

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

병렬및분산임베디드시스템을위한모델
기반코드생성프레임워크

Model-based Code Generation Framework for Parallel
and Distributed Embedded Systems

2020년 2월

서울대학교대학원

컴퓨터공학부

정 은 진

Abstract

Model-based Code Generation
Framework for Parallel and Distributed

Embedded Systems

EunJin Jeong

Department of Computer Science and Engineering

College of Engineering

Seoul National University

While various software development methodologies have been proposed to increase the

design productivity and maintainability of software, they usually focus on the develop-

ment of application software running on a single processing element, without concern

about the non-functional requirements of an embedded system such as latency and re-

source requirements.

In this thesis, we present a model-based software development method for paral-

lel and distributed embedded systems. An application is specified as a set of tasks that

follow a set of given rules for communication and synchronization in a hierarchical fash-

ion, independently of the hardware platform. Having such rules enables us to perform

static analysis to check some software errors at compile time to reduce the verification

difficulty. Platform-specific program is synthesized automatically after mapping of tasks

onto processing elements is determined.

The program synthesizer is also proposed to generate codes which satisfies platform

requirements for parallel and distributed embedded systems. As multiple models which

can express dynamic behaviors can be depicted hierarchically, the synthesizer supports

to manage multiple task graphs with a different hierarchy to run tasks with parallelism.

i

Also, the synthesizer shows methods of managing codes for heterogeneous platforms and

generating various communication methods. The viability of the proposed software de-

velopment method is verified with a real-life surveillance application that runs on six pro-

cessing elements with three remote communication methods, and remote deep learning

example is conducted to use heterogeneous multiprocessing components on distributed

systems. Also, supporting a new platform and network requires a small effort by measur-

ing and estimating development costs.

Since tolerance to unexpected errors is a required feature of many embedded sys-

tems, we also support an automatic fault-tolerant code generation. Fault tolerance can

be applied by modifying the task graph based on the selected fault tolerance configura-

tions, so the non-functional requirement of fault tolerance can be easily adopted by an

application developer. To compare the effort of supporting fault tolerance, manual imple-

mentation of fault tolerance is performed. Also, the fault tolerance method is tested with

the fault injection tool to emulate fault scenarios and inject faults randomly.

Our fault injection tool, which has used for testing our fault-tolerance method, is

another work of this thesis. Emulating fault scenarios by intentionally injecting faults is

commonly used to test and verify the robustness of a system. To emulate faults on an

embedded system, we present a run-time fault injection framework that can inject a fault

on both a kernel and application layer of Linux-based systems. For injecting faults on

a kernel layer, two complementary fault injection techniques are used. One is based on

Kernel GNU Debugger, and the other is using a hardware breakpoint supported by the

ARM architecture. For application-level fault injection, the GDB-based fault injection

method is used to inject a fault on a remote application. The viability of the proposed

fault injection tool is proved by real-life experiments with an ODROID-XU4 system.

Keywords : code generation, fault tolerance, dataflow model, embedded software de-

sign methodology, fault injection, platform-aware programming, network programming,

ii

parallel and distributed system

Student Number : 2015-30273

iii

Contents

Abstract . i

Contents . iv

List of Figures . vii

List of Tables . ix

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Contribution . 6

1.3 Dissertation Organization . 8

Chapter 2 Background . 9

2.1 HOPES: Hope of Parallel Embedded Software 9

2.1.1 Software Development Procedure 9

2.1.2 Components of HOPES . 12

2.2 Universal Execution Model . 13

2.2.1 Task Graph Specification . 13

2.2.2 Dataflow specification of an Application 15

2.2.3 Task Code Specification and Generic APIs 21

2.2.4 Meta-data Specification . 23

Chapter 3 Program Synthesis for Parallel and Distributed Embedded Systems 24

iv

3.1 Motivational Example . 24

3.2 Program Synthesis Overview . 26

3.3 Program Synthesis from Hierarchically-mixed Models 30

3.4 Platform Code Synthesis . 33

3.5 Communication Code Synthesis . 36

3.6 Experiments . 40

3.6.1 Development Cost of Supporting New Platforms and Networks . 40

3.6.2 Program Synthesis for the Surveillance System Example 44

3.6.3 Remote GPU-accelerated Deep Learning Example 46

3.7 Document Generation . 48

3.8 Related Works . 49

Chapter 4 Model Transformation for Fault-tolerant Code Synthesis 56

4.1 Fault-tolerant Code Synthesis Techniques 56

4.2 Applying Fault Tolerance Techniques in HOPES 61

4.3 Experiments . 62

4.3.1 Development Cost of Applying Fault Tolerance 62

4.3.2 Fault Tolerance Experiments . 62

4.4 Random Fault Injection Experiments . 65

4.5 Related Works . 68

Chapter 5 Fault Injection Framework for Linux-based Embedded Systems . 70

5.1 Background . 70

5.1.1 Fault Injection Techniques . 70

5.1.2 Kernel GNU Debugger . 71

5.1.3 ARM Hardware Breakpoint . 72

5.2 Fault Injection Framework . 74

5.2.1 Overview . 74

v

5.2.2 Architecture . 75

5.2.3 Fault Injection Techniques . 79

5.2.4 Implementation . 83

5.3 Experiments . 90

5.3.1 Experiment Setup . 90

5.3.2 Performance Comparison of Two Fault Injection Methods 90

5.3.3 Bit-flip Fault Experiments . 92

5.3.4 eMMC Controller Fault Experiments 94

Chapter 6 Conclusion . 97

Bibliography . 99

요약 . 108

vi

List of Figures

Figure 2.1 The overall procedure of model-based embedded software devel-

opment . 10

Figure 2.2 A hierarchical task graph specification of an application. 14

Figure 2.3 (a) An example SDF graph with annotated sample rates on the

arcs, (b) an inconsistent SDF graph that has a buffer overflow er-

ror, and (c) a mapping and scheduling result of the SDF graph onto

two processing elements . 15

Figure 2.4 Extended SDF graph with a MTM with 2 modes 18

Figure 2.5 SDF graph with a loop structure 19

Figure 2.6 SDF graph with a C-type loop structure 20

Figure 2.7 The example of meta-data information describing hardware platform 23

Figure 3.1 Surveillance system as a motivational example 25

Figure 3.2 The structure of program synthesizer 26

Figure 3.3 The skeleton of an example synthesized program 28

Figure 3.4 Example of hierarchically-mixed extended SDF models 30

Figure 3.5 Pseudo-code representation of the hierarchical mixed model in

Fig. 3.4 . 31

Figure 3.6 Task graph lock protection mechanism 32

Figure 3.7 Code management structure of the program synthesizer 34

Figure 3.8 Examples of connection types between two devices 37

Figure 3.9 Channel communication module for each communication type . . 39

vii

Figure 3.10 An example of a virtual socket function connect() for each com-

munication method . 40

Figure 3.11 Target-dependent code implementation example in the common

layer . 42

Figure 3.12 Top-level specification and hardware association of the surveil-

lance system . 44

Figure 3.13 Entire task graph of surveillance system 53

Figure 3.14 Monitoring console screen during the experiment 54

Figure 3.15 Task graph specification of ResNet inference with 152 layers . . . 54

Figure 3.16 Generated documents from the code generation framework 55

Figure 4.1 A task graph example to apply a fault tolerance technique 57

Figure 4.2 Fault-tolerant scheme based on active replication 57

Figure 4.3 Fault-tolerant scheme based on re-execution 58

Figure 4.4 SDF/L conversion on the task graph to apply fault tolerance 59

Figure 4.5 A dialog in HOPES to apply a fault tolerance technique 61

Figure 4.6 Original image and fault-injected image 63

Figure 4.7 The number of error occurrences with varying fault tolerance con-

figurations . 64

Figure 4.8 Comparison of total execution time by fault tolerance settings . . . 65

Figure 5.1 The overview of a kernel debugging environment with KGDB . . . 71

Figure 5.2 The conceptual diagram of hardware breakpoint mechanism 72

Figure 5.3 Code example to set and enable a hardware breakpoint 72

Figure 5.4 The architecture of the fault injection framework 78

Figure 5.5 An example segment of the kernel fault injector configuration file . 84

Figure 5.6 The workflow of fault injection framework 86

viii

List of Tables

Table 2.1 List of generic APIs provided by UEM 22

Table 3.1 Modules used for communication code generation 37

Table 3.2 The number of target code lines per each layer used for program

synthesis . 41

Table 3.3 The number of lines for supporting new platforms 43

Table 3.4 The number of lines for supporting new communication methods . 43

Table 3.5 LOC of synthesized program . 46

Table 4.1 Comparison of applying fault tolerance with manual implementation 62

Table 4.2 The number of injected faults with varying fault tolerance config-

urations . 63

Table 4.3 Fault tolerance settings and their labels 64

Table 4.4 Error occurrences of random fault injection (3,000 runs) 66

Table 5.1 Comparison of two fault injection techniques 82

Table 5.2 The main GDB/MI commands used for fault injection via KGDB . 88

Table 5.3 Hardware and software specification of ODROID-XU4 90

Table 5.4 Single fault injection overhead of KGDB and hardware breakpoint

methods . 92

Table 5.5 Observed events according to fault models 93

ix

Chapter 1

Introduction

1.1 Motivation

The complexity of embedded systems is incessantly increasing, as can be observed

in multiple areas such as mobile phones, automotive electronics systems, and intelligent

robots. A high-end embedded system becomes a parallel and distributed computing sys-

tem that consists of heterogeneous processing elements (PEs) interconnected with vari-

ous communication methods. Application software running on such a system is a parallel

and distributed program that is known to be very difficult to develop correctly. Also, an

embedded system has additional requirements other than functional correctness, such as

real-time requirements and satisfaction of resource constraints.

While various software development methodologies have been proposed to increase

the design productivity and maintainability of software, they usually focus on the devel-

opment of application software running on a single processing element, possibly many-

core processors, without concern about the non-functional requirements of an embedded

system. Besides, regardless of which methodology to use, the common practice of soft-

ware design resorts to test or simulation to verify the functional correctness and the satis-

faction of non-functional requirements. As the system complexity grows, verification by

test and simulation becomes more time consuming and difficult since they are not able to

consider all possible behaviors of the system.

1

Software development on embedded systems is different from software develop-

ment on general-purpose computers. Conventional software development supposes that

the hardware platform is already fixed, and its process focuses on test design to enhance

software reliability. Also, performance can be easily measured by running software on

real hardware. However, during embedded software development, hardware platform can

be changed, and performance estimation and software verification are needed before test-

ing on a real hardware platform. For distributed embedded system, not only a hardware

platform but also a communication method can be switched because of external or inter-

nal factors such as availability of hardware or new software requirements. To overcome

this challenge, some software development frameworks hide hardware and communica-

tion during software development.

There is existing software development framework which hides hardware platform

from software development. AUTOSAR [1] hides hardware information by the AU-

TOSAR runtime environment, so software components in the application layer use AU-

TOSAR Interface to communicate with other applications or use hardware resources. An-

other software framework is ROS [2] which provides software packages to develop robot

applications. It provides communication packages of a virtual communication environ-

ment which consists of each process as a node and communication between nodes with

publish/subscribe mechanisms. However, these two software frameworks are targeted on

domain-specific areas such as automotive or robots. Moreover, the software models of

both frameworks are not using a formal model, so performance estimation and resource

requirements cannot be done before testing on real hardware.

To tackle those challenges of embedded software development, a software design

methodology based on formal models of computation has been proposed [3] in which an

application is specified as a set of tasks that follow a set of given rules for communica-

tion and synchronization. We adopt this methodology in this work; we make computa-

tion tasks follow a dataflow model where tasks communicate with each other explicitly

2

through channels. The control behavior of the system is specified by a control task that

is based on the FSM (finite state machine) model. By enforcing the use of formal models

as much as possible, we can detect some critical errors such as deadlock possibility and

buffer overflow and estimate the resource requirements through static analysis.

In this methodology, task-level software specification is performed independently

of the hardware platform, unlike the common practice of software development after the

hardware platform is fixed. It corresponds to the architecture design in the V-model of

software development. Note that we assume that all tasks are given and already validated

by unit testing. For each hardware platform, a set of tasks that contain hardware-specific

codes is predefined in a task library. Since a task is a unit of mapping and schedul-

ing at the OS level, parallelizing an application is easily performed by mapping tasks

onto processors. Unlike the conventional model-driven development methodology, the

initial platform-independent task-level specification is not translated into the platform-

dependent specification. Instead, we generate the software code directly from the task

level specification after mapping and scheduling decision is made. Automatic program

synthesis from the task-level specification is the primary concern of this work.

Heterogeneous models are used for specifying an application to extend the expres-

sion capability of application behavior. Besides, hierarchically placing heterogeneous

models enriches the application behavior. However, code generation from hierarchical

models with dynamic behaviors is not easy for multiprocessor systems. This requires a

synchronization of multiple controls from various models, so existing researches places

SDF models independently [4] or hierarchically placing basic SDF models [5]. To over-

come this difficulty, we provide a lock mechanism for synchronizing multiple hierarchi-

cal models, and model controller functions are used to execute model semantics in order.

After a task mapping decision is made, we synthesize a separate program that runs

the mapped tasks on each processing element. Since the internal code of each task is

given, two main issues in program synthesis are scheduling of the mapped tasks and

3

communication code synthesis between tasks. There are various ways of scheduling the

mapped tasks based on the scheduling policy [6] and the OS running on the processing

element. If the OS supports a multi-threaded program, we synthesize a multi-thread pro-

gram by creating a thread for each task. If a task has internal parallelism, a set of threads

can be created for the task. In case multi-threading is not supported in the processing

element, we need to synthesize the run-time scheduling code. A multi-thread program is

very likely to have concurrency bugs that are very challenging to detect and solve due

to non-deterministic behavior and race condition. Many researchers [7] have struggled

to detect and fix these bugs for the last decades. If the synthesized code maintains the

synchronization communication semantics of the initial task-model, it can be free from

such concurrency bugs.

There are two different needs of communication in the synthesized program. One is

communication between two mapped tasks in the same processing element, and the other

is to communicate with the other processing element. Depending on system characteris-

tics, various kinds of external communication methods may be used. Since interface code

with the outside is hard to develop and debug, there exist several approaches proposed

to generate external communication code such as generating middleware [8, 9] and gen-

erating communication codes through specific languages [10, 11]. They usually assume

a specific communication media or a set of communication protocols. Even with those

techniques, interface code needs to be modified whenever the task mapping is changed,

or the hardware component is changed. The proposed program synthesis framework pro-

vides an extensible set of communication modules to select based on the hardware com-

ponents automatically, relieving the application programmer of managing the interface

method.

In addition to the baseline program, we can synthesize extra code to improve the

quality of the code. A good example is to increase the reliability of the application by

adding extra code for fault tolerance automatically. A user of an embedded system ex-

4

pects the system to work correctly even when any unexpected fault occurs on a hardware

component. To meet this user expectation, many researchers have proposed various soft-

ware techniques [12] to increase resiliency to faults. Some examples are instruction-level

replications[13, 14] and application thread replication [15, 16, 17] based on compiler

modification. Manually applying those techniques to an application would be too heavy

to bear for application programmers that are not familiar with the reliability issue. In

the proposed methodology, extra code for fault tolerance is automatically inserted in the

synthesized program, while satisfying the non-functional requirements of the embedded

system.

To verify the fault tolerance of an application, we utilize a fault injection tool that

can inject faults on both the kernel and application layer of the Linux system. A proposed

kernel-level fault injection methods are useful to emulate a hardware fault scenarios and

watch the application or system behavior. An application-level fault injection methods are

proper to reproduce the same fault scenarios and random fault injection on an application.

5

1.2 Contribution

The main contributions of this dissertation can be summarized as follows:

• The proposed software development framework synthesizes a parallel and dis-

tributed program automatically from a dataflow model-based task-level specifi-

cation of an application and a given mapping decision of tasks onto processing

elements. By simply changing the task mapping, we can synthesize a new program

with different performance and resource requirements. Through the static analy-

sis of the dataflow specification, some program errors such as deadlock and buffer

overflow can be detected. Also, the synthesized program is guaranteed to be free

from those errors as long as the dataflow semantics is preserved in the synthesized

program. It significantly reduces the burden of checking the correctness of the pro-

gram by testing.

• For each processing element, we synthesize the program that includes scheduling

of the mapped tasks and communication between tasks in a platform-dependent

manner. In particular, the proposed framework supports various types of commu-

nication methods between processing elements, relieving the application program-

mer of the burden of re-writing the interface code whenever the mapping decision

and hardware platform is modified.

• The proposed synthesizer generates codes from hierarchical extended SDF models

to express complex dynamic behaviors working on not only a single processing

element but also multiple processing elements in parallel.

• The proposed framework may add extra code to improve the quality of the pro-

gram, with an example of fault-tolerant code generation in this work. Adding fault-

tolerance feature is simply made at the task-level specification by utilizing the SD-

F/L model [18], and existent program synthesis is performed from the modified

6

task-level specification. Currently, it supports two fault tolerance methods: active

replication and re-execution. Also, fault tolerance techniques can be selectively ap-

plied for each task, so different fault tolerance techniques or configurations can be

applied to different tasks.

• The viability of the proposed software development method is verified with a non-

trivial example of a distributed embedded application running on four computing

devices.

• A fault injection tool for both the kernel and application layer of the Linux sys-

tem is developed, and it is used for verifying the resiliency improvement of fault-

tolerant programs. Also, this tool provides various fault types such as random bit-

flips and hardware faults to emulate various fault scenarios.

7

1.3 Dissertation Organization

The rest of the dissertation is organized as follows: Chapter 2 introduces background

information about HOPES [4] and UEM [3] which are the software design framework and

the programming model of developing embedded software on parallel and distributed

embedded systems. In Chapter 3, we present a motivation example and the proposed

model-based code generation framework. Chapter 4 explains fault-tolerant code genera-

tion methods. Chapter 3 and 4 also includes related researches and corresponding experi-

ments. In Chapter 5, a fault injection tool which is used in Chapter 4 is explained. Finally,

Chapter 6 concludes our work.

8

Chapter 2

Background

2.1 HOPES: Hope of Parallel Embedded Software

HOPES [4] is an embedded software design framework that supports a parallel pro-

gramming environment for multiprocessor embedded systems. Unlike HW/SW codesign

environments, HOPES puts more emphasis on the implementation of software compo-

nents. The following subsection introduces a design flow of developing embedded soft-

ware in HOPES.

2.1.1 Software Development Procedure

The overall procedure of HOPES software development for multi-processor embed-

ded systems is depicted in Fig. 2.1. An application is specified by a model-based task

graph, as explained in section 2.2. Also, we prepare a set of task codes whose internal

behavior is defined in a popular programming language; C is used in our current im-

plementation since it is the most popular programming language for embedded devices.

For platform independent specification of a task, the software development framework

provides a set of application programming interfaces (APIs) to perform data communi-

cation between tasks. Those APIs are translated into platform-dependent APIs after the

mapping is determined.

Given the application specification, we first perform the syntax checking of the task

9

Figure 2.1: The overall procedure of model-based embedded software development

10

model and static analysis to check the possibility of deadlock condition and buffer over-

flow for each SDF subgraph. For a control task, model checking is applied to check the

reachability test for a certain state. The next step is the functional simulation to check

the functional correctness of the program. It is accomplished by mapping all tasks to a

simulation host, synthesizing a multi-thread program, and running it on the simulation

host. For a task that is dependent on a specific hardware platform, it is necessary to make

a simulation model of the task for functional simulation. We repeat steps 1 to 3 until the

functional correctness is verified.

After functional correctness is verified, the next step is to specify the hardware plat-

form information that is needed in the program synthesis. The type of processing ele-

ments and the number of cores in each processing element are specified. Also, commu-

nication methods and related information need to be included.

Based on the hardware platform information, mapping of tasks is conducted manu-

ally or automatically. After a mapping decision is made, we estimate the performance and

resource requirements. For performance estimation, it is necessary to know the estimated

execution time of each task on the mapped processor and the resource requirement of the

task. We assume that such profiling information is given a priori by unit testing. If the

estimated performance does not satisfy the throughput or latency requirement of an ap-

plication, we need to change the mapping decision. Among the many feasible mappings,

we may want to find an optimal mapping with minimal resource requirements. This de-

sign loop of finding an optimal mapping is known as design space exploration, which

makes the proposed design procedure distinguished from the conventional software de-

velopment flow.

Finally, we synthesize the program that will be run on each processing element after

the mapping decision is made.

For parallel and distributed embedded software development, the HOPES software

development procedure can be applied without any major modifications. In detail, There

11

are some extra works during the steps. Because software is distributed on multiple de-

vices, communication methods and its related information are needed to be included

during the hardware platform specification step. Also, multiple synthesized programs are

generated as the software is targeted on heterogeneous devices.

2.1.2 Components of HOPES

HOPES consists of three parts: HOPES User Interface (UI), UEM Programming

Model, Code Generator. The HOPES user interface is an integrated design environment

that can manage multiple projects of HOPES applications, so a user can draw tasks and

channels to specify his or her applications. Also, it provides a simple code editor to

write task codes of each task and generates a basic code skeleton to help writing codes.

Furthermore, it can specify special-purpose tasks such as library tasks, loop tasks, and

control tasks to show the ability to support heterogeneous models. Static analysis can be

performed on the HOPES environment so that a user can analyze any problems in the

task graph such as buffer overflow error, or deadlock. In addition, the hardware platform

specification, mapping and scheduling decision, and performance estimation can be done

on HOPES UI. Therefore, all the steps except step 7 in 2.1 are involved in this HOPES

UI.

UEM Programming model is a programming model in HOPES, and it consists of

application task codes, generic APIs, and meta-data information. Generic APIs are pro-

vided to communicate and control among tasks, so an application developer utilizes this

API in their task codes. All the non-algorithm and task graph specifications are stored as

meta-data information. The detailed models used in UEM will be introduced in the next

section.

The code generator, also known as the code generation framework, is our contri-

bution to this work. It is the final step of developing embedded software, and a detailed

explanation will be shown in Chapter 3.

12

2.2 Universal Execution Model

2.2.1 Task Graph Specification

Figure 2.2 shows the model-based task level specification introduced in [3], which

is adopted in this work. A parallel and distributed application is specified as a hierarchi-

cal task graph in which atomic tasks represent tasks running concurrently, and channels

represent the data dependency between tasks. At the top level, a super task represents a

group of tasks that will be mapped onto the same device or the same processing element,

denoted as a virtual device in the figure.

Each virtual device contains a task graph that consists of two types of tasks, control

task and dataflow task. A dataflow task is invoked, or triggered, by the arrival of data

from its input ports. If the number of data samples required from each input port is fixed

and not changing dynamically for each invocation, the dataflow task belongs to a spe-

cific dataflow model, called synchronous dataflow (SDF) [19]. If a task graph consists of

SDF tasks, the task graph is called an SDF graph. For an SDF graph, we can check the

possibility of deadlock and buffer overflow through static analysis at compile time. It is

also possible to estimate the minimum resource requirements to execute the task graph

by constructing a static schedule of task executions. To enjoy such benefit, it is highly

recommended to define a super task that contains a subgraph of SDF tasks, as shown at

the right side of the figure.

A control task depicts the dynamic behavior of the application with a finite state ma-

chine (FSM). A state is defined by the values of global variables that affect the behavior

of dataflow tasks and the execution status of each dataflow task, running or waiting. If

the number of possible scheduling combinations of tasks is finite, the dynamic behavior

on each device can be fully specified by an FSM in a control task.

While bold lines in Fig. 2.2 represent channels for external communications between

devices, the actual communication is performed by a specific task that takes in charge of

13

Figure 2.2: A hierarchical task graph specification of an application.

interface with the outside. A diamond shape is used as a port to express that the channel

outside the task graph is connected to the specific task inside the task graph. For example,

in Fig. 2.2, a diamond which is shown in task A of Device 2 means that task A receives

data sent from Device 1.

Figure 3.13 illustrates the task graph specification of the surveillance application

described above.

14

Figure 2.3: (a) An example SDF graph with annotated sample rates on the arcs, (b) an
inconsistent SDF graph that has a buffer overflow error, and (c) a mapping and scheduling
result of the SDF graph onto two processing elements

2.2.2 Dataflow specification of an Application

In the UEM, an application is specified by an extended synchronous dataflow (SDF)

model. We first review the baseline SDF model and explain how the SDF model is ex-

tended.

2.2.2.1 Synchronous Data Flow

In the SDF model [19], an application is specified with a dataflow graph, G(V,E),

where V is a set of nodes and E is a set of arcs. A node v ∈ V represents a function

module, or a task, and an arc e ∈ E is a FIFO channel between two tasks. Communication

between two tasks is performed by explicit message passing via a FIFO channel. Figure

2.3 (a) shows an example SDF graph where the number annotated on the arc indicates the

number of data samples, called a sample rate, to produce or consume per task execution.

If unspecified, the sample rate is 1 by default. The input sample rate and the output

sample rate on an arc are represented as cons(e) and prod(e), respectively. In the SDF

model, a task becomes executable only when all input arcs have no fewer samples than

the specified sample rate in the associated arcs.

By comparing the input and the output sample rates on each arc, e, we can determine

the relative execution rates between the source task, denoted by src(e), and the destination

task, denoted by dest(e). For instance, the execution rate of task C should be twice higher

than that of task A in Fig. 2.3 (a), in order to make the number of samples produced from

15

the source task the same as the number of samples consumed by the destination task.

This constraint can be formulated as the following equation, called balance equation:

prod(e)×R(src(e)) = cons(e)×R(dest(e)) where R(v) indicates the repetition counts of

task v. An SDF graph is said to be consistent if we can find the repetition counts of all

tasks to satisfy the balance equations of all arcs. Otherwise, the graph is called sample rate

inconsistent, shortly inconsistent. The SDF graph shown in Fig. 2.3 (b) is inconsistent,

which may incur a buffer overflow error on arc AC. An iteration of an SDF graph is

defined by the set of task executions with minimum repetition counts. The minimum

repetition counts of tasks in the SDF graph of Fig. 2.3 (a) are R(A) = R(B) = 1 and R(C)

= R(D) = 2.

Since we can compute the minimum repetition counts of all tasks and the graph

shows the dependency relationship between tasks, we can perform task scheduling at

compile-time, which is to determine where and in what order tasks will be executed on a

given hardware platform. By constructing a static schedule of tasks at compile-time, we

can detect the critical software faults such as buffer overflow and deadlock. Figure 2.3 (c)

illustrates a parallel scheduling result by mapping tasks onto two processing elements.

From the parallel scheduling result, we can estimate the buffer size and the real-time

performance of the graph. Note that even though there may exist numerous schedules

for a given application, the determinism of the execution behavior is guaranteed meaning

that the execution result is independent of the schedule.

In summary, by using the SDF model, we can verify the satisfaction of real-time re-

quirements and resource constraints. Moreover, we can detect buffer overflow and dead-

lock errors at compile time. While the SDF model has the aforementioned benefits from

its static analyzability, it has a severe limitation to be used as a general model for behavior

specification.

Since the pure SDF model does not allow the variation of the number of data sam-

ples consumed from each input port, its expression capability is very restricted. Thus,

16

several extensions have been proposed to enhance the expression capability of the SDF

model while keeping the benefit of static analyzability [18, 20, 21, 22, 23, 24]. In UEM,

a dataflow task graph supports two extended SDF models, MTM (Mode Transition Ma-

chine) [25, 26] and SDF/L (SDF with Loop structure) [18] to express dynamic behavior

of SDF graphs. Two SDF models will be explained in the following subsections.

2.2.2.2 Mode Transition Machine

In case an application has a finite number of different behaviors, called modes of

operation, the behavior of each mode is expressed by an SDF graph, and mode transi-

tions are specified by a tabular specification of an FSM, called Mode Transition Machine

(MTM) [25]. In UEM, this model is considered as a single task with a child task graph

and MTM information, and it is also called as an MTM task. It is similar to FSM-SADF

[24]. An MTM describes the mode transition rules for the SDF graph, defined as a tuple

Modes, Variables, Transitions where Modes and Variables represent a set of modes and

a set of mode variables respectively, and Transitions is a set of transitions that consists

of the current mode, a Boolean function of conditions, and the next mode. A Boolean

function of transition condition is defined by a simple comparison operation between a

mode variable and a value.

An example of MTM-SDF specification is shown in Fig. 2.4 in which an application

has two modes of operation, S1 and S2. The input and output sample rates of a task may

vary, depending on the mode. In this example, the MTM is quite simple since it needs to

distinguish two modes of operation by a single mode variable. Since the granularity of a

task is large and the dynamic behavior inside a task is not visible in the UEM, an MTM

is not complex in general. At compile time, the SDF graph is scheduled separately for

each mode of operation.

Mode transition is enabled by setting the mode variable. There are two ways of set-

ting the mode variable. It can be set by an upper-level control task, or it can be set by a

17

Figure 2.4: Extended SDF graph with a MTM with 2 modes

designated task. A stream-based application usually starts with parsing header informa-

tion that determines the mode of operation, followed by processing a stream of data. In

this case, the SDF task that parses the header information is designated as a special task

that may change the mode variable. In the example of Fig. 2.4, task A can be designated

as a special task that determines the mode of operation.

When mode transition occurs, the SDF schedule is changed accordingly. If the mode

change is enabled by the upper-level control task, it is activated at the iteration boundary

of the SDF graph. If it is enabled by a designated task, mode change occurs right after

the task finishes its execution. For consistency of operation, in this case, the schedules

of all modes should have the same task schedule before the designated task. In case the

designated task is the first task in the SDF schedule, this restriction is satisfied easily.

2.2.2.3 SDF with Loop Structure

A compute-intensive application usually spends most of its execution time in loop

structures, and how to parallelize them is the main challenge for accelerating the appli-

cation. Even though dataflow models, including the SDF model, are good at exploiting

task-level parallelism of an application, it is difficult to exploit the parallelism of loop

structures since they are not explicitly specified in existent dataflow models. In SDF, a

loop structure is implicitly expressed by the same rate changes as illustrated in Fig. 2.3

(a). Among many possible schedules, a looped schedule AB2(CD) can be constructed.

In case 2 executions of (CD) can be parallelized with 2 output samples from A and B, a

18

Figure 2.5: SDF graph with a loop structure

user may want to construct a parallel schedule as illustrated in Fig. 2.5 (b). But identifying

such a loop structure and parallelizing it is not easy because existent parallel scheduling

techniques usually aim to exploit task-level parallelism only.

Recently, we proposed a novel extension to specify a loop structure as a super node

to make the SDF graph hierarchical [18]. The extended SDF graph with loop structures is

called an SDF/L graph. Figure 2.5 (a) is the SDF/L graph representation of the application

of Fig. 2.3 (a). In UEM, this model is considered as a single task with a child task graph

and loop information, and it is also called as a loop task.

In the SDF/L model, two types of loop structures are distinguished, data loop (D-

type) and convergent loop (C-type), and two types of input ports, distributing port and

broadcasting port. In a D-type loop (data loop), each iteration of the loop consumes new

input data from each distributing input port. The number of iterations is determined by

the sample rate change of the associated input channel. The loop structure of Fig. 2.5 (a)

is a D-type loop.

On the other hand, Fig. 2.6 shows an SDF graph that has a C-type loop. For a C-

type loop. The C-type loop has two attributes, loop count and exit flag. The former is

the maximum iteration count, and the second is set by a designated task, task C in this

figure. The number of iteration is dynamically decided by the result of a computation that

will set the exit flag. All input ports of a C-type loop should be broadcasting ports from

which input samples are reused in all iterations of the loop; the sample rate of the output

19

Figure 2.6: SDF graph with a C-type loop structure

connection is equal to the sample rate of the input connection.

In summary, the SDF model in UEM is extended to express dynamic behavior with

an MTM, to allow the use of shared resources with a library task, and to explicitly specify

the loop structures hierarchically. Refer to the corresponding references for a detailed

explanation of each extension. Note that these extensions preserve the static analyzability

of the SDF model. We perform static scheduling for each mode of operation. In the SDF/L

model, static scheduling can be performed hierarchically from the bottom layer. A loop

structure is encapsulated as a regular SDF task at the upper layer.

In this thesis, SDF/L is used for not only expressing iterative behavior of appli-

cations but also applying fault-tolerant techniques to each task, and the explanation is

described in Chapter 4.

20

2.2.3 Task Code Specification and Generic APIs

To write a task code in HOPES, an application developer must specify three func-

tions: TASK INIT, TASK GO, and TASK WRAPUP. The TASK INIT function is exe-

cuted when the task is initialized, and the TASK WRAPUP function is executed when

the task is going to be stopped. The TASK GO function is the main body that will repeat

until the task is terminated. Inside these functions, the generic APIs listed in Table 2.1

can be used for developing an application. A prefix started with UFPort indicates APIs

related to accessing task ports, so it allows a task to communicate with other tasks. Two

kinds of read and write functions are provided depending on how to read or write data.

A buffer-type read operation reads data from a channel but does not remove data in a

channel. On the other hand, a queue-type read operation removes read data in a channel,

and it blocks when data is not prepared yet. A prefix started with UFTask is used for

accessing information about a task so that a user can get task parameter values or state

information. Functions started with a prefix UFControl is related to controlling tasks, so

these functions are only allowed to be used by a control task.

21

Table 2.1: List of generic APIs provided by UEM

API Name Detail
UFPort Initialize Initialize a task port

UFPort ReadFromQueue Read data from queue. Read data is removed.
UFPort ReadFromBuffer Read data from buffer. Read data is remained.
UFPort WriteToQueue Write data to the channel as a queue.
UFPort WriteToBuffer Write data to the channel as a buffer.

UFPort GetNumOfAvailableData Check the number of data can be read from channel.
UFPort Finalize Finalize a task port.

UFPort GetChannelSize Get the buffer size of the channel
UFTask GetIntegerParameter Get an integer-type task parameter.
UFTask SetIntegerParameter Set an integer-type task parameter.
UFTask GetFloatParameter Get a float-type task parameter
UFTask SetFloatParameter Set a float-type task parameter

UFTask GetState Get task state
UFTask GetCurrentModeName (MTM only) Get current mode name

UFTask SetModeIntegerParameter (MTM only) Set integer-type mode parameter.
UFTask UpdateMode (MTM only) Update mode state.

UFTimer Set Set timer.
UFTimer GetAlarmed Get an alarm from a timer.

UFTimer Reset Reset a timer.
UFControl RunTask (Control task only) Run a task.
UFControl StopTask (Control task only) Stop a task.

UFControl SuspendTask (Control task only) Suspend a task.
UFControl ResumeTask (Control task only) Resume a task.

UFControl CallTask (Control task only) Call a task.
UFLoop GetIteration (SDF/L only) Get current loop iteration number.

UFLoop StopNextIteration
(SDF/L convergent-type only)
Stop a loop at next iteration.

22

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <CIC_Architecture target="aaa" xmlns="http://peace.snu.ac.kr/

CICXMLSchema">
3 <elementTypes>
4 <elementType subcategory="CPU" sleepPower="80000"

scheduler="RR" relativeCost="1.0" name="i7_0" model="
i7" clock="3400" category="processor" activePower
="80000" OS="LINUX"/>

5 <elementType name="SHARED_MEMORY_0" category="memory">
6 <slavePort size="8000" name="Slave" metric="MiB"/>
7 </elementType>
8 </elementTypes>
9 <devices>

10 <device runtime="native" platform="linux" name="aaa"
architecture="x86_64">

11 <elements>
12 <element type="i7_0" poolSize="4" name="i7_0"/>
13 <element type="SHARED_MEMORY_0" name="SHARED_MEMORY_0

"/>
14 </elements>
15 <connections/>
16 <modules/>
17 <environmentVariables/>
18 </device>
19 </devices>
20 <connections/>
21 </CIC_Architecture>

Figure 2.7: The example of meta-data information describing hardware platform

2.2.4 Meta-data Specification

Meta-data information is basically inserted in HOPES UI, but the internal data is

stored as XML files. There are five types of XML files: algorithm, architecture, mapping,

schedule, and configuration. These files are used as input to the code generator. The

algorithm XML file stores a task graph information, so it contains all the information

drawn in a task graph diagram. The architecture XML file contains a list of devices and its

internal processors. Also, connectivity information is also included. Mapping information

contains which task mapped to a processor, and the schedule file provides a scheduling

order of each processor if a schedule is generated during mapping and scheduling step in

2.1. Finally, the configuration file contains a time to be executed and execution policy.

23

Chapter 3

Program Synthesis for Parallel and
Distributed Embedded Systems

3.1 Motivational Example

We present a surveillance application as a motivational example of a parallel and

distributed embedded system. Figure 3.1 shows the system configuration that consists

of four computing devices. The surveillance system monitors strangers through a smart

camera that runs an objection detection algorithm inside. If a stranger is detected, security

robot 1 moves to the location where the camera finds the stranger. If the camera no longer

detects a person, the robot will return to its original position. Also, there is another secu-

rity robot, called security robot 2 that can be controlled remotely by the administrator. In

the autonomous mode of operation, security robot 2 runs an object tracking algorithm to

follow security robot 1. Other cooperation mission can be defined with security robots,

and more robots can be added. Robots also have their own camera modules. All scenes

captured from all devices are monitored through the monitoring console, and the console

encodes and stores the captured images for recording.

The surveillance system requires multiple devices to communicate over the network.

It includes intra-PE communication inside each device to receive images from the camera

sensor and inter-PE communication to send captured images or control the robots. Be-

24

Figure 3.1: Surveillance system as a motivational example

sides, there are many computation-intensive tasks involved in this system such as object

detection, image encoding, and tracking the robot. Therefore, this non-trivial application

requires diverse types of connectivity for remote communication between devices and

the exploitation of parallelism of computation-intensive applications. We will specify

this application by the task-level specification model which is explained in section 2.2.

The synthesized program from the task-level specification is discussed in section 3.5.

25

Figure 3.2: The structure of program synthesizer

3.2 Program Synthesis Overview

The program synthesizer generates target codes for each device from the UEM pro-

gramming model. Fig. 3.2 describes the structure of the program synthesizer. A task code

set and meta-data information are used as an input of the program synthesizer, and meta-

data information is filled during step 1 to 6 in Fig. 2.1. The other input is template codes

and library codes, which are described in the translator properties. The template codes

contain skeleton codes and tags to generate codes from meta-data information, and the

library codes consist of pure codes which are included as a file to build a target code.

Overall information of template codes and library codes is shown in translator proper-

ties. By changing two code sets and translator properties, the program synthesizer has

26

the potential to support different programming languages or target-dependent execution

models. The program synthesizer utilizes meta-data information to make the UEM meta-

data model which is used for filling data to the template codes, and the code organizer

determines which files from the library codes to be used for each target device.

The skeleton of the synthesized program for a device displayed in Fig. 3.3 with

a simple example where three tasks are mapped to two devices. The program synthe-

sizer synthesizes a program that will run on each device, based on the input information

of software specification, hardware platform specification, and mapping decision. Two

platform-specific code sets are provided for program synthesis: one is the library code,

and the other is the template code. The library codes are written in a target code language

and added to the target application software as a file itself. The template codes are written

in a template language, and it is used for generating code segments that depend on the in-

put information, structured task data and structured channel data, as illustrated in the fig-

ure inside light orange boxes. The main program first initializes the channel data structure

using the channel library code. Next, it registers the mapped tasks to the task manager and

runs the registered tasks, using the task library code. As denoted with dashed green lines,

there are two ways of running the tasks. In case multi-thread scheduling is supported by

the OS, it creates a thread for each task; a separate thread, MappedThread, is created for

each task based on the given task code. If there is no pre-installed thread scheduler in the

device, the program synthesizer creates a task scheduler, ScheduledThread. Three func-

tions called in the ScheduledThread routine are also generated from the template code.

In addition to the program, the program synthesizer creates a build file that is tailored for

the device.

In the program synthesis flow, we focus on the communication code synthesis and

the fault-tolerant code synthesis in this thesis. To support distributed embedded systems,

we aim to make the communication code synthesis technique extensible and flexible

to support various communication methods between devices. Making a task code fault-

27

Figure 3.3: The skeleton of an example synthesized program

28

tolerant is achieved by modifying the task graph in the proposed method. These two

techniques are explained in section 3.4 and 3.5.

29

Figure 3.4: Example of hierarchically-mixed extended SDF models

3.3 Program Synthesis from Hierarchically-mixed
Models

Hierarchically mixing different types of dataflow graphs can improve expression

capability of dynamic behavior. Since MTM tasks can be considered as a single-level

if/switch statement, hierarchical MTM tasks can be act as multi-level if/switch statements.

In addition, convergent-type loop tasks can be act as for-statement with break condition.

Figure 3.4 shows the example of Hierarchically-mixed loop and MTM tasks. It consists

of two loop tasks and one MTM task. All loop tasks in Fig. 3.4 are convergent-type, so

they have a designated task which can terminate the loop before reaching the maximum

loop iteration. The loop task J is conditionally executed depending on parent MTM tasks’

mode. Also, the loop task G can affect the execution of the MTM task G. Hierarchically-

mixed models can be described with the complex pseudo-code of dynamic behaviors with

30

1 j J_Loop(i2)
2 {
3 for(i = 0 ; i < 3 ; i++) {
4 l = L(i2);
5 m = M(l);
6 n, exit = N(m);
7 if(exit == true)
8 break;
9 }

10 return n;
11 }
12
13 g G_MTM(d)
14 {
15 h, mode = H(d);
16 if (mode α) {
17 i1, i2 = I(h);
18 j = J_Loop(i2);
19 k = K(i1, j);
20 }
21 else { // mode β

22 i1 = I(h);

23 k = K(i1);
24 }
25 return k;
26 }
27
28 b B_Loop(a)
29 {
30 for(i = 0 ; i < 5 ; i++) {
31 d = D(a);
32 e = E(d);
33 g = G_MTM(d);
34 f, exit = F(e, g);
35 if(exit == true)
36 break;
37 }
38 return f;
39 }
40
41 a = A();
42 b = B_Loop(a);
43 C(b);
44 // end of single iteration

Figure 3.5: Pseudo-code representation of the hierarchical mixed model in Fig. 3.4

multiple functions. Figure 3.5 is an pseudo-code representation of Fig. 3.4. Functions

started with capital letter are the tasks in Fig. 3.4, and lower-case variables are used

as arguments and return values. Note that each hierarchical task graph is defined as a

function with multiple statements calling other tasks. A task graph is also considered as a

task of a upper task graph. To transfer data across task graphs with different hierarchy, we

defined a exported port. We suppose that all the exported input ports are already contains

enough data to execute a task graph, so blocking is not occurred by exported ports. These

exported ports are used as arguments and return values of the task graph functions in

Fig. 3.5.

The program synthesizer can generate codes from complex concurrently-running

hierarchical models. Code generation for a single processing element from multi-level

models is relatively simple than that for multiple processing elements, and Fig. 3.5 is a

good example of generating codes for a uni-core system. On the other hand, code gener-

ation for multiprocessor systems must consider the parallelism, and multiple tasks can be

31

Process network

Process

network with

control task

SDF/L

MTM

MTM

MTM

MTM

Figure 3.6: Task graph lock protection mechanism

run in parallel like Task E and child tasks in G. Also, MTM tasks or convergent-type loop

tasks contain a dynamic behavior. If these task graphs are placed hierarchically without

consideration, task control can be violated by the tasks in the upper or lower task graph.

Furthermore, a control task with FSM can run or stop dataflow graphs, so a program

synthesis tool must consider these conflicts of task control.

To support code generation on multiprocessor systems from hierarchically-mixed

extended SDF models, we defined a task graph lock for synchronization among tasks

that share the same ancestor. Pessimistically, this concept may result in a single global

lock of all task graphs. To avoid the problem, our code synthesis tool creates a lock

on only three cases: SDF/L, MTM, and a process network containing a control task.

Figure 3.6 shows the example of avoiding a global lock. If a control task is not controlling

some task graphs, those task graphs can be drawn separately from the upper task graph

with a process network. The example figure shows that two hierarchical task graphs are

separately managed from the task graph with a control task. Another consideration point

for managing hierarchical task graphs with dynamic behavior is a control order of parent

and child task graphs. In this case, we defined a model controller function for each task

graph with dynamic behaviors, and call each model controller function from the leaf to

the root ancestor. Because a parent task graph has higher priority, a lower-level task graph

decision can be overridden by the upper-level task graph.

32

3.4 Platform Code Synthesis

Since the synthesized programs are running on heterogeneous devices, the program

synthesizer needs to choose and organize proper codes for each device with different

platforms. The management of code for multiple platforms is somewhat painful because

some codes can be shared with multiple platforms, and some of the codes are fully target-

dependent. To resolve this problem, we classify hardware platforms into three types:

constrained, unconstrained, and semi-constrained. Unconstrained type is considered as

conventional operating systems such as Linux, Unix, Windows, Mac, and Android (also

known as LUWMA), so OS-supported APIs and dynamic memory allocation are allowed

for programming. On this platform type, target hardware has enough memory to toler-

ate the amount of memory usage from the generated codes except the code segments

developed and determined by application developers. Constrained type is classified as a

micro-controller with no operating system, and only single-core programming is possi-

ble. Also, this type of platform has a very small amount of memory, so generated codes

such as structured task data and channel data in Fig. 3.3 can be a burden for developing

applications. For this reason, limited generic APIs and dataflow models are supported for

this platform type. The last platform type is semi-constrained, and this could be placed

between constrained and unconstrained. Currently, supporting this hardware platform

type is left as future work.

Based on hardware platform classification, codes are managed into three categories.

The first category is target-independent codes. Codes in this family are shared by all

platforms. The second one is Loosely target-dependent codes, and codes in this category

are shared by the same platform types mentioned in the previous paragraph. The Last

one is a tightly target-dependent code set, and codes in this category can only run on a

specific platform such as Arduino, Linux, and Windows. Fig. 3.7 shows which part of the

codes belongs to each category, and it also depicts the layered structure of the synthesized

program. The higher layer of the codes can be accessed to the functions from the lower

33

Figure 3.7: Code management structure of the program synthesizer

34

layer, so the top layer can access to all the lower layer functions. In the top layer, the

entry point of the binary is located. For example, the main() function which is the entry

of the program from most conventional operating systems is located here. Otherwise,

for the Arduino platform, setup() and loop() functions are placed on this layer. The API

layer provides an interface to the application task codes as general APIs, so channel

communication and task control APIs are located in this layer. The core layer contains

the main logic of executing tasks and accessing channels. The reason why this part is

loosely target-dependent is that constrained and unconstrained target category has a huge

difference in implementation such as multi-threading or dynamic memory allocation. The

last layer is the common layer which wraps the OS-dependent APIs to use on the higher

layer and also provides utility functions that can be utilized by upper layers.

The program synthesizer needs to generate codes for each target device with min-

imized information to reduce resource usage. First, it only includes tasks and channels

which belong to the mapped device. This data management is important because con-

strained devices only have a few kilobytes of memory, so structured task and channel

data can be a burden to run a program. Also, the synthesized program not always needs

all codes from each layer, so the synthesizer excludes the library codes which are not

used. For example, if an application does not use GPU, GPU-related codes can be omit-

ted for code generation. To manage optional codes, we defined a term called peripheral

which can be selectively added to the generated program depending on the hardware

platform specification.

35

3.5 Communication Code Synthesis

Since channels that are used for data communication between tasks can be accessed

by an application programming interface (API) in a task, an application programmer

uses the API without knowledge of how tasks are communicated with each other during

task code development. Also, in the task graph specification phase, the programmer does

not know which processing elements the tasks are mapped to and which communica-

tion methods will be used between devices. For each communication API, the platform-

dependent communication code is synthesized after the mapping decision is made. If two

tasks are mapped to the same processing element, channel communication is likely to be

accomplished by shared memory accesses. Otherwise, we need to synthesize the remote

communication code that depends on which communication method is used.

Figure 3.8 shows two different connection types for an example task graph where

five tasks are mapped to two devices, and bold lines represent remote communication

between devices. In the first example of Fig. 3.8 (a), a separate connection is made for

each channel. For example, TCP communication allows multiple connections so that each

channel may establish a separate connection between devices. On the other hand, Blue-

tooth communication allows only a single connection between two devices, so multiple

channel communications between tasks need to be serialized. Fig. 3.8 (b) shows the case

in which a single physical connection is established between devices, and logical chan-

nels are merged and serialized in the communication aggregator in each device.

Our code generation framework provides multiple modules to handle various com-

munication methods and types. The list of the modules is shown in Table 3.1. Each mod-

ule is selectively used depending on communication methods and connection types.

Figure 3.9 shows how a generic API is translated to the actual platform-dependent

communication code depending on the communication type. For local communication,

only a memory access function in the virtual memory access function module is called

as shown in Fig. 3.9 (a). In the case of remote communication with a TCP connection,

36

(a) An individual connection example

(b) An aggregate connection example
Figure 3.8: Examples of connection types between two devices

Table 3.1: Modules used for communication code generation

Module Explanation
Generic API
Definition

Top-level definitions of generic APIs
based on communication types.

Remote
communication

A set of remote communication APIs
common to all communication types.

Virtual memory
access function

A set of memory access functions that
are dependent on the hardware platform

Virtual socket
function

A set of remote communication functions
specific to the communication methods

Communication
aggregator

Standalone module that serializes and
manages data transfer from multiple
channels for remote communication

37

four modules are involved in the synthesized communication code; Fig. 3.9 (b) shows

the calling order among the modules. Once the remote communication is established, a

function in the virtual socket function module is called for actual communication. The

read data from the outside is written to the local memory by a function in the virtual

memory access function module. Remote communication with aggregated connection

uses all five modules as displayed in Fig. 3.9 (c). The communication aggregator module

is a standalone thread that collects communication requests from all communicating tasks

through inter-thread communication and serializes and sends them with a function in the

virtual socket function module.

The virtual socket function module defines 8 abstract functions: create(), destroy(),

listen(), accept(), connect(), disconnect(), send(), and receive(). Figure 3.10 shows var-

ious implementations of an abstract function, connect(), according to the communica-

tion method. Although Bluetooth, TCP, and serial communication all show differences in

their implementation, the remote communication module or the communication aggrega-

tor can establish a connection by calling connect() function. Besides, we may support a

new communication type by adding the associated implementation.

38

(a) Channel for local communication

(b) Channel for remote communication (individual connection)

(c) Channel for remote communication (aggregated connection)
Figure 3.9: Channel communication module for each communication type

39

Figure 3.10: An example of a virtual socket function connect() for each communication
method

3.6 Experiments

3.6.1 Development Cost of Supporting New Platforms and Net-
works

As our program synthesis tool is targeted on distributed and parallel embedded sys-

tems, the extension of supporting new platforms or communications are needed. Our

program synthesis framework is considered to minimize the efforts of new platforms or

networks. To prove this merit, we analyzed the number of lines used for generating pro-

grams. As mentioned in Fig. 3.7, code management structure consists of 4 layers except

for application task codes. The number of lines per each layer is shown in Table 3.2.

The critical part of supporting new platform variants is related to the top and common

layers. According to the table, tightly platform-dependent codes which are classified by

platform names such as Linux and Arduino are small compared to other types of codes.

The codes in the tightly target-dependent layers include communication codes and GPU

codes, so the primary codes for supporting a new platform is limited to task execution

and synchronization logics such as threads, locks, and event handling. Also, header files

are shared among platforms with the same categories, so only definition codes are needed

40

Table 3.2: The number of target code lines per each layer used for program synthesis

Layers C code C++ Code Header
API Layer 726 215

Common 838 338
Constrained 2,213 305Core Layer

Unconstrained 11,547 1,244
Common 310 237

Common 57
Constrained

Arduino 32 116
Common 720

Common Layer

Unconstrained
Linux 2,033

Arduino 68Top Layer
Linux 202

Total 18,621 184 2,733

to be implemented for newly supported platforms. For example, in Fig. 3.11, a declara-

tion of function UCThreadEvent SetEvent is shared, but the definition of each platform is

different. Fig. 3.11 (a) uses a pthread conditional variable and pthread mutex lock to im-

plement the UCThreadEvent SetEvent function, but Fig. 3.11 (b) uses a native Windows

SDK function, SetEvent, for implementation on Windows.

We computed the number of codes which is related to support a new platform, and

we extend our supported platforms to measure how much load is needed for implemen-

tation. Figure 3.3 shows the number of lines for providing a new platform. Currently,

Linux is now supported as an unconstrained target, and its related codes are about 859

lines including both the common and top layer. Linux target codes are highly portable

to other Unix/BSD-based operating systems, and automake [27] is used for making a

portable Makefile which is commonly used on POSIX platforms. Also, most of functions

are implemented with POSIX APIs, so the efforts of supporting a new POSIX-supported

operating system is very low. According to the table, it only needs 10 more lines, and

it indicates the codes related to processor mapping logic. For supporting a non-POSIX

operating system, we implemented Windows-part codes to support Windows platform,

and it only requires 495 lines even though the APIs are mostly different to POSIX or

41

1 uem_result UCThreadEvent_SetEvent(HThreadEvent hEvent) {
2 uem_result result = ERR_UEM_UNKNOWN;
3 SThreadEvent *pstEvent = NULL;
4 uem_bool bMutexFailed = FALSE;
5 int nErrorNum = 0;
6 #ifdef ARGUMENT_CHECK
7 if (IS_VALID_HANDLE(hEvent, ID_UEM_THREAD_EVENT) == FALSE) {
8 ERRASSIGNGOTO(result, ERR_UEM_INVALID_HANDLE, _EXIT);
9 }

10 #endif
11 pstEvent = (SThreadEvent *) hEvent;
12
13 if (pthread_mutex_lock(&(pstEvent->hMutex)) != 0) {
14 bMutexFailed = TRUE;
15 }
16 pstEvent->bIsSet = TRUE; // event is set
17 // send a signal
18 nErrorNum = pthread_cond_broadcast(&(pstEvent->hCond));
19
20 if (bMutexFailed == FALSE &&
21 pthread_mutex_unlock(&(pstEvent->hMutex)) != 0) {
22 // ignore error
23 }
24 if(nErrorNum != 0) {
25 ERRASSIGNGOTO(result, ERR_UEM_INTERNAL_FAIL, _EXIT);
26 }
27
28 result = ERR_UEM_NOERROR;
29 _EXIT:
30 return result;
31 }

(a) Linux code implementation of UCThreadEvent SetEvent
1 uem_result UCThreadEvent_SetEvent(HThreadEvent hEvent) {
2 uem_result result = ERR_UEM_UNKNOWN;
3 SThreadEvent *pstEvent = NULL;
4 BOOL bSuccess;
5 #ifdef ARGUMENT_CHECK
6 if (IS_VALID_HANDLE(hEvent, ID_UEM_THREAD_EVENT) == FALSE) {
7 ERRASSIGNGOTO(result, ERR_UEM_INVALID_HANDLE, _EXIT);
8 }
9 #endif

10 pstEvent = (SThreadEvent *) hEvent;
11
12 bSuccess = SetEvent(pstEvent->hEvent);
13 if(bSuccess == FALSE) {
14 ERRASSIGNGOTO(result, ERR_UEM_INTERNAL_FAIL, _EXIT);
15 }
16
17 result = ERR_UEM_NOERROR;
18 _EXIT:
19 return result;
20 }

(b) Windows code implementation of UCThreadEvent SetEvent
Figure 3.11: Target-dependent code implementation example in the common layer

42

Table 3.3: The number of lines for supporting new platforms

Target Common layer Top layer
Unconstrained (Linux) 657 lines 202 lines
Unconstrained (new POSIX-supported OS) 10 lines None
Unconstrained (new non-POSIX OS) 462 lines 33 lines
Constrained (Arduino) 70 lines 68 lines

Table 3.4: The number of lines for supporting new communication methods

Communication method Common layer Core layer
TCP (Linux target) 109 lines + 568 lines 109 lines
Serial (Linux target) 309 lines 169 lines
Bluetooth (Linux target) 109 lines + 568 lines 91 lines
Bluetooth/Serial (Arduino) 89 lines 667 lines

Linux-based APIs. For developing software on a microcontroller such as Arduino, The

portion of target-dependent codes are very small because it does not contain multi-tasking

contents such as threads and locks.

Communication codes are located in the common and core layer, so new codes for

a new communication method need to be changed on both layers. While the core layer

communication codes are used to implement a virtual socket function set mentioned in

Table 3.1, codes in the common layer actually use platform-dependent functions such as

recv, socket, and fopen. Table 3.4 represents the number of codes for each communica-

tion method. For supporting TCP, 109 lines on the common layer and 109 lines on the

top layer are needed for implementing TCP-based communication on the Linux platform.

568 lines of codes which are noted after the line numbers of TCP and Bluetooth on the

common layer are shared among socket-based communication. For this reason, if a de-

veloper adds a socket-based communication method, 568 lines of codes can be shared

for its implementation. Serial communication support is totally different to socket-based

communication, so 478 lines of codes in total are written for implementation. Unfortu-

nately, the minimized communication code synthesis technique described in section 3.5

is not applied in a constrained device target, so the core layer codes for supporting a

communication method are quite big compared to that of an unconstrained device target.

43

Figure 3.12: Top-level specification and hardware association of the surveillance system

In summary, at most several hundreds of lines are needed for applying a new plat-

form or network on our program synthesis tool. Therefore, the required codes for extend-

ing a platform or network are very small compared to the total lines of codes in Table 3.2.

3.6.2 Program Synthesis for the Surveillance System Example

The proposed software development method is used to synthesize the parallel and

distributed program for the surveillance system which is introduced as a motivational

example in section 3.1. Figure 3.12 shows the model-based task level specification at

the top level, based on Fig. 3.1. It consists of 6 super tasks that are mapped to 6 pro-

cessing elements. A PC or a server is used as the monitoring console, and a laptop or

a single-board computer with a webcam plays the role of a surveillance camera. In this

example, we use two robots that have two processing elements each: a single-board com-

puter and a micro-controller. Note that three types of communication methods are used

in this example as shown with different arc styles in the figure. TCP communication is

used between the monitoring console and the other devices through Wi-Fi. The surveil-

lance camera is connected to security robot 1 via Bluetooth to send an object detection

result. The connection between two processing elements, a single-board computer and a

micro-controller, in each robot is made through a serial USB line.

44

Figure 3.13 represents the hierarchical task-level specification of the surveillance

system. In the surveillance camera that is composed of three tasks, the ObjectDetection

task detects a person from the camera and sends the detection result to security robot 1.

Also, it transmits the captured image to the monitoring console. The monitoring console

receives camera images from two security robots and the surveillance camera and en-

codes and stores them in the x264Encoding task. The compute-intensive x264Encoding

task has a child task graph inside to explicitly express the parallelism of the algorithm.

The Command task is defined independently with the capability of sending commands to

security robot 2 for remote control. Security robot 1 receives the detection result from the

surveillance camera and also receives sensor data from its micro-controller. After gath-

ering the information, it determines an action to do. The behavior of security robot 1 is

described by a control task, ControlTask, whose behavior is represented by a finite state

machine. The execution status of the WheelControl and LEDControl is managed by Con-

trolTask and sends the motor and LED control commands to the micro-controller. Besides

the basic motor control functions of security robot 1, security robot 2 is equipped with

extra functions such as remote control, object tracking, and random driving. For object

tracking, the Tracking-Learning-Detection (TLD) [28] algorithm is specified inside the

Tracking task and used to follow security robot 1. If the remote-control command is re-

ceived from the monitoring console, security robot 2 changes the state of its ControlTask

to the Remote state.

In this example, a task mapping decision could be easily made. With the given task

codes that are manually made and verified a priori, program synthesis is performed for

6 processing elements. For the surveillance camera, we used a laptop with a webcam to

take an image, and a Coral USB accelerator [29] is used for detecting objects. We used

a Linux-powered PC as a monitoring console, and two TurtleBot3 [30] robots are used

to act as security robots. Each robot consists of Raspberry Pi 3 Model B+ (ARM Cortex-

A53, quad-core, 1.4 GHz) as a single-board computer and OpenCR 1.0 [31] board (ARM

45

Table 3.5: LOC of synthesized program

Processing
elements

Total
LOC

Task
code (%)

From
template code (%)

From
library code (%)

Security Robot 1
(Raspberry Pi)

20,459 2.698% 9.023% 88.279%

Security Robot 1
(OpenCR 1.0)

4,868 3.492% 11.319% 85.189%

Security Robot 2
(Raspberry Pi)

23,863 10.837% 14.315% 74.848%

Security Robot 2
(OpenCR 1.0)

4,510 1.840% 6.208% 91.951%

Surveillance
Camera

19,036 1.056% 6.577% 92.367%

Monitoring
Console

29,022 33.096% 7.008% 59.896%

Cortex-m7, 216MHz) as a micro-controller. These robots have a laser distance sensor

(LDS) and a raspberry pi camera which can be connected to a Raspberry pi board, and

two motors are controlled by OpenCR 1.0 board. Also, security robot 1 has additional

sensors such as a motion detector and a distance sensor. We built and ran this system,

and confirmed that the surveillance system is normally operated. Figure 3.14 shows the

monitoring console screen during the demonstration of the experiment.

Table 3.5 shows some statistics on the synthesized program. It shows that the library

code takes the largest portion in the synthesized program from 60% to 92%. The percent-

age of the task code that the programmer should write manually takes a little portion of

the entire program. If we can use the line of code (LoC) as an indirect metric to measure

the improvement of software design productivity, the proposed method reduces the soft-

ware development efforts significantly, besides the reduction of the verification effort by

compile-time static analysis.

3.6.3 Remote GPU-accelerated Deep Learning Example

Another example is a remote deep learning example. Because our program synthesis

tool is targeted on not only a homogeneous multiprocessor system but also a heteroge-

46

neous multiprocessor system, we implemented a CNN ResNet [32] Inference with 152

layers using GPU. Besides, we used two heterogeneous devices to describe a distributed

system. One device represents a low-performance edge device that has limited hardware

resources. The other device represents a server with a high-performance GPU. The over-

all software system is depicted in Fig. 3.15 (a). Note that this task graph uses an SDF/L

to describe multiple iterations of the same convolutions to show a compact view of 152

layers, and the internal view of each residual block is shown in Fig. 3.15 (b). All tasks

located in the high-performance device in Fig. 3.15 (a) are mapped onto GPU, and tasks

in the low-performance device are mapped onto CPU. We experimented with this exam-

ple on an NVIDIA Jetson AGX Xavier board [33] as a low-performance device and a

server with NVIDIA RTX 2070 GPU. To compare the benefit of using the remote high-

performance device, we first executed the example on the Xavier board, so all tasks are

mapped onto the processing components in the Xavier board. Because the Xavier board

also provides a GPU with 256-core as a co-processor, we can accelerate the deep learning

example in the board. The total execution time of classifying 1,000 images on the sin-

gle board is 1 minute and 6 seconds on average. However, using remote GPU only takes

20 seconds on average, which means using a remote high-performance device is three

times faster than running on the single board. Therefore, the code generation framework

enables a distributed system design for software development, so it can provide options

to choose single-device or multi-device implementation without additional development

costs such as CPU-to-GPU memory copy logic and network programming.

47

3.7 Document Generation

The code generation framework generates not only codes but also documents. It gen-

erates a header file with Doxygen [34] comments, so a user can run Doxygen to get full

documents in HTML or Latex. First of all, it generates basic documents based on spec-

ifications of models, hardware information, and mapping information. If a user writes a

detailed explanation in HOPES, the code generation framework inserts a detail into the

documents. Fig. 3.16 (a) shows a basic document with an application task graph. Be-

cause the code generation tool uses a DOT provided by [35], it generates a hierarchical

diagram of specified applications. Fig. 3.16 (b) shows individual task information, and it

contains the task and its port information. In addition, the framework also includes Doxy-

gen comments from multiple layers of codes written in the library code, so an application

developer helps to understand the detail of generated codes as long as he or she wants to

know the codes.

48

3.8 Related Works

There exist commercial tools that generate embedded software code from model-

based application specifications. MathWorks Simulink Coder generates a C program

from task-level specifications based on the Simulink model and Stateflow. While

dSPACE’s TargetLink also generates code through Simulink models, it is tailored to ECU

software code generation. Since the Simulink model is basically a simulation model,

functional correctness of the specification should be verified by simulation without any

static analysis. Another commercial tool is the National Instruments’ LabVIEW C Gen-

erator that generates a C code from a task graph specification. While these tools support a

multi-core processing element, they do not support a distributed embedded system where

multiple devices cooperate to perform an application. Also, no fault-tolerance method is

provided.

Automatic code generation from formal models has been extensively studied in

academia. The research team of Ptolemy II has proposed several code generation meth-

ods based on the data flow model ([36, 37, 38]) and on the combination of the FSM model

and a dataflow model [5]. To utilize the static analysis capability of the SDF model, some

researchers proposed to convert the Simulink model to SDF and generate code from the

converted SDF model [39]. Code generation from dynamic dataflow models is also re-

searched [40]. Previous researches on code generation from dataflow models are mostly

focused on the optimization of the synthesized program in terms of memory requirements

and real-time performance on a single processing element. The most closely related to

our method is the work [3] that proposes the task-level specification adopted in this work.

While it proposes a code generation flow from task-level specification, only preliminary

experiments are conducted to prove the idea. To the best of our knowledge, there is no

previous work that supports distributed embedded systems with diverse communication

methods and fault-tolerant code generation.

There exist researches on the program synthesis from a UML-based model. While

49

UML does not have formal execution semantics, fUML (Foundational UML) [41] is

standardized to support execution of UML. To describe fUML in textual notation, Alf

(Action language for fUML) [42] is used. [43] and [44] generate C++ codes from Alf and

mainly focus on translating Alf expression to C++ expression. Another work is [45], and

it modifies the front-end of GCC to directly translate fUML models to target binary codes.

Also, its generated assembly code size is compared with that from the C++ programming

language. The works related to fUML mainly focus on expressing the structural behavior

of applications, not parallel and distributed application behaviors.

There are also automatic synthesis methods based on UML profiles. Some re-

searchers use SysML [46] to design and synthesize codes for embedded systems. Authors

of [47] extend a basic Y-chart approach to ψ-chart approach which includes a commu-

nication model targeted on parallel and distributed embedded systems. However, their

target applications are focused on signal processing platforms, and they consider only an

intra-device communication code synthesis. [48] uses a SysML activity diagram to gen-

erate codes running on an ARM Cortex-M processor. Although it supports multi-threaded

code generation running on a real-time operating system, their target platform only uses

a single processor, not a multi-core embedded system. [49] synthesizes a functional be-

havior that is generated from Simulink Coder with platform-dependent communication

and synchronization codes from Acceleo [50] template codes. Though the work consid-

ers real-time embedded systems with multiple ECU components, its supported RTOS,

OSEK, is a single processor system running on each ECU component. Also, it does not

support a network-required distributed system where multiple devices cooperate to per-

form an application.

MARTE [51], a UML profile for real-time embedded systems, is applied in various

researches. [52] uses UML and Alf for structural and functional behaviors, and MARTE

is used to describe a schedulable task with mapping and timing information. Also, the

work is targeted on multi-core embedded systems. However, it cannot express distributed

50

embedded systems with networks. Another MARTE-based research is [53] which is fo-

cused on communication and concurrency of automatic code generation. It models com-

munication media with MARTE and defines a channel to be semantic of communication

and concurrency. Although it shows examples with stream-based parallel applications,

describing control behaviors is not considered.

Another UML-based model is ThingML ([54, 55]), a modified version of UML used

for specifying an IoT Application. It generates software codes for distributed heteroge-

neous systems. The authors of [56] proposed another technique based on the ThingML

model, presenting more detailed specifications related to communication. The target sys-

tem of ThingML is a distributed embedded system, similarly to our framework. How-

ever, this model is suitable to describe a control-oriented application but not adequate to

express the parallelism of a compute-intensive task such as object detection and track-

ing task. Also, fault-tolerant code synthesis is not considered. Another code generation

method from a UML-based model can be found in [57] which generates codes from the

UML Statechart, focusing on the control-oriented application.

Authors from [58, 59] introduce a domain-specific language to specify safety rules

for robot applications, and safety monitoring codes are generated from its specified rules.

They apply this technique on ROS and some robots with micro-controllers [60]. How-

ever, the scope of this research is limited to adopting safety monitoring. [61] is based on

ScicosLab [62] model which is used for modeling scientific software. It provides a toolset

to generate not only functional and control codes based on Scicoslab but also GUI and

communication codes. While they support multiple targets such as Linux, Windows, and

OSEK, their system design is restricted into a single device with a multi-core system.

Some communication APIs are defined to make it easy to write a distributed

program: MPI [63] and UCX [64] are two examples. Since they primarily focus on

high performance distributed systems, they are not suitable to use for low-power/low-

performance networks. ThingML [54] which is mentioned earlier supports plugins for

51

low-performance communication networks such as Bluetooth, UART, or IoT-related pro-

tocols. Another approach is to generate middleware that manages communications be-

tween heterogeneous devices [8]. There are some proposals to use a new modeling lan-

guage to generate communications codes for distributed systems ([10, 11]). However,

these researches are focused on a manual description of external communication only.

52

Figure 3.13: Entire task graph of surveillance system

53

Figure 3.14: Monitoring console screen during the experiment

(a) Task graph of ResNet inference example with two heterogeneous devices

(b) Internal task graph of each residual block in (a)
Figure 3.15: Task graph specification of ResNet inference with 152 layers

54

(a) Full application task graphs (b) Single task
Figure 3.16: Generated documents from the code generation framework

55

Chapter 4

Model Transformation for Fault-tolerant
Code Synthesis

4.1 Fault-tolerant Code Synthesis Techniques

Two popular methods to tolerate transient faults are re-execution and replication.

The former is to execute the same code multiple times until no error is detected in the

validation code that is appended at the end of the code. The latter is to execute multiple

copies of the same code concurrently on different processors and choose the final results

via majority voting that is performed after collecting the results from all replicas. The

number of replicas is usually set to an odd number to avoid a tie in voting. Suppose we

want to make task B tolerant of transient faults in the simple task graph shown in Fig.

4.1. In the figure, x and y mean the number of data samples consumed and produced by

task B at each invocation.

In the proposed methodology, we transform the task graph using a loop task and

synthesizing the program from the transformed SDF/L graph. Since such graph trans-

formation and program synthesis is done automatically, we can easily change which

fault-tolerant method to be applied to which tasks. Also, the application programmer

is relieved of the non-negligible burden of ensuring fault tolerance in the early phase of

software development, task-graph specification and task code definition.

56

Figure 4.1: A task graph example to apply a fault tolerance technique

(a) The behavior of active replication applied to task B

(b) The translated SDF/L graph for active replication
Figure 4.2: Fault-tolerant scheme based on active replication

The behavior of active replication is displayed in Fig. 4.2 (a) where task B is in-

stantiated three times and all instances of task B receive the same input data and send the

results to the voting task. Such behavior can be specified with a D-type loop in the SDF/L

model as shown in Fig. 4.2 (b). Task B is wrapped in a D-type Loop task called B Loop,

and the loop count of B Loop is set to 3 because the results of three task instances will

be compared. Two simple tasks are added before and after task B Loop. One is to copy

the input data sample three times and distribute them to three task B instances, and the

other is to perform majority voting among the received three results.

The behavior of the re-execution method is expressed in Fig. 4.3 (a). After executing

the first instance of task B, the correctness of the result is checked in a certain way. If it

is correct, the result is passed to task C. Otherwise, the program follows route (2) to

re-execute another task instance. If B2 fails to pass the acceptance test, it follows route

(3) which is similar to route (2) except executing task instance B3. In case there is no

easy way of testing the output correctness, we may use by re-executing the task more

57

(a) The behavior of re-execution applied to task B

(b) The translated SDF/L graph for re-execution
Figure 4.3: Fault-tolerant scheme based on re-execution

than once. If two out of three results are identical, the result is considered correct. Such a

scenario of re-execution can be expressed by a C-type loop as shown in Fig.4.3 (b). Inside

the C-type loop, one task is added automatically to check the correctness of the result by

designating the added task to set the exit-flag, and the added task may perform majority

voting after the C-type loop is iterated as many times as the loop count parameter at most,

which is 3 in this example.

We can configure fault tolerance parameters such as the number of task instances,

or the type of the validation task. By modifying the number, the degree of task fault tol-

erance can be adjusted. For example, if a user sets a re-execution count 3 to 5, a task

can tolerate two errors among five executions. Then, the application execution time will

increase. Basically, thick-bordered tasks in Fig. 4.2 (b) and Fig. 4.3 (b) such as a distrib-

utor task and a validation/voting task are automatically generated by the code generation

framework. These validation tasks use a majority voting to select the output. If an appli-

cation developer has own fault checking mechanism, he or she can replace a validation

task to a user-defined task.

58

A B C
x y

B1 B2

B4B3

(a) A task graph example to apply a fault tolerance technique to a task graph

A

B

C

(C-type) loop count: 3

End condition: data is not faulty

Validation

task

x B1 B2

B4B3
x y

y

(b) The translated SDF/L graph for re-execution

A

B

C
Distributing

task

(D-type) loop count: 3

B_Loop

Voting

task

Distributing port

y
3y3x

x

B1 B2

B4B3

3x

3y

(c) The translated SDF/L graph for active replication
Figure 4.4: SDF/L conversion on the task graph to apply fault tolerance

59

This fault-tolerance technique is applied to not only a single task but also a task

graph. Fig. 4.4 shows the example of applying each fault tolerance method on a task

graph. Although multiple input ports and output ports are connected to the outside of the

task graph B in Fig 4.4 (a), UEM supports multiple ports and channels between two tasks

so that the task graph B can be simplified as a task B with two input ports and output

ports in the upper task graph. Applying a fault tolerance technique to a task graph uses

only a single validation task for re-execution and two extra tasks for active replication,

so the extra overhead is smaller than applying fault tolerance techniques to all the indi-

vidual tasks one by one. However, the fault tolerance capability is also reduced because

a task-graph-level fault tolerance technique cannot tolerate multiple errors occurred from

different tasks in the task graph on different replications.

60

Figure 4.5: A dialog in HOPES to apply a fault tolerance technique

4.2 Applying Fault Tolerance Techniques in HOPES

The technique can be applied by changing the original dataflow model to the SDF

with a loop structure model, so the fault-tolerant code synthesis is not applied in the

program synthesis step in Fig. 2.1. It can be applied right after the application speci-

fication step. Because the model transformation is performed at the early stage of the

development process, static analysis and performance estimation can be applied to the

fault-tolerant dataflow models. As shown in Fig. 4.5, fault tolerance can be applied by

clicking some buttons and changing some parameters, so application developers can eas-

ily use the technique without background knowledge.Deciding on which task to apply

fault tolerance techniques is introduced in [65], and the paper chooses proper tasks and

techniques from mixed-criticality tasks with real-time constraints.

61

Table 4.1: Comparison of applying fault tolerance with manual implementation

Fault tolerance method Efforts to apply
Proposed Approach 3 clicks, 1 word typing
Manual active replication (single task) 154 lines
Manual re-execution (single task) 56 lines
Manual active replication (task graph) 154 + 219 lines
Manual re-execution (task graph) 56 + 219 lines

4.3 Experiments

4.3.1 Development Cost of Applying Fault Tolerance

Using HOPES UI, applying fault tolerance to tasks is easy with a few clicks. To

prove the benefit of development productivity, we implemented active replication and re-

execution manually and calculated the number of lines. Table 4.1 is the result of manual

implementation. Note that active replication takes more efforts compared to re-execution

because active replication needs task creation and processor mapping logic which is

tightly dependent on OS platforms. Moreover, if an application developer wants to ap-

ply fault-tolerance on multiple tasks, he or she needs to implement task communication

codes between tasks. Manual implementation for applying fault tolerance requires up to

400 lines of codes, and an application developer expects to know background information

about multi-task and communication programming which is hidden by UEM.

4.3.2 Fault Tolerance Experiments

To verify the improvement of fault tolerance of a program against transient faults

by the proposed method, a fault injection experiment is conducted. We developed a fault

injection tool [66] which is another contribution to this work. This fault injection frame-

work can inject a fault to both the kernel and application layer of the Linux system. The

detailed description is shown in Chapter 5. The test example used for fault injection is

the x264Encoding task shown in Fig. 3.13 of the monitoring console. It has a child task

graph with five tasks, and fault injection is applied to the ME task at a specific location.

62

(a) Original image (b) Fault-injected image
Figure 4.6: Original image and fault-injected image

Table 4.2: The number of injected faults with varying fault tolerance configurations
hhhhhhhhhhhhhhhhhConfiguration

Injection rate 2% 5% 10%

No fault tolerance 601 1,421 2,952
Active replication (3 cores) 1,849 4,459 8,821
Active replication (5 cores) 2,941 7,455 14,690
Re-execution (3 times) 1,229 3,151 6,483
Re-execution (5 times) 1,849 4,730 9,841

The motion estimation (ME) task takes more than 60% of the encoding time. Injected

faults cause spots in the output image so that the relative degree of error occurrence can

be noticed in the output image displayed by the Deblock task, which is illustrated in Fig.

4.6.

Table 4.2 shows the number of faults injected, and Fig. 4.7 shows the number of er-

ror occurrences as we vary the fault injection rate and fault tolerance configuration. With

the same fault injection rate, more faults are injected when the fault tolerance method

is applied. Nonetheless, it could be observed that the proposed fault tolerance method

reduces the error occurrence rate from 70% to 99.5%. As we increase the number repli-

cations on the processing cores or the number of re-executions, the error occurrence rate

is decreased noticeably.

Another set of experiments is conducted to find how long the execution time is in-

creased by applying the fault tolerance methods on the Intel i9-9900K (3.6 GHz) machine

63

Figure 4.7: The number of error occurrences with varying fault tolerance configurations

Table 4.3: Fault tolerance settings and their labels

Label Fault tolerance settings
A No fault tolerance
B ME (Active replication, 3 cores)
C ME (Active replication, 5 cores)
D ME (Re-execution, 3 times)
E ME (Re-execution, 5 times)

F
ME (Active replication, 3 cores),
Encoder (Active replication, 3 cores)

G
ME (Re-execution, 3 times),
Encoder (Active replication, 3 cores)

H ME + Encoder (Clustered, active replication, 3 cores)
I ME + Encoder (Clustered, active replication, 5 cores)

64

Figure 4.8: Comparison of total execution time by fault tolerance settings

with 64GB memory and Ubuntu 18.04 operating system. Nine fault tolerance settings are

defined, as shown in Table 4.3. Fault tolerance techniques are applied to task ME only

or both tasks ME and Encoder together. Fault-tolerant code generation can be applied to

a cluster of tasks as well as an individual task. In settings from F to J, a fault-tolerance

method is applied to the cluster of the ME and the Encoder task. Note that a re-execution

method is not applied to task Encoder because the task has an internal state.

Figure 4.8 shows the total execution time with various fault-tolerance settings. The

re-execution method increases the execution time more than the active replication method

with the same degree of fault tolerance, as expected. Comparison with setting F and H

reveals that the execution time of cluster tasks is shorter than the sum of the individual

tasks with the same fault tolerance method.

4.4 Random Fault Injection Experiments

Because the previous experiment’s fault injection is targeted on a specific location of

each task, we performed a random fault injection experiments on fault-tolerant memory

spaces. To conduct this experiment, we used a ptrace-based fault injection tool which

65

Table 4.4: Error occurrences of random fault injection (3,000 runs)

No fault tolerance Active replication (3 copy)
Number of faults injected 599,684 873,947
Normal 1,846 (61.53%) 2,296 (76.53%)
Hang 42 (1.40%) 80 (2.67%)
Crash 355 (11.83%) 422 (14.07%)
Silent data corruption (SDC) 757 (25.23%) 202 (6.73%)

is also developed by us. As the ptrace-based fault injection method is already studied in

[67] and [68], this is a representative run-time fault injection method for application-level

programs. The benefit of using a ptrace-based fault injection tool compared to a GDB-

based fault injection tool is a low latency when injecting faults, so many faults can be

injected with negligible delay on a victim program. The target program manages most

of its data on the BSS section, so we injected bit-flip faults on the specific range of BSS

section area which is related to fault tolerance such as fault-tolerant tasks and generated

tasks.

Table 4.4 shows the number of errors from 3,000 runs. We used the same x264

encoding example which is delivered on the previous section and applied a 3-copy active

replication on the task graph which consists of two tasks: ME and Encoder. As a fault

tolerance is applied on a task graph, there is only one distributor task and majority voting

task. The errors are categorized into 3 types: hang, crash, silent data corruption (SDC).

We detected a hang if the program is not ended twice longer than the expected execution

time, and a crash is detected when the program is exited unexpectedly with a signal

such as segmentation fault. Because this application generates an output x264 file, we

checked the output file with the expected output file. If two files are different, we consider

this case as an SDC. According to the result, errors from SDC are drastically reduced

compared to the program with no fault tolerance. However, hang and crash are increased.

The reason why crash errors more frequently happen is that an index value used for

accessing an array is bit-flipped. The fault-tolerant program may contain three times more

related variables, so the crash rate is increased. Hang occurs since data transfer is not

66

happened because of errors on channel IDs. Also, the fault-tolerant program has more

channel ID variables, and this reason causes more hangs. To protect the program from

hang/crash errors, multi-process code generation is needed since an error affects an entire

multi-threaded process. Multi-process code generation can be future work to enhance the

fault tolerance from critical errors.

67

4.5 Related Works

There exist software-based fault tolerance techniques that duplicate instructions to

enhance resilience from error. SWIFT [13] duplicates arithmetic and logical operations

with unused resources. SWIFT-R [14] is an enhanced version of [13], and it triplicates

instructions and performs a majority voting to recover data. nZDC [69] duplicates a con-

trol flow and load instructions and rechecks the store data to tolerate errors that are

made by branch and load/store operations. ELZAR [70] uses a SIMD (Single Instruc-

tion Multiple Data) instruction to operate redundant behavior to reduce the execution

overhead. These instruction-level fault tolerance techniques require a modified compiler

which means target-dependent to the CPU architecture, and fault tolerance is applied to

the whole application.

The second category of software-based fault-tolerance techniques is duplicating the

main thread of an application. [15] introduces SRMT (Software-based Redundant Multi-

Threading) which consists of a leading thread and a trailing thread. A trailing thread is

a duplicated version of a leading thread, and it receives data from a leading thread and

checks the data. If a trailing thread finds an error, it throws an ack to a leading thread.

[16] is a modified version of SRMT. A leading thread and a trailing thread both load

data separately, but a leading thread only stores data. A trailing thread checks data stored

by a leading thread to detect errors. Because of this operation, it can detect unwanted

write errors. [17] provides an error recovery method with one main thread and two re-

dundant threads. Depending on the fault location of a thread, it restores a state. If the

main thread causes a fault, it restores a state and data and retries store operation. These

thread duplication-based fault tolerance methods also require a modified compiler. Also,

fault tolerance is applied to the whole application.

There is a framework that provides fault tolerance for developing applications. [71]

is a fault-tolerance framework targeted on the BOSS real-time operating system. It is

based on C++ and provides classes to inherit and apply a fault tolerance per each thread.

68

It supports multiple fault tolerance methods and other necessary features such as a voting

thread or fault tolerance thread scheduler. The scope of applying fault tolerance is similar

to our proposed approach, and the framework makes it easy to apply various fault toler-

ance methods. However, it is worked as a thread, not a formal model, so static analysis

and performance estimation cannot be used for this framework.

A model-based application-level technique is proposed in [72]. Similarly to our pro-

posed technique, it covers the entire flow from initial model-based specification, formal

analysis, and program synthesis, targeting a distributed embedded system. It also can

generate fault-tolerant codes based on Triple Modular Redundancy (TMR); active repli-

cation, passive replication, and semi-active replication can be selectively applied in the

program synthesis phase. However, it uses a meta-model for initial specification and per-

forms model-to-model transformation in the subsequent steps while the proposed method

starts with the dataflow based task graph. It mainly focuses on control-oriented appli-

cations while ours consider both control tasks and compute-intensive tasks. Also, fault-

tolerant method in [72] is applied to the entire program, but our framework can selectively

apply fault tolerance techniques to some tasks with different configurations.

69

Chapter 5

Fault Injection Framework for Linux-based
Embedded Systems

5.1 Background

5.1.1 Fault Injection Techniques

Fault injection can be performed by injecting faults directly to hardware, or by em-

ulating faults in software. Direct fault injection to hardware has been made by pin-level

injection [73, 74] which injects faults through direct physical contact to the target chip,

ion radiation [75], electromagnetic [76], or laser [77]. This approach, however, requires

us to modify the target device or add an extra hardware module, which is not always

possible. To overcome this difficulty, software-implemented fault injection (SWIFI) tech-

niques have been proposed to emulate hardware faults by software [78, 79, 80].

SWIFI techniques that perform fault injection in the code-level of programs can be

used not only for emulating hardware faults but also for robustness testing of software

[81]. SWIFI for hardware fault emulation is based on the examination of how hardware

faults affect the software. On the other hand, SWIFI for robustness testing, also known

as Software Fault Injection (SFI), is focused on test coverage increase [82] and detection

of software bugs [83, 84]. According to [85], emulated faults are classified into three

types—data errors, interface errors, and code changes. Data errors are related to hardware

70

Host Machine

Target Linux Kernel

Debug coreKGDB Over Console (KGDBOC)

KGDB demux (Kdmx)

Console

GDB

Serial port communication

Figure 5.1: The overview of a kernel debugging environment with KGDB

faults such as bit-flips or network data corruption. Depending on which kinds of interface

faults affect a component, interface errors can be induced by a fault in the hardware,

software, or environment. Code changes are software faults that emulate software bugs

based on the field data or mutating operators. Our tool emulates hardware faults to raise

data and interface errors.

5.1.2 Kernel GNU Debugger

Kernel GNU Debugger (KGDB) is a kernel debugging tool which interacts with a

remote GDB. KGDB is officially supported in the Linux kernel since version 2.6.26. To

use KGDB, a separate host machine is needed that communicates with the target system

through serial port communication. The kernel debugging environment with KGDB is

shown in Fig. 5.1.

In the target Linux kernel, KGDB consists of two modules. One is ”debug core”

and the other KGDBOC (KGDB Over Console). The former is responsible for kernel

debugging while the latter is used to interact with a remote host machine. The KGDBOC

module communicates with the KGDB demux (Kdmx) module in the host machine by a

serial port communication. The Kdmx module creates two pseudo-terminal ports so that

71

location

Breakpoint

Instruction

Instruction

Instruction PC

PC
Exception

handler

…

…

(4) Resume

instruction

(1) Set exception

handler

(2) Set breakpoint

(3) Call exception

handler

Figure 5.2: The conceptual diagram of hardware breakpoint mechanism
1 // Set breakpoint address
2 asm volatile("mcr p14, 0, %0, c0, c0, 4" : : "r" (addr));
3 // Enable breakpoint
4 asm volatile("mcr p14, 0, %0, c0, c0, 5" : : "r" (0x21e7));

Figure 5.3: Code example to set and enable a hardware breakpoint

the connection can be made with the GDB program and the console program such as

minicom [86] via a single serial port.

5.1.3 ARM Hardware Breakpoint

ARM supports hardware breakpoints that are used for suspending the execution of

the system on a specific instruction or memory access. For hardware breakpoints, we have

to register instructions, called breakpoints, or memory locations, called watchpoints, as

illustrated in Fig. 5.2. When the system meets a registered instruction, a prefetch-abort

exception occurs. On the other hand, a data-abort exception occurs when a registered

memory location is accessed. In a multiprocessor system, breakpoints and watchpoints

need to be set on each CPU individually.

As the hardware breakpoint is a platform-dependent feature, assembly instructions

are used to register and enable breakpoints or watchpoints. Figure 5.3 shows a code ex-

ample to set and enable a hardware breakpoint for an ARM processor. The last argument

of mcr instruction specifies the special purpose debug register: 4 to set and 5 to enable

72

the breakpoint. To set a breakpoint, we provide the address of the breakpoint while we

specify the adequate flags (0x21e7) that the ARM processor defines to enable the break-

point.

73

5.2 Fault Injection Framework

5.2.1 Overview

For kernel-level fault injection, the proposed fault injection framework consists of

two complementary fault injection methods based on KGDB and hardware breakpoints.

Fault injection through KGDB has a very desirable feature to manipulate data without

changing any kernel code. If the kernel is built with the KGDB option on, the GDB can

refer to the debug information augmented to the kernel image. It can insert a breakpoint

at any line in the source code and access any data structure of the source code as well

as memory locations. For instance, access to complex data such as a multi-dimensional

pointer to a member variable of structure can be made easily. Also, this method has

the potential to support other architectures because the Linux kernel supports KGDB not

only on ARM but also on other processors such as x86 64, SPARC, PowerPC, and MIPS.

While KGDB provides convenient means of fault injection without kernel modification,

the execution time overhead is high because of serial communication delay. Also, it can-

not emulate a timing-related error.

Our framework provides two ways of using hardware breakpoints for fault injection,

generic fault injection and custom fault injection. For generic fault injection, it adds a

separate fault injection module to the kernel that has configurable options to test a range

of different cases. We may change the fault locations and fault types at run-time without

recompilation once the kernel is built with the fault injection module. The fault types it

supports are bit-flip error and timing delay. Since it incurs negligible execution overhead,

breakpoints can be set in a time-critical code section such as an interrupt handling routine,

which should be avoided in the KGDB method.

The custom fault injection method is similar to the compile-time fault injection tech-

nique in that fault injection position is predefined by the inserted code. Similarly to the

generic fault injection method, it adds a specialized fault injection module to the ker-

74

nel, but with customized configuration options. It gives most freedom to the tester to

support other fault types that the generic fault injection method and the KGDB method

cannot support. For instance, we can customize the device interface software to emulate

the failure of a specific hardware device. In this work, we use the custom fault injec-

tion method to emulate the failure of an embedded multi-media card. Even though it has

low execution overhead as the generic hardware breakpoint method, it requires kernel

recompilation whenever a new fault location and a new fault model is defined. Hence this

method is optionally included in FIFA only when we need to design a complicated data

manipulation logic that the other methods cannot provide.

For injecting a fault to an application layer, a GDB and a GDB server are used

to inject faults on an application located at a local or remote device. This method also

has same merits and demerits of the KGDB method. a GDB prolongs the latency of

the application noticeably. However, it enables us to inject faults regardless of the system

architecture running the application and faults on multiple applications running on remote

devices simultaneously. Also, we can inject a fault at a specific location with debugging

symbols such as source code file, line number, and variable name. This feature is useful

for debugging by repeating the same fault scenario.

Fig. 5.4 illustrates the architecture of the fault injection framework. It includes four

software components: fault injection manager, kernel fault injector, hardware breakpoint

fault injection module, GDB-based application fault injector.

5.2.2 Architecture

Figure 5.4 illustrates the architecture of our fault injection framework. In addition to

the KGDB environment, as shown in Fig. 5.1, it includes four additional software com-

ponents: fault injection manager, kernel fault injector, hardware breakpoint controller,

hardware breakpoint fault injection module, and GDB-based application fault injector.

The fault injection manager manages input/output files and coordinates multiple

75

experiments running on different devices. It communicates with the kernel fault injector

to send configuration data and receive results. The fault injection manager is designed as a

target-independent module, meaning that it can communicate with various kinds of fault

injectors such as application-level fault injectors or non-Linux system fault injectors.

Furthermore, it can perform multiple fault injection experiments to enable testing on

multiple devices in parallel. For each experiment, the fault injection manager creates

a separate kernel fault injector. The tester can design a fault injection campaign by a

configuration file that the fault injection manager refers to. After finishing a fault injection

campaign, an output file is created. An output file contains fault injection time, changed

values by fault injection, error information, and some debugging data.

The kernel fault injector interacts with KGDB and the target machine console

through serial communication. First, it triggers KGDBOC by sending console com-

mands via serial communication. Then, it executes a GDB application on a host machine

and connects it to KGDB on the target Linux with GDB Machine Interface(GDB/MI)

commands. To insert faults, it either adds breakpoints through GDB or executes a hard-

ware breakpoint controller to enable predefined hardware breakpoints for fault injection

through the console. All actions except connection/disconnection to KGDB and hardware

breakpoint insertion/deletion are performed by GDB/MI commands. Note that a KGDB

breakpoint is used not only for inserting breakpoints but also for monitoring specific code

paths or detecting kernel error logs.

The hardware breakpoint controller is a user application that runs on the target ma-

chine. It supports both custom and generic hardware breakpoint fault injection by receiv-

ing arguments from the host machine and setting appropriate options in the hardware

breakpoint fault injection module.

The hardware breakpoint fault injection module is located inside the kernel as a sep-

arate module. It handles requests from the hardware breakpoint controller by organizing

a proper fault injection campaign which is performed within the exception handler. The

76

module has responsibility for exception handler registration and hardware breakpoint

management.

To use the GDB-based application fault injector, the target application must be exe-

cuted with a gdbserver. A gdbserver is a program that enables a debugging on the remote

application, and it requires a TCP or serial communication. After launching the target

application via a gdbserver, the GDB-based application fault injector executes a local

GDB and accesses to a gdbserver for fault injection. The rest of the process is similar to

KGDB-based fault injection.

77

Figure 5.4: The architecture of the fault injection framework

78

5.2.3 Fault Injection Techniques

To inject faults via KGDB or hardware breakpoints, there are several attributes to be

defined. We first explain how these attributes are defined in the proposed fault injection

techniques and next how faults are injected in each technique in sequence.

5.2.3.1 Fault Injection Attributes

There are three main attributes for a fault injection campaign.

• Fault Injection Point: A fault injection point represents a fault event that is de-

scribed by a pair of information, position and object. From the hardware perspec-

tive, fault time indicates the position where a fault is injected, and a fault object

indicates the cause of a fault on a hardware component. In the framework, the fault

position is defined by a combination of the source code file and a line number to

inject the fault when a specific instruction/code path is executed. The fault object is

defined by a specific variable or register that the fault has an effect on. By adjusting

these two parameters, the tool defines a fault injection point.

• Fault Injection Type: A fault injection type defines how data or state is changed.

The most popular fault injection type is bit-flip which inverts a specific bit of data.

Depending on a fault injection type, different errors can be emulated for the same

fault injection point.

• Fault Frequency: Fault frequency indicates how often a fault occurs. As presented

in [87], fault frequency is divided into three types: transient, intermittent, and per-

manent. A transient fault occurs only once, an intermittent fault takes place repeat-

edly, and a permanent fault preserves a fault value permanently.

79

5.2.3.2 Fault Injection via KGDB

Defining a fault injection point via KGDB is easy because GDB already has a feature

to utilize symbol information to trace the execution of a program. With symbol informa-

tion, the KGDB method can set the fault injection point to any line of the source code by

setting a breakpoint at that line and inject a fault by manipulating variable values in the

line. In addition, since GDB supports conditional break, we can define a fault injection

point conditionally. With a conditional breakpoint, we can narrow down the fault con-

dition in repeated experiments to trace the specific fault case further. Note that not all

features provided by GDB are supported by KGDB.

After reaching a fault injection point, we need to change the data to emulate a fault.

Since KGDB supports data modification, we can perform data manipulation on variables

or registers in various ways, including bit inversion, bit stuck-at-one, and bit stuck-at-

zero. Stuck-at-one or stuck-at-zero means that the bit value is fixed to one or zero regard-

less of the program behavior.

For KGDB fault injection, only transient or long-interval intermittent faults are ap-

propriate fault frequency because of its significant injection overhead. The overhead is

mainly caused by a long delay between GDB and KGDB communication. For manipu-

lating data, multiple times of serial communication are needed to transfer multiple GDB

commands and results. Since the delay easily becomes hundreds of milliseconds, fre-

quent fault injections should be avoided in the KGDB method. Implementing a transient

fault with a KGDB breakpoint is simple because the only job to do is disabling a GDB

breakpoint after the first breakpoint hits. The framework provides options to configure

the number of faults to occur so that a user can conduct a transient or long-interval inter-

mittent fault in the KGDB method.

80

5.2.3.3 Fault Injection via Hardware Breakpoint

Unlike the KGDB method that can use the debugging symbol information, the fault

injection point for the hardware breakpoint method is restricted to the start of a function.

By computing the relative distance from the start position of a function, we can access a

function argument or a variable that is placed in a fixed distance away. By manipulating

the data value of the variable, we emulate a faulty behavior of the function.

In addition to manipulating the function argument, the hardware breakpoint method

can insert some time delay in the function when a breakpoint is hit, without delaying the

whole system. Also, by exploiting the fact that a fault is injected at the exception handler,

we are able to define a customized fault scenario by writing an appropriate code inside

the exception handler. Detailed examples will be discussed in section 7.

Because the fault injection overhead of hardware breakpoint methods is very low

compared to KGDB, faults can be injected frequently. Thus, short-interval intermittent

or permanent faults can be modeled.

5.2.3.4 Comparison of Two Fault Injection Techniques

We summarize the difference between two complementary methods in Table 5.1,

combining both generic and custom hardware breakpoint methods into one. To emulate a

transient fault and a long-intermittent fault, the KGDB method is superior to the hardware

breakpoint method since it provides rich capabilities to monitor the system status and

to set a virtually unlimited number of breakpoints at once. Since it requires no kernel

modification, our framework can be installed on a real system with minimal efforts.

On the other hand, to emulate intermittent or permanent faults, the hardware break-

point method is preferred because of its low injection overhead. For more details about

the injection overhead between two techniques, section 5.3.2 presents experimental re-

sults on the actual execution time overhead per a single fault injection in both methods.

Unlike the KGDB method, the hardware breakpoint method is not intrusive, meaning that

81

Table 5.1: Comparison of two fault injection techniques

Property KGDB Hardware breakpoint
Data-manipulated fault injection Supported Supported

Customized fault injection Not supported Supported
System during injecting a fault stop non-stop

Injection overhead High Low

Kernel-recompile Not needed
Needed for adding new

customized fault injection
Breakpoint limitation 1,000 6

other processors continue working while the processor of interest stops at the breakpoint.

While the KGDB method supports a single fault model, bit-flip type of data manipula-

tion, the hardware breakpoint method provides other types of fault, time delay, and device

failure. To take advantage of both techniques synergistically, we integrate two fault injec-

tion techniques into a unified fault injection framework, sharing the same fault injection

manager and kernel fault injector modules.

82

5.2.4 Implementation

In this section, we explain the implementation details of the proposed fault injec-

tion framework. We first explain how a fault injection campaign is set up by defining a

configuration file that is read by the fault injection manager. Next, the fault experiment

workflow is presented based on the configuration file. Finally, error detection mechanisms

are presented.

5.2.4.1 Fault Injection Configuration

As explained in the previous section, a fault injection experiment can be config-

ured by the configuration file that the fault injection manager refers to. We use the same

file format as the libcon f ig library, C/C++ configuration library, assumes. An example

segment of the configuration file is shown in Fig. 5.5. Since the manager can execute mul-

tiple experiments concurrently, experiments are defined as an array with the experiments

key. Each element specifies an experiment with the timing information when and how

long the experiment will be performed based on the host machine’s wall clock time;

fault start time and fault end time indicates when to start and finish fault injection cam-

paigns, and max monitoring time implies the maximum time to monitor the kernel.

Each experiment is associated with a section that defines the experiment method.

For example, in Figure 5.5, experiments has one element, and its fault injector value is

set to kernel fault1 which points to a section named kernel fault1. To design an additional

experiment, we should add a new experiment element in experiments and specify a new

section such as kernel fault2. The kernel fault1 section contains the necessary informa-

tion to perform a fault injection campaign. A configuration file also includes other global

information that is common to all experiments such as output file path, log directory path,

or log printing level.

Depending on which kind of fault injection methods is used, fault configuration

is described differently. For KGDB fault injection, we can specify multiple fault injec-

83

1 ...
2 summary_file_path = "my_report_file";
3
4 log_dir = "log_hwb";
5 log_level = 4;
6
7 kernel_fault1: {
8 usb_path = "/dev/ttyUSB0";
9 gdb_path = "/opt/tools/bin/arm@-@eabi@-@gdb";

10 ...
11 fault_scenario = ({
12 area = "drivers/.../mfc/s5p_mfc_cmd_v6.c";
13 variable = "cmd";
14 line_number = 29;
15 bit_flip_location = 30;
16 bit_flip_style = "bit@-@flip";
17 condition = "cmd == 4";
18 fault_occurrence = "once";
19 }, {
20 type = "fault_hwb";
21 fault_type = "delay";
22 area = "drivers/input/evdev.c";
23 line_number = 123;
24 fault_occurrence = "once";
25 timing_delay = 10;
26 });
27
28 kernel_log: {
29 ...
30 };
31 }
32
33 experiments = ({
34 experiment_name = "mfc_fault_injector";
35 fault_start_time = 2000;
36 fault_end_time = 15000;
37 max_monitoring_time = 40000;
38 fault_injector = "kernel_fault1";
39 });
40 ...

Figure 5.5: An example segment of the kernel fault injector configuration file

84

tion points in the fault scenario field. Each item of fault scenario includes the location

information of the source code file, line number, variable name, and break condition.

Moreover, the fault injection style can be configured further to specify fault injection fre-

quency, bit-flip location, and bit-flip style. Specification of generic hardware breakpoint

fault injection is similar, but it has some different options. It needs to specify fault type

to indicate which kind of faults is used. Each fault type is associated with particular op-

tions. In Figure 5.5, timing delay option is specified associated with the ”delay” fault

type. Custom hardware breakpoint fault injection has no fault scenario field. It is de-

fined by a special section because most options are not shared with other fault injection

methods.

The configuration file additionally supports auxiliary options such as watching the

specific variable or kernel logs. To collect error logs from the kernel, a breakpoint can

be set at a specific location, and this information is defined in the kernel log section. The

kernel log section has options for setting a source code and line number. Since different

kernel versions may have different kernel codes for printing kernel logs, configurable

options are provided to support different kernel versions. For supporting a trace to error,

the call stack and the current process information are collected as a log. In Figure 5.5, the

fault scenario defines two fault injection points and one kernel log section whose details

are omitted due to space limitation.

5.2.4.2 Fault Experiment Workflow

After receiving the configuration data from the fault injection manager, a kernel

fault injector manages each fault experiment according to the workflow, as described in

Figure 5.6. First of all, the kernel fault injector executes GDB and establishes serial com-

munication with a console on the target machine. Then, the kernel fault injector sets up a

connection to KGDB through GDB and inserts KGDB breakpoints. Since the hardware

breakpoint controller is a user application running on the target machine and inserts a

85

Execute kernel

fault injector

Execute

GDB

Connect to

KGDB (G)

Set KGDB

breakpoint (G)

Execute hardware

breakpoint controller (S)

Resume

run (G)

Setup serial console

connection (S)

Breakpoint

captured? (G)

Maximum

monitoring

time is passed?

Which

breakpoint

captured?

Collect as an

error log (G)

Collect as a HW

breakpoint fault

location (G)

Insert a

fault (G)

kernel log

hardware

breakpoint

fault

KGDB

fault

Yes

No

No

Terminate

kernel

fault injector

(G): Through GDB port

(S): Through serial console port

Print a

value (G)

watch

Figure 5.6: The workflow of fault injection framework

86

breakpoint with a system call, the kernel must be resumed by KGDB.

Until the specified maximum monitoring time is reached, the target system is mon-

itored by KGDB. During the experiment, manual workload generation such as running

an app or pressing input devices is needed depending on the location of faults to be in-

jected. If a breakpoint is captured, it is handled differently, depending on the following

four cases: a KGDB breakpoint, a hardware breakpoint, a kernel error log, a variable

to be watched. When the maximum monitoring time is passed or kernel panic occurs,

the kernel fault injector collects the final result and is terminated by the fault injection

manager.

To conduct experiments with KGDB, serial port communication with the KGDB

module is implemented via GDB/MI which is an interface through a pipelined inter-

process communication between GDB and a third-party tool. Some of the major com-

mands used by the kernel fault injector are listed in Table 5.2. For controlling KGDB

breakpoints, -break-insert, -break-condition, and -break-delete commands are used. For

data watch and manipulation, -var-assign and -data-evaluate-expression are used. Com-

mand -symbol-list-lines is used for hardware breakpoints because the hardware break-

point controller needs a virtual address to set a breakpoint.

For hardware breakpoint fault injection, we have implemented the hardware break-

point module and the hardware breakpoint fault injection controller. Setting and clearing

hardware breakpoints and customizing exception handlers to run fault injection functions

must be done at the kernel level. Therefore, the hardware breakpoint module which is

responsible for these operations must be implemented as a kernel module. This kernel

module resides in the target kernel, and it receives ioctl commands from the user level

program. The hardware breakpoint controller is a user-level program that serves as a

bridge between the KGDB module and the hardware breakpoint module.

The current implementation of our proposed fault injection framework contains

some custom hardware breakpoints on specific hardware interface modules to emulate

87

Table 5.2: The main GDB/MI commands used for fault injection via KGDB

GDB/MI commands Description Usage
-break-insert Insert breakpoint Insert fault injection point

-break-condition
Add condition on
breakpoint

Insert fault injection point with
condition

-break-delete Delete breakpoint
Remove injection point for
transient fault

-var-assign Set variable Update manipulated variable

-data-evaluate-
expression

Check variable value
Get variable,
process information,
manipulated value

-symbol-list-lines
List line and address pair
of specific source file

Convert source line number to
virtual address

non-trivial errors such as device failures and timing delay. Faults are injected in the ex-

ception handler. At the time when the breakpoint event arises, we are able to access the

register values of the handler. By manipulating those values, we can change not only the

values of function arguments but also the resuming point after finishing the exception

handler routine. This way, non-trivial errors such as device failure and no response could

be emulated.

5.2.4.3 Error Detection Mechanism

KGDB can detect some kinds of errors occurred in the target Linux. The fault in-

jector supports three kinds of error detection: kernel panic, hang, and kernel error log.

Panic detection is naturally supported because KGDB notices a panic to remote GDB

with signal information such as segmentation fault.

Kernel error logs are printed when the kernel or a device driver uses printk or a

similar log-printing function. A breakpoint is inserted at vprintk emit function which

stores error logs to buffer. Each kernel log has a degree, and not all kernel logs mean an

error. To collect appropriate error logs, the minimum log level can be adjusted in the fault

configuration file. Note that kernel log capturing from KGDB incurs significant overhead

because of using a KGDB breakpoint. To avoid the overhead, the fault injector can also

88

collect logs which are printed on a serial console of the target machine.

In case the target Linux does not respond to both a serial console and a GDB com-

mand, hanging error is suspected. To detect hanging, the kernel fault injector sends a

special command which disables the console on Linux and invokes an interrupt to com-

municate with KGDB. It is similar to sending a SIGINT signal by pressing Ctrl+Z in a

GDB application. If Linux responds nothing to this command, the kernel fault injector

decides that Linux hangs.

5.2.4.4 Tool Usage

Our tool works on a command-line interface, and a shell script is used to perform

fault injection campaign. At first, the script executes the Kdmx module to create two

pseudo-terminal serial device paths and writes the serial device paths to the fault injection

configuration file. Next, the script starts the fault injection manager with the configuration

file as an argument. The fault injection manager reads the configuration file and runs the

kernel fault injector to perform fault injection experiments. Because our tool does not

support automatic workload generation, the user must generate the workload manually

during the fault injection experiment. After finishing the experiment, the tool produces

console output logs and the summarized result of the fault injection test.

89

Table 5.3: Hardware and software specification of ODROID-XU4

Feature Description

Processor
Samsung Exynos5 Octa

(ARM Cortex-A15 Quad 2Ghz, ARM Cortex-A7 Quad 1.3GHz)
Memory 2Gbyte LPDDR3 RAM at 933MHz

OS Android 4.4.4
Kernel Linux Kernel 3.10.9

5.3 Experiments

5.3.1 Experiment Setup

To perform fault injection experiments, our tool is implemented on an ODROID-

XU4 system which has the following specifications as shown in Table 5.3. The Linux

kernel for ODROID-XU4 is distributed from the manufacturer’s GitHub website1. The

host machine used in the experiments is an i7-3770 system with 8GB memory, running

Ubuntu Linux 14.04. The host machine and ODROID-XU4 are connected through a

USB-UART bridge cable that is plugged into the ODROID serial console port. To use

KGDB, we need to change the kernel configuration to enable the KGDB option that

can be found in menuconfig. Except for changing the configuration, no kernel source

modification is required. For ARM hardware breakpoints, we added an additional kernel

module, hardware breakpoint fault injection module, to the kernel.

We first examine the performance overhead caused by two fault injection techniques.

Next, we present some fault injection experiments that demonstrate the fault injection

capabilities of our proposed framework. The observed events are summarized in Table

5.5.

5.3.2 Performance Comparison of Two Fault Injection Methods

Fault injection overhead is defined by the additional execution time caused by fault

injection operation and its resultant behavior. To measure the injection overhead of both

1https://github.com/hardkernel/linux (branch: odroidxu3-3.10.y-android)

90

methods, a test module is added in the kernel which handles the ioctl operation of a

specific device file called /dev/testtarget. When calling the ioctl operation, the test mod-

ule invokes a dummy function named function call test. Since the hardware breakpoint

method can specify a breakpoint at the starting address of a function, the dummy function

is defined for setting a breakpoint. We measured the time duration between the function

call of function call test and the first instruction of the function. A kernel time mea-

surement function with a microsecond time unit, do gettimeofday, is used to acquire the

current time at each location. Without any breakpoints, the measured time duration be-

comes 0 or 1 microsecond which means the execution time is less than a unit of time and

is short enough to be ignored.

For hardware breakpoint fault injection, three different versions of the test code have

been performed: defining a hardware breakpoint only, a hardware breakpoint with fault

injection, and a hardware breakpoint with kernel log printing. Kernel log printing is used

for displaying the fault injection result using the printk function. Similarly, three different

experiments are conducted for KGDB fault injection: setting a breakpoint only, setting

a breakpoint and inserting a bit-flip fault, and performing information retrievals such as

stack trace and the current process information at a breakpoint. From these experiments,

we can divide the fault injection overhead into three parts: setting a breakpoint, injecting

a fault, and getting the result back.

The performance measurement results with a single fault injection are shown in

Table 5.4. Each result is obtained by taking the average time after repeating the same

experiment ten times. Table 5.4 shows that hardware breakpoint fault injection is 38,670

times faster than KGDB fault injection if no kernel log is printed out. If the kernel log

is printed in the hardware breakpoint method, the overhead is increased significantly

by 1,460 times, which is still 30 times faster than the KGDB method. In the KGDB

method, the injection overhead varies depending on how many behaviors are performed

during a breakpoint. Because information retrieval needs more communications to obtain

91

Table 5.4: Single fault injection overhead of KGDB and hardware breakpoint methods

Breakpoint overhead type Average time (µs)
Hardware breakpoint only 4.00

Hardware breakpoint with bit-flip fault injection 4.67
Hardware breakpoint with kernel log printing 6245.33

KGDB breakpoint only 142277.22
KGDB breakpoint with bit-flip fault injection 180587.67

KGDB breakpoint with full information retrieval 367601.78

debugging information, the overhead is two times higher than the overhead of the KGDB

breakpoint fault injection.

The overhead per each breakpoint of two fault injection methods helps us to esti-

mate the total performance penalty during fault injection experiments. The performance

penalty depends on the number of breakpoints and the fault injection technique. These ex-

periments confirm that hardware breakpoint is suitable to inject a fault into a frequently-

called routine because of low fault injection overhead if kernel log printing is suppressed

except when an error is actually detected. Although the breakpoint overhead of KGDB

is very high, KGDB is still affordable to test a transient fault and has an advantage of

performing a fault injection campaign without any additional kernel module or recompi-

lation.

5.3.3 Bit-flip Fault Experiments

As the first experiment of KGDB fault injection, a bit-flip fault model is tested with

a USB keyboard connected with ODROID-XU4 and a Multi Format Codec (MFC) which

is a video encoding/decoding IP embedded in the Exynos 5422 application processor.

As for the keyboard, we injected a transient bit-flip fault into the event character

device driver. We added a condition to inject a fault to a keyboard input only because the

target device driver can be accessed by not only a keyboard input but also a mouse or

touchscreen input. We pressed the real keyboard manually during the experiment since

software input such as adb input is not recognized by the driver. After a fault is injected,

92

Table 5.5: Observed events according to fault models

Fault model Method Workload Observed events

Bit-flip (Keyboard)
KGDB

fault injection
Press ’A’ key

one time
Endless ’S’ key

printing
Bit-flip

(Multi format codec)
KGDB

fault injection
Video play Kernel panic

Communication delay
from eMMC controller

Generic hardware
breakpoint

App launch Delay on an app

Erroneous response
from eMMC controller

Custom hardware
breakpoint

None Kernel panic

No response from
eMMCcontroller

Custom hardware
breakpoint

None Screen freeze

’s’ key is printed on a screen endlessly even though ’a’ key is manually pressed once.

The reason for this behavior is that after bit-flip changes the keyboard value ’a’ to ’s’, the

driver receives a ’a’-key release event but does not receive a ’s’-key release event, which

causes endless printing of ’s’ on the screen.

For a KGDB fault injection experiment with MFC, we inserted a transient

bit-flip fault into the Exynos MFC driver’s register which is used for controlling

the MFC. When the MFC is initialized, it calls CH INIT BUFS which commands

frame buffer initialization of the MFC. We replaced the command by bit-flipping to

H2R CMD CLOSE INSTANCE which means closing an MFC instance. To activate a

fault, we executed a video player called Dice Player and played a sample video. After

clicking the video file, the target machine printed a kernel error log printing ’Abnormal

h/w state’ and resulted in a kernel panic.

These experiments show that KGDB fault injection can readily narrow down a fault

case to find out a specific condition that causes a fault with no kernel recompilation. We

can use the bit flip fault model to emulate the hardware failure if we know which data is

affected by the hardware failure.

93

5.3.4 eMMC Controller Fault Experiments

Three experiments are designed to emulate hardware failure by injecting faults with

the hardware breakpoint method. The target hardware is the eMMC controller on the

board which serves as an interface between the Linux kernel and the eMMC storage

card. The Linux kernel has a device driver module for the eMMC controller. The device

driver module maintains a kernel thread called mmcqd that is responsible for giving a

command to the eMMC controller. We set breakpoints inside this module, and when a

breakpoint is hit, we inject a fault into the module to emulate a hardware failure in the

eMMC controller.

5.3.4.1 Emulating communication delay between the kernel and
the eMMC controller

To write data to the eMMC controller, mmcqd gives a write command to the eMMC

controller and sleeps, waiting for an interrupt signal from the eMMC controller. After

serving the request, the eMMC controller sends an interrupt signal which wakes up mm-

cqd.

To emulate communication delay between the kernel and the eMMC controller, we

set a breakpoint using the generic hardware breakpoint method. We can choose a loca-

tion from the function call stack that stores the call tree established when mmcqd gives

some commands to the eMMC controller. Otherwise, we may decide a location from the

function call stack that stores the call tree established when the eMMC controller wakes

up mmcqd by an interrupt signal.

We ran the gallery Android application to see the effect of the delay. We took

screenshots, started the gallery application, browsed the screenshots, and erased them.

We gave a delay up to 5 seconds every time the hardware breakpoint is hit. We observed

application-level delay such as delay in taking, browsing, and erasing screenshots. There

was no other abnormal behavior observed in the system. After clearing the breakpoint,

94

the system worked as usual.

5.3.4.2 Emulating erroneous response from the eMMC con-
troller

After receiving a response from the eMMC controller, mmcqd checks for error in the

response at function mmc blk err check. We set a breakpoint at the start of this function

and changed the response state from non-error to error. The default behavior of mmcqd

when this kind of error is detected is to retry the command several times and then abort

if the erroneous response is detected over and over again. We were able to observe this

default behavior in this experiment. As the number of aborted commands to the eMMC

controller accumulates, the kernel prints a panic message, and the system goes down.

We used the custom hardware breakpoint method in this experiment. The function

that checks for error in the response receives the response data as an argument. In the

exception handler, we could get the address of this response data and corrupt the data by

writing a custom fault injecting code.

5.3.4.3 Emulating no response from the eMMC controller

We emulated the case where the eMMC controller gives no response to mmcqd, by

preventing the Linux kernel from waking up mmcqd after receiving an interrupt signal

from the eMMC controller. We set a breakpoint at function mmc request done which is

responsible for waking up mmcqd. The typical behavior after the breakpoint exception

handler finishes is that the kernel resumes from the instruction where the breakpoint was

hit. However, inside this breakpoint handler, we changed the resuming point of the kernel

so that the kernel skips the instruction that wakes up mmcqd.

We used the custom hardware breakpoint method again in this experiment. After a

fault is injected, there is no way that the kernel can wake up mmcqd. Thus any program

that needs access to eMMC card (e.g., cp command in the console, taking a screenshot)

95

cannot be executed successfully. Also, the screen froze, and mouse clicking did not work.

However, we could observe that programs that do not access the eMMC card work nor-

mally. For instance, ls and cd commands conducted in the console, reading values that

are not in the eMMC card such as values in Linux /proc directory, and the mouse point

movement could be executed as usual.

96

Chapter 6

Conclusion

In this thesis, we present a model-based software development method for paral-

lel and distributed embedded systems. An application is specified by a hierarchical task

graph, and two types of atomic tasks are distinguished: control task and computation

task. The control task specifies the control behavior of the application, based on the FSM

model. Computation tasks follow the dataflow model that explicitly reveals the paral-

lelism of the application that can be exploited easily by changing the mapping of tasks

onto processors. By clustering the dataflow tasks that have the fixed number of input and

output samples per invocation, we can perform static analysis for each subgraph of the

clustered dataflow tasks. Through static analysis, we can check the possibility of dead-

lock and buffer overflow. After a mapping decision is made, we automatically synthesize

the program that will run on each processing element. The proposed program synthesis

method has two features that make it distinguished from the related work. First, the pro-

posed technique for communication code synthesis is extensible and flexible to support

various communication methods between devices. Second, the fault-tolerant method can

be defined at the task level, and fault-tolerant code synthesis is realized by modifying the

task graph in the proposed method. In addition, a fault injection tool is used for support-

ing various fault scenarios, and it is used for verifying the fault tolerance of generated

codes.

97

The proposed software development flow is verified with a real-life surveillance ap-

plication that runs on four devices that have six processing elements in total. Also, exper-

iments are conducted to examine the trade-off between the execution time and the degree

of fault tolerance with various fault-tolerant configurations. In the future, we will support

semi-constrained targets to generate applications running on various real-time operating

systems. Also, we will generate extra codes in consideration of security as well as fault

tolerance. While task graphs can be drawn inside each device, extended models cannot

be controlled among devices. Supporting inter-device dynamism is another challenging

work to increase a variety of implementation and fault tolerance.

98

Bibliography

[1] Simon Fürst, Jürgen Mössinger, Stefan Bunzel, Thomas Weber, Frank Kirschke-

Biller, Peter Heitkämper, Gerulf Kinkelin, Kenji Nishikawa, and Klaus Lange.

Autosar–a worldwide standard is on the road. In 14th International VDI Congress

Electronic Systems for Vehicles, Baden-Baden, volume 62, page 5, 2009.

[2] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,

Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In

ICRA workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.

[3] Soonhoi Ha and EunJin Jeong. Embedded Software Design Methodology Based on

Formal Models of Computation, pages 306–325. Springer International Publishing,

Cham, 2018.

[4] Soonhoi Ha and Hanwoong Jung. HOPES: Programming Platform Approach for

Embedded Systems Design, pages 1–31. Springer Netherlands, Dordrecht, 2017.

[5] Gang Zhou, Man-Kit Leung, and Edward A. Lee. A code generation framework

for actor-oriented models with partial evaluation. In Yann-Hang Lee, Heung-Nam

Kim, Jong Kim, Yongwan Park, Laurence T. Yang, and Sung Won Kim, editors, Em-

bedded Software and Systems, pages 193–206, Berlin, Heidelberg, 2007. Springer

Berlin Heidelberg.

[6] Sundararajan Sriram and Shuvra S Bhattacharyya. Embedded multiprocessors:

Scheduling and synchronization. CRC press, 2018.

[7] Haojie Fu, Zan Wang, Xiang Chen, and Xiangyu Fan. A systematic survey on

automated concurrency bug detection, exposing, avoidance, and fixing techniques.

Software Quality Journal, 26(3):855–889, September 2018.

[8] C. Buckl, S. Sommer, A. Scholz, A. Knoll, and A. Kemper. Generating a tai-

lored middleware for wireless sensor network applications. In 2008 IEEE Inter-

national Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing

(sutc 2008), pages 162–169, June 2008.

99

[9] A. Scholz, I. Gaponova, S. Sommer, A. Kemper, A. Knoll, C. Buckl, J. Heuer, and

A. Schmitt. Efficient communication in control-oriented embedded networks. In

2009 IEEE Conference on Emerging Technologies Factory Automation, pages 1–8,

Sep. 2009.

[10] H. Evrard and F. Lang. Automatic distributed code generation from formal models

of asynchronous concurrent processes. In 2015 23rd Euromicro International Con-

ference on Parallel, Distributed, and Network-Based Processing, pages 459–466,

March 2015.

[11] A. J. Salman and A. Al-Yasiri. Sennet: A programming toolkit to develop wireless

sensor network applications. In 2016 8th IFIP International Conference on New

Technologies, Mobility and Security (NTMS), pages 1–7, Nov 2016.

[12] Aviral Shrivastava and Moslem Didehban. Software approaches for in-time re-

silience. In Proceedings of the 56th Annual Design Automation Conference 2019,

DAC ’19, pages 197:1–197:4, New York, NY, USA, 2019. ACM.

[13] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August. Swift: software

implemented fault tolerance. In International Symposium on Code Generation and

Optimization, pages 243–254, March 2005.

[14] G. A. Reis, J. Chang, and D. I. August. Automatic instruction-level software-only

recovery. IEEE Micro, 27(1):36–47, Jan 2007.

[15] Cheng Wang, Ho-seop Kim, Youfeng Wu, and Victor Ying. Compiler-managed

software-based redundant multi-threading for transient fault detection. In Proceed-

ings of the International Symposium on Code Generation and Optimization, CGO

’07, pages 244–258, Washington, DC, USA, 2007. IEEE Computer Society.

[16] H. So, M. Didehban, Y. Ko, A. Shrivastava, and K. Lee. Expert: Effective and

flexible error protection by redundant multithreading. In 2018 Design, Automation

Test in Europe Conference Exhibition (DATE), pages 533–538, March 2018.

[17] H. So, M. Didehban, A. Shrivastava, and K. Lee. A software-level redundant mul-

tithreading for soft/hard error detection and recovery. In 2019 Design, Automation

Test in Europe Conference Exhibition (DATE), pages 1559–1562, March 2019.

[18] Hyesun Hong, Hyunok Oh, and Soonhoi Ha. Hierarchical dataflow modeling of

iterative applications. In Proceedings of the 54th Annual Design Automation Con-

ference 2017, DAC ’17, pages 39:1–39:6, New York, NY, USA, 2017. ACM.

100

[19] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings of the

IEEE, 75(9):1235–1245, Sep. 1987.

[20] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cycle-static dataflow.

IEEE Transactions on Signal Processing, 44(2):397–408, Feb 1996.

[21] Chanik Park, Jaewoong Chung, and Soonhoi Ha. Extended synchronous dataflow

for efficient dsp system prototyping. In Proceedings Tenth IEEE International

Workshop on Rapid System Prototyping. Shortening the Path from Specification to

Prototype (Cat. No.PR00246), pages 196–201, June 1999.

[22] Hyunok Oh and Soonhoi Ha. Fractional rate dataflow model and efficient code

synthesis for multimedia applications. SIGPLAN Not., 37(7):12–17, June 2002.

[23] Bishnupriya Bhattacharya and Shuvra S Bhattacharyya. Parameterized dataflow

modeling for dsp systems. IEEE Transactions on Signal Processing, 49(10):2408–

2421, 2001.

[24] S. Stuijk, M. Geilen, B. Theelen, and T. Basten. Scenario-aware dataflow: Model-

ing, analysis and implementation of dynamic applications. In 2011 International

Conference on Embedded Computer Systems: Architectures, Modeling and Simula-

tion, pages 404–411, July 2011.

[25] Hanwoong Jung, Chanhee Lee, Shin-Haeng Kang, Sungchan Kim, Hyunok Oh, and

Soonhoi Ha. Dynamic behavior specification and dynamic mapping for real-time

embedded systems: Hopes approach. ACM Transactions on Embedded Computing

Systems (TECS), 13(4s):135, 2014.

[26] Hanwoong Jung, Hyunok Oh, and Soonhoi Ha. Multiprocessor scheduling of a

multi-mode dataflow graph considering mode transition delay. ACM Transactions

on Design Automation of Electronic Systems (TODAES), 22(2):37, 2017.

[27] David MacKenzie, Tom Tromey, and Alexandre Duret-Lutz. Gnu automake. User

Manual, for Automake version, 1, 1995.

[28] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-detection. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 34(7):1409–1422, July 2012.

[29] Google. Coral usb accelerator,

https://coral.withgoogle.com/products/accelerator/, 2019.

101

[30] ROBOTIS. Turtlebot3,

http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/, 2019.

[31] ROBOTIS. Opencr 1.0,

http://emanual.robotis.com/docs/en/parts/controller/opencr10/, 2019.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[33] NVIDIA. Jetson agx xavier.

https://developer.nvidia.com/embedded/buy/jetson-agx-xavier-devkit, 2019.

[34] Dimitri Van Heesch. Doxygen: Source code documentation generator tool. URL:

http://www. doxygen. org, 2008.

[35] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North, and Gordon

Woodhull. Graphviz—open source graph drawing tools. In International Sympo-

sium on Graph Drawing, pages 483–484. Springer, 2001.

[36] Shuvra S. Battacharyya, Edward A. Lee, and Praveen K. Murthy. Software Synthesis

from Dataflow Graphs. Kluwer Academic Publishers, Norwell, MA, USA, 1996.

[37] Jeffrey J Tsay. A Code Generation Framework for Ptolemy II. Citeseer, 2000.

[38] Stavros Tripakis, Dai Bui, Marc Geilen, Bert Rodiers, and Edward A. Lee. Com-

positionality in synchronous data flow: Modular code generation from hierarchical

sdf graphs. ACM Trans. Embed. Comput. Syst., 12(3):83:1–83:26, April 2013.

[39] Maher Fakih and Sebastian Warsitz. Automatic sdf-based code generation from

simulink models for embedded software development. In International Workshop

on High Performance Energy Efficient Embedded Systems, 01 2017.

[40] Gustav Cedersjö and Jörn W. Janneck. Software code generation for dynamic

dataflow programs. In Proceedings of the 17th International Workshop on Software

and Compilers for Embedded Systems, SCOPES ’14, pages 31–39, New York, NY,

USA, 2014. ACM.

[41] Object Management Group. Semantics of a foundational subset for executable uml

models, dec 2018.

[42] Object Management Group. Action language for foundational uml, jun 2017.

102

[43] Federico Ciccozzi, Antonio Cicchetti, and Mikael Sjödin. On the generation of

full-fledged code from uml profiles and alf for complex systems. In 2015 12th

International Conference on Information Technology-New Generations, pages 81–

88. IEEE, 2015.

[44] Federico Ciccozzi. On the automated translational execution of the action language

for foundational uml. Software & Systems Modeling, 17(4):1311–1337, 2018.

[45] Asma Charfi, Chokri Mraidha, and Pierre Boulet. An optimized compila-

tion of uml state machines. In 2012 IEEE 15th International Symposium

on Object/Component/Service-Oriented Real-Time Distributed Computing, pages

172–179. IEEE, 2012.

[46] Object Management Group. Omg system modeling language, dec 2019.

[47] Andrea Enrici, Ludovic Apvrille, and Renaud Pacalet. A model-driven engineering

methodology to design parallel and distributed embedded systems. ACM Transac-

tions on Design Automation of Electronic Systems (TODAES), 22(2):34, 2017.

[48] Mohammad Hossein, Askari Hemmat, Otmane Ait Mohamed, and Mounir

Boukadoum. Towards code generation for arm cortex-m mcus from sysml activity

diagrams. In 2016 IEEE International Symposium on Circuits and Systems (ISCAS),

pages 970–973. IEEE, 2016.

[49] Mario Bambagini and Marco Di Natale. A code generation framework for dis-

tributed real-time embedded systems. In Proceedings of 2012 IEEE 17th Interna-

tional Conference on Emerging Technologies & Factory Automation (ETFA 2012),

pages 1–10. IEEE, 2012.

[50] Eclipse Foundation. Accelo, dec 2019.

[51] Object Management Group. Uml profile for marte, apr 2019.

[52] Federico Ciccozzi, Tiberiu Seceleanu, Diarmuid Corcoran, and Detlef Scholle.

Uml-based development of embedded real-time software on multi-core in practice:

Lessons learned and future perspectives. IEEE Access, 4:6528–6540, 2016.

[53] Héctor Posadas, Pablo Peñil, Alejandro Nicolás, and Eugenio Villar. Automatic

synthesis of communication and concurrency for exploring component-based sys-

tem implementations considering uml channel semantics. Journal of Systems Ar-

chitecture, 61(8):341–360, 2015.

103

[54] Nicolas Harrand, Franck Fleurey, Brice Morin, and Knut Eilif Husa. Thingml: A

language and code generation framework for heterogeneous targets. In Proceed-

ings of the ACM/IEEE 19th International Conference on Model Driven Engineer-

ing Languages and Systems, MODELS ’16, pages 125–135, New York, NY, USA,

2016. ACM.

[55] B. Morin, N. Harrand, and F. Fleurey. Model-based software engineering to tame

the iot jungle. IEEE Software, 34(1):30–36, Jan 2017.

[56] Imad Berrouyne, Mehdi Adda, Jean-Marie Mottu, Jean-Claude Royer, and Massimo

Tisi. Cypriot: Framework for modelling and controlling network-based iot applica-

tions. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing,

SAC ’19, pages 832–841, New York, NY, USA, 2019. ACM.

[57] S. E. V. and P. Samuel. Automatic code generation from uml state chart diagrams.

IEEE Access, 7:8591–8608, 2019.

[58] Marian Sorin Adam, Morten Larsen, Kjeld Jensen, and Ulrik Pagh Schultz. Rule-

based dynamic safety monitoring for mobile robots. Journal of Software Engineer-

ing for Robotics, 7(1):120–141, 2016.

[59] Sorin Adam, Morten Larsen, Kjeld Jensen, and Ulrik Pagh Schultz. Towards rule-

based dynamic safety monitoring for mobile robots. In International Conference on

Simulation, Modeling, and Programming for Autonomous Robots, pages 207–218.

Springer, 2014.

[60] Sorin Adam, Marco Kuhrmann, and Ulrik Pagh Schultz. Automatic code generation

in practice: experiences with embedded robot controllers. ACM SIGPLAN Notices,

52(3):104–108, 2016.

[61] Bruno Morelli, Riccardo Schiavi, Claudio Scordino, Paolo Gai, and Marco Di Na-

tale. Automatic generation of controls code from models for real-time linux plat-

forms. In 15th Real-Time Linux Workshop (RTLWS). Citeseer, 2013.

[62] SciLab at INRIA. Scicoslab, dec 2019.

[63] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-

performance, portable implementation of the mpi message passing interface stan-

dard. Parallel Computing, 22(6):789 – 828, 1996.

104

[64] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez, Y. Itigin,

M. Dubman, G. Shainer, R. L. Graham, L. Liss, Y. Shahar, S. Potluri, D. Rossetti,

D. Becker, D. Poole, C. Lamb, S. Kumar, C. Stunkel, G. Bosilca, and A. Bouteiller.

Ucx: An open source framework for hpc network apis and beyond. In 2015 IEEE

23rd Annual Symposium on High-Performance Interconnects, pages 40–43, Aug

2015.

[65] Junchul Choi, Hoeseok Yang, and Soonhoi Ha. Optimization of fault-tolerant

mixed-criticality multi-core systems with enhanced wcrt analysis. ACM Trans. Des.

Autom. Electron. Syst., 24(1):6:1–6:26, December 2018.

[66] E. Jeong, N. Lee, J. Kim, D. Kang, and S. Ha. Fifa: A kernel-level fault injection

framework for arm-based embedded linux system. In 2017 IEEE International

Conference on Software Testing, Verification and Validation (ICST), pages 23–34,

March 2017.

[67] G.A. Kanawati, N.A. Kanawati, and J.A. Abraham. Ferrari: a tool for the valida-

tion of system dependability properties. In Fault-Tolerant Computing, 1992. FTCS-

22. Digest of Papers., Twenty-Second International Symposium on, pages 336–344,

1992.

[68] Thomas Naughton, Wesley Bland, Geoffroy Vallee, Christian Engelmann, and

Stephen L. Scott. Fault injection framework for system resilience evaluation: Fake

faults for finding future failures. In Proceedings of the 2009 Workshop on Resiliency

in High Performance, Resilience ’09, pages 23–28. ACM, 2009.

[69] Moslem Didehban and Aviral Shrivastava. nzdc: A compiler technique for near

zero silent data corruption. In 2016 53nd ACM/EDAC/IEEE Design Automation

Conference (DAC), pages 1–6. IEEE, 2016.

[70] Dmitrii Kuvaiskii, Oleskii Oleksenko, Pramod Bhatotia, Pascal Felber, and Christof

Fetzer. Elzar: Triple modular redundancy using intel avx (practical experience re-

port). In 2016 46th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), pages 646–653. IEEE, 2016.

[71] Francisco Afonso, Carlos Silva, Nuno Brito, Sergio Montenegro, and Adriano

Tavares. Aspect-oriented fault tolerance for real-time embedded systems. In Pro-

ceedings of the 2008 AOSD workshop on Aspects, components, and patterns for

infrastructure software, page 2. ACM, 2008.

105

[72] C. Buckl, D. Sojer, and A. Knoll. Ftos: Model-driven development of fault-tolerant

automation systems. In 2010 IEEE 15th Conference on Emerging Technologies

Factory Automation (ETFA 2010), pages 1–8, Sep. 2010.

[73] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins, and

D. Powell. Fault injection for dependability validation: a methodology and some

applications. Software Engineering, IEEE Transactions on, 16(2):166–182, 1990.

[74] Henrique Madeira, M찼rio Rela, Francisco Moreira, and Jo찾oGabriel Silva. Rifle:

A general purpose pin-level fault injector. In Klaus Echtle, Dieter Hammer, and

David Powell, editors, Dependable Computing - EDCC-1, volume 852 of Lecture

Notes in Computer Science, pages 197–216. Springer Berlin Heidelberg, 1994.

[75] Johan Karlsson, Peter Liden, Peter Dahlgren, Rolf Johansson, and Ulf Gunneflo.

Using heavy-ion radiation to validate fault-handling mechanisms. IEEE Micro,

14(1):8–11, 13–23, 1994.

[76] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz. Electro-

magnetic fault injection: Towards a fault model on a 32-bit microcontroller. In

Fault Diagnosis and Tolerance in Cryptography (FDTC), 2013 Workshop on, pages

77–88, 2013.

[77] Jr. Samson, J.R., W. Moreno, and F. Falquez. A technique for automated validation

of fault tolerant designs using laser fault injection (lfi). In Fault-Tolerant Comput-

ing, 1998. Digest of Papers. Twenty-Eighth Annual International Symposium on,

pages 162–167, 1998.

[78] Mei-Chen Hsueh, T.K. Tsai, and R.K. Iyer. Fault injection techniques and tools.

Computer, 30(4):75–82, 1997.

[79] D. Skarin, R. Barbosa, and J. Karlsson. Goofi-2: A tool for experimental depend-

ability assessment. In Dependable Systems and Networks (DSN), 2010 IEEE/IFIP

International Conference on, pages 557–562, 2010.

[80] D.T. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and R.K. Iyer. Nftape: a frame-

work for assessing dependability in distributed systems with lightweight fault injec-

tors. In Computer Performance and Dependability Symposium, 2000. IPDS 2000.

Proceedings. IEEE International, pages 91–100, 2000.

106

[81] N.P. Kropp, P.J. Koopman, and D.P. Siewiorek. Automated robustness testing of

off-the-shelf software components. In Fault-Tolerant Computing, 1998. Digest of

Papers. Twenty-Eighth Annual International Symposium on, pages 230–239, 1998.

[82] J.M. Bieman, D. Dreilinger, and Lijun Lin. Using fault injection to increase soft-

ware test coverage. In Software Reliability Engineering, 1996. Proceedings., Sev-

enth International Symposium on, pages 166–174, 1996.

[83] Kai Cong, Li Lei, Zhenkun Yang, and Fei Xie. Automatic fault injection for driver

robustness testing. In Proceedings of the 2015 International Symposium on Soft-

ware Testing and Analysis, ISSTA 2015, pages 361–372. ACM, 2015.

[84] R. Natella, D. Cotroneo, J.A. Duraes, and H.S. Madeira. On fault representativeness

of software fault injection. Software Engineering, IEEE Transactions on, 39(1):80–

96, 2013.

[85] Roberto Natella, Domenico Cotroneo, and Henrique S. Madeira. Assessing depend-

ability with software fault injection: A survey. ACM Comput. Surv., 48(3):44:1–

44:55, February 2016.

[86] Adam Lackorzynski. Minicom project.

https://alioth.debian.org/projects/minicom/, 2003.

[87] S. Han, K.G. Shin, and H.A. Rosenberg. Doctor: an integrated software fault in-

jection environment for distributed real-time systems. In Computer Performance

and Dependability Symposium, 1995. Proceedings., International, pages 204–213,

1995.

107

요약

소프트웨어 설계 생산성 및 유지보수성을 향상시키기 위해 다양한 소프트웨어 개발

방법론이제안되었지만,대부분의연구는응용소프트웨어를하나의프로세서에서동

작시키는 데에 초점을 맞추고 있다. 또한, 임베디드 시스템을 개발하는 데에 필요한

지연이나 자원 요구 사항에 대한 비기능적 요구 사항을 고려하지 않고 있기 때문에

일반적인소프트웨어개발방법론을임베디드소프트웨어를개발하는데에적용하는

것은적합하지않다.

이 논문에서는 병렬 및 분산 임베디드 시스템을 대상으로 하는 소프트웨어를 모

델로표현하고,이를소프트웨어분석이나개발에활용하는개발방법론을소개한다.

우리의 모델에서 응용 소프트웨어는 계층적으로 표현할 수 있는 여러 개의 태스크로

이루어져 있으며, 하드웨어 플랫폼과 독립적으로 명세한다. 태스크 간의 통신 및 동

기화는 모델이 정의한 규약이 정해져 있고, 이러한 규약을 통해 실제 프로그램을 실

행하기 전에 소프트웨어 에러를 정적 분석을 통해 확인할 수 있고, 이는 응용의 검증

복잡도를 줄이는 데에 기여한다. 지정한 하드웨어 플랫폼에서 동작하는 프로그램은

태스크들을프로세서에매핑한이후에자동적으로합성할수있다.

위의모델기반소프트웨어개발방법론에서사용하는프로그램합성기를본논문

에서제안하였는데,명세한플랫폼요구사항을바탕으로병렬및분산임베디드시스

템을에서동작하는코드를생성한다.여러개의정형적모델들을계층적으로표현하여

응용의동적행태를나타고,합성기는여러모델로구성된계층적인모델로부터병렬

성을고려하여태스크를실행할수있다.또한,프로그램합성기에서다양한플랫폼이

나네트워크를지원할수있도록코드를관리하는방법도보여주고있다.본논문에서

제시하는 소프트웨어 개발 방법론은 6개의 하드웨어 플랫폼과 3 종류의 네트워크로

구성되어있는실제감시소프트웨어시스템응용예제와이종멀티프로세서를활용

하는 원격 딥 러닝 예제를 수행하여 개발 방법론의 적용 가능성을 시험하였다. 또한,

프로그램 합성기가 새로운 플랫폼이나 네트워크를 지원하기 위해 필요로 하는 개발

비용도실제측정및예측하여상대적으로적은노력으로새로운플랫폼을지원할수

있음을확인하였다.

108

많은 임베디드 시스템에서 예상치 못한 하드웨어 에러에 대해 결함을 감내하는

것을 필요로 하기 때문에 결함 감내에 대한 코드를 자동으로 생성하는 연구도 진행

하였다. 본 기법에서 결함 감내 설정에 따라 태스크 그래프를 수정하는 방식을 활용

하였으며, 결함 감내의 비기능적 요구 사항을 응용 개발자가 쉽게 적용할 수 있도록

하였다.또한,결함감내지원하는것과관련하여실제수동으로구현했을경우와비교

하였고,결함주입도구를이용하여결함발생시나리오를재현하거나,임의로결함을

주입하는실험을수행하였다.

마지막으로 결함 감내를 실험할 때에 활용한 결함 주입 도구는 본 논문의 또 다

른 기여 사항 중 하나로 리눅스 환경으로 대상으로 응용 영역 및 커널 영역에 결함을

주입하는 도구를 개발하였다. 시스템의 견고성을 검증하기 위해 결함을 주입하여 결

함시나리오를재현하는것은널리사용되는방법으로,본논문에서개발된결함주입

도구는시스템이동작하는도중에재현가능한결함을주입할수있는도구이다.커널

영역에서의결함주입을위해두종류의결함주입방법을제공하며,하나는커널GNU

디버거를이용한방법이고,다른하나는 ARM하드웨어브레이크포인트를활용한방

법이다. 응용 영역에서 결함을 주입하기 위해 GDB 기반 결함 주입 방법을 이용하여

동일시스템혹은원격시스템의응용에결함을주입할수있다.결함주입도구에대한

실험은 ODROID-XU4보드에서진행하였다.

주요어 : 코드생성,결함감내,데이터플로우모델,임베디드소프트웨어설계방법론,

결함주입,멀티플랫폼프로그래밍,네트워크프로그래밍,병렬및분산시스템

학번 : 2015-30273

109

	Chapter 1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Dissertation Organization

	Chapter 2 Background
	2.1 HOPES: Hope of Parallel Embedded Software
	2.1.1 Software Development Procedure
	2.1.2 Components of HOPES

	2.2 Universal Execution Model
	2.2.1 Task Graph Specification
	2.2.2 Dataflow specification of an Application
	2.2.3 Task Code Specification and Generic APIs
	2.2.4 Meta-data Specification

	Chapter 3 Program Synthesis for Parallel and Distributed Embedded Systems
	3.1 Motivational Example
	3.2 Program Synthesis Overview
	3.3 Program Synthesis from Hierarchically-mixed Models
	3.4 Platform Code Synthesis
	3.5 Communication Code Synthesis
	3.6 Experiments
	3.6.1 Development Cost of Supporting New Platforms and Networks
	3.6.2 Program Synthesis for the Surveillance System Example
	3.6.3 Remote GPU-accelerated Deep Learning Example

	3.7 Document Generation
	3.8 Related Works

	Chapter 4 Model Transformation for Fault-tolerant Code Synthesis
	4.1 Fault-tolerant Code Synthesis Techniques
	4.2 Applying Fault Tolerance Techniques in HOPES
	4.3 Experiments
	4.3.1 Development Cost of Applying Fault Tolerance
	4.3.2 Fault Tolerance Experiments

	4.4 Random Fault Injection Experiments
	4.5 Related Works

	Chapter 5 Fault Injection Framework for Linux-based Embedded Systems
	5.1 Background
	5.1.1 Fault Injection Techniques
	5.1.2 Kernel GNU Debugger
	5.1.3 ARM Hardware Breakpoint

	5.2 Fault Injection Framework
	5.2.1 Overview
	5.2.2 Architecture
	5.2.3 Fault Injection Techniques
	5.2.4 Implementation

	5.3 Experiments
	5.3.1 Experiment Setup
	5.3.2 Performance Comparison of Two Fault Injection Methods
	5.3.3 Bit-flip Fault Experiments
	5.3.4 eMMC Controller Fault Experiments

	Chapter 6 Conclusion
	Bibliography
	요 약

<startpage>12
Chapter 1 Introduction 1
 1.1 Motivation 1
 1.2 Contribution 6
 1.3 Dissertation Organization 8
Chapter 2 Background 9
 2.1 HOPES: Hope of Parallel Embedded Software 9
 2.1.1 Software Development Procedure 9
 2.1.2 Components of HOPES 12
 2.2 Universal Execution Model 13
 2.2.1 Task Graph Specification 13
 2.2.2 Dataflow specification of an Application 15
 2.2.3 Task Code Specification and Generic APIs 21
 2.2.4 Meta-data Specification 23
Chapter 3 Program Synthesis for Parallel and Distributed Embedded Systems 24
 3.1 Motivational Example 24
 3.2 Program Synthesis Overview 26
 3.3 Program Synthesis from Hierarchically-mixed Models 30
 3.4 Platform Code Synthesis 33
 3.5 Communication Code Synthesis 36
 3.6 Experiments 40
 3.6.1 Development Cost of Supporting New Platforms and Networks 40
 3.6.2 Program Synthesis for the Surveillance System Example 44
 3.6.3 Remote GPU-accelerated Deep Learning Example 46
 3.7 Document Generation 48
 3.8 Related Works 49
Chapter 4 Model Transformation for Fault-tolerant Code Synthesis 56
 4.1 Fault-tolerant Code Synthesis Techniques 56
 4.2 Applying Fault Tolerance Techniques in HOPES 61
 4.3 Experiments 62
 4.3.1 Development Cost of Applying Fault Tolerance 62
 4.3.2 Fault Tolerance Experiments 62
 4.4 Random Fault Injection Experiments 65
 4.5 Related Works 68
Chapter 5 Fault Injection Framework for Linux-based Embedded Systems 70
 5.1 Background 70
 5.1.1 Fault Injection Techniques 70
 5.1.2 Kernel GNU Debugger 71
 5.1.3 ARM Hardware Breakpoint 72
 5.2 Fault Injection Framework 74
 5.2.1 Overview 74
 5.2.2 Architecture 75
 5.2.3 Fault Injection Techniques 79
 5.2.4 Implementation 83
 5.3 Experiments 90
 5.3.1 Experiment Setup 90
 5.3.2 Performance Comparison of Two Fault Injection Methods 90
 5.3.3 Bit-flip Fault Experiments 92
 5.3.4 eMMC Controller Fault Experiments 94
Chapter 6 Conclusion 97
Bibliography 99
요 약 108
</body>

