34 research outputs found

    Sensing with Earables: A Systematic Literature Review and Taxonomy of Phenomena

    Get PDF
    Earables have emerged as a unique platform for ubiquitous computing by augmenting ear-worn devices with state-of-the-art sensing. This new platform has spurred a wealth of new research exploring what can be detected on a wearable, small form factor. As a sensing platform, the ears are less susceptible to motion artifacts and are located in close proximity to a number of important anatomical structures including the brain, blood vessels, and facial muscles which reveal a wealth of information. They can be easily reached by the hands and the ear canal itself is affected by mouth, face, and head movements. We have conducted a systematic literature review of 271 earable publications from the ACM and IEEE libraries. These were synthesized into an open-ended taxonomy of 47 different phenomena that can be sensed in, on, or around the ear. Through analysis, we identify 13 fundamental phenomena from which all other phenomena can be derived, and discuss the different sensors and sensing principles used to detect them. We comprehensively review the phenomena in four main areas of (i) physiological monitoring and health, (ii) movement and activity, (iii) interaction, and (iv) authentication and identification. This breadth highlights the potential that earables have to offer as a ubiquitous, general-purpose platform

    Sensing with Earables: A Systematic Literature Review and Taxonomy of Phenomena

    Get PDF
    Earables have emerged as a unique platform for ubiquitous computing by augmenting ear-worn devices with state-of-the-art sensing. This new platform has spurred a wealth of new research exploring what can be detected on a wearable, small form factor. As a sensing platform, the ears are less susceptible to motion artifacts and are located in close proximity to a number of important anatomical structures including the brain, blood vessels, and facial muscles which reveal a wealth of information. They can be easily reached by the hands and the ear canal itself is affected by mouth, face, and head movements. We have conducted a systematic literature review of 271 earable publications from the ACM and IEEE libraries. These were synthesized into an open-ended taxonomy of 47 different phenomena that can be sensed in, on, or around the ear. Through analysis, we identify 13 fundamental phenomena from which all other phenomena can be derived, and discuss the different sensors and sensing principles used to detect them. We comprehensively review the phenomena in four main areas of (i) physiological monitoring and health, (ii) movement and activity, (iii) interaction, and (iv) authentication and identification. This breadth highlights the potential that earables have to offer as a ubiquitous, general-purpose platform

    Earables: Wearable Computing on the Ears

    Get PDF
    Kopfhörer haben sich bei Verbrauchern durchgesetzt, da sie private AudiokanĂ€le anbieten, zum Beispiel zum Hören von Musik, zum Anschauen der neuesten Filme wĂ€hrend dem Pendeln oder zum freihĂ€ndigen Telefonieren. Dank diesem eindeutigen primĂ€ren Einsatzzweck haben sich Kopfhörer im Vergleich zu anderen Wearables, wie zum Beispiel Smartglasses, bereits stĂ€rker durchgesetzt. In den letzten Jahren hat sich eine neue Klasse von Wearables herausgebildet, die als "Earables" bezeichnet werden. Diese GerĂ€te sind so konzipiert, dass sie in oder um die Ohren getragen werden können. Sie enthalten verschiedene Sensoren, um die FunktionalitĂ€t von Kopfhörern zu erweitern. Die rĂ€umliche NĂ€he von Earables zu wichtigen anatomischen Strukturen des menschlichen Körpers bietet eine ausgezeichnete Plattform fĂŒr die Erfassung einer Vielzahl von Eigenschaften, Prozessen und AktivitĂ€ten. Auch wenn im Bereich der Earables-Forschung bereits einige Fortschritte erzielt wurden, wird deren Potenzial aktuell nicht vollstĂ€ndig abgeschöpft. Ziel dieser Dissertation ist es daher, neue Einblicke in die Möglichkeiten von Earables zu geben, indem fortschrittliche SensorikansĂ€tze erforscht werden, welche die Erkennung von bisher unzugĂ€nglichen PhĂ€nomenen ermöglichen. Durch die EinfĂŒhrung von neuartiger Hardware und Algorithmik zielt diese Dissertation darauf ab, die Grenzen des Erreichbaren im Bereich Earables zu verschieben und diese letztlich als vielseitige Sensorplattform zur Erweiterung menschlicher FĂ€higkeiten zu etablieren. Um eine fundierte Grundlage fĂŒr die Dissertation zu schaffen, synthetisiert die vorliegende Arbeit den Stand der Technik im Bereich der ohr-basierten Sensorik und stellt eine einzigartig umfassende Taxonomie auf der Basis von 271 relevanten Publikationen vor. Durch die Verbindung von Low-Level-Sensor-Prinzipien mit Higher-Level-PhĂ€nomenen werden in der Dissertation anschließ-end Arbeiten aus verschiedenen Bereichen zusammengefasst, darunter (i) physiologische Überwachung und Gesundheit, (ii) Bewegung und AktivitĂ€t, (iii) Interaktion und (iv) Authentifizierung und Identifizierung. Diese Dissertation baut auf der bestehenden Forschung im Bereich der physiologischen Überwachung und Gesundheit mit Hilfe von Earables auf und stellt fortschrittliche Algorithmen, statistische Auswertungen und empirische Studien vor, um die Machbarkeit der Messung der Atemfrequenz und der Erkennung von Episoden erhöhter Hustenfrequenz durch den Einsatz von In-Ear-Beschleunigungsmessern und Gyroskopen zu demonstrieren. Diese neuartigen Sensorfunktionen unterstreichen das Potenzial von Earables, einen gesĂŒnderen Lebensstil zu fördern und eine proaktive Gesundheitsversorgung zu ermöglichen. DarĂŒber hinaus wird in dieser Dissertation ein innovativer Eye-Tracking-Ansatz namens "earEOG" vorgestellt, welcher AktivitĂ€tserkennung erleichtern soll. Durch die systematische Auswertung von Elektrodenpotentialen, die um die Ohren herum mittels eines modifizierten Kopfhörers gemessen werden, eröffnet diese Dissertation einen neuen Weg zur Messung der Blickrichtung. Dabei ist das Verfahren weniger aufdringlich und komfortabler als bisherige AnsĂ€tze. DarĂŒber hinaus wird ein Regressionsmodell eingefĂŒhrt, um absolute Änderungen des Blickwinkels auf der Grundlage von earEOG vorherzusagen. Diese Entwicklung eröffnet neue Möglichkeiten fĂŒr Forschung, welche sich nahtlos in das tĂ€gliche Leben integrieren lĂ€sst und tiefere Einblicke in das menschliche Verhalten ermöglicht. Weiterhin zeigt diese Arbeit, wie sich die einzigarte Bauform von Earables mit Sensorik kombinieren lĂ€sst, um neuartige PhĂ€nomene zu erkennen. Um die Interaktionsmöglichkeiten von Earables zu verbessern, wird in dieser Dissertation eine diskrete Eingabetechnik namens "EarRumble" vorgestellt, die auf der freiwilligen Kontrolle des Tensor Tympani Muskels im Mittelohr beruht. Die Dissertation bietet Einblicke in die Verbreitung, die Benutzerfreundlichkeit und den Komfort von EarRumble, zusammen mit praktischen Anwendungen in zwei realen Szenarien. Der EarRumble-Ansatz erweitert das Ohr von einem rein rezeptiven Organ zu einem Organ, das nicht nur Signale empfangen, sondern auch Ausgangssignale erzeugen kann. Im Wesentlichen wird das Ohr als zusĂ€tzliches interaktives Medium eingesetzt, welches eine freihĂ€ndige und augenfreie Kommunikation zwischen Mensch und Maschine ermöglicht. EarRumble stellt eine Interaktionstechnik vor, die von den Nutzern als "magisch und fast telepathisch" beschrieben wird, und zeigt ein erhebliches ungenutztes Potenzial im Bereich der Earables auf. Aufbauend auf den vorhergehenden Ergebnissen der verschiedenen Anwendungsbereiche und Forschungserkenntnisse mĂŒndet die Dissertation in einer offenen Hard- und Software-Plattform fĂŒr Earables namens "OpenEarable". OpenEarable umfasst eine Reihe fortschrittlicher Sensorfunktionen, die fĂŒr verschiedene ohrbasierte Forschungsanwendungen geeignet sind, und ist gleichzeitig einfach herzustellen. Hierdurch werden die EinstiegshĂŒrden in die ohrbasierte Sensorforschung gesenkt und OpenEarable trĂ€gt somit dazu bei, das gesamte Potenzial von Earables auszuschöpfen. DarĂŒber hinaus trĂ€gt die Dissertation grundlegenden Designrichtlinien und Referenzarchitekturen fĂŒr Earables bei. Durch diese Forschung schließt die Dissertation die LĂŒcke zwischen der Grundlagenforschung zu ohrbasierten Sensoren und deren praktischem Einsatz in realen Szenarien. Zusammenfassend liefert die Dissertation neue Nutzungsszenarien, Algorithmen, Hardware-Prototypen, statistische Auswertungen, empirische Studien und Designrichtlinien, um das Feld des Earable Computing voranzutreiben. DarĂŒber hinaus erweitert diese Dissertation den traditionellen Anwendungsbereich von Kopfhörern, indem sie die auf Audio fokussierten GerĂ€te zu einer Plattform erweitert, welche eine Vielzahl fortschrittlicher SensorfĂ€higkeiten bietet, um Eigenschaften, Prozesse und AktivitĂ€ten zu erfassen. Diese Neuausrichtung ermöglicht es Earables sich als bedeutende Wearable Kategorie zu etablieren, und die Vision von Earables als eine vielseitige Sensorenplattform zur Erweiterung der menschlichen FĂ€higkeiten wird somit zunehmend realer

    Hanshagata hikari sensagun o umekonda sumāto aiwea ni yoru hyƍjƍ shikibetsu

    Get PDF

    Real-Time Control of a Video Game Using Eye Movements and Two Temporal EEG Sensors

    Get PDF
    EEG-controlled gaming applications range widely from strictly medical to completely nonmedical applications. Games can provide not only entertainment but also strong motivation for practicing, thereby achieving better control with rehabilitation system. In this paper we present real-time control of video game with eye movements for asynchronous and noninvasive communication system using two temporal EEG sensors. We used wavelets to detect the instance of eye movement and time-series characteristics to distinguish between six classes of eye movement. A control interface was developed to test the proposed algorithm in real-time experiments with opened and closed eyes. Using visual feedback, a mean classification accuracy of 77.3% was obtained for control with six commands. And a mean classification accuracy of 80.2% was obtained using auditory feedback for control with five commands. The algorithm was then applied for controlling direction and speed of character movement in two-dimensional video game. Results showed that the proposed algorithm had an efficient response speed and timing with a bit rate of 30 bits/min, demonstrating its efficacy and robustness in real-time control

    One-Step, Three-Factor Passthought Authentication With Custom-Fit, In-Ear EEG

    Get PDF
    In-ear EEG offers a promising path toward usable, discreet brain-computer interfaces (BCIs) for both healthy individuals and persons with disabilities. To test the promise of this modality, we produced a brain-based authentication system using custom-fit EEG earpieces. In a sample of N = 7 participants, we demonstrated that our system has high accuracy, higher than prior work using non-custom earpieces. We demonstrated that both inherence and knowledge factors contribute to authentication accuracy, and performed a simulated attack to show our system's robustness against impersonation. From an authentication standpoint, our system provides three factors of authentication in a single step. From a usability standpoint, our system does not require a cumbersome, head-worn device

    Improving Speech Intelligibility by Hearing Aid Eye-Gaze Steering: Conditions With Head Fixated in a Multitalker Environment

    Get PDF
    The behavior of a person during a conversation typically involves both auditory and visual attention. Visual attention implies that the person directs his or her eye gaze toward the sound target of interest, and hence, detection of the gaze may provide a steering signal for future hearing aids. The steering could utilize a beamformer or the selection of a specific audio stream from a set of remote microphones. Previous studies have shown that eye gaze can be measured through electrooculography (EOG). To explore the precision and real-time feasibility of the methodology, seven hearing-impaired persons were tested, seated with their head fixed in front of three targets positioned at -30 degrees, 0 degrees, and +30 degrees azimuth. Each target presented speech from the Danish DAT material, which was available for direct input to the hearing aid using head-related transfer functions. Speech intelligibility was measured in three conditions: a reference condition without any steering, a condition where eye gaze was estimated from EOG measures to select the desired audio stream, and an ideal condition with steering based on an eye-tracking camera. The "EOG-steering" improved the sentence correct score compared with the "no-steering" condition, although the performance was still significantly lower than the ideal condition with the eye-tracking camera. In conclusion, eye-gaze steering increases speech intelligibility, although real-time EOG-steering still requires improvements of the signal processing before it is feasible for implementation in a hearing aid.Funding Agencies|EU Horizon 2020 Grant [644732]</p

    Multimodal Wearable Sensors for Human-Machine Interfaces

    Get PDF
    Certain areas of the body, such as the hands, eyes and organs of speech production, provide high-bandwidth information channels from the conscious mind to the outside world. The objective of this research was to develop an innovative wearable sensor device that records signals from these areas more conveniently than has previously been possible, so that they can be harnessed for communication. A novel bioelectrical and biomechanical sensing device, the wearable endogenous biosignal sensor (WEBS), was developed and tested in various communication and clinical measurement applications. One ground-breaking feature of the WEBS system is that it digitises biopotentials almost at the point of measurement. Its electrode connects directly to a high-resolution analog-to-digital converter. A second major advance is that, unlike previous active biopotential electrodes, the WEBS electrode connects to a shared data bus, allowing a large or small number of them to work together with relatively few physical interconnections. Another unique feature is its ability to switch dynamically between recording and signal source modes. An accelerometer within the device captures real-time information about its physical movement, not only facilitating the measurement of biomechanical signals of interest, but also allowing motion artefacts in the bioelectrical signal to be detected. Each of these innovative features has potentially far-reaching implications in biopotential measurement, both in clinical recording and in other applications. Weighing under 0.45 g and being remarkably low-cost, the WEBS is ideally suited for integration into disposable electrodes. Several such devices can be combined to form an inexpensive digital body sensor network, with shorter set-up time than conventional equipment, more flexible topology, and fewer physical interconnections. One phase of this study evaluated areas of the body as communication channels. The throat was selected for detailed study since it yields a range of voluntarily controllable signals, including laryngeal vibrations and gross movements associated with vocal tract articulation. A WEBS device recorded these signals and several novel methods of human-to-machine communication were demonstrated. To evaluate the performance of the WEBS system, recordings were validated against a high-end biopotential recording system for a number of biopotential signal types. To demonstrate an application for use by a clinician, the WEBS system was used to record 12‑lead electrocardiogram with augmented mechanical movement information

    Emotion and Stress Recognition Related Sensors and Machine Learning Technologies

    Get PDF
    This book includes impactful chapters which present scientific concepts, frameworks, architectures and ideas on sensing technologies and machine learning techniques. These are relevant in tackling the following challenges: (i) the field readiness and use of intrusive sensor systems and devices for capturing biosignals, including EEG sensor systems, ECG sensor systems and electrodermal activity sensor systems; (ii) the quality assessment and management of sensor data; (iii) data preprocessing, noise filtering and calibration concepts for biosignals; (iv) the field readiness and use of nonintrusive sensor technologies, including visual sensors, acoustic sensors, vibration sensors and piezoelectric sensors; (v) emotion recognition using mobile phones and smartwatches; (vi) body area sensor networks for emotion and stress studies; (vii) the use of experimental datasets in emotion recognition, including dataset generation principles and concepts, quality insurance and emotion elicitation material and concepts; (viii) machine learning techniques for robust emotion recognition, including graphical models, neural network methods, deep learning methods, statistical learning and multivariate empirical mode decomposition; (ix) subject-independent emotion and stress recognition concepts and systems, including facial expression-based systems, speech-based systems, EEG-based systems, ECG-based systems, electrodermal activity-based systems, multimodal recognition systems and sensor fusion concepts and (x) emotion and stress estimation and forecasting from a nonlinear dynamical system perspective

    Research through Design of Bendable Interactive Playing Cards

    Get PDF
    Ph.D
    corecore