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In-ear EEG offers a promising path toward usable, discreet brain-computer interfaces

(BCIs) for both healthy individuals and persons with disabilities. To test the promise of

this modality, we produced a brain-based authentication system using custom-fit EEG

earpieces. In a sample of N = 7 participants, we demonstrated that our system has

high accuracy, higher than prior work using non-custom earpieces. We demonstrated

that both inherence and knowledge factors contribute to authentication accuracy, and

performed a simulated attack to show our system’s robustness against impersonation.

From an authentication standpoint, our system provides three factors of authentication

in a single step. From a usability standpoint, our system does not require a cumbersome,

head-worn device.

Keywords: passthoughts, authentication, in-ear EEG, ubiquitous EEG, brain-computer interface, usable security,

human-computer interaction

1. INTRODUCTION

The hardware that drives EEG-based BCIs has improved dramatically over the past 5 years,
decreasing in size and cost by orders of magnitude (Grierson and Kiefer, 2011). Many consumer
devices leverage this technology: as of December 2018, there are at least seven EEG devices on
the market, ranging from 100 to 500 USD, and featuring one to sixteen electrodes. Many of them
transmit data wirelessly to computers and smart devices. Meanwhile, advances in machine learning
have radically improved the reliability of BCI applications. Taken together, prospects seem bright
for the wider adoption of BCIs in everyday life.

However, the head-worn form-factor, and awkward visibility of EEG-based BCIs has proven a
stubborn challenge to BCI adoption (Mihajlovic et al., 2015). Both disabled and healthy subjects
complain about the comfort of head-worn devices, the difficulty of applying electrodes correctly
to the scalp, and questionable aesthetics of wearing such a visible device in public, social settings
(Ekandem et al., 2012; David Hairston et al., 2014).

One possible solution to this problem is to embed EEG electrodes in earbuds, collecting EEG
signals from the ear canal. While early work framed in-ear EEG largely as a tradeoff between
ergonomics and signal quality (Kidmose et al., 2013), in-ear EEG signals are at least robust enough
to detect auditory evoked responses (Kidmose et al., 2012), and more recent work has indicated
that EEG collected in the ear may have its own, unique affordances. For example, one study built a
rudimentary eye-tracker using ocular signals (EOG, or electrooculography) collected from the ear
canal (Manabe and Fukumoto, 2013).

To test in-ear EEG’s capacity to produce usable BCI applications, this paper attempts to use
the sensing modality to construct a brain-based authentication system (Chuang et al., 2013) using
custom-fit, EEG earbuds. Authentication relies on one or more factors: knowledge (something one
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knows), posesssion (something one has), or inherence
(properties of one’s body). Where multifactor authentication
provides added security over single-factor authentication
such as passwords, multiple factors typically require
multiple steps (e.g., entering a password, then entering a
code from one’s cellphone). One particular brain-based
authentication strategy, passthoughts, combines multiple
factors of authentication into a single step: a knowledge
factor (one’s secret thought), and a biometric factor (the
unique way one express that thought neurally) (Chuang,
2014). By incorporating a custom-fit earbud, we set out
to combine all three factors of authentication into a single
step (Figure 1).

This paper makes several, distinct contributions. First,
we achieve a 99.82% authentication accuracy with zero false
acceptance rate (FAR) using personalized custom-fit three-
channel EEG earpieces and a passthoughts authentication
paradigm. Second, we quantify the improvements over
prior art in authentication accuracy due to the use of
custom-fit vs. generic earpieces, and the use of multiple
electrodes vs. a single electrode. Third, we evaluate
multiple classification strategies that allows us to compare
the relative contributions of the inherence factor and
knowledge factor to authentication accuracy. Fourth, we
perform simulation attacks to demonstrate the method’s
robustness against impersonation via four scenarios where
the attacker has access to the target’s earpiece and/or
secret passthoughts.

Collectively, we build a case that in-ear EEG
could offer a viable, usable road to accurate BCI
applications, for healthy individuals or persons with
disabilities. In addition, we argue that passthoughts
authentication using personalized custom-fit earpieces
offers a viable and attractive path toward one-step
three-factor authentication.

FIGURE 1 | On the right, one of the manufactured custom-fit earpieces with three embedded electrodes located in the concha, front-facing (anterior) in the ear canal,

and back-facing (posterior) in the ear canal. On the left, three factors of authentication. Passthoughts authentication with a custom-fit in-ear EEG satisfies all

three factors.

2. RELATED WORK

2.1. In-Ear EEG
The concept of in-ear EEG was introduced in 2011 with a
demonstration of the feasibility of recording brainwave signals
from within the ear canal (Looney et al., 2011). The in-ear
placement can produce signal-to-noise ratios comparable to
those from conventional EEG electrode placements, is robust
to common sources of artifacts, and can be used in a brain-
computer interface (BCI) system based on auditory and visual
evoked potentials (Kidmose et al., 2013). One previous study
attempted to demonstrate user authentication using in-ear EEG,
but was only able to attain an accuracy level of 80%, limited by the
use of a consumer-grade device with a single generic-fit electrode
(Curran et al., 2016). A follow-up study with a single, generic-
fit electrode achieved an accuracy of 95.7% over multiple days
(Nakamura et al., 2018).

2.2. Passthoughts and Behavioral
Authentication
The use of EEG as a biometric signal for user authentication has
a relatively short history. In 2005, Thorpe et al. motivated and
outlined the design of a passthoughts system (Thorpe et al., 2005).
Since 2002, a number of independent groups have achieved
99–100% authentication accuracy for small populations using
research-grade and consumer-grade scalp-based EEG systems
(Poulos et al., 2002; Marcel and Millan, 2007; Ashby et al.,
2011; Chuang et al., 2013). Several recent works on brainwave
biometrics have independently demonstrated individuals’ EEG
permanence over 1–6 months (Armstrong et al., 2015; Maiorana
et al., 2016) or even over 1 year (Ruiz-Blondet et al., 2017).

2.2.1. Authentication Factors

Behavioral authentication methods such as keystroke dynamics
and speaker authentication can be categorized as one-step
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two-factor authentication schemes. In both cases, the knowledge
factor (password or passphrase) and inherence factor (typing
rhythm or speaker’s voice) are employed (Monrose and Rubin,
1997). In contrast, the Nymi band supports one-step two-
factor authentication via the inherence factor (cardiac rhythm
that is supposed to be unique to each individual) and the
possession factor (the wearing of the band on the wrist) (Nymi,
2017). However, as far as we know, no one has proposed or
demonstrated a one-step three-factor authentication scheme.

2.3. Usable Authentication
When proposing or evaluating authentication paradigms,
robustness against imposters is often a first consideration, but
the usability of these systems is of equal importance as they
must conform to a person’s needs and lifestyle to warrant
adoption and prolonged use. Sasse et al. describe usability
issues with common knowledge-based systems like alphanumeric
passwords, in particular that a breach in systems which require
users to remember complex passwords that must be frequently
changed is a failure on the part of the system’s design, not the
fault of the user (Sasse et al., 2001). Other research analyzed
some of the complexities of applying human factors heuristics for
interface design to authentication, and indicate the importance of
social acceptability, learnability, and simplicity of authentication
methods (Braz and Robert, 2006). Technologies worn on the
head entail particular usability issues; in their analysis of user
perceptions of headworn devices, Genaro et al. identified design,
usability, ease of use, and obtrusiveness among the top ten
concerns of users, as well as qualitative comments around
comfort and “looking weird” (Genaro Motti and Caine, 2014).

Mobile and wearable technologies’ continuous proximity to
the user’s body provides favorable conditions for unobtrusively
capturing biometrics for authentication. Many such uses
have been proposed that embrace usability like touch-based
interactions (Holz and Knaust, 2015; Tartz and Gooding, 2015)
and walking patterns (Lu et al., 2014) using mobile phones,
as well as identification via head movements and blinking in
head-worn devices (Rogers et al., 2015). However, these typically
draw only from the inherence factor. Chen et al. proposed an
inherence and knowledge two-factor method for multi-touch
mobile devices based on a user’s unique finger tapping of a song
(Chen et al., 2015), though it may be vulnerable to “shoulder
surfing”: imposters observing and mimicking the behavior to
gain access.

2.4. One-Step, Three-Factor Authentication
It is well appreciated by experts and end-users alike that strong
authentication is critical to cybersecurity and privacy, now
and into the future. Unfortunately, news reports of celebrity
account hackings serve as regular reminders that the currently
dominant method of authentication in consumer applications,
single-factor authentication using passwords or other user-
chosen secrets, faces many challenges. Many major online
services have strongly encouraged their users to adopt two-
factor authentication (2FA). However, submitting two different
authenticators in two separate steps has frustrated wide adoption
due to its additional hassle to users. Modern smartphones, for

instance, already support device unlock using either a user-
selected passcode or a fingerprint. These devices could very well
support a two-step two-factor authentication scheme if desired.
However, it is easy to understand why users would balk at having
to enter a passcode and provide a fingerprint each time they want
to unlock their phone.

“One-step two-factor authentication” has been proposed as
a new approach to authentication that can provide the security
benefits of two-factor authentication without incurring the
hassle cost of two-step verification (Chuang, 2014). In this
work we undertake, to the best of our knowledge, the first-
ever study and design of one-step, three-factor authentication.
In computer security, authenticators are classified into three
types: knowledge factors (e.g., passwords and PINs), possession
factors (e.g., physical tokens, ATM cards), and inherence factors
(e.g., fingerprints and other biometrics). By taking advantage
of a physical token in the form of personalized earpieces, the
uniqueness of an individual’s brainwaves, and a choice of mental
task to use as one’s “passthought,” we seek to achieve all three
factors of authentication within a single step by the user.

In the system we propose here we seek to incorporate
recommendations from this research for improved usability
while maintaining a highly secure system. The mental tasks
we test are simple and personally relevant; instead of complex
alphanumeric patterns like a traditional password, a mental
activity like relaxed breathing or imagining a portion of one’s
favorite song are easy for a user to remember and perform as
shown by participant feedback in previous passthoughts research
and in our own results later in this paper. These mental activities
are largely invisible to “shoulder surfing” attempts by onlookers,
and furthermore present a possible solution to “rubber-hose
attacks” (forceful coercion to divulge a password); a thought
has a particular expression unique to an individual, the specific
performance of which cannot be described and thus cannnot
be coerced or forcibly unlike for example the combination to
a padlock or fingerprint. Finally, to combat the wearability and
obtrusiveness issues of scalp-based EEG systems used in other
brain-based authentication research, our system’s form factor of
earpieces with embedded electrodes is highly similar to earbud
headphones or wireless headsets already commonly worn and
generally socially accepted technologies.

3. METHODS

3.1. Study Overview
Seven male, right-handed participants (P1–P7), five students and
two researchers, were recruited via a university mailing list and
completed our study protocol approved by our local ethics review
board. The two researcher participants were also involved in
the development of this study. Though this sample is relatively
homogenous and greater diversity is necessary for a larger real-
world feasibility assessment, this quality interestingly functions
to strengthen the results of a system designed to discriminate
between users (see Discussion). After participants’ 3D ear molds
were obtained, the custom-fit earpieces were manufactured, and
their fit and electrical impedances were checked, we proceeded to
the collection of study data.
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Data collection consisted of participants completing a
demographics questionnaire, a setup period with the OpenBCI
system and earpieces sed for EEG collection with a second
impedance check, their performance of nine mental tasks, and
finally a post-experiment questionnaire.

3.2. Earpiece Design and Manufacturing
Earpieces were produced by an audiologist at Starkey, a
manufacturer of hearing aids. To produce custom ear
impressions, subjects’ ears were cleaned, a cotton ball with
a string attached was placed inside the ear canal, and silicone
was injected into the canals. Starkey “Precise3S Classic” two-part
silicone impression material was used. When the silicone
dried after a few minutes, the string was pulled to remove the
impression from the ear canal. This impression was then scanned
with a 3D scanner, and the resulting scan modified to achieve a
comfortable fit and to ensure the intended electrode sites would
make good contact with the skin. Channels were created in the
3D model to allow wire leads and associated EEG electrodes as
well as a plastic tube to deliver audio. This 3D model was then
sent to a 3D printer after which wires, leads, and associated AgCl
electrodes were installed. Cortech EC-DC-AGP1 electrodes
were used for the canal electrodes, and Cortech EC-DC-AGE6
electrodes were used for the concha electrode. The positions
of the earpiece electrodes were simplified from those described
in Mikkelsen et al. (2015). We reduced the number of canal
electrodes in order to prevent electrical bridging and positioned
them approximately 180◦ apart in the canal (posterior/back and
anterior/front locations in the canal). One other electrode was
placed in the concha. An example of one of the manufactured
earpieces is shown in Figure 1.

The electrodes were purchased from Cortech:
Canal electrodes: https://cortechsolutions.com/product/ec-

dc-agp1/
Concha electrode: https://cortechsolutions.com/product/ec-

dc-age6/

3.3. Mental Tasks
We selected a set of mental tasks based on findings in related
work regarding the relative strengths of different tasks in
authentication accuracy and usability as reported by participants
(Chuang et al., 2013; Curran et al., 2016). Furthermore, given the
in-ear placement of the electrodes and therefore the proximity
to the temporal lobes containing the auditory cortex, we tested
several novel authentication tasks based specifically on aural
imagery or stimuli. The nine authentication tasks and their
attributes are listed in Table 1. Our strategy was to select tasks
that captured a diversity across dimensions of external stimuli,
involving a personal secret, eyes open or closed (due to known
effects on EEG), and different types of mental imagery.

3.4. Data Collection Protocol
All sites were cleaned with ethanol prior to electrode placement
and a small amount of conductive gel was used on each electrode.
For EEG recording we used an 8-channel OpenBCI system
(Michalska, 2009) which is open-source and costs about 600
USD; an alternative to medical-grade EEG systems (which cost

>20,000 USD), with demonstrated effectiveness (Frey, 2016). We
chose OpenBCI for its flexibility: despite the broad availability of
low-cost EEG sensors, no commercially-available sensor allowed
us to build our own recording configuration with a custom
number, and configuration, of electrodes.

The ground was placed at the center of the forehead, at AFz
according to the 10–20 International Standard for Electrode
Placement (ISEP), and reference on the left mastoid (behind the
left ear). We chose the AFz ground location to minimize the
chances that our measurement setup caused differences between
readings from the left and right electrodes, , though future
systems using one ear only should test relocating the ground
to a site on one ear (e.g., the earlobe). Six channels were used
for the three electrodes on each earpiece (shown in Figure 1).
For the remaining two channels, one AgCl ring electrode was
placed on the right mastoid for later re-referencing, and one
at Fp1 (ISEP location above the left eye) to validate the data
collected in the ears against a common scalp-based placement.
Before beginning the experiment, the data from each channel
was visually inspected using the OpenBCI interface by having
the participant clench their jaw and blink. Audio stimuli were
delivered through small tubes in the earpieces.

During the experiment, participants were seated in a
comfortable position in a quiet room facing a laptop on which
the instructions and stimuli were presented and timings recorded
using PsychoPy (Peirce, 2007). All tasks were performed for five
trials each, followed by another set of five trials each to reduce
boredom and repetition effects. Each trial was 10 s in length, for a
total of 10 trials or 100 s of data collected per task. This collection
protocol is outlined in Figure 2. The instructions were read aloud
to participants by the experimenter, and participants advanced
using a pointer held in their lap to minimize motion artifacts in
the data. The experimenter also recorded the participant’s chosen
secrets for the sport, song, face, speech, and sequence tasks and
reminded the participant of these for the second set of trials.
After EEG data collection, participants completed a usability
questionnaire assessing each task on 7-point Likert-type scales
on dimensions of ease of use, level of engagement, repeatability,
and likeliness to use for real-world authentication as well as a
few open response questions. Approximately 2 weeks after data
collection participants were contacted via e-mail and asked to
recall their choices for those tasks that involved chosen secrets.

4. ANALYSIS

4.1. Data Validation
We confirm that the custom-fit earpieces were able to collect
quality EEG data via two metrics: low impedances measured for
the ear electrodes, and alpha-band EEG activity attenuation when
a participant’s eyes were open vs. closed.

It is important that the electrical impedances achieved for
electrodes are low (<10 kOhm) to obtain quality EEG signals.
Table 2 below summarizes the impedances across the seven
participants’ six ear channels. With the exception of a few
channels in select participants, impedances achieved were good
overall. Most of the recorded impedances of the earpiece
electrodes were less than 5 k�, a benchmark used widely in
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TABLE 1 | The nine authentication tasks and their properties.

Task Description Stimuli? Secret? Imagery

Breathe Relaxed breathing No No None

Breathe - Open Relaxed breathing with eyes open No No None

Sport Imagine attempting a chosen physical activity No Yes Motor

Song Imagine hearing a song No Yes Aural

Song - Open Song task, with eyes open No Yes Aural

Speech Imagine a chosen spoken phrase No Yes Aural

Listen Listen to noise modulated at 40 Hz Yes No None

Face Imagine a chosen person’s face No Yes Visual

Sequence Imagine a face, number, and word on cues with eyes open Yes Yes Visual

We selected tasks with a variety of different properties, but preferred tasks that did not require external stimuli, as the need to present such stimuli at authentication time could present

challenges for usability and user security. Tasks were performed with the participant’s eyes closed unless otherwise noted.

FIGURE 2 | The data collection protocol. Approximately 2 weeks after data collection participants were contacted via e-mail to test recall of their passthoughts.

TABLE 2 | Electrical impedances measured for concha (C), front (F), and back (B)

earpiece electrodes.

Impedances [k�]

Left ear Right ear

P C F B C F B

1 4 4 4 <1 4 3

2 9 5 4 3 4 4

3 4 5 4 9 6 9

4 4 5 4 3 16 9

5 9 20 7 3 7 9

6 5 8 2 1 1 9

7 2 9 8 7 5 6

previous ear EEG work, and all except two were less than 10 k�.
Nonetheless, the data from all electrodes were tested in our other
data quality test.

For the alpha-attenuation test, data from the breathe task
was compared with that of the breathe - open task. It is a
well-known feature of EEG data that activity in the alpha-band
(approximately 8–12 Hz) increases when the eyes are closed
compared to when the eyes are open. This attenuation is clearly
visible even in just a single trial’s data from our earpieces and
matches that seen in our Fp1 scalp electrode data. Figure 3 shows
evidence of alpha attenuation in the left ear channels compared

to Fp1, for one participant as an example. We see the same
validation in the right ear channels.

4.2. Classification
Since past work has shown that classification tasks in EEG-based
brain-computer interfaces (BCI) are linear (Garrett et al., 2003),
we used XGBoost, a popular tool for logistic linear classification
(Chen and Guestrin, 2016), to analyze the mental task EEG
data. Compared to other linear classifiers, XGBoost uses gradient
boosting in which an algorithm generates a decision tree of weak
linear classifiers that minimizes a given loss function. Gradient
boosting generally improves linear classification results without
manually tuning hyper-parameters.

To produce feature vectors, we took slices of 100 raw values
from each electrode (about 500 ms of data), and performed a
Fourier transform to produce power spectra for each electrode
during that slice. We concatenated all electrode power spectra
together. No dimensionality reduction was applied. For each task,
for each participant, 100 s of data were collected in total across
10 trials of 10 s each, resulting in 200 samples per participant,
per task.

We trained the classifier such that positive examples were
from the target participant and target task, and negative examples
were selected randomly from any task from any other participant.
From this corpus of positive and negative samples, we withheld
one third of data for testing. The remaining training set was used
to cross-validate an algorithm over 100 rounds on different splits
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of the data. The results of each cross-validation (CV) step was
used to iteratively tweak classifier parameters.

For the predictions, the evaluation regards the instances with
prediction value larger than 0.5 as positive instances, and the
others as negative instances. After updating classifier parameters,
the classifier was tested on the withheld test set. Since negative
examples far outweigh positive examples in this dataset, XGBoost
automatically optimized using the error hyperparameter. Over
a set of E examples containing EW wrong examples EW ⊂ E,
XGBoost’s binary classification error rate ǫ is calculated as

ǫ = EW/E (1)

We calculated false acceptance and false rejection rates (FAR and
FRR, respectively) from these results. Over false attempts FA of
which some subset FAS were successful, and true attempts TA
over which some subset TAU were unsuccessful:

FAR = FAS/FA (2)

FRR = TAU/TA (3)

To further test the robustness of the system, we also conducted a
“leave one out” process for the best performing tasks in which
each participant’s FAR was calculated once with each other
participant left out (e.g., CV for P1 with P2 left out, then CV for
P1 with P3 left out, etc., for every participant combination).

5. RESULTS

For each configuration of electrodes, we calculated the mean FAR
and FRR across all participants using each task as the passthought
(Figure 4). Incorporating all electrodes data resulted in the lowest
FAR, followed by the combined right and left ear electrodes,
respectively. For left ear (3 electrodes), right ear (3 electrodes),
and both ears (6 electrodes) configurations, every participant had
at least one task with zero FAR and FRR. Among the individual
electrodes, the left canal front electrode produced a mean FAR
of 0.12% and a mean FRR just below 20%. Counter to our
expectations, Fp1 does not perform as well as most ear electrodes,
though overall these reported FAR rates are «1%.

For each position, FAR was about ten times lower than FRR,
which is preferable for authentication, as false authentications are
generally more costly than false rejections.

Our results indicate acceptable accuracy using data from the
left ear alone. This corresponds to a desirable scenario, in which
the device could be worn as a single earbud. As such, we focus on
results from only the left ear in the following analyses.

5.1. Authentication Results
Using only data from the three left ear electrodes, the FARs and
FRRs of each task for each participant are shown in Tables 3, 4,
respectively. We find at least one task for each participant
that achieves 0% FAR, and for five participants a task where
both the FAR and FRR are 0%. Each task achieved perfect 0%
FAR and FRR for at least one participant, notably breathe and

FIGURE 3 | Alpha-attenuation (8–12 Hz range) in left ear and Fp1 channels, referenced at left mastoid. Red indicates breathing data with eyes open, blue indicates

the same task with eyes closed.
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FIGURE 4 | Mean FAR and FRR by electrode configuration across all participants and tasks. All electrodes (Fp1, right, and left ear channels) combined achieved the

best FAR score by mean and standard error. The right ear electrodes combined, and left ear electrodes combined, achieved next-best accuracy, both within error of

one another.

TABLE 3 | FAR performance of each task for each participant using data from the

left ear.

Task P1 P2 P3 P4 P5 P6 P7 Mean

Breathe 0 0 0 0 0.0002 0.0004 0 0.00009

Breathe -

open

0 0 0 0 0.0002 0 0 0.00003

Face 0 0 0 0.0016 0.0030 0 0.0002 0.00078

Listen 0.0002 0 0.0002 0 0.0026 0 0 0.00043

Sequence 0 0.0002 0 0.0008 0.0014 0 0.0002 0.00037

Song 0 0.0001 0 0 0 0.0001 0 0.00003

Song -

open

0 0.0004 0 0 0 0 0 0.00006

Speech 0 0 0.0006 0.0002 0.0002 0.0006 0 0.00022

Sport 0 0 0 0 0 0 0 0

TABLE 4 | FRR performance of each task for each participant using data from the

left ear.

Task P1 P2 P3 P4 P5 P6 P7 Mean

Breathe 0 0.0125 0 0.0125 0.0125 0.0250 0 0.00893

Breathe -

open

0.0500 0.0125 0.0375 0.1000 0.0375 0 0 0.03393

Face 0.0125 0.0125 0 0.1125 0.4000 0 0.0375 0.08214

Listen 0.0750 0.0375 0.0375 0.0500 0.3375 0.0125 0 0.07857

Sequence 0.0125 0 0 0.0375 0.4000 0.0375 0 0.06964

Song 0.0375 0.0125 0 0.0375 0.0500 0 0 0.01964

Song -

open

0.0250 0.0250 0.0500 0.0125 0 0 0 0.01607

Speech 0 0.0125 0.0625 0 0.3375 0 0.0125 0.06071

Sport 0.0250 0.0250 0 0.0125 0.0375 0.0125 0.0125 0.01786

song - open achieved perfect FAR and FRR for three out of
seven participants.

FAR and FRR results by task are shown in Figure 5, averaged
across participants. Across all tasks, the sport task produced
the lowest FAR. Specifically, it produced 0% FAR for all seven

participants, with a corresponding 1.8% FRR. This suggests that
the authentication scheme can work very well even if we limit the
passthoughts to just a single task category, where the users could
choose a personalized secret for that task. Interestingly, tasks like
breathe and breathe - open performed very well despite lacking a
personalized secret, indicating that even when the taskmay be the
same across participants our classifier was still able to distinguish
between them.

As an omnibus metric, the half total error rate (HTER) is
defined as the average of the FAR and FRR:

HTER = (FAR+ FRR)/2 (4)

and from this we estimate authentication accuracy, ACC, as:

ACC = 100 ∗ (1−HTER) (5)

Using our best performing tasks’ FARs, averaging 0% and these
tasks’ associated FRRs, averaging 0.36%, we obtain an overall
authentication accuracy of 99.82% using data from the three
electrodes in the left ear. For comparison, if we limit ourselves
to only a single electrode (left canal-front), we obtain an
authentication accuracy of 90%.

Our “leave one out” analysis with participants’ best tasks
maintained 0% FAR across all participant combinations.

As an additional validity check, we replicated our results
using data from the left ear only, high-passing the original
frequency-domain data at 32 Hz to select only data associated
with non-cortical signals such as muscular activity. Our classifier
performed roughly at chance. This analysis strongly suggests
that EMG signals did not significantly contribute to our results.
Future workmay assess the relative contribution of different EEG
frequency bands, as we discuss further in our discussion.

5.2. Relative Contributions of
Authentication Factors
Our results thus far establish good performance in our default
training strategy, in which we count as negative examples
recordings from the wrong participant performing any task. We
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FIGURE 5 | FAR and FRR results by task, across all subjects, using data from the left ear only.

TABLE 5 | Four analyses in which classifiers were trained on differing negative

examples paired with resulting mean FAR and FRR across all participants and

tasks.

+ Examples - Examples FAR FRR

Pc,Tc Pi , T∗ 0.000074 0.004424

Pc,Tc Pi ,Tc 0.000724 0.001522

Pc,Tc Pc,Ti 0.002523 0.039702

Pc,Tc Pi ,T∗ + Pc,Ti 0.000186 0.052565

Pc indicates correct participant, Pi incorrect participant, Tc correct task, Ti incorrect task,

and T∗ any task.

further performed three other analyses with differing negative
examples which serve to isolate and test the inherence and
knowledge factors: the correct task recorded from the wrong
participant (relies on inherence only), the wrong task recorded
from the correct participant (relies on knowledge only), and a
combination of these two. Positive examples were always the
correct participant performing the correct task.

Overall, our default training strategy which engages both
knowledge and inherence factors achieves the lowest FAR
(Table 5). The FAR in the inherence-only scenario (Table 5,
row 2) is ten times higher, and in the knowledge-only scenario
(Table 5, row 3) FAR is one hundred times higher, though for all
scenarios FAR is less than 1%. However, FRR is lower with the
inherence-only training strategy than the default. FRR is highest
in the combined negative examples case (Table 5, row 4), though
FAR remains low.

5.3. Usability
Before the end of the session, participants completed a usability
questionnaire. Participants were asked to rate eachmental task on
four 7-point Likert-type scales: ease of use, level of engagement,
repeatability, and likeliness to use in a real-world authentication
setting. Mean ratings across participants for each of these
dimensions for each task are shown in Table 6.

Participants also ranked the tasks overall frommost (1) to least
(9) favorite. Song - open ranked highest (µ = 4.25) followed by a
tie between breathe - open, song, and speech (µ = 4.75). Sequence
(µ = 7.75) and face (µ = 6.75) were ranked least favorite overall.

TABLE 6 | Mental tasks ranked by mean ratings (µ) on 7-point Likert-type scales

across participants in four usability dimensions.

Ease of Use Engagement

Task µ Task µ

Breathe 6.75 Sequence 5

Listen 6.75 Song 5

Breathe - Open 6.5 Song - Open 5

Song 5.25 Sport 4.75

Song - Open 5 Face 4.5

Speech 5 Speech 4

Sport 3.5 Breathe 2.5

Face 2.75 Breathe - Open 2.25

Sequence 2.25 Listen 2.25

Repeatability Likeliness to Use

Task µ Task µ

Breathe 7 Song - Open 5

Breathe - Open 6.75 Sequence 4.25

Listen 6.75 Song 4

Song 4.75 Sport 4

Speech 4.75 Breathe - Open 3.75

Song - Open 4.25 Speech 3.75

Face 3 Face 3.5

Sport 3 Listen 3

Sequence 2.5 Breathe 2.75

In addition to the scales and rankings, we included a few
open response questions to ascertain attitudes around use cases
for in-ear EEG and passthoughts, and the comfort of wearing
an in-ear EEG device in everyday life. Participants first read
the prompt, “Imagine a commercially available wireless earbud
product is now available based on this technology that you’ve
just experienced. It requires minimal effort for you to put on
and wear,” and were asked about use cases for in-ear EEG and
passthoughts. Responses about in-ear EEG expectedly included
authentication for unlocking a phone or computer and building
access, but also aspects of self-improvement such as P4’s response
“Help people increase focus and productivity.” P5 and P6 also
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indicated a use formeasuring engagement withmedia likemovies
and music, and relatedly P4 wrote “music playback optimized for
current mental state and feelings.” In terms of comfort wearing
such a device, participants generally responded they would be
comfortable, though P5 and P6 stipulated only when they already
would be wearing something in the ears like earphones. Notably,
three participants also added that imagining a face was difficult
and had concerns regarding their ability to repeat tasks in the
same exact way each time.

A final component of usability we assessed was the ability
of the participants to recall their specific chosen passthoughts.
Participants were contacted via e-mail approximately 2 weeks
after data collection and asked to reply with the passthoughts
they chose for the song, sport, speech, face, and sequence tasks.
All participants correctly recalled all chosen passthoughts, with
the exception of one participant who did not recall their chosen
word component for the sequence task.

6. IMPOSTER ATTACK

While our authentication analysis establishes that passthoughts
achieve low FAR and FRR when tested against other participants’
passthoughts, this does not tell us how robust passthoughts are
against a spoofing attack, in which both a participant’s custom-
fit earpiece, and details of that participant’s chosen passthought,
are leaked to an imposter who attempts authentication. We
performed four different analyses to investigate the system’s
robustness against imposter attacks.

First, we tested the ability of an imposter to wear an earpiece
acquired from someone else and achieve viable impedance values
for EEG collection based on the fit of the pieces in their ears.
P1 tried on each of the other participants’ customized earpieces.
The impedances from each electrode were recorded and are
listed in Table 7 below. Across all cases, the impedances are not
only higher (worse), but also deviate significantly from those
achieved by the pieces’ intended owners themselves (Table 2).
These results come as no surprise given the uniqueness of ear
canal shapes between individuals (Akkermans et al., 2005), and
point to the possibility that the presentation of a physical token
that provides the correct impedance levels can be used as another
demonstration of both the inherence and possession factors.

TABLE 7 | Electrical impedances with P1 wearing each other participant’s (P)

custom-fitted earpieces, for concha (C), canal-front (F), and canal-back (B).

Impedance [k�]

Left ear Right ear

P C F B C F B

2 34.1 10.2 12.8 27.8 16.0 16.3

3 21.1 20.9 19.0 13.5 11.3 19.5

4 14.1 11.9 9.7 11.0 11.1 13.3

5 17.2 21.9 10.3 32.6 12.5 11.6

6 18.7 10.0 8.4 14.8 11.5 8.9

7 91.5 >1000 21.5 33.5 26.4 31.0

Second, to explore the scenario of an imposter attempting to
gain access, we chose the case of the most vulnerable participant,
P6, whose earpieces P1, P2, and P7 had the lowest impedances
while wearing (Table 8). We collected data using the same data
collection protocol, but had the “imposters” refer to P6’s list of
chosen passsthoughts.

Each imposter performed each of P6’s passthoughts
(simulating an “inside imposter” from within the system).
Following the same analysis steps, we generated 200 samples per
task for our imposters, using data from all left ear electrodes.

Since every participant has one classifier per task (for which
that task is the passthought), we are able to make 200 spoofed
attempts with the correct passthought on each of P6’s classifiers.
We find zero successful spoof attempts for tasks with a chosen
secret (e.g., song or face). In addition, we also do not find any
successful spoof attacks for tasks with no chosen secret (e.g.,
breathe). In fact, in all 1,800 spoof attempts (200 attempts for each
of the nine classifiers), we do not find a single successful attack on
any of P6’s classifiers.

Since this participant’s data appeared in the initial pool, the
classifier may have been trained on his or her recordings as
negative examples. As our third analysis, to explore the efficacy of
an outsider spoofing recordings, we repeated the same protocol
with an individual “PX” who did not appear in our initial set
of participants (an “outside imposter”). Again, we find zero
successful authentications out of 1,800 attempts.

Fourth, our “leave one out” analysis can also be seen as
another set of outside imposter attacks, in which each participant
acts as an outside imposter for each other participant, but
where the imposters have their own manufactured earpieces and
passthoughts. The best task classifiers achieved FARs of 0% across
all combinations, successfully rejecting the simulated imposters.

7. DISCUSSION, LIMITATIONS AND
DIRECTIONS FOR FUTURE WORK

Our findings demonstrate the apparent feasibility of a
passthoughts system consisting of a single earpiece with
three electrodes, a ground, and a reference, all in or on the left
ear. Notably, the gain in performance when adding an additional
three electrodes from the right ear is only marginal in our results,
suggesting a single earpiece could suffice though this may change
with larger sample sizes. FARs and FRRs are consistently low
across all participants and tasks, with FARs overall lower than

TABLE 8 | Left concha (C), canal-front (F), and canal-back (B) electrode

impedances of “imposters” P1, P2, P7, and “PX”—a person completely outside of

the system—wearing P6’s left earpiece.

Impedance [k�]

P C F B

1 18.7 10.0 8.4

2 46.7 35.7 24.8

7 44.5 20.5 26.3

X 70.0 10.5 8.9
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FRRs, a desirable pattern as FAR is the more critical of the two in
terms of accessing potentially sensitive information. Participants’
best-performing tasks or passthoughts typically see no errors in
our testing. From our various training/testing schema it emerged
that the inherence factor performs better on its own compared
to the knowledge factor, but the combination of the two achieves
the lowest FAR indicating measurable benefit of multiple
factors. Furthermore, we were able to achieve these results by
generating feature vectors based on only 500ms of EEG signal
(300 voltage readings across the three electrodes), suggesting
that passthoughts can be captured and recognized quickly.
Passthoughts also appear to be quite memorable given our
2-week recall follow-up and a few were rated highly repeatable
and engaging. Furthermore, no spoofed attacks were successful
in our analyses.

Compared against the 80% authentication accuracy achieved
with a single generic-fit electrode (Curran et al., 2016), we
are able to achieve 90% accuracy with a custom-fit earpiece
using data from a single electrode, and 99.8% accuracy with
the same custom-fit earpiece using three electrodes. This
points to the importance of both the goodness-of-fit of the
electrodes and the number of channels as contributors to
authentication performance.

These personalized custom-fit earpieces can also be easily
outfitted with a hardware keypair for signing authentication
attempts, so as to function as a physical token similar to the
way an electronic key fob can be used to unlock a car, but with
additional inherence and knowledge factors in place.

Several tasks performed exceedingly well among participants,
even tasks like breathe and breathe - open which did not have
an explicit secondary knowledge factor as in song or face. This
suggests a passthoughts system could present users with an
array of task options to choose from without significant loss
in security. While sport performed best in terms of low FAR
and FRR, it was not rated highly in usability dimensions or
as a favorite by our participants. Tasks like breathe - open
and song - open however, both performed well and were rated
quite favorably. Interestingly, the sequence task was rated
low in ease of use and repeatability, and as the least favorite
among participants, but was rated highest in likeliness to
use in a real-world setting. Sequence was arguably the most
complex task, and its high rating in likeliness to use could
indicate that users are more likely to use a task they perceive
as more secure even at the cost of additional effort. This is true
afterall for one of the most common forms of authentication,
alphanumeric passwords, where increased complexity
ensures better performance. The topic of user perceptions
of different passthoughts as means of authentication warrants its
own research.

The difficulty of stealing someone else’s knowledge factor
emerged in our spoofing attacks. In conventional password-
based systems, once the knowledge factor is divulged, an attacker
can essentially spoof the target with 100% success rate. In a
passthought-based system, even though our target participant
documented their chosen passthought, the spoofers found
ambiguity in how these passthoughts could be expressed. For
example, for the face task, the spoofers did not know the precise

face the original participant had chosen. For the song tasks,
though the song was known, the spoofers did not know what part
of the song the original participant had imagined, or how it was
imagined. This experience sheds light on passthoughts’ highly
individual nature and suggests there may be intrinsic difficulty in
spoofing attempts. Future work should examine this effect more
explicitly to elucidate the effect of knowledge task specificity on
defense against imposters.

Performance on Fp1 was not as high as performance in the ear,
despite Fp1’s popularity in past work on passthoughts (Chuang
et al., 2013). One plausible explanation is that several of our
mental tasks involved audio (real or imagined), which we would
expect to be better observed from the auditory cortex near the
ears, as opposed to frontal lobe activity (e.g., concentration)
that might be more easily picked up near Fp1. Another possible
explanation is that Fp1 may be more sensitive to large, task-
irrelevant artifacts from EOG and facial EMG. In either case,
future work should continue to investigate what classes of mental
tasks best lend themselves to in-ear recording.

The sample size of our study, while small, is comparable to
that of other EEG authentication studies (Poulos et al., 2002;
Marcel and Millan, 2007; Ashby et al., 2011; Chuang et al.,
2013; Curran et al., 2016) and other custom-fit in-ear EEG
research (Kidmose et al., 2013; Mikkelsen et al., 2015). The fitting
and manufacturing of custom-fit earpieces for each recruited
participant was the main limitation to increasing our sample
size. This may very well pose a limitation in the proliferation
and adoption of such a technology as well, although recently
there have been developments in at-home kits for creating one’s
own custom-fitted earpieces (Voix et al., 2015) that could help
overcome this barrier.

The relative homogeneity of our participant pool can be
seen as a strength of the reported results, given that system
is meant to distinguish between individuals. For future studies
however, we should expand the size and diversity of participants,
encompassing users and use cases which this system would
be particularly applicable such as those with extreme security
needs and/or persons with disabilities which may prevent them
from performing other authentication methods, e.g., those that
require the use of one’s hands, voice, or particular bodily
movement patterns.

Our work aimed primarily to evaluate our authentication
system’s security characteristics. As such, we have not
investigated which EEG frequency bands drive the
authentication results. Future work could re-analyze our
data to better understand which frequency bands are
most contributing to our authenticator’s results. This
work would deepen our neuroscientific understanding
of how the authentication system achieves the results
we observe.

Applications for a system like the one we propose here
span any use case for authentication, but some may be
particularly well-suited. As has been the motivation for much
of the original and ongoing BCI research and development,
brain-based systems like this one are nearly universally
accessible for use by a wide variety of people with different
bodies. As previously mentioned, one’s particular passthought
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is immune to observation and so is apt for use in public
spaces or times when malicious observation is likely, and
would be extremely difficult to coerce (or even willingly
share). To aid in adoption, this system could be aligned
with currently used technology of similar form factors, for
example speakers could be placed inside our current custom-
fit pieces to produce working “hearables” that could be used as
ordinary headphones.

7.1. Limitations
A key limitation to this work is that our experiments were
conducted in a controlled laboratory setting with participants
in a stationary, sitting position. Future work should examine
EEG data collected from a variety of different user states:
ambulatory or distracting settings, during physical exertion
or exercise, under the influence of caffeine or alcohol, etc.,
as well as over longer periods of time or in multiple
recording sessions. While these additional conditions may
limit the performance of the system, it is interesting to
consider which if any limitations might be advantageous in
some way. For example, a system that prevents or allows
access only when a user is in a certain state of mind or
setting, or enforces a biologically-based expiration that requires
classifier re-training and thus offers protection in a scenario
where a user’s original EEG pattern was somehow leaked or
surreptitiously stored.

Finally, our work leaves room for some clear user experience
improvements. Future work should test the performance
of this system using dry electrodes, which are commonly
found in consumer EEG devices and have shown recent
promise for ear EEG systems (Kappel et al., 2018), as
eliminating the need for conductive gel would very likely
improve comfort and usability and it is unlikely any system
involving gel will be widely adopted. Future work should
also attempt a closed-loop (or online) passthought system,
in which users receive immediate feedback on the result
of their authentication attempt. A closed-loop BCI system
would assist in understanding how human learning effects
might impact authentication performance, as the human and
machine co-adapt.

7.2. Health, Neuroscience and In-Ear EEG
Neuroscience fuels some of the most chilling predictions in
science fiction (Armstrong and Welsh, 2011). It also stands
for some of the greatest possible advances in medicine, mental
health, and understanding of human behavior. One ambitious
goal is to detect or even predict seizures (Mormann et al., 2006).

However, the original, and most active areas of research
in BCI surround the creation of tools for persons with
muscular disabilities (Carrino et al., 2012). By collecting
unstructured or semi-structured EEG data in the wild,
passthought systems could help improve the development
of such BCIs (Grierson and Kiefer, 2011). The small size of
data repositories, limited mostly by the clinical trials needed
to build BCIs for persons with disabilities, has consistently
frustrated attempts to improve on algorithms and protocols

in this field (Allison, 2009). Although passthought users
may not have muscular disabilities, pursuing passthoughts
as an area of research will inevitably yield larger repositories
of EEG data than have been collected to date. This data
could prove invaluable for the development of EEG-based
BCIs across a variety of fields, including (but not limited to)
assistive technologies.

Again, these opportunities must strike a balance with the
risks borne by users around privacy and security. Violating
user privacy by revealing EEG data, even to researchers,
could undermine any chance of wider BCI adoption in
the long-term. Striking this balance will require a deeper
understanding of the statistical properties of signals. How
much data will users really need to give up? What counts
as an “anomalous” reading? Answers to these questions could
themselves inform neuroscientific inquiry. This balance will also
require a deeper understanding of individuals’ attitudes about
the meaning of such signals, and how private people believe
them to be.

In general, as sensors grow smaller and cheaper, devices
more connected, and machine learning more sophisticated,
people will build increasingly high-resolution models of
human physiology “in the wild.” Passthoughts present just
a microcosm of the good such advances might bring, along
with some of the most pressing anxieties: What does pervasive
physiological recording mean for our privacy, security, safety?
The balancing act between these risks and opportunities will
prove recurring theme for decades to come. Perhaps passthought
authentication could better protect sensitive readings such
as EEG. Probing the outer limits of ubiquitous, pervasive
sensing can shed light on both the good and bad of ubiquitous
physiological monitoring.

8. CONCLUSIONS AND OUTLOOK

Using custom-fit EEG earpieces, we produced a one-step,
three-factor authentication system. We demonstrated
that our system has high accuracy, higher than prior
work using non-custom earpieces. We demonstrated
that both inherence and knowledge factors contribute to
authentication accuracy, and performed a simulated attack
to show our system’s robustness against impersonation. We
believe that custom-fit EEG earpieces provide a practical
path forward for BCI applications, security-related and
beyond, both for healthy individuals and for persons
with disabilities.
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