230 research outputs found

    On Implementing Straight Skeletons: Challenges and Experiences

    Get PDF

    Skeletal representations of orthogonal shapes

    Get PDF
    Skeletal representations are important shape descriptors which encode topological and geometrical properties of shapes and reduce their dimension. Skeletons are used in several fields of science and attract the attention of many researchers. In the biocad field, the analysis of structural properties such as porosity of biomaterials requires the previous computation of a skeleton. As the size of three-dimensional images become larger, efficient and robust algorithms that extract simple skeletal structures are required. The most popular and prominent skeletal representation is the medial axis, defined as the shape points which have at least two closest points on the shape boundary. Unfortunately, the medial axis is highly sensitive to noise and perturbations of the shape boundary. That is, a small change of the shape boundary may involve a considerable change of its medial axis. Moreover, the exact computation of the medial axis is only possible for a few classes of shapes. For example, the medial axis of polyhedra is composed of non planar surfaces, and its accurate and robust computation is difficult. These problems led to the emergence of approximate medial axis representations. There exists two main approximation methods: the shape is approximated with another shape class or the Euclidean metric is approximated with another metric. The main contribution of this thesis is the combination of a specific shape and metric simplification. The input shape is approximated with an orthogonal shape, which are polygons or polyhedra enclosed by axis-aligned edges or faces, respectively. In the same vein, the Euclidean metric is replaced by the L infinity or Chebyshev metric. Despite the simpler structure of orthogonal shapes, there are few works on skeletal representations applied to orthogonal shapes. Much of the efforts have been devoted to binary images and volumes, which are a subset of orthogonal shapes. Two new skeletal representations based on this paradigm are introduced: the cube skeleton and the scale cube skeleton. The cube skeleton is shown to be composed of straight line segments or planar faces and to be homotopical equivalent to the input shape. The scale cube skeleton is based upon the cube skeleton, and introduces a family of skeletons that are more stable to shape noise and perturbations. In addition, the necessary algorithms to compute the cube skeleton of polygons and polyhedra and the scale cube skeleton of polygons are presented. Several experimental results confirm the efficiency, robustness and practical use of all the presented methods

    Incremental Convex Planarity Testing

    Get PDF
    AbstractAn important class of planar straight-line drawings of graphs are convex drawings, in which all the faces are drawn as convex polygons. A planar graph is said to be convex planar if it admits a convex drawing. We give a new combinatorial characterization of convex planar graphs based on the decomposition of a biconnected graph into its triconnected components. We then consider the problem of testing convex planarity in an incremental environment, where a biconnected planar graph is subject to on-line insertions of vertices and edges. We present a data structure for the on-line incremental convex planarity testing problem with the following performance, where n denotes the current number of vertices of the graph: (strictly) convex planarity testing takes O(1) worst-case time, insertion of vertices takes O(log n) worst-case time, insertion of edges takes O(log n) amortized time, and the space requirement of the data structure is O(n)

    Generalized offsetting of planar structures using skeletons

    Get PDF
    We study different means to extend offsetting based on skeletal structures beyond the well-known constant-radius and mitered offsets supported by Voronoi diagrams and straight skeletons, for which the orthogonal distance of offset elements to their respective input elements is constant and uniform over all input elements. Our main contribution is a new geometric structure, called variable-radius Voronoi diagram, which supports the computation of variable-radius offsets, i.e., offsets whose distance to the input is allowed to vary along the input. We discuss properties of this structure and sketch a prototype implementation that supports the computation of variable-radius offsets based on this new variant of Voronoi diagrams

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    Homotopy Based Reconstruction from Acoustic Images

    Get PDF
    • …
    corecore