Having such rules enables us to perform static analysis to check some software errors at compile time to reduce the verification difficulty. Platform-specific program is synthesized automatically after mapping of tasks onto processing elements is determined. The program synthesizer is also proposed to generate codes which satisfies platform requirements for parallel and distributed embedded systems. As multiple models which can express dynamic behaviors can be depicted hierarchically, the synthesizer supports to manage multiple task graphs with a different hierarchy to run tasks with parallelism. Also, the synthesizer shows methods of managing codes for heterogeneous platforms and generating various communication methods. The viability of the proposed software development method is verified with a real-life surveillance application that runs on six processing elements with three remote communication methods, and remote deep learning example is conducted to use heterogeneous multiprocessing components on distributed systems. Also, supporting a new platform and network requires a small effort by measuring and estimating development costs. Since tolerance to unexpected errors is a required feature of many embedded systems, we also support an automatic fault-tolerant code generation. Fault tolerance can be applied by modifying the task graph based on the selected fault tolerance configurations, so the non-functional requirement of fault tolerance can be easily adopted by an application developer. To compare the effort of supporting fault tolerance, manual implementation of fault tolerance is performed. Also, the fault tolerance method is tested with the fault injection tool to emulate fault scenarios and inject faults randomly. Our fault injection tool, which has used for testing our fault-tolerance method, is another work of this thesis. Emulating fault scenarios by intentionally injecting faults is commonly used to test and verify the robustness of a system. To emulate faults on an embedded system, we present a run-time fault injection framework that can inject a fault on both a kernel and application layer of Linux-based systems. For injecting faults on a kernel layer, two complementary fault injection techniques are used. One is based on Kernel GNU Debugger, and the other is using a hardware breakpoint supported by the ARM architecture. For application-level fault injection, the GDB-based fault injection method is used to inject a fault on a remote application. The viability of the proposed fault injection tool is proved by real-life experiments with an ODROID-XU4 system.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Contribution 6 1.3 Dissertation Organization 8 Chapter 2 Background 9 2.1 HOPES: Hope of Parallel Embedded Software 9 2.1.1 Software Development Procedure 9 2.1.2 Components of HOPES 12 2.2 Universal Execution Model 13 2.2.1 Task Graph Specification 13 2.2.2 Dataflow specification of an Application 15 2.2.3 Task Code Specification and Generic APIs 21 2.2.4 Meta-data Specification 23 Chapter 3 Program Synthesis for Parallel and Distributed Embedded Systems 24 3.1 Motivational Example 24 3.2 Program Synthesis Overview 26 3.3 Program Synthesis from Hierarchically-mixed Models 30 3.4 Platform Code Synthesis 33 3.5 Communication Code Synthesis 36 3.6 Experiments 40 3.6.1 Development Cost of Supporting New Platforms and Networks 40 3.6.2 Program Synthesis for the Surveillance System Example 44 3.6.3 Remote GPU-accelerated Deep Learning Example 46 3.7 Document Generation 48 3.8 Related Works 49 Chapter 4 Model Transformation for Fault-tolerant Code Synthesis 56 4.1 Fault-tolerant Code Synthesis Techniques 56 4.2 Applying Fault Tolerance Techniques in HOPES 61 4.3 Experiments 62 4.3.1 Development Cost of Applying Fault Tolerance 62 4.3.2 Fault Tolerance Experiments 62 4.4 Random Fault Injection Experiments 65 4.5 Related Works 68 Chapter 5 Fault Injection Framework for Linux-based Embedded Systems 70 5.1 Background 70 5.1.1 Fault Injection Techniques 70 5.1.2 Kernel GNU Debugger 71 5.1.3 ARM Hardware Breakpoint 72 5.2 Fault Injection Framework 74 5.2.1 Overview 74 5.2.2 Architecture 75 5.2.3 Fault Injection Techniques 79 5.2.4 Implementation 83 5.3 Experiments 90 5.3.1 Experiment Setup 90 5.3.2 Performance Comparison of Two Fault Injection Methods 90 5.3.3 Bit-flip Fault Experiments 92 5.3.4 eMMC Controller Fault Experiments 94 Chapter 6 Conclusion 97 Bibliography 99 μš” μ•½ 108Docto

    Proceedings of Junior Researcher Workshop on Real-Time Computing

    Get PDF
    It is our great pleasure to welcome you to Junior Researcher Workshop on Real-Time Computing 2007, which is held conjointly with the 15th conference on Real-Time and Network Systems (RTNS'07). The first successful edition was held conjointly with the French Summer School on Real-Time Systems 2005 (http://etr05.loria.fr). Its main purpose is to bring together junior researchers (Ph.D. students, postdoc, ...) working on real-time systems. This workshop is a good opportunity to present our works and share ideas with other junior researchers and not only, since we will present our work to the audience of the main conference. In response to the call for papers, 14 papers were submitted and the international Program Committee provided detailed comments to improve these work-in-progress papers. We hope that our remarks will help the authors to submit improved long versions of theirs papers to the next edition of RTNS. JRWRTC'07 would not be possible without the generous contribution of many volunteers and institutions which supported RTNS'07. First, we would like to express our sincere gratitude to our sponsors for their financial support : Conseil GΓ©nΓ©ral de Meuthe et Moselle, Conseil RΓ©gional de Lorraine, CommunautΓ© Urbaine du Grand Nancy, UniversitΓ© Henri PoincarΓ©, Institut National Polytechnique de Lorraine and LORIA and INRIA Lorraine. We are thankful to Pascal Mary for authorizing us to use his nice picture of β€œplace Stanislas” for the proceedings and web site (many others are available at www.laplusbelleplacedumonde.com). Finally, we are most grateful to the local organizing committee that helped to organize the conference

    System Level Performance Evaluation of Distributed Embedded Systems

    Get PDF
    In order to evaluate the feasibility of the distributed embedded systems in different application domains at an early phase, the System Level Performance Evaluation (SLPE) must provide reliable estimates of the nonfunctional properties of the system such as end-to-end delays and packet losses rate. The values of these non-functional properties depend not only on the application layer of the OSI model but also on the technologies residing at the MAC, transport and Physical layers. Therefore, the system level performance evaluation methodology must provide functionally accurate models of the protocols and technologies operating at these layers. After conducting a state of the art survey, it was found that the existing approaches for SLPE are either specialized for a particular domain of systems or apply a particular model of computation (MOC) for modeling the communication and synchronization between the different components of a distributed application. Therefore, these approaches abstract the functionalities of the data-link, Transport and MAC layers by the highly abstract message passing methods employed by the different models of computation. On the other hand, network simulators such as OMNeT++, ns-2 and Opnet do not provide the models for platform components of devices such as processors and memories and totally abstract the application processing by delays obtained via traffic generators. Therefore the system designer is not able to determine the potential impact of an application in terms of utilization of the platform used by the device. Hence, for a system level performance evaluation approach to estimate both the platform utilization and the non-functional properties which are a consequence of the lower layers of OSI models (such as end-to-end delays), it must provide the tools for automatic workload extraction of application workload models at various levels of refinement and functionally correct models of lower layers of OSI model (Transport MAC and Physical layers). Since ABSOLUT is not restricted to a particular domain and also does not depend on any MOC, therefore it was selected for the extension to a system level performance evaluation approach for distributed embedded systems. The models of data-link and Transport layer protocols and automatic workload generation of system calls was not available in ABSOLUT performance evaluation methodology. The, thesis describes the design and modelling of these OSI model layers and automatic workload generation tool for system calls. The tools and models integrated to ABSOLUT methodology were used in a number of case studies. The accuracy of the protocols was compared to network simulators and real systems. The results were 88% accurate for user space code of the application layer and provide an improvement of over 50% as compared to manual models for external libraries and system calls. The ABSOLUT physical layer models were found to be 99.8% accurate when compared to analytical models. The MAC and transport layer models were found to be 70-80% accurate when compared with the same scenarios simulated by ns-2 and OMNeT++ simulators. The bit error rates, frame error probability and packet loss rates show close correlation with the analytical methods .i.e., over 99%, 92% and 80% respectively. Therefore the results of ABSOLUT framework for application layer outperform the results of performance evaluation approaches which employ virtual systems and at the same time provide as accurate estimates of the end-to-end delays and packet loss rate as network simulators. The results of the network simulators also vary in absolute values but they follow the same trend. Therefore, the extensions made to ABSOLUT allow the system designer to identify the potential bottlenecks in the system at different OSI model layers and evaluate the non-functional properties with a high level of accuracy. Also, if the system designer wants to focus entirely on the application layer, different models of computations can be easily instantiated on top of extended ABSOLUT framework to achieve higher simulation speeds as described in the thesis
    corecore