
HAL Id: inria-00192234
https://hal.inria.fr/inria-00192234

Submitted on 27 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proceedings of Junior Researcher Workshop on
Real-Time Computing

Liliana Cucu

To cite this version:
Liliana Cucu. Proceedings of Junior Researcher Workshop on Real-Time Computing. Liliana Cucu.
Impressions et Reliures, Institut National Polytechnique de Lorraine, pp.65, 2007. �inria-00192234�

https://hal.inria.fr/inria-00192234
https://hal.archives-ouvertes.fr

Proceedings of the

Junior Researcher Workshop on

Real-Time Computing 2007

JRWRTC’07

LORIA, Nancy, France

29-30 March 2007

http://srtsjr07.loria.fr

Table of contents

Junior Researcher Workshop on Real-Time Computing 2007

JRWRTC’07

Message from the workshop chair .. 5

Program committee... 6

Online testing of real-time systems ………………………………………………….…7

N. Adjir, ENSICA, Université de Toulouse, France

P. de Saqui-Sannes, LAAS-CNRS, Université de Toulouse, France

 Real-time scheduling in a virtual machine environment ………………………………………..11

C. Augier, VirtualLogix

WCET computation on software components by partial static analysis ………………………15

C. Ballabriga, IRIT - Université de Toulouse, France

H. Cassé, IRIT - Université de Toulouse, France

P. Sainrat, IRIT - Université de Toulouse, France

Improvement of zigbee routing protocol including energy and delay constraints …………….19

N. Boughanmi, LORIA – INPL, Nancy, France

 Y.-Q. Song, LORIA – INPL, Nancy, France

Negative results on idle intervals and periodicity for multiprocessor scheduling under EDF

……23

C. Braun, LORIA – INPL, Nancy, France

L. Cucu, LORIA – INPL, Nancy, France

Real-time system formal verificationbased on timing requirement description diagrams.. ….27

B. Fontan, LAAS-CNRS, University of Toulouse, France

P. de Saqui-Sannes, ENSICA, University of Toulouse, France

Coexistence of time-triggered and event-triggered traffic in switched full-duplex ethernet

networks …………………………………………………………………………………………………31

J. Hillebrand, BMW Group, Research and Technology, Germany

M. Rahmani, BMW Group, Research and Technology, Germany

R. Bogenberger, BMW Group, Research and Technology, Germany

E. Steinbach, Technische Universität München, Germany

Abstraction techniques for extracted automata models …………………………………………..35

S. Kandl, Vienna University of Technology, Austria

A penalty upper bound in an optimal schedule of a set of soft real-time tasks ………………39

A. Mohammadi, Queen’s University, Canada

 S. G. Akl, Queen’s University, Canada

 DARTSVIEW, A toolkit for DARTS in LabVIEW …………………………………………………43

K.H. Ngo, LISI-ENSMA, Poitiers, France

 E. Grolleau, LISI-ENSMA, Poitiers, France

Timing properties of removable flash media ……………………………………………………….47

D. Parthey, Chemnitz University of Technology, Germany

 R. Baumgartl, Chemnitz University of Technology, Germany

Comparison of two worst-case response time analysis methods for real-time transactions....51

A. Rahni, LISI-ENSMA, Poitiers, France

K. Traore, , LISI-ENSMA, Poitiers, France

E. Grolleau, LISI-ENSMA, Poitiers, France

 M. Richard, , LISI-ENSMA, Poitiers, France

Stochastic network calculus for buffer overflow evaluation in an avionics switched Ethernet..

……….55

F. Ridouard, IRIT – ENSEEIHT, Toulouse, France

J.-L. Scharbarg, IRIT – ENSEEIHT, Toulouse, France

Christian Fraboul, IRIT – ENSEEIHT, Toulouse, France

Multilevel tracing for real-time embedded systems ……………………………………………….59

A. Viana, European Space Agency, Noordwijk, Nederland

O.R. Polo, University of Alcala, Spain

M. Knoblauch, University of Alcala, Spain

 P. Parra, University of Alcala, Spain

S.S. Prieto , University of Alcala, Spain

D. Meziat, University of Alcala, Spain

Message from the conference chairs

JRWRTC’07

It is our great pleasure to welcome you to Junior Researcher Workshop on Real-Time

Computing 2007, which is held conjointly with the 15th conference on Real-Time and

Network Systems (RTNS’07). The first successful edition was held conjointly with the

French Summer School on Real-Time Systems 2005 (http://etr05.loria.fr).

Its main purpose is to bring together junior researchers (Ph.D. students,

postdoc, ...) working on real-time systems. This workshop is a good opportunity to present

our works and share ideas with other junior researchers and not only, since we will present

our work to the audience of the main conference.

In response to the call for papers, 14 papers were submitted and the international Program

Committee provided detailed comments to improve these work-in-progress papers. We hope

that our remarks will help the authors to submit improved long versions of theirs papers to the

next edition of RTNS.

JRWRTC’07 would not be possible without the generous contribution of many volunteers and

institutions which supported RTNS’07. First, we would like to express our sincere gratitude to

our sponsors for their financial support : Conseil Général de Meuthe et Moselle, Conseil

Régional de Lorraine, Communauté Urbaine du Grand Nancy, Université Henri Poincaré,

Institut National Polytechnique de Lorraine and LORIA and INRIA Lorraine. We are

thankful to Pascal Mary for authorizing us to use his nice picture of “place Stanislas” for the

proceedings and web site (many others are available at www.laplusbelleplacedumonde.com).

Finally, we are most grateful to the local organizing committee that helped to organize the

conference. Let us hope for a bright future in the RTNS conference series !

 Liliana CUCU, LORIA-INPL

 Workshop chair

Program Committee

JRWRTC’07

Ben Hedia Belgacem, CITI Laboratory-INSA, France

Najet Boughami, LORIA-INPL, France

Bernard Chauvière, Université de Poitiers/ENSMA, France

Chung Shue Chen, LORIA-CNRS, France

Jean-François Deverge, IRISA, France

Pascal Fontaine, LORIA-Nancy 2, France

Nathan Fisher, University of North Carolina, USA

Mathieu Grenier, LORIA-INPL, France

Patrick Meumeu, INRIA Rocquencourt, France

Nuno Pereira, Polytechnic Institute of Porto, Portugal

Frédéric Ridouard, IRIT-ENSEEIHT, France

Louis-Marie Traonouez, Institut de Recherche en Communications

 et en Cybernétique de Nantes, France

Online Testing of Real-Time systems

Noureddine ADJIR1, 2

1 ENSICA, Université de Toulouse, 1 place
Emile Blouin- 31056 Toulouse Cedex 5,

France. {nadjir, pdss}@ensica.fr

Pierre de SAQUI-SANNES1, 2

2 LAAS-CNRS, Université de Toulouse,
7 avenue du Colonel Roche- 31077 Toulouse

Cedex 4, France.

Abstract

Labeled Time Petri nets with Stopwatches and
Priorities (LPrSwTPN) are used for timed test sequences
generation. LPrSwTPN enable modelling of
system/environment interactions, time constraints and
suspend/resume operations. Assuming the modelled
systems are non deterministic and partly non observable,
the paper proposes a test generation approach based on
a relativized conformance relation named rswtioco. A
test generation algorithm is presented. It implements an
online testing policy.

1. Introduction

Model-based test generation of real-time systems
requires a special approach because of reactivity,
timeliness, and suspension/resumption actions. Papers on
timed test sequence generation (conformance testing)
have ignored the possibility for real-time systems to
suspend their current behaviour and to resume later on.
To overcome that limitation, this paper addresses timed
test sequence generation from Labeled Time Petri Nets
with Stopwatches and Priorities (LPrSwTPN). Among
various contributions of the paper, a relativized
conformance relation named rswtioco is defined and a
test generation algorithm is presented. The algorithm
proposed implements an online (on the fly) policy. The
proposed approach is illustrated on an example.

2. Real-time systems modeling

Real-time systems are modelled using Labelled
Stopwatch Time Petri Nets with priorities (LPrSwTPN).
SwTPN [3] extend Merlin’s TPN [6] by stopwatch arcs
that control the progress of transitions to express
suspension and resumption of actions. TPN’s extend
PN’s by associating a temporal interval [Tmin, Tmax]
with each transition. Tmin and Tmax respectively denote
the earliest and latest firing times of the transition (after
the latter was enabled). PrSwTPN increase the modelling
power of SwTPN by adding a priority relation to the
transitions. We also add a labelling function to
transitions. Since we address reactive systems testing,
we assume the existence of a set of actions A partitioned
in two disjoints subsets: inputs actions inA and outputs

actions outA . Inputs are the stimuli received from the

outside environment. Outputs are the actions sent by the
system to the environment. The internal operations (non
observed behaviour) of a system are modelled by a
specific actionτ ()A∉τ .

 A LPrSwTPN is a tuple N = ,PostPre PrTP ,,,,, Sw
LAIsm ,,, τ0 where:

- 0,,,, mTP PostPre is a Petri net with places P,
transitions T, initial marking +→Ν: Pm0 and
precondition and post-condition functions

N:Post,Pre →→ PT .

- +→ I: TI s is the Static Interval Function which
associates a temporal interval with each transition in the
net. The rational ()tI s↓ and ()tI s↑ denote the static
earliest firing time and latest firing time of t,
respectively.

- TTPr ×⊆ is the priority relation. It is irreflexive,
asymmetric and transitive.

- A is a finite set of actions, or labels, not containing
the internal actionτ .

- τATL →: is the labelling function.

- N: →→ PTSw is the stopwatch incidence
function. Values greater than 0 are represented by special
arcs, called stopwatch arcs, possibly weighted, and
characterized by square shaped arrows. Figure 1(a)
depicts a LPrSwTPN. The arc from place p2 to transition
t8 is a stopwatch arc of weight 1.

A marking is a function +→ Ν: Pm . A transition t is
enabled at marking m iff ()tm Pre≥ . In addition, an

enabled transition is "active" iff ()tm Sw≥ . Otherwise, it
is "suspended". The sets of enabled, active and
suspended transitions at m are defined respectively by:

() (){ }mttmEn ≤= Pre , () () (){ },tSwmmEnttmAc ≥∧∈=

() () (){ }tSwmmEnttmSu <∧∈= .The predicate specifying

that a transition t is newly enabled by the firing of t ′ at
m is defined by () () ()() ∧′+′−∈=′↑ ttmEnttmt PostPre,,

((())))ttttmEnt ′=∨−∉ Pre(. () Prtt ∈21, is written 21 tt �

12or tt � (t1 has priority over t2).

The semantics of an LPrSwTPN N is a timed
input/output transition system (TIOTS) ((,, 0mQN =�

()[]))→,,, outins AAmEnI 0 where Q is the set of states. A

7

state is a pair () +×Ν∈ I, PIm in which m is a marking

and +→ I: TI , the interval function, associates a
temporal interval with every transition)(mEnt ∈ .

()[]()00 mEnIm s, is the initial state. ()[]0mEnIs is the

restriction of sI to transitions ()0mEn . The transition

relation → corresponds to two kinds of transitions:
discrete transitions are the result of firings transitions of
the net and continuous transitions (or delay) are the
result of elapsing of time. We have:

− () () () () and iff τAtLTtImIm tL ∈∈′′ → ,,,

1.)()(mActmEnt ∈∧∈

2. ()tI∈0

3. () () () () ()()tkkImAckmEnkTk �¬⇒∈∧∈∧∈∈∀ 0

4. () ()ttmm PostPre +−=′

5. ()() () () () ()()kIkItmkEnkImEnk s else t,,i henf ↑=′′∈∀

− and 0≥∈′→ RdImIm d iff),(),(

6. () () () ()()()kIdddmAckmEnk ≤↑′≤′∀⇒∈∈∀ if)(

7. ()() () () () ()

−∈=′∈∀ kIdkImAckkImEnk elseif
.

 then

Transition t may fire from ()Im, if (1) it is enabled

and active at m, (2) it is fireable instantly, and (3) no
transition with higher priority satisfies these conditions.
(4) is the standard marking transformation. From (5), the
transitions not in conflict with t retain their firing
intervals, whereas those newly enabled are assigned their
static intervals. By (7), all firing domains of active
transitions are synchronously shifted towards the origin
as time elapse, and truncated to nonnegative values. (6)
prevents time from elapsing as soon some enabled and
active transition reaches its latest firing time.

The state space of a LPrSwTPN may be infinite.
Finitely representing state spaces involves grouping
some sets of states. We use the grouping method
introduced in [1]. It groups some particular sets of states
into state classes and preserve marking and traces. A
state class is a pair (m, D) where m is a marking and D is
a firing domain of ()mEn . The domain D is described by
a system of linear inequalities ωW ≤φ . The initial state
is ()[] ()[]{ }()000 mEnImEnImc sts ≤↑≤↓= φε , . The
symbolic transition relation between state classes is:

− () () () () and τAtLTtDmDm tL ∈∧∈′′ → iff,,

1.)()(mActmEnt ∈∧∈

2. { } { }() solutions ofset theis 0
tt

φφ∈

3. () () () { } ()()tkmAckmEnkTk
k

�¬⇒∈∧∈∧∈∈∀ φ0

4. () ()ttmm PostPre +−=′

5. ()() () ()()
kskk

kItmkmEnk φφφ else then,,if ∈′↑=′′∈∀

6. the variables φ are eliminated

− () () and iff 0≥∈′→ RdDmDm d ,,

7. () () () { }()()
t

dddmActmEnt φmaxif)(≤′≤′∀⇒∈∈∀

8. ()() ()
ttt

dmActtEnt φφφ elsethenif −∈=′⇒∈∀

The visible behaviour of �N is described by the

relation ⇒ (()∗≥∪⇒∈ 0RA).

 Let 000 ,...,, ..., , ≥∪∈∈∈ RAAAaaa nk ττ ααα ,, and

On Rdd ≥+ ∈10 ,..., . We have: *→′⇒
τ

qqq
a

 iff
q

a ′→→ *τ and ... iff 0 ** →→→′⇒
ττ dd

qqq
qnd ′→→→ ** ττ where ndddd +++= ...10 . The

relation ⇒ is extended to sequences of delays and
actions.

An observable timed trace is the timed word
()∗≥∪∈ 0RAσ which is of the form 100 ... += kkdaadσ .

We write qqq ′→→ αα iff and q→ α qq →′ α iff
for someq′ . We define the timed observable traces of a
state q as:

() (){ }σσ ⇒
∗

≥∪∈= qRAq 0TTr

For a state q, and subset QQ ⊆′ and a timed
traceσ , σafterq is the set of states which can be
reached afterσ : { }qqqq ′′= ⇒

σσafter , �
Q

Q
′∈

=′
q

q σσ afterafter

We distinguish between two types of outputs. First,
outputs in the common sense of the word that we call
“active outputs” . Second, special outputs that we call
“indicators” or “suspended outputs”. The latter are
issued by the systems to give indications on suspended
actions.

The set of observable active outputs or delays that
may occur in QQ ⊆′∈q is defined as:

() { }a
outaord qRAaq ⇒≥∪∈=

0
Out ,

() ()q
q

aordaord �
Q

Q
′∈

=′ outOut

The set of suspended outputs that can occur in
QQ ⊆′∈q is defined by (su is extended to states):

() (){ }0≥⇒ ∪∈∧∈= RAqqsuaq outsu ααOut ,
() ()q

q
susu �

Q
Q

′∈
=′ outOut

3. Online testing

Online testing [5, 7] combines test generation and
execution. It determinizes the specification, implicitly,
on the fly. Unlike offline testing, where the complete test
cases and their verdicts are computed a priori and before
their execution, online testing enables to address models
with full expressiveness. It indeed enables working with
non deterministic specifications. Online testing
dramatically lowers the state explosion risk, since only a
subset of the states needs to be stored at any point of
time. The testing may run for several hours or days, and
consequently it may exhibit complex and long test
sequences.

4. Relativized conformance relation

The paper considers a Relativized Stopwatch Timed
Input/Output Conformance relation (rswtioco) which
extends the rtioco relation [7], itself relying on tioco [5]

8

p0

t1 [50,ω[

req?

p4

t9

]10,30[

lightCoffee! t8]30,50[

strongCoffee!

p3

p2

t0 Coin?

t4

tackeCup?

p5

t7

]3,5[
t5 <t7

[0,5[returnCup!

t6 [0,1[

q0

k2

strongCafé?

q2

p1

t3 <t1

req?

t2 <t1

[30,ω[

req?

p6

k3

lightCafé?
k0

coin!

q1

k1req!

p0

p1

Dl t9

lightCoffee! Ds t8

strongCoffee!

p3
t0 Coin?

t4

tackeCup?

p5

t5 <t7[0,5[

t6

[0,1[

p2

t7]3,5[

p6

t1 [41,ω[

req?

t3 <t1

req?

p4

q0

q4

k0

Coin!

k1 Rd

req!

q1

q2

k5

lightCohhee?

k4

strongCoffee?

k3rCup!

k2

tCup!
q3

returnCup?

and Tretman’s ioco relations [8]. The motivation behind
introduction of rswtioco, is to test real-time systems and
to take into account their suspend/resume operations.
The relation’s name includes “sw” by reference to
Stopwatch TPN. Unlike papers that limit discussion to
Merlin’s TPN [6], this paper addresses LPrSwTPN. The
conformance addressed by the paper is said to be
“relativized” since results are obtained for one specific
environment. Given a system under test, the test
approach does not consider all possible environments. It
considers one real operating environment. Furthermore,
the environment’s constraints are separated from the
specification’s one (the environment assumptions are
taken explicitly into account and separately modelled
from the system’s constraints). So, modelling the
environment explicitly and separately from the system
makes it possible to synthesize only those scenarios
which are relevant and realistic for the given type of
environment. This in turn reduces the number of tests
and improves the quality of the test suite [7]. Therefore,
conformance between an implementation and its
specification is heavily dependent on the environment.
Test verdicts obtained for a specific environment remain
valid for more restrictive environments.

The rswtioco relation does not allow either of usual
outputs and indicators to be emitted in advance or on late
by the system. Also, this relation brings more
information about the non-conformance of a system. So,
when the system emits an indicator or an erroneous
output that was not expected at that time, the following
question may be asked: if that indicator (resp. output)
had not been issued at date d, what would have happened
at d instead of an indicator (resp. an output) emission:
nothing or an output (resp. an indicator)? The proposed
rswtioco relation makes it possible to answer another
question: “does some action a resume at the expected
date?

The parallel composition of the input enabled and
input complete TIOTS’s �� and � that describe the
semantics of the specification and an environment forms
a closed system �� ||� in which observable behaviour is
defined by a TIOTS where the transition relation → is
defined as:

() () () ()

eqeq

eeqq

eqeq

eeqq
d

dd

a

aa

′′→

′→′→

′′→

′→′→

,,,,

() () () ()

eqeq

ee

eqeq

qq

′′→

′→

′′→

′→

,,,, τ

τ

τ

τ

Given an environment e, the e-relativized rswtioco

relation is defined as:

()etrswtiocoq e TTrssi ∈∀ σ
()() ()() ∧⊆ σσ after,Outafter,Out eteq aordaord

() ()()()()σafter,Outafter,Out eqeq aordsu

 () ()()()()σafter,Outafter,Out etet aordsu⊆

We say that q is a correct implementation of the
specification t under the environment constraints
expressed by e.

Figure 1(a) depicts a LPrSwTPN model for a coffee
machine which delivers light and strong coffee,
respectively. After he/she inserted coins, the user has to
push on a “prepare coffee” button. If he/she pushes the
button for less than 30 time units (resp. more than 50
time units) he/she will get a light (resp. strong) coffee. If
the button is pushed between 30 and 50 time units, the
specification model allows for a non-deterministic
choice between light and strong coffee (we assume an
implementation will solve that non determinism). The
user requesting for strong coffee can take his/her coffee
at any time during its preparation and can again put back
the cup to resume what remains in the machine, on the
condition to not exceed 3 time units. The machine makes
internal actions to be reset or to resume the preparation
of strong coffee. This service is not allowed for the user
requesting light coffee. The right LPrSwTPN of Fig. 1
models potential (nice) users of the machine that pay
before requesting coffee and take his coffee after its
preparation.

Fig. 1. the specification coffee machine �C|| an environment �C

Fig. 2. (a) IUT([Ds, Ds], [Dl, Dl]) || (b) an environment �1[Rd]

The (deterministic) implementation IUT([Ds, Ds],
[Dl, Dl]) in Fig. 2(b) produces light (resp. strong) coffee
if the button is pushed less than 40 time units (resp. more
than 41 time units). The brewing time of Dl (Ds) time
units is to be added to the 40 or more time units. The
machine allows all users requesting coffee to take it
during its preparation (including those requesting light

9

coffee). We have IUT([40, 40], [20, 20]) rswtioco�� �C
because �C never takes up his cup while the machine is
preparing coffee. By contrast, IUT([70, 70], [5, 5])
rrsswwttiiooccoo���� �C for two reasons: 1) The IUT has the
following timed trace: coin. 30 . req . 5 . lightCoffee
whereas �C has not, i.e. the IUT may produce light
coffee to quickly (no time to insert a cup); 2) the IUT has
a trace: coin . 50 . req . 70 not in �C meaning that it
produces strong coffee too slowly. We have IUT([40,
40], [20, 20])� rswtioco�1 �C because it has the timed
trace coin . 30 . req . 10 (tackeCup, lightCoffee) . 2 .
(returnCup,lightCoffee) . 5 . lightCoffee impossible
with �C. (tackeCup, lightCoffee) means that
tackeCup is an active action and lightCoffee is a
suspended one. By contrast, IUT([40, 40], [20, 20])�
rswtioco�1 �C if [,[∞= 60Rd because �1 (60) never

requests weak coffee.

5. Test generation and execution algorithm

Test generation and execution algorithm
GenExeTest()NIUTEQ ,,, . (){ }00 DmcC ,: == ε
while NiterationsC ≤∧≠ φ do
 RandomlyChoose(Action, Delay, Restart)
Action : // offer an input to the IUT
 if () φ≠CEnvOutput then

 a := ChooseAction(()CEnvOutput)
 send a to the IUT
 C := After(C, a)

Delay : // wait for an output of the IUT
 δ := ChooseDelay(C)
// Wait δ unit of time for an output o
 if ()oactive appears at δ' ≤ δ then
 C := After(C, δ')

 if () ()CImpOutpuoactive t∉ then
 return fail
 if () ()CedImpSuspendoactive ∈ then a is
 suspended in Q
else C := After(C, ()oactive)
 if () ()CspuImpSosuspend ⊄ then
 return fail
 for all a () ()CspuImpSosuspenda −∈ if
 ()CImpOutpua t∈ then a is active in Q
 else C := After(C,δ) // no output during δ

restart : // reset and restart.
 (){ }00 DmcC ,: == ε
 Reset IUT
if C=∅ then return fail else return pass

The inputs to the test generation and execution

algorithm are two TIOTS’s���||� describing the semantics
of two LPrSwTPN’s, respectively modelling the IUT and
an environment. This algorithm is based on maintaining
the current reachable symbolic state EQC ×⊂
representing all the states that the specification and
environment models can possibly occupy after the timed
trace observed so far. From this set, one can choose the

appropriate test primitive and validate the IUT outputs. C
initially contains the symbolic stateεc . The tester can

perform three basic actions: either send an input (an
enabled environment output) to the IUT, or wait for an
output after a delay or still reset the IUT and restart. If an
output or a delay is observed, the tester verifies if this
conforms to the specification. Any illegal occurrence or
absence of an output is detected if the set C becomes
empty, which happens when the observed trace is not in
the specification. The illegal occurrence of a suspended
action is detected if it does not belong to ImpSusp(C).
The function After computes the set of states after the
execution of a test event from the current states C by
using the symbolic technique implemented in TINA [2]
adapted to the needs of testing.

6. Conclusion

The paper discusses testing of real-time systems
modelled using LPrSwTPN. The latter have been
selected for their capacity to model suspend/resume
operations and for the conciseness of the models. Using
an online testing approach makes is possible to handle
non determinism and partly observable systems.

The paper introduces rswtioco, a new conformance
relation which differs from tioco because it addresses the
constraints captured by the system separately from the
ones inherent to the environment. Also, rswtioco differs
from both tioco and rtioco because the latter were not
defined for suspend/resume operations (i.e. operations
where the system’s context has to be stored and restored
later on). The algorithm proposed in the paper will be
implemented in TINA [2].

References

1. Berthomieu B., M. Diaz, “modelling and verification of time
dependent systems using time Petri nets”, IEEE trans. on
software Engineering, 17(3), 1991.

2. Berthomieu B., Ribet P. O., Vernadat F., “The tool TINA --
Construction of Abstract State Spaces for Petri Nets and
Time Petri Nets”, I JPR, 42(14), July 2004.

3. Berthomieu B., Lime D., Roux O. H., Vernadat F.,
“Reachability Problems and Abstract State Space for
Timed Petri Nets with Stopwatches”, To appear 2007.

4. Lin J. C., Ho I., “Generating Real-Time Software Test
Cases by Time Petri Nets”, IJCA (EI journal), ACTA Press,
U.S.A. 22(3):151-158, Sept. 2000.

5. Krichen M., Tripakis S., “An Expressive and Implementable
Formal Framework for Testing Real-Time Systems”, 17th
IFIP Intl. TestCom'05, 2005.

6. Merlin P. M., Farber J., “Recoverability of communication
protocols: Implications of a theoretical study”, IEEE Trans.
Com., 24(9):1036-1043, Sept. 1976.

7. Mikucionis M., K. G. Larsen, Brian Nielsen, “T-UPPAAL:
Online Model-based Testing of Real-time Systems”, 19th
IEEE IC ASE, 396-397. Linz, Austria, Sept. 24, 2004.

8. Tretmans J., “Testing concurrent systems: A formal
approach”, IJCM Baeten and S. Mauw, editors,
CONCUR’99 – 10th ICCT, 1664: 46–65 of LNC,1999.

10

Real-Time Scheduling in a Virtual Machine Environment

Christophe Augier

VirtualLogix

78180 Montigny-le-Bretonneux, France

{christophe.augier}@virtuallogix.com

Abstract

In a virtualized environment, a real-time operating sys-

tem (RTOS) can run in parallel with one or more com-

modity operating systems (OS) with negligible overhead.

Real-time properties of the RTOS are guaranteed by giv-

ing it and its tasks the highest priority over CPU utiliza-

tion which can lead to high-latency for the other OS tasks.

This simplistic approach to processor resource sharing is

not flexible enough when multimedia application are de-

ployed on the commodity OSes. In this paper we present

a design that enables a finer grained processor resource

management by moving tasks scheduling from the OS level

to the virtual machine monitor level.

Keywords: virtualization, real-time, tasks scheduling

1. Introduction

Today, consumer electronics are becoming more com-

mon and more complex, unifying features of many legacy

devices into a single platform. The demand for higher

levels of functionality has been steadily increasing while

time-to-market has been decreasing. At the OS level,

real-time operating systems (RTOS) were initially used

on these devices for their small memory footprint and the

timing guarantees required by communication protocols.

RTOSes were not initially designed to provide rich envi-

ronments such as mailers or web browsers, and have to

evolve in different ways to match today’s demands.

One approach to address such demands has been to

gradually embed all the needed functionalities (e.g., net-

work stacks, graphical libraries) into the RTOS. However,

this approach requires a careful reengineering and lengthy

revalidation phases that slow down the development pro-

cess. Another approach is to adapt existing commodity

operating systems to real-time requirements. In this case,

the legacy Linux kernel is run above a small real-time

executive as a fully preemptable task [3, 4]. Hard real-

time tasks can then benefit from any legacy Linux ap-

plication, with communication being done through Inter-

Process Communication (IPC) calls. This approach can

be further generalized to a multi-OS platform by means

of virtual machine monitors (also called hypervisor) like

Xen [7] and VirtualLogix VLX [17] offering their services

to guest OSes. In this setting, a legacy real-time OS may

run in parallel with one or more General Purpose OSes

(GPOS) such as Linux, thus offering seamless colocation

to the applications of both worlds. Typically, the schedul-

ing in such an architecture insures that the tasks of the

real-time OS always get a higher priority than those of the

GPOS instances.

In the embedded and real-time world, applications run-

ning on the RTOS and on GPOS instances cooperate to

implement the service expected by the device end user.

Hence, interaction between embedded applications run-

ning in the various OSes is tighter than in traditional vir-

tualization environments. This further raises requirements

on the scheduling of the tasks. Rather than having all tasks

of the RTOS be executed before tasks of the first GPOS

instance themselves executed before those of a second

GPOS instance, interleaving of tasks execution is often

required. Therefore, such embedded virtualized systems

must base the processor resource sharing on applications

timing constraints and on data streams flows rather than

on the whole OS.

This paper presents a new design to provide a finer

grain management of the processor resource in a real-time

virtualized environment. We move scheduling decisions

out of the guest OSes into a new virtual machine monitor

component called Scheduling Virtual Device (SVD). The

SVD is in charge of scheduling all the threads regardless

of their operating system. SVD can implement any per-

thread scheduling policy. Furthermore, the SVD provides

an hierarchy of schedulers as promoted by frameworks

such as HLS [16] and Bossa [14]. Threads can dynam-

ically be attached to any scheduler based on application

requirements, thus providing high flexibility.

The rest of the paper is organized as follows. Section 5

reviews related work. In Section 2 we present our solution

based on a SVD and in Section 3 we discuss of the im-

plementation issues. In Section 4 we present preliminary

results and we conclude on the future work in Section 6.

2. A virtualized Approach to Task Scheduling

To share resources between several guest OSes,

para-virtualization takes a different approach than full-

11

virtualization. para-virtualization systems such as

Denali[20], Xen [7] or VirtualLogix VLX [17] provides

no specialized access to devices on the physical system.

Instead they exposes virtual devices with a generic inter-

face. For instance, even though there is only one single

network card in the hardware system, a driver at the hyper-

visor level (the virtual driver) will enable the multiplexing

of the network resource between the OSes by exposing the

same generic interface in each virtual machine (the virtual

network card). Each OS will be provided a generic driver

allowing itself to interface with the virtual driver. The vir-

tual driver deals with the multiplexing by using different

MAC addresses for each OS. Similarly we create a new

interface to exchange the appropriate scheduling data be-

tween the OSes and the hypervisor.

We propose to virtualize the task schedulers in each

OS, by introducing a scheduler virtual device (SVD) in the

hypervisor. The SVD centralizes the scheduling data and

performs all scheduling computations in place of the guest

OSes scheduler. Then, each guest OS communicate with

the SVD through a generic driver called a scheduler in-

terface (SI.) The communication consists in updating the

SVD with scheduling events: task creation, blocking, un-

blocking, destruction, etc. By doing so, the SVD has a

global vision of the system scheduling needs.

Scheduler Virtual Device: The SVD implements the

scheduling algorithms and provide an OS independent in-

terface for the management of thread scheduling. The

SVD is implemented as a virtual device in the hypervi-

sor and thus must run safe code. One bug in the virtual

device could lead to the crash of the complete system. As

scheduling algorithms manipulate a lot of lists and similar

data structures, which is known to be error-prone, we use

the Bossa language [14] to write our schedulers.

Scheduler Interface: The SVD defines a generic in-

terface to deal with scheduling events but some OS sched-

ulers may implement finer scheduling events or more

complex states transitions. The SI implements the glue

to match the OS scheduling events to the SVD generic

events. Besides dealing with scheduling events at the OS

level, the role of the SI is to manage the scheduling pol-

icy’s interaction with the applications. For instance an

application can ask the SI to be scheduled by a specific

scheduling policy or to invoke an interface function de-

fined by the application’s scheduling policy. In term of

reengineering, the legacy scheduler must be removed and

each call to the scheduler must be trapped and redirected

to the scheduler driver.

3. Implementation Issues

Our design faces two design issues bond to the use of

virtualization.

3.1. Interrupt Queueing

Interrupts are generated by hardware components to

notify the software that something happened in the sys-

tem. For instance a network card issues an interrupt to in-

form the OS that a packet arrived and is ready to process.

In a virtualized environment, interrupts still occur yet it is

more complicated to deal with them as there is more than

one OS running. Basically an interrupt can be generated

even if it is not destined to the OS currently running on

the processor. The hypervisor needs to delay the interrupt

until the correct OS is executed. This is called interrupts

queueing.

In a real-time environment interrupts destined for

GPOS may occur while the RTOS is running. As the

RTOS is given the highest priority, these interrupts will

be processed only when the RTOS is idle and a GPOS is

selected to run. Depending on the load of the RTOS, it

may take some time before an interrupt is processed. Any

task waiting for this interrupt can then be woken up and

the latency (the time between the interrupt and the task

awakening) is actually function of the RTOS load. High

latencies are problematic when running time constrained

applications on the GPOS.

To decrease the latency, interrupts should be processed

as soon as possible and, similarly, the GPOS should be

quickly given the CPU. This can be done by preempting

the running OS and switching to the one the interrupt is

destined for but it is not possible if one wants to guarantee

the timing requirements of the RTOS and its tasks.

However, our approach provides a global vision of the

RTOS tasks at the hypervisor level. It is then possible to

add a task that abstracts the GPOS interrupt servicing as a

schedulable entity. This task is waked up by the interrupts

destined to the corresponding OS and when the scheduler

selects this special task to run, the hypervisor switches to

the OS. When the OS finishes to process the interrupt it

jumps back to the hypervisor through the SI.

3.2. Scheduling Model Coherency

The scheduling state of a thread can only be blocked,

ready or running. By moving task scheduling from the

OSes to the virtual machine monitor, task preemption be-

comes more complicated. Basically preemption can now

occur at two levels: at the task level and at the OS level.

Therefore two tasks can be stated as running at the same

time on two different OSes, but only one will be executed

on the CPU. This situation is incoherent regarding the

scheduling model which ensures that only one task can be

in the state running in the case of a uniprocessor system.

This phenomenon breaks the integrity of the scheduling

state and should be avoided.

To prevent this situation we change the state of the task

running on the preempted OS to ready. We only change

the scheduling state of the thread. From a scheduler point

of view, the thread is ready to run while for the OS it is

running. The new preemption of the thread may cause

changes in the scheduling and it may be possible that the

OS is given back the cpu to run another thread. We need

a way to inform the OS that it needs to preempt the cur-

rent thread and run the newly elected thread. We generate

12

a virtual interrupt to inform that an OS must preempt its

current running task. The counterpart of this is the intro-

duction of a new interrupt handler in the scheduler device

driver. This handler will preempt the running task and call

the scheduler virtual device driver to get the next task to

run.

4. Preliminary Results

We implemented SVD in VirtualLogix VLX, a virtual-

ization solution for embedded systems, and used a typical

configuration as a proof-of-concept. The VLX hypervisor

enables to run a real-time operating system along with one

or more general purpose operating systems. In our case

we set up one instance of Nucleus [11] as the real-time

operating system and one of Linux [1]. We implemented

support for SVD in both OSes and replaced their scheduler

by a single fixed priority scheduler in SVD. The scheduler

uses a round-robin algorithm to guarantee fair-sharing of

the processor and Nucleus tasks are given more priority

than Linux tasks. In this section we evaluate the overhead

of virtualizing task scheduling in this configuration.

Virtualization slightly decreases performance and in

the case of para-virtualization the overhead is below 5%

[7]. Virtualization isolates guest OSes and the hypervisor.

This isolation causes an overhead when an hosted oper-

ating system and the hypervisor needs to exchange data.

When using SVD, all scheduling events require a data ex-

change. Therefore to measure the overhead of SVD we

need to measure the overhead of the scheduling opera-

tions. Amongst these operations some are more frequent

and thus easier to measure. This is the case during tasks

switches. In fact, tasks switches are caused whether by a

task which blocks or by a tasks which is unblocked. By

measuring the context-switch time from the user tasks it

is possible to evaluate the overhead of SVD.

We have written a benchmark program in Nucleus to

measure context-switch time. This program creates sev-

eral threads which by passing a token around them can

trigger context-switches. Before sending the token and

thus being put in a waiting state, the thread measures the

current time. The thread receiving the token – being wo-

ken up – measures the time again. Context-switch time is

the difference between both measures. Table 1 shows the

average time of a context-switch when nucleus is running

under VLX with SVD and without. We can see that us-

ing SVD increases context-switch time by 5 microseconds

which represents an overhead of 83%. While context-

switch time is almost doubled, it is still sensibly low.

Next, we measure the context-switch time for Linux

thanks to the lat ctx program from the LMBench test

suite [2]. This program is very similar in its implementa-

tion to the program we developed for nucleus. The results

can be found in Table 1 and the overhead of SVD support

represents 3.22% of the initial value.

We notice that the overhead times are slightly the same,

approximately 5 microseconds but the overhead repre-

VLX VLX w/ SVD overhead

Linux 145.33 150.02 3.22%

Nucleus 6 11 83.33%

Table 1. Context-switch time measured in µs

sents 3% in Linux and 83% in Nucleus. The difference

between the two results can be explained by the difference

between the two environments. In our configuration, Nu-

cleus does not support memory protection, therefore tasks

share the same address space. Under Linux, each tasks

(processes) have its own address space and when switch-

ing from a process to another, Linux needs to switch mem-

ory contexts which means flushing the TLB and the cache.

This operation costs a lot of memory cycles and increases

context-switch time.

Overall the impact on the system performance is small.

Actually a system where a context-switch is done every

millisecond only adds about 0.5% overhead (after one sec-

ond, the overhead sums up to 5 milliseconds).

5 Related Work

Our work focuses on the management of the CPU re-

source in a virtualized environment. We can find different

approaches to CPU sharing in the literature. For instance

the project Xen [7] chooses a standard way to deal with

the processor multiplexing between virtual machines. In

Xen, the virtual machine monitor uses a scheduling algo-

rithm originally developed for multimedia task scheduling

[8] to schedule virtual machines. A more recent work by

Zhang et al. [21] presents an original solution providing

a distributed approach to control CPU congestion instead

of a centralized one. In this work each guest operating

systems adapt its load through a feedback-control model.

All these approaches multiplex the processor resource be-

tween virtual machines with no consideration of the im-

portance of the applications hosted by the guest operating

systems. The finer grain such solutions offer is to set dif-

ferent priorities to each virtual machine. While that may

be enough in a desktop or server environment, a finer grain

scheduling is needed in real-time embedded systems.

Complete virtualization of hardware systems is not

widespread still virtualization initiatives already exist with

RTLinux [4] and TimeSys Linux/GPL [5]. Both of these

projects make possible the cohabitation of hard real-

time tasks and Linux processes through a small executive

which provides an environment to execute tasks with hard

real-time requirements. Linux is run as the task with least

priority and thus Linux processes get CPU time only when

all the real-time tasks are finished. The task scheduler may

be modified to run Linux at a higher priority, but all Linux

processes are still seen by the executive scheduler as a

single entity and thus are considered to be of equal pri-

ority. It is possible to implement synchronization between

the real-time tasks and the Linux processes through lock-

13

ing mechanisms but this solution would involve a more

complex analysis of task scheduling. The easiest way to

ensure fine-grained scheduling would be to enable the ex-

ecutive scheduler to communicate with Linux scheduler

yet, we do not know of any existing work allowing the co-

scheduling of hard real-time tasks and Linux processes.

Other research have shown that implementing specific

services in the hypervisor can increase global system per-

formance or enhance some aspects of the system. Chen

and Noble were the first to claim that the advantage of

virtualization was to enable the implementation of ser-

vices which would then be perceived by guest operating

systems as hardware features [6]. Moreover as these ser-

vices are implemented in software, they are easier to cre-

ate and maintain. These services allows to enhance secu-

rity [13, 10] or resources management [18, 12].

There is a plethora of scheduling frameworks [9, 14,

15, 16, 19] in the literature and we cannot cite them

all. The scheduling framework in RED-Linux [19] iden-

tifies three paradigms of tasks scheduling in a single

framework: priority-driven, time-driven and share-driven

scheduling. With a fixed number of scheduling attributes,

RED-Linux provides flexible scheduling while keeping

the implementation of scheduling policies simple. On

the other hand, Bossa [14] offers a framework to develop

specific schedulers. Its advantages range from its Do-

main Specific Language which facilitates the writing of

scheduling policies and enables static verifications of the

policies to its use of a scheduling hierarchy à la HLS [16].

6 Future work and Conclusion

Work in the field of virtualization have shown that vir-

tualization could lead to scheduling issues or CPU misuse.

We argued that these issues were globally caused by the

lack of feedback from the operating system in virtual ma-

chines scheduling. Our approach tries to solves this prob-

lem by exposing all the scheduling objects at the same

level, independently from their virtual machine. We have

presented an approach for breaking the data isolation be-

tween virtual machines by migrating the scheduling from

the operating systems to the virtual machine monitor.

We implemented a prototype of SVD in VLX and the

preliminary results show that the overhead of SVD is neg-

ligible. To further prove the flexibility of our approach, we

will present a real case study where the use of SVD and

virtualization enables the development of a complex ap-

plication consisting of programs from both the real-time

operating system and the general purpose operating sys-

tem which cooperate to provide a service.

References

[1] Linux. Online at http://www.kernel.org.

[2] LMBench. Online at http://www.bitmover.com/lmbench/.

[3] Rtai. Online at http://www.rtai.org.

[4] Rtlinux. Online at http://www.fsmlabs.com.

[5] TimeSys Linux/RT. Online at http://www.timesys.com.

[6] P. M. Chen and B. D. Noble. When Virtual Is Better Than

Real. hotos, 00:0133, 2001.

[7] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,

A. Warfield, P. Barham, and R. Neugebauer. Xen and the

Art of Virtualization. In Proceedings of the ACM Sympo-

sium on Operating Systems Principles, October 2003.

[8] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time

(BVT) scheduling: supporting latency-sensitive threads in

a general-purpose schedular. In Symposium on Operating

Systems Principles, pages 261–276, 1999.

[9] A. Daz, I. Ripoll, A. Crespo, and P. Balbastre. A

New Application-Defined Scheduling Implementation in

RTLinux. In Sixth Real-Time Linux Workshop, pages 175–

181. Peter Wurmsdobler, 2004.

[10] T. Garfinkel and M. Rosenblum. A Virtual Machine In-

trospection based Architecture for Intrusion Detection. In

Proceedings of the Network and Distributed Systems Se-

curity Symposium, Feb. 2003.

[11] M. Graphics. Nucleus. Online at http://www.mentor.com.

[12] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau. Antfarm: Tracking Processes in a Virtual Ma-

chines Environment. In Proceedings of the USENIX 2006

Annual Technical Conference, June 2006.

[13] A. Joshi, S. T. King, G. W. Dunlap, and P. Chen. Detecting

past and present intrusions through vulnerability-specific

predicates. In Proceedings of the 20th ACM Symposium

on Operating Systems Principles (SOSP ’05), pages 91–

104, Brighton, United Kingdom, Oct. 2005.

[14] G. Muller, J. L. Lawall, and H. Duchesne. A Framework

for Simplifying the Development of Kernel Schedulers:

Design and Performance Evaluation. In HASE 2005 - High

Assurance Systems Engineering Conference, Heidelberg,

Germany, Oct. 2005.

[15] S. Oikawa and R. Rajkumar. Portable RK: A Portable Re-

source Kernel for Guaranteed and Enforced Timing Be-

havior. In RTAS ’99: Proceedings of the Fifth IEEE Real-

Time Technology and Applications Symposium, page 111,

Washington, DC, USA, 1999. IEEE Computer Society.

[16] J. Regehr and J. A. Stankovic. HLS: A Framework for

Composing Soft Real-Time Schedulers. In Proceedings

of the 22nd IEEE Real-Time Systems Symposium (RTSS

2001), pages 3–14, London, UK, Dec. 2001.

[17] VirtualLogix Inc. VirtualLogix VLX. Online at

http://www.virtuallogix.com.

[18] VMWare Inc. VMWare VMPlayer. Online at

http://www.vmware.com.

[19] Y.-C. Wang and K.-J. Lin. Implementing a General Real-

Time Scheduling Framework in the RED-Linux Real-

Time Kernel. In IEEE Real-Time Systems Symposium,

pages 246–255, 1999.

[20] A. Whitaker, M. Shaw, and S. Gribble. Scale and Per-

formance in the Denali Isolation Kernel. In Proceedings

of the Fifth Symposium on Operating System Design and

Implementation, December 2002.

[21] Y. Zhang, A. Bestavros, M. Guirguis, I. Matta, and

R. West. Friendly Virtual Machines: leveraging a

feedback-control model for application adaptation. In VEE

’05: Proceedings of the 1st ACM/USENIX international

conference on Virtual execution environments, 2005.

14

Abstract: The current Worst Case Execution Time (WCET)
computation methods are designed to be used on a whole
program. This approach has scalability limitations and can
not be applied to programs made up of multiple components:
a method to perform partial analysis on components is
needed. In this paper, we present a general method to perform
partial analysis on components and to compose these partial
results to compute the overall WCET. To check the approach,
we have implemented and experimented the partial analysis
on the behavior prediction of direct-mapped instruction
cache. The experimentation shows big speedup in analysis
computation time with an almost negligible growth of
pessimism.

Keywords: Real-time, instruction cache analysis, WCET,
partial static analysis, components, abstract interpretation.

1. Introduction

Hard real-time systems are composed of tasks that must
imperatively meet deadlines constraints. To check this,
scheduling analysis, based on tasks WCET, is used.
Computation of the WCET by static analysis provides proven
WCET estimation. This approach may be decomposed in two
phases:

• the control flow of the task (program path analysis),

• the hardware which the task will run on (architecture

model)
Each phase requires a bunch of computation to handle
accurately the execution flow of the program and the
hardware model. As real-time programs becomes bigger and
bigger, two problems arises: (1) WCET computation time
will increase exponentially, (2) the use of software
components will make ineffective the current techniques.

In this paper, we propose to perform partial analyses on the
program (1) to reduce the computation time by factorizing
the performed analyses and (2) to provide functions
summarizing the content of components for the WCET
computation. We apply the approach to the case of direct-
mapped instructions caches.

The next section explores in details the partial analysis
problem that is applied in the third section to direct-mapped
instruction cache. In the fourth section, we show
experimentation of our method. Fifth section presents the
related works and we conclude in the last section.

2. Problem definition

Currently, the WCET computation methods are designed to
be used on a whole program. However, there is some
drawbacks to this approach. First, the analyses used for
WCET computation usually run in exponential time with
respect to program size, and embedded real-time programs
are getting bigger and bigger. Second, there is a problem
when the program to analyze depends on external
components developed by third-parties (for example,
programs using libraries) whose sources are not available: it
is not possible to compute the WCET of the whole program
because of lack of information on the components. This

problem will become more and more important as embedded
and real-time industry will use more and more Component
Off The Shelf (COTS).

Both problems suggest to change the current analysis
practice: it is no longer possible to do the analysis all over
the program. We need to find a way to do partial WCET
analysis on parts of the program, and to compose the partial
results into a global WCET for the whole program.

Figure 1 represents the partial analysis and composition of a
program consisting of a function calling another function
located in an external component. The partial analyzer takes
the code of callee and produces a partial result. The

composer takes the partial result, and the code of caller,

to produce a global result, without accessing callee code.

In this paper we will consider the case described by the
figure: a main program using an external component
consisting of only one function. In the case of the instruction
cache analysis, more complex cases can be processed
similarly, and will be addressed in future work.

We need to define, for each analysis participating in the
WCET computation, information needed in the partial
results, the method to produce this data, and the method for
integrating the partial results into the analysis of the whole
program.

There are two main issues when considering the partial
analysis:

(1) how to influence the analysis of the main program with
the content of the component?

(2) how to make the analysis result of the component
dependent on its call context?

To address (1), we describe a transfer function, which
represents the effect of the component code on the analysis
of the whole program. To address (2), we describe a
summary function, which represents the analysis results for
the component, according to the calling context (state before
the function call). The method to compute these functions is
specific to the particular analysis we want to do.

Once the transfer and summary functions associated with the
component are available, we integrate them into the analysis
of the whole program. This is done in two steps:

• Step 1: with the transfer function available, we can do the

analysis on the main program without having to access to
the component code. During the analysis, the component
is represented by the transfer function.

• Step 2: once the analysis on the main program is done,

we have access to the calling context of the component.

WCET Computation on Software Components by Partial Static Analysis

C. Ballabriga, H. Cassé, P. Sainrat*

{ballabri, casse, sainrat}@irit.fr

IRIT - Université de Toulouse – France

* HiPEAC European Network of Excellence

Figure 1: overview of the partial analysis

caller call callee

Composition
Partial
Analysis

Global
res�lt

15

We can use this context, together with the summary
function, to get the actual analysis results for the
component.

Although we have not experimented nested function call,
this approach may be easily adapted. First, the transfer
functions may composed in a straight forward way. Yet,
some additional computations need to be performed for the
summary function to get a sound context before each nested
function call.

3. Instruction cache analysis

This section shows how to apply the general approach
described previously to the instruction cache analysis.
The cache is a fast and small memory used to store a partial
copy of the main memory, which speeds up data accesses.
When a memory access is performed, either the data is
present in the cache, resulting in a fast access called a hit, or
it must be retrieved from memory, resulting in a slow access
called a miss. The cache is divided into fixed-size lines, and
the main memory is divided into cache blocks of the same
size than cache lines. Each cache block from memory
matches a single line. In case of miss, the whole cache block
containing the target location is loaded into the matching
line. In the direct-mapped cache, each line contains only one
block, while in the A-way associative cache, each line
contains A blocks.

3.1. Presentation of the analysis of a single component

To predict instruction cache behavior, we have used the 3
analyses (Must, May, and Persistence) from [2, 8], restricted
to direct-mapped cache, by considering that a direct-mapped
cache is a A-way associative cache where A = 1.

These analyses are based on the techniques of abstract
interpretation [5], and are performed on a Control Flow
Graph (CFG), composed of Basic Blocks (bb). They work by
computing abstract cache states (ACS) before and after each
basic block using two functions:

• the Update function computes the output ACS from the

input ACS of a basic block, that is, the effect of the basic
block on the ACS;

• the Join function merges the input ACS of a basic block

that has several predecessors in the CFG.

We call ACSmay

in bb , ACSmust

in bb and ACS pers

in bb the

input ACS for, respectively, the May, Must and Persistence
analyses. The syntax ACS bb l allows to get the content

of a specific line of the ACS.

The May ACS gives the set of blocks which may be in the
cache. The Must ACS gives the set of blocks which must
definitely be in the cache. The Persistence ACS maps two

sets (ACS pers , 0

in bbl and ACS pers , 1

in bbl) to each cache

line. Both sets contains blocks that may have been loaded in
the cache. While the blocks of the latter set may have been
wiped out, the blocks of the former must be still in the cache.

The ACS resulting from the analyses will be used to
determine basic block categories. For the sake of simplicity,
we consider a CFG projected on the cache blocks (i.e. each
basic block is split according to cache block boundaries).
Now, since a basic block of the projected CFG cannot span
multiple cache blocks, we can assign a single category to
each basic block.

Let cb be the cache block containing the basic block bb, and l
its cache line. The following array shows the process to
assign a category to each basic block:

Condition to test Category

cb∈ACS
must

in bb l Always-Hit (AH)

cb∈ACS
may

in bb l ∧cb∉ACS
pers ,1

in bbl First-Miss (FM)

cb∉ACS
may

in bbl Always-Miss (AM)

else Non-Classified (NC)1

Table 1: Computation of the category

3.2. The transfer function

The transfer function describes the effect of callee on the

analysis of the main program. In the case of the cache
analysis, the callee transfer function takes the ACS from

the caller, and computes the ACS at callee exit. We call

ACS xxx

entry
 and ACS xxx

exit
 the ACS at callee entry and exit

(where xxx stands for one of may, must, or pers).

Independently of the particular cache analysis, there are two
effects that must be taken into account to build the transfer
function. First, cache blocks of callee may appear in the

ACS at callee exit, independently of the ACS at callee

entry. This effect is handled by executing the analysis on
callee with an empty entry ACS, and the result is retrieved

from ACS xxx

exit
.

Second, some cache blocks that were present in the ACS at
callee entry may be wiped out by callee. This effect is

handled by the damage update function. This function, of
type ACS ACS , takes an ACS, and returns the damaged
ACS, according to the cache blocks which may have been
replaced by callee cache blocks. It is different from the

transfer function: the damage update function does not take
into account the cache blocks belonging to callee which

appear on callee exit ACS.

Whatever the performed analysis, the transfer function can be
expressed by the following formula:

transfer ACS =Join DamageUpdate ACS , ACS xxx

exit

In the following, we will see how to apply this general
method to the transfer functions of the May, Must, and
Persistence analyses.

In the case of the May analysis, the damage update is
deduced from a cache damage analysis. This analysis builds
damage information that represents, for each line, the list of
cache blocks which would definitely be replaced if they were
present in the cache at the beginning of callee. For

example, if cb ∈ damagemay

in bb , all the paths from

callee entry to basic block bb remove cb from the cache.

We call linecb the cache line of the cache block cb. The

Update function of this analysis is defined as follows:

∀ l≠ linecb ,Updatemay

damagedamage , cb l =damage l

Updatemay

damage damage ,cb linecb=damage line cb

∪{ cb' / linecb = l }−{cb}

The Join function is defined like this:

Joinmay

damagedamage1 ,damage2=damage' /

∀ l , damage ' l =damage1 l∩damage2 l

Let call damagemay

exit
 the damage information at callee

exit. Using the result of the analysis, the following damage
update is defined:

∀ l , DamageUpdatemay ACS l =ACS l −damage may

exit l

The transfer function is then created as explained previously.

The Must transfer function works in the same way as the

1 We have conservatively considered NC category as an Always-Miss.

16

May transfer function, by doing a Must version of the cache
damage analysis, and of the damage update function.

The only difference is that, in the Joinmust

damage
 function, a

union of damages is done, instead of the intersection.

The transfer function for the Persistence analysis is built a bit
differently. It uses the results from the Must and May damage
analysis, and is defined below:

DamageUpdatepers ACS pers=ACS ' pers / ∀ l

ACS ' pers ,0 l =ACS pers ,0 l −damage must

exit l ;

ACS ' pers ,1 l =ACS pers ,1 l ∪ACS pers ,0 l ∩damage must

exit l

3.3. The summary function

The summary function will give a category to each basic
block, according to the entry states of callee. This

function is defined on ACSmust×ACS persCATEGORY and

is associated to each basic block of callee.

The results from the Must and Persistence analysis are
required to create the summary function.

Let cb be the container cache block of the basic block bb, and
l its cache line. The following table represents the different
possible types of summary functions of the basic block bb:

Condition to test summary function

cb∈ACS
must

in bb l ACS
must

entry
ACS

pers

entry
. AH

cb∉damage
must

in bbl ACS
must

entry
ACS

pers

entry
.if cb∈ ACS

must

entry bb l

then AH else if cb∉ACS pers ,1

entry
 l

then FM else AM

cb∉ACS
pers ,1

in bb l ACS
must

entry
ACS

pers

entry
. if

cb∉ACS pers ,0..1

entry bb l then FM else AM

else acs
must

ENTRY
acs

pers

ENTRY
. AM

Table 2: Computation of the summary function

3.4. Composition of the partial analysis

We explain now how to use the partial analysis results (the
transfer functions, and the summary function) into the
analysis of the whole program.

Since the base address of the component file containing
callee is unknown when the partial analysis is performed,

we assume that the base address is 0. If we force the linker
to allocate the component object file at a base address
multiple of the cache block size, we keep the same structure
for the mapping of the component cache blocks into lines: if
we know the matching line of a location in the original
mapping, we can find the new cache line with a simple
addition, modulo the number of cache lines.

Therefore, using this simple transformation, we can adapt the
transfer and summary functions for callee, and use them

for the composition in the two steps described in section 3:

1.When the May, Must, and Persistence analyses on caller

are performed, callee CFG is replaced by a virtual node,

whose Update function is the Transfer function.
2.With the analyses from step 1 performed, we have the ACS

at callee entry, which the summary function can be

applied to, in order to determine callee basic block

categories.

4. Experimentation

This section describes the environment of experimentation
and presents the obtained results.

4.1. Mode of operation

Our method has been implemented using OTAWA [7], a

framework dedicated to the development of static analyses
for WCET computation. We have performed experimentation
on the SNU-RT2 benchmarks, a set of small programs widely
used to test WCET computation and have been focused on
the benchmark program containing function calls.

The partial analysis of each function induces a computation
overhead due to the summary and transfer functions
computation. Yet, this drawback may be balanced by the
time gain at composition time if the program performs
enough partially-analyzed function calls. To evaluate this
issue, we have done 7 tests with different numbers of calls of
the partially analyzed function, and different loop nesting
depths of these calls.

For each test, we have compared the computation time and
the obtained WCET between the partial and the non-partial
analyses.

The architecture that the WCET computation is applied to is
a simple non-pipelined processor with each instruction taking
5 clock cycles (since the goal of this paper was to show
results for the cache analysis, we did not include other
effects, like the pipeline), and with a direct-mapped
instruction cache of 8 lines with 8-bytes blocks. Such a small
cache allows exhibiting more block conflicts with the small
programs of the SNU-RT benchmark.

4.2. Results

There are two interesting aspects to examine in the results:

• The comparison between the computed WCET on both

analyses, to show that the partial analysis does not add
too much pessimism.

• The comparison of the analysis time for both analyses, to

show in which cases the partial analysis is faster.

The following tables show the relevant information (P.A. and
N.A. stands, respectively, for Partial and Non-partial
Analyses):

The table 3 compares the computed WCET, while the table 4
shows the computation time ratio for each test in function of
the call context.

The WCET results are coherent: the WCET found by the
partial analysis is always equal or slightly greater than the
non-partial analysis WCET. Furthermore, only few
pessimism is added: the partial analysis adds on average a
pessimism of 1% (P.A. / S.A. column)

2 Singapour National University - Real-Time

Table 4: call context sensitivity

�enc� ��nction P�A� � ��A� Call sites �a� loop dept�
fib 2 1 0

2,25 1 0

fft1 (1) fft1 1,01 2 0

fft1 (2) sin 0,41 2 2

0,67 3 0

fir (1) sin 0,75 2 1

fir (2) 0,66 2 1

fibcall

matm�l matm�l

q�rt q�rt

ga�ssian

Table 3: WCET comparison

�enc� ��nction ��A� (cycles) P�A� (cycles) P�A� � ��A�
fib 1100 1100 1

18010 18010 1

fft1 (1) fft1 33950 34420 1,01

fft1 (2) sin 33950 33950 1

19105 19645 1,03

fir (1) sin 219020 219020 1

fir (2) 219020 219020 1

fibcall

matm�l matm�l

q�rt q�rt

ga�ssian

17

For the fibcall and matmul tests, the diagram shows that the
partial analysis is slower. This can be explained because, for
these tests, the function which was partially analyzed is
called only once, so the partial result is only used once: the
overhead for computing the partial result is not compensated.

For the fft1 (1) test, the function fft1 is called exactly two
times, and the overhead is almost exactly compensated.

For the qurt, fft1 (2), fir (1), and fir (2) tests with a high
number of calls to the function, the partial analysis is faster
than the non-partial analysis. As shown by the fft1 (2) test,
the loop nesting level of the call site has a great impact.

To summarize, although the computation of the transfer and
the summary functions creates an overhead compared to a
single non-partial analysis, the transfer function is much
more fast to apply and the summary function is used only
once for each call site. As shown in the experimentation, this
overhead is compensated as soon as the partial analysis is
applied twice. Such a situation arises very often in programs
as (1) functions are usually defined to be called several
times, and (2) in case of loops, the fix-point computation of
static analyses requires at least two iterations.

5. Related work

The effect of the instruction caches on WCET computation
has been extensively studied.

A widely used method for WCET computation is the Implicit
Path Enumeration Technique (IPET) [6]. In IPET, the
program structure and flow facts (such as loop bounds) are
modeled by linear constraints. The WCET is then expressed
by an objective function to maximize, and an Integer Linear
Programming solver is used to compute the result.

In [1], F. Mueller defines a method to categorize instructions
into three categories (Always-Hit, Always-Miss, and First-
Miss). These categories describe the worst-case instruction
cache behavior, and are included in the WCET computation.
While Always-Miss and Always-Hit are self-explaining,
First-Miss means that the first execution of an instruction in a
loop may result in a miss, but subsequent executions will
result in a hit.

C. Ferdinand [2, 8] describes a method to compute the
categories using abstract interpretation. He uses three
analyses that consist in computing an Abstract Cache State
(ACS) for each basic block as explained in the section 3.1.
The ACS resulting from this analysis are used to build the
categories for each instruction memory access.

In [4], F. Mueller extends the method defined in [1] to a
program made up of multiple modules. First, a module-level
analysis, consisting of four analyses for different possible
contexts (scopes), is done independently for each module,
resulting in temporary categories. Next, a compositional
analysis is performed on the whole program to adjust the
categories according to the call context. This results in a
merged context-insensitive category causing a lot of
pessimism. Moreover, this approach requires also more
analyses passes than our analysis that is performed in one
pass followed by the fast instantiation of our functional
categories.

In [3], a method is proposed to perform component-wise
instruction cache behavior prediction. It adapts Ferdinand’s
cache analysis [2] (bound to May and Must analyses) to an
executable linked from multiple components. This method
addresses two main aspects of the problem.

First, the absolute base address of the component is unknown
during the analysis, so it works with relative addresses (i.e.

assuming that the base address is 0). To overcome this issue,
it is proposed to force the linker to put the component into a
memory location that is multiple of the cache size. This
method ensures that the cache mapping is the same, whether
the base address is absolute or relative. As shown in 3.4,
we alleviate this constraint as we only require a cache block
size alignment.

Next, when a component calls a function in another
component, the called function has an influence on the cache
state, and on the ACS of the caller. To handle this problem,
the paper defines, for each called function, a “cache damage
update” function that tells which cache lines are replaced
(and how many times for associative caches) by the function.
In this paper, we have augmented this analysis, as we also
compute the persistence information, but we have also
improved the accuracy of the results thanks to a context-
sensitive definition of the categories.

6. Conclusion

We have presented a method to perform partial analysis on
the instruction cache of a function in a component, and to
compose the obtained partial result to compute the WCET of
the whole program. Then, we have compared our method to
the non-partial analysis on several benchmarks. The results
show that, for the tested cases, the WCET produced using
our method induced a very small pessimism.

Also, it seems that if the function being partially analyzed is
called at least twice, or is called in a loop, the time needed to
do the partial analysis and the composition is lower than the
time needed to do the non-partial analysis. This means that
the partial analysis is useful to speed up the analysis of large
programs containing functions called many times.

Our future work will include the adaptation of this method to
the A-way associative cache, and to other types of analyses
for WCET computation (pipeline effects, etc...). Our goal is
to apply partial analysis to the overall WCET computation.

7. References

[1] F. Mueller, Fast instruction cache analysis by static cache
simulation, Journal of Real-Time Systems, 2000.

[2] M. Alt, C. Ferdinand, F. Martin and R. Wilhelm, Cache
behavior prediction by abstract interpretation, Proceedings of
Static Analysis Symposium, 1996.

[3] A. Rakib, O. Parshin, S. Thesing and R. Wilhelm,
Component-wise instruction-cache behavior prediction,
Proceedings of 2nd International Symposium on Automated
Technology for Verification and Analysis, 2004.

[4] K. Patil, K. Seth and F. Mueller, Compositional static
instruction cache simulation, ACM SIGPLAN Notices, 2004.

[5] P. Cousot and R. Cousot, Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints, Proceedings of 4th
ACM Symposium on Principles of Programming Languages,
1977.

[6] Y. T. Li and S. Malik, Performance analysis of embedded
software using implicit path enumeration, Proceedings of the
32nd ACM/IEEE conference on Design automation, 1995.

[7] H. Cassé and P. Sainrat, OTAWA, a Framework for
Experimenting WCET Computations, 3rd European Congress
on Embedded Real-Time Software, 2006.

[8] H. Theiling, C. Ferdinand and R. Wilhelm, Fast and
precise WCET prediction by separate cache and path
analyses, Journal of Real-Time Systems, 2000.

18

IMPROVEMENT OF ZIGBEE ROUTING PROTOCOL INCLUDING
ENERGY AND DELAY CONSTRAINTS

Najet Boughanmi and YeQiong Song

LORIA – INPL

Campus scientifique, BP239
54506 Vandoeuvre-lès-Nancy, France

emails : {Najet.Boughanmi ; Ye-Qiong.Song }@loria.fr

Abstract: Besides energy constraint, wireless sensor
networks should also be able to provide bounded
communication delay when they are used to support real-
time applications. In this paper, we propose an
improvement of Zigbee routing protocol integrating both
energy and delay constraints. By mathematical analysis
and simulations, we have shown the efficiency of this
improvement.
Keywords: Real-time, wireless sensor network, routing,
energy, delay, lifetime, delivery rate.

1. INTRODUCTION

With recent technical and technological advances in
WSN (Wireless Sensor Network), it becomes now
possible to envisage not only simple non real-time
data collect but also more complicated real-time
applications. Thus, WSN can be extended to include
actuator nodes, called by some researchers wireless
sensor and actuator network [1]. Each sensor node is
composed of one or more sensors, a processor and a
radio transmission unit. All of them are supplied by
an unchangeable battery. Sensor nodes collect data
from the environment that they are supervising and
send them to other nodes or a base station (sink). This
station processes received data and sends appropriate
action commands to the actuators [2, 3]. Actuator
nodes are assumed less energy constraint than the
sensor nodes.

It is worth pointing out that the main research efforts
in developing WSNs have focused on how to extend
the network lifetime with respect to limited battery
energy. However, when real-time applications are
deployed on them, extending the lifetime of the
network should be done without jeopardizing real-
time communications from sensor nodes to other
nodes or to data sinks. For example, a surveillance
system needs to alert authorities of an intruder within
a few seconds of detection [4]. Unfortunately, there is
little work on the real-time communication support
for WSNs.

For energy saving, most of work focuses on the
communication protocol design since in a WSN the
radio communication unit is the major power
consumer in the node (it consumes about one
thousand CPU units) [5]. IEEE 802.15.4 Task Group
together with Zigbee Alliance [6] have developed an
entire communication protocol stack for Low-Rate
Personal Area Networks. One of the potential
applications of this standard is in WSNs. This
standard represents the new generation of distributed

embedded systems for pervasive computing. IEEE
802.15.4 standard deals with the energy optimization
in the physical layer and the Medium Access Control
(MAC) sub-layer. Energy saving is mainly achieved
by defining a sleeping period (inactive period) in a
superframe. The Zigbee specifications define the
routing and the application layer. The Zigbee routing
protocol is almost the same as AODV (Ad hoc On-
Demand Distance Vector) with the exception of route
maintenance. Even one may agree that AODV can
always choose the route that minimizes the delay (or
equivalently the number of hops), it does not take into
account energy optimization. In this paper, we aim at
improving the Zigbee routing protocol by including
both energy and delay considerations.

Several energy-aware metrics have been proposed [7,
8, 9] to optimize the energy consumption during the
routing process. However they omit the real-time
aspect. [10] presents a routing approach which
optimizes the network lifetime for real-time
applications. However, it does not take into account
the link's reliability. It should be noted that a route
that chooses an unreliable link may experience longer
delay because of the higher retransmission
probability, which will in turn increase the energy
consumption. The Real-time Power-Aware Routing
(RPAR) protocol [11] reduces communications
delays by adapting the transmission power to the
workload. However, it does not optimize the network
lifetime.

So, in this paper, we will focus on maximizing the
sensor network lifetime while still taking into account
the delay requirement of real-time communications.
Our main idea is to find a new routing metric which
is capable of including delay, energy, as well as link
reliability factors. In our study, we used IEEE
802.15.4 protocol and Zigbee AODV. We are going
to optimize the network lifetime under the delay
constraint at the routing layer. Without loss of
generality, the delay of a route is considered
equivalent to the number of hops on the route and we
assume that one can find the limit on the hop number
for a given real-time communication constraint.

The rest of this paper is organized as follows. In
Section 2 provides a mathematical analysis for packet
forwarding. We will give a routing metric that trades
off between maximizing the sensor network lifetime
and satisfying the communication delay. By
simulations, we will compare the performance of our

19

routing approach with the existing ones in Section 3.
Finally, Section 4 gives conclusions and describes
future directions.

2. PROPOSED ROUTING METRIC

2.1 Model

In this study, we adopt the model defined in [7]. This
model captures the packet reception rate (PRR)
between two nodes as follows. Nodes have full
connectivity if they have a distance less than D1.
They are disconnected if they are separated by a
distance greater than D2. The expected PRR decreases
smoothly in the transitive region between D1 and D2.
The behavior is modeled by (1)

1 d<D
1

1

2
1 2

1 02

0
2

D d
PRR X D d D

D D

d D

−
= + ≤ ≤

−

>

�
�
� ���� ��
� ��� 	
�
�

1
 (1)

where [.]a
b

= max{a, min{b, .}} and X ~ N(0, σ2
) is a

Gaussian variable with variance σ2
.

2.2 Metrics

The wireless sensor network is presented by a graph
G = (V, A), in which V is the set of nodes including

the base station. The set of edges A ⊂ V × V such that

(i, j)∈ A if nodes i and j can transmit to each other. To
optimize the routing path, we assign each node the
remaining energy and each vertex the delivery rate.

In the following, we are interested in the metric of the
path efficiency. This metric considers the path energy
efficiency and the delay experienced along this path.
Here we are going to maximize energy efficiency
while minimizing the delay together. Thus, we first
define this path efficiency, E, to be the ratio of the
path energy efficiency, Eeff, to the delay required to
transmit a packet from the source to the destination.
The energy efficiency represents a trade-off between
delivery rate and energy consumption along this path.
In order to maximize the path efficiency and
minimize the energy consumption, the energy
efficiency is quantified as the ratio of the delivery
rate, Er, to the total energy consumed to transfer the
packet to the destination node Ee. Thus, this energy
efficiency is expressible by

ErE
eff

Ee

= (2)

1
 This equation is modified, in numerator, d – D1 is

replaced by D2 – d to find 1 when d = D1.

The end-to-end delivery rate for a path ϕ takes into
account the delivery rate of each link in this path. So,
this end-to-end delivery rate is the product of packet

reception rate of each link in ϕ as shown by

, 1,
E prrr k kk k destinationϕ

= ∏ +∈ ≠ (3)

where prrk,k+1 is the packet reception rate between
node k and its forwarder k+1 as shown in Figure 1.

Fig. 1. Path

Taking into account the retransmission (R: number of
allowed retransmission), the required energy for the
packet delivery for the first transmission is calculated
by

 1 2ˆ ˆ() ()
, 1

i
E p E b a b Ee e ei i

= + + ++ . (4)

Using a recurrent calculation, the required energy for
the packet delivery for the R

th
 retransmission is given

by

 1ˆ ()
, 1

R i
E p E b abe ei i

+
= + ++ . (5)

Finally, the required energy for the packet delivery is

1
(())(1)

, 1

1

i R
prr E b ab aei i

Ee
a

+
+ + −+

=
−

 (6)

where prri-1,i is the packet reception rate for the
forwarder i-1, Ee

i
is its energy cost that refers to the

energy consumption from the source to the node i. b
is the packet processing energy (transmission and
reception) and a = 1 – prri-1,i.

As we are using the IEEE 802.15.4, the number of
allowed retransmission is fixed to 3. Therefore the
required energy will be

4
(())(1)

, 1

1

i
prr E b ab a

i i e
E
e a

+ + −
+

=
−

If prri-1,i=0 (the link is broken), the consumed energy
is equal to (R+1)b, in our case 4b.
By replacing Er and Ee in (2), the energy efficiency is
given by

1,
,

(1)
4

(())(1)
, 1

prr
k k

k k destination
E a

eff i
prr E b ab a

i i e

ϕ
∏

−
∈ ≠

= −

+ + −
+

 (7)

20

As the routing approach has to respect the delay to
guarantee the “deadline” for real-time
communications, the path efficiency could further be
represented by E = Eeff/delay.

1,
,

(1)
4

(())(1)
, 1

prr
k k

k k destination
E a

i
delay prr E b ab a

i i e

ϕ
∏

−
∈ ≠

= −

+ + −
+

(8)

The routing approach presented by Coleri [10]
guarantees the delay performance too. However, the
corresponding delay is not included in the routing
metric. In fact, in this approach only paths that offer
delay less than the allowed delay are considered in
the routing choice. Furthermore, the time is divided
into time frames and at the beginning of each frame,
the base station floods the network with a tree
construction packet. Thus, there is significant energy
consumption in the routing process. However, we
use the AODV routing protocol with a modified
routing metric as shown in (8). Hence, the route is
setup according to the AODV request/response cycle.
The delays are collected by route response message.
Consequently, we have not increased the network
load.

However, considering only the consumed energy is
not sufficient to maximize the lifetime of the sensor
network. We must include the remaining energy in
the routing metric to balance the load of the network.
Thus the lifetime efficiency Eleff is given by

E E eile f f
= ⋅ (9)

where ei is the remaining energy of the forwarding
node i.

The new metric for the path efficiency which includes
the delay, the path reliability and the lifetime
efficiency, El, can be calculated from

1,
,

(1)
4

(())(1)
, 1

l

prr
k k

k k destination
E a e

ii
delay prr E b ab a

i i e

ϕ
∏

−
∈ ≠

= − ⋅

+ + −
+

 (10)

Once we have defined our routing metric, we
included it in the AODV routing protocol. Thus, our
new version of AODV chooses the most efficient
path to the destination node by considering both
energy and delay constraints.

3. SIMULATION RESULTS AND DISCUSSION

In this section, the performance of the proposed
routing metric is evaluated and compared with
AODV routing protocol and Coleri routing metric.
Furthermore, we use NS-2 simulators to implement
the physical and MAC layers of IEEE 802.15.4. We
have changed the existing implementation in NS-2 of

AODV to integrate our metric. Thus, we have a new
version of AODV, which we call Enhanced AODV.

The primary purpose of our simulation is to observe
the network lifetime resulted by our routing
optimization. Moreover, we consider the delivery rate
as another performance metric.

The simulated networks consist of 11, 22 and 101
nodes respectively.

3.1 Assumptions

The following assumptions are made in this study.
1. We consider a wireless sensor network that

consists of a base station and several sensor
nodes. These sensor nodes generate data for
transfer to the base station. Delay constraint is
only imposed on this sensor to base station
communication.

2. Sensor nodes have a low mobility that is the case
for most of the sensor network applications.

3. The delay needed to transmit a packet from a
source node to a destination node is equivalent to
the number of hops counted between these two
nodes.

4. The operational lifetime of the sensor network is
defined as the time until the first 5% of nodes died
as proved in [10].

3.2 Lifetime

We study here the sensor network lifetime. We
observe in Figure 2 that at the beginning the three
routing approaches have the same result. In fact, in
the beginning of the network life, all nodes have a
maximal amount of energy. Thus, the three routing
approaches will have the same routing choices. Once
the sensor energy decreases, the difference between
these routing approaches appears. We observe that
the Enhanced AODV routing approach let sensors be
alive for a longer time than AODV routing protocol
does.

0

50

100

150

200

250

300

350

400

5% 25% 50%

percentage of nodes

T
im

e
 (

m
s
)

Enhanced AODV

AODV

Coleri Metric

Fig. 2 Comparison of the time at which a specific percentage of
the nodes are dead between Enhanced AODV, AODV and Coleri
metric .

Moreover, both of Enhanced AODV and Coleri
routing metric give almost the same time for the
death of a specific percentage of nodes. This is an

21

expected result since both routing metrics aim to
maximize sensor network lifetime.

3.3 Delivery rate

In this sub-section, we focus on the optimization of
the network delivery rate. We define the network
delivery rate as the ratio of the total received packets
to the total sent packets in the sensor network. We
compute this delivery rate at different times in the
sensor network lifetime and compare the results
among Enhanced AODV, AODV and Coleri metric.

Figure 3 a. gives the delivery rate before the death of
5% of nodes. We notice that for a sensor network of a
small number of nodes, all of the studied routing
approaches offer the same delivery rate. In fact, in
small sensor network there is almost one path from
the source to destination. Thus, all of the routing
algorithms choose the same path. However, for a
network with a larger number of nodes, the Enhanced
AODV performs better than AODV does. Moreover,
the Enhanced AODV and Coleri routing metric gives
almost the same delivery rate.

0

0,2

0,4

0,6

0,8

1

1,2

11 22 101

number of nodes

d
e
li

v
e
ry

 r
a
te Enhanced AODV

AODV

Coleri Metric

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

11 22 101

number of nodes

d
e
li

v
e
ry

 r
a
te

Enhance AODV

AODV

Coleri Metric

a. b.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

11 22 101

number of nodes

d
e
li

v
e
ry

 r
a
te

Enhanced AODV

AODV

Coleri Metric

c.

Fig. 3 a. Delivery rate before the death of 5% of nodes. b.
Delivery rate before the death of 25% of nodes. c. Delivery rate
before the death of 50% of nodes

Figure 3 b. shows the delivery rate before the death of
25% of nodes. In the same way as mentioned before,
for a small sensor networks, all of the studied routing
approaches give the same delivery rate. However, the
benefit due to the optimization of delivery rate by the
Enhanced AODV is clear. In fact, these routing
approaches give better delivery rate than AOV and
Coleri metric. Thus, although the Enhanced AODV
and the Coleri metric offer the same network lifetime,
the former gives a better delivery rate.

From the results given by the Figure 3 c. we notice
that the Enhanced AODV offers better delivery rate
than AODV and Coleri routing approaches. Thus, for
different moment of the network lifetime, the delivery
rate is always better with the Enhanced AODV
routing approach.

4. CONCLUSION

A successful deployment of real-time applications
over WSNs needs to satisfy the required timing
properties under energy consumption constraints. As
Zigbee routing protocol does not address energy and
delay issues together at the same time, we propose in
this paper a new routing metric. The benefit of this
metric has been shown by simulations when
embedded into AODV protocol. Moreover, we started
implementing this metric in MecaZ. As a future work,
we plan to test this metric in a real WSN.

5. REFERENCES

[1] I. F. Akyildiz and I. H. Kasimoglu, “Wireless sensor
and actor networks: research challenges”, Ad hoc
networks, 2 (2004), pp 351-367, May 2004.

[2] Y. Li, Z. Wang, and Y.Q. Song, “Wireless sensor

network design for wildfire monitoring”, 6th World
Congress on Intelligent Control and Automation
(WCICA 2006), Dalian (China), 2006.

[3] C. Lu, G. Xing, O. Chipara, C.L. Fok, and S.

Bhattacharya, “A spatiotemporal query service for
mobile users in sensor networks”, ICDCS, pp. 381-
390, 2005.

[4] T. He, P. A. Vicaire, T. Yan, L. Luo, L. Gu, G. Zhou,

R. Stoleru, Q. Cao, J. A. Stankovic and T. Abdelzaher,
“Achieving real-time target tracking using wireless
sensor networks ”, 12th IEEE Real-Time and

Embedded Technology and Applications Symposium,
pp. 37-48, April 2006.

[5] S. Coleri Ergen, and P. Varaiya, “PEDAMACS: Power

efficient and delay aware medium access protocol for
sensor networks”, IEEE Transactions on Mobile
Computing, vol. 5, pp. 920-930, July 2006.

[6] Zigbee Specifications, 2004. http://www.zigbee.org.

[7] M. Busse, T. Haenselmann, and W. Effelsberg, “An

Energy-Efficient Forwarding Scheme for Wireless
Sensor Networks”, Technical report 13, University of
Mannheim, Dec. 2005.

[8] M. Busse, T. Haenselmann, and W. Effelsberg, “Poster-

Abstract: A Lifetime-Efficient Forwarding Strategy
for Wireless Sensor Networks”, EWSN, 2006.

[9] Q. Cao, T. He, L. Fang, T. Abdelzaher, J. Stankovic,

and S. Son, “Efficiency Centric Communication
Model for Wireless Sensor Networks”, Infocom,
2006.

[10] S. Coleri Ergen, and P. Varaiya, “Energy Efficient

Routing with Delay Guarantee for Sensor Networks”,
ACM Wireless Networks WINET, 2006.

[11] O. Chipara, Z. He, G. Xing, Q. Chen, X. Wang, C. Lu,

J. Stankovic, and T. Abdelzaher, “Real-time Power-
Aware Routing in Sensor Networks”, Forteenth IEEE

International Workshop on Quality of Service (IWQoS
2006), June 2006.

22

Negative Results on Idle Intervals and Periodicity for Multiprocessor

Scheduling under EDF

Christelle Braun Liliana Cucu

ENSMN LORIA-INPL

54000 Nancy, France 54000 Villers les Nancy, France

braun67@mines.inpl-nancy.fr liliana.cucu@loria.fr

Abstract

In this paper we present negative results for global

scheduling of arbitrary deadlines periodic systems under

EDF. We reconsider the definition of the idle intervals from

the uniprocessor case to the multiprocessor case. Unfor-

tunately, this new definition does not provide feasibility

results for these systems. We provide counter-examples

for the periodicity of EDF-feasible schedules in the multi-

processor case.

Keywords : scheduling, multiprocessor, global.

1 Introduction and existing results

Real-time systems are widely used in nowadays industry

such as spacecraft guidance or mobile phone communi-

cations. The correctness of a real-time system not only

relies on its logical result, but also on the time required to

produce it.

In this paper, we consider scheduling of real-time sys-

tems on multiprocessor platforms. For economical and

practical reasons, these systems are often preferable to

powerful uniprocessor architectures. However, specific

scheduling issues arise with multiprocessors, which need

a better understanding and justify our present contribu-

tion.

Real-time scheduling has been much studied since Liu’s

seminal paper in 1973 [1]. However, the research in the

field has mainly focused on uniprocessor platforms, while

in comparison only few results are known for the multi-

processor case. See a complete presentation of these re-

sults in [2].

We consider the model of a periodic task system [1],

where such a system is usually modelled as a set of el-

ementary units called jobs. A job Jk (k ∈ N
∗) is defined

by (rk, ek, dk) where rk is its release time, ek its worst-

case execution time and dk its deadline. In this model, the

job Jk, released at time rk, must have finished execution

before or at rk + dk. A job is active from its release time

until its execution ends.

In this paper, the jobs satisfy the following assumptions:

(H1) Jobs are independent: the release time of a job does

not depend on the execution of another job.

(H2) Job preemption is permitted: a job executing on a

processor may be preempted prior to completing ex-

ecution, and its execution may be resumed (without

penalty) later.

(H3) Job migration is permitted: after its preemption,

a job may resume execution on a processor differ-

ent from the one upon which it had been executing

prior to preemption. In this case we deal with global

scheduling.

(H4) Job parallelism is forbidden: each job may execute

on at most one processor at any given instant in time.

Given a task system, a scheduling algorithm determines

at every time instant which job(s) should be executed.

We consider two set of jobs J and J ′ which are identi-

cally except for the execution times. The jobs belonging to

J have execution times larger or equal to those of the jobs

belonging to J ′. A scheduling algorithm is predictable if

when it schedules, separately, J and J ′, each job of J ′

finishes, always, before or at the same time as the corre-

sponding job in J .

This work. The scheduling algorithm EDF is already

proved predictable ([3]) in the multiprocessor case. It im-

plies that the periodicity of an EDF-feasible schedule (if

any) provides a feasibility interval1. To our best knowl-

edge, there is no result on feasibility intervals for global

multiprocessor scheduling under EDF.

In this paper, we reconsider the definition of the idle in-

tervals from the uniprocessor case to the multiprocessor

case. Unfortunately, this new definition does not provide

feasibility results for these systems. We provide counter-

examples for the periodicity of EDF-feasible schedules in

the multiprocessor case.

In this paper, we consider identical multiprocessors, i.e.,

all processors have the same computing power. We con-

sider, also, a discrete model, i.e., the characteristics of the

tasks are integers. Moreover, we assume that the instants

at which the scheduler makes decisions are equidistant.

The paper is organized as follows. In Section 2 we in-

troduce the main definitions and notations. Section 3

1we understand by feasibility interval the finite interval such that if

no deadline is missed while considering only requests within this interval

then no deadline will ever be missed

23

presents EDF-scheduling and idle time related issues. In

Section 4 we provide a conjecture on the periodicity of

EDF-feasible schedules. We conclude in Section 5.

2 Definitions and notations

A periodic task τi = (Oi, Ci, Di, Ti), i ∈ N
∗ is charac-

terized by an offset Oi, a worst-case execution time Ci, a

relative deadline Di and a period Ti. Starting from Oi, a

new job is released every Ti time units. In other words,

the k’th job of the task τi (k, i ∈ N
∗) is released at time

Oi + (k − 1)Ti and must execute Ci time units before its

deadline occurring at time Oi + (k − 1)Ti + Di.

A periodic system is a finite system of periodic

tasks τ = (τ1, τ2, . . . , τn), ∀n ∈ N
∗, where τi =

(Oi, Ci, Di, Ti),∀i ∈ {1, . . . , n}. If there is a time instant

at which jobs of all tasks are released synchronously, the

system is said to be synchronous; otherwise the system is

said to be asynchronous.

The processor utilization U of the system τ =

(τ1, τ2, . . . , τn) is the sum U
def
=

∑n

i=1
Ui where Ui is

the utilization of the task τi: Ui

def
= Ci

Ti

, i ∈ {1, . . . , n}.

We are typically interested in feasibility and schedulabil-

ity problems, where we understand:

Feasibility Determining whether the task system τ can

be executed in such a manner that all jobs complete

by their deadlines.

Schedulability Providing a scheduling algorithm which

gives a feasible schedule for the task system τ .

In the following, we note P
def
= lcm{T1, T2, . . . , Tn} and

Omax

def
= max{O1, O2, . . . , On}.

The scheduling algorithms considered in this paper are

deterministic, where a scheduling algorithm is said to be

deterministic if it generates a unique schedule for any

given set of jobs.

Furthermore, we shall distinguish between implicit dead-

line systems where Di = Ti,∀i; constrained deadline

systems where Di ≤ Ti,∀i and arbitrary deadline sys-

tems where there is no constraint between the deadline

and the period.

3 EDF scheduling algorithm

Definition 1 (Earliest deadline first algorithm (EDF))

The earliest deadline first algorithm schedules, at every

time instant, the active job with the earliest deadline.

Definition 2 (EDF-schedulability) A system is EDF-

schedulable if and only if the schedule obtained using

EDF is feasible.

We present the main uniprocessor results on feasibility

intervals under EDF.

Definition 3 (Uniprocessor idle time) On a uniproces-

sor platform, the time instant t is an idle time in the sched-

ule of a task system τ if all the jobs which were released

prior to t have completed execution at or before t.

Definition 4 (Idle interval) A time interval [t1, t2]
(t1, t2 ∈ N) in the schedule of a task system τ is an idle

interval if it satisfies the following conditions:

• t1 < t2 (its length is strictly positive)

• ∀t ∈ [t1, t2) ∩ N, t is an idle time.

Theorem 1 (Idle time) [4] When EDF is used to sched-

ule a synchronous arbitrary deadline periodic task system,

there is no idle time prior to a missed deadline.

Theorem 1 is very useful in schedulability analysis, since

it reduces the length of the time interval which has to be

considered in order to decide EDF-schedulability on one

processor:

Corollary 2 In a uniprocessor platform, if a syn-

chronous implicit deadline periodic task system τ is EDF-

schedulable on [0, t) where t is an idle time, then τ is

EDF-schedulable.

Idle time results in multiprocessor systems. Theo-

rem 1 does not hold in a multiprocessor environment for a

synchronous arbitrary deadline periodic task system [5].

For instance, let τA = (τ1, τ2, τ3) be the synchronous

constrained task system with the parameters given in Ta-

ble 1. We consider two processors {p1, p2}. The schedule

of this system, obtained using EDF, is given in Figure 1,

where gray filled squares correspond to p1 and black filled

squares to p2. At time instant t = 13, the active job of the

task τ3 misses its deadline. However, the first idle time of

this schedule occurs at time t = 6 and, therefore, there is

an idle time prior to a missed deadline, which implies that

Theorem 1 does not hold for synchronous arbitrary dead-

line periodic task systems, since we give a negative result

for constrained deadline periodic task system.

Ci Di Ti Ui

τ1 3 6 6 0.5

τ2 3 6 6 0.5

τ3 5 5 8 5

8

Table 1: System parameters for τA

Ci Di Ti Ui

τ1 3 6 6 0.5

τ2 3 6 6 0.5

τ3 4 5 8 0.5

Table 2: System parameters for τB

24

Figure 1: Counter-example for Theorem 1 in a multipro-

cessor system [5] (Table 1)

Figure 2: EDF-schedule for τB (Table 2)

All three tasks are heavy tasks in the sense that their den-

sity Ci

Di

(≥ 0.5) is high. In particular, the task τ3, which

misses its deadline at t = 13, has a density of 1, meaning

that any k’th job of this task must start its execution by its

release time and it has to be executed non-preemptively.

On the other hand, Figure 2 shows that if the utilization

of a task system τB is slightly smaller than the utilization

of τA (by decreasing the execution time of τ3 from 5 to 4),

the missed deadline observed in Figure 1 may be avoided.

In this case, τB is EDF-schedulable.

A direct consequence of the high utilization of τA on Fig-

ure 1 is that the idle time which occurs at t = 6 is not fol-

lowed by an idle interval since new jobs are immediately

released at this same time instant.

This leads to the question whether the notion of an idle

time given in Theorem 1 remains actually relevant in a

multiprocessor environment. A better definition of this

instant could preserve the correctness of Theorem 1 in the

multiprocessor case.

Definition 5 (Multiprocessor idle time) In a multipro-

cessor environment, the time instant t is an idle time in

the schedule of a task system τ if all the jobs which were

released prior to t have completed execution at or before

t, and no job is released at t.

In contrast to the uniprocessor case, a multiprocessor idle

time must be followed by an idle interval where Defi-

nition 4 is extended to the multiprocessor case. Does

this refined definition of an idle time preserve the valid-

ity of Theorem 1 in multiprocessor environments? Unfor-

tunately, the task system τC whose parameters are given

in Table 3 shows that Theorem 1 does not hold. In τC ,

the tasks have a slightly smaller utilization than in task

system τA (Table 1). The EDF-schedule (on two proces-

sors {p1, p2}) given in Figure 3 shows that time instant

t′ = 6 is an idle time, as defined in Definition 5. In

Figure 3 gray filled squares correspond to p1 and black

filled squares to p2. However, τ3 misses its deadline at

t = 15 ∈ [0, Omax + P) with P = 63. Therefore, The-

orem 1 does not hold in the multiprocessor case, even if

Definition 5 is used for the idle time.

If T1 = T2, the deadlines of the three jobs activated in

the interval [0, 6] coincide with time instant t = 6. This is

a case of non-determinism in EDF, a problem considered

in [6] and whose resolution may have an influence on the

EDF-feasibility of the task system τ .

Ci Di Ti Ui

τ1 3 7 7 3/7

τ2 3 7 7 3/7

τ3 6 6 9 2/3

Table 3: System parameters for τC

Figure 3: Counter-example for Theorem 1 after the redef-

inition of the idle time (Table 3)

4 Periodicity starting time of

EDF-schedules revisited

In this section, we present negative results on the peri-

odicity of EDF-feasible schedules of arbitrary deadlines

periodic systems obtained.

Discussion on the periodicity In the multiprocessor

case, the periodicity of a feasible EDF-schedule does not

necessarily start at or before time instant t = Omax + P .

For instance, we consider asynchronous constrained dead-

line periodic task system τD whose parameters are given

in Table 4. Figure 4 shows that τD is EDF-schedulable

on 2 processors {p1, p2}, where gray filled squares cor-

respond to p1 and black filled squares to p2. Moreover,

starting from Omax + P + 2, the schedule is periodic

with period P . Since at time instants Omax + P + 1 and

25

Omax + 2P + 1 the tasks are not scheduled in the same

manner (as highlighted on Figure 4), the periodicity does

not hold at Omax +P for asynchronous arbitrary deadline

periodic task systems, since we give a negative result for

constrained deadline periodic task system.

In Figure 4, the difference in the schedules at time in-

stants t1 = Omax + P + 1 and t2 = Omax + 2P + 1
comes from the non-execution of task τ3 at t1. Thus,

the execution of τ3 at t2 shows that there must exist

t2′ < t2 with τ3 executed at t′2 − P and τ3 not executed

at t′2. In other words, the execution of τ3 in time interval

[t′2, t
′

2 + 1] is reported to time interval [t2, t2 + 1], with

t2 > t′2. This phenomenon appears in Figure 4, where

t1 = 17, t2 = 29, t′2 = 27. The circles show the reported

execution time slots and the related arrows the new time

intervals of execution.

Figure 4 also shows that the report occurring a t = 27
actually results from task τ2 preempting τ3. By repeating

the previous reasoning for τ2, we obtain that this preemp-

tion is the direct consequence of the report of execution

of τ2 from t = 24 to t = 27. Stepping backwards in the

schedule, a chain of preemptions appears, starting at time

instant t = 13 where τ2 preempts τ3. This preemption

could not occur one hyper-period before (at t = 1), since

τ2 had not been released yet. On the other hand, the pre-

emption chain ends at t = 29, where the execution of τ3

is reported from t = 27 but can be scheduled in an idle

interval of the second processor.

Oi Ci Di Ti Ui

τ1 0 2 3 3 2/3

τ2 4 3 4 4 3/4

τ3 1 3 6 6 1/2

Table 4: System parameters for τD

Figure 4: Counter-example for a periodicity of the EDF-

schedule starting at time instant Omax + P in the multi-

processor case (Table 4)

From these observations, we conjecture that, in the mul-

tiprocessor case, the delay required by an EDF-schedule

to become periodic corresponds to the length of the pre-

emption chain which results from the specific disposition

of the offsets of the tasks in the system.

5 Conclusion and future work

In this paper, we showed that feasibility intervals obtained

in the uniprocessor case cannot be extended to the multi-

processor case. We also provided counter-examples high-

lighting differences with the uniprocessor case and con-

jectured a new result for the periodicity of EDF-feasible

schedules. As future work, we plan to give feasibility in-

tervals under EDF in the multiprocessor case, based on

our present conjecture.

6 Acknowledgements

The authors would like to thank Joël Goossens for posing

the feasibility problem and for his detailed comments on

a previous version. The authors would like to thank, also,

anonymous reviewers for their helpful comments.

References

[1] C.L. Liu and J.W. Layland. Scheduling algorithms for

multiprogramming in a hard-real-time environment.

Journal of the ACM, 20(1):46–61, 1973.

[2] J. Carpenter, S. Funk, P. Holman, A. Srinivasan,

J. Anderson, and S. Baruah. A categorization of real-

time multiprocessor scheduling problems and algo-

rithms. Handbook of Scheduling, 2005.

[3] L. Cucu and J. Goossens. Feasibility intervals for

fixed-priority real-time scheduling on uniform multi-

processors. In Proceedings of the 11th IEEE Inter-

national Conference on Emerging Technologies and

Factory Automation, pages 397–405, 2006.

[4] J. Goossens and R. Devillers. Feasibility intervals for

the deadline driven scheduler with arbitrary deadlines.

In Proceedings of the Sixth IEEE International Con-

ference on Real-time Computing Systems and Appli-

cations, pages 54–61, 1999.

[5] J. Goossens, S. Funk, and S. Baruah. EDF scheduling

on multiprocessors: some (perhaps) counterintuitive

observations. In Proceedings of the 8th International

Conference on Real-Time Computing Systems and Ap-

plications, pages 321–330, 2002.

[6] J. Goossens, R. Devillers, and S. Funk. Tie-breaking

for edf on multiprocessor platforms. In Proceed-

ings of the 23rd IEEE Real-Time Systems Symposium,

2002.

26

REAL-TIME SYSTEM FORMAL VERIFICATION BASED ON TIMING

REQUIREMENT DESCRIPTION DIAGRAMS

B. Fontan*, **, P. de Saqui-Sannes*, **

*LAAS-CNRS, University of Toulouse, 7 avenue du Colonel Roche, 31077 Toulouse Cedex 04, France

**ENSICA, University of Toulouse, 1 place Emile Blouin, 31056 Toulouse Cedex 05, France

Abstract. The TURTLE UML profile particularly

addresses the formal verification of real-time and

distributed systems at their first development phases.

TURTLE has recently been extended with requirement

modeling capabilities based on SysML. Thus, system

requirements may be described using a formal and

graphical language offering temporal operators, and may

later be automatically converted to observers, the role of

which is to guide formal verification.

Keywords: UML, SysML, Real Time, Timing

Requirements, Formal Verification.

I Introduction

TURTLE (Timed UML and RT-LOTOS Environment)

[APV 04] [APV 05] is a real-time UML profile [OMG

03] supported by TTool [TTOOL], a toolkit interfaced

with RTL [RTL] and CADP [CADP]. Formal

verification of TURTLE models relies on reachability

analysis, minimization techniques [MIL 89], and

observers [JAR 88]. So far, observers were designed by

hand, from informal requirements that were not part of

the TURTLE model.

The situation has changed when TURTLE was extended

with SysML [SYS 06] requirement diagrams. The latter

may include informal requirements expressed in natural

language. They may further contain temporal

requirements expressed in TRDD (Timing Requirement

Description Diagram), a visual language based upon

Timing Diagrams. An important result is that observers

may be automatically synthesized from requirements

expressed in TRDD and connected to the TURTLE

model of the system under design.

The paper is organized as follows. Section II surveys

related work. Section III overviews the TURTLE profile.

Section IV introduces the TRDD diagrams. Section V

sketches the principles of observer synthesis. Section VI

discusses some limitations of the proposed approach.

Section VII concludes the paper.

II Related Work

This section surveys various modelling techniques that

might have been used to extend TURTLE with a

requirement description language. It helps understanding

the rationale behind the definition of the TRDD language.

In KAOS (Keep All Objective Satisfied [LAM 06])

requirements are expressed by means of logic formulas

written in RT-LTL (Real Time Linear Temporal Logic).

KAOS also includes a method for goal driven

requirement elaboration. The KAOS tool Objectiver

[OBJ] enables analysts to elicit and specify requirements

in a systematic way and to achieve traceability from

requirements to goals. The interest of the KAOS

methodology is to formalize and trace functional and non-

functional requirements (including security, safety,

accuracy, cost, performance) throughout the design cycle.

In this paper, we also link (temporal) requirements to a

formalism and we integrate requirement capture and

requirement traceability in a methodology [FON 07] not

detailed here for space reasons.

Scenario based modelling techniques are also candidates

for temporal requirement description. The verification

process consists in matching [BRA 05] scenarios and the

model of the system. For instance, Timed Uses Cases

Maps [HAS 06] (see TUCM in table 1) describe Uses

Cases Interactions including absolute time with a master

clock and relative time constraint (Duration, Timer).

Also, Visual Timed events Scenario [BRA 05] (see VTS

in table 1) represent events interactions. An event

represents an action which potentially occurs inside the

system. VTS includes time representation. It may express

partial orders and relative time constraints between

events. Finally, Live Sequence Charts [DAM 01] (LSC in

table 1) extend Messages Sequence Charts (MSC) to

represent scenarios. LSC enable distinction between

possible and necessary scenarios.

Name TUCM VTS LSC

Reference [HAS 06] [BRA 05] [DAM 01]

Formal
Language

Clocked
Transition
Systems

Timed
Computation
Tree Logic

Bücchi
Automata

Verification
type

Model
Checking

Model Checking
(UPAAL/Kronos)

Model
Checking

Tab. 1. Scenario-based visual languages with formal semantics

The scenario-based description languages discussed so far

have a formal semantics, and so has TRDD. We defined

observation points; the concept comes from VTS.

Nevertheless, TRDD does not implement a scenario

27

paradigm because the latter seems us not appropriate for

requirement capture and mostly geared towards the

analysis phase.

To reduce the gap between requirement capture and

formalization, temporal requirements might also be

represented using Timing Diagrams. The latter make it

possible to represent temporal requirements in an easy to

read and formal way. [CHO 05] gives timing diagrams a

formal semantics, based on Linear Time Logic. The

author indicates that partial order is not represented in

Timing Diagrams. The formalism used by the ICOS

toolbox [FRA 01] is similar. Real Time Symbolic Timing

Diagrams (RT-STD in table 2) are applied to SoC design.

Regular Timing Diagrams [AML 99] (see RTD in table 2)

improve the situation since they make it possible to

represent partial order between diagrams.

Name RT-STD RTD TRDD

Reference [FRA 01] [AML 99] This paper
Formal

Language
Bücchi

Automata
Symbolic
Values

RT-LOTOS

Type of
verification

Model
Checking

Model
Checking

Observers

Tab. 2. Visual Languages based on Timing Diagrams

Overall, the timing diagram paradigm turned to be the

one whose main concepts may be reused and adapted to

express temporal requirements. Therefore, TRDD is

based on timing diagrams.

III TURTLE

TURTLE (Timed UML and RT-LOTOS Environment) is

a SysML/UML profile for real-time system analysis and

design [APV 04] [APV 05]. The profile has a formal

semantics expressed by translation to RT-LOTOS [COU

00]. It is implemented by TTool [TTOOL], an open

source toolkit interfaced with two formal verification

tools: RTL [RTL] and CADP [CADP]. RTL implements

reachability analysis of the RT-LOTOS specifications

generated by TTool. CADP minimizes the graphs

generated by RTL.

Formal verification may be applied to the two groups of

UML diagrams customized by TURTLE: (1) analysis

diagrams (interaction overview and sequence diagrams),

and (2) design diagrams (class and activity diagrams).

TURTLE diagrams are edited using TTool. As shown by

Fig. 1, the latter translates all the diagrams into TIF: a

TURTLE Intermediate Form expressed in native

TURTLE [APV 05] which is made up of “basic” design

diagrams. TIF serves as a starting point to generate either

an RT-LOTOS specification or Java code. Java code

generation is out of scope of the paper.

The purpose of the work presented in this paper is to

reduce the gap between the requirement capture phase

and formal verification. As suggested by Fig. 1, we

automatically generate observers from requirement

diagrams. Observers are translated into TIF and

connected to the TIF form of relevant class and activity

diagrams.

Fig.1. Main functions implemented by the TURTLE toolkit

IV Timing Requirement Description Diagrams

A SysML requirement is a test case [SYS 06] stereotyped

by <<requirement>> and characterized by four attributes:

(1) an identifier; (2) a text (an informal description of the

requirement); (3) a type: “functional”, “non-functional”,

or “performance”; (4) a risk level: “high” or “low”

depending on whether the requirement is strong or weak,

respectively.

The TURTLE requirement diagrams in Fig. 2 include an

informal requirement and a formal one. Both address the

same system constraint: “the process must be completed

within 10 time units”.

A Requirement Diagram also describes requirement

refinement, derivation or verification. In Fig. 2, an

informal requirement (stereotyped by <<Requirement>>)

is derived (cf. the dependency relation stereotyped by

<<derive>>) into a formal requirement (stereotyped by

<<Formal Requirement>>). The latter will be verified

using an observer (stereotyped by <<TObserver>>).Thus,

the “formal requirement” serves as starting point for

formal verification; the text in the informal requirement is

replaced by a Timing Requirement Description Diagram

(TRDD) in the formal requirement (fig. 2).

A TRDD describes one timing requirement. Again, the

TRDD in Fig. 2 refers to a process which must complete

within 10 time units. The process is defined by two

actions “Begin” and “End” that we call “observations

points”. The latter appears in the TRDD, which also

depicts a temporal frontier (equal to ten in this example).

The “temporal frontier” is introduced to distinguish

between two time periods denoted by OK and KO that

correspond to a requirement satisfaction and violation,

respectively.

Formal requirements such as the one in Fig.2 serve as

starting point to generate observers intended to guide

Generation TURTLE
Intermediate

Format

(TIF)

RT-LOTOS

Specification

Generation

Formal Verification

Requirements

Observers
Automatic
Synthesis

Analysis Design

OR

System Model

RTL

Contribution

28

verification. As shown by Fig.2, an observer contains two

attributes. First, diagrams states whether the observer is

to be connected to the analysis or design diagrams of the

TURTLE model of the system. In this paper, we restrict

ourselves to design diagram verification and we ignore

analysis ones. Second, violated_action specifies the label

(identifier) to be used by the observer to denote the

requirement’s violation. The same label will be used in

the reachability graph output by TTOOL and RTL, in

such a way one may easily establish a correspondence.

Fig.2. Requirement Diagrams in TURTLE including TRDD

V Observers synthesis

With observers, we extend the class diagram which

defines the system’s architecture and those activity

diagrams which define the behavior of the objects to be

observed. To every requirement defined by one TRDD

corresponds one observer’s class. We modify the

behavior and the interfaces of the system’s classes to be

observed in order to collect observation data and, if one

strong requirement is violated, to pre-empt the system’s

execution.

In TURTLE, objects communicate by rendezvous

(synchronization) offers à la LOTOS. The observer and

the observed objects also communicate by rendezvous. Of

interest to us is the temporal operator which limits the

amount of time that may be allocated to offering a

rendezvous. That operator is named “time limited offer”.

Fig. 3 sketches the translation process between the TRDD

and the activity diagram of the observer associated with

the temporal requirement defined in Fig. 2. The Observer

behavior includes a time limited offer operator which

bounds the amount of time allocated to a process to offer

a rendezvous communication to its environment (see Step

2. in Fig. 3). The time limited offer starts just after the

“Begin” action was executed. The observer expects

“End” to occur before 10 time units (left path of time

limited offer). After 10 time units, the observer executes

the “Not_OK” action (right path of time limited offer).

Note: Observers synthesis algorithms and translation

tables are detailed in [FON 07].

Fig.3. Observer synthesis: an example

VI Limitations

The approach discussed in the paper works under the

following assumptions.

 • Observation points by which observers and TURTLE

objects may synchronize must not block the behavior

of the TURTLE objects. In other words, observers

must remain passive during the observation phase

associated with the requirement addressed by the

observer [JAR 88]. For instance, in Fig.3, if the

observer’s exiting action “End” occurs before

entering action “Begin”, the observer should be able

to accept rendezvous offers and therefore perform

synchronization actions in this unexpected order.

 • Parallelism limitation. If one observed action

belongs to two parallel processes (inside the same

object or not), the observer may deliver a wrong

diagnosis. We decide to build one observer per

observed object.

 • Preemption processes. If a strong temporal

requirement is violated, the observer must pre-empt

all the system’s objects. This increases the state space

of the system’s behavior.

 • Temporal indeterminism in the RTL tool. This

limitation comes from the RT-LOTOS semantics

associated with the “time limited offer”. The problem

arises at the date Tmax which fixes the upper bound

of the time limiter offer. At Tmax, the offer is

possible but not mandatory. Therefore, the

reachability graph contains two paths corresponding

to a requirement satisfaction and violation,

respectively.

Begin End

10

OK KO

Step 1. First observation point “Begin”

Step 2. Temporal Frontier between

requirement satisfaction/violation

translated by a time limited offer of 10

time units of second observation point

“End”.

Step 3. Label which represents the

requirement violation defined in the

observer’s attribute. The observer

stops if “End” occurs after 10 time

units

Step 1. Step 2. Step 3. Observer’s behavior

Begin End

10

OK KO

Violated action= «Not OK»

TRDD= TRDD_Process

TRDD_Process

29

VII Conclusions and Future Work

TURTLE is a real-time UML profile designed with

formal verification in mind. It particularly applies to

temporal requirement verification. The profile was

recently extended with SysML requirement diagrams.

The paper shows how SysML requirement diagrams are

supported by the profile. We insist on the possibility to

express formal temporal requirements using TRDD, a

visual language based on Timing Diagrams. The main

contribution lies in the possibility to automatically derive

observers from temporal requirements defined by Timing

Requirement Description Diagram. TTool inserts these

observers in the relevant design diagrams (class and

activity diagrams) as a premise to guide the verification

process.

The observer-based verification approach proposed in the

paper reuses the RT-LOTOS code generator included in

TTool as well as the RTL verification tool. TTool also

generates java code from TURTLE models. We plan to

extend the proposed approach to the deployment phase of

communicating systems. Observers will be generated in

Java in order to become probes for a Java simulator.

VIII Acknowledgements

Acknowledgements are due to Ludovic Apvrille for

fruitful discussions on observer synthesis.

IX References

[AML 99]N. Amla, E.A. Emerson, and K.S. Namjoshi.

“Efficient Decompositional Model Checking

for Regular Timing Diagrams”, In Conference

on Correct Hardware Design and Verification

Methods (CHARME 1999). Springer-Verlag,

pp. 67-81, September 1999.

[APV 04] L. Apvrille, J.-P. Courtiat, C. Lohr, P. de

Saqui-Sannes, “TURTLE: A Real-Time UML

Profile Supported by a Formal Validation

Toolkit”, IEEE Trans. on Software

Engineering, Volume 30, Number 7, page 473-

487, July 2004.

[APV 05] L. Apvrille, P. de Saqui-Sannes, F. Khendek,

“Real-time UML design synthesis from

sequence diagrams” (in French), French

conference on protocol engineering (CFIP'05),

Bordeaux, France, March 2005.

[BRA 05] V. Braberman, N. Kicillof and A. Alfonso. “A

Scenario-Matching Approach to the

Description and Model-Checking of Real-Time

Properties“, Volume 31, Number 12, page

1028-1041, IEEE Trans. on Software Eng.

December 2005.

[CADP] http://www.inrialpes.fr/vasy/cadp/

[CHO 05] H. Chockel and K. Fisler, “Temporal

Modalities for Concisely Capturing Timing

Diagrams”, Correct hardware design and

verification methods, 13th IFIP WG 10.5

advanced research working conference,

CHARME 2005, Saarbrücken, Germany,

October 2005.

[COU 00] J.P. Courtiat, C.A.S. Santos, C. Lohr., B.

Outtaj, “Experience with RT-LOTOS, a

Temporal Extension of the LOTOS Formal

Description Technique”, Computer Comm-

unications, Volume 23, Number 12, page

1104-1123, 2000.

[DAM 01] W. Damm and D.Harel. “LSCs:Breathing Life

into Message Sequence Charts”, Formal

Methods in Systems Design, Volume 19,

Number 1, Page 45-80, 2001.

[FON 07] B. Fontan, P. de Saqui-Sannes, L. Apvrille.

“Génération et synthèse automatique d’obser-

vateurs à partir d’exigences temporelles

formelles”,Technical report ENSICA, February

2007. http://dmi.ensica.fr/spip.php?article776

[FRA 01] M. Fränzle and K. Lüth, “Visual Temporal

Logic as Rapid Prototyping Tool”, Computer

Languages, Volume 27, Page 93--113, 2001.

[HAS 06] J. Hassine, J. Rilling and R. Dssouli. “Timed

Use Case Maps“, In System Analysis and

Modeling: Language Profiles, 5th International

Workshop, SAM 2006, Kaiserslautern,

Germany, Page 99-114, May-June 2006.

[JAR 88] C. Jar, J.-F. Monin, R. Groz, “Development of

Veda, a Prototyping Tool for Distributed

Algorithms,” IEEE Transactions on Software

Engineering, Volume 14, Number 3, Page 339-

352, March 1988.

[LAM 06] A. Van Lamsweerde, “Goal-Oriented

Requirements Engineering”. From System

Objectives to UML Models to Software

Specifications, Wiley, 2006.

[MIL 89] R. Milner, “Communication and Concurren-

cy,” Prentice Hall, 1989.

[OBJ] http://www.objectiver.com/

[OMG 03] Object Management Group, “Unified

Modeling Language Specification”, Version

1.5, http://www.omg.org/docs/formal/03-03-

01.pdf, March 2003.

[RTL] http://www.laas.fr/ RT-LOTOS/

[SYS 06] http://www.SysML.org/docs/specs/SysML-v1-

Draft-06-03-01.pdf

[TTOOL] http://labsoc.comelec.enst.fr/turtle/

30

Coexistence of Time-Triggered and Event-Triggered Traffic in Switched
Full-Duplex Ethernet Networks

Joachim Hillebrand, Mehrnoush Rahmani,
Richard Bogenberger

BMW Group, Research and Technology
Hanauer Strasse 46

80788 Munich, Germany
{firstname.lastname}@bmw.de

Eckehard Steinbach
Technische Universität München

Institute of Communication Networks
Media Technology Group
80290 Munich, Germany

eckehard.steinbach@tum.de

Abstract

In the recent years, the Ethernet technology has grown
rapidly, mainly due to its applicability in local area net-
works. High data rates, low cost, collision reduction with
the full-duplex approach and the elimination of chaining
limits inherent in hubbed Ethernet networks have made
the switched Ethernet a dominant network technology. Al-
though the switch technology has improved significantly,
the delays appearing in the switches are still not accept-
able for time critical applications. This is specially the
case when several cascaded switches are applied. Within
the scope of developing a new network architecture for
the in-vehicle communication, the time constraints of a
switched Ethernet network are addressed in this paper. In
order not to exceed the delay bounds of time critical appli-
cations in the automotive field, a cost-effective approach
is proposed and analyzed for several cascaded switches.

1 Introduction

In current automotive communication systems, a sig-
nificant number of network nodes utilizes a time-triggered
communication concept [1]. The nodes obtain network
access at specific time periods, also called time slots.
Since it is ensured that there is no other network traffic
during that time slot, the assigned transmitting network
node can exclusively use the network resources at that
time. This leads to very short delay times in the transmis-
sion. An example for such a system would be the Flexray
bus [2], where in practice 4 to 20 network nodes commu-
nicate by using total cycle times of 1 to 5 milliseconds.
A different approach is followed in event-triggered net-
works. Here, the nodes may obtain network access at
any time instant. Therefore, it is generally not possible to
transmit event-triggered traffic over a time-triggered net-
work. Since event-triggered traffic may happen at any
time, it would disrupt time-triggered traffic in dedicated
time slots [3]. A very special representative of an event-

triggered network is the Full-Duplex Switched Ethernet
(FDSE). FDSE network nodes have an exclusive point-to-
point link connected to a central Ethernet switch. Even
low-cost solutions of the FDSE show high switching per-
formance with low latency and jitter in the range of tens
of microseconds [4]. When two end nodes exchange traf-
fic over a simple star topology with one switch, it is en-
sured that other nodes are not interfered by the traffic due
to the switching capabilities in the central switch. Based
on realistic automotive network scenarios, we assume the
following:

• The amount of time-triggered traffic is small com-
pared to the amount of event-triggered traffic such as
bulk and multimedia traffic

• The number of time-triggered nodes is limited in the
controlled environment

• Event-triggered traffic is not utilized for high priority
control applications unlike the time-triggered traffic

• Allowed delay and jitter for time-triggered traffic is
larger than switch latencies (Analyzed in Section 3).

• Event-triggered nodes may not be equipped with the
functionality to detect time slots

Several approaches [5] have been introduced for real-time
Ethernet switched networks, especially in the automation
field. However, those solutions are optimized for indus-
trial control applications where bulk and multimedia traf-
fic are not present. They either employ specific hardware
like ProfiNet [6] and EtherCAT [7], or adapt protocols
limited for industrial use like the Ethernet Industrial Pro-
tocol [8]. The cost of such solutions does not scale to
the automotive sector, where a large number of samples
is needed for a model range of cars. Another interesting
approach is introduced by RTNet [9] that provides a more
flexible solution for time critical applications with stan-
dardized hardware components. However, RTNet does
not allow to connect event-triggered network participants
to a switch connected to time-triggered nodes.

31

In this paper, we introduce a low cost and flexible switch-
ing mechanism for FDSE networks that can be utilized by
both, time-triggered and event-triggered data.

2 Introduction to the latencies of store and
forward switches

Today’s Ethernet switches may support priority
scheduling by containing two or more output queues per
port, where for high and low priority data different queues
with different QoS levels are reserved. Depending on
the related scheduling schemes, the switch scheduler al-
ternates between the priority queues as shown in Fig.1.
Priority identification can be performed based on physical
Ethernet ports, MAC addresses, priority tagging accord-
ing to IEEE 802.1p [10] or higher layer information.
Independent of the applied scheduling algorithm, packets

Figure 1. Priority queues in a switch port

in the queue with the highest priority can be delayed due to
head-of-line-blocking (HoLB) as it is illustrated in Fig.2
with an example. Head-of-line-blocking is a common

Figure 2. Head-of-line blocking

problem for networks conveying different sized packets
[11]. The delay occurs when a high priority packet enters
its related queue while a large packet from a lower prior-
ity queue is being sent. In general, the delay for a packet
passing a switch can be written as:

tsw = tsf + tsp + tholb (1)

Heretsf represents the store-and forward time,tsp repre-
sents the switch processing time andtholb the delay due
to head-of-line blocking [12]. In the following section,
we analyze the impact oftholb in the packet end-to-end
transmission time.

3 Cooperative time slot mechanism

3.1 Performance analysis for cascaded switches with
a constant data rate

When using a time slot mechanism in a switched net-
work, it has to be ensured that frames are always trans-
mitted within the respective time slot intervals. For store
and forward switches the frame size may vary as much as
the transmission still fits into the respective time slot. De-
pending on the network topology, the delay on each trans-
mission path may consist of one or several switch delays.
In the following, we consider several cascaded store and
forward switches between the sender and receiver nodes.
In order to manage both, the time-triggered and the event-
triggered applications in a network, we propose different
prioritized queues for switch ports. As a compromise, two
queues per each port, one for the time-triggered and one
for the event-triggered data seem to be sufficient. We call
this approachCooperative time slot mechanism, be-
cause it enables the interconnection of time-triggered and
event-triggered devices via one switch. Figure 3 shows
this idea for one switch, two event-triggered and two time-
triggered nodes. The time slots are generated by a clock
generator connected to the switch. In the case of TDMA-
based synchronization, the clock is treated like a time-
triggered node, because it can access the network only
within a time slot. As mentioned in Section 5, the incom-

Figure 3. Cooperative time slot mechanism

ing packets are assigned to appropriate queues depending
on their priorities. Time-triggered packets are assigned
to the high priority queue while event-triggered packets
are routed to the low priority queue. If a time triggered
node sends a data packet to an event-triggered node, it
first uses its respective time slot to access the network at
the predefined time. In the switch, the data packet will be
forwarded to an appropriate queue due to its destination
address and priority. The packet will be sent to the event-
triggered node as soon as required resources are available.

32

If vice versa, the event-triggered node sends the packet to
the switch as soon as the required resources are available.
In the switch the packet will be forwarded to the appro-
priate output queue and sent in respective time slots to the
time-triggered destination.
In order to determine the efficiency of the cooperative time
slot mechanism, we calculate the end-to-end worst case
latency for the time-triggered data caused by store and
forward switches. We first need to make certain assump-
tions about the network we are dealing with. Following
assumptions are set forth:

• All switches in the network are store and forward
switches with the values defined for the switch de-
lay tsw in equation (1)

• All receiving and sending ports are functioning inde-
pendently (HW router and full-duplex)

• Packet source and sink are separated byn switches

• There is no gap between the time slots for the high
priority data transmission

Equation (2) gives the store and forward delay as a func-
tion of the high priority frame size (PTT) in bytes and the
transmission bit rateb in bits/s. In the same way, Equation
(3) considers the fact that head-of-line blocking is caused
by frames of the sizePET .

tsf =
PTT · 8

b
(2)

tholb =
PET · 8

b
(3)

In a time slot method, the maximum number of time-
triggered nodes depends on the cycle timetcycle, the num-
ber of cascaded switchesn as well as the worst case switch
delaytsw. Considering the assumptions mentioned above,
equations (2) and (3) and a constant network throughput
capacity between the packet source and sink, we achieve
a numberk for the possible time-triggered nodes in the
network:

k =
tcycle

n·tsw
=

tcycle

n·(tsf +tsp+tholb)

=
tcycle

n·
(

PT T ·8

b
+tsp+

PET ·8

b

)

(4)

In the worst case, the low priority packetPET entailing
the head-of-line blocking has the maximum packet size,
e.g., 1518 bytes for Ethernet packets while the high prior-
ity packetPTT is small, e.g., 64 bytes. By applying equa-
tion (4) and the minimum switch processing timetsp = 10
µs from [12], we achieve the result presented in Figure 4
for the number of time-triggered nodes depending on the
number of cascaded switches in the network. It can be
seen that the possible number of time-triggered nodes de-
creases by increasing the number of switches. This result
confirms our statement that the delay caused by switches
influences the entire transmission time. In order to ful-
fill the time-triggered communication requirements in a

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Number of cascaded switches

M
ax

im
um

 ti
m

e−
tr

ig
ge

re
d

no
de

s

Figure 4. Maximum number of time-
triggered nodes with tsp= 10 µs, PTT = 64
bytes, PET = 1518 bytes, tcycle= 2 ms and
b = 100 Mbit/s as a function of the number
of switches (solid curve) compared with
a network with different bit rates b1 = 100
Mbit/s and b2 = 1000 Mbit/s (dashed curve).

switched Ethernet network a tradeoff should be made be-
tween the number of time-triggered nodes and switches
according to the results achieved in Figure 4. In the
same way, the number of possible time-triggered nodes
in a switched network can be calculated depending on the
size of the event-triggered packets entailing head-of-line
blocking. Figure 5 shows the result when assuming three
switches between the packet source and sink. According
to Figure 5, the larger the event-triggered frame size is,
the lower the number of time-triggered nodes should be in
order to be able to fulfill the timing requirements.

3.2 Performance improvement with high data rate
inter-switch connections

So far, we analyzed the performance of the cooperative
time slot mechanism for time-triggered applications in a
network with a constant transmission rate of 100 Mbit/s.
However, the performance of a switched network can be
improved by optimizing its design. Considering a design
with two different throughput capacities, i.e., 1000 Mbit/s
segments for the inter-switch connections and 100 Mbit/s
segments for the connections to end nodes, we continue
our calculations in the following. The number of possible
time-triggered nodesk can now be calculated as:

k =
tcycle

n·tsp+
PT T ·8

b1
+

PET ·8

b1
+(n−1)·

(

PT T ·8

b2
+

PET ·8

b2

) (5)

whereb1 is equal to 100 Mbit/s andb2 is 1000 Mbit/s.
Figures 4 and 5 show the corresponding improvements
comparing with the results achieved by only 100 Mbit/s
segments. It can be seen that by optimizing the network
design, the number of possible time-triggered nodes in-

33

0 200 400 600 800 1000 1200 1400 1600
0

5

10

15

20

25

30

35

40

45

50

Event−triggered frame size

M
ax

im
um

 ti
m

e−
tr

ig
ge

re
d

no
de

s

Figure 5. Maximum number of time-
triggered nodes with tsp= 10 µs, PTT = 64
bytes, n = 3, tcycle= 2 ms and b = 100 Mbit/s
as a function of PET (solid curve) compared
with a network with different bit rates b1

= 100 Mbit/s and b2 = 1000 Mbit/s (dashed
curve).

creases significantly for the same number of cascaded
switches and event-triggered frame size.

4 Conclusion and future work

In this paper, we have discussed the possibility of
transmitting time-triggered traffic in combination with
event-triggered traffic over Full-Duplex Switched Eth-
ernet networks. A new approach called Cooperative
Time Slot Mechanism has been introduced. By taking
advantage of parallel queuing mechanisms in switches,
the method allows time-triggered and event-triggered
traffic to pass switches without interferences. The
approach is based on the assumption that event-triggered
traffic is made up of bulk or multimedia traffic with
generally lower priority than the time-triggered traffic.
The analysis of delay restrictions shows the possibility
to design such a network by limiting the number of
switches, or limiting the size of event-triggered frames, or
by adding high data rate inter-switch connections. Based
on the choice of parameters, a network can be realized to
support time-triggered and event-triggered traffic without
the need for two separate networks. In the future work,
we will analyze the possibilities to add event-triggered
traffic with high priority to the Cooperative time slot
mechanism. Furthermore, synchronization mechanisms
for the time-triggered traffic will be investigated.

References

[1] Nicolas Navet et al. Trends in automotive commu-
nication systems.Proceedings of IEEE, 93(6), June
2005.

[2] FlexRay Consortium. FlexRay Communications
System, Protocol Specification, version 2.1 edition,
2005.

[3] Amos Albert. Comparison of event-triggered and
time-triggered concepts with regard to distributed
control systems.Embedded World 2004, pages 235–
252, 2004.

[4] John Wernicke. Simulative analysis of QoS
in avionics networks for reliably low la-
tency. http://www.clas.ufl.edu/jur/
200601/papers/paper_wernicke.html,
2006.

[5] Kai Lorenz Arndt Lder, editor. IAONA Handbook
- Industrial Ethernet. Industrial Automation, Open
Networking Alliance e.V., Universittsplatz 2, 39106
Magdeburg, Germany, 3rd edition, 2005.

[6] Siemens. IEC/PAS 62407 Real-time Ethernet
PROFINET IO. International Electrotechnical
Commission (IEC),http://webstore.iec.
ch/webstore/webstore.nsf/artnum/
034395, 2005.

[7] EtherCAT Technology Group (ETG). Ether-
cat ethernet control automation technology,
publicly available specification. Interna-
tional Electrotechnical Commission (IEC),
http://webstore.iec.ch/webstore/
webstore.nsf/artnum/034392, 2004.

[8] ODVA Association. Common industrial protocol
(cip). http://www.odva.org.

[9] Jan Kiszka et al. RTNet - a flexible hard real-time
networking framework.Emerging Technologies and
Factory Automation 2005, EFTA 2005, 1, 2005.

[10] IEEE Project 802. IEEE 802.1p: Supplement to
MAC Bridges: Traffic calss expediting and dynamic
multicast filtering. Incorp. in IEEE Standard 802.1D,
Part 3: Media Access Control (MAC) Bridges, 1998.

[11] SMSC Max Azarov. Approach to a latency-bound
ethernet. IEEE 802.1 AVB group, 2006.

[12] Oe. Holmeide and T. Skeie. VoIP drives the Real-
time Ethernet. Industrial Ethernet Book (IEB), 5,
2001.

34

Abstraction Techniques for Extracted Automata Models

Susanne Kandl
Institute of Computer Engineering
Vienna University of Technology

Vienna, Austria
Email: susanne@vmars.tuwien.ac.at

Abstract — In this paper we present the application
of abstraction techniques for automata models. We
give an overview on a state-of-the-art method to reduce
the complexity of an automaton model without loosing
essential information on the behavior of the modeled
system (predicate abstraction). We focus on the appli-
cability of the presented methods, especially on models
that are directly extracted from the C source code of a
system. We present the process for automated model
extraction that yields an automaton model we can use
for a verification and testing framework. We show how
to apply different abstraction techniques on a case study
from the automotive domain and evaluate the resulting
state space reduction.

Keywords: Modeling, Abstraction, Predicate Ab-
straction, Model Checking, Test Case Generation

I. INTRODUCTION

Formal methods, like model checking [1], can be
used to verify a system or for the automated gener-
ation of test cases to test the system [2]. For both,
the verification and test case generation, anautoma-
ton modelof the system has to be built. This can be
done manually by a human by analyzing the system
and modeling the relevant aspects of the system as a
transition system. Another way to derive a model is
to automatically extract it from a description of the
system given as C source code. Especially the sec-
ond approach lacks of the state space explosion for
the model, because all the system behavior (includ-
ing the semantics of the C program statements) is
directly transformed into the automaton model. The
resulting model has to be further adapted to simplify
the model, and thus to reduce the state space.

The article is organized as follows: Section 2 de-
scribes the principles of predicate abstraction. In
Section 3 our approach for the model generation is
explained. In Section 4 the appliance of abstrac-
tion techniques to our case study is shown. Sec-
tion 5 gives an overview on related work and avail-

able tools. Finally we conclude with preliminary
results and future work.

II. PREDICATE ABSTRACTION

In predicate abstraction the system is described as
a set of logical formulas [3], [4]. The idea is to
find an appropriate abstract description of the sys-
tem that can be mapped to the concrete transition
system. A transition system is given by a set of
statesQ, a set ofsymbolsΣ, the transition func-
tion f , an initial state q0 and a set ofaccept states
F . The transition system is defined by a set of tran-
sition rules. Each rule defines a transition func-
tion f . An execution of the system is a sequence
of statesq0, q1, ..., qn, qn+1, whereq0 is the initial
state andqi+1 = f(qi) with 0 ≤ i ≤ n. An ab-
straction functionα maps a set of concrete states
to a set of abstract states, while reversely thecon-
cretization functionγ maps the abstract states to the
concrete states. In detail, the abstract system is de-
fined by a concrete system and a set ofn predicates:
φ1, φ2, ..., φn. Each stateqA of the abstract state
space is an assignment to the indices 1 throughn

to the abstract form of the stateqC of the concrete
state space:

qA = α(qC) whenever∀i : qA(i) = φi(qC).

A detailed introduction to predicate abstraction
can be found in the master thesis from Satyaki Das
(Stanford University, 2003) [5].

The main challenge is to find suitable predicates
for the abstract system, in this way, that the result-
ing abstract system shows the same behavior as the
underlying concrete system regarding to the system
properties. That means, that a propertyg that holds
on the original concrete system should still hold on
the abstract system, whereas a propertyh which is
violated in the concrete model should also be not
valid within the abstract representation. A common
technique to automatically determine the abstrac-

35

tion predicates is calledcounterexample-guided ab-
straction refinement: The atomic predicates in the
verification condition are used as the initial set of
predicates. Then the abstract system is constructed.
If a property that holds on the concrete system can
still be verified on the abstract model, the abstrac-
tion process was successful, otherwise an abstract
counterexample is produced. If a concrete coun-
terexample exists that corresponds to the abstract
trace, a concrete counterexample has been detected.
Otherwise the abstract counterexample can be an-
alyzed and used to discover new predicates for the
predicate abstraction. Figure 1 [4] shows the princi-
ple of counterexample-guided predicate abstraction.

Abstract Counterexample

Abstraction and

Model Checking

Counterexample

Checking and

Predicate Discovery

Property verified

Counterexample found

Initial Predicates

Discovered Predicates

 Concrete System

Verification Condition

Figure 1: Counterexample-Guided Predicate Ab-
straction [4]

III. MODEL GENERATION

As mentioned before, we need an automaton model
for purposes of verification and test case genera-
tion. This model is automatically extracted from
the C source code. This is realized by static anal-
ysis of the C source code, building the syntax tree
and interpreting the basic statements of the syntax
tree to generate the automaton model. The model is
formulated in the automaton language of the model
checker NuSMV1, we are using for our verification
and test case generation framework.

Listing 1 shows a small C program, for which the
automatically generated NuSMV-model is given in
Listing 2 (the additional variablesequencenr rep-
resents the program counter).

1http://nusmv.irst.itc.it/

1 int tes t (int x , int a) {
2 i f (x == 1) {
3 x=10;
4 } else i f (a == 2) {
5 x=20;
6 } else {
7 x=x+1;
8 }
9 }

Listing 1: C source code

1 MODULE main
2 VAR
3 sequence_nr: 0..255;
4 v0_x: 0..255;
5 v1_a: 0..255;
6 ASSIGN
7 init(sequence_nr):= 16;
8 next(sequence_nr):= case
9 sequence_nr= 2: 1;

10 sequence_nr= 5: 1;
11 sequence_nr= 8: 1;
12 sequence_nr= 12 & (v1_a=2) : 5;
13 sequence_nr= 12 & !(v1_a=2) : 8;
14 sequence_nr= 16 & (v0_x=1) : 2;
15 sequence_nr= 16 & !(v0_x=1) : 12;
16 esac;
17 next(v0_x):= case
18 sequence_nr= 2: 10;
19 sequence_nr= 5: 20;
20 sequence_nr= 8: v0_x + 1;
21 esac;

Listing 2: NuSMV model

IV. APPLICATION OFABSTRACTION TECH-
NIQUES

For our verification and testing framework we used
a case study from the automotive domain provided
by one of our industry partners. The case study is
a control system given as an ANSI-C program. It
has approximately 500 lines of code and inhabits
16 variables, thirteen of them of boolean data type,
two 16-bit integers and one (unsigned) 8-bit inte-
ger. The control flow graph has 76 branches. In
the first pass the model is extracted in a straight-
forward way. This yields a model with a state space
of approximately 2ˆ140 states. The applied model

36

checker NuSMV is not able to deal with models of
this size. In a second phase we are simplifying the
model by the application of a method, we want to
refer asdata type reduction. Analyzing the automa-
ton model yields the interesting result that within the
program execution not all values of a variable are
indeed assigned to the variable. That means, from a
variable defined as an 8-bit integer, only a discrete
list of actual values is used within the program and
thus has to be considered in the model. Depend-
ing on, whether a list of values or value ranges have
to be modeled, the data type definition of a vari-
able can be reduced to the definition of an enumer-
ation of concrete numbers or the specification of a
list of equivalence classes. Applying this simpli-
fication method yields in a model that has a state
space of 2ˆ53 states. The model checker NuSMV
has no problems to process this model. Last but not
least, we identified predicates for further abstrac-
tion of the model. The predicate-based abstracted
model is again verified against all the system prop-
erties that hold on the original model, to ensure that
the predicate abstraction has not affected the system
behavior. Integrating this last step of abstraction re-
sults finally in a model with a state space of 2ˆ39
states. The model checker NuSMV performs well
on models of this size.

Table 1 summarizes the applied abstraction
techniques and the model size of the resulting
models. In addition also a manual model of the
system was built.ExtrMod is the extracted model,
DTRedrefers to the data type reduction,PredAbstr
stands for predicate abstraction andManMod is
the manual model. The numbers are given as the
state space of the different representations of the
automaton model.

ExtrMod DTRed PredAbstr ManMod
2ˆ140 2ˆ53 2ˆ39 2ˆ43

Table 1: Comparison of Model Size

Reducing the state space with the above described
methods improved the performance and scalability
of our verification and test case generation frame-
work significantly.

V. RELATED WORK

First works concerning abstraction considerations
for model checking techniques were published in
the mid of the 90’s, to mention the master thesis
of Long Model Checking, Abstraction and Com-
positional Verificationat CMU (Carnegie Mellon
University) [6], works from Clarke et al. [7] and
Alur et al. [8]. Experiences with a prototype im-
plementation for predicate abstraction are described
in Das et al. [3]. The principle ofcounterexample-
guided refinementis described in Clarke et al. [9]
or Das et al. [4]. Alternative approaches for au-
tomated abstraction are using proofs of unsatis-
fiability, introduced in McMillan and Amla [10],
or thread-modular abstraction refinement(using
thread-modular assume-guarantee reasoning), de-
scribed in Henzinger et al. [11]. Also works from
Shankar (SRI International) have to be mentioned,
where deduction is used to construct a finite-state
approximation of a program that preserves the prop-
erty of interest [12]. Recent works deal with the im-
provement of the efficiency of automated abstrac-
tion techniques, for instance Das and Dill [13],
Henzinger et al. [14], Clarke et al. [15] or Henzinger
et al. [16]. Ball (Microsoft Research) et al. de-
scribe boolean and cartesian abstraction for model
checking C programs in [17]. The techniques are
implemented in tools like C2BP (a tool for auto-
matic predicate abstraction of C programs) [18] or
SLAM (a model checker, that integrates predicate
abstraction with heuristic approximations) [19], fur-
thermore the model checker BLAST [20] also in-
corporates automatic abstraction. Another tool for
automated abstraction for ANSI-C programs based
on predicate abstraction is SATABS, described in
Clarke et al. [21]. This tool also supports the model
checker NuSMV, we are interested in.

VI. PRELIMINARY RESULTS AND FUTURE

WORK

So far, we are able to generate an automaton model
automatically from the C source code of the system
we want to formally verify and we need for the auto-
mated generation of test cases. With the introduced
abstraction techniques we achieved a significant re-
duction of the model size and thus an improvement
of the performance of the applied model checker.

37

Due to the availability of others tools that incorpo-
rate abstraction refinements automatically, we plan
to evaluate a predicate abstraction tool (e.g. SA-
TABS) to our case study and compare the results
with our preliminary results achieved in the ongo-
ing research project. The above mentioned related
works and tools have been also applied to industrial
case studies, but it has to be evaluated of which com-
plexity the treated case studies were. Many model
checking techniques are, in general, only applied to
systems dominated by boolean variables and char-
acterized by a simple control flow graph. The case
studies we are concerned with in the recent research
project are, amongst others, adaptive control sys-
tems and it has to be analyzed, how applicable the
methods described in this paper are to this kind of
systems.

VII. ACKNOWLEDGMENTS

This work has been partially supported by the FIT-
IT research project “Systematic test case generation
for safety-critical distributed embedded real time
systems with different SIL levels (TeDES)”; the
project is carried out in cooperation with TU-Graz,
Magna Steyr, and TTTech.

REFERENCES

[1] Edmund M. Clarke, Orna Grumberg, and Doron A.
Peled.Model Checking. The MIT Press, 2000.

[2] Susanne Kandl, Raimund Kirner, and Peter
Puschner. Development of a framework for au-
tomated systematic testing of safety-critical em-
bedded systems. In Wilfried Elmenreich, Gregor
Novak, and Ralf E.D.Seepold, editors,Proc. of
WISES’06, June 2006.

[3] Satyaki Das, David L. Dill, and Seungjoon Park.
Experience with predicate abstraction. InCAV,
1999.

[4] S. Das and D. Dill. Counter-example based predi-
cate discovery in predicate abstraction. InIn For-
mal Methods in Computer-Aided Design. Springer,
2002.

[5] Satyaki Das. Predicate Abstraction. PhD thesis,
Stanford University, 2003.

[6] D.E. Long. Model Checking, Abstraction, and
Compositional Verification. PhD thesis, Carnegie
Mellon University, 1993.

[7] E. M. Clarke, O. Grumberg, and D. E. Long.
Model checking and abstraction.ACM Transac-
tions on Programming Languages and Systems,

16(5), September 1994.
[8] R. Alur, C. Courcoubetis, N. Halbwachs, T. Hen-

zinger, P. Ho, X. Nicolin, A. Olivero, J. Sifakis, and
S. Yovine. Discrete abstractions of hybrid systems.
In The algorithmic analysis of hybrid systems. The-
oretical Computer Science, 138:, 1995.

[9] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith. Counterexample-guided abstraction re-
finement. InCAV, 2000.

[10] Kenneth L. McMillan and Nina Amla. Automatic
abstraction without counterexamples. InTACAS.
Springer, 2003.

[11] Thomas A. Henzinger, Ranjit Jhala, Rupak Majum-
dar, and Shaz Qadeer. Thread-modular abstraction
refinement. InCAV. Springer, 2003.

[12] Natarajan Shankar. Verification by abstraction. In
LNCS, 2002.

[13] Satyaki Das and David L. Dill. Successive approx-
imation of abstract transition relations. InProc. of
the 16th Annual IEEE Symposium on Logic in Com-
puter Science, 2001.

[14] Thomas A. Henzinger, Ranjit Jhala, Rupak Majum-
dar, and Gregoire Sutre. Lazy abstraction. InSym-
posium on Principles of Programming Languages,
2002.

[15] Edmund Clarke, Orna Grumberg, Muralidhar
Talupur, and Dong Wang. Making predicate ab-
straction efficient: How to eliminate redundant
predicates. InCAV, 2003.

[16] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L.
McMillan. Abstractions from proofs. InProc. of
the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, New York,
NY, USA, 2004. ACM Press.

[17] Thomas Ball, Andreas Podelski, and Sriram K.
Rajamani. Boolean and Cartesian abstraction for
model checking C programs.LNCS, 2031, 2001.

[18] Thomas Ball, Rupak Majumdar, Todd D. Millstein,
and Sriram K. Rajamani. Automatic predicate ab-
straction of C programs. InSIGPLAN Conf. on Pro-
gramming Language Design and Implementation,
2001.

[19] T. Ball, B. Cook, S. Das, and S. Rajamani. Refin-
ing approximations in software predicate abstrac-
tion. In TACAS. Springer, 2004.

[20] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
Software verification with Blast. InIn 10th Inter-
national Workshop on Model Checking of Software
(SPIN). Springer, 2003.

[21] Edmund Clarke, Daniel Kroening, Natasha Shary-
gina, and Karen Yorav. SATABS: SAT-based pred-
icate abstraction for ANSI-C. InTACAS, volume
3440 ofLNCS. Springer, 2005.

38

A Penalty Upper Bound in an Optimal Schedule of a Set of
Soft Real-Time Tasks∗

Arezou Mohammadi and Selim G. Akl
School of Computing, Queen’s University

Kingston, Ontario, Canada K7L 3N6
{arezou, akl}@cs.queensu.ca

Abstract

A soft real-time task is one whose completion time is rec-
ommended by a specific deadline. However, should the
deadline be missed, such a task is not considered to have
failed; only the later it finishes, the higher the penalty that
is paid. For a set of soft real-time tasks that are to be
scheduled on a single machine, our objective is to min-
imize the total penalty paid. This optimization problem
is NP-hard. We give a formal definition of this problem.
Then, we determine an upper bound for the optimal solu-
tion of the problem. Numerical results that compare the
upper bound with the optimal solution are also provided.

Keywords: soft real-time tasks, upper bound, penalty
minimization, optimal scheduling algorithm, simulation
results.

1 Introduction

The purpose of a real-time system is to produce a response
within a specified time-frame. In other words, for a real-
time system not only the logical correctness of the sys-
tem should be satisfied, but also it is required to fulfill
the temporal constraints of the system. Although missing
deadlines is not desirable in a real-time system,soft real-
time taskscould miss some deadlines and the system will
still work correctly while certain penalties will have to be
paid for the deadlines missed. In this paper, we focus our
attention on scheduling of a set of soft real-time tasks.

Consider a system that consists of a set of soft real-
time tasks,T = {τ1, τ2, ..., τn}. Taskτi is a soft real-
time task, meaning that the later the taskτi finishes its
computation after its deadline, the more penalty it pays.
A release timeri, an execution timeei and a deadline
di are given for each taskτi ∈ T (see Section 2 for the
definition of these terms). The finishing time of each
task τi ∈ T , denoted byFi, depends on the schedul-
ing algorithm which is used to schedule the execution of
the tasks [14]. Suppose that the tasks are scheduled by

∗This work was supported by the Natural Sciences and Engineering
Research Council (NSERC) of Canada.

some scheduling algorithmA. A penalty functionP (τi)
is defined for the task. IfFi ≤ di, P (τi) = 0; other-
wiseP (τi) > 0. The value ofP (τi) is a non-decreasing
function of Fi − di. The penalty function of a given
scheduling algorithmA for a given setT is denoted by
P (T) =

∑n

i=1 P (τi).

In fact, the problem under study in this paper occurs
in overload conditions where it can not guaranteed that all
tasks can meet their deadlines. In this case, it is compelled
to miss some deadlines, while we aim to minimize the
penalty that should be paid.

The only fact known about our problem, as is true
for most of the problems in this class, is that it is NP-
hard [8]. Recently, there has been a lot of progress
in the design of approximation algorithms for a vari-
ety of scheduling problems in the aforementioned class
[9, 2, 16, 3, 1, 5, 6, 10]. Also, in real-time literature,
several scheduling algorithms have been proposed to deal
with overloads. For instance, one may refer to [4, Chapter
2] and the references therein. A relevant and recent work
is [15], in which the problem is studied for the special
case of non-preemptive tasks (see Section 2). The authors
addressed a more general problem in [13]; namely, the
scheduling of a set of preemptive soft real-time tasks (see
Section 2) where the objective function is to minimize
the total penalties that should be paid for the deadlines
missed. In [13], we provided a class of heuristic algo-
rithms and presented simulation results and compared the
performances of the proposed algorithms. In this paper,
we derive an upper bound for the optimal solution.

The remainder of this paper is organized as follows. We
introduce the terminology in Section 2. In Section 3, we
formally define the problem to be solved. In Section 4,
we find an upper bound for the objective function, and
we provide an algorithm that finds the optimal solution.
The run time of the algorithm grows exponentially with
the number of tasks. Then, in Section 5 we present the
simulation results and compare the upper bound with the
optimal solution. Section 6 contains the conclusions.

39

2 Terminology

For a given set of tasks thegeneral scheduling problem
asks for an order according to which the tasks are to be
executed such that various constraints are satisfied. For a
given set of real-time tasks, we want to devise a feasible
allocation/schedule to satisfy timing constraints. The tim-
ing properties of a given taskτj , whereτj ∈ T , refer to
the following [11, 12, 17, 7]:

• Release time(or ready time(rj)): Time at which the
task is ready for processing.

• Deadline (dj): Time by which execution of the task
should be completed.

• Completion time (Cj): Maximum time taken to com-
plete the task, after the task is released.

• Finishing time (Fj): Time at which the task is fin-
ished:Fj = Cj + rj .

• Execution time (ej): Time taken without interruption
to complete the task, after the task is started.

• priority function: Priority of taskτj is defined as rel-
ative urgency of the task. Priority function is the rel-
ative urgency of a task in a given algorithm.

• Penalty factor (Pj): Penalty that should be paid per
each time unit after the deadline of taskτi.

• Makespan factor (αj): Ratio ofCj to ej, i.e.,αj =
Cj/ej , whereej andCj are respectively the execu-
tion time of taskτj and the completion time of the
task in the schedule. This factor depends on sched-
ule.

3 Problem Definition

Consider a setT = {τ1, τ2, ..., τn} of n soft real-time
tasks. There exists one processor. The tasks are preemp-
tive and aperiodic. For each taskτi, we assume thatri,
ei, Pi, anddi ,which are respectively the release time, ex-
ecution time, penalty factor and deadline of the task, are
known.

We define the penalty function of taskτi as

P (τi) = (Fi − di)
+Pi, (1)

whereFi = ri + αiei is the finishing time of taskτi, αi

is the makespan factor (αi ≥ 1), and

(Fi − di)
+ =

{

Fi − di if Fi − di > 0
0 otherwise.

A slot is the smallest time unit.
The objective is to minimize

∑n

i=1 P (τi). Therefore,
we can formally express the objective function as follows.
Let us define

xi,t =

⎧

⎨

⎩

1 if the processor is assigned to taskτi

at time slott
0 otherwise

Our goal is to minimize the objective function

n
∑

i=1

(ri + αiei − di)
+Pi, (2)

subject to the following conditionsΣn
i=1xi,t = 1, which

means only one processor is working at any given time
t, andΣ∞

t=1xi,t = ei, meaning that the total time slots
assigned to any given taski over time is equal to its exe-
cution time.

As mentioned earlier, the problem defined in this sec-
tion is known to be NP-hard. Thus, the only known al-
gorithm for obtaining an optimal schedule requires time
that grows exponentially with the number of tasks. It is
desired to find an upper bound for the objective function
which, unlike the optimal algorithm, it would be compu-
tationally feasible. The upper bound may also be useful
for design and comparison purposes.

4 An Upper Bound

In order to determine the upper bound, we refer to the
results in [13] and select the priority function of an algo-
rithm, namely algorithmS8, which has the best solution
as compared with the other algorithms discussed in [13].
The priority assigned to each task in algorithmS8 is in
non-decreasing order ofPi/ei, where for a given taskτi,
Pi andei are respectively the penalty factor and the exe-
cution time.

We find the upper bound as follows. As mentioned in
Section 2,Ci = αiei is maximum time taken to complete
the task, after the task is released. Therefore,

αiei = ei+

n
∑

k=1,
Pi/ei<Pk/ek,rk<ri<Fk

ek+

n
∑

l=1,
Pi/ei<Pl/el,ri<rl<Fi

el,

(3)
whereτk is any task which has arrived beforeτi, has a
higher priority thanτi, and has not been finished when
τi arrives, andτl is any task which arrives afterri and
has a higher priority thanτi, and finishes beforeFi. As a
matter of fact, a task cannot be preempted more than once
by another task.

40

It can be verified that

n
∑

k=1,
Pi/ei<Pk/ek,rk<ri<Fk

ek +

n
∑

k=1,
Pi/ei<Pk/ek,ri<rk<Fi

ek ≤

n
∑

j=1,
Pi/ei<Pj/ej

ej . (4)

, where
∑n

k=1,
Pi/ei<Pk/ek,rk<ri<Fk

ek represents sum of

the execution times of the tasks that have arrived before
τi, but their execution in not finished when taskτi arrives,
and their priority is higher than the priority of taskτi, and
∑n

k=1,
Pi/ei<Pk/ek,ri<rk<Fi

ek represents sum of the execution

times of the tasks that have arrived after taskτi and before
the finishing time of taskτi, and their priority is higher
than the priority of taskτi.

Therefore, from (3) and (4), we obtain the following
inequality

αiei ≤ ei +

n
∑

j=1,
Pi/ei<Pj/ej

ej.

Therefore, we conclude that

n
∑

i=1

(ri + αiei − di)
+Pi ≤

n
∑

i=1

⎛

⎜

⎝
ri + ei +

n
∑

j=1,
Pi/ei<Pj/ej

ej − di

⎞

⎟

⎠

+

Pi.

We hence obtain the following upper bound for the opti-
mal penalty function

min

n
∑

i=1

(ri + αiei − di)
+Pi

≤

n
∑

i=1

⎛

⎜

⎝
ri + ei +

n
∑

j=1,
Pi/ei<Pj/ej

ej − di

⎞

⎟

⎠

+

Pi. (5)

Note on the right hand side of (5) that all of the param-
eters in this upper bound are known before scheduling
and it is not needed to run a scheduling algorithm to
find them. Also, the upper bound can be calculated in
O(n2) time, wheren is the number of tasks, while find-
ing min

∑n

i=1(ri +αiei−di)
+Pi is an NP-hard problem.

We need to find the optimal solution to compare it with
the results of the upper bound and do not claim that it is
the best possible optimal algorithm for the problem. In
order to find the optimal solution, we use the following
steps: we find all of then! possible permutations of order

of priorities, which are assigned to a set of n soft realtime
tasks. Then, we call algorithmA for any individual per-
mutation of priorities, which computesΣn

i=1(Fi−di)
+Pi

for each of them separately. Finally, we find the mini-
mum ofΣn

i=1(Fi − di)
+Pi that corresponds to the opti-

mal schedule. The running time of the optimal scheduling
algorithm proposed in this section isO(n!).

5 Simulation Results

We have implemented the optimal algorithm and com-
puted the upper bound forn = 1, 2, · · · , 8 for simula-
tion purposes and comparison. Simulation conditions are
as follows. Each set of data includesn soft real-time
tasks. For each task, we randomly generateri, ei, di

andPi. When randomly generatingdi, the condition that
ei + ri ≤ di should hold. We generate 20 different data
sets with sizen and execute the optimal algorithm and
compute the upper bound on each data set. We compute
the average of the aggregations of the termination times of
the 20 simulations for data set with sizen. The simulation
is done for the algorithms forn = 1 to 8.

The optimal algorithm findsmin Σn
i=1(Fi − di)

+Pi,
whereFi is the finishing time of taskτi. Figure 1 com-
pares the results of the simulations by plotting the penalty
to be paid versus the number of tasks. Note in the figure
that the upper bound coincides with the optimal solution
at n = 1. Also, we observe that the ratio of the upper
bound to the optimal solution is less than 1.09. We have
also computed and plotted, in Figure 2, the upper bound
for the penalty to be paid versus the number of tasks for
n = 1, 2, · · · , 500. Note that while it is computationally
infeasible to find the optimal penalty forn > 8, our upper
bound can be easily calculated for large numbers of tasks.

6 Conclusions

In this paper, we studied the problem of scheduling a set
of soft real-time tasks under overload conditions such that
the total penalty to be paid is minimized. The problem
is NP-hard. In other words, it is not known whether an
optimal schedule can be found in polynomial time.

We have provided an upper bound for the objective
function. The running time of computing the upper bound
is O(n2), wheren is the number of tasks. Therefore, it is
feasible to compute the upper bound for a set of large real-
time tasks in a short time. In order to determine the upper
bound, we selected the priority function of an algorithm
which has the best solution as compared with the other
algorithms discussed in [13].

41

1 2 3 4 5 6 7 8
10

3

10
4

10
5

10
6

Number of tasks

lo
g(

pe
na

lty
)

Upper bound
Optimal schedule

Figure 1: The total penalty of the optimal solution and the
upper bound in (5).

0 50 100 150 200 250 300 350 400 450 500
10

2

10
4

10
6

10
8

10
10

10
12

10
14

Number of tasks

lo
g(

pe
na

lty
)

Upper bound

Figure 2: The upper bound of the total penalty for a large
number of tasks.

Future work may include computing the ratio of our
upper bound to the optimal solution.

References
[1] J. M. Arnaout and Gh. Rabadi, “Minimizing the toal

weighted completion time on unrelated parallel machines
with stochastic times,”Proceedings of Simulation Confer-
ence. Winter 2005.

[2] I. D. Baev, W. M. Meleis, and A. Eichenberger , “An exper-
imental study of algorithms for weighted completion time
scheduling,”Algorithmica, Vol. 33, 2002.

[3] I. D. Baev, W. M. Meleis, and A. Eichenberger, “Algorithms
for total weighted completion time scheduling,”SODA:

ACM-SIAM Symposium on Discrete Algorithms (A Confer-
ence on Theoretical and Experimental Analysis of Discrete
Algorithms), 1999.

[4] G. Buttazzo, G. Lipari, L. Abeni, and M. Caccomo“Soft
Real-Time Systems, Predictability vs. Efficiency, ”Springer
company, 2005, NY, USA.

[5] C. Chekuri and R. Motwani, “Precedence constrained
scheduling to minimize weighted completion time on a
single machine,”Discrete Applied Mathematics, Vol. 98,
pp. 29-39, 1999.

[6] C. Chekuri, R. Motwani, B. Natarajan, and C. Stein,
“Approximation techniques for average completion time
scheduling,”SIAM Journal on Computing, Vol. 31, No. 1,
pp. 146-166, 2001.

[7] W. Fornaciari, P. di Milano,Real-time operating systems
scheduling lecturer, www.elet elet.polimi polimi.it/ forna-
cia it/ fornacia.

[8] M. R. Garey and D. S. Johnson, “Computers and intractabil-
ity: a guide to the theory of NP-completeness,” W. H. Free-
man, January 15, 1979.

[9] M. X. Goemans, M. Queyranne, A. S. Schulz, M. Skutella,
and Y. Wang, “Single machine scheduling with release
dates,” 2001.

[10] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein,
“Scheduling to minimize average completion time: off-line
and on-line approximation algorithms,”Mathematics of Op-
erations Research, Vol. 22, pp. 513-544, August 1997.

[11] M. Joseph,Real-time systems: specification, verification
and analysis, Prentice Hall, 1996.

[12] P. A. Laplante,Real-time systems design and analysis, an
engineer handbook, IEEE Computer Society, IEEE Press,
1993.

[13] A. Mohammadi and S. Akl, “Heuristic Scheduling Al-
gorithms Designed Based on Properties of Optimal Algo-
rithm for Soft Real-Time Tasks,” submitted to 2007 Sum-
mer Computer Simulation Conference (SCSC’07).

[14] A. Mohammadi and S. Akl,Scheduling algorithms for
real-time systems, Technical Report 2005-499, School of
Computing, Queen’s University, 2005.

[15] M. W. P. Savelsbergh, R. N. Uma, and J. Wein, “An ex-
perimental study of LP-based approximation algorithms for
scheduling problems,”INFORMS Journal of Computing,
Vol. 17, No. 1, Winter 2005, pp. 123-136.

[16] M. Skutella, “List scheduling in order of alpha-points on
a single machine,” inEfficient Approximation and on-line
algorithms, editted by E. Bampis, K. Jansen and C. Kenyon,
2002.

[17] J. A. Stankovic and K. Ramamritham,Tutorial on hard
real-time systems, IEEE Computer Society Press, 1988.

42

DARTSVIEW, A Toolkit for DARTS in LabVIEW

NGO Khanh Hieu, GROLLEAU Emmanuel

Laboratory of Applied Computer Science

LISI-ENSMA, 1 avenue Clément Ader, Téléport 2

BP. 40109 – 86961 Futuroscope Cedex – France

ngo@ensma.fr, grolleau@ensma.fr

Abstract

DARTS (Design Approach for Real Time Systems)

[Gom93] is a software design method for real time

systems. LabVIEW (Laboratory Virtual Instrument

Engineering Workbench) is a graphical application

development environment developed by National

Instruments Corporation based on the dataflow

representation of the “G” language [Lab98][Cot 01].

LabVIEW is implicitly multithreaded and has high level

functions for communication/synchronization, allowing it

to be used as a programming language for

control/command and soft real-time applications. In

order to help a designer to develop a real-time

application, we propose the library DARTSVIEW, which

simplifies the passage from the conception of a

“multitasking” application to the implementation

[NG03]. One can use DARTSVIEW in different phases of

the life cycle of a real-time system software. The last

version of DARTSVIEW, allows to define in XML several

real-time programming normalized languages, and to

generate a part of the code for different specific

programming languages (Ada, POSIX 1003.1, VxWorks,

OSEK/VDX, etc.). The flexibility introduced by the use of

XML allows a designer also to generate some code

targeting real-time scheduling analysis tools in order to

achieve the temporal validation. The objective of this

article is to present an overview of DARTSVIEW, a

Toolkit for DARTS in LabVIEW, the role of DARTSVIEW

in the software life-cycle, and some perspectives for the

extensibility of this Toolkit in the future.

1. Introduction

The “concurrency” is one of the problems that we

have to face frequently in real time systems. A concurrent

system has many activities (or tasks) occurring in

parallel. Usually, the order of incoming event is not

predictable and these events may overlap [Gom93]. So

several tasks may handle the data-acquisition at different

rates, some other tasks may be dedicated to the

calculation of commands, and some others to the

commands of several devices. When these activities (or

tasks) synchronize and communicate, the conformance

with rules of the mutual exclusion, of the

synchronization, and of the communication is actually a

key issue to be addressed:

- mutual exclusion is the mechanism for ensuring that

only one process at a time performs a specified action .

Hence, it guarantees shared access to data (or resources)

to the tasks,

- synchronization is the control of the execution of two

or more interacting processes so that they perform the

same operation simultaneously. It allows to block a task

until another one awakes it,

- communication is a mechanism permitting the tasks

to exchange the data.

DARTS (Design Approach for Real Time Systems) is

a software design method, which emphasizes the

decomposition of a real-time system into concurrent tasks

and defines the interfaces between these tasks. In a

DARTS diagram, each task is presented by a

parallelogram (Fig. 1). It can be either a hardware task

(released by an external event, such as an interrupt or a

real-time clock), or a software task (released by another

task) [NG03]. DARTS can be used as a conception

method for multitask systems (including real-time and

control/command systems), since it focuses on the task

decomposition, and thus is really close to the

implementation process [CG05].

Figure 1: Elements of a DARTS diagram

LabVIEW (Laboratory Virtual Instrument Engineering

Workbench) is a graphical application development

environment in the G language. LabVIEW is very well

suited for data-acquisition, signal processing, and (soft

real-time) control/command of process. The LabVIEW

programming language is naturally parallel: when parts of

the data flow are independent, the runtime can map them

in several system threads. However, the difference

between the notion of parallelism in LabVIEW and the

semantics of dataflow associated in the G language does

not allow to make a direct communication between them

43

mailto:ngo@ensma.fr
mailto:grolleau@ensma.fr

by a dataflow (in this case, the second function has to

wait for the completion of the first one in order to start its

execution). Therefore, following the work of [Gev98],

LabVIEW integrates intertask communication tools.

During several case studies, we realized that it was

qu

IEW is to help

the

The a

sc

his case the software life-cycle based on

a c

In the SVIEW

ap

Section 4 presents some perspectives.

llows multitask programming transparently:

in fact, two loops running in parallel are mapped on

dif

onsists in introducing a

certain place of code: the

t for an event sent by the

so

unication is the transfer of data from one

task to another. It is either based on a send and forget

e message queue

is

e to the message queue. Retrieving the

me

in order to replace the oldest message

in

ite interesting to help the designer to create a multitask

application in LabVIEW with DARTS based bricks

provided as a Toolkit named DARTSVIEW, in order to

get past of the classic multitask implementation process,

and to focus on the behavior of the tasks.

One of the important roles of DARTSV

 designer to represent a DARTS diagram directly in

LabVIEW. And in the software life-cycle like the classic

V model given on Figure 2, the functional aspect of the

system may be tested.

Figure 2: Software life-cycle in V

temporal validation usually consists in

hedulability analysis based on a temporal model of the

tasks [CDKM02]. The target programming language will

likely be an imperative language (like C-based, Ada), and

several tools can be used, Response-Time Analysis based,

like MAST [MAST01], or building a feasible schedule,

like PeNSMARTS [Gro99]. The choice that has been

made for DARTSVIEW was to use the flexibility of

XML for the temporal validation in the same way as it

has been used to generate program in several

programming standards: an XML model can be used to

output a task model in the required format of several

validation tools.

Therefore, in t

lassic V model would be extended with the second V

porting the workstation code whose parallel behavior has

been tested on the workstation, and on the embedded

target. The Figure 3 represents a software life-cycle in W,

and the role of DARTSVIEW in this life-cycle.

Figure 3: Software life-cycle in W

 sequel, the following aspects of DART

proach will be presented: section 2 presents the main

multitasking LabVIEW concepts, and how these concepts

are used in DARTSVIEW v7.1. The DARTSVIEW

Toolkit and a case study are presented in section 3.

2. DARTS and multitasking LabVIEW

concepts

The implicit notion of parallelism inherent in

LabVIEW a

ferent threads, and hence are executed in parallel. This

characteristic permits to implement directly an

abstraction of the tasks based on a DARTS

representation. So, in LabVIEW a task DARTS can be

simply modeled by an infinite While loop. However, the

difference between the notion of parallelism in LabVIEW

and the notion of data flows in G language does not allow

exchanging the data directly between the tasks. Then this

section presents how LabVIEW implements the

interfaces between these tasks.

2.1. Task synchronization

Synchronizing two tasks c

precedence constraint at a

destination task has to wai

urce task in order to execute an action. In DARTS,

synchronization between two tasks is presented on Fig. 4.

For this type of synchronization, programming languages

usually use a counting semaphore [CG05]. However the

Semaphore tools proposed after LabVIEW v7.1 are

bounded semaphore (LabVIEW requires that a

semaphore can not have a count greater than its initial

count). In order to solve this problem, we had to modify

the implementation of the task synchronization in the way

that firstly we decrease the count of a semaphore to 0,

and then the release of semaphore must be verified to

insure that the count is always smaller than or equal to the

initial count.

2.2. Loosely-coupled communication

The comm

paradigm (see Fig. 4) when the size of th

unbounded, or when a recent message replace the

oldest one, or on a producer/consumer paradigm when the

size of the queue is bounded and no message can be lost

(default behaviour of the message queue tool in

LabVIEW).

We notice that after LabVIEW 7.1, the data is casted

to a variant data type, and allows sending a message of

any data typ

ssage consists in casting back the variant to the

original data type. LabVIEW is checking the coherence

when casting from a variant type to another data type, so

the user can not make any typing mistake without being

warned at runtime.

In the send and forget paradigm (see Fig.4), the

writing consists in emptying first, and then writing into

the message queue

the case it would not have been read by the time the

new message is sent. So the producer could send a

message and then continue its execution without care of

the reception of it in the consumer. This communication

44

is very useful in the case of dense task producer; it allows

to control the reception-rate in the task consumer.

Figure 4: Message queue with replacement

2.3. Tightly-coupled message communication

represented by the tightly-coupled message

sm

wi

Figure 5: Producer, Tightly-coupled message

In the message

co

 criterion for

ile

rea

could implement them easily and intuitively.

Figure 6: Communication by IHM

3. DAR

 presented on the Figure

7.

“Communication Tool”, and “Generate Code”.

Figure 7: DARTSVIEW Toolkit

The designer n program

his

on the states of the sensors (the

tog

The synchronous message communication,

communication (Ada 83 rendez-vous), is a mechani

th which the producer sends a message to the

consumer, and then immediately waits for a response (a

message, or an event). In LabVIEW, this kind of

communication can be implemented by two message

queues (hence one for the producer, another for the

consumer). A model of producer is presented on Figure 5:

the producer firstly sends a message to the queue of the

consumer, and then waits for the response sent by the

consumer in order to continue its execution. The model of

consumer is symmetric.

communication with response

 case of the tightly-couple

mmunication without response, the message queue for

the consumer might be replaced by a tool of

synchronization (i.e., a semaphore in LabVIEW) for the

signal of the consumer to the producer when it receives

successfully the message sent by the producer.

2.4. Information hiding module (IHM)

Information hiding is used as a

encapsulating data stores. In DARTS, IHMs are used for

hiding the contents and representation of data stores and

state transition tables. When an IHM is accessed by more

than one task, the access procedures must synchronize the

access to the data [Gom93]. The Figure 6 represents a

simple implementation of IHM in LabVIEW. An IHM for

encapsulating data stores of type “Reader/Writer” is

compounded of two atomic operations, Read and Write,

acting on an internal data. Note that we use a message

queue of size 1 to store this data, and a counting

semaphore of size 1 too in order to insure atomicity.

Hence, writing consists in emptying the message

queue firstly, and then inserting the new value, wh

ding consists in getting the data value without

destroying it. For the other IHMs (i.e., IHM de type

Multiple-Readers/Writer, State Transition Modules,

Device Interface Modules, etc.), thanks to the VIs in the

palettes “Queue” and “Semaphore” of LabVIEW, we

TSVIEW Toolkit

The DARTSVIEW Toolkit is

It is a LabVIEW library abstracting the DARTS

concepts into LabVIEW programming elements. The

library has four mains palettes, named “Hardware Task”

(task is activated by either a real-time clock or an external

event), “Software Task” (task is activated by another by

means of the synchronization/communication tool),

of a real-time application ca

 system directly from the DARTS conception, and will

obtain a program that can be tested, and used in order to

generate some code targeting different real-time

programming standards or temporal validation tools. To

illustrate the role of DARTSVIEW in a W life-cycle, a

simple example is presented on Figure 8. This is a

building’s heating system; its brief behavior is the

following: the ignition system is run if the air (controlled

by a fan) and the gas (controlled by a valve) are supplied.

If during the operation of the system one of these two

sources is closed, or the combustion is turned off, an

alarm will be raised.

Thus, depending

gle switch state, the thermostat, the thermocouples, the

flow meters, etc.), a central control task decides to send

the commands to the tasks commanding the actuators,

while another task is in charge of calculating the

45

difference between the actual temperature and the

required one.

Figure 8: DARTSVIEW diagram of a heating
system

iagram onThe DARTSVIEW d Fig. 8 is really similar

to

LabVIE a control/

co

DARTSVIEW

4. Conclusion

oolkit is a helpful tool for the DARTS

development of control-command applications in

La

nvironment for students in two French

sc

e

F. Cottet, J. Delacroix, C. Kaiser, Z. Mammeri,

«Scheduling in Real-Time Systems», J. W. & Son, 2002.

[Gev9

 de développement des applications de

[Gom

ley,

Gro9

 de Petri en

[Lab9

lysis Suite

[NG0

W»,

FuturVIEW’2003, ENSMA, 12-13 Juin 2003.

the DARTS diagram. Thanks to the simple and

intuitive implementation, the designer could create in

LabVIEW a software simulator in order to test the global

behavior (the functional aspect) of the tasks system in the

first V of the W life-cycle by means of the DARTSVIEW

diagram. Moreover, all of the information about the tasks

system will be recorded, and will be generated to the

designer in form of a XML document (see Fig. 9) for the

use in the second V of the W life-cycle: code generation.

Figure 9: XML representation

W allows a rapid development of

mmand or soft real-time application, but it is less used

for embedded hard real-time systems. Several standards

and proprietary extensions are used, depending on the

application area (aerospace, aeronautics, car,

manufacturing, UAV, electronic devices…): Ada,

ARINC 653, OSEK/VDX, POSIX 1003.1, VxWorks,

TRON, etc. So it is convenient to find a flexible way to

be able to generate the specific multitask code parts

targeting these languages/standards from DARTSVIEW.

The same problem arises when we want to generate the

code in order to validate the application by a third-party

tool. A flexible choice seems to be the use of XML in a

schema of the code generation from DARTSVIEW like

the one shown on Figure 10. A new standard or third-

party tool is then targeted by LabVIEW using an XML

file to describe the code generation for the tests, the

calculation of the temporal parameters of each task, and

the feed-back of these results to the DARTSVIEW

model. Consequently, thanks to DARTSVIEW the time-

to-market of the development of system will be better

than the one using the traditional approach.

[

Figure 10: Schema of code generation from

DARTSVIEW T

bVIEW, as well as a helpful tool for the development

of embedded applications using a target language based

on a specific standard or proprietary library. The use of

XML-DTD facilitates the generation of code from the

DARTSVIEW model, and allows the designer to choose

a third-party tool for the validation of the timing

requirements.

DARTSVIEW Toolkit is already used as a first

multitasking e

hools.

Referenc

 [CDKM02]

[CG05] F. Cottet, E. Grolleau, «Systèmes temps réel de

contrôle-commande, Conception et Implémentation»,

Dunod, 2005.

8] Emmanuel Gerveaux, «Conception d’un

environnement

contrôle de procédé basé sur le modèle formel GRAFCET

et fondé sur un langage graphique flot de données»,

rapport de Thèse, LISI-ENSMA, 29 Septembre 1998.

93] Hassan Gomaa, «Software Design Methods for

Concurrent and Real-Time Systems», Addison Wes

SEI Series in Software Engineering, 1993.

9] Emmanuel Grolleau, «Ordonnancement temps réel

hors-ligne optimal à l’aide de réseaux

environnement monoprocesseur et multiprocesseur»,

rapport de Thèse, LISI-ENSMA, 29 Novembre 1999.

8] National Instruments, LabVIEWTM 5 «Software

Reference and User Manual», February 1998.

[MAST01] M. G. Harbour, J.J. G. Garcia, J.C. P. Gutierrez,

J.M. D. Moyano, «MAST: Modeling and Ana

for Real-Time Applications», Proc. Of the 13th IEEE

Euromicro Conference in Real-Time Systems, 2001.

3] K.H. Ngo, E. Grolleau, «La Méthode DARTS et La

Programmation Multitâche en LabVIE

46

Timing Properties of Removable Flash Media

Daniel Parthey and Robert Baumgartl
Real-Time Research Group

Department of Computer Science
Chemnitz University of Technology

{daniel.parthey, robert.baumgartl}@cs.tu-chemnitz.de

Abstract

Flash memories could be a basis for mass storage with
real-time guarantees if a suitable model for access tim-
ing could be established. To characterize the operation
timing of removable flash media such as Compact Flash
(CF) and MultiMedia Card (MMC), we propose a set of
benchmarks. The results of our study indicate that a sim-
ple timing model for current media cannot be established.
The timing of individual read and write operations de-
pends on the address and block size of accessed data as
well as the written bit pattern. Many timing anomalies
were observed.

Keywords

Flash Storage Media, Flash Memory, Worst-Case Access
Time, Embedded Systems

1. Introduction

In the past, quite some research efforts have been made
to analyze hard disk access timing and to establish pre-
cise timing models [9]. Unfortunately, today’s hard disks
are very complex systems. Most of their inner workings
are hidden from the user and must be deduced by com-
plex experiments [12]. The continuous capacity and (to a
lower degree) bandwidth improvements require sophisti-
cated techniques. Hence, as Ruemmler concludes, access
operations cannot be modeled with any accuracy [9]. As a
component for hard real-time systems, hard disks usually
are not used with explicit timing guarantees.

The advent of flash memories has changed this situa-
tion. Because they provide a very simplistic interface and
operation timing is usually well-documented (cf. [10] for
example), it seems that they could be the basis for mass
storage with very precise and easy-to-determine access
timing. In comparison to hard disks, a new quality of
timing predictability for soft and hard real-time systems
seems possible. Additionally, flash media are very robust
and therefore ideal under rough conditions.

Two different strategies to manage flash memory can
be distinguished. The first one is the design of specialized
file systems such as JFFS [11], YAFFS [1] and LogFS [4].
The second strategy is to emulate a block device on top
of flash memory. The Flash Translation Layer (FTL) [5]
is an example as well as all removable flash media such
as CompactFlash [3] or MultiMedia Card [6]. With the
exception of the xD Picture Card (which we did not test)
all removable flash media consist of one or several flash
memory circuits and a microcontroller which emulates the
block device by providing the communication interface
to the outside, translating protocol commands into flash
memory accesses and keeping track of wear-levelling.

The file system approach has attracted considerable re-
search attention. For example, efficient techniques for ini-
tialization and crash recovery [13] as well as efficiently
managing metadata information [2] have been published.
Removable flash media, on the other hand, did not at-
tract the same amount of research. Media comparisons
in technical journals or the web usually focus on achiev-
able throughput only [8]. No thorough analysis concern-
ing real-time access timing of removable flash media is
known to the authors. The goal of this study is to obtain a
first impression on the subject.

2. Experimental Setup

Because removable flash media cannot be opened with-
out destruction we relied on black-box testing only. We
designed a suite of seven simple tests to reveal the follow-
ing properties of the media:

• dependence of timing on accessed address,

• dependence of timing on accessed block size,

• dependence of timing on written and overwritten bit
pattern,

• identify and quantify potential caching or buffering
(read, read-ahead, write)

• try to deduce the erase block size by measuring the
time to write blocks of different sizes.

47

As an example, to assess a potential timing influence
of the accessed address, we measured the time to read and
write four consecutive blocks of 64 KiB at ten different
positions across the medium. Describing all tests in detail
is beyond the scope of this paper. We refer the interested
reader to [7].

All tests were performed on an AMD64 Athlon 3000+
with 1 GiB RAM running Linux 2.6.18. The media were
accessed via a USB 2.0 Hama card reader with a GL819
chip. No other devices were connected to the USB. Due to
the comparatively long operation times we deemed stan-
dard Linux suitable as measurement platform.

To estimate the influence of the card reader onto the
measured performance some of the measurements were
reiterated with a different card reader under otherwise
identical conditions. A difference could be noticed but
is negligible.

All read and write operations were performed on raw
devices without any file system. A total of 19 different
media were analyzed, among them Compact Flash (CF),
Secure Digital (SD) Card, Memory Stick (MS) and Mul-
timedia Card (MMC).

3. Results

3.1. Data Throughput
We begin our analysis with a conventional performance

test. The achievable throughput for read and write ac-
cesses is measured depending on block size.

Figure 1 shows an exemplary result. For small block
sizes below the physical erase block size throughput is
limited by overhead. As soon as the transferred block size
reaches the erase block size, maximum throughput can be
observed. As in the depicted example, these limits usually
differ for read and write operations.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.25 1 4 16 64 256 1024

B
a
n
d
w

id
th

 (
M

B
/s

)

Blocksize (KiB)

Sustained Read/Write Bandwidth

read raw
write raw

Figure 1. Data Throughput for different
Block Sizes (MS 32 MiB SanDisk)

Usually, write operations are slower than reads, but we
also observed identical maximum read and write band-
widths for modern CF media. By looking at throughput

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08

T
o
ta

l
T

im
e
 (

m
s
)

Position (Bytes)

Positioned Read/Write Time of 4 64KiB Blocks

read
write

Figure 2. Time to access a 64 KiB Block at
different Locations (CF 256 MiB Toshiba)

only, removable flash media seem to exhibit very deter-
ministic access timing.

3.2. Sensitivity of Position
Some but not all media have a special short access time

for write operations at address 0. Figure 2 shows an ex-
ample.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09 1.6e+09 1.8e+09 2e+09

T
o
ta

l
T

im
e
 (

m
s
)

Position (Bytes)

Positioned Read/Write Time of 4 64KiB Blocks

read
write

Figure 3. Time to access a 64 KiB Block at
different Locations (CF 2 GiB SanDisk)

Writing four 64 KiB blocks from address zero needs
between 24 and 48 percent less time than writing the same
amount of data to other locations. Additionally, the timing
of writing an individual block varies considerably except
for address 0. The read operation is not affected.

A possible partial explanation could be that the VFAT
file system stores its main metadata structure, the File Al-
location Table (FAT), at that address. Frequent write ac-
cesses to that location are therefore very likely and are
consequently optimized by the controller.

The same phenomenon was observed for a more recent
medium as depicted in figure 3. Again, writing to address

48

zero is considerably faster than to any other address. Fur-
ther, writing to address 1 GiB is especially slow. Note also
the high read and write timing variance.

Another anomaly is depicted in figure 4. Here, all read
operations above 256KiB need more than triple the time
than reads below that boundary (150 vs 44 milliseconds).
Write timing is uniform across the medium. It seems that

 40

 60

 80

 100

 120

 140

 160

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08 3.5e+08 4e+08 4.5e+08 5e+08

T
o
ta

l
T

im
e
 (

m
s
)

Position (Bytes)

Positioned Read/Write Time of 4 64KiB Blocks

read
write

Figure 4. Time to access a 64 KiB Block
at different Locations (MMC 512 MiB Ex-
trememory)

two different flash memory circuits were used for that spe-
cific medium.

3.3. Sensitivity of Block Size
As figure 5 indicates, some media have an ex-

tremely poor write performance when accessing very
small blocks. In our benchmark, exactly one megabyte
of data was written using blocks of a constant size. The
block size was varied and the time necessary for complet-
ing all write operations was measured. As can be seen,
write operations with block sizes≤ 2 KiB need almost
a magnitude of order more time to complete. This phe-

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0.25 1 4 16 64 256 1024

T
o
ta

l
T

im
e
 (

m
s
)

Blocksize (KiB)

Sustained Read/Write Time

read raw
write raw

Figure 5. Time to access 1 MiB with Blocks
of constant Size (CF 256 MiB Toshiba)

nomenon could only be observed for exactly one medium.
Many other media exhibit poor access performance for
very small blocks but the performance follows more or
less the “classic” smooth curve and can be attributed to
normal overhead increase.

Figure 6 depicts a similar phenomenon. This time,
reading small blocks is anomalously slow. Whereas for
block sizes between 1 and 1024 KiB read and write oper-
ations behave inconspicuously, reading with a block size
of 512 Bytes slows down pathologically. Reading 1 MiB
of data requires over 10 seconds on average; in the worst
case more than half a minute is needed! We have no ex-

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0.25 1 4 16 64 256 1024

T
o
ta

l
T

im
e
 (

m
s
)

Blocksize (KiB)

Sustained Read/Write Time

read raw
write raw

Figure 6. Time to access 1 MiB with Blocks
of constant Size (MMC 512 MiB Extremem-
ory)

planation for that phenomenon so far. Neither a different
MMC medium of different size nor media of different type
did exhibit a similar anomaly.

A similar poor access performance for large block sizes
has not been observed.

3.4. Sensitivity of Written Value
A third influence factor on access speed is the actual

value to be written. For one medium, writing the value
0xff needs approximately 284 milliseconds, whereas writ-
ing any other bit pattern needs only 252 milliseconds.

More common is the reverse case: writing 0xff needs
lesstime than writing other values. A tentative explana-
tion for that phenomenon could be that setting all bits cor-
responds to an erase operation whereas writing a pattern
containing at least one zero bit requires an additional op-
eration after the erase. Usually the difference is below 10
percent of the average write time, but in one case the 0xff-
write needed 158 milliseconds whereas the generic write
needed up to 260 milliseconds.

Sometimes, also the overwritten value influences ac-
cess timing, but the impact is negligible.

Some media exhibit almost no sensitivity on write bit
patterns. The MMC from figure 6 performs all four 64
KiB writes in 44.5 ± 0.3 milliseconds.

49

3.5. Caching
We could not detect the existence of any read or read-

ahead cache in the media we analyzed. Because the pre-
dominant access order for mass storage is strictly sequen-
tial, a read cache would hardly improve performance. On
the other hand, a read-ahead cache seems only reasonable
when there is some kind of penalty for late read accesses
(such as the rotational latency in hard disks).

In a single case (an SD card of 1 GiB size), our test
indicated the existence of a write cache. The idea of the
test is to write several consecutive blocks of random data
to pollute a potentially-existing cache, read a single block,
write random data to that block and read it again. In the
presence of a write cache, the second read operation will
perform much faster than the first.

In the described case, we measured an average of 18
milliseconds for the first and almost no time for the sec-
ond read operation when accessing blocks of 512 bytes
size. For all other tested block sizes (1 KiB, 2 KiB, . . . ,
1 MiB), both read operations needed identical times. Be-
cause the test only succeeds for one block size, we are not
sure whether we really identified a cache or simply an-
other timing anomaly. Certainly, that aspect needs further
research.

4. Conclusions & Outlook

Our tests indicate that there is no such thing as a uni-
form access time for removable flash media. Whereas
most read and write accesses behave as expected, sur-
prisingly many of them do not. We identified three
main sources of access timing indeterminism: (I) The ad-
dress of the accessed data block: some media access ad-
dress zero especially fast, other locations are sometimes
very slow. (II) Accessing very small blocks can be pro-
hibitively slow. (III) The written bit pattern also influ-
ences access timing, but to a lesser degree. The value of
irregular behavior is usually 0xff. Our tests showed a high
degree of reproducibility of all timing parameters. Media
of identical type seem to behave identically.

It is impossible to explain most of the observed timing
anomalies without knowing the internals of the flash me-
dia. Information on the number and exact type of flash
memory circuit as well as on the microcontroller type and
program are necessary. Existing documentation by ven-
dors is usually poor.

Hence, it is impossible to describe access timing of re-
movable flash media with a few parameters such as min-
imum and maximum read and write time or bandwidth.
Instead, media must be precisely analyzed to identify pos-
sible timing variances and anomalies. A basis for such an
analysis could be our set of benchmarks.

We feel that our set of analyzed media is yet too small
to be representative. Therefore, we will make the mea-
surement scripts available to the public at our website.
We will encourage anybody interested to apply the mea-
surements to whatever removable flash media and hope to

collect a reasonable amount of interesting timing data to
assess our results.

An interesting question is whether our set of bench-
marks is adequate for fully characterizing access timing
of a removable flash medium. Many of the measurement
parameters such as the number and size of the blocks to
access were chosen arbitrarily. Therefore, we do not have
a guarantee that we actually really captured worst case
timing. As an example, analyzing the influence of the ac-
cessed position on timing needs refinement. Additionally,
we did not investigate whether access timing changes dur-
ing media lifetime. These and other questions are subject
of further research.

As a next step of our project we plan to analyze raw
flash circuits in a similar manner. The Memory Technol-
ogy Device (MTD) abstraction of Linux seems a suitable
basis for that. We hope that direct access to flash mem-
ory will improve timing predictability. Having established
a firm timing model for elementary flash operations, we
want to simulate and analyze the real-time properties of
typical flash file systems such as JFFS2 and LogFS.

References

[1] Aleph One Limited. YAFFS Overview. available from
http://www.aleph1.co.uk/yaffsoverview, 2006.

[2] L.-P. Chang and T.-W. Kuo. An Efficient Management
Scheme for Large-Scale Flash-Memory Storage Systems.
In Proceedings of the 2004 ACM Symposium on Applied
Computing (SAC’04), pages 862–868, Nicosia, Cyprus,
Mar. 2004.

[3] CompactFlash Association. CF+ and CompactFlash
Specification Revision 4.1, Feb. 2007. available from
http://compactflash.org.

[4] J. Engel and R. Mertens. LogFS – Finally a scalable flash
file system. http://wh.fh-wedel.de/˜joern/logfs.pdf, 2005.

[5] Intel Corporation. Understanding the Flash Translation
Layer (FTL) Specification, Dec. 1998. Application Note
AP-684.

[6] MMCA Technical Committee. The MultiMedia Card –
System Summary, Apr. 2005. http://www.mmca.org.

[7] D. Parthey. Analyzing Real-Time Behaviour of Flash
Memories. Master’s thesis, Chemnitz University of Tech-
nology, Apr. 2007. (to appear).

[8] H.-J. Reggel. Cardspeed – Card Readers and Memory
Cards. http://www.hjreggel.net/cardspeed/, 2007.

[9] C. Ruemmler and J. Wilkes. An introduction to disk drive
modeling.IEEE Computer, 27(3):17–29, 1994.

[10] ST Microelectronics. M29W640DT Datasheet. available
from http://www.datasheetcatalog.com, Dec. 2004.

[11] D. Woodhouse. JFFS2: The Journalling Flash File Sys-
tem, version 2. available from http://sourceware.org/jffs2/,
2003.

[12] B. L. Worthington, G. R. Ganger, Y. N. Patt, and J. Wilkes.
On-Line Extraction of SCSI Disk Drive Parameters. In
Proceedings of the ACM Sigmetrics Conference (SIGMET-
RICS 95), pages 146–156, May 1995.

[13] C.-H. Wu, T.-W. Kuo, and L.-P. Chang. The Design of
Efficient Initialization and Crash Recovery for Log-based
File Systems Over Flash Memory.ACM Transactions on
Storage, 2(4):449–467, Nov. 2006.

50

Comparison of two worst-case response time analysis methods for

real-time transactions

A. Rahni, K. Traore, E. Grolleau and M. Richard
LISI/ENSMA

Téléport 2, 1 Av. Clément Ader
BP 40109, 86961 Futuroscope Chasseneuil Cedex

{rahnia,traore,grolleau,richardm}@ensma.fr

Abstract

This paper presents a comparison of two worst
case response time analysis methods in the context of
transactions. In the general context of tasks with off-
sets (general transactions), only exponential methods
are known to calculate the exact worst-case response
time of a task. We focus more precisely on mono-
tonic transactions. In this context, we present the fast
and tight analysis, proposed in [7, 6], and the analy-
sis technique of monotonic transaction that we have
proposed in [14]. We compare them on a case study
and on several configurations generated randomly.

Keywords: Response Time, Transactions

1. Introduction

The Response-Time Analysis [1] is an essential
analysis technique that can be used to perform
schedulability tests. Tindell proposed in [11] a new
model of tasks with offset (transactions) extending
the model of Liu and Layland [5]. Since the transac-
tions are non-concrete(the transaction release times
are not fixed a priori), the main problems is to de-
termine the worst case configuration for a task under
analysis (its critical instant). Tindell showed that the
critical instant for a task under analysis (τua) occurs
when one task of higher priority in each transaction
is released at the same time as τua.

An exact calculation method has been proposed
in [10], but has an exponential complexity and is
intractable for realistic task systems; Tindell [11]
has proposed a pseudo-polynomial approximation
method providing an upper bound of the worst-case
response-time. Later, this approach has been im-
proved in [4, 6, 7, 8]

In the sequel, we present the model of tasks with
offsets (a.k.a. transaction), then we present the best
known approximation method proposed by Turja and
Nolin [8]. Section 4 presents the monotonic transac-

tions exact analysis [13] and these two methods are
used on the same tasks system. In the last section
their performance are compared on randomly gener-
ated transaction systems.

2. Model of transactions

A tasks system Γ is composed of a set of |Γ| trans-
actions Γi, with 1 ≤ i ≤ |Γi| (where |Γi| is the number
of elements in the set Γi).

Γ :
{

Γ1,Γ2, ..,Γ|Γ|

}

Γi :
{

τi1, τi2, ..., τi|Γi|, Ti

}

τij : < Cij , Oij , Dij , Jij , Bij , Pij >

Each transaction Γi (see figure 1) consists of a set
of |Γi| tasks τij released at the same period Ti , with
0 < j ≤ |Γ|. Without loss of generality, we suppose
that the tasks are ordered in the set by increasing
offset. A task τij is defined by : a worst-case execu-
tion time (WCET) Cij , an offset Oij related to the
release date of the transaction Γi, a relative dead-
line Dij , a maximum jitter Jij (the activation time
of task τij may occur at any time between t0 + Oij

and t0 + Oij + Jij , where t0 is the release date of the
transaction Γi, a maximum blocking factor Bij due
to lower priority tasks (e.g. priority ceiling protocol
[9]), and Pij is its priority (we assume a fixed-priority
scheduling policy). The figure 1 presents an example
of transaction Γi composed of three tasks with period
Ti = 16.
Let us note hpi(τua) the set of indices of the tasks of
Γi with a priority higher than the priority of a task
under analysis τua, assuming that the priorities of the
tasks are unique.

3 Fast and Tight Analysis

This method provides an efficient implementation
to calculate an upper-bound of the worst-case re-
sponse times [7]. The main idea is to represent the
periodic interference function statically, and during

51

�✁ ✂✄☎✆✁✝
O✞✟✠✁✝ ✠✁✡
O✞☛
✠✁☞
ττττ✌✍ττττ✌✎ �✁

f
r

f
g

ττττ✌✎ ττττ✌✍ττττ✌✏ ττττ✌✏Γ ✑�✁ ✂✄☎✆✁✝
O✞✟✠✁✝ ✠✁✡
O✞☛
✠✁☞
ττττ✌✍ττττ✌✎ �✁

f
r

f
g

ττττ✌✎ ττττ✌✍ττττ✌✏ ττττ✌✏Γ ✑
Figure 1. Example of transaction.

the response-time calculation, to use a simple lookup
function in order to compute its value. The interfer-
ence imposed by the transaction Γi on a task under
analysis τua during a busy period of length t starting
at the release of τua and corresponding to the release
of τic is noted Wic(τua, t) (τic is then called the criti-
cal instant candidate in Γi). In order to simplify, we
suppose no Jitter in the transaction (i.e Jij = 0).

Wic(τua, t) =
X

j∈hpi(τua)

„„—

t∗

Ti

�

+ 1

«

∗ Cij − xijc(t)

«

t∗ = t − Φijc

Φijc = (Ti + (Oij − Oic)) % Ti

xijc(t) =

0 for t∗ < 0
max(0, Cij − (t∗ % Ti)) otherwise

Φijc is the phase between τic and τij . xijc(t) cor-
responds to the part of the task τij that cannot be
executed in the time interval of length t (note that
this part is the main difference between the methods
presented in [4] and [7]).
In order to find the critical instant, one would have to
compare every combination of critical instant candi-
dates, making the exact test intractable. The fast and
tight analysis method consists of creating a global in-
terference function Wi(τua, t) for each transaction Γi,
in choosing the maximum value of each interference
function.

Wi(τua, t) = max
∀c∈hpi(τua)

Wic(τua, t)

The figure 2 shows the graphical representation of
the interference of a transaction : each curve repre-
sents the interference function for each critical instant
candidate. Since the transaction is in normal form,
the derivative of each curve is either 0 or 1. Wi(τua, t)
that has to be computed is the maximum of all the
curves. The efficient implementation proposed in [7]
stores the set of points Pic, where each point Pic[k]
has an x (representing time) and a y (representing
interference) coordinate. These points correspond to
the convex corners of the curve Wic(τua, t).
The calculation of the upper bound on the worst-case
response time Rua of τua is obtained by an iterative
fix-point lookup.

R0
ua = Cua

R(n+1)
ua = Cua +

∑

Γi∈Γ

(Wi(τua, Rn
ua)) (1)

✒✓✔✕✖✕✓✗✘ ✗✓✙✚ ττττ ✛✜✒✓✔✕✖✕✓✗✘ ✗✓✙✚ ττττ ✛✢✒✓✔✕✖✕✓✗✘ ✗✓✙✚ ττττ ✛✣✤✥✦✧★ ✤ ★✩
W✛✪ (ττττ✫✬,t)

Figure 2. Interference of transaction.

where Wi(τua, t) is deduced from the static represen-
tation of the transactions interferences.

3.1 Normal form of a transaction

Without loss of generality, we consider that all the
tasks of Γi have a higher priority than the task under
analysis τua. Since some tasks of a transaction may
have to overlap, issuing in an interference function
which derivative would be greater than 1, a normal
form of the transaction is first obtained using three
operations: order, merge, and split [7]. For each crit-
ical instant candidate τic, the transaction Γi is put in
normal-form. We start with all the tasks numbered
in increasing Φijc (phase between τij and τic). Thus
the task τic in the original transaction is named τi1

at the beginning of the normal-form processing.
The underlying idea behind the merge operation is
that if two tasks τij and τij+1 overlap, then the
longest busy period initiated by τij is always includ-
ing the longest busy period initiated by τij+1. The
split operation is used when a part of a task has to be
executed during the next period of the transaction :
in this case the spilling task is splitted into two tasks.
The spilling part is taken into account as a task with
an offset equal to 0 in the second period of the trans-
action. Thus, since the tasks are numbered according
to the increasing value of Φijc, the tasks can be re-
numbered (ordering operation) in the second period
of the transaction. These operations are used until
no task in the transaction is forced to overlap on the
next one, and until no task is forced to spill in the
second period of the transaction.
Note that the first period of a transaction may differ
in the number of tasks from the second period due to
the spilling tasks.
Note that if a jitter has to be taken into account, this
operation has to be done for every critical instant
candidate.

3.2 Example

We apply this method on the transaction Γi that
contains twelve tasks with no jitter (Jij = 0). and the
task τua with a WCET Cua = 9 and a lower priority

52

than all the tasks of Γi.

Γi := {< τi1τi2, ..., τi12 >, 60}

τi1 :< 3, 1, Di1, 0, 0, 1 > τi7 :< 2, 36, Di7, 0, 0, 7 >

τi2 :< 4, 9, Di2, 0, 0, 2 > τi8 :< 5, 43, Di8, 0, 0, 8 >

τi3 :< 2, 11, Di3, 0, 0, 3 > τi9 :< 3, 46, Di9, 0, 0, 9 >

τi4 :< 3, 20, Di4, 0, 0, 4 > τi10 :< 1, 49, Di10, 0, 0, 10 >

τi5 :< 4, 29, Di5, 0, 0, 5 > τi11 :< 4, 56, Di11, 0, 0, 11 >

τi6 :< 5, 31, Di6, 0, 0, 6 > τi12 :< 2, 57, Di12, 0, 0, 12 >

Obtaining the normal-form for Γi for the critical
instant candidate τi1: the three operations (order,
merge and spill), merge τi3 in τi2, τi6 and τi7 in τi5,
τi9 and τi10 are merged in τi8, and τi11 is merged in
τi12. The last task spills in the next period, thus the
second period of the transaction (and the following)
will have a additional task The resulting transaction
in normal-form, for the first period is:

τi1 :< 3, 0, Di1, 0, 0, 1 > τi2 :< 6, 8, Di2, 0, 0, 2 >

τi3 :< 3, 19, Di3, 0, 0, 3 > τi4 :< 11, 28, Di4, 0, 0, 4 >

τi5 :< 9, 42, Di5, 0, 0, 5 > τi6 :< 5, 55, Di6, 0, 0, 6 >

For the second period, the spilling time of the original
τi12 is taken into account in the first task τi1 of the
second period of the transaction, obtaining a WCET
of 4.

τi1 :=< 4, 0, Di1, 0, 0, 1 > τi2 :=< 6, 8, Di2, 0, 0, 2 >

τi3 :=< 3, 19, Di3, 0, 0, 3 > τi4 :=< 11, 28, Di4, 0, 0, 4 >

τi5 :=< 9, 42, Di5, 0, 0, 5 > τi6 :=< 5, 55, Di6, 0, 0, 6 >

The same operation is done for all the task
candidates τic for c = 2..12. The upper bound of
the worst-case response time is then obtained using
formula 1:

Iteration 0 : R
0
ua = 9

Iteration 1 : t = 9 : R
1
ua = 9 + 11 = 20

Iteration 2 : t = 20 : R
2
ua = 9 + 20 = 29

Iteration 3 : t = 29 : R
3
ua = 9 + 29 = 38

Iteration 4 : t = 38 : R
4
ua = 9 + 29 = 38

4 Monotonic Transactions

In this section we present the different steps of
monotonic transaction analysis [13, 14, 12]. Mono-
tonic transaction analysis relies on transactions for
which one interference curve (for one candidate) is
always greater or equal than the other curves. In
this way, it’s close to the concept of accumulatively
monotonic generalized multiframe task sets [2]. In
this case, if a transaction Γi is monotonic then the

critical instant occurs when the task under analysis
is released at the same time as the first task of the
pattern of the normal form of Γi. Therefore, for the
case where all the transactions of the task system are
monotonic for a task under analysis, the computed
worst-case response time is exact.

Since there is only one possible candidate in a
monotonic transaction, there is only one normal-form
to compute.

4.1 Finding the monotonic pattern

Let Γ∗
i be the normal form of the transaction Γi

where Γ∗
i :<

{

τ∗
i1, τ

∗
i2, ..., τ

∗
i|Γ∗

i
|, Ti

}

, Ti > and Γi :<
{

τi1, τi2, ..., τi|Γi|, Ti

}

, Ti >. Let us note:

αij = O∗
i(j+1) − (O∗

ij + C∗
ij) for 1 ≤ j < |Γ∗

i |

αi|Γ∗

i
| = (Ti + O∗

i1) − (O∗
i|Γ∗

i
| + C∗

i|Γ∗

i
|)

where αij > 1 since Γ∗
i is in normal form.

Note that since it’s not necessary to statically store
the interference function, there is no need to make a
difference between the first and the second period of
the transaction.

Γi is a monotonic transaction for the task τua (we
consider that all the tasks of Γi have a higher priority
than the one of τua) if the WCET of the tasks of Γ∗

i

have decreasing values while the idle slots αij have
increasing values i.e: C∗

i(p+1) ≤ C∗
ip for all 1 ≤ p <

|Γ∗
i | and αip ≤ αi(p+1) for all 1 ≤ p < |Γ∗

i |.
Γi is monotonic if we can find a monotonic pattern
in Γ∗

i by rotating the tasks of Γ∗
i . We know that for

a monotonic pattern the first task has the highest
WCET. In order to look for a monotonic pattern, we
start by inventorying all the tasks with the maximum
WCET. Then, we consider alternatively each of these
tasks τ∗

ik as the first task of the transaction Γ∗
i by ro-

tating the tasks of Γ∗
i ; and we verify if the conditions

of monotony (on C∗
ij and αij) are respected; if so, Γi

is monotonic and τ∗
ik become the first task of Γ∗

i .

4.2 Example

We apply this method on the same example as the
one we used for the fast and tight analysis.
We find Γ∗

i the normal form of the transaction Γi by
applying the operations of normalization process:

Γ
∗

i : {< τ
∗

i1, τ
∗

i2, ..., τ
∗

i5 >, 60}

τ
∗

i1 :< 6, 9, Di1, 0, 0, 1 > τ
∗

i2 :< 3, 20, Di2, 0, 0, 2 >

τ
∗

i3 :< 11, 29, Di3, 0, 0, 3 > τ
∗

i4 :< 9, 43, Di4, 0, 0, 4 >

τ
∗

i5 :< 9, 56, Di5, 0, 0, 5 >

We have: α∗
i1 = 5, α∗

i2 = 6, α∗
i3 = 3, α∗

i4 = 4, α∗
i5 = 4

There is a monotonic pattern starting from task τ∗
i3

where:

C
∗

i3 ≥ C
∗

i4 ≥ C
∗

i5 ≥ C
∗

i1 ≥ C
∗

i2

α
∗

i3 ≤ α
∗

i4 ≤ α
∗

i5 ≤ α
∗

i1 ≤ α
∗

i2

53

Hence the transaction is monotonic, and the critical
instant of τua corresponds to the release of the task
τ∗
i3, we apply the iterative fix-point lookup in order

to calculate the worst-case response time of τua.
In the case of monotonic transactions, the two meth-
ods presented provide the same exact worst-case re-
sponse time with the same number of iterations in
the process of calculation, because in every iteration,
the task that initiates the critical instant is the same.
The only difference between these two methods comes
from the stage of static representation in the fast and
tight analysis (stage A) and the research of the mono-
tonic pattern for the method of monotonic transac-
tion (stage B). Stage A for n tasks requires at least
n normal-form processing, plus computing the static
tables. Stage B requires only one normal-form pro-
cessing operation and a linear complexity test in order
to check the conditions related to C∗

i and α∗
i .

5. Performance comparison and future

works

We have implemented the two methods in order to
compare their respective performance. The figure 3
shows that the time used by the method proposed in
[8]increases linearly with the number of transactions,
while the method proposed in [14] is less sensitive to
the size of the system when only monotonic transac-
tions are involved. The tests have been led on a Pen-
tium IV processor, for sets of 20 configurations per
number of transactions. The transactions are mono-
tonic, and contain 15 tasks, while the workload is
fixed around 0.8. The random generation system is
based on the UUniFast algorithm presented in [3].
The bound on the worst-case response time is the
same for both methods, since at this stage, montonic-
ity is more a characterization allowing an optimiza-
tion than a method by itself (it has still to be coupled
with the method of [8] because in a system of trans-
actions, the transactions don’t have to be all mono-
tonic).
In future works, we will use the monotonicity prop-
erty as a basement to introduce a new evaluation
method in order to decrease the pessimism of [8] for
the upper bound on the worst-case response times.

References

[1] N. Audsley, A. Burns, R. Davis, K. Tindell, and
A. Wellings. Fixed priority pre-emptive schedul-
ing: An historical perspective. Real-Time Systems
8, pages 129–154, 1995.

[2] S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Gen-
eralized multiframe tasks. The International Jour-
nal of Time-Critical Computing Systems, (17):5–22,
1999.

[3] E. Bini and G. Buttazzo. Biasing effects in schedu-
lablity measures. IEEE Proceedings of the 16th Eu-

0

20

40

60

80

100

120

140

1 4 7 10 13 16 19 22 25 28 31 34 37

Number of transactions of 15 tasks

E
xe

cu
tio

n
tim

es

Fast-Tight

Monotonic

Figure 3. Execution time

romicro Conference on Real-Time Systems (ECRTS
04), Catania, Italy, (16), July 2004.

[4] J. P. Gutierrez and M. G. Harbour. Schedulability
analysis for tasks with static and dynamic offsets.
Proc IEEE Real-time System Symposium (RTSS),
(19), December 1998.

[5] C. Liu and J. Layland. Scheduling algorithms
for multiprogramming in real-time environnement.
Journal of ACM, 1(20):46–61, October 1973.

[6] J. Maki-Turja and M. Nolin. Faster response time
analysis of tasks with offsets. Proc 10th IEEE
Real-Time Technology and Applications Symposium
(RTAS), May 2004.

[7] J. Maki-Turja and M. Nolin. Tighter response time
analysis of tasks with offsets. Proc 10th International
Conference on Real-Time Computing and Applica-
tions (RTCSA’04, August 2004.

[8] J. Maki-Turja and M. Nolin. Fast and tight response-
times for tasks with offsets. 17th EUROMICRO Con-
ference on Real-Time Systems IEEE Palma de Mal-
lorca Spain, July 2005.

[9] L. Sha, R. Rajkumar, and J. Lehoczky. Priority
inheritance protocols : an approach to real-time
synchronization. IEEE Transactions on Computers,
39(9):1175–1185, 1990.

[10] K. Tindell. Using offset information to analyse static
priority pre-emptively scheduled task sets. Techni-
cal Report YCD-182,Dept of Computer Science, Un-
oversity of York, England, 1992.

[11] K. Tindell. Adding time-offsets to schedulability
analysis. Technical Report YCS 221, Dept of Com-
puter Science, University of York, England, January
1994.

[12] K. Traore. Analyse et Validation des Applications
Temps Réel en Présence de Transactions : Appli-
cation au Pilotage d’un Drone Miniature. Thèse,
ENSMA-Université Poitiers, 2007.

[13] K. Traore, E. Grolleau, and F. Cottet. Characteri-
zation and analysis of tasks with offsets: Monotonic
transactions. Proc 12th International Conference on
Embedded and Real-Time Computing Systems and
Applications. RTCSA’06, (12), August 16-18th Syd-
ney, Australia 2006.

[14] K. Traore, E. Grolleau, A. Rahni, and M. Richard.
Response-time analysis of tasks with offsets. 12th
IEEE International Conference on Emerging Tech-
nologies and Factory Automation ETFA’06, Septem-
ber 2006.

54

Stochastic network calculus for buffer overflow evaluation in an avionics

switched Ethernet

Frédéric Ridouard, Jean-Luc Scharbarg, Christian Fraboul

Toulouse University - IRIT - ENSEEIHT

2, rue Camichel

31000 Toulouse - France

{Frederic.Ridouard,Jean-Luc.Scharbarg,Christian.Fraboul}@enseeiht.fr

Abstract

AFDX (Avionics Full Duplex Switched Ethernet, AR-

INC 664) used for modern aircraft such as Airbus A380

represents a major upgrade in both bandwidth and capa-

bility for aircraft data networks. Its reliance on Ether-

net technology helps to lower some of the implementation

costs, though the requirement for guaranteed service does

present challenges to system designers. An objective is to

prove that no frame will be lost by the network (no switch

queue will overflow). Several approaches have been pro-

posed for this evaluation. Deterministic network calculus

gives a guaranteed backlog upper bound, while simula-

tion produces more accurate results on a given set of sce-

narios. In this paper, we propose a stochastic network

calculus approach in order to evaluate the probability of

buffer overflow in a network node.

Keywords: Network Calculus, stochastic, backlog.

1. Introduction

The evolution of avionics embedded systems and the

amplification of the integrated functions number in the

current aircraft imply a huge increase in the exchanged

data quantity and thus in the number of connections be-

tween functions.

The solution adopted by Airbus for the new A 380

generation consists of the Switched Ethernet technology

which benefits from a long industrial use [1]. It allows to

have confidence in the reliability of the material and on the

facility of its maintenance. Hence aeronautical systems

can profit of a much more powerful technology than the

traditional avionics bus (Switched Ethernet / 100 Mbps).

AFDX (Avionics Full Duplex Switched Ethernet) [2, 3,

4] is a static switched Ethernet network. The full duplex

switched Ethernet technology guarantees that there are no

collisions on the physical links, compared with a vintage

Ethernet solution [8]. So, it eliminates the inherent in-

determinism of vintage Ethernet and the collision frame

loss. But, it shifts in fact the problem to the switch level

where various flows will enter in competition for the use

of the resources of the switches. This can lead to tempo-

rary congestion on an output port of a switch that can in-

crease significantly end-to-end delays of frames and even

lead to frame losses by overflow of queues.

Flows on an AFDX network are statically identified in

order to obtain a predictable deterministic behavior of the

application on the network architecture. The analysis of

the performance bounds for queues is necessary in order

to dimension correctly the application. This analysis has

to evaluate, on the one hand an upper bound on the back-

log of a switch, on the other hand the distribution of this

backlog. The first one is mandatory for certification rea-

sons, while the second one can help greatly to evaluate

the pessimism of the upper bound. In this paper, we study

backlog distribution of nodes with a stochastic network

calculus approach.

Section 2 specifies the performance of buffer analysis

problem in the context of this paper. Section 3 presents

the stochastic network calculus approach. Section 4 gives

some results and evaluate their pessimism. Section 5 sum-

marizes the paper and gives some guidelines for future

works.

2. Scope of the study

We first give a brief overview of the AFDX network.

Then, we formulate the problem of backlog analysis and

the way it is addressed in the remaining of the paper.

2.1. The AFDX network

An example of an AFDX network architecture is de-

picted on Figure 1. It corresponds to a test configuration

provided by Airbus for an industrial research study [6].

It is composed of several interconnected switches. There

are no buffers on input ports and one FIFO buffer for each

output port. The inputs and outputs of the networks are

called End Systems (the little circles on Figure 1). Each

End System is connected to exactly one switch port and

each switch port is connected to at most one End System.

Links between switches are all full duplex. On Figure 1,

55

the values on End Systems indicates number of flows that

are dispatched between End Systems. Number of input

and output End Systems per switch are not specified on

Figure 1.

S1

S2

820113

113 821

S3S8

S4 S7

S6

S5

66 358 132 1156

143 1207 95 457 160 857

142 708

Figure 1. AFDX network architecture

The end-to-end traffic characterization is done by the

definition of Virtual Links. As defined by ARINC-664,

Virtual Link (VL) is a concept of virtual communication

channels; it has the advantage of statically defining the

flows which enter the network [4].

End Systems exchange Ethernet frames through VL.

Switching a frame from a transmitting to a receiving End

System is based on a VL (deterministic routing). The Vir-

tual Link defines a logical unidirectional connection from

one source End System to one or more destination End

Systems. It is a path with multicast characteristic. The

routing of each VL is statically defined. Only one End

System within the Avionics network can be the source of

one Virtual Link, (i.e., Mono Transmitter assumption).

Traffic on each Virtual Link is sporadic. Most of

the time, physical links of an AFDX network are lightly

loaded. As an example, on the configuration of Figure 1,

most of the links are loaded at less than 15 % and no link is

loaded at more than 21 % (see [6] for details). However, a

congestion can occur at any time at any output port in case

of a transient burst of traffic. Bursts of traffic occur when

frames of different VLs reach the same output port at the

same time. This event is closely related to the emission of

the frames of the different VLs, i.e. the phasing between

VLs.

2.2. Scope of the backlog analysis

In our context, no frame will be lost by the network

and consequently, no switch queue will overflow. Then,

the buffer must be dimension correctly, sufficiently but not

too much to minimize the costs. Moreover, the end-to-end

delay of a given path of a VL is the sum of the delays in

each switch crossed by the path. The delay in a switch is

composed of the switching delay (filtering and forwarding

operations), the waiting time in the output buffer and the

transmission time on the output link. The switching delay

is a constant that depends on the switch technology (16 µs

for switches used by Airbus). The transmission time is a

function of the link rate (typically 100 Mbps). The wait-

ing time of a frame depends on the load of the output port

(backlog) at the arrival time of the frame. Therefore, the

end-to-end delay is not constant due to the waiting times

in the switch output ports it crosses.

In this paper, we propose a stochastic network calcu-

lus approach in order to obtain a distribution of backlog

in a network node. Such an approach could deal with ar-

bitrarily large network configurations. The next section

presents the stochastic network calculus approach.

3. Stochastic network calculus analysis

First, we explain why stochastic network calculus the-

ory can be applied in the AFDX context. Then we show

how we apply stochastic network calculus results to our

context.

3.1. Applicability of the analysis

As mentioned earlier, the aim is to obtain the distribu-

tion of backlog for each switch output port. The AFDX

networks considered in the present study have a single

FIFO buffer for each switch output port. That means that

flows (VLs) all have the same priority. Consequently, each

switch output port can be considered as servicing an ag-

gregate traffic (all the VLs crossing this port) with a con-

stant rate c which is the capacity of the output link (e.g.

100 Mbps). Moreover, the individual flows are shaped

separately at network access, by the assumption of the

minimum delay between the emission of two consecutive

frames, i.e. BAG (Bandwidth Allocation Gap). It cor-

responds to a network considering EF PHB (Expedited

Forwarding Per-Hop Behavior) service of DiffServ (Dif-

ferentiated Services) architecture [7]. The nodes (i.e. the

switch output ports) are said PSRG (Packet Scale Rate

Guarantee) nodes [5] and the EF traffic at a node is served

with a rate independently of any other traffic transiting the

same node. The stochastic network calculus approach pre-

sented in [9] applies to such network configurations.

More formally, a node is PSRG (c,e) for a flow means

this flow is guaranteed a rate c, with a latency (error term)

e. Therefore if we denote dn, the departure of the nth

packet of the EF aggregate flow, in order of arrivals, dn

satisfies

dn ≤ fn + e

where fn is calculated recursively as f0 = 0 and

fn = max {an,min{dn−1, fn−1}} +
ln

c
, n ≥ 1

where the nth packet arrives at time an with ln bits.

The error term e is the extra waiting time due to non

EF traffic. In our context, there is only EF traffic crossing

each switch output port. Consequently, we have e = 0.

The works presented by Vojnović and Le Boudec in

[9, 10] about networks with EF PHB service can be used

to calculate the distribution of the backlog for each switch

output port. It is based on the probability of bound buffer

overflow in the switch output port. Such a problem was

56

previously addressed in the litterature but the results pre-

sented in [9, 10] have proposed the tightest upper bounds.

Vojnović and Le Boudec make four assumptions pre-

sented in [9]. These assumptions concern the modeling

of the network and its elements. The assumption (A1) im-

poses to define a service curve β for nodes. But a property

of PSRG is that a PSRG (c, 0) implies the service curve

β(t) = ct. Consequently, the property (A1) is respected.

As VLs are independent at network access, assumption

(A2) is respected. Concerning assumption (A3), in the

AFDX context, each VL is regulated by a leaky-bucket

(αi(t) = ρit + σi) defined in the following way. σi is

the maximum length of a frame of the VL, denoted Smax.

ρi is the VL maximum flow, Smax

BAG
, where BAG is the

minimum delay between the emission of two consecutive

frames of the VL by its source end system. Therefore as-

sumption (A4) is valid with ξi = ρi.

Vojnović and Le Boudec define the concept of EF traf-

fic inputs homogeneously regulated : the EF traffic inputs

are homogeneously regulated, if they are regulated by the

same function : αi(t) = α1(t), for all i ∈ {1, . . . , I}.

Otherwise, the EF traffic inputs are heterogeneously reg-

ulated. In our context, traffic inputs are homogeneously

regulated when all VLs have the same Smax and BAG

and they are heterogeneously regulated otherwise. Results

in [9] have been proved for homogeneous and heteroge-

neous cases, while better results are presented in [10] for

homogeneous cases.

As all the assumptions made by Vojnović and Le

Boudec are respected, their results can be applied in our

context.

3.2. The analysis

We denote Q(t) the backlog at time t of a studied

node. Vojnović and Le Boudec establish upper bounds

of probability that the backlog is above a given level b

(P(Q(t) > b)). In [9], Theorem 2 defines the tightest

backlog bound (that we denote in the following V1) that

holds for homogeneous and heterogeneous regulation of

traffic inputs. Whereas, in [10], a tighter bound (denoted

V2) is given by Theorem 4, but that holds only for the

homogeneous case.

3.3. Application of the analysis

In order to determine the distribution of the backlog of

a given switch output port, we first compute

P(Q(t) > b) with b = 25, 75, 125, . . .

until P(Q(t) > b) = 0

We have
P(Q(t) > 0) = 1 and

P(Q(t) > b) ≥ P(Q(t) > b + 1)

Finally, we consider

P(Q(t) = b) = P(Q(t) > b − 25) − P(Q(t) > b + 25)

with b=50, 100, 150, . . .

4. First results

The stochastic analysis presented in the previous sec-

tion has been applied to AFDX network configurations.

First results are presented in this section. They all con-

cern switch output ports of one switch, for example, the

output port of sy with the destination eq of Figure 2.

e1
. . .

vx + n1 vls

. . .
influence

no

er
nr vls

vx + m1 vls from e1

+ ... + mr vls from er
eq

. . .sy

Figure 2. Stochastic analysis context

We are only interested by inputs crossing the switch

sy and as destination eq. We denote e1 to er these End

Systems. Each of those End Systems emits ni VLs and

among which mi have eq as destination End System.

S1 S2 S3 S4 S5 S6

m1 4 26 48 70 92 114

m2 5 31 57 83 109 135

m3 2 13 24 35 46 57

load 2 % 12 % 22 % 32 % 41 % 51 %

Table 1. studied configurations

Results presented in this paper concern the configura-

tions of table 1. We consider three end systems emiting

VLs (r = 3). S1 corresponds to a typical VL path of

the industrial AFDX configuration of Figure 1. The load

of the single switch output port crossed by the VL un-

der study is about 2%. Configurations S2 to S6 concern

VLs paths similar to S1 with a higher load on the switch

output port (between 12% and 51%). We consider homo-

geneous flows (Smax = 672bits and BAG = 4000µs).

Therefore, the approaches V 1 and V 2 can be applied. In

order to evaluate the relevance of these stochastic meth-

ods, we have to state, on the one hand the pessimism of

the obtained distribution, on the other hand the pessimism

of their upper bounds.

Figure 3. Stochastic network calculus V1

57

Figures 3 and 4 present the distributions of the backlog

in the output port of switch sy, obtained with the V1 and

V2 stochastic network calculus approaches presented in

section 3.

Figure 4. Stochastic network calculus V2

With the V 1 approach, the interval where backlog are

distributed shifts to higher values with the increase of the

load on the switch output port (backlog for configura-

tion S1 are mostly distributed between 0 and 4200 bits

whereas for S6, the backlog is distributed between 11200
and 22400 bits). With the V 2 approach, we obtain sim-

ilar distributions with smaller intervals (between 0 and

1000 bits for S1 and between 1800 and 4600 bits for S6).

Obliviously, the V 1 approach is more pessimistic than the

V 2 one because the configurations contain only homoge-

neous flows. However, the V 2 approach can’t apply when

flows are heterogeneous.

Figure 5. Comparison by upper bounds

Figure 5 presents for each network configuration, the

upper bounds that the backlog, presents in the output port

of sy, will exceed with a probability of 0.00001. The up-

per bounds are calculated by the stochastic methods V 1
and V 2 and by the deterministic Network Calculus. Con-

sidering the deterministic network Calculus approach, the

difference with others methods increase with the load.

For example, between the deterministic Network Calcu-

lus and the V 2 approach, 7392 vs 1350 for a load of 2%
and 205632 vs 7300 for a load of 51%. Consequently,

the pessimism of this approach increases with the load of

the switch output port. Conversely, the variation between

the two stochastic methods (V 1 and V 2) remain relatively

stable.

5. Conclusion

In this paper, we detail the stochastic network Calculus

used to analyse the backlog contained in the output buffer

of switches on an industrial switched Ethernet network.

Two important characteristics are the upper bound of the

backlog and their distribution. The first one is mandatory

for certification reasons. The second one can help greatly

to evaluate the pessimism of the upper bound. We present

a stochastic network calculus approach that gives an eval-

uation of the backlog present in a output port of a given

switch. The upper bound obtained with this method is

less pessimistic than the upper bound calculated with the

deterministic Network Calculus.

In further works, we focus on the utilization of the

stochastic network calculus to determine the end-to-end

delay of a given flow that crosses a switch.

References

[1] IEEE 802.1D, Local and Metropolitan Area Network: Me-

dia Access Control Level Bridging., 1998.

[2] ARINC 664, Aircraft Data Network, Part 1: Systems Con-

cepts and Overview., 2002.

[3] ARINC 664, Aircraft Data Network, Part 2: Ethernet

Physical and Data Link Layer Specification., 2002.

[4] ARINC 664, Aircraft Data Network, Part 7: Deterministic

Networks., 2003.

[5] J. Bennett, K. Benson, A. Charny, W. Courtney, and J. Le

Boudec. Delay jitter bounds and packet scale rate guaran-

tee for expedited forwarding. IEEE/ACM Transactions on

Networking, 10(4), August 2002.

[6] H. Charara, J.-L. Scharbarg, J. Ermont, and C. Fraboul.

Methods for bounding end-to-end delays on an AFDX net-

work. In Proceedings of the 18th ECRTS, Dresde, Ger-

many, July 2006.

[7] B. Davie, A. Charny, J. Bennett, K. Benson, J. Le Boudec,

W. Courtney, S. Davari, V. Firoiu, and D. Stiliadis. An

expedited forwarding PHB (per-hop behavior). Network

Working Group, March 2002.

[8] J. Jasperneite, P. Neumann, M. Theis, and K. Watson. De-

terministic Real-Time Communication with Switched Eth-

ernet. In Proceedings of the 4th IEEE International Work-

shop on Factory Communication Systems, pages 11–18,

Västeras, Sweden, August 2002. IEEE Press.

[9] M. Vojnović and J. Le Boudec. Stochastic analysis of some

expedited forwarding networks. in Proceedings of Info-

com, New-York, June 2002.

[10] M. Vojnović and J. Le Boudec. Bounds for independent

regulated inputs multiplexed in a service curve network

element. IEEE Trans. on Communications, 51(5), May

2003.

58

Multilevel Tracing for Real-Time Embedded Systems∗

Aitor Viana
Aitor.Viana.Sanchez@esa.int

European Space Agency, Noordwijk NL, 2200AG

O.R. Polo M. Knoblauch P. Parra S.S. Prieto
D. Meziat

{opolo, martin, pablo.parra, ssp, meziat}@aut.uah.es
University of Alcala

Computer Engineering Department

Abstract

Real-time systems development is a complex process. The
ability to trace the system execution is very important in order
to verify the correct system behavior. System tracing requires
instrumented code that alters the behavior of the system, for
instance, increasing its response time. In embedded systems,
tracing can be used to monitoring the system evolution during
its execution. In that way, the instrumented code is neitherin-
trusive nor dead code that should be removed from the final
version. Indeed, it is part of the final system and also helps
after deployment. We provide a solution capable of tracing
all the software levels of the system, including the kernel,the
modeling language level and the different application levels.
POSIX 1003.1q event tracing standard provides an interface
to handle event data, but it lacks of a system level concept and
multilevel approach. This paper presents an implementation
of the POSIX 1003.1q over the ERCOS-RT operating system,
which has been developed to work with the component based
graphical modeling and automatic code generation tool named
EDROOM. ERCOS-RT and EDROOM have both event tracing
capabilities that can be integrated in a multilevel approach in-
cluding also the top user defined application events.

Keywords: Embedded Systems, Real-Time Systems, Trac-
ing, POSIX.

1 Introduction

The development of real-time embedded applications needs
of some tracing mechanism in order to ensure a correct sys-
tem behavior. System monitoring provides a lot of information
very handy to certify the system constraints and performance.
In embedded systems, the tracing information is a key source
of knowledge, not only in validation and verification processes,
but also during the whole system execution.

Many works have been done in the tracing area, and a wide
variety of profiling, tracing tools and methodologies are avail-

∗This work has been supported byComisión Interministerial de Ciencia y
Tecnologı́a (CICYT)of Spain, grant ESP2005-07290-C02-02

able [5, 11], but none of them tackle the problem of tracing an
application at different levels. In the last five years, IEEEintro-
duced tracing facilities having resulted in the definition of the
POSIX Trace standard 1003.1q [4]. This standard provides an
interface allowing to trace the different events from real-time
systems.

We use the POSIX Trace standard to implement a multi-
level tracing system, capable of tracing all system events rang-
ing from the low kernel level to the high application level, but
the standard lacks of both a system level concept and a multi-
level approach. Thus, some modifications in the standard are
proposed in this paper reaching a more suitable solution.

The tracer is implemented over the ERCOS-RT real-time
kernel, which has been developed to work with the EDROOM
tool [8].

The rest of the paper is organized as follows: Section 2
describes the POSIX Trace standard aspects. Section 3 in-
troduces the relevant aspects of the EDROOM tool and the
ERCOS-RT design. Section 4 deals with the implementation
details of the POSIX Trace standard and our proposed exten-
sion to handle multiple layers. On section 5 some timing and
overhead measurements are reported. Section 6 presents a trac-
ing example with a real system. Finally, the last section shows
the conclusions.

2 POSIX Trace standard Overview

The POSIX Trace standard has been developed to provide
tracing facilities. It defines two main data types, calledevents
andtrace streams.

2.1 Trace Events
The points where the information must be gener-

ated are calledtrace points, and the information itself
is called trace events. When an instrumented applica-
tion wants to register a new event, it must invoke the
posix trace eventid open() routine which returns
the event identifier. The event trace mechanism is performed
by calling theposix trace event() routine. The stan-
dard specifies the tracing information that must be saved,

59

which is: (1) the trace event type identifier; (2) a time-stamp;
(3) the process identifier of the traced process; (4) the thread
identifier of the traced process, if threads are supported bythe
operating system; (5) the program address where the trace is
being performed; (6) any extra data associated with the event
and previously defined by the user; (7) the extra data size.

2.2 Stream Buffers
When any system application traces an event, its informa-

tion is stored in the stream buffer. The standard specifies that
streams must be created by processes and the relationship be-
tween streams and processes is many-to-many. By default, all
events associated with a process are traced in all stream buffers
belonging to that process. Thus, it is possible to trace events
from a single process into many streams. The POSIX stan-
dard also supports event filtering, allowing events from one
process to be associated with a single stream and also tracing
the events from various processes into one single stream. The
standard defines active streams. An active stream is createdto
trace events during system execution. It can also be associated
with a log file in order to store the information on a persistent
object when a flush operation is performed.

2.3 Tracing Roles
The POSIX Trace standard defines three types of roles

calledtrace processes: (1) thetrace controller process, which
is in charge of the stream buffer creation; (2) thetraced pro-
cess, which is the one being traced; and (3) theanalyzer pro-
cess, which is in charge of retrieving the traced events from the
stream buffer in order to analyze the system behavior.

3 EDROOM and ERCOS-RT Overview

3.1 EDROOM Overview
EDROOM1 is a tool inspired on ROOM [9] and UML2

[3] methodologies. This tool provides facilities for modeling
real-time systems using the object oriented paradigm, and also
integrates an automatic Embedded C++ code generator. ED-
ROOM lets the designer describe the structure, communication
and behavior of the real-time systems using diagrams. Both
structure and behavior can have several levels of definitionin
order to ease an iterative design of the system. The compo-
nents of the multilevel structure are communicated with each
other by message passing through their ports.

In figure 1 an EDROOM graphic representation of a sys-
tem structure and communication with three levels of actors
is shown. The behavior of each component is defined using a
kind of hierarchical state chart, called ROOMCharts, basedon
the Statecharts introduced by Harel [6]. The received messages
lead the transitions triggering between the states.

3.2 ERCOS-RT Overview
The ERCOS-RT1 real-time operating system has been de-

signed to support only the services required by the EDROOM
tool, which are timing, thread management, synchronization
and interrupt handling services. It has been developed over
the standard platform of the European Space Agency (ESA) in
space missions: the ERC32 [10] architecture.

1Available at http://srg.aut.uah.es

motorControlling

actorManagement

actorManagement

anInputManagement

encodersManagement

positionRead

pointSystemManagement

motorControl

analogSampling

algorithm

pointingSystem

analogInput

encodersReading

sat_interfaceBGI_console planner

controlTF

controlFL

TFmotorControl

FLmotroControl

operator_input

encodersInterface

Figure 1. Multilevel structure of a EDROOM
model.

ERCOS-RT has four layers: hardware dependent layer, ker-
nel layer, system call and a POSIX interfaces.

The main requirements formulated for this kernel are: (1)
to be compliant with the POSIX.13 Minimal Real-Time Sys-
tem Profile; (2) to have a hard real-time performance; and (3)
to be easily adaptable to any other platform. It is specially
targeted for embedded real-time applications that have defined
all the needed resources at compilation time, making the ker-
nel fully configurable. It is already running over the LEON2
and LEON3 architectures [1] and it is also being ported to the
M68K 68332 platform.

4 Multilevel Tracing Implementation

4.1 POSIX Trace Standard to perform Multilevel Tracing
The proposed solution is compliant with the POSIX Trace

standard but extends its functionality in order to manage differ-
ent trace-levels. ERCOS-RT does not have the process abstrac-
tion, and it implies that the three roles defined in the POSIX
Trace standard (controller, traced and analyzer processes) are
implemented by only one process at the standard point of view,
but they are really implemented over two independent execu-
tion units (threads). There is also no persistent mechanismto
store any data (no file system is available), so the implementa-
tion of the log file is difficult, but it can be achieved by carry-
ing out the logging process in a remote machine. The stream
flusher process is not implemented because it would overload
the system.

In respect to the multilevel tracing, it could be implemented
by using one stream for each level, which should perform filter-
ing operations to avoid tracing information belonged to other
levels. The multilevel tracing is not implemented using this
approach because it would be not possible to keep the inter-
level encapsulation. This encapsulation assumes that one level
(and one traced thread) does not know about the others, but the
filtering operations need the processes/threads to know allthe

60

events being traced, broken this encapsulation.
For this reason, ERCOS-RT uses only one stream to trace all

levels. In this stream all events are recorded automatically and
it is unnecessary to implement filtering options. On the other
hand, it is necessary to identify the event and the level it corre-
sponds to, but the POSIX standard only considers the event
identifier. Therefore, some modifications are done to solve
this problem. Figure 2 depicts the tracing mechanism over
ERCOS-RT. System threads provoke the kernel to trace the dif-
ferent events when they invoke certain system calls, so theyare
both the controller and traced threads. This trace mechanism
is depicted as ”T” in the figure. The information is buffered
and the analyzer thread can retrieve it either by sending it to a
remote PC (via debugging line) where the information is an-
alyzed on/off-line or by storing it in memory in order to be
retrieved if an error or a fail condition are detected.

Figure 2. Tracing System.

4.2 POSIX Trace Add-ons
To identify an event belonging to a certain level, two identi-

fiers must be known, the level and the event identifiers. The
problem is that the POSIX routines used to register a new
event,posix trace eventid open(), and to trace an
event,posix trace event() do not consider the level
field.

Let’s assume that the event identifier field has 32 bit length
(any other length could be possible). We propose to divide this
field into two parts, the higher 8 bits to identify the level and
the lower 24 bits to identify the event. Due to this modifica-
tion, in the routineposix trace eventid open(), the
event identifier is passed by reference with its upper 8 bits set
to the value of the level identifier. The routine fills only the
lower 24 bits in order to identify the event unanimously. The
posix trace event() routine does not suffer any modi-
fication, because it is only in charge of storing the information
in the stream buffer.

4.3 Implementation Issues
The implementation supports the standard Trace and the

Trace Event Log options. The analyzer process has been car-
ried out by the idle thread and the threads being traced acts
as the controller and traced processes. Because the analyzer
process is the idle thread, it does not interfere with the over-
all system execution and it does not overload it because it is
only executed when no other thread is ready or in execution.
In figure 3 a simple example of a tracing execution is shown.

Figure 3. Simple Tracing Diagram

By default, the analyzer process retrieves the event infor-
mation through a debugging serial line, but it is also possible
for the controller process to register a new method in order to
retrieve it; for example, storing it in a certain memory location
or sending it through any other device.

5 Performance of the Implementation

ERCOS-RT has about 7500 lines of code and only a 3%
of these lines are associated with the kernel tracing system.
The kernel traces the next events: (1) schedule entry/exit;(2)
semaphore wait/signal; (3) thread creation/termination;and (4)
thread block. The traced events have a fixed size that can be
set at compilation time (plus 16 bytes for the header) and also
the amount of memory associated to the stream buffer. The ac-
curacy of the traced events timestamping is 18 microseconds.

The table 1 shows the overload results over the ERC32 real
architecture and TSIM simulator, both at 16MHz.

Event data size TSIM (us) Real HW (us)
4 bytes 332 us 334 us
8 bytes 346 us 348 us
16 bytes 373 us 375 us

Table 1. Overload Results

In the development phase, the events retrieval through a de-
bug line does not interfere the real-time application because
this labor is carried out by the idle thread. In the final system,
there is also no overhead in the data delivery because they are
sent whenever a system error occurs and that issue is part of
the system behavior.

6 Case of Study

The solution presented was used to verify the behavior cor-
rectness of the on-board software for the Spanish nano-satellite
called NANOSAT [7]. In the development phase, three levels
were traced and the event size was fixed to the maximum event
size, which was 64 bytes:

The first level is associated with the ERCOS-RT kernel. De-
spite the kernel uses different interface to that of POSIX, it is
low-level compatible with the tracing system. Traced events
from this level were wrapped to be analyzed by an applica-
tion called Kiwi [2], developed by the University of Valencia,

61

that generates sequence diagrams, signaling task switchesand
resource accesses. Figure 4 shows an example of this trace.

2.000 000 4.000 000 6.000 000 8.000 000

s2

s2

s3

s4

s3

s3

s3 s4

s2

s2

s2s2

s2

s4

s4s4 s3

s2

Sched

Idle

T2

T3

T4

T5

T6

T7

Width 7.305 297 s Grid 1.000 000 s

Figure 4. Kernel Tracing Using Kiwi.

The second level is the EDROOM level. The information
regarding with the transitions and state changing is automati-
cally generated by the EDROOM tool using the POSIX tracing
interface. This information consists in the triggered transitions,
time-tagged, between the states associated to each component,
allowing an off-line analysis to verify the system design and
the fulfilment of the time requirements during system execu-
tion. We used the trace information to feed a tool allowing the
off-line representation of the system behavior by showing all
the system execution at state-machine level. The trace of this
level is shown in figure 5.

Figure 5. EDROOM Level Behavior Tracing.

The last level is associated with the on-board software. The
on-board SW informs about general changes in the system,
such as activation of the experiments, communications, house-
keeping activities, etc. All the information is sent to the Elec-
trical Ground Support Equipment (EGSE) to monitor all the
events maintaining a precise reconstruction of the state ofthe
satellite. This last level allows to monitor the execution of the
on-board SW being very useful in the test phases to check the
correctness in the timing of the SW events, for instance, the
experiments execution, the housekeeping acquisition, etc.

Because of the complexity of the on-board SW, there were a
great amount of state machines and a lot of high system states

(third level) to be notified, so that the amount of events to be
traced was large enough to stress the tracer implementation.
Moreover, the kernel level also introduced a huge “event to be
traced” overload because each context switch, each resource
access, etc. were also traced.

7 Conclusions

Nowadays, it is necessary to be capable of tracing the em-
bedded real-time systems behavior due to its complexity. To
perform the trace it is necessary to introduce instrumented
code, but it can be also integrated in the final system in order
to monitor the system evolution.

The POSIX Trace standard defines an application tracing
interface, however, it lacks of a system level concept neither
multilevel tracing capabilities. The work explained in this pa-
per extends the POSIX trace functionality, by introducing the
tracing level concept, being also compliant with it withoutaf-
fecting the standard interface neither the standard operation.

The final implementation facilitates a multilevel trace
mechanism, in which the kernel and all the defined user lev-
els can be traced. All levels are managed by means of a single
stream buffer but making possible the selective and indepen-
dent recovery of each level trace information by using different
tools.

Finally, the possibility to extend the POSIX Trace interface,
in order to introduce some primitives allowing enable/disable
each tracing level independently can be considered in the fu-
ture. Moreover, it could be possible to carry out this labor even
at execution time.

References

[1] Gaisler Research. http://www.gaisler.com.
[2] KIWI. http://rtportal.upv.es/apps/kiwi/.
[3] UML 2.0. www.u2-partners.org/uml2wg.htm.
[4] Standard for Information technology-Portable Operating

Systems Interface (POSIX) - Part 1: System Application
Program Interface (API) - Admendment 7: Tracing [C
Language], 2000.

[5] V. Danjean, R. Namyst, and P.-A. Wacrenier. An efficient multi-
level trace toolkit for multi-threaded applications. InEuroPar,
volume 3648/2005, pages 166–175, Lisbonne, August 2005.

[6] D. Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231–274, June 1987.

[7] O. R. Polo, L. de Salvador, M. Angulo, and J. M. de la Cruz.
Development plan of the on board satellite software based on
ROOM modelling and evolution of component based proto-
types. In27th IFAC/IFIP Workshop on Real-Time Program-
ming., 2003.

[8] O. R. Polo, D. la Cruz J. M., G.-S. J.M., and E. S. Edroom. auto-
matic C++ code generator for real-time systems modelled with
ROOM. InNTCC2001 IFAC Conference, November 2001.

[9] Selic, B., Gulleckson, G., and W. P.T.Real-Time Object Ori-
ented Modelling. John Wiley and Sons, 1994.

[10] V. Stachetti, J. Gaisler, G. Goller, and C. L. Gargasson. 32-bit
processing unit for embedded space flight applications.IEEE
Transactions, 43:873–878, June 1996.

[11] K. Yaghmour and M. R. Dagenais. Measuring and charac-
terizing system behavior using kernel-level event logging. In
Proceedings of the 2000 USENIX Anual Technical Conference,
pages 13–26, 2000.

62

Institut National Polytechnique de Lorraine

Impressions et Reliures :
INPL – Atelier de reprographie
2, avenue de la forêt de la Haye

B.P. 3. – F-54501 Vandoeuvre Cedex
Tel : 03.83.59.59.26 ou 03.83.59.59.27

Scientific editor : Liliana CUCU (LORIA)

	ballabriga.pdf
	1.Introduction
	2.Problem definition
	3.Instruction cache analysis
	3.1.Presentation of the analysis of a single component
	3.2.The transfer function
	3.3.The summary function
	3.4.Composition of the partial analysis

	4.Experimentation
	4.1.Mode of operation
	4.2.Results

	5.Related work
	6.Conclusion
	7.References

	ngo.pdf
	1. Introduction
	2. DARTS and multitasking LabVIEW concepts
	2.1. Task synchronization
	2.2. Loosely-coupled communication
	2.3. Tightly-coupled message communication
	2.4. Information hiding module (IHM)

	3. DARTSVIEW Toolkit
	4. Conclusion

