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JRWRTC’07 would not be possible without the generous contribution of many volunteers and
institutions which supported RTNS’07. First, we would like to express our sincere gratitude to
our sponsors for their financial support : Conseil Général de Meuthe et Moselle, Conseil
Régional de Lorraine, Communauté Urbaine du Grand Nancy, Universit¢ Henri Poincaré,
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thankful to Pascal Mary for authorizing us to use his nice picture of “place Stanislas” for the
proceedings and web site (many others are available at www.laplusbelleplacedumonde.com).
Finally, we are most grateful to the local organizing committee that helped to organize the
conference. Let us hope for a bright future in the RTNS conference series !

Liliana CUCU, LORIA-INPL
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Online Testing of Real-Time systems

Noureddine ADJIR 2 Pierre de SAQUI-SANNES?
LENSICA, Université de Toulouse, 1 place ZLAAS-CNRS, Université de Toulouse,
Emile Blouin- 31056 Toulouse Cedé&x 7 avenue du Colonel Roche- 31077 Toulouse
France. {nadijir, pdss}@ensica.fr Cedex 4, France.
Abstract actionsA,;. Inputs are the stimuli received from the

outside environment. Qutputs are the actions sgnhé
Labeled Time Petri nets with Stopwatches and system to the environment. The internal operat{oas
Priorities (LPrSwTPN) are used for timed test sewes observed behaviour) of a system are modelled by a
generation. LPrSWTPN  enable modelling of specific actiorr (rDA).
system/environment interactions, time constraintsl a A LPrSWTPNis a tupleN =(P,T,Pre,Post Sw, Pr,
suspend/resume operations. Assuming the modellednr‘0 s A L> where:
systems are non deterministic and partly non olzdgey - (P 'TI' Pre Post,r.n > is aPetri netwith placesP
the paper proposes a test generation approach based i 't" ' T . .f[’. | Ki p + d
a relativized conformance relation named rswtiogo. ransitions 1, initial - marking mp:P - N"an
test generation algorithm is presented. It impletaem precondition and post-condition functions
online testing policy. Pre, Post:T - P - N.
- lg:T - 17 is the Static Interval Functionwhich
1. Introduction associates a temporal interval with each transitiothe
net. The rational 114(t)and 114t) denote thestatic

Model-based test generation of real-time systemseéarliest firing time and latest firing time of t,
requires a special approach because of reactivity,respectively.
timeliness, and suspension/resumption actions.rBawe - PrOTxT is thepriority relation. It is irreflexive,
timed test sequence generation (conformance t¢stingasymmetric and transitive.
have ignored the possibility for real-time systetos
suspend their current behaviour and to resume tater
To overcome that limitation, this paper addresgsesd
test sequence generation from Labeled Time Petis Ne - L:T - A is thelabelling function.
with Stopwatches and Priorities RrSwTPN. Among - Sw:T-P_N is the stopwatch incidence
various contributions of the paper, a relativized function Values greater than 0 are represented by special
conformance relation namesgwtioco is defined and a  grcs, calledstopwatch arcs possibly weighted, and
test generation algorithm is presented. The algorit  characterized by square shaped arrows. Figure 1(a)

proposed implements an online (on the fly) polithe depicts a_.PrSWTPN The arc from place,fo transition
proposed approach is illustrated on an example. ts is a stopwatch arc of weight 1.

2. Real-time systems modeling A markingis a functiorm: P ~ N* . A transition tis
enabled at marking m iff m>Pre(t). In addition, an

Real-time systems are modelled using Labelled enabled transitiois "active' iff m> Sw(t). Otherwise, it
Stopwatch Time Petri Nets with prioritiesRrSwTPN. is "suspended The sets of enabled, active and
SWTPN[3] extend Merlin’s TPN [6] by stopwatch arcs syspended transitions at are defined respectively by:

that control the progress of transitions to express _ -
suspension and resumption of actiom®Ns extend Enlm) {t|Pre(t)sm}, Adm) {t|tDEn(m)Dm2$v(t)},

PN's by associating a temporal interval [Tmin, Tmax] SL(m)={t|tDEn(m)Dm< sult)} . The predicate specifying
with each transition. Tmin and Tmax respectivelpate that a transitiort is newly enabled by the firing df at
the earliest and latest firing times of the trdosit(after m is defined byr(t m t')=tD En(m—Pre(t')+ Post(t’))D

the latter was enabledyrSwTPNincrease the modelling , . .
power of SWTPNby adding a priority relation to the (e 0 ER(m-Pret(t)) Ot =t). (1, t2)0Pr is written g -t

transitions. We also add a labelling function to orty; <t (t; has priority ovety).
transitions. Since we address reactive systemgest The semantics of arLPrSWTPN N is a timed
we assume the existence of a set of acthopartitioned  input/output transition systemTIOTY @y = (Q.(mq.

in two disjoints subsetsnputs actions Ay, and outputs Is[En(rrb)])vAinvautv _}) whereQ is the set of states. A

- A'is a finite set ofactions or labels not containing
the internal actiom .



state is a paiffm, 1 )ONP xI*in which m is a marking

andl:T -~ 1%, the interval function associates a
temporal interval with every transitiont 0En(m).
(mo.,1s[En(mp)]) is the initial state.Ig[En(mg)| is the

restriction ofigto transitions En(mp). The transition

relation - corresponds to two kinds of transitions:

discrete transitions are the result of firings sitians of
the net and continuous transitions (or delay) de t
result of elapsing of time. We have:

m- (m',1") iff tOT,L{t)0A, and
t O En(m) Ot O Ac(m)
o01(t)
(0kOT)(kDEN(m) ok 0 Adm) 000 1 (k)= —(k > t))
m=m- Pre(t)+ Post(t)
(IZIk g En(m’))(l (k) =if 1 En(k, m, t)then I S(k)elsel (k))
m1od m17) iff dORy and
(OkoEr(m))(if kO Adm)= (0d" < d)(d’ <11(k)))

(ko En(m))(l'(k) — it k0 Adm) then! (k)-d eIseI(k)J

Transitiont may fire from (m, I) if (1) it is enabled

and active amm, (2) it is fireable instantly, and (3) no
transition with higher priority satisfies these ddions.
(4) is the standard marking transformation. Froi e
transitions not in conflict witht retain their firing
intervals, whereas those newly enabled are assityedd
static intervals. By (7), all firing domains of a&t
transitions are synchronously shifted towards thgiro
as time elapse, and truncated to nonnegative va{@es

a s wbhE

N o

prevents time from elapsing as soon some enabldd an

active transition reaches its latest firing time.
The state space of BPrSwWTPN may be infinite.

Finitely representing state spaces involves graypin
some sets of states. We use the grouping method

introduced in [1]. It groups some particular seftstates

into state classes and preserve marking and traces.

state class is a paim( D) wheremis a marking an@® is
a firing domain ofn(m). The domairD is described by
a system of linear inequalitied/ ¢< . The initial state

is cg = (mo,{l [ S[En(mo)]< P, <t I—[En(mo)]}) The
symbohc transition relation between state classes

Liﬁ) (m,D’) iff tOTOL{)OA, and
tD En(m) 0t O Ag(m)
od {E”t} ({?t} is thesetof solutions)
(OkOT)k DENR(m) 0k O Adm) 00| g, f=> = (k - 1))
m=m- Pre(t)+ Posl(t)
(IZIkD En Lk if 1 k m, t)then(p' ol ( )elsegk)
the variablespare eliminated
(mD)od (mD) iff dORsy and
. (OtoEnm)ff t0 Adm)=> (0d' < d){d" < max{g, ]

R T o

~

8. (OtOEn()=¢,
The visible behaviour ofé
relation = (=0 (A0 Ry)).

Let aag...ax0A ap,...an0A, alJA DRy and
dg,....dp+1 ORso - We have: g=q iff qEIi *
*q and q:q iff qrd. *O o+

=if tO Ac(m)then [ —-delse &,
is described by the

o +ombh of «q where d=dg+dy+..+d,. The
relation = is extended to sequences of delays and
actions.

An observable timed trace is the timed word
o0(ADRsg)” which is of the formo =dgag ...axdy4 -
We writeq09d iff 09 qand 09 qiff 09 q
for someq' . We define the timed observable traces of a
stateq as:
TTr (q):{aD(AD Rx0)"| q g}

and subsetQ' O0Qand a timed
is the set of states which can be

For a stateq,
traceo , qafter o
reached aftes :

qaftera={q’| a2 q’}, Q' after o = Uqaftera

We distinguish between two types o ? outputs. First,
outputs in the common sense of the word that we cal
“active outputs. Second, special outputs that we call
“indicators” or “suspended outputs”. The latter are
issued by the systems to give indications on sudgmbn
actions.

The set of observable active outputs or delays that
may occur ig0 Q' O Q is defined as:

OUtaord( ): {aDAoutDFL | q i}.
Outgord (Q ) = UOUtaord?Q)

The set of suspended outputs that can occur in
gO0Q 0OQ is defined byguis extended to states):
Outg,(a)= ED sa) 2 qDa 0 Ay D Rzoj,
Outsy(@)= Uoutsy(a)
aoQ

3. Online testing

Online testing [5, 7] combines test generation and
execution. It determinizes the specification, iroly,
on the fly. Unlike offline testing, where the corafd test
cases and their verdicts are computed a prioribefiore
their execution, online testing enables to addnesdels
with full expressiveness. It indeed enables workivith
non deterministic specifications. Online testing
dramatically lowers the state explosion risk, sinogy a
subset of the states needs to be stored at any gbin
time. The testing may run for several hours or daysl
consequently it may exhibit complex and long test
sequences.

4. Relativized conformance relation

The paper considers a Relativized Stopwatch Timed
Input/Output Conformance relatiorrsvtiocd which
extends thetioco relation [7], itself relying orioco [5]



and Tretman’s ioco relations [8]. The motivatiorhivel We say thatq is a correct implementation of the
introduction ofrswtiocq is to test real-time systems and specification t under the environment constraints
to take into account their suspend/resume opemation expressed bg.
The relation’'s name includes “sw” by reference to  Figure 1(a) depicts APrSwWTPNmodel for a coffee
Stopwatch TPN. Unlike papers that limit discusston ~ machine which delivers light and strong coffee,
Merlin’s TPN [6], this paper addresseBrSWTPN The respectively. After he/she inserted coins, the bserto
conformance addressed by the paper is said to begush on a “prepare coffee” button. If he/she pughes
“relativized” since results are obtained for onedfic button for less than 30 time units (resp. more than
environment. Given a system under test, the testtime units) he/she will get a light (resp. strongjfee. If
approach does not consider all possible environsnéint  the button is pushed between 30 and 50 time uthiés,
considers one real operating environment. Furthegsmo specification model allows for a non-deterministic
the environment’s constraints are separated froen th choice between light and strong coffee (we assume a
specification’s one (the environment assumptions ar implementation will solve that non determinism).eTh
taken explicitly into account and separately mastell user requesting for strong coffee can take histbéiee
from the system’s constraints). So, modelling the at any time during its preparation and can agatrbpuok
environment explicitly and separately from the eyst  the cup to resume what remains in the machinehen t
makes it possible to synthesize only those scemario condition to not exceed 3 time units. The machires
which are relevant and realistic for the given tygfe  internal actions to be reset or to resume the patipa
environment. This in turn reduces the number ofstes of strong coffee. This service is not allowed foe tuser
and improves the quality of the test suite [7]. rEfere, requesting light coffee. The rightrSwTPNof Fig. 1
conformance between an implementation and its models potential (nice) users of the machine that p
specification is heavily dependent on the environine before requesting coffee and take his coffee after
Test verdicts obtained for a specific environmemhain preparation.
valid for more restrictive environments. P
The rswtioco relation does not allow either of usual
outputs and indicators to be emitted in advancendate —
by the system. Also, this relation brings more
information about the non-conformance of a systsm.
when the system emits an indicator or an erroneous
output that was not expected at that time, theo¥atg
guestion may be asked: if that indicator (resppoi)t
had not been issued at date d, what would haveemailp
at d instead of an indicator (resp. an output) siois
nothing or an output (resp. an indicator)? The psepl
rswtioco relation makes it possible to answer another
guestion: “does some actianresume at the expected
date? Fig. 1.the specification coffee machid®|| an environmens
The parallel composition of the input enabled and
input complete TIOTSs & and & that describe the
semantics of the specification and an environmemhgo
a closed systen? ||€ in which observable behaviour is
defined by aTIOTS where the transition relatior is
defined as:

q[@ qe[@ € qDﬁ. quﬁ. €
(a2 (de)  (agr® (de)
q[l_i q e ¢
(g (de) (e (d.e)

Given an environmeng, the e-relativized rswtioco

strongCoffee?

relation is defined as: Fig. 2. (a) IUT([Ds, Ds], [DI, DI]) || (b) an environmer[Rd]
qrswtioca, t ssi OoOTTr(e) The (deterministic) implementation IUT([Ds, Ds],

Out aord((a €) after o) O Out 4orq((t.€) after o) O [DI, DI]) in Fig. 2(b) produces light (resp. strongoffee

if the button is pushed less than 40 time unitsgrenore

out <, ((q e)after(Out g €)after o than 41 time units). The brewing time of DI (Dsné

Su(( ) ( aord (ae) ))) units is to be added to the 40 or more time uriite
DOutsu((t,e) after(Outaord((t,e)after U))) maphlng allows al! users requesting coffee to tiake

during its preparation (including those requestiigit
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coffee). We have IUT([40, 40], [20, 20i¥wtioca:. &
because’: never takes up his cup while the machine is
preparing coffee. By contrast, IUT([70, 70], [5,) 5]
rowtiocos. & for two reasons: 1) The IUT has the
following timed tracecoin. 30 . req . 5 . lightCoffee
whereasé&: has not, i.e. the IUT may produce light
coffee to quickly (no time to insert a cup); 2) tha has

a trace:coin . 50 . req . 70 not in & meaning that it
produces strong coffee too slowly. We have IUT([40,
40], [20, 20]) rswiiocqq & because it has the timed
tracecoin . 30 . req . 10 (tackeCup, lightCoffee) . 2 .
(returnCup,lightCoffee) . 5 . lightCoffee impossible
with  &. (tackeCup, lightCoffee) means hat
tackeCup is an active action andightCoffee is a
suspended oneBy contrast, IUT([40, 40], [20, 20])
rswtiocasy & if Rd=[60, o because& (60) never

requests weak coffee.

5. Test generation and execution algorithm

Test generation and execution algorithm
GenExeTedQ,E,IUT,N). C:={c; =(mg, Do)}
while C # gOiterations< N do
RandomlyChoosé(ction Delay, Restar}
Action : /I offer an input to tH&JT
if EnvoutpufC)# ¢ then
a:.= ChooseActiohEnvOutpu(C))
send to the IUT
C=After(C, a)
Delay : // wait for an output of thelT
0 := ChooseDelafC)
/I Wait & unit of time for an outpud
if activo) appears ad' < dthen
C = After(C, &)
if activeo)d ImpOutpu(C) then
return fail
if activdo) 0 ImpSusperet(C)then a s
spended iQ

else C := After(C, activdo))
if suspen¢b) 0 ImpSsp(C) then
returrfail
for all a0 suspenéb) - ImpSsp(C) if
al ImpOutpu(C)then a is active inQ
else C := After(C,d) // no output durin@®
restart: /l reset and restart.
C:={c, = (my, Do)}
ResetUT
if C=/7 then return fail

else return pass

The inputs to the test generation and execution
algorithm are twal'lOTSs &||€describing the semantics
of two LPrSwTPNE, respectively modelling thkJT and
an environment. This algorithm is based on maintaining
the current reachable symbolic stat€ OQxE

representing all the states that the specification and®:

environment models can possibly occupy after the timed
trace observed so far. From this set, one can chbese t

appropriate test primitive and validate thE outputs.C
initially contains the symbolic statg. The tester can

perform three basic actions: either send an input (an
enabled environment output) to tHéT, or wait for an
output after a delay or still reset théT and restart. If an
output or a delay is observed, the tester verifies if this
conforms to the specification. Any illegal occurrence or
absence of an output is detected if the Gdtecomes
empty, which happens when the observed trace is not in
the specification. The illegal occurrence of a suspended
action is detected if it does not belongltapSusp(C).
The functionAfter computes the set of states after the
execution of a test event from the current states C by
using the symbolic technique implemented in TINA [2]
adapted to the needs of testing.

6. Conclusion

The paper discusses testing of real-time systems
modelled using LPrSWTPN The latter have been
selected for their capacity to model suspend/resume
operations and for the conciseness of the models. Using
an online testing approach makes is possible to handle
non determinism and partly observable systems.

The paper introducesswtiocq a new conformance
relation which differs froniioco because it addresses the
constraints captured by the system separately from the
ones inherent to the environment. Alsswtioco differs
from bothtioco andrtioco because the latter were not
defined for suspend/resume operations (i.e. operations
where the system’s context has to be stored and restored
later on). The algorithm proposed in the paper will be
implemented in TINA [2].
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Abstract

In a virtualized environment, a real-time operating sys-
tem (RTOS) can run in parallel with one or more com-
modity operating systems (OS) with negligible overhead.
Real-time properties of the RTOS are guaranteed by giv-
ing it and its tasks the highest priority over CPU utiliza-
tion which can lead to high-latency for the other OS tasks.
This simplistic approach to processor resource sharing is
not flexible enough when multimedia application are de-
ployed on the commodity OSes. In this paper we present
a design that enables a finer grained processor resource
management by moving tasks scheduling from the OS level
to the virtual machine monitor level.

Keywords: virtualization, real-time, tasks scheduling

1. Introduction

Today, consumer electronics are becoming more com-
mon and more complex, unifying features of many legacy
devices into a single platform. The demand for higher
levels of functionality has been steadily increasing while
time-to-market has been decreasing. At the OS level,
real-time operating systems (RTOS) were initially used
on these devices for their small memory footprint and the
timing guarantees required by communication protocols.
RTOSes were not initially designed to provide rich envi-
ronments such as mailers or web browsers, and have to
evolve in different ways to match today’s demands.

One approach to address such demands has been to
gradually embed all the needed functionalities (e.g., net-
work stacks, graphical libraries) into the RTOS. However,
this approach requires a careful reengineering and lengthy
revalidation phases that slow down the development pro-
cess. Another approach is to adapt existing commodity
operating systems to real-time requirements. In this case,
the legacy Linux kernel is run above a small real-time
executive as a fully preemptable task [3, 4]. Hard real-
time tasks can then benefit from any legacy Linux ap-
plication, with communication being done through Inter-
Process Communication (IPC) calls. This approach can
be further generalized to a multi-OS platform by means
of virtual machine monitors (also called hypervisor) like

Xen [7] and VirtualLogix VLX [17] offering their services
to guest OSes. In this setting, a legacy real-time OS may
run in parallel with one or more General Purpose OSes
(GPOS) such as Linux, thus offering seamless colocation
to the applications of both worlds. Typically, the schedul-
ing in such an architecture insures that the tasks of the
real-time OS always get a higher priority than those of the
GPOS instances.

In the embedded and real-time world, applications run-
ning on the RTOS and on GPOS instances cooperate to
implement the service expected by the device end user.
Hence, interaction between embedded applications run-
ning in the various OSes is tighter than in traditional vir-
tualization environments. This further raises requirements
on the scheduling of the tasks. Rather than having all tasks
of the RTOS be executed before tasks of the first GPOS
instance themselves executed before those of a second
GPOS instance, interleaving of tasks execution is often
required. Therefore, such embedded virtualized systems
must base the processor resource sharing on applications
timing constraints and on data streams flows rather than
on the whole OS.

This paper presents a new design to provide a finer
grain management of the processor resource in a real-time
virtualized environment. We move scheduling decisions
out of the guest OSes into a new virtual machine monitor
component called Scheduling Virtual Device (SVD). The
SVD is in charge of scheduling all the threads regardless
of their operating system. SVD can implement any per-
thread scheduling policy. Furthermore, the SVD provides
an hierarchy of schedulers as promoted by frameworks
such as HLS [16] and Bossa [14]. Threads can dynam-
ically be attached to any scheduler based on application
requirements, thus providing high flexibility.

The rest of the paper is organized as follows. Section 5
reviews related work. In Section 2 we present our solution
based on a SVD and in Section 3 we discuss of the im-
plementation issues. In Section 4 we present preliminary
results and we conclude on the future work in Section 6.

2. A virtualized Approach to Task Scheduling

To share resources between several guest OSes,
para-virtualization takes a different approach than full-



virtualization. para-virtualization systems such as
Denali[20], Xen [7] or VirtualLogix VLX [17] provides
no specialized access to devices on the physical system.
Instead they exposes virtual devices with a generic inter-
face. For instance, even though there is only one single
network card in the hardware system, a driver at the hyper-
visor level (the virtual driver) will enable the multiplexing
of the network resource between the OSes by exposing the
same generic interface in each virtual machine (the virtual
network card). Each OS will be provided a generic driver
allowing itself to interface with the virtual driver. The vir-
tual driver deals with the multiplexing by using different
MAC addresses for each OS. Similarly we create a new
interface to exchange the appropriate scheduling data be-
tween the OSes and the hypervisor.

We propose to virtualize the task schedulers in each
OS, by introducing a scheduler virtual device (SVD) in the
hypervisor. The SVD centralizes the scheduling data and
performs all scheduling computations in place of the guest
OSes scheduler. Then, each guest OS communicate with
the SVD through a generic driver called a scheduler in-
terface (S1.) The communication consists in updating the
SVD with scheduling events: task creation, blocking, un-
blocking, destruction, etc. By doing so, the SVD has a
global vision of the system scheduling needs.

Scheduler Virtual Device: The SVD implements the
scheduling algorithms and provide an OS independent in-
terface for the management of thread scheduling. The
SVD is implemented as a virtual device in the hypervi-
sor and thus must run safe code. One bug in the virtual
device could lead to the crash of the complete system. As
scheduling algorithms manipulate a lot of lists and similar
data structures, which is known to be error-prone, we use
the Bossa language [14] to write our schedulers.

Scheduler Interface: The SVD defines a generic in-
terface to deal with scheduling events but some OS sched-
ulers may implement finer scheduling events or more
complex states transitions. The SI implements the glue
to match the OS scheduling events to the SVD generic
events. Besides dealing with scheduling events at the OS
level, the role of the SI is to manage the scheduling pol-
icy’s interaction with the applications. For instance an
application can ask the SI to be scheduled by a specific
scheduling policy or to invoke an interface function de-
fined by the application’s scheduling policy. In term of
reengineering, the legacy scheduler must be removed and
each call to the scheduler must be trapped and redirected
to the scheduler driver.

3. Implementation Issues

Our design faces two design issues bond to the use of
virtualization.

3.1. Interrupt Queueing
Interrupts are generated by hardware components to
notify the software that something happened in the sys-

12

tem. For instance a network card issues an interrupt to in-
form the OS that a packet arrived and is ready to process.
In a virtualized environment, interrupts still occur yet it is
more complicated to deal with them as there is more than
one OS running. Basically an interrupt can be generated
even if it is not destined to the OS currently running on
the processor. The hypervisor needs to delay the interrupt
until the correct OS is executed. This is called interrupts
queueing.

In a real-time environment interrupts destined for
GPOS may occur while the RTOS is running. As the
RTOS is given the highest priority, these interrupts will
be processed only when the RTOS is idle and a GPOS is
selected to run. Depending on the load of the RTOS, it
may take some time before an interrupt is processed. Any
task waiting for this interrupt can then be woken up and
the latency (the time between the interrupt and the task
awakening) is actually function of the RTOS load. High
latencies are problematic when running time constrained
applications on the GPOS.

To decrease the latency, interrupts should be processed
as soon as possible and, similarly, the GPOS should be
quickly given the CPU. This can be done by preempting
the running OS and switching to the one the interrupt is
destined for but it is not possible if one wants to guarantee
the timing requirements of the RTOS and its tasks.

However, our approach provides a global vision of the
RTOS tasks at the hypervisor level. It is then possible to
add a task that abstracts the GPOS interrupt servicing as a
schedulable entity. This task is waked up by the interrupts
destined to the corresponding OS and when the scheduler
selects this special task to run, the hypervisor switches to
the OS. When the OS finishes to process the interrupt it
jumps back to the hypervisor through the SI.

3.2. Scheduling Model Coherency

The scheduling state of a thread can only be blocked,
ready or running. By moving task scheduling from the
OSes to the virtual machine monitor, task preemption be-
comes more complicated. Basically preemption can now
occur at two levels: at the task level and at the OS level.
Therefore two tasks can be stated as running at the same
time on two different OSes, but only one will be executed
on the CPU. This situation is incoherent regarding the
scheduling model which ensures that only one task can be
in the state running in the case of a uniprocessor system.
This phenomenon breaks the integrity of the scheduling
state and should be avoided.

To prevent this situation we change the state of the task
running on the preempted OS to ready. We only change
the scheduling state of the thread. From a scheduler point
of view, the thread is ready to run while for the OS it is
running. The new preemption of the thread may cause
changes in the scheduling and it may be possible that the
OS is given back the cpu to run another thread. We need
a way to inform the OS that it needs to preempt the cur-
rent thread and run the newly elected thread. We generate



a virtual interrupt to inform that an OS must preempt its
current running task. The counterpart of this is the intro-
duction of a new interrupt handler in the scheduler device
driver. This handler will preempt the running task and call
the scheduler virtual device driver to get the next task to
run.

4. Preliminary Results

We implemented SVD in VirtualLogix VLX, a virtual-
ization solution for embedded systems, and used a typical
configuration as a proof-of-concept. The VLX hypervisor
enables to run a real-time operating system along with one
or more general purpose operating systems. In our case
we set up one instance of Nucleus [11] as the real-time
operating system and one of Linux [1]. We implemented
support for SVD in both OSes and replaced their scheduler
by a single fixed priority scheduler in SVD. The scheduler
uses a round-robin algorithm to guarantee fair-sharing of
the processor and Nucleus tasks are given more priority
than Linux tasks. In this section we evaluate the overhead
of virtualizing task scheduling in this configuration.

Virtualization slightly decreases performance and in
the case of para-virtualization the overhead is below 5%
[7]. Virtualization isolates guest OSes and the hypervisor.
This isolation causes an overhead when an hosted oper-
ating system and the hypervisor needs to exchange data.
When using SVD, all scheduling events require a data ex-
change. Therefore to measure the overhead of SVD we
need to measure the overhead of the scheduling opera-
tions. Amongst these operations some are more frequent
and thus easier to measure. This is the case during tasks
switches. In fact, tasks switches are caused whether by a
task which blocks or by a tasks which is unblocked. By
measuring the context-switch time from the user tasks it
is possible to evaluate the overhead of SVD.

We have written a benchmark program in Nucleus to
measure context-switch time. This program creates sev-
eral threads which by passing a token around them can
trigger context-switches. Before sending the token and
thus being put in a waiting state, the thread measures the
current time. The thread receiving the token — being wo-
ken up — measures the time again. Context-switch time is
the difference between both measures. Table 1 shows the
average time of a context-switch when nucleus is running
under VLX with SVD and without. We can see that us-
ing SVD increases context-switch time by 5 microseconds
which represents an overhead of 83%. While context-
switch time is almost doubled, it is still sensibly low.

Next, we measure the context-switch time for Linux
thanks to the 1lat_ctx program from the LMBench test
suite [2]. This program is very similar in its implementa-
tion to the program we developed for nucleus. The results
can be found in Table 1 and the overhead of SVD support
represents 3.22% of the initial value.

We notice that the overhead times are slightly the same,
approximately 5 microseconds but the overhead repre-
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VLX | VLX w/ SVD | overhead
Linux 145.33 150.02 3.22%
Nucleus 6 11 83.33%

Table 1. Context-switch time measured in us

sents 3% in Linux and 83% in Nucleus. The difference
between the two results can be explained by the difference
between the two environments. In our configuration, Nu-
cleus does not support memory protection, therefore tasks
share the same address space. Under Linux, each tasks
(processes) have its own address space and when switch-
ing from a process to another, Linux needs to switch mem-
ory contexts which means flushing the TLB and the cache.
This operation costs a lot of memory cycles and increases
context-switch time.

Overall the impact on the system performance is small.
Actually a system where a context-switch is done every
millisecond only adds about 0.5% overhead (after one sec-
ond, the overhead sums up to 5 milliseconds).

5 Related Work

Our work focuses on the management of the CPU re-
source in a virtualized environment. We can find different
approaches to CPU sharing in the literature. For instance
the project Xen [7] chooses a standard way to deal with
the processor multiplexing between virtual machines. In
Xen, the virtual machine monitor uses a scheduling algo-
rithm originally developed for multimedia task scheduling
[8] to schedule virtual machines. A more recent work by
Zhang et al. [21] presents an original solution providing
a distributed approach to control CPU congestion instead
of a centralized one. In this work each guest operating
systems adapt its load through a feedback-control model.
All these approaches multiplex the processor resource be-
tween virtual machines with no consideration of the im-
portance of the applications hosted by the guest operating
systems. The finer grain such solutions offer is to set dif-
ferent priorities to each virtual machine. While that may
be enough in a desktop or server environment, a finer grain
scheduling is needed in real-time embedded systems.

Complete virtualization of hardware systems is not
widespread still virtualization initiatives already exist with
RTLinux [4] and TimeSys Linux/GPL [5]. Both of these
projects make possible the cohabitation of hard real-
time tasks and Linux processes through a small executive
which provides an environment to execute tasks with hard
real-time requirements. Linux is run as the task with least
priority and thus Linux processes get CPU time only when
all the real-time tasks are finished. The task scheduler may
be modified to run Linux at a higher priority, but all Linux
processes are still seen by the executive scheduler as a
single entity and thus are considered to be of equal pri-
ority. It is possible to implement synchronization between
the real-time tasks and the Linux processes through lock-



ing mechanisms but this solution would involve a more
complex analysis of task scheduling. The easiest way to
ensure fine-grained scheduling would be to enable the ex-
ecutive scheduler to communicate with Linux scheduler
yet, we do not know of any existing work allowing the co-
scheduling of hard real-time tasks and Linux processes.

Other research have shown that implementing specific
services in the hypervisor can increase global system per-
formance or enhance some aspects of the system. Chen
and Noble were the first to claim that the advantage of
virtualization was to enable the implementation of ser-
vices which would then be perceived by guest operating
systems as hardware features [6]. Moreover as these ser-
vices are implemented in software, they are easier to cre-
ate and maintain. These services allows to enhance secu-
rity [13, 10] or resources management [18, 12].

There is a plethora of scheduling frameworks [9, 14,
15, 16, 19] in the literature and we cannot cite them
all. The scheduling framework in RED-Linux [19] iden-
tifies three paradigms of tasks scheduling in a single
framework: priority-driven, time-driven and share-driven
scheduling. With a fixed number of scheduling attributes,
RED-Linux provides flexible scheduling while keeping
the implementation of scheduling policies simple. On
the other hand, Bossa [14] offers a framework to develop
specific schedulers. Its advantages range from its Do-
main Specific Language which facilitates the writing of
scheduling policies and enables static verifications of the
policies to its use of a scheduling hierarchy a la HLS [16].

6 Future work and Conclusion

Work in the field of virtualization have shown that vir-
tualization could lead to scheduling issues or CPU misuse.
We argued that these issues were globally caused by the
lack of feedback from the operating system in virtual ma-
chines scheduling. Our approach tries to solves this prob-
lem by exposing all the scheduling objects at the same
level, independently from their virtual machine. We have
presented an approach for breaking the data isolation be-
tween virtual machines by migrating the scheduling from
the operating systems to the virtual machine monitor.

We implemented a prototype of SVD in VLX and the
preliminary results show that the overhead of SVD is neg-
ligible. To further prove the flexibility of our approach, we
will present a real case study where the use of SVD and
virtualization enables the development of a complex ap-
plication consisting of programs from both the real-time
operating system and the general purpose operating sys-
tem which cooperate to provide a service.
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Abstract: The current Worst Case Execution Time (WCET)
computation methods are designed to be used on a whole
program. This approach has scalability limitations and can
not be applied to programs made up of multiple components:
a method to perform partial analysis on components is
needed. In this paper, we present a general method to perform
partial analysis on components and to compose these partial
results to compute the overall WCET. To check the approach,
we have implemented and experimented the partial analysis
on the behavior prediction of direct-mapped instruction
cache. The experimentation shows big speedup in analysis
computation time with an almost negligible growth of
pessimism.

Keywords: Real-time, instruction cache analysis, WCET,
partial static analysis, components, abstract interpretation.

1. Introduction

Hard real-time systems are composed of tasks that must
imperatively meet deadlines constraints. To check this,
scheduling analysis, based on tasks WCET, is used.
Computation of the WCET by static analysis provides proven
WCET estimation. This approach may be decomposed in two
phases:

« the control flow of the task (program path analysis),

* the hardware which the task will run on (architecture
model)

Each phase requires a bunch of computation to handle
accurately the execution flow of the program and the
hardware model. As real-time programs becomes bigger and
bigger, two problems arises: (1) WCET computation time
will increase exponentially, (2) the use of software
components will make ineffective the current techniques.

In this paper, we propose to perform partial analyses on the
program (1) to reduce the computation time by factorizing
the performed analyses and (2) to provide functions
summarizing the content of components for the WCET
computation. We apply the approach to the case of direct-
mapped instructions caches.

The next section explores in details the partial analysis
problem that is applied in the third section to direct-mapped
instruction cache. In the fourth section, we show
experimentation of our method. Fifth section presents the
related works and we conclude in the last section.

2. Problem definition

Currently, the WCET computation methods are designed to
be used on a whole program. However, there is some
drawbacks to this approach. First, the analyses used for
WCET computation usually run in exponential time with
respect to program size, and embedded real-time programs
are getting bigger and bigger. Second, there is a problem
when the program to analyze depends on external
components developed by third-parties (for example,
programs using libraries) whose sources are not available: it
is not possible to compute the WCET of the whole program
because of lack of information on the components. This

problem will become more and more important as embedded
and real-time industry will use more and more Component
Off The Shelf (COTS).

Both problems suggest to change the current analysis
practice: it is no longer possible to do the analysis all over
the program. We need to find a way to do partial WCET
analysis on parts of the program, and to compose the partial
results into a global WCET for the whole program.

caller | ., | callee

- Partial

Global
result

Figure 1: overview of the partial analysis

Figure 1 represents the partial analysis and composition of a
program consisting of a function calling another function
located in an external component. The partial analyzer takes
the code of callee and produces a partial result. The
composer takes the partial result, and the code of caller,
to produce a global result, without accessing callee code.

In this paper we will consider the case described by the
figure: a main program using an external component
consisting of only one function. In the case of the instruction
cache analysis, more complex cases can be processed
similarly, and will be addressed in future work.

We need to define, for each analysis participating in the
WCET computation, information needed in the partial
results, the method to produce this data, and the method for
integrating the partial results into the analysis of the whole
program.

There are two main issues when considering the partial
analysis:

(1) how to influence the analysis of the main program with
the content of the component?

(2) how to make the analysis result of the component
dependent on its call context?

To address (1), we describe a transfer function, which
represents the effect of the component code on the analysis
of the whole program. To address (2), we describe a
summary function, which represents the analysis results for
the component, according to the calling context (state before
the function call). The method to compute these functions is
specific to the particular analysis we want to do.

Once the transfer and summary functions associated with the
component are available, we integrate them into the analysis
of the whole program. This is done in two steps:

« Step 1: with the transfer function available, we can do the
analysis on the main program without having to access to
the component code. During the analysis, the component
is represented by the transfer function.

» Step 2: once the analysis on the main program is done,
we have access to the calling context of the component.



We can use this context, together with the summary

function, to get the actual analysis results for the

component.
Although we have not experimented nested function call,
this approach may be easily adapted. First, the transfer
functions may composed in a straight forward way. Yet,
some additional computations need to be performed for the
summary function to get a sound context before each nested
function call.

3. Instruction cache analysis

This section shows how to apply the general approach
described previously to the instruction cache analysis.
The cache is a fast and small memory used to store a partial
copy of the main memory, which speeds up data accesses.
When a memory access is performed, either the data is
present in the cache, resulting in a fast access called a 4it, or
it must be retrieved from memory, resulting in a slow access
called a miss. The cache is divided into fixed-size lines, and
the main memory is divided into cache blocks of the same
size than cache lines. Each cache block from memory
matches a single line. In case of miss, the whole cache block
containing the target location is loaded into the matching
line. In the direct-mapped cache, each line contains only one
block, while in the A-way associative cache, each line
contains A blocks.

3.1. Presentation of the analysis of a single component

To predict instruction cache behavior, we have used the 3
analyses (Must, May, and Persistence) from [2, 8], restricted
to direct-mapped cache, by considering that a direct-mapped
cache is a A-way associative cache where A = 1.

These analyses are based on the techniques of abstract
interpretation [5], and are performed on a Control Flow
Graph (CFG), composed of Basic Blocks (bb). They work by
computing abstract cache states (ACS) before and after each
basic block using two functions:

« the Update function computes the output ACS from the
input ACS of a basic block, that is, the effect of the basic
block on the ACS;

+ the Join function merges the input ACS of a basic block
that has several predecessors in the CFG.
We call ACS), (bb), ACSy. (bb) and ACS" (bb) the
input ACS for, respectively, the May, Must and Persistence
analyses. The syntax ACS(bb)(I) allows to get the content

of a specific line of the ACS.

The May ACS gives the set of blocks which may be in the
cache. The Must ACS gives the set of blocks which must
definitely be in the cache. The Persistence ACS maps two

sets ( ACS™., ,(bb)(l) and ACS),. (bb)(I)) to each cache
line. Both sets contains blocks that may have been loaded in
the cache. While the blocks of the latter set may have been

wiped out, the blocks of the former must be still in the cache.

The ACS resulting from the analyses will be used to
determine basic block categories. For the sake of simplicity,
we consider a CFG projected on the cache blocks (i.e. each
basic block is split according to cache block boundaries).
Now, since a basic block of the projected CFG cannot span
multiple cache blocks, we can assign a single category to
each basic block.

Let ¢b be the cache block containing the basic block bb, and /

its cache line. The following array shows the process to
assign a category to each basic block:
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Condition to test
che ACS” (bb)(I)

must

chbe ACS™ (bb)(I)AcbgACS™

may pers, 1

chgACS™ (bb)(1)

may

Category
Always-Hit (AH)
First-Miss (FM)
Always-Miss (AM)
Non-Classified (NC)'

(bb)(7)

else

Table 1: Computation of the category

3.2. The transfer function

The transfer function describes the effect of callee on the
analysis of the main program. In the case of the cache
analysis, the callee transfer function takes the ACS from
the caller, and computes the ACS at callee exit. We call

ACS™ and ACS™!

XXX

the ACS at callee entry and exit
(where xxx stands for one of may, must, or pers).
Independently of the particular cache analysis, there are two
effects that must be taken into account to build the transfer
function. First, cache blocks of callee may appear in the
ACS at callee exit, independently of the ACS at callee
entry. This effect is handled by executing the analysis on
callee with an empty entry ACS, and the result is retrieved
from ACST .

Second, some cache blocks that were present in the ACS at
callee entry may be wiped out by callee. This effect is
handled by the damage update function. This function, of
type ACS — ACS, takes an ACS, and returns the damaged
ACS, according to the cache blocks which may have been
replaced by callee cache blocks. It is different from the
transfer function: the damage update function does not take
into account the cache blocks belonging to callee which
appear on callee exit ACS.

Whatever the performed analysis, the transfer function can be
expressed by the following formula:

transfer( ACS)=Join (DamageUpdate (ACS), ACS™)

XXX

In the following, we will see how to apply this general
method to the transfer functions of the May, Must, and
Persistence analyses.

In the case of the May analysis, the damage update is
deduced from a cache damage analysis. This analysis builds
damage information that represents, for each line, the list of
cache blocks which would definitely be replaced if they were
present in the cache at the beginning of callee. For
example, if cb € damage,, (bb), all the paths from
callee entry to basic block bb remove cb from the cache.

We call line, the cache line of the cache block cb. The
Update function of this analysis is defined as follows:

Y I#line,,, Updatei%”ge(damage ,cb)(l)=damage(l)
Updateym™ (damage , cb )(line,,)=damage (line ,)
U{cb'/line, = 1}—{cb}

The Join function is defined like this:

Joini‘;';“ge(damagel ,damage?2)=damage’ |

YV I, damage'(1)=damagel (I)Ndamage2 (1)

exit

Let call damage,, the damage information at callee
exit. Using the result of the analysis, the following damage
update is defined:

Y I, DamageUpdate,, (ACS)(1)=ACS(l)—damage:" (1)

may ( may

The transfer function is then created as explained previously.
The Must transfer function works in the same way as the

1 We have conservatively considered NC category as an Always-Miss.



May transfer function, by doing a Must version of the cache
damage analysis, and of the damage update function.
The only difference is that, in the Join"** function, a
union of damages is done, instead of the intersection.
The transfer function for the Persistence analysis is built a bit
differently. It uses the results from the Must and May damage
analysis, and is defined below:

DamageUpdate,,, (ACS ,,)=ACS "', | VI

ACS 'pers,O (l) =ACSperx,0 ( l ) _damagef;l’;it ( Z ) y

ACS' . (1)=ACS . (1)U(ACS . ,(I)Ndamage®™ (1))

pers ( pers)

pers, 1 pers,1 pers,0

3.3. The summary function

The summary function will give a category to each basic
block, according to the entry states of callee. This
function is defined on ACS,, X ACS ,,,— CATEGORY and

is associated to each basic block of callee.
The results from the Must and Persistence analysis are
required to create the summary function.

Let ¢b be the container cache block of the basic block bb, and
[ its cache line. The following table represents the different
possible types of summary functions of the basic block bb:

Condition to test
cbeACS™ (bb)(1)

must

cb damage”™ (bb)(1)

must

summary function
AACS™™ ACS™  AH

must pers

AACSE™ ACS™ .if (cbe ACS™™ (bb) (1))

must pers must

then AH elseif (cb@ ACS (1))
then FM else AM

cbg ACS™, (bb)(1) NACS™™ ACS™™ if
(cb € ACS e o 1(bb)(1)) then FM else AM
else X acsNRY VIR

must pers

Table 2: Computation of the summary function

3.4. Composition of the partial analysis
We explain now how to use the partial analysis results (the

transfer functions, and the summary function) into the
analysis of the whole program.

Since the base address of the component file containing
callee is unknown when the partial analysis is performed,
we assume that the base address is 0. If we force the linker
to allocate the component object file at a base address
multiple of the cache block size, we keep the same structure
for the mapping of the component cache blocks into lines: if
we know the matching line of a location in the original
mapping, we can find the new cache line with a simple
addition, modulo the number of cache lines.

Therefore, using this simple transformation, we can adapt the
transfer and summary functions for callee, and use them
for the composition in the two steps described in section 3:

1.When the May, Must, and Persistence analyses on caller
are performed, callee CFG is replaced by a virtual node,
whose Update function is the Transfer function.

2.With the analyses from step 1 performed, we have the ACS
at callee entry, which the summary function can be
applied to, in order to determine callee basic block
categories.

4. Experimentation

This section describes the environment of experimentation
and presents the obtained results.

4.1. Mode of operation
Our method has been implemented using OTAWA [7], a
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framework dedicated to the development of static analyses
for WCET computation. We have performed experimentation
on the SNU-RT? benchmarks, a set of small programs widely
used to test WCET computation and have been focused on
the benchmark program containing function calls.

The partial analysis of each function induces a computation
overhead due to the summary and transfer functions
computation. Yet, this drawback may be balanced by the
time gain at composition time if the program performs
enough partially-analyzed function calls. To evaluate this
issue, we have done 7 tests with different numbers of calls of
the partially analyzed function, and different loop nesting
depths of these calls.

For each test, we have compared the computation time and
the obtained WCET between the partial and the non-partial
analyses.

The architecture that the WCET computation is applied to is
a simple non-pipelined processor with each instruction taking
5 clock cycles (since the goal of this paper was to show
results for the cache analysis, we did not include other
effects, like the pipeline), and with a direct-mapped
instruction cache of § lines with 8-bytes blocks. Such a small
cache allows exhibiting more block conflicts with the small
programs of the SNU-RT benchmark.

4.2. Results
There are two interesting aspects to examine in the results:

» The comparison between the computed WCET on both
analyses, to show that the partial analysis does not add
too much pessimism.

* The comparison of the analysis time for both analyses, to
show in which cases the partial analysis is faster.

The following tables show the relevant information (P.A. and

N.A. stands, respectively, for Partial and Non-partial
Analyses):
Bench | Function [N.A. (cycles)|P.A. (cycles)|P.A./ N.A.
fibcall fib 1100 1100 1
matmul | matmul 18010 18010 1
ft1 (1) fft1 33950 344200 1,01
fft1(2) sin 33950 33950 1
qurt qurt 19105 19645 1,03
fir (1) sin 219020 219020 1
fir (2) gaussian 219020 219020 1
Table 3: WCET comparison
Bench | Function |P.A. / N.A. | Call sites | Max loop depth
fibcall fib 2 1 0
matmul | matmul 2,25 1 0
fft1 (1) fft1] 1,01 2 0
fft1 (2) sinf 0,41 2 2
qurt qud| 0,67 3 0
fir (1) sink 0,75 2 1
fir (2) | gaussian| 0,66 2 1

Table 4: call context sensitivity

The table 3 compares the computed WCET, while the table 4
shows the computation time ratio for each test in function of
the call context.

The WCET results are coherent: the WCET found by the
partial analysis is always equal or slightly greater than the
non-partial analysis WCET. Furthermore, only few
pessimism is added: the partial analysis adds on average a
pessimism of 1% (P.A./S.A. column)

2 Singapour National University - Real-Time



For the fibcall and matmul tests, the diagram shows that the
partial analysis is slower. This can be explained because, for
these tests, the function which was partially analyzed is
called only once, so the partial result is only used once: the
overhead for computing the partial result is not compensated.

For the fftl (1) test, the function fftl is called exactly two
times, and the overhead is almost exactly compensated.

For the qurt, fftl (2), fir (1), and fir (2) tests with a high
number of calls to the function, the partial analysis is faster
than the non-partial analysis. As shown by the ffi/ (2) test,
the loop nesting level of the call site has a great impact.

To summarize, although the computation of the transfer and
the summary functions creates an overhead compared to a
single non-partial analysis, the transfer function is much
more fast to apply and the summary function is used only
once for each call site. As shown in the experimentation, this
overhead is compensated as soon as the partial analysis is
applied twice. Such a situation arises very often in programs
as (1) functions are usually defined to be called several
times, and (2) in case of loops, the fix-point computation of
static analyses requires at least two iterations.

5. Related work

The effect of the instruction caches on WCET computation
has been extensively studied.

A widely used method for WCET computation is the Implicit
Path Enumeration Technique (IPET)[6]. In IPET, the
program structure and flow facts (such as loop bounds) are
modeled by linear constraints. The WCET is then expressed
by an objective function to maximize, and an Integer Linear
Programming solver is used to compute the result.

In [1], F. Mueller defines a method to categorize instructions
into three categories (Always-Hit, Always-Miss, and First-
Miss). These categories describe the worst-case instruction
cache behavior, and are included in the WCET computation.
While Always-Miss and Always-Hit are self-explaining,
First-Miss means that the first execution of an instruction in a
loop may result in a miss, but subsequent executions will
result in a hit.

C. Ferdinand [2, 8] describes a method to compute the
categories using abstract interpretation. He uses three
analyses that consist in computing an Abstract Cache State
(ACS) for each basic block as explained in the section 3.1.
The ACS resulting from this analysis are used to build the
categories for each instruction memory access.

In [4], F. Mueller extends the method defined in[1] to a
program made up of multiple modules. First, a module-level
analysis, consisting of four analyses for different possible
contexts (scopes), is done independently for each module,
resulting in temporary categories. Next, a compositional
analysis is performed on the whole program to adjust the
categories according to the call context. This results in a
merged context-insensitive category causing a lot of
pessimism. Moreover, this approach requires also more
analyses passes than our analysis that is performed in one
pass followed by the fast instantiation of our functional
categories.

In[3], a method is proposed to perform component-wise
instruction cache behavior prediction. It adapts Ferdinand’s
cache analysis [2] (bound to May and Must analyses) to an
executable linked from multiple components. This method
addresses two main aspects of the problem.

First, the absolute base address of the component is unknown
during the analysis, so it works with relative addresses (i.e.
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assuming that the base address is 0). To overcome this issue,
it is proposed to force the linker to put the component into a
memory location that is multiple of the cache size. This
method ensures that the cache mapping is the same, whether
the base address is absolute or relative. As shown in 3.4,
we alleviate this constraint as we only require a cache block
size alignment.

Next, when a component calls a function in another
component, the called function has an influence on the cache
state, and on the ACS of the caller. To handle this problem,
the paper defines, for each called function, a “cache damage
update” function that tells which cache lines are replaced
(and how many times for associative caches) by the function.
In this paper, we have augmented this analysis, as we also
compute the persistence information, but we have also
improved the accuracy of the results thanks to a context-
sensitive definition of the categories.

6. Conclusion

We have presented a method to perform partial analysis on
the instruction cache of a function in a component, and to
compose the obtained partial result to compute the WCET of
the whole program. Then, we have compared our method to
the non-partial analysis on several benchmarks. The results
show that, for the tested cases, the WCET produced using
our method induced a very small pessimism.

Also, it seems that if the function being partially analyzed is
called at least twice, or is called in a loop, the time needed to
do the partial analysis and the composition is lower than the
time needed to do the non-partial analysis. This means that
the partial analysis is useful to speed up the analysis of large
programs containing functions called many times.

Our future work will include the adaptation of this method to
the A-way associative cache, and to other types of analyses
for WCET computation (pipeline effects, etc...). Our goal is
to apply partial analysis to the overall WCET computation.
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Abstract: Besides energy constraint, wireless sensor
networks should also be able to provide bounded
communication delay when they are used to support real-
time applications. In this paper, we propose an
improvement of Zigbee routing protocol integrating both
energy and delay constraints. By mathematical analysis
and simulations, we have shown the efficiency of this
improvement.
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1. INTRODUCTION

With recent technical and technological advances in
WSN (Wireless Sensor Network), it becomes now
possible to envisage not only simple non real-time
data collect but also more complicated real-time
applications. Thus, WSN can be extended to include
actuator nodes, called by some researchers wireless
sensor and actuator network [1]. Each sensor node is
composed of one or more sensors, a processor and a
radio transmission unit. All of them are supplied by
an unchangeable battery. Sensor nodes collect data
from the environment that they are supervising and
send them to other nodes or a base station (sink). This
station processes received data and sends appropriate
action commands to the actuators [2, 3]. Actuator
nodes are assumed less energy constraint than the
sensor nodes.

It is worth pointing out that the main research efforts
in developing WSNs have focused on how to extend
the network lifetime with respect to limited battery
energy. However, when real-time applications are
deployed on them, extending the lifetime of the
network should be done without jeopardizing real-
time communications from sensor nodes to other
nodes or to data sinks. For example, a surveillance
system needs to alert authorities of an intruder within
a few seconds of detection [4]. Unfortunately, there is
little work on the real-time communication support
for WSNEs.

For energy saving, most of work focuses on the
communication protocol design since in a WSN the
radio communication unit is the major power
consumer in the node (it consumes about one
thousand CPU units) [5]. IEEE 802.15.4 Task Group
together with Zigbee Alliance [6] have developed an
entire communication protocol stack for Low-Rate
Personal Area Networks. One of the potential
applications of this standard is in WSNs. This
standard represents the new generation of distributed

embedded systems for pervasive computing. IEEE
802.15.4 standard deals with the energy optimization
in the physical layer and the Medium Access Control
(MAC) sub-layer. Energy saving is mainly achieved
by defining a sleeping period (inactive period) in a
superframe. The Zigbee specifications define the
routing and the application layer. The Zigbee routing
protocol is almost the same as AODV (Ad hoc On-
Demand Distance Vector) with the exception of route
maintenance. Even one may agree that AODV can
always choose the route that minimizes the delay (or
equivalently the number of hops), it does not take into
account energy optimization. In this paper, we aim at
improving the Zigbee routing protocol by including
both energy and delay considerations.

Several energy-aware metrics have been proposed [7,
8, 9] to optimize the energy consumption during the
routing process. However they omit the real-time
aspect. [10] presents a routing approach which
optimizes the network lifetime for real-time
applications. However, it does not take into account
the link's reliability. It should be noted that a route
that chooses an unreliable link may experience longer
delay because of the higher retransmission
probability, which will in turn increase the energy
consumption. The Real-time Power-Aware Routing
(RPAR) protocol [11] reduces communications
delays by adapting the transmission power to the
workload. However, it does not optimize the network
lifetime.

So, in this paper, we will focus on maximizing the
sensor network lifetime while still taking into account
the delay requirement of real-time communications.
Our main idea is to find a new routing metric which
is capable of including delay, energy, as well as link
reliability factors. In our study, we used IEEE
802.15.4 protocol and Zigbee AODV. We are going
to optimize the network lifetime under the delay
constraint at the routing layer. Without loss of
generality, the delay of a route is considered
equivalent to the number of hops on the route and we
assume that one can find the limit on the hop number
for a given real-time communication constraint.

The rest of this paper is organized as follows. In
Section 2 provides a mathematical analysis for packet
forwarding. We will give a routing metric that trades
off between maximizing the sensor network lifetime
and satisfying the communication delay. By
simulations, we will compare the performance of our



routing approach with the existing ones in Section 3.
Finally, Section 4 gives conclusions and describes
future directions.

2. PROPOSED ROUTING METRIC
2.1 Model

In this study, we adopt the model defined in [7]. This
model captures the packet reception rate (PRR)
between two nodes as follows. Nodes have full
connectivity if they have a distance less than D;.
They are disconnected if they are separated by a
distance greater than D,. The expected PRR decreases
smoothly in the transitive region between D; and D,.
The behavior is modeled by (1)

1 d<D1
1
D2—d
PRR = +X D <d<D, 1
1 2 (D)
D —D1
0
0 d>D2

where [.],” = max{a, min{b, .}} and X ~ N(0, &) is a
Gaussian variable with variance o.

2.2 Metrics

The wireless sensor network is presented by a graph
G = (V, A), in which V is the set of nodes including
the base station. The set of edges A <V x'V such that
(i, j)e A if nodes i and j can transmit to each other. To
optimize the routing path, we assign each node the
remaining energy and each vertex the delivery rate.

In the following, we are interested in the metric of the
path efficiency. This metric considers the path energy
efficiency and the delay experienced along this path.
Here we are going to maximize energy efficiency
while minimizing the delay together. Thus, we first
define this path efficiency, E, to be the ratio of the
path energy efficiency, E., to the delay required to
transmit a packet from the source to the destination.
The energy efficiency represents a trade-off between
delivery rate and energy consumption along this path.
In order to maximize the path efficiency and
minimize the energy consumption, the energy
efficiency is quantified as the ratio of the delivery
rate, E,, to the total energy consumed to transfer the
packet to the destination node E,. Thus, this energy
efficiency is expressible by

EV

Eopr = E, )

! This equation is modified, in numerator, d — D, is
replaced by D, —d to find 1 whend =D;.
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The end-to-end delivery rate for a path ¢ takes into
account the delivery rate of each link in this path. So,
this end-to-end delivery rate is the product of packet
reception rate of each link in ¢ as shown by

E, = Py k+1

I1
ke @.k#destination (3)

where prry ;. is the packet reception rate between
node k and its forwarder k+1 as shown in Figure 1.
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Fig. 1. Path

Taking into account the retransmission (R: number of
allowed retransmission), the required energy for the
packet delivery for the first transmission is calculated
by

S| ' 22
Eg = pj 4y (B +b)+ab+ EY) . (4)

Using a recurrent calculation, the required energy for
the packet delivery for the R" retransmission is given
by

~ R+1 j
E, " = pi,i_’_l(Eé +b)+ab. 5)

Finally, the required energy for the packet delivery is

: R+1
(prr; 1 (Eg +b)+ab)1—a" )

E, (6)

1-a

where prr.;; is the packet reception rate for the
forwarder i-1, E,' is its energy cost that refers to the
energy consumption from the source to the node i. b
is the packet processing energy (transmission and
reception) and a = 1 — prr; ;.

As we are using the IEEE 802.15.4, the number of
allowed retransmission is fixed to 3. Therefore the
required energy will be

(. (B +by+abyi-ah
i+l e

E = >
e 1-a

If prri=0 (the link is broken), the consumed energy
is equal to (R+1)b, in our case 4b.

By replacing E, and E, in (2), the energy efficiency is
given by

ke ok ¢I}Zestinati0n prrk —Lk
E =X€9 : (1-a) (7)
eff (prr. . (E' +b)+ab)(1-a")
i+l e



As the routing approach has to respect the delay to
guarantee the “deadline” for real-time
communications, the path efficiency could further be
represented by E = E,gldelay.

I1

k € @,k # destination k-1k

E= (1-a) (8)

delay(prr. . (Ei +b)+ab)1—a’)
i+l e

The routing approach presented by Coleri [10]
guarantees the delay performance too. However, the
corresponding delay is not included in the routing
metric. In fact, in this approach only paths that offer
delay less than the allowed delay are considered in
the routing choice. Furthermore, the time is divided
into time frames and at the beginning of each frame,
the base station floods the network with a tree
construction packet. Thus, there is significant energy
consumption in the routing process. However, we
use the AODV routing protocol with a modified
routing metric as shown in (8). Hence, the route is
setup according to the AODV request/response cycle.
The delays are collected by route response message.
Consequently, we have not increased the network
load.

However, considering only the consumed energy is
not sufficient to maximize the lifetime of the sensor
network. We must include the remaining energy in
the routing metric to balance the load of the network.
Thus the lifetime efficiency E.;is given by

Epepp = E ¢ ©)
where e; is the remaining energy of the forwarding
node i.

The new metric for the path efficiency which includes
the delay, the path reliability and the lifetime
efficiency, E; can be calculated from

I1

k € @,k # destination k=Lk

(I=a)-e.

1

E =
l .

delay(prr. . (El +b)+ab)(1—a’)
,i+1 e

(10)

Once we have defined our routing metric, we
included it in the AODV routing protocol. Thus, our
new version of AODV chooses the most efficient
path to the destination node by considering both
energy and delay constraints.

3. SIMULATION RESULTS AND DISCUSSION

In this section, the performance of the proposed
routing metric is evaluated and compared with
AODV routing protocol and Coleri routing metric.
Furthermore, we use NS-2 simulators to implement
the physical and MAC layers of IEEE 802.15.4. We
have changed the existing implementation in NS-2 of
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AODV to integrate our metric. Thus, we have a new
version of AODV, which we call Enhanced AODV.

The primary purpose of our simulation is to observe
the network lifetime resulted by our routing
optimization. Moreover, we consider the delivery rate
as another performance metric.

The simulated networks consist of 11, 22 and 101
nodes respectively.

3.1 Assumptions

The following assumptions are made in this study.

1. We consider a wireless sensor network that
consists of a base station and several sensor
nodes. These sensor nodes generate data for
transfer to the base station. Delay constraint is
only imposed on this sensor to base station
communication.

2. Sensor nodes have a low mobility that is the case
for most of the sensor network applications.

3. The delay needed to transmit a packet from a
source node to a destination node is equivalent to
the number of hops counted between these two
nodes.

4. The operational lifetime of the sensor network is
defined as the time until the first 5% of nodes died
as proved in [10].

3.2 Lifetime

We study here the sensor network lifetime. We
observe in Figure 2 that at the beginning the three
routing approaches have the same result. In fact, in
the beginning of the network life, all nodes have a
maximal amount of energy. Thus, the three routing
approaches will have the same routing choices. Once
the sensor energy decreases, the difference between
these routing approaches appears. We observe that
the Enhanced AODYV routing approach let sensors be
alive for a longer time than AODV routing protocol
does.

400
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200

O Enhanced AODV
B AODV
O Coleri Metric

Time (ms)
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5% 25%
percentage of nodes

50%

Fig. 2 Comparison of the time at which a specific percentage of
the nodes are dead between Enhanced AODV, AODV and Coleri
metric .

Moreover, both of Enhanced AODV and Coleri
routing metric give almost the same time for the
death of a specific percentage of nodes. This is an



expected result since both routing metrics aim to
maximize sensor network lifetime.

3.3 Delivery rate

In this sub-section, we focus on the optimization of
the network delivery rate. We define the network
delivery rate as the ratio of the total received packets
to the total sent packets in the sensor network. We
compute this delivery rate at different times in the
sensor network lifetime and compare the results
among Enhanced AODV, AODV and Coleri metric.

Figure 3 a. gives the delivery rate before the death of
5% of nodes. We notice that for a sensor network of a
small number of nodes, all of the studied routing
approaches offer the same delivery rate. In fact, in
small sensor network there is almost one path from
the source to destination. Thus, all of the routing
algorithms choose the same path. However, for a
network with a larger number of nodes, the Enhanced
AODV performs better than AODV does. Moreover,
the Enhanced AODV and Coleri routing metric gives
almost the same delivery rate.
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Fig. 3 a. Delivery rate before the death of 5% of nodes. b.
Delivery rate before the death of 25% of nodes. c. Delivery rate
before the death of 50% of nodes

Figure 3 b. shows the delivery rate before the death of
25% of nodes. In the same way as mentioned before,
for a small sensor networks, all of the studied routing
approaches give the same delivery rate. However, the
benefit due to the optimization of delivery rate by the
Enhanced AODV is clear. In fact, these routing
approaches give better delivery rate than AOV and
Coleri metric. Thus, although the Enhanced AODV
and the Coleri metric offer the same network lifetime,
the former gives a better delivery rate.

From the results given by the Figure 3 c. we notice
that the Enhanced AODV offers better delivery rate
than AODV and Coleri routing approaches. Thus, for
different moment of the network lifetime, the delivery
rate is always better with the Enhanced AODV
routing approach.
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4. CONCLUSION

A successful deployment of real-time applications
over WSNs needs to satisfy the required timing
properties under energy consumption constraints. As
Zigbee routing protocol does not address energy and
delay issues together at the same time, we propose in
this paper a new routing metric. The benefit of this
metric has been shown by simulations when
embedded into AODV protocol. Moreover, we started
implementing this metric in MecaZ. As a future work,
we plan to test this metric in a real WSN.
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Abstract

In this paper we present negative results for global
scheduling of arbitrary deadlines periodic systems under
EDF. We reconsider the definition of the idle intervals from
the uniprocessor case to the multiprocessor case. Unfor-
tunately, this new definition does not provide feasibility
results for these systems. We provide counter-examples
for the periodicity of EDF-feasible schedules in the multi-
processor case.
Keywords : scheduling, multiprocessor, global.

1 Introduction and existing results

Real-time systems are widely used in nowadays industry
such as spacecraft guidance or mobile phone communi-
cations. The correctness of a real-time system not only
relies on its logical result, but also on the time required to
produce it.

In this paper, we consider scheduling of real-time sys-
tems on multiprocessor platforms. For economical and
practical reasons, these systems are often preferable to
powerful uniprocessor architectures. However, specific
scheduling issues arise with multiprocessors, which need
a better understanding and justify our present contribu-
tion.

Real-time scheduling has been much studied since Liu’s
seminal paper in 1973 [1]. However, the research in the
field has mainly focused on uniprocessor platforms, while
in comparison only few results are known for the multi-
processor case. See a complete presentation of these re-
sults in [2].

We consider the model of a periodic task system [1],
where such a system is usually modelled as a set of el-
ementary units called jobs. A job Jj, (k € N*) is defined
by (rk, ek, dx) where ry is its release time, ey, its worst-
case execution time and dy, its deadline. In this model, the
job Jg, released at time r, must have finished execution
before or at 7, + di. A job is active from its release time
until its execution ends.

In this paper, the jobs satisfy the following assumptions:

(H1) Jobs are independent: the release time of a job does
not depend on the execution of another job.

Liliana Cucu
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(H2) Job preemption is permitted: a job executing on a
processor may be preempted prior to completing ex-
ecution, and its execution may be resumed (without
penalty) later.

(H3) Job migration is permitted: after its preemption,
a job may resume execution on a processor differ-
ent from the one upon which it had been executing
prior to preemption. In this case we deal with global
scheduling.

(H4) Job parallelism is forbidden: each job may execute
on at most one processor at any given instant in time.

Given a task system, a scheduling algorithm determines
at every time instant which job(s) should be executed.

We consider two set of jobs J and J’ which are identi-
cally except for the execution times. The jobs belonging to
J have execution times larger or equal to those of the jobs
belonging to J'. A scheduling algorithm is predictable if
when it schedules, separately, J and J’, each job of J’
finishes, always, before or at the same time as the corre-
sponding job in J.

This work. The scheduling algorithm EDF is already
proved predictable ([3]) in the multiprocessor case. It im-
plies that the periodicity of an EDF-feasible schedule (if
any) provides a feasibility interval'. To our best knowl-
edge, there is no result on feasibility intervals for global
multiprocessor scheduling under EDF.

In this paper, we reconsider the definition of the idle in-
tervals from the uniprocessor case to the multiprocessor
case. Unfortunately, this new definition does not provide
feasibility results for these systems. We provide counter-
examples for the periodicity of EDF-feasible schedules in
the multiprocessor case.

In this paper, we consider identical multiprocessors, i.e.,
all processors have the same computing power. We con-
sider, also, a discrete model, i.e., the characteristics of the
tasks are integers. Moreover, we assume that the instants
at which the scheduler makes decisions are equidistant.

The paper is organized as follows. In Section 2 we in-
troduce the main definitions and notations. Section 3

1

we understand by feasibility interval the finite interval such that if
no deadline is missed while considering only requests within this interval
then no deadline will ever be missed



presents EDF-scheduling and idle time related issues. In
Section 4 we provide a conjecture on the periodicity of
EDF-feasible schedules. We conclude in Section 5.

2 Definitions and notations

A periodic task T; = (0;,C;, D;, T;), i € N* is charac-
terized by an offset O;, a worst-case execution time C;, a
relative deadline D; and a period T;. Starting from O;, a
new job is released every T; time units. In other words,
the k’th job of the task 7; (k,7 € N*) is released at time
O; + (k — 1)T; and must execute C; time units before its
deadline occurring at time O; + (k — 1)T; + D;.

A periodic system is a finite system of periodic
tasks 7= (11,72,...,7n), ¥Yn € N* where 7;
(0;,C;, D;, T;),Vi € {1,...,n}. If there is a time instant
at which jobs of all tasks are released synchronously, the
system is said to be synchronous; otherwise the system is
said to be asynchronous.

The processor utilization U of the system 7
def o U; where U is

(11,72, ..., Tp) is the sum U =
def ¢,

the utilization of the task 7;: U; = 7,4 € {1,...,n}.
We are typically interested in feasibility and schedulabil-
ity problems, where we understand:

Feasibility Determining whether the task system 7 can
be executed in such a manner that all jobs complete
by their deadlines.

Schedulability Providing a scheduling algorithm which
gives a feasible schedule for the task system 7.

In the following, we note P def lem{T},T5,...,T,} and

Omax = max{O1,0s,...,0n}.

The scheduling algorithms considered in this paper are
deterministic, where a scheduling algorithm is said to be
deterministic if it generates a unique schedule for any
given set of jobs.

Furthermore, we shall distinguish between implicit dead-
line systems where D; = T;,Vi; constrained deadline
systems where D; < T;,Vi and arbitrary deadline sys-
tems where there is no constraint between the deadline

and the period.

3 EDF scheduling algorithm

Definition 1 (Earliest deadline first algorithm (EDF))
The earliest deadline first algorithm schedules, at every
time instant, the active job with the earliest deadline.

Definition 2 (EDF-schedulability) A system is EDF-
schedulable if and only if the schedule obtained using
EDF is feasible.

We present the main uniprocessor results on feasibility
intervals under EDF.
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Definition 3 (Uniprocessor idle time) On a uniproces-
sor platform, the time instant t is an idle time in the sched-
ule of a task system 7 if all the jobs which were released
prior to t have completed execution at or before t.

Definition 4 (Idle interval) A time interval [t1,ts]
(t1,t2 € N) in the schedule of a task system T is an idle
interval if it satisfies the following conditions:

o {1 <ty (its length is strictly positive)
o Vt € [t1,t2) NN, tis an idle time.

Theorem 1 (Idle time) [4] When EDF is used to sched-
ule a synchronous arbitrary deadline periodic task system,
there is no idle time prior to a missed deadline.

Theorem 1 is very useful in schedulability analysis, since
it reduces the length of the time interval which has to be
considered in order to decide EDF-schedulability on one
processor:

Corollary 2 In a uniprocessor platform, if a syn-
chronous implicit deadline periodic task system 7 is EDF-
schedulable on [0,t) where t is an idle time, then T is
EDF-schedulable.

Idle time results in multiprocessor systems. Theo-
rem 1 does not hold in a multiprocessor environment for a
synchronous arbitrary deadline periodic task system [5].
For instance, let 74 = (71, 72,73) be the synchronous
constrained task system with the parameters given in Ta-
ble 1. We consider two processors {p1, p2 }. The schedule
of this system, obtained using EDF, is given in Figure 1,
where gray filled squares correspond to p; and black filled
squares to p2. At time instant ¢ = 13, the active job of the
task 73 misses its deadline. However, the first idle time of
this schedule occurs at time ¢ = 6 and, therefore, there is
an idle time prior to a missed deadline, which implies that
Theorem 1 does not hold for synchronous arbitrary dead-
line periodic task systems, since we give a negative result
for constrained deadline periodic task system.

C. [ D, [T, [ U
| 3]6]6]05
7] 3] 6605
] 5|5 8] 3

Table 1: System parameters for 74

| 3 6 | 6|05
T | 3 6 | 6 |05
T3 | 4 5 8 105

Table 2: System parameters for 75



Figure 1: Counter-example for Theorem 1 in a multipro-
cessor system [5] (Table 1)

1 1 | | | | | | | | 1 1
13 15 17 19 21 23

Figure 2: EDF-schedule for 75 (Table 2)

All three tasks are heavy tasks in the sense that their den-
sity g— (> 0.5) is high. In particular, the task 73, which
misses its deadline at t = 13, has a density of 1, meaning
that any £’th job of this task must start its execution by its
release time and it has to be executed non-preemptively.

On the other hand, Figure 2 shows that if the utilization
of a task system 75 is slightly smaller than the utilization
of 74 (by decreasing the execution time of 73 from 5 to 4),
the missed deadline observed in Figure 1 may be avoided.
In this case, 75 is EDF-schedulable.

A direct consequence of the high utilization of 74 on Fig-
ure 1 is that the idle time which occurs at t = 6 is not fol-
lowed by an idle interval since new jobs are immediately
released at this same time instant.

This leads to the question whether the notion of an idle
time given in Theorem 1 remains actually relevant in a
multiprocessor environment. A better definition of this
instant could preserve the correctness of Theorem 1 in the
multiprocessor case.

Definition 5 (Multiprocessor idle time) In a multipro-
cessor environment, the time instant ¢ is an idle time in
the schedule of a task system T if all the jobs which were
released prior to t have completed execution at or before
t, and no job is released at t.

In contrast to the uniprocessor case, a multiprocessor idle
time must be followed by an idle interval where Defi-
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nition 4 is extended to the multiprocessor case. Does
this refined definition of an idle time preserve the valid-
ity of Theorem 1 in multiprocessor environments? Unfor-
tunately, the task system 7o whose parameters are given
in Table 3 shows that Theorem 1 does not hold. In 7¢,
the tasks have a slightly smaller utilization than in task
system 74 (Table 1). The EDF-schedule (on two proces-
sors {p1,p2}) given in Figure 3 shows that time instant
t' = 6 is an idle time, as defined in Definition 5. In
Figure 3 gray filled squares correspond to p; and black
filled squares to po. However, 73 misses its deadline at
t = 15 € [0,Omax + P) with P = 63. Therefore, The-
orem 1 does not hold in the multiprocessor case, even if
Definition 5 is used for the idle time.

If Ty = T5, the deadlines of the three jobs activated in
the interval [0, 6] coincide with time instant ¢ = 6. This is
a case of non-determinism in EDF, a problem considered
in [6] and whose resolution may have an influence on the
EDF-feasibility of the task system 7.

Ci D; | T; U;
| 3 7 7 | 3/7
o | 3 7|7 |3/7
5] 616|923

Table 3: System parameters for 7

Figure 3: Counter-example for Theorem 1 after the redef-
inition of the idle time (Table 3)

4 Periodicity starting time of
EDF-schedules revisited

In this section, we present negative results on the peri-
odicity of EDF-feasible schedules of arbitrary deadlines
periodic systems obtained.

Discussion on the periodicity In the multiprocessor
case, the periodicity of a feasible EDF-schedule does not
necessarily start at or before time instant ¢ = Oy, + P.
For instance, we consider asynchronous constrained dead-
line periodic task system 7p whose parameters are given
in Table 4. Figure 4 shows that 7 is EDF-schedulable
on 2 processors {p1, p2}, where gray filled squares cor-
respond to p; and black filled squares to ps. Moreover,
starting from Oy, + P + 2, the schedule is periodic
with period P. Since at time instants Oy, + P + 1 and



Omax + 2P + 1 the tasks are not scheduled in the same
manner (as highlighted on Figure 4), the periodicity does
not hold at Oy, + P for asynchronous arbitrary deadline
periodic task systems, since we give a negative result for
constrained deadline periodic task system.

In Figure 4, the difference in the schedules at time in-
stants t7 = Opax + P+ 1 and t5 = Opax + 2P + 1
comes from the non-execution of task 75 at ¢;. Thus,
the execution of 73 at t5 shows that there must exist
tor < to with 73 executed at ¢, — P and 73 not executed
at t5. In other words, the execution of 75 in time interval
[th, t5 + 1] is reported to time interval [to, to + 1], with
to > t,. This phenomenon appears in Figure 4, where
t1 = 17,ty = 29,t, = 27. The circles show the reported
execution time slots and the related arrows the new time
intervals of execution.

Figure 4 also shows that the report occurring a t = 27
actually results from task 7o preempting 75. By repeating
the previous reasoning for 75, we obtain that this preemp-
tion is the direct consequence of the report of execution
of 7 from ¢t = 24 to t = 27. Stepping backwards in the
schedule, a chain of preemptions appears, starting at time
instant ¢ = 13 where 79 preempts 73. This preemption
could not occur one hyper-period before (at £ = 1), since
7o had not been released yet. On the other hand, the pre-
emption chain ends at ¢ = 29, where the execution of 73
is reported from ¢ = 27 but can be scheduled in an idle
interval of the second processor.

O; | C; | Dy | T; | Uj
71| 0 2 3 3 12/3
™ | 4 3 4 4 | 3/4
73 | 1 3 6 6 | 12

Table 4: System parameters for 7p

Figure 4: Counter-example for a periodicity of the EDF-
schedule starting at time instant Oy, + P in the multi-
processor case (Table 4)

From these observations, we conjecture that, in the mul-
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tiprocessor case, the delay required by an EDF-schedule
to become periodic corresponds to the length of the pre-
emption chain which results from the specific disposition
of the offsets of the tasks in the system.

5 Conclusion and future work

In this paper, we showed that feasibility intervals obtained
in the uniprocessor case cannot be extended to the multi-
processor case. We also provided counter-examples high-
lighting differences with the uniprocessor case and con-
jectured a new result for the periodicity of EDF-feasible
schedules. As future work, we plan to give feasibility in-
tervals under EDF in the multiprocessor case, based on
our present conjecture.
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Abstract. The TURTLE UML profile particularly
addresses the formal verification of real-time and
distributed systems at their first development phases.
TURTLE has recently been extended with requirement
modeling capabilities based on SysML. Thus, system
requirements may be described using a formal and
graphical language offering temporal operators, and may
later be automatically converted to observers, the role of
which is to guide formal verification.

Keywords: UML, SysML, Real
Requirements, Formal Verification.
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I Introduction

TURTLE (Timed UML and RT-LOTOS Environment)
[APV 04] [APV 05] is a real-time UML profile [OMG
03] supported by TTool [TTOOL], a toolkit interfaced
with RTL [RTL] and CADP [CADP]. Formal
verification of TURTLE models relies on reachability
analysis, minimization techniques [MIL 89], and
observers [JAR 88]. So far, observers were designed by
hand, from informal requirements that were not part of
the TURTLE model.

The situation has changed when TURTLE was extended
with SysML [SYS 06] requirement diagrams. The latter
may include informal requirements expressed in natural
language. They may further contain temporal
requirements expressed in TRDD (Timing Requirement
Description Diagram), a visual language based upon
Timing Diagrams. An important result is that observers
may be automatically synthesized from requirements
expressed in TRDD and connected to the TURTLE
model of the system under design.

The paper is organized as follows. Section II surveys
related work. Section III overviews the TURTLE profile.
Section IV introduces the TRDD diagrams. Section V
sketches the principles of observer synthesis. Section VI
discusses some limitations of the proposed approach.
Section VII concludes the paper.

II Related Work

This section surveys various modelling techniques that
might have been used to extend TURTLE with a
requirement description language. It helps understanding
the rationale behind the definition of the TRDD language.

In KAOS (Keep All Objective Satisfied [LAM 06])
requirements are expressed by means of logic formulas
written in RT-LTL (Real Time Linear Temporal Logic).
KAOS also includes a method for goal driven
requirement elaboration. The KAOS tool Objectiver
[OBJ] enables analysts to elicit and specify requirements
in a systematic way and to achieve traceability from
requirements to goals. The interest of the KAOS
methodology is to formalize and trace functional and non-
functional requirements (including security, safety,
accuracy, cost, performance) throughout the design cycle.
In this paper, we also link (temporal) requirements to a
formalism and we integrate requirement capture and
requirement traceability in a methodology [FON 07] not
detailed here for space reasons.

Scenario based modelling techniques are also candidates
for temporal requirement description. The verification
process consists in matching [BRA 05] scenarios and the
model of the system. For instance, Timed Uses Cases
Maps [HAS 06] (see TUCM in table 1) describe Uses
Cases Interactions including absolute time with a master
clock and relative time constraint (Duration, Timer).
Also, Visual Timed events Scenario [BRA 05] (see VTS
in table 1) represent events interactions. An event
represents an action which potentially occurs inside the
system. VTS includes time representation. It may express
partial orders and relative time constraints between
events. Finally, Live Sequence Charts [DAM 01] (LSC in
table 1) extend Messages Sequence Charts (MSC) to
represent scenarios. LSC enable distinction between
possible and necessary scenarios.

Name TUCM VTS LSC
Reference [HAS 06] [BRA 05] [DAM 01]
Formal Clocked Timed Buicchi
Language Transition Computation Automata
Systems Tree Logic

Verification Model Model Checking Model
type Checking (UPAAL/Kronos) Checking

Tab. 1. Scenario-based visual languages with formal semantics

The scenario-based description languages discussed so far
have a formal semantics, and so has TRDD. We defined
observation points; the concept comes from VTS.
Nevertheless, TRDD does not implement a scenario



paradigm because the latter seems us not appropriate for
requirement capture and mostly geared towards the
analysis phase.

To reduce the gap between requirement capture and
formalization, temporal requirements might also be
represented using Timing Diagrams. The latter make it
possible to represent temporal requirements in an easy to
read and formal way. [CHO 05] gives timing diagrams a
formal semantics, based on Linear Time Logic. The
author indicates that partial order is not represented in
Timing Diagrams. The formalism used by the ICOS
toolbox [FRA 01] is similar. Real Time Symbolic Timing
Diagrams (RT-STD in table 2) are applied to SoC design.
Regular Timing Diagrams [AML 99] (see RTD in table 2)
improve the situation since they make it possible to
represent partial order between diagrams.

Name RT-STD RTD TRDD
Reference [FRA 01] [AML 99] This paper

Formal Blicchi Symbolic RT-LOTOS
Language Automata Values

Type of Model Model Observers
verification |  Checking Checking

Tab. 2. Visual Languages based on Timing Diagrams

Overall, the timing diagram paradigm turned to be the
one whose main concepts may be reused and adapted to
express temporal requirements. Therefore, TRDD is
based on timing diagrams.

III TURTLE

TURTLE (Timed UML and RT-LOTOS Environment) is
a SysML/UML profile for real-time system analysis and
design [APV 04] [APV 05]. The profile has a formal
semantics expressed by translation to RT-LOTOS [COU
00]. It is implemented by TTool [TTOOL], an open
source toolkit interfaced with two formal verification
tools: RTL [RTL] and CADP [CADP]. RTL implements
reachability analysis of the RT-LOTOS specifications
generated by TTool. CADP minimizes the graphs
generated by RTL.

Formal verification may be applied to the two groups of
UML diagrams customized by TURTLE: (1) analysis
diagrams (interaction overview and sequence diagrams),
and (2) design diagrams (class and activity diagrams).

TURTLE diagrams are edited using TTool. As shown by
Fig. 1, the latter translates all the diagrams into TIF: a
TURTLE Intermediate Form expressed in native
TURTLE [APV 05] which is made up of “basic” design
diagrams. TIF serves as a starting point to generate either
an RT-LOTOS specification or Java code. Java code
generation is out of scope of the paper.

The purpose of the work presented in this paper is to
reduce the gap between the requirement capture phase
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and formal verification. As suggested by Fig. 1, we
automatically generate observers from requirement
diagrams. Observers are translated into TIF and
connected to the TIF form of relevant class and activity

diagrams.
Formal Verification

N

_.#

Observers '
Automatic |
Synthesis .

- .

M= w=m === Generation
-t T ST T T _IGenera"oll TURTLE I_‘
i SystemModel | | Intermediate
I Analysis 1 Format

L} . 1

& LM | (TIF)
b . |
! 1
! 1

RT-LOTOS
Specification

e |

Fig.1.

Main functions implemented by the TURTLE toolkit

IV Timing Requirement Description Diagrams

A SysML requirement is a test case [SYS 06] stereotyped
by <<requirement>> and characterized by four attributes:
(1) an identifier; (2) a text (an informal description of the
requirement); (3) a type: “functional”, “non-functional”,
or “performance”; (4) a risk level: “high” or “low”
depending on whether the requirement is strong or weak,
respectively.

The TURTLE requirement diagrams in Fig. 2 include an
informal requirement and a formal one. Both address the
same system constraint: “the process must be completed
within 10 time units”.

A Requirement Diagram also describes requirement
refinement, derivation or verification. In Fig. 2, an
informal requirement (stereotyped by <<Requirement>>)
is derived (cf. the dependency relation stereotyped by
<<derive>>) into a formal requirement (stereotyped by
<<Formal Requirement>>). The latter will be verified
using an observer (stereotyped by <<TObserver>>).Thus,
the “formal requirement” serves as starting point for
formal verification; the fext in the informal requirement is
replaced by a Timing Requirement Description Diagram
(TRDD) in the formal requirement (fig. 2).

A TRDD describes one timing requirement. Again, the
TRDD in Fig. 2 refers to a process which must complete
within 10 time units. The process is defined by two
actions “Begin” and “End” that we call “observations
points”. The latter appears in the TRDD, which also
depicts a temporal frontier (equal to ten in this example).
The “temporal frontier” is introduced to distinguish
between two time periods denoted by OK and KO that
correspond to a requirement satisfaction and violation,
respectively.

Formal requirements such as the one in Fig.2 serve as
starting point to generate observers intended to guide



verification. As shown by Fig.2, an observer contains two
attributes. First, diagrams states whether the observer is
to be connected to the analysis or design diagrams of the
TURTLE model of the system. In this paper, we restrict
ourselves to design diagram verification and we ignore
analysis ones. Second, violated action specifies the label
(identifier) to be used by the observer to denote the
requirement’s violation. The same label will be used in
the reachability graph output by TTOOL and RTL, in
such a way one may easily establish a correspondence.
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Fig.2.  Requirement Diagrams in TURTLE including TRDD

V Observers synthesis

With observers, we extend the class diagram which
defines the system’s architecture and those activity
diagrams which define the behavior of the objects to be
observed. To every requirement defined by one TRDD
corresponds one observer’s class. We modify the
behavior and the interfaces of the system’s classes to be
observed in order to collect observation data and, if one
strong requirement is violated, to pre-empt the system’s
execution.

In TURTLE, objects communicate by rendezvous
(synchronization) offers @ la LOTOS. The observer and
the observed objects also communicate by rendezvous. Of
interest to us is the temporal operator which limits the
amount of time that may be allocated to offering a
rendezvous. That operator is named “time limited offer”.

Fig. 3 sketches the translation process between the TRDD
and the activity diagram of the observer associated with
the temporal requirement defined in Fig. 2. The Observer
behavior includes a time limited offer operator which
bounds the amount of time allocated to a process to offer
a rendezvous communication to its environment (see Step
2. in Fig. 3). The time limited offer starts just after the
“Begin” action was executed. The observer expects
“End” to occur before 10 time units (left path of time
limited offer). After 10 time units, the observer executes
the “Not_OK” action (right path of time limited offer).

Note: Observers synthesis algorithms and translation
tables are detailed in [FON 07].

Step 2. !
End
_v_

ll

(Step 1. First observation point “Begin”

Step 1. ;
Begin

Step 3. Observer’s behavior

N

Step 2. Temporal Frontier between
requirement satisfaction/violation
translated by a time limited offer of 10
time units of second observation point
“End”.

/Step 3. Label which represents the Mot _OK \
requirement violation defined in the
observer’s attribute. The observer =
n

stops if “End” occurs after 10 time
units

-

Fig.3.  Observer synthesis: an example

VI Limitations

The approach discussed in the paper works under the
following assumptions.

e  Observation points by which observers and TURTLE
objects may synchronize must not block the behavior
of the TURTLE objects. In other words, observers
must remain passive during the observation phase
associated with the requirement addressed by the
observer [JAR 88]. For instance, in Fig.3, if the
observer’s exiting action “End” occurs before
entering action “Begin”, the observer should be able
to accept rendezvous offers and therefore perform
synchronization actions in this unexpected order.

e  Parallelism limitation. 1f one observed action
belongs to two parallel processes (inside the same
object or not), the observer may deliver a wrong
diagnosis. We decide to build one observer per
observed object.

e Preemption processes. If a strong temporal
requirement is violated, the observer must pre-empt
all the system’s objects. This increases the state space
of the system’s behavior.

o Temporal indeterminism in the RTL tool. This
limitation comes from the RT-LOTOS semantics
associated with the “time limited offer”. The problem
arises at the date Tmax which fixes the upper bound
of the time limiter offer. At Tmax, the offer is

possible but not mandatory. Therefore, the
reachability graph contains two paths corresponding
to a requirement satisfaction and violation,

respectively.



VII Conclusions and Future Work

TURTLE is a real-time UML profile designed with
formal verification in mind. It particularly applies to
temporal requirement verification. The profile was
recently extended with SysML requirement diagrams.

The paper shows how SysML requirement diagrams are
supported by the profile. We insist on the possibility to
express formal temporal requirements using TRDD, a
visual language based on Timing Diagrams. The main
contribution lies in the possibility to automatically derive
observers from temporal requirements defined by Timing
Requirement Description Diagram. TTool inserts these
observers in the relevant design diagrams (class and
activity diagrams) as a premise to guide the verification
process.

The observer-based verification approach proposed in the
paper reuses the RT-LOTOS code generator included in
TTool as well as the RTL verification tool. TTool also
generates java code from TURTLE models. We plan to
extend the proposed approach to the deployment phase of
communicating systems. Observers will be generated in
Java in order to become probes for a Java simulator.
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Abstract triggered network is the Full-Duplex Switched Ethernet

(FDSE). FDSE network nodes have an exclusive point-to-

In the recent years, the Ethernet technology has grown point link connected to a central Ethernet switch. Even
rapidly, mainly due to its applicability in local area net- low-cost solutions of the FDSE show high switching per-
works. High data rates, low cost, collision reduction with formance with low latency and jitter in the range of tens
the full-duplex approach and the elimination of chaining of microseconds [4]. When two end nodes exchange traf-
limits inherent in hubbed Ethernet networks have made fic over a simple star topology with one switch, it is en-
the switched Ethernet a dominant network technology. Al- sured that other nodes are not interfered by the traffic due
though the switch technology has improved significantly, to the switching capabilities in the central switch. Based
the delays appearing in the switches are still not accept- on realistic automotive network scenarios, we assume the
able for time critical applications. This is specially the following:
case when several cascaded switches are applied. Within
the scope of developing a new network architecture for
the in-vehicle communication, the time constraints of a
switched Ethernet network are addressed in this paper. In
order not to exceed the delay bounds of time critical appli- e The number of time-triggered nodes is limited in the
cations in the automotive field, a cost-effective approach controlled environment
is proposed and analyzed for several cascaded switches.

e The amount of time-triggered traffic is small com-
pared to the amount of event-triggered traffic such as
bulk and multimedia traffic

e Event-triggered traffic is not utilized for high priority
control applications unlike the time-triggered traffic

1 Introduction o Allowed delay and jitter for time-triggered traffic is
larger than switch latencies (Analyzed in Section 3).

In current automotive communication systems, a sig-
nificant number of network nodes utilizes a time-triggered
communication concept [1]. The nodes obtain network
access at specific time periods, also called time slots.Several approaches [5] have been introduced for real-time
Since it is ensured that there is no other network traffic Ethernet switched networks, especially in the automation
during that time slot, the assigned transmitting network field. However, those solutions are optimized for indus-
node can exclusively use the network resources at thattrial control applications where bulk and multimedia traf-
time. This leads to very short delay times in the transmis- fic are not present. They either employ specific hardware
sion. An example for such a system would be the Flexray like ProfiNet [6] and EtherCAT [7], or adapt protocols
bus [2], where in practice 4 to 20 network nodes commu- limited for industrial use like the Ethernet Industrial Pro-
nicate by using total cycle times of 1 to 5 milliseconds.  tocol [8]. The cost of such solutions does not scale to
A different approach is followed in event-triggered net- the automotive sector, where a large number of samples
works. Here, the nodes may obtain network access atis needed for a model range of cars. Another interesting
any time instant. Therefore, it is generally not possible to approach is introduced by RTNet [9] that provides a more
transmit event-triggered traffic over a time-triggered net- flexible solution for time critical applications with stan-
work. Since event-triggered traffic may happen at any dardized hardware components. However, RTNet does
time, it would disrupt time-triggered traffic in dedicated not allow to connect event-triggered network participants
time slots [3]. A very special representative of an event- to a switch connected to time-triggered nodes.

e Event-triggered nodes may not be equipped with the
functionality to detect time slots
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In this paper, we introduce a low cost and flexible switch-
ing mechanism for FDSE networks that can be utilized by
both, time-triggered and event-triggered data.

Introduction to the latencies of store and
forward switches

2

Today’'s Ethernet switches may support priority
scheduling by containing two or more output queues per
port, where for high and low priority data different queues
with different QoS levels are reserved. Depending on
the related scheduling schemes, the switch scheduler al
ternates between the priority queues as shown in Fig.1.
Priority identification can be performed based on physical
Ethernet ports, MAC addresses, priority tagging accord-
ing to IEEE 802.1p [10] or higher layer information.

Independent of the applied scheduling algorithm, packets

High priority queue
(waiting area)

Arrivals P 4 Departures
Classify Schedule

Low priority queue
(waiting area)

Figure 1. Priority queues in a switch port

in the queue with the highest priority can be delayed due to
head-of-line-blocking (HoLB) as it is illustrated in Fig.2
with an example. Head-of-line-blocking is a common

additional delay for small packet

—

time

Figure 2. Head-of-line blocking

problem for networks conveying different sized packets
[11]. The delay occurs when a high priority packet enters
its related queue while a large packet from a lower prior-

3 Cooperative time slot mechanism

3.1 Performance analysis for cascaded switches with
a constant data rate

When using a time slot mechanism in a switched net-
work, it has to be ensured that frames are always trans-
mitted within the respective time slot intervals. For store
and forward switches the frame size may vary as much as
the transmission still fits into the respective time slot. De-
pending on the network topology, the delay on each trans-
mission path may consist of one or several switch delays.
In the following, we consider several cascaded store and
forward switches between the sender and receiver nodes.

In order to manage both, the time-triggered and the event-
triggered applications in a network, we propose different
prioritized queues for switch ports. As a compromise, two
gueues per each port, one for the time-triggered and one
for the event-triggered data seem to be sufficient. We call
this approachCooperative time slot mechanism, be-
cause it enables the interconnection of time-triggered and
event-triggered devices via one switch. Figure 3 shows
this idea for one switch, two event-triggered and two time-
triggered nodes. The time slots are generated by a clock
generator connected to the switch. In the case of TDMA-
based synchronization, the clock is treated like a time-
triggered node, because it can access the network only
within a time slot. As mentioned in Section 5, the incom-

Device with Hiah oriorit
knowledge of gh p Yy
time slots Low priority
Device without
knowledge of
time slots
Switch with E E
2 queues/port

Clock generator

Device without  Device with
knowledge of  knowledge of
time slots time slots

Figure 3. Cooperative time slot mechanism

ity queue is being sent. In general, the delay for a packet.

passing a switch can be written as:

tsw = tsf + tsp + thotb (1)
Heret,; represents the store-and forward timg, repre-
sents the switch processing time amng;;, the delay due
to head-of-line blocking [12]. In the following section,
we analyze the impact af,,;, in the packet end-to-end
transmission time.

ing packets are assigned to appropriate queues depending
on their priorities. Time-triggered packets are assigned
to the high priority queue while event-triggered packets
are routed to the low priority queue. If a time triggered
node sends a data packet to an event-triggered node, it
first uses its respective time slot to access the network at
the predefined time. In the switch, the data packet will be
forwarded to an appropriate queue due to its destination
address and priority. The packet will be sent to the event-
triggered node as soon as required resources are available.
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If vice versa, the event-triggered node sends the packet to
the switch as soon as the required resources are available
In the switch the packet will be forwarded to the appro-
priate output queue and sent in respective time slots to the
time-triggered destination.

In order to determine the efficiency of the cooperative time
slot mechanism, we calculate the end-to-end worst case
latency for the time-triggered data caused by store and
forward switches. We first need to make certain assump-
tions about the network we are dealing with. Following
assumptions are set forth:

Maximum time-triggered nodes

e All switches in the network are store and forward
switches with the values defined for the switch de-
lay .., in equation (1)

4
Number of cascaded switches

5 6 7

¢ All receiving and sending ports are functioning inde-

pendently (HW router and full-duplex) Figure 4. Maximum number of time-

triggered nodes with  t,,= 10 us, Prr = 64
bytes, Pgpr = 1518 bytes, t.y..= 2 ms and
b = 100 Mbit/s as a function of the number
of switches (solid curve) compared with
a network with different bit rates b, = 100
Mbit/s and b, = 1000 Mbit/s (dashed curve).

e Packet source and sink are separated Byitches

e There is no gap between the time slots for the high
priority data transmission

Equation (2) gives the store and forward delay as a func-
tion of the high priority frame sizeHr7) in bytes and the
transmission bit ratéin bits/s. In the same way, Equation

(3) considers the fact that head-of-line blocking is caused syitched Ethernet network a tradeoff should be made be-
by frames of the siz&’z . tween the number of time-triggered nodes and switches

_ Prp-8 according to the results achieved in Figure 4. In the

lsf b (2) same way, the number of possible time-triggered nodes
in a switched network can be calculated depending on the

thot = Pgpr -8 3) size of the event-triggered packets entailing head-of-line
b blocking. Figure 5 shows the result when assuming three

In a time slot method, the maximum number of time-
triggered nodes depends on the cycle timg., the num-
ber of cascaded switchesas well as the worst case switch

switches between the packet source and sink. According
to Figure 5, the larger the event-triggered frame size is,
the lower the number of time-triggered nodes should be in

delayt,,,. Considering the assumptions mentioned above, order to be able to fulfill the timing requirements.
equations (2) and (3) and a constant network throughput

capacity between the packet source and sink, we achieve3.2 Performance improvement with high data rate

a numberk for the possible time-triggered nodes in the inter-switch connections

network: So far, we analyzed the performance of the cooperative
time slot mechanism for time-triggered applications in a
network with a constant transmission rate of 100 Mbit/s.
However, the performance of a switched network can be
improved by optimizing its design. Considering a design
In the worst case, the low priority pack&g+ entailing with two different throughput capacities, i.e., 1000 Mbit/s
the head-of-line blocking has the maximum packet size, segments for the inter-switch connections and 100 Mbit/s
e.g., 1518 bytes for Ethernet packets while the high prior- segments for the connections to end nodes, we continue
ity packetPrr is small, e.g., 64 bytes. By applying equa- our calculations in the following. The number of possible
tion (4) and the minimum switch processing timg = 10 time-triggered nodek can now be calculated as:
us from [12], we achieve the result presented in Figure 4

for the number of time-triggered nodes depending on the )

number of cascaded switches in the network. It can be

seen that the possible number of time-triggered nodes dewhereb; is equal to 100 Mbit/s ands, is 1000 Mbit/s.
creases by increasing the number of switches. This resultFigures 4 and 5 show the corresponding improvements
confirms our statement that the delay caused by switchescomparing with the results achieved by only 100 Mbit/s

influences the entire transmission time. In order to ful- segments. It can be seen that by optimizing the network
fill the time-triggered communication requirements in a design, the number of possible time-triggered nodes in-

k= teycle — teycle
Totsw n-(tsgt+tsp+thoin)

_ cycle
- Prr -8 P8
e (FEE= . ZEES)

(4)

teycle
P8 Prr 8
+%+(n_1)4(%+

- (5)

PpT-8

Prr 8
3 by

n-tsp+7l
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Figure 5. Maximum number of time-

triggered nodes with  t,,= 10 us, Prr = 64

bytes, n = 3, tcyce=2 ms and b = 100 Mbit/s

as a function of Pgr (solid curve) compared

with a network with different bit rates by [5]
= 100 Mbit/s and b, = 1000 Mbit/s (dashed

curve).

[6]

creases significantly for the same number of cascaded
switches and event-triggered frame size.

4 Conclusion and future work [7]

In this paper, we have discussed the possibility of
transmitting time-triggered traffic in combination with
event-triggered traffic over Full-Duplex Switched Eth-
ernet networks. A new approach called Cooperative
Time Slot Mechanism has been introduced. By taking [8]
advantage of parallel queuing mechanisms in switches,
the method allows time-triggered and event-triggered
traffic to pass switches without interferences. The [9]
approach is based on the assumption that event-triggered
traffic is made up of bulk or multimedia traffic with
generally lower priority than the time-triggered traffic. [10]
The analysis of delay restrictions shows the possibility
to design such a network by limiting the number of
switches, or limiting the size of event-triggered frames, or
by adding high data rate inter-switch connections. Based
on the choice of parameters, a network can be realized t0[11]
support time-triggered and event-triggered traffic without
the need for two separate networks. In the future work,
we will analyze the possibilities to add event-triggered [12]
traffic with high priority to the Cooperative time slot
mechanism. Furthermore, synchronization mechanisms
for the time-triggered traffic will be investigated.
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Abstract — In this paper we present the application able tools. Finally we conclude with preliminary
of abstraction techniques for automata models. Weesults and future work.

give an overview on a state-of-the-art method to reduce

the complexity of an automaton model without loosing||. PREDICATE ABSTRACTION

essential information on the behavior of the modeled

system (predicate abstraction). We focus on the applitn predicate abstraction the system is described as
cability of the presented methods, especially on modelg set of logical formulas [3], [4]. The idea is to
that are directly extracted from the C source code of &ind an appropriate abstract description of the sys-

system. We present the process for automated mOdﬁsz that can be mapped to the concrete transition
extraction that yields an automaton model we can use

for a verification and testing framework. We show howSyStem' A transition system is giver_1 .by a set of
to apply different abstraction techniques on a case studyptates@, a set ofsymbolsy, the transition func-
from the automotive domain and evaluate the resultindgion f, aninitial state go and a set oficcept states
state space reduction. F'. The transition system is defined by a set of tran-
sition rules. Each rule defines a transition func-
Keywords: ~Modeling, Abstraction, Predicate Ab- tjon f. An execution of the system is a sequence
straction, Model Checking, Test Case Generation of statesgo, 1, ..., gn, Gns1, Wherego is the initial
state andy;+1 = f(¢;) with 0 < i < n. An ab-
I.  INTRODUCTION straction functione maps a set of concrete states
Formal methods, like model checking [1], can beto a_ SeF of abstr_act states, while reversely ¢ba-
used to verify a system or for the automated genergre'uzatlon functiony maps the abstract states to the

ation of test cases to test the system [2]. For boﬂ?oncrete states. In detail, the abstract system is de-

the verification and test case generationaatoma- Ined by a concrete system and a set giredicates:

ton modelof the system has to be built. This can be¢1’ $2,..., on. EaCh statey, of the abstract state

done manually by a human by analvzing the svstersPace is an assignment to the indices 1 through
ually by a hu y yzing YSTENY the abstract form of the stage: of the concrete

and modeling the relevant aspects of the system as
transition system. Another way to derive a model isstate space:
to automatically extract it from a description of the 44 = @(qc) whenevewi : ¢4(i) = éi(qc).
system given as C source code. Especially the sec-A detailed introduction to predicate abstraction
ond approach lacks of the state space explosion f&@n be found in the master thesis from Satyaki Das
the model, because all the system behavior (includStanford University, 2003) [5].
ing the semantics of the C program statements) is The main challenge is to find suitable predicates
directly transformed into the automaton model. Thefor the abstract system, in this way, that the result-
resulting model has to be further adapted to simplifying abstract system shows the same behavior as the
the model, and thus to reduce the state space. underlying concrete system regarding to the system
The article is organized as follows: Section 2 deproperties. That means, that a properihat holds
scribes the principles of predicate abstraction. Iron the original concrete system should still hold on
Section 3 our approach for the model generation ishe abstract system, whereas a propértyhich is
explained. In Section 4 the appliance of abstracviolated in the concrete model should also be not
tion techniques to our case study is shown. Secvalid within the abstract representation. A common

tion 5 gives an overview on related work and avail-technique to automatically determine the abstrac-
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tion predicates is callecounterexample-guided ab- ;¢ test(int x, int a) {
straction refinementThe atomic predicates in the | ¢ (x == 1) {

verification condition are used as the initial set of _ x=10:
predicates. Then the abstract system is constructed. } else if (a==2)]
If a property that holds on the concrete system can x=20:
still be verified on the abstract model, the abstrac-, } else |
tion process was successful, otherwise an abstragt X=X+1:

counterexample is produced. If a concrete coun-,
terexample exists that corresponds to the abstracgt}
trace, a concrete counterexample has been detected.
Otherwise the abstract counterexample can be an-
alyzed and used to discover new predicates for the
predicate abstraction. Figure 1 [4] shows the princi-

ple of counterexample-guided predicate abstractionz VAR

3 sequence_nr: O0..255;
4 v0O x 0..255

Listing 1: C source code

Emain

Concrete System

X Property verified 5 Vl a 0 . 255,
e L. Abstraction and —
Verification Condition Model Checking 6 m (3\|
Initial Predicates 7 ini t(sequence_nr); = 16;
Abstract Counterexample 8 next (Sequence_nr) . = case
9 sequence_nr= 2: 1,
Discovered Predicates Countx?rexample 10 Sequence_nl’: 5: 1,
Checking and 11 sequence_nr= 8: 1,

Predicate Discovery Counterexample found

12 sequence _nr= 12 & (vl a=2) : 5;
13 sequence nr= 12 & ! (vl a=2) : 8;
sequence nr= 16 & (vO x=1) : 2;
sequence_nr= 16 & ! (vO_x=1) : 12
16 €SaC;

17 next(v0_x): = case

18 sequence_nr= 2. 10;

19 sequence_nr= 5: 20;

20 sequence_nr= 8. vO x + 1;

esac;

Figure 1. Counterexample-Guided Predicate Ab—i:
straction [4]

I1l. MODEL GENERATION

As mentioned before, we need an automaton modéi
for purposes of verification and test case genera-
tion. This model is automatically extracted from
the C source code. This is realized by static anal-
ysis of the C source code, building the syntax tredV. APPLICATION OFABSTRACTION TECH-
and interpreting the basic statements of the syntax =~ NIQUES

tree to generate the automaton model. The model ||§

. or our verification and testing framework we used
formulated in the automaton language of the model . . .
: .. .. acase study from the automotive domain provided
checker NUSMV, we are using for our verification

. by one of our industry partners. The case study is
and test case generation framework. .
a control system given as an ANSI-C program. It

Listing 1 shows a small C program, for which the has approximately 500 lines of code and inhabits
automatically generated NuSMV-model is given in16 variables, thirteen of them of boolean data type,
Listing 2 (the additional variablsequencenr rep-  two 16-bit integers and one (unsigned) 8-bit inte-
resents the program counter). ger. The control flow graph has 76 branches. In
the first pass the model is extracted in a straight-
forward way. This yields a model with a state space
http://musmv.irst.itc.it/ of approximately 27140 states. The applied model

Listing 2: NuSMV model
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checker NuSMV is not able to deal with models of V. RELATED WORK

this size. In a second phase we are simplifying the _ ) ) .
model by the application of a method, we want toFirst works concerning abstraction considerations
refer asdata type reductionAnalyzing the automa- for quel checking techniqugs were published i.n
ton model yields the interesting result that within theth® mid of the 90's, to mention the master thesis
program execution not all values of a variable ar®f Long Model Checking, Abstraction and Com-
indeed assigned to the variable. That means, from BoSitional Verificationat CMU (Carnegie Mellon
variable defined as an 8-bit integer, only a discreté/Nniversity) [6], works from Clarke et al. [7] and
list of actual values is used within the program and™lur et al. [8]. Experiences with a prototype im-
thus has to be considered in the model. Depenoqlementatlon for predicate abstraction are described

ing on, whether a list of values or value ranges havé! Das etal. [3]. The principle atounterexample-

to be modeled, the data type definition of a vari-guided refinemens described in Clarke et al. [9]
able can be reduced to the definition of an enumer?’ Das et al. [4]. ~Alternative approaches for au-
ation of concrete numbers or the specification of 0mated abstraction are using proofs of unsatis-
list of equivalence classes. Applying this simpli- fiaPility, introduced in McMillan and Amla [10],
fication method yields in a model that has a stat®' thread-modular abstraction refinemeftsing
space of 253 states. The model checker NusMmyfréad-modular assume-guarantee reasoning), de-
has no problems to process this model. Last but noicribed in Henzinger et al. [11]. Also works from
least, we identified predicates for further abstracShankar (SRI International) have to be mentioned,
tion of the model. The predicate-based abstracte@yhere deduction is used to construct a finite-state
model is again verified against all the system prop@PProximation of a program that preserves the prop-
erties that hold on the original model, to ensure thaf'ty Of interest [12]. Recent works deal with the im-
the predicate abstraction has not affected the systeRfovement of the efficiency of automated abstrac-
behavior. Integrating this last step of abstraction relion téchniques, for instance Das and Dill [13],
sults finally in a model with a state space of o~ggHenzinger et al. [14], Clarke et al. [15] or Henzinger

states. The model checker NuSMV performs wellt al- [16].  Ball (Microsoft Research) et al. de-
on models of this size. scribe boolean and cartesian abstraction for model

i ) . checking C programs in [17]. The techniques are
Tab_le 1 summarizes the _apphed abstraCt!or?mplemented in tools like C2BP (a tool for auto-
techniques and.t'he model size of the resultlnqnatic predicate abstraction of C programs) [18] or
models. In ad_dltlon also_a manual model of theSLAM (a model checker, that integrates predicate
system was builtExtrModis the extrz_:lcted model, abstraction with heuristic approximations) [19], fur-
DTRedrefers to t_he data type r_educt|dhredAb§tr thermore the model checker BLAST [20] also in-
stands for predicate abstraction ahthnMod IS corporates automatic abstraction. Another tool for
the manual model. The numbers are given as thSutomated abstraction for ANSI-C programs based
state space of the different representations of th8n predicate abstraction is SATABS, described in
automaton model. Clarke et al. [21]. This tool also supports the model
checker NuSMV, we are interested in.

ExtrMod | DTRed | PredAbstr| ManMod

2140 253 239 243 VI. PRELIMINARY RESULTS AND FUTURE
WORK
Table 1: Comparison of Model Size So far, we are able to generate an automaton model

automatically from the C source code of the system

we want to formally verify and we need for the auto-
Reducing the state space with the above describadated generation of test cases. With the introduced
methods improved the performance and scalabilitgbstraction techniques we achieved a significant re-
of our verification and test case generation frameduction of the model size and thus an improvement
work significantly. of the performance of the applied model checker.



38

Due to the availability of others tools that incorpo-
rate abstraction refinements automatically, we plan[8]
to evaluate a predicate abstraction tool (e.g. SA-
TABS) to our case study and compare the results
with our preliminary results achieved in the ongo-
ing research project. The above mentioned relate

works and tools have been also applied to industrial

Yo

case studies, but it has to be evaluated of which com-
plexity the treated case studies were. Many modgh ]
checking techniques are, in general, only applied to
systems dominated by boolean variables and char-
acterized by a simple control flow graph. The casdl1]
studies we are concerned with in the recent research
project are, amongst others, adaptive control sys-
tems and it has to be analyzed, how applicable th[elz]

methods described in this paper are to this kind of

systems.
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Abstract some scheduling algorithmd. A penalty functionP(r;)

is defined for the task. IF; < d;, P(r;) = 0; other-
A soft real-time task is one whose completion time is regise P(r;) > 0. The value ofP(r;) is a non-decreasing
ommended by a specific deadline. However, should tgction of F; — d;. The penalty function of a given
deadline be missed, such a task is not considered to hesgeduling algorithmd for a given setl” is denoted by
failed; only the later it finishes, the higher the penalty that(7) = >"" | P(7;).
is paid. For a set of soft real-time tasks that are to be
scheduled on a single machine, our objective is to min-|n fact, the problem under study in this paper occurs
imize the total penalty paid. This optimization problenh overload conditions where it can not guaranteed that all
is NP-hard. We give a formal definition of this problemasks can meet their deadlines. In this case, itis compelled
Then, we determine an upper bound for the optimal solig- miss some deadlines, while we aim to minimize the
tion of the problem. Numerical results that compare tgnalty that should be paid.
upper bound with the optimal solution are also provided.

Keywords: soft real-time tasks, upper bound, penalty The only fact known about our problem, as is true
minimization, optimal scheduling algorithm, simulatiofior most of the problems in this class, is that it is NP-
results. hard [8]. Recently, there has been a lot of progress

in the design of approximation algorithms for a vari-
. ety of scheduling problems in the aforementioned class
1 Introduction [9, 2, 16, 3, 1, 5, 6, 10]. Also, in real-time literature,
i . several scheduling algorithms have been proposed to deal
The purpose of a real-time system is to produce arespops, overloads. For instance, one may refer to [4, Chapter
within a specified time-frame. In other words, for a real anq the references therein. A relevant and recent work
time system not Or_"y_ the logical correctness of the S¥8°[15], in which the problem is studied for the special
tem should be satisfied, but also it is required to fulfillyse of non-preemptive tasks (see Section 2). The authors
the temporal constra}lnts of the systgm. Although missingyressed a more general problem in [13]; namely, the
deadlines is not desirable in a real-time systeaft real- cheqyling of a set of preemptive soft real-time tasks (see
time taskscould miss some deadlines and the system Wih(ion 2) where the objective function is to minimize
still work correctly while certain penalties will have to by total penalties that should be paid for the deadlines
paid fpr the deadIine_s missed. In this paper, we focus QHissed. In [13], we provided a class of heuristic algo-
attention on scheduling of a set of soft real-time tasks. \jihms and presented simulation results and compared the
Consider a system that consists of a set of soft reglformances of the proposed algorithms. In this paper,

time tasks,T" = {71, 72, ..., 7} Taskr; is asoft real- ;e derive an upper bound for the optimal solution.
time task, meaning that the later the taskfinishes its

computation after its deadline, the more penalty it pays.the remainder of this paper is organized as follows. We
A release timer;, an execution time; and a deadline j,iroqyce the terminology in Section 2. In Section 3, we
d; are given for each task, < 1" (see Section 2 for theqrmally define the problem to be solved. In Section 4,
definition of these terms). The finishing time of eac\y\],e find an upper bound for the objective function, and
taskr; € T, denoted byF;, depends on the schedulye provide an algorithm that finds the optimal solution.
ing algorithm which is used to schedule the execution ¢f.o run time of the algorithm grows exponentially with
the tasks [14]. Suppose that the tasks are scheduleqy nymber of tasks. Then, in Section 5 we present the

*This work was supported by the Natural Sciences and Engineerﬂg‘;‘n.l-"ation reISUItS and_ compare t_he upper bounq with the
Research Council (NSERC) of Canada. optimal solution. Section 6 contains the conclusions.
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2 Terminology A slot is the smallest time unit.
The objective is to minimiz&_" , P(r;). Therefore,

For a given set of tasks thgeneral scheduling problemye can formally express the objective function as follows.
asks for an order according to which the tasks are to jbgt us define

executed such that various constraints are satisfied. For a

given set of real-time tasks, we want to devise a feasible 1 ifthe processor is assigned to task
allocation/schedule to satisfy timing constraints. The tim- z; ; = at time slott
ing properties of a given task, wherer; € T, refer to 0 otherwise

the following [11, 12, 17, 7]:

Our goal is to minimize the objective function

e Release timéor ready time(r;)): Time at which the
task is ready for processing.

> (ri+ aiei — di) TP, 2
e Deadline ¢;): Time by which execution of the task i=1

should be completed. subject to the following conditions?_,z; , = 1, which

e Completion time(;): Maximum time taken to com- Means only one processor is working at any given time
plete the task, after the task is released. t,andX2,z;, = e;, meaning that the total time slots
assigned to any given taglover time is equal to its exe-
e Finishing time ¢}): Time at which the task is fin- cution time.
ished:F; = C; + ;. As mentioned earlier, the problem defined in this sec-
tion is known to be NP-hard. Thus, the only known al-
gorithm for obtaining an optimal schedule requires time
that grows exponentially with the number of tasks. It is

e priority function Priority of taskr; is defined as rel- désired to find an upper bound for the objective function
ative urgency of the task. Priority function is the reihich, unlike the optimal algorithm, it would be compu-

ative urgency of a task in a given algorithm. tationally feasible. The upper bound may also be useful
for design and comparison purposes.

e Penalty factor £;): Penalty that should be paid per
each time unit after the deadline of task

e Executiontimed;): Time taken without interruption
to complete the task, after the task is started.

4 An Upper Bound

e Makespan factord;): Ratio of C; toe;, i.e.,a; = PP
Cj/ej, wheree; andC; are respectively the execuy, order to determine the upper bound, we refer to the
tion time of taskr; and the completion time of theeq,it5 in [13] and select the priority function of an algo-
task in the schedule. This factor depends on sch(?ﬁiﬁm, namely algorithmss, which has the best solution

ule. as compared with the other algorithms discussed in [13].
The priority assigned to each task in algorittfiy is in
HRE non-decreasing order @, /¢;, where for a given task;,
3 Problem Definition P; ande; are respectively the penalty factor and the exe-
cution time.

Consider a sef’ = {1, 7, ..., 7} Of n soft real-time

tasks. There exists one processor. The tasks are preem){/€ find the upper bound as follows. As mentioned in
tive and aperiodic. For each task we assume that, S€ction 2C; = a;e; is maximum time taken to complete
¢;, P, andd; ,which are respectively the release time, eX2€ task, after the task is released. Therefore,

ecution time, penalty factor and deadline of the task, are n n
known. @ie; = it > ent > e,
We define the penalty function of taskas k=1, =1,
P;/e;<Pp/ep m<ri<Fy Pj/e; <Pp/ep,r;<r<F;
3
P(r;) = (Fi — di)* P, (1) (3)

wherer;, is any task which has arrived beforg has a
whereF; = r; + aye; is the finishing time of task;, a; higher priority thanr;, and has not been finished when
is the makespan factorf > 1), and T, arrives, andr; is any task which arrives after; and

has a higher priority tham;, and finishes beforé;. As a

n F,—d, fF,—d;>0 matter of fact, a task cannot be preempted more than once
(Fy —di)" = { 0 otherwise. by another task.
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It can be verified that of priorities, which are assigned to a set of n soft realtime
" " tasks. Then, we call algorithm for any individual per-
Z e + Z e < mutation of priorities, which computég’ | (F;, —d;)* P,
pary oy for each of them separately. Finally, we find the mini-
Pj/e;<Pp/ep,r<ri<F} Pi/ei<Pp/ep,ri<rp<IF;

mum of X7, (F; — d;)* P; that corresponds to the opti-
Z 4y Malschedule. The running time of the optimal scheduling
Z ¢ (4) algorithm proposed in this sectiond¥n!).

i=1,
P;/e;<Pj/ej

, WhereY™" =1, represents sum of . .
W Z,,/P/F ex eP SUMOTs - Simulation Results
the execution times of the tasks that have arrived before

7;, but their execution in not finished when taslarrives, We have implemented the optimal algorithm and com-
and their priority is higher than the priority of task and _ . ; ;

" - e represents sum of the executiovﬁUted the upper bound for = 1,2, -,8 for simula

Py Jei< Py onirs <y <Fi on purposes and comparison. Simulation conditions are
times of the tasks that have arrived after tasnd before as follows. Each set of data includessoft real-time
the finishing time of task;, and their priority is higher tasks. For each task, we randomly generatee;, d;

than the priority of task;. and P;. When randomly generatingj, the condition that
Therefore, from (3) and (4), we obtain the following, + r; < d; should hold. We generate 20 different data
inequality sets with sizen and execute the optimal algorithm and
. compute the upper bound on each data set. We compute
@i€i < €+ Z € the average of the aggregations of the termination times of
Piel< B le; the 20 simulations for data set with size The simulation

is done for the algorithms for = 1 to 8.
The optimal algorithm findsnin X7, (F; — d;)*T P,
where F; is the finishing time of task;. Figure 1 com-

Therefore, we conclude that

n

Z(” +age; —d)"P; < pares the results of the simulations by plotting the penalty
=t to be paid versus the number of tasks. Note in the figure

+ that the upper bound coincides with the optimal solution

- - atn = 1. Also, we observe that the ratio of the upper
Z it et Z ej—di| P bound to the optimal solution is less than 1.09. We have
=1 Piel <Py /e also computed and plotted, in Figure 2, the upper bound

We hence obtain the following upper bound for the optflgr the penalty to be paid versus the number of tasks for
mal penalty function n = 1,2,---,500. Note that while it is computationally

infeasible to find the optimal penalty far> 8, our upper
n bound can be easily calculated for large numbers of tasks.
min r; +aze; —d;) TP
> )
i=1
+

n n 6 Conclusions
SZ i +ei + Z ej—d; | P;.(5)
i=1 T8 In this paper, we studied the problem of scheduling a set

of soft real-time tasks under overload conditions such that
Note on the right hand side of (5) that all of the parantae total penalty to be paid is minimized. The problem
eters in this upper bound are known before scheduliiggNP-hard. In other words, it is not known whether an
and it is not needed to run a scheduling algorithm @ptimal schedule can be found in polynomial time.
find them. Also, the upper bound can be calculated inWe have provided an upper bound for the objective
O(n?) time, wheren is the number of tasks, while find-function. The running time of computing the upper bound
ingmin """ | (r; +a;e;—d;) T P; is an NP-hard problem.is O(n?), wheren is the number of tasks. Therefore, it is
We need to find the optimal solution to compare it witfeasible to compute the upper bound for a set of large real-
the results of the upper bound and do not claim that ittime tasks in a short time. In order to determine the upper
the best possible optimal algorithm for the problem. Imound, we selected the priority function of an algorithm
order to find the optimal solution, we use the following/hich has the best solution as compared with the other
steps: we find all of the! possible permutations of ordeialgorithms discussed in [13].
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Abstract

DARTS (Design Approach for Real Time Systems)
[Gom93] is a sofiware design method for real time
systems. LabVIEW (Laboratory Virtual Instrument
Engineering Workbench) is a graphical application
development  environment developed by National
Instruments  Corporation based on the dataflow
representation of the “G” language [Lab98][Cot 01].
LabVIEW is implicitly multithreaded and has high level
functions for communication/synchronization, allowing it
to be used as a programming language for
control/command and soft real-time applications. In
order to help a designer to develop a real-time
application, we propose the library DARTSVIEW, which
simplifies the passage from the conception of a
“multitasking”  application to the implementation
[NGO3]. One can use DARTSVIEW in different phases of
the life cycle of a real-time system software. The last
version of DARTSVIEW, allows to define in XML several
real-time programming normalized languages, and to
generate a part of the code for different specific
programming languages (Ada, POSIX 1003.1, VxWorks,
OSEK/VDX, etc.). The flexibility introduced by the use of
XML allows a designer also to generate some code
targeting real-time scheduling analysis tools in order to
achieve the temporal validation. The objective of this
article is to present an overview of DARTSVIEW, a
Toolkit for DARTS in LabVIEW, the role of DARTSVIEW
in the software life-cycle, and some perspectives for the
extensibility of this Toolkit in the future.

1. Introduction

The “concurrency” is one of the problems that we
have to face frequently in real time systems. A concurrent
system has many activities (or tasks) occurring in
parallel. Usually, the order of incoming event is not
predictable and these events may overlap [Gom93]. So
several tasks may handle the data-acquisition at different
rates, some other tasks may be dedicated to the
calculation of commands, and some others to the
commands of several devices. When these activities (or
tasks) synchronize and communicate, the conformance
with rules of the mutual exclusion, of the
synchronization, and of the communication is actually a
key issue to be addressed:

- mutual exclusion is the mechanism for ensuring that
only one process at a time performs a specified action .
Hence, it guarantees shared access to data (or resources)
to the tasks,

- synchronization is the control of the execution of two
or more interacting processes so that they perform the
same operation simultaneously. It allows to block a task
until another one awakes it,

- communication is a mechanism permitting the tasks
to exchange the data.

DARTS (Design Approach for Real Time Systems) is
a software design method, which emphasizes the
decomposition of a real-time system into concurrent tasks
and defines the interfaces between these tasks. In a
DARTS diagram, each task is presented by a
parallelogram (Fig. 1). It can be either a hardware task
(released by an external event, such as an interrupt or a
real-time clock), or a software task (released by another
task) [NGO3]. DARTS can be used as a conception
method for multitask systems (including real-time and
control/command systems), since it focuses on the task
decomposition, and thus is really close to the
implementation process [CGOS5].

Loosely-coupled
Mlessage Queus
45'7 Rendez-vous
4:'— Synchromzation

Figure 1: Elements of a DARTS diagram

Information Hiding hodule

Ewent (mterrupt_IT, real-tune clock HET,..)

LabVIEW (Laboratory Virtual Instrument Engineering
Workbench) is a graphical application development
environment in the G language. LabVIEW is very well
suited for data-acquisition, signal processing, and (soft
real-time) control/command of process. The LabVIEW
programming language is naturally parallel: when parts of
the data flow are independent, the runtime can map them
in several system threads. However, the difference
between the notion of parallelism in LabVIEW and the
semantics of dataflow associated in the G language does
not allow to make a direct communication between them
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by a dataflow (in this case, the second function has to
wait for the completion of the first one in order to start its
execution). Therefore, following the work of [Gev98],
LabVIEW integrates intertask communication tools.

During several case studies, we realized that it was
quite interesting to help the designer to create a multitask
application in LabVIEW with DARTS based bricks
provided as a Toolkit named DARTSVIEW, in order to
get past of the classic multitask implementation process,
and to focus on the behavior of the tasks.

One of the important roles of DARTSVIEW is to help
the designer to represent a DARTS diagram directly in
LabVIEW. And in the software life-cycle like the classic
V model given on Figure 2, the functional aspect of the
system may be tested.

e
[ Architectural .
| Design
Detailed | 4
Design \ /

Figure 2: Software life-cycle in V
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The temporal validation usually consists in a
schedulability analysis based on a temporal model of the
tasks [CDKMO02]. The target programming language will
likely be an imperative language (like C-based, Ada), and
several tools can be used, Response-Time Analysis based,
like MAST [MASTO1], or building a feasible schedule,
like PeNSMARTS [Gro99]. The choice that has been
made for DARTSVIEW was to use the flexibility of
XML for the temporal validation in the same way as it
has been used to generate program in several
programming standards: an XML model can be used to
output a task model in the required format of several
validation tools.

Therefore, in this case the software life-cycle based on
a classic V model would be extended with the second V
porting the workstation code whose parallel behavior has
been tested on the workstation, and on the embedded
target. The Figure 3 represents a software life-cycle in W,
and the role of DARTSVIEW in this life-cycle.

Architectural
Design

Detailed
Design

Implementation

Validation

N Integration
A

Ada,
“iWarks,
POSIE,
OSERMDR,

1
- s

Figure 3: Software life-cycle in W

In the sequel, the following aspects of DARTSVIEW
approach will be presented: section 2 presents the main
multitasking LabVIEW concepts, and how these concepts
are used in DARTSVIEW v7.1. The DARTSVIEW
Toolkit and a case study are presented in section 3.
Section 4 presents some perspectives.

a4

2. DARTS and multitasking LabVIEW
concepts
The implicit notion of parallelism inherent in

LabVIEW allows multitask programming transparently:
in fact, two loops running in parallel are mapped on
different threads, and hence are executed in parallel. This
characteristic permits to implement directly an
abstraction of the tasks based on a DARTS
representation. So, in LabVIEW a task DARTS can be
simply modeled by an infinite While loop. However, the
difference between the notion of parallelism in LabVIEW
and the notion of data flows in G language does not allow
exchanging the data directly between the tasks. Then this
section presents how LabVIEW implements the
interfaces between these tasks.

2.1. Task synchronization

Synchronizing two tasks consists in introducing a
precedence constraint at a certain place of code: the
destination task has to wait for an event sent by the
source task in order to execute an action. In DARTS,
synchronization between two tasks is presented on Fig. 4.
For this type of synchronization, programming languages
usually use a counting semaphore [CG05]. However the
Semaphore tools proposed after LabVIEW v7.1 are
bounded semaphore (LabVIEW requires that a
semaphore can not have a count greater than its initial
count). In order to solve this problem, we had to modify
the implementation of the task synchronization in the way
that firstly we decrease the count of a semaphore to 0,
and then the release of semaphore must be verified to
insure that the count is always smaller than or equal to the
initial count.

2.2. Loosely-coupled communication

The communication is the transfer of data from one
task to another. It is either based on a send and forget
paradigm (see Fig. 4) when the size of the message queue
is unbounded, or when a recent message replace the
oldest one, or on a producer/consumer paradigm when the
size of the queue is bounded and no message can be lost
(default behaviour of the message queue tool in
LabVIEW).

We notice that after LabVIEW 7.1, the data is casted
to a variant data type, and allows sending a message of
any data type to the message queue. Retrieving the
message consists in casting back the variant to the
original data type. LabVIEW is checking the coherence
when casting from a variant type to another data type, so
the user can not make any typing mistake without being
warned at runtime.

In the send and forget paradigm (see Fig.4), the
writing consists in emptying first, and then writing into
the message queue in order to replace the oldest message
in the case it would not have been read by the time the
new message is sent. So the producer could send a
message and then continue its execution without care of
the reception of it in the consumer. This communication



is very useful in the case of dense task producer; it allows
to control the reception-rate in the task consumer.
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Figure 4: Message queue with replacement

2.3. Tightly-coupled message communication

The synchronous message communication,
represented by  the  tightly-coupled  message
communication (Ada 83 rendez-vous), is a mechanism
with which the producer sends a message to the
consumer, and then immediately waits for a response (a
message, or an event). In LabVIEW, this kind of
communication can be implemented by two message
queues (hence one for the producer, another for the
consumer). A model of producer is presented on Figure 5:
the producer firstly sends a message to the queue of the
consumer, and then waits for the response sent by the
consumer in order to continue its execution. The model of
consumer is symmetric.

Send a message Wait for a response
; ‘

oDooooooon

/
Ooooooooo
i SR ]

" Task

ODoooooooo

]

Figure 5: Producer, Tightly-coupled message
communication with response

In the case of the tightly-couple message
communication without response, the message queue for
the consumer might be replaced by a tool of
synchronization (i.e., a semaphore in LabVIEW) for the
signal of the consumer to the producer when it receives
successfully the message sent by the producer.

2.4. Information hiding module (IHM)

Information hiding is used as a criterion for
encapsulating data stores. In DARTS, IHMs are used for
hiding the contents and representation of data stores and
state transition tables. When an IHM is accessed by more
than one task, the access procedures must synchronize the
access to the data [Gom93]. The Figure 6 represents a
simple implementation of IHM in LabVIEW. An IHM for
encapsulating data stores of type “Reader/Writer” is
compounded of two atomic operations, Read and Write,
acting on an internal data. Note that we use a message
queue of size 1 to store this data, and a counting
semaphore of size 1 too in order to insure atomicity.
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Hence, writing consists in emptying the message
queue firstly, and then inserting the new value, while
reading consists in getting the data value without
destroying it. For the other IHMs (i.e., IHM de type
Multiple-Readers/Writer, State Transition Modules,
Device Interface Modules, etc.), thanks to the VIs in the
palettes “Queue” and “Semaphore” of LabVIEW, we

Empty the message queus

Defouit value

%
. 0
[essage somue ey
[

[Ecainting semaphor=] — J
0 gid}

Read the massage withou! detraoving i

could implement them easily and intuitively.

Figure 6: Communication by IHM
3. DARTSVIEW Toolkit

The DARTSVIEW Toolkit is presented on the Figure
7. It is a LabVIEW library abstracting the DARTS
concepts into LabVIEW programming elements. The
library has four mains palettes, named “Hardware Task”
(task is activated by either a real-time clock or an external
event), “Software Task” (task is activated by another by
means of the synchronization/communication tool),

% |
| £ DARTSVIEW
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“Communication Tool”, and “Generate Code”.

Figure 7: DARTSVIEW Toolkit
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The designer of a real-time application can program
his system directly from the DARTS conception, and will
obtain a program that can be tested, and used in order to
generate some code targeting different real-time
programming standards or temporal validation tools. To
illustrate the role of DARTSVIEW in a W life-cycle, a
simple example is presented on Figure 8. This is a
building’s heating system; its brief behavior is the
following: the ignition system is run if the air (controlled
by a fan) and the gas (controlled by a valve) are supplied.
If during the operation of the system one of these two
sources is closed, or the combustion is turned off, an
alarm will be raised.

Thus, depending on the states of the sensors (the
toggle switch state, the thermostat, the thermocouples, the
flow meters, etc.), a central control task decides to send
the commands to the tasks commanding the actuators,
while another task is in charge of calculating the



difference between the actual temperature and the
required one.
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Figure 8: DARTSVIEW diagram of a heating
system

The DARTSVIEW diagram on Fig. 8 is really similar
to the DARTS diagram. Thanks to the simple and
intuitive implementation, the designer could create in
LabVIEW a software simulator in order to test the global
behavior (the functional aspect) of the tasks system in the
first V of the W life-cycle by means of the DARTSVIEW
diagram. Moreover, all of the information about the tasks
system will be recorded, and will be generated to the
designer in form of a XML document (see Fig. 9) for the
use in the second V of the W life-cycle: code generation.
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Figure 9: XML representation

LabVIEW allows a rapid development of a control/
command or soft real-time application, but it is less used
for embedded hard real-time systems. Several standards
and proprietary extensions are used, depending on the

application  area  (aerospace,  aeronautics,  car,
manufacturing, UAYV, electronic devices...): Ada,
ARINC 653, OSEK/VDX, POSIX 1003.1, VxWorks,

TRON, etc. So it is convenient to find a flexible way to
be able to generate the specific multitask code parts
targeting these languages/standards from DARTSVIEW.
The same problem arises when we want to generate the
code in order to validate the application by a third-party
tool. A flexible choice seems to be the use of XML in a
schema of the code generation from DARTSVIEW like
the one shown on Figure 10. A new standard or third-
party tool is then targeted by LabVIEW using an XML
file to describe the code generation for the tests, the
calculation of the temporal parameters of each task, and
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the feed-back of these results to the DARTSVIEW
model. Consequently, thanks to DARTSVIEW the time-
to-market of the development of system will be better
than the one using the traditional approach.
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W XML file mdependent of

Generate XML e
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specific lmgnage )
h 4
Greneration of Generate U Code Generate Ada Code Generate code
coile speahc o " Tor the temporal
1R - POSIX | Ada Standard g
@ g feplice wvalidkation tools
PR = VaWorks
algnage

- OSEKNDX

Figure 10: Schema of code generation from
DARTSVIEW

4. Conclusion

DARTSVIEW Toolkit is a helpful tool for the DARTS
development of control-command applications in
LabVIEW, as well as a helpful tool for the development
of embedded applications using a target language based
on a specific standard or proprietary library. The use of
XML-DTD facilitates the generation of code from the
DARTSVIEW model, and allows the designer to choose
a third-party tool for the validation of the timing
requirements.

DARTSVIEW Toolkit is already used as a first
multitasking environment for students in two French
schools.
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Abstract Two different strategies to manage flash memory can
be distinguished. The first one is the design of specialized
Flash memories could be a basis for mass storage with file systems such as JFFS [11], YAFFS [1] and LogFsS [4].
real-time guarantees if a suitable model for access tim- The second strategy is to emulate a block device on top
ing could be established. To characterize the operation of flash memory. The Flash Translation Layer (FTL) [5]
timing of removable flash media such as Compact Flashis an example as well as all removable flash media such
(CF) and MultiMedia Card (MMC), we propose a set of as CompactFlash [3] or MultiMedia Card [6]. With the
benchmarks. The results of our study indicate that a sim- exception of the xD Picture Card (which we did not test)
ple timing model for current media cannot be established. all removable flash media consist of one or several flash
The timing of individual read and write operations de- memory circuits and a microcontroller which emulates the
pends on the address and block size of accessed data ablock device by providing the communication interface
well as the written bit pattern. Many timing anomalies to the outside, translating protocol commands into flash
were observed. memory accesses and keeping track of wear-levelling.
The file system approach has attracted considerable re-
search attention. For example, efficient techniques for ini-
tialization and crash recovery [13] as well as efficiently
managing metadata information [2] have been published.
) Removable flash media, on the other hand, did not at-
F_Iash Storage Media, Flash Memory, Worst-Case ACCesstract the same amount of research. Media comparisons
Time, Embedded Systems in technical journals or the web usually focus on achiev-
able throughput only [8]. No thorough analysis concern-
1. Introduction ing real-time access timing of removable flash media is
known to the authors. The goal of this study is to obtain a

In the past, quite some research efforts have been maddirst impression on the subject.
to analyze hard disk access timing and to establish pre-
cise timing models [9]. Unfortunately, today’s hard disks 2. Experimental Setup
are very complex systems. Most of their inner workings
are hidden from the user and must be deduced by com-  Because removable flash media cannot be opened with-
plex experiments [12]. The continuous capacity and (to a out destruction we relied on black-box testing only. We

lower degree) bandwidth improvements require sophisti- designed a suite of seven simple tests to reveal the follow-
cated techniques. Hence, as Ruemmler concludes, accesgg properties of the media:

operations cannot be modeled with any accuracy [9]. As a
component for hard real-time systems, hard disks usually e dependence of timing on accessed address,
are not used with explicit timing guarantees.

The advent of flash memories has changed this situa-
tion. Because they provide a very simplistic interface and
operation timing is usually well-documented (cf. [10] for
example), it seems that they could be the basis for mass
storage with very precise and easy-to-determine access , jdentify and quantify potential caching or buffering
timing. In comparison to hard disks, a new quality of (read, read-ahead, write)
timing predictability for soft and hard real-time systems
seems possible. Additionally, flash media are very robust e try to deduce the erase block size by measuring the
and therefore ideal under rough conditions. time to write blocks of different sizes.

Keywords

e dependence of timing on accessed block size,

e dependence of timing on written and overwritten bit
pattern,
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As an example, to assess a potential timing influence - Posiioned ReadWrite Time of 4 64KIB Blocks
of the accessed address, we measured the time to read and read
write four consecutive blocks of 64 KiB at ten different 350
positions across the medium. Describing all tests in detail | !
is beyond the scope of this paper. We refer the interested : % %
reader to [7]. 3 2 i SR R R

All tests were performed on an AMD64 Athlon 3000+
with 1 GiB RAM running Linux 2.6.18. The media were
accessed via a USB 2.0 Hama card reader with a GL819
chip. No other devices were connected to the USB. Dueto o
the comparatively long operation times we deemed stan-
dard Linux suitable as measurement platform.

To estimate the influence of the card reader onto the % 50407 Te+08 150408 2408 25040t
measured performance some of the measurements were Postion @tes
reiterated with a different card reader under otherwise  Figure 2. Time to access a 64 KiB Block at
identical conditions. A difference could be noticed but different Locations (CF 256 MiB Toshiba)
is negligible.

All read and write operations were performed on raw
devices without any file system. A total of 19 different
media were analyzed, among them Compact Flash (CF),or)Iy, removable .fla}sh media seem to exhibit very deter-
Secure Digital (SD) Card, Memory Stick (MS) and Mul- MInistic access timing.
timedia Card (MMC).

200

Total Time (ms;

150

50 ¥ ¥ F ¥ ¥ ¥ + + +

3.2. Sensitivity of Position

3. Results Some but not all media have a special short access time
for write operations at address 0. Figure 2 shows an ex-

3.1. Data Throughput ample.

We begin our analysis with a conventional performance
test. The achievable throughput for read and write ac- Positoned Read/Wrto Time of 4 641GB Blocke '
cesses is measured depending on block size. i

Figure 1 shows an exemplary result. For small block
sizes below the physical erase block size throughput is
limited by overhead. As soon as the transferred block size =«
reaches the erase block size, maximum throughput can beg
observed. As in the depicted example, these limits usually

differ for read and write operations.

70

60

Total Time

50

Sustained Read/Write Bandwidth 40

T
read raw —+—
write raw ---x--+ 30

7 +
+ 20

0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09 1.6e+09 1.8e+09 2e+09
Position (Bytes)

s ’ Figure 3. Time to access a 64 KiB Block at
different Locations (CF 2 GiB SanDisk)

Bandwidth (MB/s)
IS

2 Writing four 64 KiB blocks from address zero needs
between 24 and 48 percent less time than writing the same
amount of data to other locations. Additionally, the timing

+%

s i s 6 o4 250 T04 of writing an individual block varies considerably except
Blocksize (68) for address 0. The read operation is not affected.

Figure 1. Data Throughput for different A possible partial explanation could be that the VFAT

Block Sizes (MS 32 MiB SanDisk) file system stores its main metadata structure, the File Al-

location Table (FAT), at that address. Frequent write ac-
cesses to that location are therefore very likely and are
Usually, write operations are slower than reads, but we consequently optimized by the controller.
also observed identical maximum read and write band- The same phenomenon was observed for a more recent
widths for modern CF media. By looking at throughput medium as depicted in figure 3. Again, writing to address
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zero is considerably faster than to any other address. Furnomenon could only be observed for exactly one medium.
ther, writing to address 1 GiB is especially slow. Note also Many other media exhibit poor access performance for
the high read and write timing variance. very small blocks but the performance follows more or
Another anomaly is depicted in figure 4. Here, all read less the “classic” smooth curve and can be attributed to
operations above 256KiB need more than triple the time normal overhead increase.
than reads below that boundary (150 vs 44 milliseconds). Figure 6 depicts a similar phenomenon. This time,
Write timing is uniform across the medium. It seems that reading small blocks is anomalously slow. Whereas for
block sizes between 1 and 1024 KiB read and write oper-
Posiioned ReadWiie Time of 4 64KiB Blocks ations behave inconspicuously, reading with a block size
L, e of 512 Bytes slows down pathologically. Reading 1 MiB
of data requires over 10 seconds on average; in the worst
case more than half a minute is needed! We have no ex-
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Figure 4. Time to access a 64 KiB Block
at different Locations (MMC 512 MiB Ex- 5000
trememory)
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two different flash memory circuits were used for that spe-  Figure 6. Time to access 1 MiB with Blocks
cific medium. of constant Size (MMC 512 MiB Extremem-
ory)

3.3. Sensitivity of Block Size

As figure 5 indicates, some media have an ex-
tremely poor write performance when accessing very planation for that phenomenon so far. Neither a different
small blocks. In our benchmark, exactly one megabyte MMC medium of different size nor media of different type
of data was written using blocks of a constant size. The did exhibit a similar anomaly.
block size was varied and the time necessary for complet- A similar poor access performance for large block sizes
ing all write operations was measured. As can be seen,has not been observed.
write operations with block sizes 2 KiB need almost
a magnitude of order more time to complete. This phe- 3.4. Sensitivity of Written Value

A third influence factor on access speed is the actual

w000 Sustained ReadWite Time ' value to be written. For one medium, writing the value
e e e Oxff needs approximately 284 milliseconds, whereas writ-

i . ing any other bit pattern needs only 252 milliseconds.

7000 More common is the reverse case: writing 0xff needs

6000 lesstime than writing other values. A tentative explana-

tion for that phenomenon could be that setting all bits cor-
responds to an erase operation whereas writing a pattern
containing at least one zero bit requires an additional op-

5000

4000

Total Time (ms)

3000 eration after the erase. Usually the difference is below 10
2000 percent of the average write time, but in one case the 0xff-
oo b write needed 158 milliseconds whereas the generic write
. : : . . needed up to 260 milliseconds.
25 i e 256 1024 Sometimes, also the overwritten value influences ac-
cess timing, but the impact is negligible.

Figure 5. Time to access 1 MiB with Blocks Some media exhibit almost no sensitivity on write bit
of constant Size (CF 256 MiB Toshiba) patterns. The MMC from figure 6 performs all four 64

KiB writes in 44.5 + 0.3 milliseconds.
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3.5. Caching collect a reasonable amount of interesting timing data to
We could not detect the existence of any read or read-assess our results.
ahead cache in the media we analyzed. Because the pre- An interesting question is whether our set of bench-
dominant access order for mass storage is strictly sequenmarks is adequate for fully characterizing access timing
tial, a read cache would hardly improve performance. On of a removable flash medium. Many of the measurement
the other hand, a read-ahead cache seems only reasonabgrameters such as the number and size of the blocks to
when there is some kind of penalty for late read accessesaccess were chosen arbitrarily. Therefore, we do not have
(such as the rotational latency in hard disks). a guarantee that we actually really captured worst case
In a single case (an SD card of 1 GiB size), our test timing. As an example, analyzing the influence of the ac-
indicated the existence of a write cache. The idea of the cessed position on timing needs refinement. Additionally,
test is to write several consecutive blocks of random datawe did not investigate whether access timing changes dur-
to pollute a potentially-existing cache, read a single block, ing media lifetime. These and other questions are subject
write random data to that block and read it again. In the of further research.
presence of a write cache, the second read operation will As a next step of our project we plan to analyze raw
perform much faster than the first. flash circuits in a similar manner. The Memory Technol-
In the described case, we measured an average of 1®9y Device (MTD) abstraction of Linux seems a suitable
milliseconds for the first and almost no time for the sec- basis for that. We hope that direct access to flash mem-
ond read operation when accessing blocks of 512 bytesory willimprove timing predictability. Having established
size. For all other tested block sizes (1 KiB, 2 KiB, ..., a firm timing model for elementary flash operations, we
1 MiB), both read operations needed identical times. Be- want to simulate and analyze the real-time properties of
cause the test only succeeds for one block size, we are notypical flash file systems such as JFFS2 and LogFS.
sure whether we really identified a cache or simply an-
other timing anomaly. Certainly, that aspect needs further References
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Abstract

This paper presents a comparison of two worst
case response time analysis methods in the context of
transactions. In the general context of tasks with off-
sets (general transactions), only exponential methods
are known to calculate the exact worst-case response
time of a task. We focus more precisely on mono-
tonic transactions. In this context, we present the fast
and tight analysis, proposed in [7, 6], and the analy-
sis technique of monotonic transaction that we have
proposed in [14]. We compare them on a case study
and on several configurations generated randomly.

Keywords: Response Time, Transactions

1. Introduction

The Response-Time Analysis [1] is an essential
analysis technique that can be used to perform
schedulability tests. Tindell proposed in [11] a new
model of tasks with offset (transactions) extending
the model of Liu and Layland [5]. Since the transac-
tions are non-concrete(the transaction release times
are not fixed a priori), the main problems is to de-
termine the worst case configuration for a task under
analysis (its critical instant). Tindell showed that the
critical instant for a task under analysis (7,,) occurs
when one task of higher priority in each transaction
is released at the same time as 7,,.

An exact calculation method has been proposed
in [10], but has an exponential complexity and is
intractable for realistic task systems; Tindell [11]
has proposed a pseudo-polynomial approximation
method providing an upper bound of the worst-case
response-time. Later, this approach has been im-
proved in [4, 6, 7, 8]

In the sequel, we present the model of tasks with
offsets (a.k.a. transaction), then we present the best
known approximation method proposed by Turja and
Nolin [8]. Section 4 presents the monotonic transac-

tions exact analysis [13] and these two methods are
used on the same tasks system. In the last section
their performance are compared on randomly gener-
ated transaction systems.

2. Model of transactions

A tasks system I' is composed of a set of |I'| trans-
actions I';, with 1 < 4 < |T;| (where |T;| is the number
of elements in the set T';).

r {Fl,rg,..,r|p|}

L {ra, 7z I}
T+ < Cij, 045, Dij, Jij, Bij, Pij >

Each transaction I'; (see figure 1) consists of a set
of |I';| tasks 7;; released at the same period T; , with
0 < j < |I'|. Without loss of generality, we suppose
that the tasks are ordered in the set by increasing
offset. A task 7;; is defined by : a worst-case execu-
tion time (WCET) C;;, an offset O;; related to the
release date of the transaction I';, a relative dead-
line D;;, a maximum jitter J;; (the activation time
of task 7;; may occur at any time between ¢y + O;;
and to + O;; + Jij, where tg is the release date of the
transaction I';, a maximum blocking factor B;; due
to lower priority tasks (e.g. priority ceiling protocol
[9]), and P;; is its priority (we assume a fixed-priority
scheduling policy). The figure 1 presents an example
of transaction I'; composed of three tasks with period
T, = 16.

Let us note hp;(7,,) the set of indices of the tasks of
I'; with a priority higher than the priority of a task
under analysis 7,4, assuming that the priorities of the
tasks are unique.

3 Fast and Tight Analysis

This method provides an efficient implementation
to calculate an upper-bound of the worst-case re-
sponse times t[7] The main idea is to represent the
periodic interference function statically, and during



Figure 1. Example of transaction.

the response-time calculation, to use a simple lookup
function in order to compute its value. The interfer-
ence imposed by the transaction I'; on a task under
analysis 7,, during a busy period of length ¢ starting
at the release of 7,, and corresponding to the release
of 7. is noted Wi(7yq,t) (i is then called the criti-
cal instant candidate in T';). In order to simplify, we
suppose no Jitter in the transaction (i.e J;; = 0).

t*
Wic(Tuast) = > (({?J + 1) * Cij — wz‘jc(t)>
JERP; (Tua) ¢
t* = t— <I>¢jc
cbijc = (Ti + (Oij - Ozc)) % T;
Ge(t) = 0 for t* < 0
Lije o max(0,Ci; — (t* % T;)) otherwise

®,;c is the phase between 7,. and 7;;. x;jc(t) cor-
responds to the part of the task 7;; that cannot be
executed in the time interval of length ¢ (note that
this part is the main difference between the methods
presented in [4] and [7]).
In order to find the critical instant, one would have to
compare every combination of critical instant candi-
dates, making the exact test intractable. The fast and
tight analysis method consists of creating a global in-
terference function W;(7yq4,t) for each transaction T';,
in choosing the maximum value of each interference
function.

max

WilTua, t) = Veehp: (Tua)

Wic (Tu(m t)

The figure 2 shows the graphical representation of
the interference of a transaction : each curve repre-
sents the interference function for each critical instant
candidate. Since the transaction is in normal form,
the derivative of each curve is either 0 or 1. W;(7yq,t)
that has to be computed is the maximum of all the
curves. The efficient implementation proposed in [7]
stores the set of points Pj., where each point P;.[k]
has an x (representing time) and a y (representing
interference) coordinate. These points correspond to
the convex corners of the curve Wi.(7ya, t).

The calculation of the upper bound on the worst-case
response time R, of 7,, is obtained by an iterative
fix-point lookup.

0
Ru(z = Cua

RO = Cua + Y (Wi(Tua, RIL,))
I;erl

(1)
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Figure 2. Interference of transaction.

where W;(7yq,t) is deduced from the static represen-
tation of the transactions interferences.

3.1 Normal form of a transaction

Without loss of generality, we consider that all the
tasks of I'; have a higher priority than the task under
analysis 7,,. Since some tasks of a transaction may
have to overlap, issuing in an interference function
which derivative would be greater than 1, a normal
form of the transaction is first obtained using three
operations: order, merge, and split [7]. For each crit-
ical instant candidate 7;., the transaction I'; is put in
normal-form. We start with all the tasks numbered
in increasing ®;;. (phase between 7;; and 7;;). Thus
the task 7;. in the original transaction is named 7;;
at the beginning of the normal-form processing.

The underlying idea behind the merge operation is
that if two tasks 7;; and 7;;41 overlap, then the
longest busy period initiated by 7;; is always includ-
ing the longest busy period initiated by 7;;41. The
split operation is used when a part of a task has to be
executed during the next period of the transaction :
in this case the spilling task is splitted into two tasks.
The spilling part is taken into account as a task with
an offset equal to 0 in the second period of the trans-
action. Thus, since the tasks are numbered according
to the increasing value of ®;j., the tasks can be re-
numbered (ordering operation) in the second period
of the transaction. These operations are used until
no task in the transaction is forced to overlap on the
next one, and until no task is forced to spill in the
second period of the transaction.

Note that the first period of a transaction may differ
in the number of tasks from the second period due to
the spilling tasks.

Note that if a jitter has to be taken into account, this
operation has to be done for every critical instant
candidate.

3.2 Example

We apply this method on the transaction I'; that
contains twelve tasks with no jitter (J;; = 0). and the
task 7., with a WCET C,, = 9 and a lower priority



than all the tasks of T';.

;= {< TilTi2y «vey Til2 >,60}

Ti1 :<3,1,D;1,0,0,1 >
Ti2 :< 4,9, D;2,0,0,2 >
Ti3 1< 2,11, D;3,0,0,3 >
Tia :< 3,20, D;4,0,0,4 >
Tis 1< 4,29, D;5,0,0,5 >
Tie 1< 5,31, D;s,0,0,6 >

Ti7 :< 2,36, D,;7,0,0,7 >
Tig < 5, 43, Dig, O, 07 8 >
Tig :< 3,46, D;9,0,0,9 >
Ti10 ‘< 1, 49, DilO, 0, O7 10 >
Ti11 :< 4,56, D;11,0,0,11 >
Tit2 :< 2,57, D;12,0,0,12 >
Obtaining the normal-form for I'; for the critical
instant candidate 7;1: the three operations (order,
merge and spill), merge 73 in 742, Tig and 77 in 75,
T;9 and T;19 are merged in 7;5, and 7;11 is merged in
Ti12- The last task spills in the next period, thus the
second period of the transaction (and the following)

will have a additional task The resulting transaction
in normal-form, for the first period is:

Ti2 1< 678,Di2,0,072 >
Tia < 11,28,D~;4,0,074 >
Tie 1< 5,55, D;6,0,0,6 >

Ti1 < 37 07 Dil, 0,0, 1>
Tiz < 3, 19, D7;37 0, O7 3>
Ti5 1< 9,42, D;5,0,0,5 >
For the second period, the spilling time of the original

T;12 is taken into account in the first task 7;; of the

second period of the transaction, obtaining a WCET
of 4.

Ti1 :=<4,0,D;1,0,0,1 >
Tiz :=< 3,19, D;3,0,0,3 >
Ti5 (=< 97 427Di5707075 >

Ti2 :=< 6,8, D;2,0,0,2 >
Tia =< 11,28, D;4,0,0,4 >
Tie : =< 5,55, D;6,0,0,6 >

The same operation is done for all the task
candidates 7;. for ¢ = 2..12. The upper bound of
the worst-case response time is then obtained using
formula 1:

R, =9

t=9:Ri,=9+11=20
t=20:R2, =9+20=29
t=29:R}, =9+29=38
t=38:R., =9+29=38

Iteration 0
Iteration 1
Iteration 2
Iteration 3

Iteration 4

4 Monotonic Transactions

In this section we present the different steps of
monotonic transaction analysis [13, 14, 12]. Mono-
tonic transaction analysis relies on transactions for
which one interference curve (for one candidate) is
always greater or equal than the other curves. In
this way, it’s close to the concept of accumulatively
monotonic generalized multiframe task sets [2]. In
this case, if a transaction I'; is monotonic then the

critical instant occurs when the task under analysis
is released at the same time as the first task of the
pattern of the normal form of I';. Therefore, for the
case where all the transactions of the task system are
monotonic for a task under analysis, the computed
worst-case response time is exact.

Since there is only one possible candidate in a
monotonic transaction, there is only one normal-form
to compute.

4.1 Finding the monotonic pattern
Let I'} be the normal form of the transaction I';

where I'} :< {T*l,ri"z,...,ri*lrzl,ﬂ},ﬂ > and I['; :<

(3

{Til,TiQ, ...,TMF”,TZ-} ,T; >. Let us note:

aij = 0511y — (07 + CF) for 1 < j < |T7]

ajirs) = (Ti + O1) = (Ofjp=| + Ciir+))

where a;; > 1 since I'} is in normal form.

Note that since it’s not necessary to statically store
the interference function, there is no need to make a
difference between the first and the second period of
the transaction.

I'; is a monotonic transaction for the task 7,, (we

consider that all the tasks of I'; have a higher priority
than the one of 7,4) if the WCET of the tasks of I'}
have decreasing values while the idle slots a;; have
increasing values i.e: C’i*(p 41y S Cj, foralll < p <
IT7 | and avp < apqry for all 1 < p < [TF].
I"; is monotonic if we can find a monotonic pattern
in I'f by rotating the tasks of I'f. We know that for
a monotonic pattern the first task has the highest
WCET. In order to look for a monotonic pattern, we
start by inventorying all the tasks with the maximum
WCET. Then, we consider alternatively each of these
tasks 773 as the first task of the transaction I'} by ro-
tating the tasks of I'}; and we verify if the conditions
of monotony (on C}; and ;) are respected; if so, I';
is monotonic and 7};, become the first task of I'}.

4.2 Example

We apply this method on the same example as the
one we used for the fast and tight analysis.
We find I'} the normal form of the transaction I'; by
applying the operations of normalization process:

F: : {< Ti*laT:27"'7Ti*5 >,60}
7'7;*1 < 6,9,Di1,0,07 1>

7l 1< 11,29, Di3,0,0,3 >
75 1< 9,56, D;s,0,0,5 >

7':2 :< 3,20, D;2,0,0,2 >
T 1< 9,43, D;4,0,0,4 >

We have: o) = 5,0, =6,0)3 =3,0), =4,a); =4
There is a monotonic pattern starting from task 7
where:

Ciz2Ciy 2Cj5 >2Cj 2 Cy

* * * * *
a3 < gy < s < agp < Qg



Hence the transaction is monotonic, and the critical

instant of 7,, corresponds to the release of the task
75, we apply the iterative fix-point lookup in order
to calculate the worst-case response time of 7.
In the case of monotonic transactions, the two meth-
ods presented provide the same exact worst-case re-
sponse time with the same number of iterations in
the process of calculation, because in every iteration,
the task that initiates the critical instant is the same.
The only difference between these two methods comes
from the stage of static representation in the fast and
tight analysis (stage A) and the research of the mono-
tonic pattern for the method of monotonic transac-
tion (stage B). Stage A for n tasks requires at least
n normal-form processing, plus computing the static
tables. Stage B requires only one normal-form pro-
cessing operation and a linear complexity test in order
to check the conditions related to C; and o

5. Performance comparison and future
works

We have implemented the two methods in order to

compare their respective performance. The figure 3
shows that the time used by the method proposed in
[8]increases linearly with the number of transactions,
while the method proposed in [14] is less sensitive to
the size of the system when only monotonic transac-
tions are involved. The tests have been led on a Pen-
tium IV processor, for sets of 20 configurations per
number of transactions. The transactions are mono-
tonic, and contain 15 tasks, while the workload is
fixed around 0.8. The random generation system is
based on the UUniFast algorithm presented in [3].
The bound on the worst-case response time is the
same for both methods, since at this stage, montonic-
ity is more a characterization allowing an optimiza-
tion than a method by itself (it has still to be coupled
with the method of [8] because in a system of trans-
actions, the transactions don’t have to be all mono-
tonic).
In future works, we will use the monotonicity prop-
erty as a basement to introduce a new evaluation
method in order to decrease the pessimism of [8] for
the upper bound on the worst-case response times.
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Abstract

AFDX (Avionics Full Duplex Switched Ethernet, AR-
INC 664) used for modern aircraft such as Airbus A380
represents a major upgrade in both bandwidth and capa-
bility for aircraft data networks. Its reliance on Ether-
net technology helps to lower some of the implementation
costs, though the requirement for guaranteed service does
present challenges to system designers. An objective is to
prove that no frame will be lost by the network (no switch
queue will overflow). Several approaches have been pro-
posed for this evaluation. Deterministic network calculus
gives a guaranteed backlog upper bound, while simula-
tion produces more accurate results on a given set of sce-
narios. In this paper, we propose a stochastic network
calculus approach in order to evaluate the probability of
buffer overflow in a network node.

Keywords: Network Calculus, stochastic, backlog.

1. Introduction

The evolution of avionics embedded systems and the
amplification of the integrated functions number in the
current aircraft imply a huge increase in the exchanged
data quantity and thus in the number of connections be-
tween functions.

The solution adopted by Airbus for the new A 380
generation consists of the Switched Ethernet technology
which benefits from a long industrial use [1]. It allows to
have confidence in the reliability of the material and on the
facility of its maintenance. Hence aeronautical systems
can profit of a much more powerful technology than the
traditional avionics bus (Switched Ethernet / 100 Mbps).

AFDX (Avionics Full Duplex Switched Ethernet) [2, 3,
4] is a static switched Ethernet network. The full duplex
switched Ethernet technology guarantees that there are no
collisions on the physical links, compared with a vintage
Ethernet solution [8]. So, it eliminates the inherent in-
determinism of vintage Ethernet and the collision frame
loss. But, it shifts in fact the problem to the switch level

where various flows will enter in competition for the use
of the resources of the switches. This can lead to tempo-
rary congestion on an output port of a switch that can in-
crease significantly end-to-end delays of frames and even
lead to frame losses by overflow of queues.

Flows on an AFDX network are statically identified in
order to obtain a predictable deterministic behavior of the
application on the network architecture. The analysis of
the performance bounds for queues is necessary in order
to dimension correctly the application. This analysis has
to evaluate, on the one hand an upper bound on the back-
log of a switch, on the other hand the distribution of this
backlog. The first one is mandatory for certification rea-
sons, while the second one can help greatly to evaluate
the pessimism of the upper bound. In this paper, we study
backlog distribution of nodes with a stochastic network
calculus approach.

Section 2 specifies the performance of buffer analysis
problem in the context of this paper. Section 3 presents
the stochastic network calculus approach. Section 4 gives
some results and evaluate their pessimism. Section 5 sum-
marizes the paper and gives some guidelines for future
works.

2. Scope of the study

We first give a brief overview of the AFDX network.
Then, we formulate the problem of backlog analysis and
the way it is addressed in the remaining of the paper.

2.1. The AFDX network

An example of an AFDX network architecture is de-
picted on Figure 1. It corresponds to a test configuration
provided by Airbus for an industrial research study [6].
It is composed of several interconnected switches. There
are no buffers on input ports and one FIFO buffer for each
output port. The inputs and outputs of the networks are
called End Systems (the little circles on Figure 1). Each
End System is connected to exactly one switch port and
each switch port is connected to at most one End System.
Links between switches are all full duplex. On Figure 1,



the values on End Systems indicates number of flows that
are dispatched between End Systems. Number of input
and output End Systems per switch are not specified on
Figure 1.
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Figure 1. AFDX network architecture

The end-to-end traffic characterization is done by the
definition of Virtual Links. As defined by ARINC-664,
Virtual Link (VL) is a concept of virtual communication
channels; it has the advantage of statically defining the
flows which enter the network [4].

End Systems exchange Ethernet frames through VL.
Switching a frame from a transmitting to a receiving End
System is based on a VL (deterministic routing). The Vir-
tual Link defines a logical unidirectional connection from
one source End System to one or more destination End
Systems. It is a path with multicast characteristic. The
routing of each VL is statically defined. Only one End
System within the Avionics network can be the source of
one Virtual Link, (i.e., Mono Transmitter assumption).

Traffic on each Virtual Link is sporadic. Most of
the time, physical links of an AFDX network are lightly
loaded. As an example, on the configuration of Figure 1,
most of the links are loaded at less than 15 % and no link is
loaded at more than 21 % (see [6] for details). However, a
congestion can occur at any time at any output port in case
of a transient burst of traffic. Bursts of traffic occur when
frames of different VLs reach the same output port at the
same time. This event is closely related to the emission of
the frames of the different VLs, i.e. the phasing between
VLs.

2.2. Scope of the backlog analysis

In our context, no frame will be lost by the network
and consequently, no switch queue will overflow. Then,
the buffer must be dimension correctly, sufficiently but not
too much to minimize the costs. Moreover, the end-to-end
delay of a given path of a VL is the sum of the delays in
each switch crossed by the path. The delay in a switch is
composed of the switching delay (filtering and forwarding
operations), the waiting time in the output buffer and the
transmission time on the output link. The switching delay
is a constant that depends on the switch technology (16 us
for switches used by Airbus). The transmission time is a
function of the link rate (typically 100 Mbps). The wait-
ing time of a frame depends on the load of the output port
(backlog) at the arrival time of the frame. Therefore, the
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end-to-end delay is not constant due to the waiting times
in the switch output ports it crosses.

In this paper, we propose a stochastic network calcu-
lus approach in order to obtain a distribution of backlog
in a network node. Such an approach could deal with ar-
bitrarily large network configurations. The next section
presents the stochastic network calculus approach.

3. Stochastic network calculus analysis

First, we explain why stochastic network calculus the-
ory can be applied in the AFDX context. Then we show
how we apply stochastic network calculus results to our
context.

3.1. Applicability of the analysis

As mentioned earlier, the aim is to obtain the distribu-
tion of backlog for each switch output port. The AFDX
networks considered in the present study have a single
FIFO buffer for each switch output port. That means that
flows (VLs) all have the same priority. Consequently, each
switch output port can be considered as servicing an ag-
gregate traffic (all the VLs crossing this port) with a con-
stant rate ¢ which is the capacity of the output link (e.g.
100 Mbps). Moreover, the individual flows are shaped
separately at network access, by the assumption of the
minimum delay between the emission of two consecutive
frames, i.e. BAG (Bandwidth Allocation Gap). It cor-
responds to a network considering EF PHB (Expedited
Forwarding Per-Hop Behavior) service of DiffServ (Dif-
ferentiated Services) architecture [7]. The nodes (i.e. the
switch output ports) are said PSRG (Packet Scale Rate
Guarantee) nodes [5] and the EF traffic at a node is served
with a rate independently of any other traffic transiting the
same node. The stochastic network calculus approach pre-
sented in [9] applies to such network configurations.

More formally, a node is PSRG (c,e) for a flow means
this flow is guaranteed a rate c, with a latency (error term)
e. Therefore if we denote d,,, the departure of the nth
packet of the EF aggregate flow, in order of arrivals, d,,
satisfies

dp < fnte

where f,, is calculated recursively as fo = 0 and

ln
fn = max{a,, min{d,_1, fn_1}} +—, n>1
c

where the nt" packet arrives at time a,, with [,, bits.

The error term e is the extra waiting time due to non
EF traffic. In our context, there is only EF traffic crossing
each switch output port. Consequently, we have e = 0.

The works presented by Vojrovi¢ and Le Boudec in
[9, 10] about networks with EF PHB service can be used
to calculate the distribution of the backlog for each switch
output port. It is based on the probability of bound buffer
overflow in the switch output port. Such a problem was



previously addressed in the litterature but the results pre-
sented in [9, 10] have proposed the tightest upper bounds.

Vojnovi¢ and Le Boudec make four assumptions pre-
sented in [9]. These assumptions concern the modeling
of the network and its elements. The assumption (A1) im-
poses to define a service curve (3 for nodes. But a property
of PSRG is that a PSRG (c,0) implies the service curve
B(t) = ct. Consequently, the property (A1) is respected.
As VLs are independent at network access, assumption
(A2) is respected. Concerning assumption (A3), in the
AFDX context, each VL is regulated by a leaky-bucket
(a;(t) = pit + o0;) defined in the following way. o; is
the maximum length of a frame of the VL, denoted .S, 4.
p; is the VL maximum flow, %"A“é, where BAG is the
minimum delay between the emission of two consecutive
frames of the VL by its source end system. Therefore as-
sumption (A4) is valid with &, = p;.

Vojnovi¢ and Le Boudec define the concept of EF traf-
fic inputs homogeneously regulated : the EF traffic inputs
are homogeneously regulated, if they are regulated by the
same function : «o;(t) = ay(t), foralli € {1,...,Z}.
Otherwise, the EF traffic inputs are heterogeneously reg-
ulated. In our context, traffic inputs are homogeneously
regulated when all VLs have the same S,,, and BAG
and they are heterogeneously regulated otherwise. Results
in [9] have been proved for homogeneous and heteroge-
neous cases, while better results are presented in [10] for
homogeneous cases.

As all the assumptions made by Vojnovi¢ and Le
Boudec are respected, their results can be applied in our
context.

3.2. The analysis

We denote QQ(t) the backlog at time ¢ of a studied
node. Vojnovi¢ and Le Boudec establish upper bounds
of probability that the backlog is above a given level b
(P(Q(t) > b)). In [9], Theorem 2 defines the tightest
backlog bound (that we denote in the following V1) that
holds for homogeneous and heterogeneous regulation of
traffic inputs. Whereas, in [10], a tighter bound (denoted
V2) is given by Theorem 4, but that holds only for the
homogeneous case.

3.3. Application of the analysis
In order to determine the distribution of the backlog of
a given switch output port, we first compute

P(Q(t) > b) with b= 25,75,125, . ..

until P(Q(t) > b) =0

We have P(Q(t) > O) —
P(Q@) >b) =

Finally, we consider

P(Q(t) = b) = P(Q(t) > b — 25) — P(Q(t) > b+ 25)
with b=50, 100, 150, ...

1 and
P(Q() >b+1)
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4. First results

The stochastic analysis presented in the previous sec-
tion has been applied to AFDX network configurations.
First results are presented in this section. They all con-
cern switch output ports of one switch, for example, the
output port of sy with the destination e, of Figure 2.

vx + ml vls from el

el vx +nl vls + ... + mr vls from er

er o—— sy
nr vls
. _no
influence —*

Figure 2. Stochastic analysis context

We are only interested by inputs crossing the switch
sy and as destination ¢,. We denote e; to ¢, these End
Systems. Each of those End Systems emits n; VLs and
among which m; have e, as destination End System.

S1 Sa Ss Sy Ss Se
my 4 26 48 70 92 114
ma 5 31 57 83 109 135
ms 2 13 24 35 46 57
load || 2% | 12% | 22% | 32% | 41 % | 51 %

Table 1. studied configurations

Results presented in this paper concern the configura-
tions of table 1. We consider three end systems emiting
VLs (r = 3). S1 corresponds to a typical VL path of
the industrial AFDX configuration of Figure 1. The load
of the single switch output port crossed by the VL un-
der study is about 2%. Configurations S2 to S6 concern
VLs paths similar to S1 with a higher load on the switch
output port (between 12% and 51%). We consider homo-
geneous flows (S,,ax = 672bits and BAG = 4000us).
Therefore, the approaches V1 and V2 can be applied. In
order to evaluate the relevance of these stochastic meth-
ods, we have to state, on the one hand the pessimism of
the obtained distribution, on the other hand the pessimism
of their upper bounds.
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Figure 3. Stochastic network calculus V1




Figures 3 and 4 present the distributions of the backlog
in the output port of switch sy, obtained with the V1 and
V2 stochastic network calculus approaches presented in
section 3.
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Figure 4. Stochastic network calculus V2

With the V'1 approach, the interval where backlog are
distributed shifts to higher values with the increase of the
load on the switch output port (backlog for configura-
tion S1 are mostly distributed between 0 and 4200 bits
whereas for 56, the backlog is distributed between 11200
and 22400 bits). With the V2 approach, we obtain sim-
ilar distributions with smaller intervals (between 0 and
1000 bits for S1 and between 1800 and 4600 bits for S6).
Obliviously, the V'1 approach is more pessimistic than the
V2 one because the configurations contain only homoge-
neous flows. However, the V2 approach can’t apply when

flows are heterogeneous.
51%

Figure 5. Comparison by upper bounds
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Figure 5 presents for each network configuration, the
upper bounds that the backlog, presents in the output port
of sy, will exceed with a probability of 0.00001. The up-
per bounds are calculated by the stochastic methods V'1
and V2 and by the deterministic Network Calculus. Con-
sidering the deterministic network Calculus approach, the
difference with others methods increase with the load.
For example, between the deterministic Network Calcu-
lus and the V2 approach, 7392 vs 1350 for a load of 2%
and 205632 vs 7300 for a load of 51%. Consequently,
the pessimism of this approach increases with the load of
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the switch output port. Conversely, the variation between
the two stochastic methods (V1 and V' 2) remain relatively
stable.

5. Conclusion

In this paper, we detail the stochastic network Calculus
used to analyse the backlog contained in the output buffer
of switches on an industrial switched Ethernet network.
Two important characteristics are the upper bound of the
backlog and their distribution. The first one is mandatory
for certification reasons. The second one can help greatly
to evaluate the pessimism of the upper bound. We present
a stochastic network calculus approach that gives an eval-
uation of the backlog present in a output port of a given
switch. The upper bound obtained with this method is
less pessimistic than the upper bound calculated with the
deterministic Network Calculus.

In further works, we focus on the utilization of the
stochastic network calculus to determine the end-to-end
delay of a given flow that crosses a switch.
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Abstract able [5, 11], but none of them tackle the problem of tracing an
application at differentlevels. In the last five years, |BEto-

Real-time systems development is a complex process. Thed tracing facilities having resulted in the definitidrire
ability to trace the system execution is very important ieor POSIX Trace standard 1003.1q [4]. This standard provides an
to verify the correct system behavior. System tracing regui interface allowing to trace the different events from resale
instrumented code that alters the behavior of the system, feystems.
instance, increasing its response time. In embedded system We use the POSIX Trace standard to implement a multi-
tracing can be used to monitoring the system evolution durinevel tracing system, capable of tracing all system eveamg+
its execution. In that way, the instrumented code is neitier ing from the low kernel level to the high application leveltb
trusive nor dead code that should be removed from the fingéile standard lacks of both a system level concept and a multi-
version. Indeed, it is part of the final system and also helgevel approach. Thus, some modifications in the standard are
after deployment. We provide a solution capable of tracingroposed in this paper reaching a more suitable solution.
all the software levels of the system, including the kerthel, The tracer is implemented over the ERCOS-RT real-time
modeling language level and the different application leve kernel, which has been developed to work with the EDROOM
POSIX 1003.1q event tracing standard provides an interfaaeol [8].
to handle event data, but it lacks of a system level conceppt an The rest of the paper is organized as follows: Section 2
multilevel approach. This paper presents an implemematicdescribes the POSIX Trace standard aspects. Section 3 in-
of the POSIX 1003.1q over the ERCOS-RT operating systefibduces the relevant aspects of the EDROOM tool and the
which has been developed to work with the component baseRCOS-RT design. Section 4 deals with the implementation
graphical modeling and automatic code generation tool ndmedetails of the POSIX Trace standard and our proposed exten-
EDROOM. ERCOS-RT and EDROOM have both event tracingon to handle multiple layers. On section 5 some timing and
capabilities that can be integrated in a multilevel apprbag-  overhead measurements are reported. Section 6 presemts a tr
cluding also the top user defined application events. ing example with a real system. Finally, the last sectiomsho

the conclusions.
Keywords. Embedded Systems, Real-Time Systems, Trac-

ing, POSIX. 2 POSIX Trace standard Overview

1 Introduction The POSIX Trace standard has been developed to provide

tracing facilities. It defines two main data types, caegnts
The development of real-time embedded applications neeggdtrace streams

of some tracing mechanism in order to ensure a correct sys-

tem behavior. System monitoring provides a lot of informati 2 1  Trace Events

very handy to certify the system constraints and performanc e points where the information must be gener-

In embedded systems, the tracing information is a key sourggq are calledtrace points and the information itself

of knowledg_e, not only in validation and v_erification Proses, s called trace events When an instrumented applica-

but also during the whole system execution. tion wants to register a new event, it must invoke the
Many works have been done in the tracing area, and am%si x_trace eventidopen() routine which returns

variety of profiling, tracing tools and methodologies araiv  he event identifier. The event trace mechanism is performed

*This work has been supported Bpmision Interministerial de Cienciay BY calling FhepOSi Xt rac e_—event () routine. The stan-
Tecnologia (CICYT)f Spain, grant ESP2005-07290-C02-02 dard specifies the tracing information that must be saved,
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which is: (1) the trace event type identifier; (2) a time-gbam
(3) the process identifier of the traced process; (4) theathre
identifier of the traced process, if threads are supportetidy 58
operating system; (5) the program address where the trace|is

algorithm

being performed; (6) any extra data associated with theteven_ ¢ samer L aninputanagemery
and previously defined by the user; (7) the extra data size. S - a°'°'Ma"ageme”‘D , erelogieut
analogSampling

2.2 Stream Buffers & & g e

When any system application traces an event, its informa- operator_inp o— |
tion is stored in the stream buffer. The standard specifigs th postioniead I
streams must be created by processes and the relationship be a pintSy B managemedpoiningSyste
tween streams and processes is many-to-many. By defdult, @haomanagemen  SorRe motorControl i
events associated with a process are traced in all strederduf controiTF 0 S TFmotorContrl

belonging to that process. Thus, it is possible to traceteven
from a single process into many streams. The POSIX stan- wmlm_@
dard also supports event filtering, allowing events from onge -

process to be associated with a single stream and alsodracin

the events from various processes into one single stream. Th

standard defines active streams. An active stream is cremted Figure 1. Multilevel structure of a EDROOM
trace events during system execution. It can also be assdcia model.

with a log file in order to store the information on a persisten

object when a flush operation is performed.

2.3 Tracing Roles ERCOS-RT has four layers: hardware dependent layer, ker-
The POSIX Trace standard defines three types of rold§! layer, system call and a POSIX interfaces.
calledtrace processeg1) thetrace controller processwhich The main requirements formulated for this kernel are: (1)

cess which is the one being traced: and (3) tuealyzer pro- tem Pr0f|l_e; (2) to have a hard real-time performance; an(_JI 3)
cesswhich is in charge of retrieving the traced events from thi be easily adaptable to any other platform. It is specially

stream buffer in order to analyze the system behavior. targeted for embedded real-time applications that haveetbfi
all the needed resources at compilation time, making the ker
3 EDROOM and ERCOS-RT Overview nel fully configurable. It is already running over the LEON2
and LEONS architectures [1] and it is also being ported to the
3.1 EDROOM Overview M68K 68332 platform.

EDROOM is a tool inspired on ROOM [9] and UML2
[3] methodologies. This tool provides facilities for moel 4  Multilevel Tracing Implementation
real-time systems using the object oriented paradigm, koad a
integrates an automatic Embedded C++ code generator. EP1  POSIX Trace Standard to perform Multilevel Tracing
ROOM lets the designer describe the structure, commupitati 10 proposed solution is compliant with the POSIX Trace
and behavior of the real-time systems using diagrams. Bolgnqard but extends its functionality in order to manatferdi
structure and behavior can have several levels of definition ent trace-levels. ERCOS-RT does not have the processabstra
order to ease an iterative design of the system. The compgs, anq it implies that the three roles defined in the POSIX
nents of the multilevel structure are communicated wittheacr, ;e standard (controller, traced and analyzer proceases
other by message passing through their ports. implemented by only one process at the standard point of view
In figure 1 an EDROOM graphic representation of & Sysj ¢ they are really implemented over two independent execu-
tem structure and communication with three levels of actoks,, nits (threads). There is also no persistent mechattsm

is shown. The behavior of each component is defined usingsg, e any data (no file system is available), so the impleaent
kind of hierarchical state chart, called ROOMCharts, based i, of the log file is difficult, but it can be achieved by carry

the Statecharts introduced by Harel [6]. The received ngessa jg ot the logging process in a remote machine. The stream
lead the transitions triggering between the states. flusher process is not implemented because it would overload
the system.

The ERCOS-RT real-ti . has b d In respect to the multilevel tracing, it could be implemente
€ -R1 real-time operating system has been de using one stream for each level, which should perfornrfilte

signed to support only the services required by the EDROOl g operations to avoid tracing information belonged toeoth

tool, which are timing, thread management, synchronmatqevel& The multilevel tracing is not implemented usingsthi

and interrupt handling services. It has been developed ovg proach because it would be not possible to keep the inter-
the standard platform of the European Space Agency (ESA)f el encapsulation. This encapsulation assumes thaevak |

space missions: the ERC32 [10] architecture. (and one traced thread) does not know about the others,dut th
LAvailable at http://srg.aut.uah.es filtering operations need the processes/threads to knatveall

3.2 ERCOS-RT Overview
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events being traced, broken this encapsulation. TRAGING . TRACING TRACING  RaciNG

For this reason, ERCOS-RT uses only one stream to trace all \ usecs
levels. In this stream all events are recorded automatiaak O| T T NI T |c\, T
it is unnecessary to implement filtering options. On the othe ¢ a -
hand, it is necessary to identify the event and the levelriteco
sponds to, but the POSIX standard only considers the event IDLE THREAD Activation
identifier. Therefore, some modifications are done to solve
this problem. Figure 2 depicts the tracing mechanism over .- I - >
ERCOS-RT. System threads provoke the kernel to trace the dif THREAD 1 Activation
ferent events when they invoke certain system calls, sodtesy |—| ﬂ ” |—‘
both the controller and traced threads. This trace mecimanis >
is depicted as "T” in the figure. The information is buffered THREAD 2 Ativation
and the analyzer thread can retrieve it either by sendimmgat t Figure 3. Simple Tracing Diagram

remote PC (via debugging line) where the information is an-

alyzed on/off-line or by storing it in memory in order to be ) )
retrieved if an error or a fail condition are detected. By default, the analyzer process retrieves the event infor-
mation through a debugging serial line, but it is also pdssib
|

for the controller process to register a new method in oraler t
retrieve it; for example, storing it in a certain memory ltoa

: ==/’ or sending it through any other device.

: . 5 Performance of the Implementation

----------------------- A ERCOS-RT has about 7500 lines of code and only a 3%
— of these lines are associated with the kernel tracing system

The kernel traces the next events: (1) schedule entry/jit;
semaphore wait/signal; (3) thread creation/terminatou; (4)
thread block. The traced events have a fixed size that can be
set at compilation time (plus 16 bytes for the header) aral als
the amount of memory associated to the stream buffer. The ac-
curacy of the traced events timestamping is 18 microseconds
The table 1 shows the overload results over the ERC32 real

4.2 I.DOS|.>( Trace Add-ons . . . .architecture and TSIM simulator, both at 16 MHz.
To identify an event belonging to a certain level, two identi

fiers must be known, the level and the event identifiers. The

A
analyser P T T T T T T 11

Thread
Trace Stream

ERCOS-RT

Figure 2. Tracing System.

problem is that the POSIX routines used to register a new Event data sizg¢ TSIM (us) Real HW (us)

event,posi x_trace_eventid.open(), and to trace an 4 bytes 332us 334us

event, posi x_t race_event () do not consider the level 8 bytes 346 us 348 us

field. 16 bytes 373 us 375us
Let's assume that the event identifier field has 32 bit length Table 1. Overload Results

(any other length could be possible). We propose to divige th
field into two parts, the higher 8 bits to identify the levedan  In the development phase, the events retrieval through a de-
the lower 24 bits to identify the event. Due to this modificaPug line does not interfere the real-time application beeau
tion, in the routineposi x_t r ace_event i d_open(), the this labor is carried out by the idle thread. In the final syste
event identifier is passed by reference with its upper 8 lits gthere is also no overhead in the data delivery because teey ar
to the value of the level identifier. The routine fills only theS€Nt whenever a system error occurs and that issue is part of
lower 24 bits in order to identify the event unanimously. Théhe system behavior.
posi x_trace_event () routine does not suffer any modi-
fication, because it is only in charge of storing the inforiorat 6 Case of Study
in the stream buffer.
The solution presented was used to verify the behavior cor-

4.3 Implementation Issues rectness of the on-board software for the Spanish nandlitsate

The implementation supports the standard Trace and talled NANOSAT [7]. In the development phase, three levels
Trace Event Log options. The analyzer process has been caere traced and the event size was fixed to the maximum event
ried out by the idle thread and the threads being traced acize, which was 64 bytes:
as the controller and traced processes. Because the analyzeThe first level is associated with the ERCOS-RT kernel. De-
process is the idle thread, it does not interfere with tha-ovespite the kernel uses different interface to that of POSt)§ i
all system execution and it does not overload it because it iew-level compatible with the tracing system. Traced esent
only executed when no other thread is ready or in executiofrom this level were wrapped to be analyzed by an applica-
In figure 3 a simple example of a tracing execution is shown.tion called Kiwi [2], developed by the University of Valemgi
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that generates sequence diagrams, signaling task swacldes (third level) to be notified, so that the amount of events to be
resource accesses. Figure 4 shows an example of this tracetraced was large enough to stress the tracer implementation
Moreover, the kernel level also introduced a huge “eventto b
traced” overload because each context switch, each resourc
A A TR O T A access, etc. were also traced.

Sched d
Idle d
é

T2

T 7 Conclusions
o e d -

T4

Nowadays, it is necessary to be capable of tracing the em-
o ] . bedded real-time systems behavior due to its complexity. To
™ J m [ - perform the trace it is necessary to introduce instrumented
d
d

T6

mf =" = ml code, but it can be also integrated in the final system in order
- E to monitor the system evolution.
The POSIX Trace standard defines an application tracing
wian 72052075 «a:mane,  INterface, however, it lacks of a system level concept eeith
Figure 4. Kernel Tracing Using Kiwi. multilevel tracing capabilities. The work explained indlpia-

per extends the POSIX trace functionality, by introducing t

The second level is the EDROOM level. The informatiorf@cing level concept, being also compliant with it withait
regarding with the transitions and state changing is auiemafcting the standard interface neither the standard aperat
cally generated by the EDROOM tool using the POSIX tracing The flnal _|mple_mentat|on facilitates a mul_tllevel trace
interface. This information consists in the triggered sitians, Mechanism, in which the kernel and all the defined user lev-
time-tagged, between the states associated to each comporf@S ¢an be traced. All levels are managed by means of a single
allowing an off-line analysis to verify the system desigri an Stréam buffer but making possible the selective and indepen
the fulfilment of the time requirements during system execifient recovery of each level trace information by using déff
tion. We used the trace information to feed a tool allowing thEOOk?- o _
off-line representation of the system behavior by showilhg a Finally, the possibility to extend the POSIX Trace intedac

the system execution at state-machine level. The traceiof t1 order to introduce some primitives allowing enable/disa
level is shown in figure 5. each tracing level independently can be considered in the fu

ture. Moreover, it could be possible to carry out this lahare
at execution time.
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