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Summary

This thesis presents work in the direction of generating smooth surfaces from
linear cross sections embedded in R2 and R3 using homotopy continuation. The
methods developed in this research are generic and can be applied to higher
dimensions as well. Two types of problems addressed in this research are recon-
struction from an organised set of linear cross sections and reconstruction from
an arbitrary set of linear cross sections. The first problem is looked upon in the
context of acoustic signals wherein the cross sections show a definite geometric
arrangement. A reconstruction in this case can take advantage of the inherent
arrangement. The problem of reconstruction from arbitrary cross sections is
a generic problem and is also shown to be solved here using the mathematical
tool of continuous deformations. As part of a complete processing, segmentation
using level set methods is explored for acoustic images and fast GPU (Graphics
Processing Unit) based methods are suggested for a streaming computation on
large volumes of data.

Validation of results for acoustic images is not straightforward due to unavail-
ability of ground truth. Accuracy figures for the suggested methods are provided
using phantom object with known geometry. The results of the methods shown
here can be used to gain objective knowledge about the reconstructed features.
It is envisioned that due to the generic nature of the algorithms developed in
this research, domains other than fisheries research can benefit from the recon-
struction algorithms.
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Resumé

Denne afhandling præsenterer arbejde i retningen af at generere glatte over-
flader fra lineære tværsnit indlejret i R2 og R3, der benytter homotopifortsæt-
telse. Metoderne udviklet i denne forskning er generiske og kan ogs̊a anvendes p̊a
højere dimensioner. To slags problemer, som er grebet an i denne forskning, er
genopbygning fra et fagorganiseret sæt af lineære tværsnit og genopbygning fra
vilk̊arligt sæt af lineære tværsnit. Det første problem bliver kigget p̊a i kontek-
sten af akustiske signaler hvori tværsnittene viser et bestemt geometrisk orden.
En genopbygning i dette tilfælde kan udnytte det iboende orden. Problemet af
genopbygning fra vilk̊arlige tværsnit er et generisk problem og det vises at kunne
blive løst her brugende det matematiske redskab af uafbrudte deformeringer.
Som en del af en fuldstændig bearbejdning, segmentation der bruger level set
metoder bliver udforsket for akustiske billeder og hurtig GPU (Grafikker Pro-
cessing Unit) baserede metoder bliver foresl̊aet for streaming computation p̊a
store volumener af data.

Evaluering af resultater for akustiske billeder er ikke ligetil p̊a grund af man-
gel af verifikationsdata. Nøjagtighedsm̊alinger for de foresl̊aede metoder bliver
forsynet ved at bruge fantomobjekt med kendt geometri. Resultaterne af metod-
erne vist her kan bruges for at opn̊a objektiv viden om de rekonstruerede træk.
Det forventes at p̊a grund af den generiske natur af algoritmerne udviklet i denne
forskning, kan andre omr̊ader end fiskerierforskning gavne fra genopbygningsal-
goritmerne.
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Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling, the Technical University of Denmark in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

The thesis deals with object reconstruction from underwater acoustic images
and presents novel methods of curve and surface reconstruction using homotopy
continuation based techniques. The thesis also addresses a related but more dif-
ficult problem of object reconstruction from arbitrary linear cross sections. This
work was conducted in collaboration with DTU Aqua and Simrad Kongsberg
Maritime. The funding for this work was provided by the Technical University
of Denmark.

The work herein presents selected parts of the research carried out during the
program of study from 2007 until 2010. The thesis consists of an introductory
part containing some background information and an overview of contributions
followed by a collection of five research papers. Part of this research was con-
ducted at the Computational Visualization Center (CVC), University of Texas
at Austin, USA under the guidance of Professor Chandrajit Bajaj. The project
was supervised by Associate Professor François Anton, and co-supervised by
Associate Professor Niels Jørgen Christensen from DTU Informatics.

Lyngby, July 2010

Ojaswa Sharma
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Chapter 1

Introduction

One of the upfront problems in computer vision and computer graphics today
is of object reconstruction from parts. Physical scanning devices provide lim-
ited amount of information about the underlying object. This thesis presents
research in the direction of object reconstruction by applying principles of ho-
motopy continuation. The less addressed problem of reconstruction from linear
cross sections is attempted in the context of fisheries research. Fish school re-
construction from acoustic signals is of importance in estimating fish biomass
[126]. Emphasis has been given to formulate homotopy based generic algorithms
for reconstruction.

Unlike images, acoustic signals suffer from heavy noise. Part of this research is
also dedicated to segmentation of useful features from acoustic signals. These
mainly comprise of individual fish and fish school. A good segmentation or noise
reduction is a prerequisite for the developed methods of reconstruction.

Echo-sounding devices today are capable of acquiring tremendous amount of
data. Digital acoustic data could very well go up to Gigabytes in few hours.
Increase in computing power necessitates development of new algorithms that
can leverage the computing resources effectively to process huge amounts of
information. This objective has been in focus while developing the algorithms.

Lastly, this research also addresses a rather new problem of object reconstruction
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from arbitrary cross sections. Such a problem holds good importance in its
own right since the previous problem can be seen as special case. Algorithms
based on homotopy deformation are proposed for smooth reconstruction for such
class of problems. Throughout this thesis, the terms “homotopy”, “homotopy
continuation”, and “continuous deformation” have been used interchangeably.

1.1 Objectives

The main objective of this research is to develop algorithms based on homotopy
continuation to reconstruct surface models of marine life and objects as seen
from an echosounder. Formal scope of this research is to

• Develop methods for underwater 3D reconstruction of fish and fish schools
utilizing homotopy continuation techniques. This constitutes construction
of a 3D oceanographic view of the water column and the sea floor by re-
constituting the space in between the 2D sections with focus on preserving
topology of all the contents of the water column.

• Develop effective means of extracting useful features from acoustic signals
by removing noise arising from various sources.

• Address a more general problem of object reconstruction from cross sec-
tions where no particular ordering within cross sections exist.

Imperative to showcase the adequacy of developed methods is to develop a set
of libraries of algorithms and a graphical user interface for reconstruction of the
mapped water column and its contents from 2D sectional data.

1.2 Synopsis

This thesis is organized into introductory chapters giving background about the
problem domain and the main concepts upon which this research is built followed
by chapters based on the scientific publications detailing the main research and
its results. Following is an overview of the various chapters.

Chapter 1 introduces this thesis to the reader. A complete thesis flow along
with the motives of this research work are given.
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Chapter 2 explores the basics of fisheries acoustics. From physics of sound to
detecting fishes underwater, this chapter provides an overview of the current
state of the fisheries science.

Chapter 3 provides an introduction to the field of homotopy continuation. Ho-
motopy is considered as an effective means of tracing path (or solution) from
one system of equations to another in a continuous fashion. Applicability of
homotopy continuation and its computational aspects are also explored.

Chapter 4 discusses the problem of feature extraction, grouping and segmen-
tation in general. This problem is discussed in the context of digital images that
also include acoustic images. Applicability of the concepts learned so far to the
reconstruction problem at hand is investigated. This chapter also serves as a
background for the next chapters.

Chapter 5 presents a level set method based approach to segment fishes from
a stack of 2D scans. A high performance, streaming level set solver based on
the CUDA technology is introduced.

Chapter 6 details a multi-phase, GPU volumetric segmentation scheme that
is built on top of the streaming solver for segmenting large volumetric images
to generate smooth surfaces.

Chapter 7 explains, in detail, application of homotopy based reconstruction
algorithm. Developed homotopies are discussed and necessary mathematical
derivations are provided. This chapter concludes with results of reconstruction
and an evaluation of the designed algorithms on phantom objects.

Chapter 8 extends the problem of reconstruction to a more general problem
of reconstruction from arbitrary cross sections. The complete methodology is
described along with its application to object reconstruction in 2D and some
accuracy analysis.

Chapter 9 deviates slightly from the algorithm developed in the previous chap-
ter and provides an alternative means of reconstruction utilizing the Voronoi
diagram, but still based on homotopy continuation. There is a considerable
overlap between this chapter and the previous one, which is primarily due to
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both being complete and independent publication papers.

Chapter 10 puts the thesis results in a global perspective of this project and
concludes the thesis.

The thesis also includes appendices A and B that discuss vital results of the
research presented in Chapters 8 and 9 respectively. Appendix C presents the
library of algorithms developed as part of this research.



Chapter 2

Fisheries acoustics

Most of the terrestrial monitoring and communication systems make use of
electromagnetic waves. Not only these waves travel at the speed of light (3 ×
108 ms−1), but also carry information efficiently in the atmosphere and in the
space. Unfortunately, the marine realm does not allow for this mode of commu-
nication. Propagation of electromagnetic waves in water is accompanied by large
energy loss causing fast attenuation that makes them useless for any purpose.

Acoustic waves, on the other hand, can travel very easily in aqueous medium.
While electromagnetic waves can hardly penetrate more than a few meters in
water, acoustic waves can currently be observed at ranges of up to thousands of
kilometers [86]. A sound wave propagating underwater consists of alternating
compressions and rarefactions of water particles.

Use of acoustic waves for measuring distant ships was first proposed by Leonardo
da Vinci [58]. The speed of sound in water was first measured to be about
1450 ms−1 by Colladon and Sturm in 1827 [126]. Practical applications of un-
derwater acoustics were built rather recently during World War I. These included
steerable submerged earphones to detect noise sources and locate their direction.
Underwater acoustics took a turn around 1915 with the work by a French physi-
cist Paul Langevin who demonstrated the use of transmitted sound signals to
actively detect submarines by using a piezoelectric transducer [71]. Subsequent
applications used this concept and active sonar techniques improved with the
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advent of better electronic technology and computers. Acoustic sounders found
widespread use in detecting fish schools in early 1920s. Marine geology bene-
fited from sidescan sonar systems to obtain “acoustic images” from the seabed
in 1960s. Later in 1970s, seabed acoustic mapping increased dramatically with
the emergence of multibeam echosounders allowing simultaneous soundings in
different directions.

2.1 Underwater acoustics

A sound wave is transmitted in cyclic compressions and rarefactions. Local
changes in the pressure are passed on from one point to the surrounding points
because of elasticity of the medium. Figure 2.1 schematically shows the compo-
nents of a sound wave.

Figure 2.1: One dimensional acoustic wave.

Here, λ is the wavelength of the acoustic wave, and p is the pressure.

2.1.1 Wave equation

In one-dimension, an acoustic pressure wave has the following form of partial
differential equation [86]

∂2p

∂x2
− 1

c2
∂2p

∂t2
= 0, (2.1)

where p is the acoustic pressure and c is the local propagation velocity of the
wave. For a sinusoidal wave of frequency f0, it can be shown that the solution
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of (2.1) is

p(t) = p0 exp
(

2jπf0

(
t− x

c

))
, (2.2)

with constant amplitude p0. This type of wave is referred to as a plane wave.
For such a wave, the wave-fronts, which are surfaces joining continuous loci of
peak pressures, are planes. In three dimensions, the wave equation takes the
form

∆p− 1

c2
∂2p

∂t2
= 0, (2.3)

where ∆ is the Laplace operator. In an isotropic medium, (2.3) results in a
spherical wave[86]

p(t) =
p0

R
exp

(
2jπf0

(
t− R

c

))
, (2.4)

where R is the distance to the source. The wave-fronts are now spheres cen-
tered at the source, and the wave amplitude decreases as 1/R from its value p0

considered one meter away from the source.

2.1.2 Intensity and power

A sound wave is associated with an acoustic energy . The flux J is the energy of
the wave passing through a unit area orthogonal to the wave-front. The intensity
I is the energy flux per unit time. The total energy E carried by the wave is the
integral of J with respect to the area over the surface of the wave-front. For a
plane wave of amplitude p0 [86] ,

I =
p2

0

2ρc
[W·m−2], (2.5)

where ρ is density of the medium. The acoustic power P received by a surface
of area S for a plane wave is [86]

P =
p2

0S

2ρc
[W]. (2.6)

2.1.3 The decibel notation

Since acoustic measurements of pressure or energy vary by large factors, it is
convenient to use a logarithmic scale to quantify them, and is noted in decibels
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(dB) units. The decibel corresponds to ten times the base-10 logarithm of ratio
of two intensities. Thus for intensities I1 and I2, the decibel measurement is
[86]

rdB = 10 log10

(
I2
I1

)
[dB]. (2.7)

Here, I1 is called the reference level of intensity against which I2 is observed.
In underwater acoustics, the pressure reference is usually one microPascal (1
µPa)1. Therefore, pressure measurements are noted as “p dB relative to 1µPa”
or “p dB//1 µPa”.

2.1.4 Propagation losses

As sound wave propagates, it loses some of its acoustic energy. This happens
because the transfer of pressure differences between molecules of water is not
100% efficient - some energy is lost as heat. The energy lost by propagating
waves is called attenuation. As a sound wave is attenuated, its amplitude is
reduced. The level of attenuation of a sound wave is dependent on its frequency
- high frequency sound is attenuated rapidly, while extremely low frequency
sound can travel virtually unimpeded.

Geometrical spreading losses

An acoustic wave emanating from a source will spread the transmitted acoustic
energy on a larger and larger surface. Since, total energy is conserved, the
intensity decreases proportionally to the inverse of the surface. This process
corresponds to the geometric spreading loss. At ranges much higher than the
transducer size, also known as the ‘far field’, the intensity varies with the range
R according to the inverse square law , otherwise known as spherical spreading
[126]

I =
I0
R2

(2.8)

Attenuation losses

Sea water is a dissipative medium and absorbs, via viscosity or chemical reac-
tions, part of the energy of the transmitted wave. The acoustic pressure then

1Pascal (Pa) is the SI-derived unit for pressure defined as 1 N·m−2.
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decreases exponentially with the distance adding to the spreading loss [86]

p(R.t) = p0 exp(−γR)

exp

(
2jπf0

(
t− R

c

))
R

, (2.9)

where the attenuation is quantified by the parameter γ( [Neper·m−2]. Atten-
uation is the most limiting factor in acoustic propagation in the ocean. The
amount of attenuation depends on the medium and frequency.

While acoustic energy travels in water, it gets interrupted by sudden change in
medium, such as rock or sand. When a moving sound pulse encounters such
a medium, some fraction of its energy is propagated into the new material.
The energy that is not transmitted into the new medium must go back to the
original medium. Some amount of it is reflected off the surface of the material
(i.e, bounces off in a certain direction), and the remainder is scattered in all
directions (see Figure 2.2). The energy returned to the water is called an echo.
The echo maintains frequency characteristics of the source wave. The fraction
of energy transmitted to the new medium depends on many factors including

• the impedance of the new medium (a product of the density of the medium
and the speed of sound within it),

• the angle of incidence θi of the impinging pulse, and

• the surface roughness of the new medium.

Figure 2.2: Generation of echo.
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2.2 Instruments

A sonar is a device for remotely detecting and locating objects in water using
sound. There are two basic types of sonar [126]:

• Passive sonars are “listening devices” that record sound emitted by ob-
jects in water. Such instruments can be used to detect seismic events,
ships, submarines, and marine creatures.

• Active sonars are devices that produce sound waves of specific, and con-
trolled frequency and listen for the echoes of these emitted sounds re-
turned from the insonified volume. Sonars measuring ocean depths are
active sonars.

To produce sound in water, an echo sounder uses a device called a transmitter .
Bathymetric sonars require transmitters that can repeatedly produce acoustic
pulses with precise, controllable, and repeatable characteristics. Such transmit-
ters are constructed from piezo-electric ceramic, a material that changes its size
minutely when a voltage is applied to it. To detect sound in water, hydrophones
or receivers are used. Hydrophones are analogous to microphones in that they
convert sound into electrical signals. Because of the similarity in function, the
transmitter and the receiver are often the same pieces of hardware, referred to
as the transducer .

A pulsed sonar or an echo sounder transmits a short burst of sound, called a
pulse or a ping , consisting of several cycles at the sonar operating frequency. The
transmitted pulse travels away from the transducer. Once it encounters a target,
some energy is reflected back as echo, which travels back to the transducer. If
the echo is detected at time te after the transmission, the range R is given by
[126]

R =
cte
2
. (2.10)

In order to resolve two objects at ranges R1 and R2, the difference (R2 − R1)
must be large enough for these two echoes to not overlap. Thus,

R2 −R1 >
cτ

2
, (2.11)

where τ is the pulse duration [126]. Basic operation of an echosounder is shown
in Figure 2.3.

Two main types of active multi-beam sonars of relevance to this research are
the sector scanner SeaBat 7128 from RESON and the three-dimensional sonar
MS70 from Simrad.
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Figure 2.3: Concept of echosounding (adapted from Simmonds and MacLennan
[126, chap. 3]).

2.2.1 Sector scanners

In a searchlight or side-scan sonar, the transducer moves or rotates to insonify
and scan different volumes of water. A sector scanner does this rapidly and
without moving the instrument. The transducer consists of an array of multiple
elements arranged in a line. The transmitted pulse is applied to one central
element generating a wide beam upon transmission. The reflected signal is
received as thin scanning beams. The scanning beam is electronically steered so
that it sweeps a sector in much less time compared to the pulse duration. This
so called process of beamforming is explained in section 2.3.

Over the past years various sector scanning multi-beam sonars have been suc-
cessfully used in fisheries. SeaBat 7128 from RESON is a high-resolution,
forward-looking sonar system that operates at 200 kHz or 400 kHz frequency.
Depth ratings available with this sonar are up to 6000 meters [110]. Table 2.1
lists some of the specifications of this sonar. The transducer is shown in Fig-
ure 2.4.

2.2.2 Three-dimensional sonar

The MS70 sonar from Simrad provides a three-dimensional observation from
each ping. It uses a technique called “Frequency Rotated Sector Transmission”
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Table 2.1: SeaBat 7128 multi-beam sonar [110].

Specification Value

Operating frequency 200 or 400 kHz
Number of beams 256
Beam Width 0.5◦

Range 200 m at 400 kHz, 500 m at 200 kHz
Range resolution 2.5 cm

Figure 2.4: SeaBat 7128 multi-beam sonar transducer[110].

[100]. The operational range of frequencies is 70 to 120 KHz divided into 20
sub-bands. The system transmits at the central frequency of each sub-band
insonifying 20 horizontal sectors of 60◦ width. On the receiving side, it forms
25 narrow beams for each sector, thus giving a total of 500 narrow receiving
beams. Table 2.2 lists some of the specifications of this sonar. The transducer
is shown in Figure 2.5.

2.3 Beamforming

An isotropic acoustic source is not ideal for a depth-sounding sonar for two
reasons
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Table 2.2: MS70 3D multi-beam sonar [128].

Specification Value

Operating frequency 75 to 112 kHz
Number of beams 500, organized as a matrix

Horizontal: 25, vertical: 20
Beam Opening angle Horizontal: 3◦, vertical: 4◦

Operating sectors Horizontal: 60◦, vertical: 45◦

Number of transducer elements 800

Figure 2.5: MS70 3D multi-beam sonar transducer[128].

• No directivity : a spherical wavefront strikes the ocean floor in all direc-
tions. There is no way to determine the direction of the return echoes.

• Isotropic power distribution: the power of the transmitted pulse is dis-
tributed equally in all directions thus leaving very little power for the
features of interest.

Groups of isotropic sources can be used to transmit non-isotropic waves by
means of an interference pattern of spherical waves. Directed pulses can be
used to insonify specific areas on the sea floor with higher energy. Transmis-
sion directivity allows concentration of the transmitted energy into a particular
angular sector, thus increasing local acoustic pressure.
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Consider two transmitting transducers T1 and T2 placed d distance apart. For
a far-off point p (r0 � d, see Figure 2.6(a)), distant r1 and r2 from T1 and T2

respectively, the path difference |r2 − r1| determines the type of interference at
it. For a constructive interference at p [86],

r2 − r1 = d sin(θ0) = nλ, n ∈ Z+, (2.12)

while for a destructive interference at p,

r2 − r1 = d sin(θ0) =

(
n+

1

2

)
λ, n ∈ Z+. (2.13)

(a) Geometry for interference (b) Beam pattern

Figure 2.6: Acoustic interference by two transducers.

For a typical sonar, the spacing d is half the wavelength, λ/2. Therefore, con-
structive interference occur at angles 0 and π, while destructive interference
occur at angles π/2 and 3π/2 (i.e., at the axis of separation). A polar plot
of the resulting amplitude with the center of transducers as origin is what is
called a beam pattern. Figure 2.6(b) shows the beam pattern resulting from
a two transducer geometry. The plot clearly shows that the bulk of the en-
ergy is transmitted in a direction orthogonal to the axis of separation of the
transducers. The beam pattern provides a measure of the directivity.

Real transducer arrays generally have more than two transducer elements and
have complicated beam patterns. Figure 2.7 shows beam pattern of a multiple
element line array. The bulk of the energy is in what is called the main lobe.
The direction of the peak energy projection is called the maximum response
axis. The width or beam solid angle of the main lobe is twice the angle from
the axis to the half power point on the pattern.
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Figure 2.7: Beam pattern of a multiple-element line array [63].

Side lobes in a beam pattern are unavoidable, although the energy distributed
in them can be lowered to a certain extent by projecting stronger signals from
the individual elements in the center of the array. This technique of reducing
side lobe is called shading . One popular shading scheme is called the Dolph-
Chebyshev shading [71].

A hydrophone array can be used to listen to the acoustic echoes, just like a
transmitter is used to generate pulses. The sensitivity of a hydrophone array
follows the beam pattern of a corresponding transmitter array, by virtue of the
principle of reciprocity. Therefore, a hydrophone array is very sensitive to echoes
in the direction of the maximum response axis. For an array made of indepen-
dent discrete hydrophones, appropriate phase or time shifts can be imposed on
the hydrophones to steer the main lobe of the array in the direction of choice
[63]. This process is called beamforming , and is used both on transmission and
on reception.

In three-dimensions, the beam pattern shown in Figure 2.7 is rotationally sym-
metric about the axis of separation. Therefore, an emitter array insonifies a
strip at the bottom and consequently the hydrophone array cannot distinguish
the location of a particular echo along the strip (see Figure 2.8). If, however,
the emitter and the hydrophone arrays are arranged orthogonal to each other,
the hydrophone array can observe a small area at the bottom of the sea that is
formed by the intersection of the two strips. This perpendicular arrangement
of the two arrays is called a Mills Cross (see Figure 2.9) [63]. Furthermore,
since the hydrophone array can be steered by introducing a time delay, multiple
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steered beams can be used to receive echoes from discreet locations all along
the insonified strip (see Figure 2.10).

Figure 2.8: Insonified strip by an array of transducers [63].

Figure 2.9: Mills Cross arrangement [63].

2.4 Fish measurement

Marine fisheries make extensive use of underwater acoustic techniques. Modern
fishing and oceanographic vessels are generally equipped with many high end
sonar systems. Apart from estimating the fish abundance and locating fish
schools to capture fish, other applications include identifying fish species and
evaluating biomass.
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Figure 2.10: Mills Cross with multiple steered beams [63].

2.4.1 Target strength

Target strength is a logarithmic measure of the proportion of the incident energy
which is backscattered by the target. A related quantity is the backscattering
cross-section, σbs, measured in units of area. It is defined in terms of the
intensities of the incident and the backscattered waves. Assuming Ii is the
incident acoustic intensity on a target, Ibs is the intensity at the midpoint of the
backscattered pulse, and R is the distance from the target (much greater than
the linear size of the target), then σbs is defined as [126]

σbs =
R2Ibs
Ii

. (2.14)

Another measure of same quantity is the spherical scattering cross-section [126],

σsp = 4πσbs. (2.15)

σsp is an older concept that comes from the idea that the scattered intensity is
isotropic. The target strength is then defined as the backscattering cross-section
expressed in decibels [126]

TS = 10 log10 (σbs) = 10 log10(σsp/4π), (2.16)

with σbs or σsp specified in m2. The logarithmic TS is convenient in acoustics
since acoustic backscattering strengths vary a lot between aquatic organisms.
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2.4.2 Volume scattering coefficients

For a school of fish or organisms detected in high density, the echoes combine
to form a return signal that is continuous with varying amplitude. Individual
echoes cannot be discerned but the echo intensity is still a measure of the biomass
in the water column. A basic acoustic measurement in such a case is the volume
backscattering coefficient [126], sv defined as

sv =

∑
σbs

V0
, (2.17)

where the sum is taken over all the discrete targets contributing to the echoes
from the sampled volume V0. The equivalent logarithmic measure is the volume
backscattering strength Sv[126],

Sv = 10 log10(sv), [dB re 1 m−1]. (2.18)

2.4.3 Range compensation

Effects like beam spreading and absorption decrease the amplitude of the echo
with the range as sound propagates in water. Modern equipments include a
time-varied-gain (TVG) amplifier to account for the propagation losses. The
gain is increased in proportion to the TVG function a(t), where t is the time
from the start of the transmitter pulse (see Figure 2.11). For an isolated target
whose range is much greater than the pulse length, a suitable TVG function is
[126]

a(t) = (ct)2 exp

(
βct

2

)
, (2.19)

where β is the absorption coefficient. This function is commonly known as
‘40 log R’ TVG. This is obtained by substituting R = ct/2, and calculating the
TVG expressed in decibels as 20 log10(a(t)).

In case of multiple targets distributed randomly over the beam, a different TVG
function is more suitable. This function, known as ‘20 log R’, is

a(t) = (ct) exp

(
βct

2

)
. (2.20)

It takes into account the fact that a larger number of targets compensates the
transmission losses to some extent.
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Figure 2.11: Range compensation by TVG for single targets [126]. v1(t) is the
uncompensated signal and v(t) = a(t)v1(t) is the range compensated signal for
similar targets.

2.4.4 Reverberation and noise

Reverberation refers to the echoes from unwanted targets in the insonified vol-
ume. It consists of contributions from parasitic echoes from the propagating
medium overlaid on the useful signal. The characteristics and origins of re-
verberation are the same as that of the useful signal that makes its removal
difficult.

The causes of underwater noise can be grouped into following categories

• Ambient noise originates from outside the system either from natural or
man-made causes. It is independent of the sonar system itself. The physi-
cal origins of the ambient noise include very low frequency noise generated
by remote seismic or volcanic activity, shipping or other industrial activity
in the water, and surface agitation by wind.

• Self-noise is the noise caused by the acoustic system, the supporting plat-
form, or the system electronics. The main sources of such noise are the
propeller noise, turbulence generated by the flow of water, and machine
noise (engine, reduction gears, generators, and hydraulic machinery).

• Reverberation As discussed before, such noise is caused by the parasite
echoes. These echoes could be laud enough to mask the detection of
expected target echoes.
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• Acoustic interference is generated by other acoustic systems nearby the
system. Existence of several transmitting acoustic transducers in a re-
stricted space is most likely to cause interference, where the level trans-
mitted by each is enough to affect the others completely.

2.4.5 Near field and far field

The insonified volume can be divided into two zones depending on the distance
of the observation point from the transducer [86]

• Near field (or Fresnel zone): The range dependence of intensity in this
region is very complicated, and it varies in an oscillatory manner. The
contributions from different points on the transmitter face are strongly out
of phase with each other. The average intensity in this region decreases
more slowly than the spherical spread in 1/R2.

• Far field (or Fraunhofer zone): The element wave-fronts are nearly parallel
in this region. The sound field is more uniform away from the transducer.
The intensity of the field decreases monotonously with distance, and the
inverse square law applies.

If a is the linear distance across the transducer face, the boundary between the
near and far fields is approximately at the range [126]

Rb =
a2

λ
(2.21)

2.5 Thresholding

A threshold is generally applied to remove any unwanted signal detected by the
echosounder. The unwanted signal could be due to electrical noise in the equip-
ment, acoustic reverberation, or the merged echoes from non-target species.
When a threshold is applied, any target echoes smaller than the threshold are
also ignored. Therefore, the results of thresholding are biased because some pro-
portion of the target population is rejected [126]. Numerous experiments have
been conducted to determine appropriate thresholds to increase the signal to
noise ratio, while preserving the desired signal (see, for example, [108, 139, 72]).
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Other image segmentation techniques have also been successfully tried to extract
useful information from sonar images. These include graph cuts [91, 92], mean-
shift clustering [23], and anisotropic diffusion for speckle reduction [73]. In
this research, a new approach to feature extraction has been adopted for noise
suppression by using level set based segmentation. The closest work to this is
by Lianantonakis and Petillot [82] in which a level set based technique is applied
for textural segmentation of side-scan imagery of the sea floor. In this research,
a level set approach is explored to segment features and GPU based methods
are developed for faster processing [115, 123]. This is the topic of discussion in
Chapters 5 and 6.

2.6 Datasets

As noted before in section 2.2, this research is mostly concerned experimentally
with acoustic measurement of fish and fish schools from the instruments SeaBat
7128 from RESON and MS70 from Simrad. The details of the data acquisition,
experimental setup and sample imagery is presented in this section.

2.6.1 SeaBat 7128 dataset

In a series of sonar experiments conducted at the Nordsøen oceanarium by
a group of scientists from DTU Aqua, acoustic data was collected using the
SeaBat 7128 instrument. Nordsøen oceanarium is a public aquarium located
at the shores of the North Sea in Hirtshals, North Jutland, Denmark. It is
the largest aquarium in Northern Europe and contains twelve tanks ranging in
size from 4,000 to 16,000 liters. The oceanarium, that was the ground for the
experiments, contains 4.5 million liters of sea water and about 2000∼3000 fish,
shoals and two sunfish (see Figure 2.12). It is an eight meter deep tank with an
elliptical cross section measuring 22 by 33 meters [98].

The experimental setup consisted of a SeaBat 7128 sonar mounted on a vertical
rail installed on a wooden raft as shown in Figure 2.13. The whole system was
kept afloat on the surface of the water tank and the acoustic instrument could be
moved along the rail with the help of an electric motor. A video camera looking
vertically down into the water tank was also installed to monitor part of the
underwater volume scanned by the acoustic instrument. The video recording
was intended to provide supplemental information about the scanned fish species
and fish movement behavior.
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Figure 2.12: Nordsøen oceanarium [98].

Figure 2.13: Raft for carrying the transducer.

A total of eight configurations of the acoustic instrument were explored in dif-
ferent experiments

• Experiment 1 was to scan the oceanarium keeping the transducer looking
vertically downwards with the video camera recording part of the insonified
volume (see Figure 2.14(a)).

• Experiment 2 consisted of the same configuration with the transducer
moving along the rail back and forth (see Figure 2.14(b)).

• Experiment 3 was to scan the water from bottom looking up while keeping
the transducer static (see Figure 2.14(c)).
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• Experiment 4 explored sideways scan of the water with instrument posi-
tioned as shown in Figure 2.14(d).

• Experiment 5 consisted a tilted view of the water with transducer rotated
at an angle of about 27◦ from vertical and looking at the bottom of the
tank (see Figure 2.14(e)).

• Experiment 6 was conducted to calibrate the sonar instrument with a
standard target of copper sphere of radius 30.0 mm.

• Experiment 7 included scans with low power and gain settings so as to
reduce side lobe effects.

• Experiment 8 was to scan the bottom of the oceanarium with the trans-
ducer kept horizontal and static (see Figure 2.14(f)).

• Experiment 9 consisted of the same horizontal configuration but with the
transducer moving up and down to scan a larger volume of the oceanarium
(see Figure 2.14(g)).

• Experiment 10 consisted of a tilted scan of the water with the rail tilted
by small angle from the vertical (see Figure 2.14(h)).

(a) Vertically down
and static

(b) Vertically down
and moving

(c) Vertically up
and static

(d) Sideways

(e) Looking down
at an angle

(f) Horizontal
static at seabed

(g) Horizontal
moving

(h) Tilted moving

Figure 2.14: Various transducer configurations in the experiment.

Acoustic data from these experiments is used in this research for reconstruction
of the scanned fish. Monitoring and data storage system for these experiments
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consisted of video screens for live viewing of the captured data and high capacity
RAID storage for keeping acoustic signals coming from the sonar instrument (see
Figure 2.15). Typical frames from the video camera looking downward from top
of the oceanarium and the sonar instrument looking horizontally are shown in
Figures 2.16(a) and 2.16(b) respectively. Note that the wall of the elliptical tank
can be seen on the right in the sonar image.

Figure 2.15: Video and storage system for sonar data acquisition.

(a) Video frame (b) acoustic image frame

Figure 2.16: Typical video and acoustic image frames.
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2.6.2 MS70 dataset

The MS70 3D data was received from Simrad as part of collaboration in the
current research. One of the pings from the dataset is shown in Figure 2.17 as a
3D volume raycasting. The topmost sectors of the data contain high reflections
from the water surface. The data was collected in a fjord where the data was
collected and captures a moving school of Sprat.

Figure 2.17: A ping from the 3D sonar.
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Chapter 3

Homotopy continuation

Homotopy is concerned with identification of paths that can be continuously
deformed into each other [65]. Such paths are then considered equivalent. This
type of equivalence was given in late 1920’s. Originally, homotopy was used as a
tool to decide weather two paths with same end-points would lead to the same
result of integration. The use of homotopies can be tracked back to the works
of Poincaré (1881-1886), Klein (1882-1883), and Berstein(1910) [65].

A homotopy is defined as a continuous map between two continuous functions
in a topological space. A homotopy can, therefore, be viewed as a continuous
deformation. The use of deformations to solve non-linear systems of equations
may be traced back at least to Lahaye (1934) [3].

Definition 3.1 A homotopy between two continuous functions f0 and f1 from
a topological space X to a topological space Y is defined as a continuous map
H : X × [0, 1] 7→ Y from the product space X with the unit interval [0, 1] to Y
such that

H(x, 0) = f0, and (3.1)

H(x, 1) = f1, (3.2)

where x ∈ X . The second parameter of H, also called the homotopy parameter ,
allows for a continuous deformation of f0 to f1. f0 and f1 are also known as the
initial map and the terminal map respectively.
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Two continuous functions f0 and f1 are said to be homotopic, denoted by
f0 ' f1, if and only if there is a homotopy H taking f0 to f1. Being homotopic
is an equivalence relation on the set C(X ,Y) of all continuous functions from X
to Y.

Theorem 3.2 Homotopy is an equivalence relation on C(X ,Y)[34].

Proof. This can be verified by showing that ' is reflexive, symmetric, and
transitive.

Reflexivity (f0 ' f0). The map H(x, λ) = f0(x),x ∈ X , λ ∈ [0, 1] is a homotopy
from f0 to f0.

Symmetry (f0 ' f1 =⇒ f1 ' f0). Let H : X × [0, 1] 7→ Y be a homotopy from
f0 to f1. Then the map G : X × [0, 1] 7→ Y,

G(x, λ) = H(x, 1− λ)

is a homotopy from f1 to f0.

Transitivity (f0 ' f1 and f1 ' f2 =⇒ f0 ' f2). Let H : X × [0, 1] 7→ Y be a
homotopy from f0 to f1 and G : X × [0, 1] 7→ Y be a homotopy from f1 to f2.
Then the map F : X × [0, 1] 7→ Y,

F =

{
H(x, 2t) if 0 ≤ t ≤ 1/2, and

G(x, 2t− 1) if 1/2 ≤ t ≤ 1

is a homotopy from f0 to f2 [34]. �

Definition 3.3 A function f0 : X 7→ Y is null-homotopic if it is homotopic to
a constant function c, that is, f0 ' c.

If a space X has the property that idX , the identity map on X , is null-homotopic,
then X is contractible [96]. A contractible space is one that can be continuously
shrunk to a point.

Proposition 3.4 Let f0, f1 : X 7→ Y and g0, g1 : Y 7→ Z be continuous func-
tions, and let g0 ◦ f0, g1 ◦ f1 : X 7→ Z be the respective composite maps. If
f0 ' f1 and g0 ' g1, then g0 ◦ f0 ' g1 ◦ f1 [34].
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Proof. Let H : X × [0, 1] 7→ Y be a homotopy between f0 and f1 and G :
Y×[0, 1] 7→ Z be a homotopy between g0 and g1. Define a map F : X×[0, 1] 7→ Z
by

F(x, λ) = G(H(x, t), t),

for x ∈ X . It can be seen that

• F is continuous,

• F(x, 0) = G(H(x, 0), 0) = G(f0(x), 0) = g0(f0(x)), and

• F(x, 1) = G(H(x, 1), 1) = G(f1(x), 1) = g1(f1(x)).

Therefore, F is a homotopy between g0 ◦ f0 and g1 ◦ f1. �

Definition 3.5 For two homeomorphisms h0, h1 : X 7→ Y, an isotopy is a
homotopy, H(x, λ),x ∈ X , λ ∈ [0, 1], such that for each fixed λ, H(x, λ) gives a
homeomorphism.

Requiring that two homeomorphisms be isotopic is a stronger requirement than
that they be homotopic.

In this thesis, the focus is on defining homotopies for smooth reconstruction be-
tween cross sectional information. Therefore, numerical/computational aspects
of homotopy continuation based methods are considered in next section.

3.1 Motivation

The strength of homotopy continuation can be seen in solving non-linear system
of equations. The main difficulty with conventional numerical non-linear solvers
is in choosing a good initial approximation of the solution. For many such algo-
rithms, convergence is guaranteed for a restricted set of initial vectors. There-
fore, in numerical solutions, homotopy methods provide global convergence (or
a greatly expanded domain of convergence), as opposed to local convergence of
most iterative methods. The basic idea behind using continuation in numerical
computation is to solve a series of problems as the homotopy parameter is slowly
varied, using a locally convergent iterative technique for each problem, and the
solution to the previous problem as starting point for the current problem. The
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very first problem in the series is chosen to be a simple problem for which the
solution is known [3, 76, 38, 140].

The strength of a homotopy method can be illustrated with a small example.
Consider the solution to the equation f(x) = 0, where

f(x) =
x

1 + x2
.

Clearly, x = 0 is the only solution to this equation. However, beginning with
an initial guess of x0 = 0.5, Newton’s method yields a diverging sequence (see
Figure 3.1). Here the problem comes from the fact that f approaches 0 asymp-
totically as x goes to −∞. Newton’s method skips the solution after the first
iterate (see Figure 3.1(b)) and then onward seeks the solution in the wrong
direction.

I teration →

x
∗ (

×
1
0

4
)

→

0 10 20
− 15

− 10

− 5

0

5

(a) Newton iterations

I teration →

x
∗ (

×
1
0

4
)

→

1 2
− 8

− 6

− 4

− 2

0

2

(b) Closer look at the solution after first and
second iterates.

Figure 3.1: Diverging solution with conventional Newton’s method.

The first derivative of f is

f ′(x) =
1− x2

(1 + x2)2
.

f(x) has stationary points at x = ±1. These stationary points cannot serve as
initial guess since they will require a division by zero in the iterate. To get rid
of this difficult situation, a homotopy based solution can be sought. Beginning
again with our initial guess x0 = 0.5, we formulate a homotopy

H(x, λ) = λf(x) + (1− λ)(f(x)− f(x0))

= f(x) + (λ− 1)f(x0),
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starting with the initial map (f(x)−f(x0)) that has a trivial zero. The homotopy
parameter λ is discretized as {λk}, k ∈ [0, n − 1] such that λk < λk+1, λ0 = 0,
and λn−1 = 1. The homotopy is then solved for every λk such that the solution
x∗k of H(x, λk) = 0 serves as the initial guess x0 for H(x, λk+1) = 0. In this way,
a path of solutions {x∗k} is obtained that connects our initial guess x0 = 0.5
to the solution x = 0 of f(x) = 0 obtained with λ = 1. Figure 3.2 shows the
resulting path.

λ →

x
∗

→

0 0 .5 1
0

0 .2

0 .4

0 .6

0 .8

1

Figure 3.2: Homotopy path.

3.2 Numerical continuation method

For a given non-linear system of n equations

f(x) = 0 (3.3)

where f : Rn 7→ Rn is a smooth mapping, as seen previously, the solution via
a Newton-type method requires a good choice of initial guess x0. In absence of
such a choice, a homotopy H(x, λ) : Rn ×R 7→ Rn can be formulated such that

H(x, 1) = f(x),

H(x, 0) = g(x), (3.4)

where g : Rn 7→ Rn is a (trivial) smooth map with known zeros. A few choices
of homotopies are
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• A convex homotopy such as

H(x, λ) = λf(x) + (1− λ)g(x), λ ∈ [0, 1]. (3.5)

• A global homotopy such as

H(x, λ) = f(x)− (1− λ)f(x0), λ ∈ [0, 1], (3.6)

for some x0 as an initial guess (the choice of which is less restrictive than
in a Newton-type method).

If DH, the total Frechet derivative of H with respect to its variables (i.e, the
n×n+1 Jacobian matrix) has full rank n, then according to the implicit function
theorem, a curve c ∈ H−1(0) will be a smooth curve without intersections.

A point where DH has full rank is said to be a regular point of H. If the inverse
image of a point y ∈ Rn contains only regular points, then y is said to be a
regular value of H. On the other hand, if at a point every n×n minor of DH is
singular, that point is called a critical point of H. If the inverse image of y has
at least one critical point of H, y is said to be a critical value of H.

If all zero points of H are regular points, then this curve of zeros is diffeomorphic
to a circle or the real line. Allgower and Georg [3] discuss the existence of such a
curve of zeros. It is generally sufficient to require some boundary condition that
prevents the curve from running to infinity before intersecting the level λ = 1
or from returning back to level λ = 0. Such boundary conditions are generally
specific to the problem at hand.

In some cases, a parametrization of the curve of zeros with respect to λ will fail
at the turning points of the curve with respect to λ as shown in Figure 3.3(a).
While in other cases, the λ parametrization will require one to choose extremely
small 4λ increments in order to trace the curve c (see Figure 3.3(b)). One
possible remedy in this case is to use the arc length s as the parameter for the
curve.

3.2.1 Bifurcation points

The curve of zeros c(s) might contain bifurcation points. Some of the fun-
damental work of bifurcation theory and the numerical solution of bifurcation
problems are due to [68, 67, 69]. Numerical bifurcation theory and computer
programs can be, for example, found in [114]. Formally a bifurcation point can
be defined as follows [3]
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(a) Parametrization failure at turning points p. (b) λ step length requirement.

Figure 3.3: Drawbacks of λ parametrization.

Definition 3.6 For an arbitrarily smooth H : Rn+1 7→ Rn, suppose that c :
I 7→ Rn+1 is a smooth curve defined over an open interval I containing zero,
and parametrized with respect to arc length such that H(c(s)) = 0 for s ∈ I.
The point c(0) is called a bifurcation point of H = 0 if there exists an ε > 0
such that every neighborhood of c(0) contains zero-points z of H which are not
in ]− ε, ε[ (see Figure 3.4).

Figure 3.4: Bifurcation point.

A bifurcation point of H = 0 must be a critical point of H. Allgower and Georg
[3] discuss handling of simple bifurcation points and branch switching while
tracing the curve of zeros. In this work, the bifurcation points are handled in a
different fashion. Homotopies are computed in sub-intervals of the domain such
that each sub-interval contains only one branch that is part of the curve of zeros
(see Chapter 7).
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3.2.2 Numerical curve tracing

The assumption behind numerical curve tracing for a smooth map H : Rn+1 7→
Rn is the existence of a point x̂0 ∈ Rn+1 such that

1. H(x̂0) = 0, and

2. The Jacobian matrix H′(x̂0) has maximal rank, which is n.

Under these assumptions, there exists a smooth curve c(α) : I 7→ Rn+1 for some
open interval I containing zero such that for all α ∈ I[3]

1. c(0) = x̂0, the initial condition is met,

2. H(c(α)) = 0, the curve is in the kernel of H,

3. rank (H′(c(α))) = n, all points on the curve are regular points, and

4. c′(α) 6= 0, c(α) is a monotonic curve such that the parametrization α does
not fail.

Two methods for numerically tracing c are discussed next.

Predictor-corrector (PC) methods

Predictor-Corrector methods numerically trace the curve c by generating a se-
quence of points x̂i, i = 1, 2, · · · along the curve satisfying some tolerance con-
dition like ||H(x̂i)|| ≤ ε for some ε > 0. The starting point for the sequence is
x̂0 ∈ Rn+1 such that H(x̂0) = 0.

A new point x̂i+1 can be generated along the curve using a predictor step fol-
lowed by a corrector step. A predictor step is generally a suitable numerical
integration scheme. Most commonly employed predictor step is the Euler pre-
dictor

ŷi+1 = x̂i + ht(H′(x̂i)), (3.7)

where h > 0 represents the step size and t(H′(x̂i)) is the tangent vector induced
by H′(x̂i).

A powerful corrector step is available due to the fact that H(x̂) = 0. Even
with a poor predictor point ŷi+1, an iterative corrector process will show rapid
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convergence. Let ẑi+1 denotes the point on c nearest to ŷi+1 (see Figure 3.5).
The point ẑi+1 solves the following optimization problem

||ẑi+1 − ŷi+1|| = min
H(ẑ)=0

||ẑ− ŷi+1||. (3.8)

A Newton-like method can be used to arrive at the desired solution point x̂i+1

in a few iterations.

Figure 3.5: Predictor point ŷi+1 and corrector point x̂i+1.

Piecewise-linear (PL) methods

A Piecewise-Linear method proceeds by following a piecewise-linear curve cτ
that approximates c over a triangulation τ of Rn+1. A triangulation τ of Rn+1

is a subdivision of Rn+1 into (n+ 1)-simplices such that

1. any two simplices in τ either share a face or nothing,

2. any bounded set in Rn+1 intersects only finitely many simplices in τ .

In order to trace cτ , a piecewise linear approximation Hτ of H is defined by

1. Hτ (v) = H(v) for all vertices v of τ ,

2. for any (n+ 1)-simplex σ = [v1, v2, · · · , vn+2] ∈ τ , the restriction Hτ |σ of
Hτ to σ is an affine map.

Since, Hτ is affine,

Hτ (x̂) = H
(
n+2∑
i=1

αivi

)
=

n+2∑
i=1

αiH(vi), (3.9)
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where αi, i = [1, n + 2] are barycentric coordinates of x̂ with respect to the
simplex σ in which it lies. The set H−1

τ (0) contains a polygonal path cτ :
R 7→ Rn+1 that approximates c. Such a path is traced via methods of linear
programming such as the simplex method. Figure 3.6 illustrates the basic idea
behind piecewise-linear path following.

Figure 3.6: Piecewise-Linear path following.

Multivariate polynomial system of equations arrive frequently in many prob-
lems. Starting in 1970’s, a homotopy continuation based approach to solving
such systems called polynomial continuation was developed. By using algebraic
geometry and homotopy theory, special algorithms can be designed to solve
polynomial systems in a theoretically complete and practically robust manner.
Besides being general, polynomial continuation has the advantage that very
little symbolic information is required from the polynomial system [130].

There exist libraries for numerical computation of homotopy and solution of sys-
tem of non-linear equations. HOMPACK [141] is a suite of globally convergent
homotopies for solving nonlinear systems of equations. It includes subroutines
for fixed point, zero finding, and general curve tracking problems. PHC [136]
implements homotopy continuation methods to compute approximations to all
isolated solutions of a system of n polynomial equations in n unknowns. It of-
fers many root counting methods including Bézout number, multihomogenous
Bézout number, and mixed volume. Bézout’s theorem is an important and
classical theorem in algebraic geometry. It states that two algebraic curves of
degrees m and n, with no common components, will share mn points, when
counted with multiplicity. Thus, Bézout number accounts for the number of
solutions to a system of polynomial equations, which is equal to the total degree
of the system. The multihomogenous Bézout number is an upper bound on the
number of geometrically isolated solutions in a product of projective spaces [94].
The mixed volume of a collection of m polytopes {Pi} and a set of non-negative
real parameters λi is the coefficient of λ1 · · ·λm in the volume of the Minkowski
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sum
∑
λiPi, which is a homogeneous polynomial in λi [132]. The mixed volume

of Newton polytopes gives a sharp upper bound for the number of complex iso-
lated solutions with nonzero coefficients. PhoM [56] is a library for a polyhedral
homotopy continuation method for finding all isolated solutions to a non-linear
system. HomLab [130] is a Matlab toolbox for polynomial continuation.

3.3 Davidenko’s equation

Under various conditions, H(x, λ) will have a zero for each λ in [0, 1], and the
zero x0 of H(x, 0) may lead to an approximation to a zero of H(x, 1) via the
curve of zeros x(λ) that satisfies H(x(λ), λ) ≡ 0 with x(0) = x0 [93].

Besides the methods discussed above, the curve of zeros x(λ) can be deter-
mined by formulating an initial value problem. Considering the homotopy
H(x, λ) : Rn×R 7→ Rn as the set of n non-linear algebraic equations, we assume
the existence of the curve of zeros x(λ), such that x(0) = x0. Differentiating
H(x(λ), λ) = 0 with respect to the homotopy parameter λ, we get

J
dx(λ)

dλ
+
∂H(x(λ), λ)

∂λ
= 0, (3.10)

where J is the Jacobian of the terminal map. For a homotopy defined as

H(x(λ), λ) = f(x(λ)) + (λ− 1)f(x0), (3.11)

where f = 0, f : Rn 7→ Rn is the non-linear system whose solution is required,

∂H(x(λ), λ)

∂λ
= f(x0). (3.12)

Therefore, (3.10) gives

dx(λ)

dλ
= −J−1f(x0). (3.13)

The ordinary differential equation (3.13) along with the initial condition f(x0) =
0 is known as Davidenko’s equation [36].

An approximate solution to (3.13) at λ = 1 can be taken as a root of f(x) = 0:

f(x(1)) = f(x0) +

∫ 1

0

J
dx(λ)

dλ
dλ. (3.14)

Davidenko’s method consists of finding an approximate solution to the initial
value problem at λ = 1 by using appropriate numerical integration techniques
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[109, 50, 93]. By considering the approximate solution of (3.13) as initial guess, it
becomes easy to apply a Newton-type methods for computing accurate solution
to H = 0 [3]. Computationally, solution to Davidenko’s equation is much faster
than other methods of tracing c [142].

3.4 Homotopy formulation for reconstruction from
acoustic signals

Wayburn and Seader [142] discuss some objections on using numerical homotopy
based schemes and present viable solutions to them. In formulating homotopies
for reconstruction from acoustic images, emphasis is given on solvable systems
that do not impose large computational burden, and still providing a reason-
ably good reconstruction. The reconstruction problem presented in this work
is slightly different than the one presented in section 3.2. Here, the initial map
and the terminal maps of the homotopy have known solutions, and a reasonable
path connecting them is sought after (see Figure 3.7).

Figure 3.7: Path connecting two sonar beams maps.

More details on the design of homotopies based on the geometry of the sonar
beams is presented in chapter 7. Homotopies satisfying smoothness and mono-
tonicity are also designed incrementally starting from the convex homotopy.
Homotopies discussed in chapter 7 are designed specifically to take advantage
of the geometry of sonar beams and take advantage of the inherent ordering
within the beams while parameterizing the resulting surface in R3. Figure 3.8
shows the arrangement of a 2D fan of sonar beams.

The algorithm developed for reconstruction from sonar beams is generalized to
reconstruction from arbitrary cross sections in chapters 8 and 9. The developed
homotopy does not assume existence of any ordering within the cross sections.
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Figure 3.8: Arrangement within beams of a 2D fan.

Such problems can arise in situations when an object is scanned (using range
scanners like single beam echosounders) from different directions. The presented
algorithm is generic in nature and results are shown in R2. Figure 3.9 illustrates
the problem setup.

Figure 3.9: Reconstruction problem with arbitrary cutting lines.
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Chapter 4

Object segmentation and
reconstruction

Previous chapters discussed basics of underwater acoustics and presented the
mathematical background of homotopy continuation and available numerical
tools. The purpose of this chapter is to bridge the gap between presented
domain specific background and mathematical preliminaries from the previous
chapters and the reconstruction approach presented in the following chapters
(originally written as publication manuscripts).

Scientific literature on image segmentation is very rich and an overwhelming
number of publications suggest the level of active research in this field. Acoustic
images suffer from speckle noise (see Chapter 2, subsection 2.4.4). Speckle noise
is a phenomenon caused when a coherent imaging system is used to image a
surface that is rough on the scale of the wavelength used. Each surface element
produces reflections in every resolution cell that combine to form an interference
pattern by adding up either constructively or destructively resulting in a speckle
pattern.

A number of speckle suppression techniques have been developed over the years
to reduce noise in acoustic images. A general approach is to smooth the speckle
in images. Many speckle filters are adaptive to the local texture information.
At the very basic level, median filtering works very well to suppress impulse
noise while retaining sharp edges. Some of the high performance filters are
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Lee [78], Kuan[75], Frost [46], modified Lee, and modified Frost filters [84].
Speckle filters based on the maximum a posteriori (MAP) probability [84, 64]
and wavelet suppression [41, 59] are also considered good. Another class of
speckle reducing methods is based on minimization of total variation (L1 norm
of the gradient) of the acoustic image [111, 40]. Krissian et al. [73] provide an
improvement over the classical anisotropic diffusion [73] on ultrasound images
constrained by the speckle noise model. Each speckle reducing filter presents
trade-offs between noise reduction, image smoothing, edge preservation, and
computational complexity.

An image segmentation algorithm aims at partitioning an image into regions
that are non-overlapping, uniform and homogeneous with respect to some char-
acteristic derived from the image intensity and textural variation. The bound-
aries of each segment should be simple, with minimum holes, and spatially
accurate. In general, it is difficult to fulfill all the criteria at the same time.
With acoustic images, the boundary between the object and the background is
not very well defined. The presence of fully developed speckle pattern makes
it harder to get a reasonable segmentation. The simplest segmentation method
still in use in fisheries is thresholding [126, 112]. A threshold is generally se-
lected based on the target strength of the fish seen in the images. This usually
serves the purpose of removing the background noise, but in presence of air bub-
bles in water, a simple threshold can give misleading results. Furthermore, the
boundary of segmented objects is not very accurate with thresholding. Markov
Random Fields have been shown to segment sonar images in an unsupervised
fashion [91, 92].

Derin and Elliott [39] estimate a noise model by an unsupervised iterative esti-
mation procedure based on the Iterative Conditional Estimation (ICE). Meth-
ods of data clustering like k-means[105] have been successfully applied to image
classification. Classical clustering is applied to images by using Gibbs random
fields. Mean-shift based clustering in color images has been popularized by
Comaniciu and Meer [30, 31]. Mean-shift is a non-parametric kernel density es-
timation method that seeks the mode of the data by an iterative and converging
procedure. Acoustic range image segmentation using mean-shift clustering in
7-dimensional feature space has been demonstrated in [23]. Partial differential
equation (PDE) based segmentation methods, specially the level set method
introduced by Sethian [113], and Malladi and Sethian [87], have found tremen-
dous success in medical image and volume segmentation [27, 137, 9, 79, 122].
Level set methods can be applied in a straightforward fashion to sonar images
[82, 123].

In the current reconstruction approach, a collection of noise removal techniques
and the level set method have been applied to get a segmentation of the sonar
imagery. This segmentation is required for the homotopy based reconstruction
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algorithms. The general methodology adopted in this work is outlined in Fig-
ure 4.1.

Figure 4.1: Reconstruction method. Parts of the method between 2© and 6©
are a set of optional processing steps, in which one of the steps 4© and 5© is
necessary to get a segmented volume for input to 6©, while step 3© is completely
optional.

The size of the volumetric dataset considered in this work is of the order of
100 million voxels, therefore parallel computing technologies are explored for
near real time performance of the reconstruction method. Before delving into
the main methodologies, a brief overview of the parallel computing technologies
used in this work are outlined in the next section.

4.1 Parallel computing

High computational needs and (near) real time performance are quite common
in scientific computation tasks. Parallelism is a way of speeding up computations
at the cost of high computing resources. Multi-core architectures have started
a new era of computing and boosted performance and efficiency of parallel pro-
grams. One of the most successful in programming parallel computers is the
Message Passing Interface (MPI) [45], which conforms to the message-passing



44 Object segmentation and reconstruction

model. The implementations contain parallelization functions with language in-
terfaces to Fortran and C/C++. While there are lot of parallel computing tools
around, the two parallel computing technologies used in this work are OpenMP
and CUDA.

The most commonly used approach for shared-memory parallelization is the
Open Multi-Processing (OpenMP) [35] application programming interface (API).
The target languages for OpenMP are Fortran and C/C++. OpenMP essen-
tially consists of a set of compiler directives that are used to describe parallelism
in the source code, and a small library of supporting routines. The compiler in
use must be OpenMP enabled to use the directives and the library. Simplicity
in programming is a definite advantage with OpenMP as compared to Pthreads
or MPI.

Another mature technology providing massive parallelism by using the graphics
card or the Graphics Processing Unit (GPU) is CUDA (Compute Unified De-
vice Architecture) from Nvidia. The programmable GPU is a highly parallel,
multithreaded, many-core processor with high computational power and good
memory bandwidth [97]. The GPU was designed for graphics rendering that
involved tasks with high data parallelism. Therefore, a GPU can be utilized
for data-parallel computations. CUDA is a parallel programming model and
instruction set architecture.

4.1.1 OpenMP

OpenMP is a set of compiler directives and callable runtime library routines
that extend Fortran and C/C++ to express shared-memory parallelism [35, 28].
It follows the fork/join model of execution, thus spawning multiple threads to
execute parallel sections of the code and joining the result to pass control to the
master thread at the end of the parallel section. The slave threads are created
when the program first encounters a parallel section. These additional threads
are not destroyed, but saved for future use in either suspended or slept state.

OpenMP’s constructs fall into five categories

1. Parallel regions
Threads are created with the omp parallel pragma in C/C++. The
body of a loop after the pragma defines a parallel region.

double Data [10000];

omp_set_num_threads (8);

#pragma omp parallel {
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int ID = omp_get_thread_num ();

task(ID ,Data);

}

2. Work sharing
The omp for work sharing construct splits up loop iterations among the
threads in a parallel region. A shortcut for specifying both a parallel
region and the work sharing omp for construct is omp parallel for.

#pragma omp parallel

#pragma omp for

for (int i=0; i <10000; i++) {

task(Data[i]);

}

A for construct cannot be used for a reduction operation like a summa-
tion. OpenMP provides the construct omp reduce (op:list), where op

is the reduction operator, and list is a list of reduction variables. omp

sections is another work-sharing construct that assigns different jobs to
each thread in a parallel region. The thread distinction can be made de-
pending on the thread id obtained via OpenMP call to omp get thread

num().

3. Data environment
In the shared-memory programming model, global variables are shared
among threads (file scope and static variables in C/C++). Automatic
variables within a statement block are private. Stack variables in routines
called from parallel regions are also private. A private variable is a private
copy of the variable for a thread. Constructs and clauses available to se-
lectively change storage attributes are: shared, private, firstprivate,
and lastprivate.

4. Synchronization
Constructs available for synchronization are:

• the critical and end critical constructs, which define a critical
section where only one thread can enter at a time;

• the atomic construct, which defines a critical section that only con-
tains one simple statement;

• the barrier construct, which makes the threads wait until all of them
arrive, and is usually implicit (e.g. at the end of for construct);

• the ordered construct, which enforces the sequential order for a block
of code;

• the master construct, which marks a block of code to be executed
only by the master thread, while other threads just skip it;
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• the single construct, which marks a block of code to be executed
only by one thread; and

• the flush construct, which denotes a sequence point where a thread
tries to create a consistent view of memory.

5. Runtime routines and environment variables The library routines
and environment variables in OpenMP control and retrieve the state of
the system. The number of threads can be controlled using the routines
omp set num threads(), omp get num threads(), omp get thread num(),
and omp get max threads(). When not explicitly mentioned in the code,
OpenMP tries to spawn as many threads as there are number of CPU
cores present. The number of processors in the system can be retrieved
by a call to omp num procs().

4.1.2 CUDA

CUDA stands for Compute Unified Device Architecture. It is a general purpose
parallel computing architecture with a new parallel programming model and in-
struction set architecture that leverages the parallel computing engine in Nvidia
GPUs to solve many complex computational problems in a more efficient way
than on a CPU [97].

Hardware configuration

A GPU (referred to as a device) is a set of Streaming Multiprocessors (SMs)
employing a new SIMT (Single-Instruction Multiple-Threads) multi-processors
computational architecture. Each SM consists of eight Scalar Processor (SP)
cores. Every SP has it’s own registers while every SM has access to small (16
KB) but high speed shared memory. The whole device has access to device
memory, constant memory, and texture memory. The constant and texture
memory are cached while the device memory is not. In fact, the shared memory
can be views as a user managed cache.

Thread configuration

CUDA exposes a C like programming environment with a minimal set of ex-
tensions and a few C++ like features. CUDA code executes on the GPU in
the form of functions called kernels, which get called N times in parallel by
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N different CUDA threads. CUDA threads are lightweight GPU threads with
minimal creation overhead as opposed to CPU threads. Thousands or millions
of threads are required to achieve full efficiency of the parallelism. The minimal
set of extensions to the the C language include:

• Function type qualifiers:

__device__ <return_type > device_func (...);

__global__ void kernel_func (...);

__host__ <return_type > host_func (...);

• Variable type qualifiers:

__device__ <data_type > device_var;

__constant__ <data_type > constant_var;

__shared__ <data_type > shared_var;

• Directive for kernel execution:

kernel_func <<<gridDim , blockDim >>>(...);

• Built-in variables

gridDim (dim3)

blockDim (dim3)

blockIdx (uint3)

threadIdx (uint3)

warpSize (int)

Further, the runtime library is split into:

• A host component

• A device component

• A common component

The CUDA C compiler is called nvcc. The set of threads in a kernel launch
are hierarchically grouped in a block and the blocks are grouped in a grid .
The threads in a block can communicate using the shared memory and basic
thread synchronization (using syncthreads()) is possible. No intercommuni-
cation and no barrier synchronization is possible between threads across different
blocks. All threads have access to the global memory, which has a higher delay
in access.
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A kernel is defined using the global declaration specifier and the number of
CUDA threads for each call is specified by the <<<...>>> syntax [97].

// Kernel definition

__global__ void vecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

int main()

{

// Kernel invocation

vecAdd <<<1, N>>>(A, B, C);}

}

Each thread has a unique thread ID accessible from within the kernel using the
threadIdx variable.

With this brief introduction to the parallel computing technologies, the disussion
is now turned to processing of raw acoustic images.

4.2 Correction for propagation losses

The first step in acoustic data processing is to correct the images to compensate
for various losses incurred by a sound wave while traveling underwater. This is
mostly a standard procedure and converts the raw signal into meaningful values
(see Chapter 2). The raw signal power P is converted to an Sv value using
[127, 1]

Sv = P + 20 log10(r) + 2Cabsr− Sconstv (4.1)

where Sv is the volume backscattering strength in dB, P is the power in dB
relative to 1 Watt, r is the range vector in meters relative to 1 m, Cabs is the
absorption coefficient in dBm−1, the constant Sconstv is calculated as

Sconstv = 10 log10

(
Ptλ

2vτ

32π2

)
+ 2G + ψ (4.2)

where Pt is the transmit power in watts, λ is the wavelength of pulse in meters, v
is the velocity of sound in water in ms−1, τ is the pulse length in seconds, G is the
applied gain in dB of the transceiver including the effects of transducer energy
conversion efficiency and receiver gain, and ψ is the equivalent beam angle in
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dB. The MS70 Simrad dataset is compensated for absorption and spreading
losses in this way.

The s7k dataset from RESON is already compensated for such losses and there-
fore doesn’t need to be corrected. However, the raw values from the device out-
put are encoded in 16 bit unsigned integers. These values are relative backscatter
values and can be converted into the more familiar dB units by taking the loga-
rithm and then adding a constant term coming from the backscatter strength of
a copper sphere obtained via a sonar calibration process. The expression looks
like

TS = 20 log10(P) + TSCu − 20 log10 (max (PCu)) , (4.3)

where TS is the target strength of the objects in dB, P is the relative pressure
value, TSCu is the standard copper sphere target strength at 400 KHz frequency
pulse, and max (PCu) is the maximum relative pressure value of the copper
sphere obtained during a calibration process.

4.3 Image denoising

Noise comes from unwanted signals that are present in the medium but are
independent of the echosounder transmission. Various artifacts also arise due
to the echosounder and the process of beamforming itself. The main types of
noise (see Figure 4.2) seen in the images are:

• the Speckle pattern, that is generated by the interference of multiple scat-
terers present in the insonified volume. In addition to the useful signal, the
resulting signal also contains random intensity variations resulting from
combinations of many waves with different phases.

• the Transmit pulse echo, that is appearing immediately after a pulse is
transmitted into the water. The noise level quickly reduces to the thermal
noise level.

• the Sidelobe intensities, that are visible for strong scatterers. The side-
lobes cannot be completely eliminated (see Chapter 2) and therefore even
though the intensities are small compared to the main-lobe intensity, these
become visible for strong reflections [86, Chap. 5].
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Figure 4.2: Various noises in an acoustic image.

4.3.1 Speckle pattern

A simple strategy to suppress speckle noise is to perform median filtering over
the image. Since the size of the resolution cell increases while moving away from
the transducer, the size of the speckles also increases. It is therefore better to
perform filtering operations in the untransformed domain (i.e., in the Cartesian
beam space) (see Figure 4.3(a)). This has an added advantage of processing
smaller images since the rectangular to polar transformation on acoustic images
generally results in an expansion of the image size. A median filter of size [3×3]
is sufficient for one pixel sized speckles (see Figure 4.3(b)). A larger window
size generally results in excessive smoothing.

After the median filtering step, the image still contains larger sized speckles.
Since the speckle intensity is lower than that of the object intensities, a smooth-
ing step can smear out much of the speckle into the background. Anisotropic
filtering by Perona and Malik [106] performs better at preserving the boundaries
while smoothing the image. The anisotropic diffusion equation is given by

It = div (c(x, y, t)∇I) = c(x, y, t)∆I +∇c · ∇I, (4.4)

where c is the conduction coefficient, div is the divergence operator, ∆ is the
Laplace operator, and ∇ is the gradient operator. Perona and Malik show how
a suitable choice of c can result in selective smoothing that preserves the edges
in an image. For instance, c could be a function of the edges of the image

c(x, y, t) = g (||∇I(x, y, t)||) , (4.5)

where ||∇I(x, y, t)|| is an edge estimate of the image I and g(·) is a monotonically
decreasing function. The result of anisotropic diffusion applied on the median
filtered image is shown in Figure 4.3(c).
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(a) Image corrected for propagation losses (b) Median filtering

(c) Anisotropic diffusion

Figure 4.3: Acoustic image despeckling.

4.3.2 Transmit pulse echo

The transmit pulse echo is a result of decaying oscillations of the transducer
after the main pulse is transmitted into the medium. The maximum range for
transmit pulse can be calculated as

Rtxmax =
nτc

2k
, (4.6)

where n is the number of sectors, τ is the pulse duration, c is the speed of sound
in water measured at the depth where observation is made, and k is the number
of pulses in one transmission. A safety margin is generally added to this value.
Signal in this range is discarded from the initial part of the signal. The signal in
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the near-field does not contain much useful information so discarding the initial
part of the signal is a usual practice.

4.3.3 Sidelobe intensities

The sidelobe intensities in a polar transformed acoustic image are seen as hori-
zontal streaks in the corresponding beam space image (see Figure 4.3(a)). Every
beam has a beam pattern with a main lobe (most sensitive) in the pointing direc-
tion of the beam and some sensitivity in other directions due to finite size of the
sonar aperture. These other side lobes which transmit and receive energy from
other directions than the main pointing direction will transmit and receive some
intensity from the direction of stronger echoes. These echoes will be displayed as
weaker echoes since the transmit and receive sensitivity in the other directions
are smaller than in the main beam pointing direction. Such an artifact could
be difficult to get rid of in the spatial domain, therefore a frequency domain de-
noising approach is adopted here. Let’s first take a look at the Fourier spectrum
shown in Figure 4.4(a) of the anisotropic diffusion filtered image. The spectrum
clearly shows presence of strong vertical lines corresponding to horizontal linear
features in the original image. A notch filter [52] can be designed to eliminate
frequencies that emphasize the horizontal streaks. A modified filter used here
is a pair of vertically symmetric closed polygons enclosing the bright vertical
lines in the spectrum (see Figure 4.4)(b). In order to avoid ringing artifact in
the inverse transformed image, a smoothed filter is used. Smoothing is enforced
via the following function applied to the distance transform of the binary mask
resulting from the polygons.

fε(z) =
1

2

(
1 +

2

π
tan−1

(z
ε

))
, (4.7)

where ε is a regularizing parameter. An inverse Fourier transform of the multi-
plication of the regularized filter with the Fourier transform of the image results
in the denoised image shown in Figure 4.5(a). Note that the horizontal streaks
have disappeared. One should be careful while designing the notch filter to not
remove too much of the salient details from the original image. Some of the
image power is lost during Fourier denoising but in our case it is considerably
low. The image in Figure 4.5(b) shows the difference between the input to the
FFT filtering and the filtered image. The highest intensity in the residual image
amounts to only 7.18% of the highest intensity of the input image.
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(a) Logarithm of Fourier spectrum (b) Filter mask

Figure 4.4: Power spectrum and filter design.

(a) Filtered image (b) Residuals (with scaled intensities)

Figure 4.5: FFT filtering for streak removal.

4.4 Level set segmentation

The basic idea behind level set segmentation is to start with a closed curve in
the domain of the image. This curve then deforms under the influence of various
forces and finally takes the shape of the desired objects. Topology changes of
the curve are permitted during the evolution. Therefore, the curve can break
into multiple curves and multiple curves can combine together.
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The deformable curve that permits topological changes can be represented in
the most general way as a level set of an implicit function. The driving force
is generally composed of a curvature energy and an image energy. Curvature
energy tends to move the curve under the influence of its curvature via the
mean curvature flow [101, chap. 4]. Such a force makes the curve deform into a
circle and eventually collapse into a point before disappearing. It is the image
energy that prevents the curve from vanishing. Such an energy stops the curve
at the required location determined based on the intensity of the image. Various
energy formulations are based on image edges (image gradients) [88], and the
Mumford-Shah model [26].

A CUDA based level set solver suited for segmentation of sonar images is dis-
cussed in Chapter 5 [115]. It uses the modified Mumford-Shah level set for-
mulation by Chan and Vese [26] coupled with a noise suppression scheme to
segment fishes from large acoustic datasets. The presented scheme works on
raw acoustic values. An extension to this work is presented in Chapter 6 [122]
(also submitted for publication in [123]), where the CUDA solver is extended to
a Multi-phase and higher order level set scheme.

4.5 Homotopy reconstruction

A brief overview of the use of continuous deformations in object reconstruction
is shown in Chapter 7. The simplest homotopy reconstruction algorithm (the
linear homotopy) takes as input, information along two beams at a time. The
information along a beam is encoded in its characteristic function. Here, the
characteristic function is a piecewise-constant segmentation of the original signal
such that the background has the zero value while the object has the one value
along the beam. A suitable beam function is constructed from such a signal
mass. These beam functions are used to compose a cascade of homotopies that
are smooth at the boundaries. The zero level set of the homotopies constitutes
the surface of the reconstruction. Chapter 7 [117] contains a detailed description
of the homotopy reconstruction method and various different homotopies for a
smooth reconstruction.

An interesting extension of this reconstruction problem is presented in Chapter 8
[118] where the problem of arbitrary cutting lines is presented and a solution
to reconstruction using multiple variable homotopy is suggested. Results are
shown for a 2D case and the proof of smoothness of reconstruction is included
in Appendix A. A variant of this method using Voronoi diagram based edge
barycentric coordinates for polygons is presented in Chapter 9 [116].
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Abstract

Acoustic images present views of underwater dynamics, even in high

depths. With multi-beam echo sounders (SONARs), it is possible to cap-

ture series of 2D high resolution acoustic images. 3D reconstruction of the

water column and subsequent estimation of fish abundance and fish species

identification is highly desirable for planning sustainable fisheries. Main

hurdles in analyzing acoustic images are the presence of speckle noise and

the vast amount of acoustic data. This paper presents a level set formula-

tion for simultaneous fish reconstruction and noise suppression from raw

acoustic images. Despite the presence of speckle noise blobs, actual fish
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intensity values can be distinguished by extremely high values, varying

exponentially from the background. Edge detection generally gives exces-

sive false edges that are not reliable. Our approach to reconstruction is

based on level set evolution using Mumford-Shah segmentation functional

that does not depend on edges in an image. We use the implicit func-

tion in conjunction with the image to robustly estimate a threshold for

suppressing noise in the image by solving a second differential equation.

We provide details of our estimation of suppressing threshold and show

its convergence as the evolution proceeds. We also present a GPU based

streaming computation of the method using Nvidia’s CUDA framework

to handle large volume data-sets. Our implementation is optimized for

memory usage to handle large volumes.

5.1 Introduction

One of the areas of interest in fisheries research is to reconstruct moving schools
of fishes in a water column. Presence of strong speckle noise is a major problem
in segmenting acoustic images. This makes selection of a threshold for binary
segmentation very difficult [108]. Multibeam echo sounders are not outdated by
hyperspectral underwater imagers, but they just complement very well. Acous-
tic sensors are still widely used in underwater surveys. The main contribution
of this paper is to design a level set formulation that is well suited to reconstruct
fishes from acoustic images captured using multi-beam echo sounders. The evo-
lution of the level set equation is coupled with a solution of another differential
equation that effectively removes the noise, enabling the level set to converge to
the objects of interest in the image.

Speckle noise in acoustic images is generally modeled by the Rayleigh distribu-
tion [44, 43]. Quidu et al. [108] estimate an optimal image filter size to compute
an estimate of a good threshold by pixel correlation. Gagnon [49] shows nu-
merical results of a wavelet domain based method for noise removal. Chen and
Raheja [29, 15] show a wavelet lifting based method where the spatial correla-
tion of acoustic speckle noise is broken by multiresolution analysis. In another
approach to use wavelet based methods, Isar et al. [64] present a Bayesian-
based algorithm. In a novel attempt to use the Markov Random Field (MRF)
to segment acoustic images, Mignotte et al. [91] use an unsupervised scheme by
employing an iterative method of estimation called Iterative Conditional Esti-
mation (ICE). The authors used a maximum likelihood estimation to compute
the MRF prior model.

Krissian et al. [73] provide a variation of the anisotropic diffusion process [106]
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constrained by speckle noise model. Anisotropic diffusion provides an intelligent
way to perform diffusion without affecting prominent edges in an image.

Level set based methods have been shown to successfully restore noisy images
[113]. Osher and Rudin [102] developed shock filters for image enhancements.
Malladi and Sethian [87] have shown image smoothing and enhancement based
on curvature flow interpretation of the geometric heat equation. In a more recent
approach to use level set methods for acoustic image segmentation, Liananton-
akis and Petillot [82] provide an acoustic image segmentation framework using
the region based active contour model of Chan and Vese [25]. The authors com-
ment that the level set based model has good regularization properties similar
to those of a Markov random field [82].

A relevant work by Balabanian et al. [15] shows an interactive tool for visu-
alization of acoustic volumetric data using a well known volume visualization
technique called Ray-casting. Authors in [15] develop a tool for manual selection
by region growing and visualization of moving fish schools using graphics hard-
ware. The work presented in this paper is intended to develop mathematical
models to automatically extract meaningful features from acoustic data with no
user interaction. This work does not provide any tool for visual analysis, rather
it presents a computational framework for noise suppression and 3D reconstruc-
tion.

This paper concentrates on using the level set methods for simultaneous sup-
pression of noise and 3D reconstruction of relevant features. We limit features of
interest to fishes from acoustic images and provide a level set based framework
for acoustic image segmentation. Image restoration techniques based on level set
evolution are generally oriented to segment the image or to remove noise from
it. Work by Lianantonakis and Petillot [82] is closest to our approach since
they use active contours using Mumford-Shah functional for seabed classifica-
tion, but together with extraction of Haralick feature set for textural analysis.
Our method differs from theirs since it is not possible to rely on texture based
classification in the absence of any specific textures in the image.

Since acoustic data resulting from marine surveys can result in gigabytes of in-
formation, we employ GPU (Graphics Processing Unit) based computations for
3D reconstruction. The GPU is not very suitable for data intensive applications
due to unavailability of large memory on commodity hardware. A number of
publications suggest schemes to circumvent this situation by performing com-
putations in a streaming manner [81, 79, 54], but most of the implementations
process 2D sections to generate a 3D reconstruction. We present a Level Set
method implementation with computations performed entirely in 3D using the
3D textures (read only) available to the CUDA 2.0 framework. CUDA (Com-
pute Unified Device Architecture) is a parallel programming model and software
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environment designed to develop application software that transparently scales
its parallelism to leverage the increasing number of processor cores on the GPU.
It allows programming computationally intensive algorithms to take advantage
of the available graphics hardware. Our method is streaming and is optimized
for memory usage, consuming only twice the CPU memory of the input volume.

The paper is organized as follows. In section 5.2, we present the preliminaries
on the active contour model. In section 5.3 we discuss the work of Chan and
Vese [25] on minimizing the Mumford-Shah functional in images. Section 5.4
outlines our work on the noise suppression model which is solved together with
the level set equation. Section 5.5 details our CUDA implementation for 3D
reconstruction of the fishes based on the parallelization of the results of Sec-
tion 5.4. In Section 5.6, we present the experimental results, and conclude the
paper in section 5.7.

5.2 Background

Let an image I(x, y) be defined on a bounded open subset Ω : {(x, y)|0 ≤ x, y ≤
1} of R2, with ∂Ω as its boundary. I takes discrete values between 0 and (2n−1)
where n is the number of bits used to store intensity values. The basic idea in
active contour model is to evolve a curve C(s) : [0, 1] 7→ R2 by minimizing the
following energy functional [101]:

E(C) = α

∫ 1

0

|C ′|2 ds+ β

∫
0

|C ′′| ds− λ
∫ 1

0

|∇I(C)|2 ds,

where α, β, and λ are positive parameters. In the above energy functional, the
evolution of curve C is controlled by the internal energy (first two terms that
define the smoothness of the curve) and the external energy (the last term that
depends on the edges present in the image). The curve C can be represented
by an implicit function φ, C = {(x, y)|φ(x, y) = 0}, where the evolution of C is
given by the zero level curve at any time t of the function φ(x, y, t).

With this formulation, an edge detector is defined as a positive decreasing func-
tion g(∇I) based on the gradient of image [106] such that

lim
|∇I|→∞

g(∇I) = 0.

Therefore, the zero level curve evolves in the normal direction and stops at the
desired boundary where g vanishes.
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Evolving the curve C in normal direction amounts to solving the partial differ-
ential equation (PDE) [103]

∂φ

∂t
= |∇φ|F, (5.1)

with the initial condition φ(x, y, 0) = φ0(x, y), where φ0(x, y) is the initial con-
tour. Motion by mean curvature allows for cusps, curvature and automatic

topological changes [103, 26]. This results in the speed function F = div
(
∇φ
‖∇φ‖

)
in terms of the curvature of φ

∂φ

∂t
= |∇φ|div

( ∇φ
|∇φ|

)
, with φ(x, y, 0) = φ0(x, y),

where div(·) is the divergence operator, and | · | is the L2 norm.

5.3 Minimizing the Mumford-Shah functional in
image

Chan and Vese [26] provide an alternative approach to the edge based stop-
ping criterion. The authors suggest the stopping term based on Mumford-Shah
segmentation techniques [95]. The motivation behind using this alternative stop-
ping term is that in many cases, the edges in an image are not very well defined.
Either it is ambiguous to position the edges across the gradient due to smoothly
varying intensities [26] or it is difficult to select prominent edges due to presence
of noise (as in the case of acoustic images). The method of Chan and Vese [26]
is minimization of an energy based segmentation. Assuming that the image I
is composed of two regions of piecewise constant intensities of distinct values Ii

and Io, and that the object of interest is represented by Ii, we define the curve
C to be its boundary. Using the Heaviside function H

H(z) =

{
1, if z ≥ 0
0, if z < 0

,

and the Dirac-Delta function δ0

δ0(z) =
d

dz
H(z),
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the energy functional is formulated as

E(c1, c2, C, t) =µ

∫
Ω

δ0(φ(x, y, t))|∇φ(x, y, t)| dx dy

+ ν

∫
Ω

H(φ(x, y, t)) dx dy

+ λ1

∫
Ω

|I(x, y)− c1|2 dx dy

+ λ2

∫
Ω

|I(x, y)− c2|2 dx dy, (5.2)

where µ ≥ 0, ν ≥ 0, λ1, λ2 > 0 are fixed parameters. c1 and c2 are average
intensity values inside and outside C. The constants c1 and c2 can also be
written in terms of I and φ as

c1 =

∫
Ω
I(x, y)H(φ(x, y, t)) dx dy∫

Ω
H(φ(x, y, t)) dx dy

, (5.3)

c2 =

∫
Ω
I(x, y)(1−H(φ(x, y, t))) dx dy∫

Ω
(1−H(φ(x, y, t))) dx dy

. (5.4)

The variational level set approach gives the following Euler-Lagrange equation
[26]

∂φ

∂t
= δε(φ)

[
µ∇ · ∇φ|∇φ| − ν − λ1(I − c1)2 + λ2(I − c2)2

]
(5.5)

with the initial condition, φ(x, y, 0) = φ0(x, y) and the regularized Dirac-Delta
function δε,

δε(z) =
∂

∂z
Hε(z) = π−1ε−1

(
1 +

z2

ε2

)−1

, (5.6)

where the regularized one-dimensional Heaviside function Hε is given by

Hε(z) =
1

2

(
1 +

2

π
tan−1

(z
ε

))
.

Despite the fact that this model has advantages over the edge based model in
that it is able to detect boundaries with smoothly varying intensities and blurred
edges, the main limitation comes from the fact that it can only discriminate
regions with different mean intensities [82]. In particular, strong textures pose
a problem with this approach. Lianantonakis and Petillot [82] solve this problem
by extracting the Harlick feature set based on the co-occurrence matrix.
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The acoustic images considered by Lianantonakis and Petillot [82] are of the
seabed. Such images show strong textural variations of the bottom surface of
the sea. In this paper, we restrict ourselves to acoustic images of freely swimming
fishes. While such images are also corrupted by speckle noise, they do not show
specific textural patterns. Figure 5.1(a) shows part of such an image where the
fish cross sections are discriminated by very high intensities compared to the
background. The presence of reflectance from air bubbles mixing into water, also
contribute to the noise. While working with level sets, a standard procedure
is to keep φ to a signed distance function [101]. A direct application of the
level set equation given by equation (5.5), with φ(x, y, 0) = 0 initialized to set
of squares regularly distributed over the image, shows that the evolution of the
level set eventually stops at the wrong place (see Figure 5.1(b)). Furthermore,
lack of any specific textural patterns leads us to formulate a successive noise
suppression scheme where the Mumford-Shah energy functional is minimized
while simultaneously removing noise from the image. The later aids in fast
convergence of the level curve in our formulation.

Iteration:0+1i/100

(a) Initialization contour.

Iteration:50/100

(b) Result at convergence.

Figure 5.1: Application of the level set equation (5.5).

5.4 Noise suppression model

As discussed before, acoustic images suffer from heavy speckle noise. At first
thought, it might sound reasonable to apply a global threshold to the image to
get rid of the noise. However, this is not a plausible option since for a particular
chosen threshold there might be echo intensities of fishes lower than it and
therefore such a threshold will result in loss of information [126, sec. 5.4.6, 6.3].
An adaptive threshold might also not provide a solution since the speckle has
a high local intensity, and therefore could show false positives. Therefore, we
resort to the global energy minimizing method to suppress noise.
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Considering the image I to be time varying, the basic idea behind noise sup-
pression is to solve the noise suppression equation as an update step to the level
set equation resolution in a single pass. The noise suppression equation is

∂I(x, y, t)

∂t
= k ·max(0, ĉ− I(x, y, t)), (5.7)

where k is a constant and ĉ is a scalar parameter that is computed as an optimal
threshold at any time step t based on φ(x, y, t).

The computation of ĉ is based on the bounded subset Ii given by

Ii(x, y, t) = I(x, y, t) ·Hε(φ(x, y, t)).

The values given by the set Ii are used to compute the weighted median [145]
as shown in algorithm 5.1 which is used as ĉ at that particular time step t.

Input: I(x, y, t), Hε(x, y, t)
Output: ĉ
V = {vi : vi = I(x, y, t), x ∈ [1, l], y ∈ [1,m],

i ∈ [1, n], n = l ·m}
W = {wi : wi = Hε(x, y, t), x ∈ [1, l], y ∈ [1,m],

i ∈ [1, n], n = l ·m}
Sort V in ascending order
W ←W\{wz} ∀wz = 0
V ← V \{vz} , {vz : vz ∈ V, ∀z where wz = 0}

S ←
n∑
k=1

wk, wk ∈W

Find index i such that

i∑
k=1

wk ≤
S

2
, wk ∈W

Find index j such that

n∑
k=j

wk ≤
S

2
, wk ∈W

Median M = {vi, vj}
ĉ← min(vi, vj)

Algorithm 5.1: Computation of weighted median.

The use of median filtering to remove noise is not new in image processing
[52, 85]. We now show that the estimate of ĉ based on the weighted median is
a good approximation for the gray-level threshold that separates the noise from
the signal, and is robust in a way that the evolution of the level set converges
with increasing t.

Hε(z) attains values close to zero for regions outside C and values close to one
inside C. In fact, lim

z→∞
Hε(z) = 1.0 and lim

z→−∞
Hε(z) = 0.0. At the start of level
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set evolution, Ii covers most of Ω and therefore, Hε(z) attains values close to
one for most of the intensity values. This results in computation of ĉ which is
equivalent to an unweighted median for values in Ii. A median is the central
point which minimizes the average of absolute deviations. Therefore, a median
better represents the noise level when the data contains high intensity values
that are fewer in number, and a majority of intensity values that correspond to
the noise. As a result, the initial iterations of the solution suppress the intensity
values that are less than the median to a constant level (the median itself). One
should expect the median value to increase as the level set contracts, but since
we use a regularized Heaviside function as weight for the intensity values, the
weighted median converges to zero since most of I contains intensity values of
zero with near-zero weight.

Other variations of estimation of ĉ are certainly possible, but we find that a
weighted median based approach results in effective noise removal with very little
information loss. For instance, a value of ĉ taken to be c1, the mean intensity
inside C, does a similar suppression but with a high signal loss compared to the
former. Furthermore, the mean does not converge as fast as the median does
and might result in relatively higher values for large fish cross sections. It must
be noted however, that the computation of the median is costly as compared to
that of the mean.

5.5 CUDA implementation for 3D reconstruc-
tion

Equation (5.5) can be solved by discretization and linearization in φ[26]. Dis-
cretization of equation (5.7) in I gives

In+1(x, y)− In(x, y)

∆t
=k ·max (0, ĉ− In(x, y))

=

{
0, if In(x, y) ≥ ĉ
k · (ĉ− In(x, y)), otherwise

, (5.8)

with k = 1
∆t , and tn+1 = tn + ∆t. The above time discretization yields

In+1(x, y) =

{
0, if In(x, y) ≥ ĉ
ĉ− In(x, y), if In(x, y) < ĉ

. (5.9)

Acoustic images captured by echo-sounders are generally taken as planar image
scans by moving the echo-sounder in one direction, thereby sweeping a volume.
Let us denote individual images as I(x, y, τ) for images taken after every δτ
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time interval. A volume is constructed by stacking these individual images in
sequence and applying geometric correction for distance δτ(v) between individ-
ual slices, where v is the instantaneous speed of the instrument (the current
data was captured with constant unidirectional instrument velocity). It must
also be noted that the individual acoustic images are obtained from a set of
acoustic intensity signals along beams by a polar transformation. The level set
equations for curve evolution in R2 extend uniformly to surface evolution in
R3. The second differential equation also holds true for noise suppression in a
volume. Therefore, it is possible to reconstruct 3D moving fishes with the level
set evolution of these equations combined.

Processing a huge dataset demands that a minimum of memory is consumed.
We propose to keep two volumes in the host memory, one for the intensity
values (I) and the other for the signed distance function (the implicit function,
φ). The CPU manages the memory scheduling by dividing the volumes into
small subvolumes that can be processed on the GPU. We keep two small 3D
textures of size 128×128×128, IGPU and φGPU . A complete level set update is
divided into a set of subvolume updates. Each subvolume in the two volumes is
fetched to the GPU via 3D textures (read only, but with good cache coherence).
Results of computations are written to CUDA memory and then transferred
back to the CPU volumes. A simplified diagram of this is shown in Figure 5.2.
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Figure 5.2: Streaming computation.

CUDA exposes a set of very fast 16 KB shared memory available to every multi-
processor in a GPU. However, a 16 KB memory chunk is shared only between
a thread block, and thus to make use of it the application must load different
data for different blocks. Furthermore, the 16 KB limit poses a restriction on
the amount of data that can be loaded at any point of time. Here, we use 3D
textures for reading the data. Since we do not want to write back to the same
texture (before a single step of filtering is complete), using the read-only 3D
textures available to CUDA is a natural choice. 3D texturing has hardware
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support for 3D cache which accelerates any texture reads in succession. To load
a 3D data (a small subset of the volume) from the global memory into the shared
memory could be a little tricky and might not result in the same performance as
provided by the specialized hardware for 3D texture cache. In our application,
data writes are made to the global memory. The latency in writing is hidden
in the data processing since we do not synchronize the threads until the end
of a subvolume processing. These can further be optimized by making use of
coalesced writes.

The solution of the PDE is computed in iterations over the full volumes. Fol-
lowing are the CUDA kernels that were used in the updates.

5.5.1 Signed distance transform

Signed distance transform is a global operation and cannot be implemented in
a straightforward manner. We compute a local approximation of the Euclidean
distance transform using the Chamfer distance. A narrow band distance trans-
form is computed layer by layer using, what we call a d-pass algorithm. Every
pass of the method adds a layer of distance values on the existing distance
transform. The distance values are local distance increments computed in a
3× 3× 3 neighborhood. Therefore, every single pass needs only local informa-
tion to compute the distance values except at the border of the sub-volume. We
therefore support every sub-volume with a one voxel cover from other adjoining
sub-volumes, thereby reducing the computational domain to a volume of size
126 × 126 × 126. The CPU scheduler takes care of the voxel cover. At the
beginning, the interface (zero level) is initialized to a used specified bounding
cuboid or a super-ellipsoid.

5.5.2 Average intensities

Computing average intensities (c1 and c2) is an operation that cannot be easily
computed in a parallel fashion, and a reduction like method is required for the
same. We employ a slightly different scheme to compute averages by using
three accumulator sub-volumes on the GPU. These accumulators are essentially
3D sub-volumes of the same dimensions as of the textures. Every voxel in the
accumulators accumulates (adds up), the values for H, I · H, and I · (1 − H)
for all the sub-volumes in the CPU volume(s). We then sum up the small sub-
volume on the CPU to get the final sum and compute c1 and c2 values from it.
Using a mixed mode CPU-GPU computation not only reduces the complexity
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of an inherently non-parallel operation, but also performs better by moving less
expansive parts of the computation to the CPU.

5.5.3 Median computation

Computing median on the GPU is not very straightforward since it is an order
statistic and requires that the data be sorted. Therefore the computation of
weighted median is very different than the one for average intensity value. Since
sorting values of order of millions in every iteration of the solver is not a compu-
tationally good solution, we resort to the alternative definition of the median.
A median is a value that divides the data-set into two sets of equal cardinalities.
This definition is generalized for a weighted median. Therefore, for a data-set
V with weights W associated with each value in the set, the median value Vk is
the value for which

k∑
i=0

Wi =

n∑
i=k+1

Wi.

This equation can only be solved iteratively, starting with a guess index value
k0. In our CUDA implementation, we start with Vk0 to be the mean value c1
and iteratively reach the weighted median. In every iteration, the increment 4i
for the index k0 is computed as

4i =



k∑
i=0

Wi −
n∑

i=k+1

Wi

k∑
i=0

Wi

, if
∑k
i=0Wi >

∑n
i=k+1Wi

n∑
i=k+1

Wi −
k∑
i=0

Wi

n∑
i=k+1

Wi

, if
∑n
i=k+1Wi >

∑k
i=0Wi

.

The increment 4i can be adaptively controlled to give results as precise as
desired.

5.5.4 Solver update

A PDE update in the level set method comprises of computing the curvature en-
ergy and the external energy. In order to compute the curvature term (involving
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double derivatives) for a voxel in a sub-volume by centered differencing, we need
information from a 5× 5× 5 neighborhood with the current voxel at its center.
Therefore, the sub-volume size needs a cover of two voxels on all sides, thus
reducing the computational domain further down to 124×124×124. The mem-
ory scheduler performs additional computations to effectively cover the whole
volume with the new setup. Once the energy terms are computed, the PDE
solver kernel updates φGPU and uses c1 to update IGPU . These sub-volumes
are then updated to the CPU main volume.

It is often convenient to perform anisotropic diffusion on the input image so
that the evolution of the level curve is smooth and φ is well behaved. Finally,
the zero level surface is extracted from the evolved φ using the Marching-cubes
method.

5.6 Experimental results

We present experimental results on sample acoustic 2D images to show that the
suppression scheme works well on such images. Figure 5.3 shows evolution of
the level set. The parameters for this evolution were chosen to be: µ = 0.0005,
ν = 0, λ1 = λ2 = 1, and ε = 2.5. It can be seen that the original image suffers
from speckle noise as seen in Figure 5.4 and that the final zero level contour
approximates the fish boundaries very well.

We next show results of application of the level set equation and the noise sup-
pression scheme on a small 3D volume of size 150×100×50. Fish intensities can
be identified in dark green against a noisy background. The level set equation
was initialized with the zero level set of φ0 as the bounding box of the volume.
The level set is then allowed to evolve with parameters, µ = 0.0005, ν = 0,
λ1 = λ2 = 1, and ε = 1.0. Figure 5.5 shows the evolution at different time steps
and the final level surface.

We test the CUDA solver on a larger volume of size 686 × 1234 × 100. This
volume uses about 470 MB of CPU memory along with the same amount of
memory consumed by the signed distance field. Figure 5.6 shows the extracted
fish trails. We test our implementation with the mobile GPU, GeForce 8600M
GT (Nvidia CUDA compute capability of 1.1) with 256 MB of memory on a
Mac OS X notebook with 2 GB of host memory. The total number of iterations
required until convergence were 29, with a compute time of about 52 seconds
per iteration (32 seconds without median computation). The signed distance
field was reconstructed in a narrow band of width 20 voxels in every iteration.
With the commodity graphics hardware, we expect to get better speedups. Fur-
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(a) Initial image

Iteration:4/100

(b) Zero level set and image after four
iterations

Iteration:10/100

(c) Zero level set and image after ten
iterations

Iteration:16/100

(d) End of evolution after 16 iterations

Figure 5.3: Level set evolution on sample image. ε = 2.5.

Figure 5.4: The final contour shown on the part of the original image.

thermore, a better GPU with more onboard memory should allow loading larger
subvolumes, thus reducing the overhead of multiple memory transfers.

In order to compare the 2D and 3D reconstructions, we show an overlay of 2D
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(a) Initial zero level surface, φ0 (b) Zero level surface after four iterations

(c) Zero level surface after six iterations (d) End of evolution after nine iterations

Figure 5.5: Level set evolution on sample volume. ε = 1.0.

Figure 5.6: Fishes extracted from a volume of size 686× 1234× 100.

curves over the extracted 3D surface. This is shown in Figure 5.7. The re-
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sults agree very well when the 2D image contains high intensity objects. The
acoustic images were taken by scanning fishes in an aquarium and the images
corresponding to the bottom of the aquarium (time slices with higher depth, 30
to 50 in Figure 5.7) contain almost no fishes. Therefore, these images contain
very little useful information. The 2D level set evolution fails to detect fishes in
these images. It is also worth mentioning that the suppression of noise is based
on weighted median and if the images do not contain high intensities, it is pos-
sible that the estimated threshold value does not accurately represent the noise
level. Therefore, the 3D results should be trusted since the 2D reconstruction
does not consider information present in other image planes. We would like to
comment that a ground truth segmentation is not practically possible for open
sea. Evaluation of the extracted fish trails/schools by domain experts is under
process because of marine surveys.

Figure 5.7: Comparison of zero level 2D curves with the zero level 3D surface.

While we claim that this method works on acoustic images with high variance in
intensity values resulting in a binary segmentation of the image, it is certainly
possible to perform a segmentation resulting in more than two segments [25].

5.7 Conclusions

In this paper, we presented augmentation of level set formulation based on the
Mumford-Shah functional to a noise suppression scheme, well suited for object
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reconstruction from acoustic images. Our method is based on computation of
a threshold by weighted median of intensity values. We prove that the method
converges with evolving level set and show that the experimental results comply
with that. We show a 3D reconstruction of objects from time series images which
is useful in tracking moving objects and to observe their kinetics. An optimized
GPU based implementation has been presented for streaming computation of
the large volumetric data.
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Abstract

Level set method based segmentation provides an efficient tool for topo-

logical and geometrical shape handling, but it is slow due to high com-

putational burden. In this work, we provide a framework for streaming
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computations on large volumetric images on the GPU. A streaming com-

putational model allows processing large amounts of data with small mem-

ory footprint. Efficient transfer of data to and from the graphics hardware

is performed via a memory manager. We show volumetric segmentation

using a higher order, multi-phase level set method with speedups of the

order of 5 times.

6.1 Introduction

Volume segmentation is a computationally demanding task. We address this
problem by employing a fast solution to the involved partial differential equa-
tions (PDEs) using the graphics processing unit (GPU). A recent trend in solving
computationally expensive problems is to redesign the solution of the problem
so that it can take advantage of the high arithmetic parallelization capability of
the GPUs. We propose a novel GPU based framework for level set segmentation
of large volumes.

A segmentation problem is to subdivide a three dimensional image I(x, y, z) :
Ω 7→ R, where Ω is a bounded open subset of R3, into non-overlapping partitions
Ωi(i = 1.. nc) such that

⋃
Ωi = Ω, where each partition is homogeneous in the

sense that it minimizes a certain quantity. Each region is said to produce a class
representing the partition.

Implicit surfaces naturally capture the topology of the underlying surface in
contrast to explicit or parametrized surfaces. Therefore level set based methods
are very useful in this context. Deformable level set surfaces under mean curva-
ture flow provide an intuitive means of segmentation. The pioneering work by
Osher and Sethian [101] presents an effective implicit representation for evolving
curves. Later on, the work was developed in context of the Mumford-Shah func-
tional by Chan and Vese [27] for 2D images that do not contain prominent edges.
In a more advanced paper, these authors suggest a multi-domain segmentation
[137] using the same level set framework. Other variants of the same method
exist for applications like image de-noising based on total variation minimiza-
tion [111]. Conventional level set methods solve the interface evolution equation
with linear interpolation of the implicit function and its derivatives (at sampled
grid points). The resulting level set surface is C0. Bajaj et al. [10, 13] present
a cubic spline based level set method that produces a C2 level set surface.

Due to the high computational intensity of the level set method and inherent
parallelism in the solution of the involved PDEs, a parallel compute environment
is best suited. Schemes for fast evaluation of PDEs are suggested by Weickert
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et al. [143]. Multigrid methods are also suitable for a fast solution of differential
equations. An active contour model using multigrid methods is suggested by
Papandreou and Maragos [104]. Of particular interest is a solution to the level
set equations for segmenting large volumes. GPU based implementations have
been proposed in [133, 80], among which Lefohn et al. [80] demonstrate an
efficient sparse GPU segmentation using level set methods.

In this work, we propose a streaming solver framework suited for large volume
segmentation. With 3D textures available to the commodity graphics hardware,
we show that a 2D slicing is no longer required for a solution. This is also in
contrast to [80], where the authors use a compact representation of the active
volume packed into 2D textures. We solve the governing partial differential
equations (PDEs) for a general case of any number of segmentation classes.
The number of classes is determined as the level set evolves, creating new classes
while merging some of the existing ones. Every single class then gives rise to
a partition of the volume. The result of the streaming solver is demonstrated
with multi-domain segmentation along with speedup benchmarks for tri-linear
and tri-cubic level set computations.

6.2 Level set segmentation

The main idea behind a level set based segmentation method is to minimize an
energy term over an open domain by numerically solving the corresponding time
varying form of the variational equation. Let us represent a volume by a scalar
field I(x, y, z) : Ω 7→ K, where Ω is a bounded open subset of R3, and K ⊂ R is
a bounded set of discrete intensity values sampled over a regular grid. In this
setup, motion by mean curvature provides a deformable level set formulation
where the surface of interest moves in the direction of the normal at any point
with velocity proportional to the curvature [101].

The deformable surface is represented by a level set of an implicit function
φ(x, y, z) : Ω 7→ R. In level set methods, φ is generally chosen to be a signed
distance function since it allows mean curvature flow with unit speed normal to
the level set interface [101, chap. 6]. Toward a segmentation approach, various
energy formulations are possible. The energy functional is further penalized by
a regularizing term that introduces smoothness in the resulting surface. The
Mumford-Shah energy functional has a distinct advantage of producing better
segmentation regions in absence of sharp edges as compared to an edge based
energy functional. Consider an evolving interface Γ = {(x, y, z) : φ(x, y, z) = 0}
in Ω, denoting Γ+ = {(x, y, z) : φ > 0} as the interior of the volume bounded
by Γ and Γ− = {(x, y, z) : φ < 0} as the exterior of the volume bounded by Γ.
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A modified Mumford-Shah energy can be written as:

F (c1, c2,Γ) = µ ·Area(Γ) + ν · V olume(Γ+))

+λ1

∫
Γ+

|I − c1|2 dx dy dz

+λ2

∫
Γ−
|I − c2|2 dx dy dz, (6.1)

where µ ∈ R≥0, µ ∈ R≥0, λ1 ∈ R>0, and λ2 ∈ R>0 are fixed control parameters.
In order to derive a variational form of (6.1), the energy F is regularized and
minimized. Minimization by application of the Green’s theorem and variational
calculus yields the following time varying form of (6.1) [27]:

∂φ

∂t
= δε(φ)

[
µ∇ ·

( ∇φ
|∇φ|

)
− ν − λ1(I0 − c1)2 + λ2(I0 − c2)2

]
, (6.2)

where, δε(φ) is a regularized Delta-Dirac function [27], c1 and c2 are averages
in Γ+ and Γ− respectively. The level set PDE (6.2) represents the mean cur-
vature flow with a Mumford-Shah like image energy. Bajaj et al. [10] propose
to solve the higher order regularizing term in (6.2) by cubic spline interpola-
tion to compute accurate higher order derivatives of φ, thus avoiding numerical
differentiation, which is very unstable.

6.3 Multi-phase, higher-order level set method

Equation (6.2) defines two decompositions of Ω with respect to the zero level
set surface of φ, i.e., φ > 0 and φ < 0 . Often in segmentation, we need more
than two partitions of the input signal. Vese and Chan [137] show that multiple
level set evolutions can be used to keep track of multiple regions in the signal.
In a Multi-domain setup a single implicit function φ is replaced by a vector
valued Φ = {φ0, φ1, . . . , φm−1} function where m is the total number of implicit
functions that are combined to give a maximum of n = 2m partitions of Ω.
Equation (6.2) is replaced by a system of m PDEs. We compactly write this
system as:

∂φi
∂t

= δε(φi)

[
µ∇ ·

( ∇φi
|∇φi|

)
− ν −

2m−1−1∑
k=0

{(
(I − c1i,k)2

− (I − c0i,k)2
)m−1, p 6=i∏

p=0

(
bq,p + (−1)bq,pHε(φp)

)}]
, (6.3)
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for i ∈ [0,m− 1], where Hε(z) = 1
2

(
1 + 2

π tan−1
(
z
ε

))
is a smooth version of the

Heaviside function and

c0i,k = mean(I) in (x, y, z) :

{
φp > 0, if bq,p = 1,
φp < 0, if bq,p = 0

with q = 2k − k mod 2i,∀p ∈ [0,m− 1], and (6.4)

c1i,k = mean(I) in (x, y, z) :

{
φp > 0, if bq,p = 1,
φp < 0, if bq,p = 0

with q = 2k + 2i − k mod 2i,∀p ∈ [0,m− 1]. (6.5)

Here, bq,p = pth bit (∈ {0, 1}) in the binary representation of q (either from
(6.4) or (6.5)).

Consider q ∈ Z+ such that its ith bit is 1 for Γ+
i , 0 for Γ−i , and 0 if i > (m− 1).

In this way, q spans the n possible regions induced by Φ. In (6.3), c1i,k (or c0i,k)

represents the average of intensity values of I in Γ+
i (or Γ−i ) where the other bits

determine regions inside or outside for rest of the implicit surfaces. To generate
an index for a region, we enumerate the possible 2m−1 values and insert a 1 or
a 0 at the ith bit. Alternative expressions for q in (6.4) and (6.5) are

q = (k − (k ∧ (2i − 1)))<<1 + k ∧ (2i − 1), and (6.6)

q = (k − (k ∧ (2i − 1)))<<1 + 2i + k ∧ (2i − 1) (6.7)

respectively, where << is the usual right-bitshift operator and ∧ is the logical
And operator. We find that the binary indexing for keeping track of various
regions of Φ is not only compact in the data structure sense (not in the topo-
logical sense), but also efficient for implementation on a constrained compute
environment like the GPU.

6.4 Streaming solver architecture

In this section the streaming architecture of our GPU level set solver is pre-
sented. The solver operates on three-dimensional volumes and therefore, makes
extensive use of 3D textures available to current GPUs. The complexity of the
solver is increased by the fact that m simultaneous PDEs need to be solved to
arrive at a solution to (6.3). The solver is based on the Nvidia CUDA compute
framework [97]. The solver has a very small memory footprint on the GPU
compared to the actual volume that it can handle. On the CPU side, memory
requirement is of the order of the number of implicit functions. Our GPU com-
putational setup consists of a host memory manager to handle data streaming
and a set of CUDA kernels to operate on parts of the data fetched to the device
by the host.
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6.4.1 Compute Unified Device Architecture (CUDA)

Volume processing is a computationally intensive task since every voxel needs
to be updated. Further, solving a differential equation on a regular grid by
a numerical update method demands for even higher computational resources
both in terms of clock cycles and memory. Today’s graphics processing units
(GPU) outperform any CPU in terms of raw computing power by factors of
10 and more. Nvidia provides a general purpose GPU computing framework
known as the Compute Unified Device Architecture (CUDA) [97].

A GPU (also called a device) is a set of Streaming Multiprocessors (SMs) em-
ploying a new SIMT (Single-Instruction Multiple-Threads) multi-processor com-
putational architecture. Each SM consists of eight Scalar Processor (SP) cores.
In the CUDA framework, the threads are logically grouped into blocks and
blocks are arranged in a grid. A device, acting as a coprocessor to the CPU
(also called a host), is capable of running tens of thousands of threads at once
(512 threads per block, with a maximum of 65535 blocks). Every SP has its
own registers while every SM has access to small (16 KB) but high speed shared
memory. The whole device has access to device memory, constant memory, and
texture memory. The constant and texture memory are cached while the device
memory is not. In fact, the shared memory can be viewed as a user managed
cache.

The CUDA programming model exposes three basic concepts: a hierarchy of
thread groups, shared memories, and barrier synchronization. C for CUDA is
an extension to C with a minimal set of additions. A CUDA computation on
the device takes place in the form of functions called kernels executed by every
thread.

6.4.2 Memory manager

The solver is designed keeping in mind large volumes of data and therefore we
stick to the streaming paradigm for processing. Central to our GPU computa-
tional setup is a memory manager that handles data streaming between the host
and the device. Figure 6.1 shows a schematic diagram of the memory manager,
which is responsible for the following:

• maintaining a memory hierarchy, and

• managing memory transfers between the host and the device.
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Figure 6.1: The memory manager.

Memory hierarchy

The data on the device is handled in manageable chunks of a 3D sub-volume
called a computational-volume. The memory manager splits the entire volume
into the minimum possible number of sub-volumes of size of the computational-
volume. The size of such a computational-volume is chosen such that:

• computations are performed by one thread per voxel.

• the computational-volume fits into the device memory.

The computational-volume is further divided into the CUDA grid and block for
thread invocation. CUDA allows for a 3D block of threads, but not a 3D grid
of blocks. The memory manager builds a logical 3D grid that is mapped to a
1D grid of blocks, assigning each voxel with a thread to process it. For a 128×
128×128 computational-volume, a typical grid size could be 16×16×16 blocks
with each block consisting 8× 8× 8 threads. Note that the number of threads
in a block cannot exceed 512 with the version 2.0 of CUDA. The hierarchy of
thread blocks, grid and the computational-volume is shown in Figure 6.2.
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Computational volume! Grid! Thread block!

Full volume!
Threads in a  block!

Figure 6.2: Volume hierarchy.

Memory transfers

For operations that involve accessing voxel neighbors (e.g., finite differencing or
convolution filtering), the memory manager appropriately pads the computatio-
nal-volume to enable the required number of shared voxels around the border
of the computational-volume. This effectively reduces the size of the volume
to incorporate neighbors along the border of the volume. Further, the full
volume might not be an exact multiple of the computational-volume, therefore
the memory manager pads the computational-volume on the boundary with null
values for regions falling outside the main volume.

Memory copies between device and host are performed in size of the compu-
tational-volume. Special care is taken while copying data along the border of
the full volume. The memory manager also dynamically allocates and frees
the device memory if required by a kernel. Computational-volumes transferred
to the device exist as 3D textures. Individual kernels then operate on these
sub-volumes and the results are stored on the device’s global memory, and are
subsequently transferred back to the host volume(s).
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6.4.3 Solver kernels

For solving the level set equation, the solver performs a series of operations. In
the order of execution, these are:

1. Interface initialization,

2. Signed distance field computation,

3. Average values computation

4. Cubic coefficients computation, and

5. PDE time stepping.

To achieve maximum performance, we use hybrid CPU-GPU computations.
Kernel specific details of the solver are explained next for the above mentioned
operations. The majority of these steps can be executed in a streaming fashion
with an exception of average value computation.

Interface initialization

The level set interface Γ is initialized to a bounding box or to a super-ellipsoid
with center (cx, cy, cz) and radii (rx, ry, rz) of implicit equation(

x− cx
rx

)n
+

(
y − cy
ry

)n
+

(
z − cz
rz

)n
= 1,

for a two domain segmentation. Multi-domain initialization should ensure that
all the possible classes occupy non-zero regions in space at the start so that all
the domains have scope of evolution. The domain Ω is decomposed into smaller
sub-domains and each sub-domain is assigned small super-ellipsoids (with ran-
domized centers) that form the interface Γ for each implicit function. Vese and
Chan [137] observe a better and faster convergence in a 2D case for such an
initialization. Our tests confirm this observation for the 3D case. Volumes for
which specific geometry of the interested features to segment is known apriori,
a different initialization can lead to better results with faster convergence.

The kernel module for interface initialization computes the implicit function Φ
such that:

φi(x, y, z) =

{
k, if (x, y, z) ∈ Γ+

−k, otherwise,

where i ∈ [0,m− 1], and k ∈ R+ is a constant.
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Signed distance field

The solver adopts a narrow band approach to constructing a signed distance field
on the device using a d-pass approach to compute the distance field in d layers
where 2d is the integer width of the narrow band. This is a streaming algorithm
to create a Chamfer distance field [21] that uses optimal values of coefficients for
distance multipliers to minimize accuracy error compared to an actual distance
field (see Algorithm 6.1) [115]. The algorithm identifies the voxels belonging
to the zero level set of φ and incrementally adds distance layers in Γ+ (+ve
distance layer) and in Γ− (-ve distance layer). The order in which the 6 face-
neighbors (N6), 12 edge-neighbors (N12) and 8 vertex-neighbors (N8) are used
to compute the minimum distance is important in building up the distance map.
The algorithm has complexity O(dN), where N is the total number of voxels in
the volume.

Input: φ̃(x, y, z), d
Output: φ(x, y, z)
for i← 1 to d do

for x, y, z ∈ Ω do

if |φ̃(x, y, z)| ≤ i− 1 + ε then continue
if φ̃(x, y, z) > 0.0 then /* Build +ve distances */

α6 ← min {N6(φ̃(x, y, z))} /* Six face neighbors */

if α6 < i then φ(x, y, z)← i; continue
α12 ← min {N12(φ̃(x, y, z))} /* 12 edge neighbors */

if α12 < i then φ(x, y, z)← (i+
√

2− 1); continue
α8 ← min {N8(φ̃(x, y, z))} /* Eight vertex neighbors */

if α8 < i then φ(x, y, z)← (i+
√

3− 1); continue
else /* Build -ve distances */

α6 ← max {N6(φ̃(x, y, z))}
if α6 > −i then φ(x, y, z)← −i; continue
α12 ← max {N12(φ̃(x, y, z))}
if α12 > −i then φ(x, y, z)← −(i+

√
2− 1); continue

α8 ← max {N8(φ̃(x, y, z))}
if α8 > −i then φ(x, y, z)← −(i+

√
3− 1); continue

end

φ(x, y, z)← φ̃(x, y, z) /* Retain old values outside narrow

band */

end

end
Algorithm 6.1: Computation of signed distance field.

Every voxel is updated based on the values of the neighbors. The resulting
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layer has distance values that are locally Euclidean [74]. The kernel to compute
a signed distance layer operates on the computational-volume that has a shared
1-voxel border.

Average values

In a two-domain segmentation, the zero level set of φ divides Ω into two regions.
Average values c1 and c2 can be easily computed over these regions.

Multi-domain segmentation creates more than two regions corresponding to ev-
ery class of segmentation. We use binary indexing (as explained in section 6.3)
to keep track of inside and outside in every implicit function. Thus, for any
q ∈ [0, n − 1] indexing a region, we can compute the average value of image
intensities.

The computation of average values is a serial operation and requires parsing all
the values in the dataset. Reduction algorithms do exist for a parallel compu-
tation of sum like operations [18]. A CUDA implementation of the same exists
as the CUDPP library by Harris and Sengupta [60]. With CUDPP, however,
it is difficult to sum up datasets that cannot fit into the device memory, thus
requiring some sort of data slicing. In our experience, the overhead of data
slicing, setting up the prefix sum and computing average values turns out to
be more expensive than a CPU computation of the averages. Therefore, the
average values are computed on the host.

Cubic coefficients

Higher order level set requires a spline representation of the implicit function
Φ. The cubic coefficients are computed for a set of data values sampled along
any direction. Tri-cubic spline coefficients can be derived from these coefficients
by computing the cubic coefficients along each direction sequentially. The co-
efficients are derived along an axis in planar sections orthogonal to one of the
co-ordinate axes (see Figure 6.3). The computation takes place in three steps,
sequentially along each coordinate direction.

The memory manager determines the largest possible sub-volume, the GPU
slice, that can fit into the available device memory. The full volume is then
processed in sizes of the GPU slice. For every plane in the GPU slice, cubic
coefficients are computed along the segments parallel to one of the coordinate
axes. The resulting coefficients are written to device array of same size as
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Figure 6.3: Cubic coefficient computation.

the GPU slice and copied back to the host array holding the coefficients. The
CUDA kernel for computing coefficients works on a linear section per thread.
The intermediate sequences are not stored, but recomputed during the recursive
process to evaluate ci in order to reduce the memory footprint of the kernel.

PDE time stepping

The two-phase scalar equation is solved by discretizing the terms of (6.2) using
finite differencing. Equation (6.3) is solved by discretizing the lower order term
and by computing the spline derivatives for the higher order curvature term.
Each PDE has a single higher order term, and 2m−1 terms involving average
values. Binary indexing is used again to enumerate the lower order terms in
every PDE.

Since all the PDEs must be updated simultaneously (i.e., every voxel in all im-
plicit functions must be updated in parallel), cubic coefficients for all the implicit
functions in the device memory are required at all times. This requires that m
(that could be arbitrary) arrays for cubic coefficients are stored as 3D texture
blocks in the device memory. However, CUDA does not allow dynamically cre-
ating texture references. Furthermore, a 4D texture (array of 3D textures) is
also not possible in CUDA. Therefore, we simulate a 4D texture by a large 3D
texture containing computational-volume sized arrays to hold cubic coefficients
for all implicit functions.

There is a possibility of wasting some device memory here for a very large
number of implicit functions, since for some m (>16) it might not be possible to
have a rectangular 3D array. This is because the largest 3D texture in CUDA
can be of size 211 × 211 × 211, and we hit this limit along one dimension for a
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computational-volume of size 128× 128× 128 and m > 16. In such a case, the
unusable device memory locked in the texture can be minimized by computing
optimal values of three positive factors mx,my,mz ∈ Z+ for m̂ ≥ m ∈ Z+ such
that (m̂−m) is minimized and m̂ = mx ×my ×mz. The three factors are the
number of computational-volumes along the coordinate axes. In doing so, mx

is made as large as possible, followed by a similar heuristic for my.

With sub-volumes of Φ, I and the coefficients cached on the GPU, the PDE is
updated for every voxel and for all the implicit functions.

6.5 Results

We present results of multi-domain segmentation on different volumetric images,
followed by GPU performance statistics. The tests are produced on an Nvidia
Tesla C870 device and a Dual-Core AMD OpteronTM processor 1210. The GPU
has 16 multiprocessors (128 processor cores) running at a clock speed of 1.35
GHz and an onboard memory of 1.6 GB. The CPU runs at a clock speed of 1.8
GHz, and has a physical memory of 2 GB.

(a) Volume rendering showing various fea-
tures inside the CT scan

(b) Multiphase initialization with spheres for
three implicit functions

Figure 6.4: The human thoracic cage.
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(a) Lungs, trachea, and
bronchi

(b) Bronchial tree and muscles in
front of the rib cage

(c) Ribs and sternum

(d) Heart showing the atrium,
the ventricles and the Vena
cava

(e) Composite view of the seg-
mented surfaces showing the
back bone. A clear separation
between the muscles and the
ribs can be seen

(f) Composite view of the seg-
mented surfaces showing the
heart and the blood vessels
around it

Figure 6.5: Multi-domain segmentation of the human thoracic cage. Conver-
gence was declared in 1000 iterations running at 436.8 seconds/iteration and
yielding an overall speedup of 5.82 times.

Figure 6.4(a) shows a volume rendering of a Computed Tomography (CT) scan
of the human thoracic cage. The Volume has a size of 512 × 512 × 368 voxels.
Segmentation parameters for this volume are: λ1 = λ2 = 1, µ = .000005 ×
255 × 255, ε = 1, and m = 3. The interfaces for three implicit functions
are initialized to a number of spheres (with randomized centers) arranged in a
grid (see Figure 6.4(b)). The serial (CPU based implementation) runtime for
the segmentation is 2542.0 seconds per iteration, while the parallel (GPU based
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implementation) runtime reduces to 436.8 seconds per iteration. A total of 1000
iterations with a time step of 0.005 were carried out. Speedups for individual
kernels are shown in Figure 6.14. An overall speedup of 5.82 times is achieved
for this dataset (indicated with red dotted marker line in Figure 6.14)

The multiphase segmentation results in three prominent regions. The first region
consists of the lungs as shown in Figure 6.5(a). The second region consists of
the bronchial tree and the muscles in front of the lungs (see Figure 6.5(b)). The
last region segments out the bones and the heart. The ribs and the sternum
are shown in Figure 6.5(c). The heart segmentation in 6.5(d) clearly shows the
atrium, the ventricles, the Vena cova and the blood vessels around he heart. The
two distinct features, bones and the heart, are segmented in a single region due
to similarity in the intensity of the corresponding voxels in the CT volume. A
composite of all the segmented volumes in Figure 6.5(e) shows that the regions
are mutually exclusive with no overlap. The backbone can also be clearly seen
in the figure. Another composite view of the three regions in Figure 6.5(f) shows
the heart, blood vessels, muscles, and the ribs.

(a) Volume rendering showing the capsid
and the dsRNA

(b) Multiphase initialization for three
implicit functions (cut through sec-
tion)

Figure 6.6: Penicillium Stoloniferum virus (PSV).

The next example we consider is segmentation of the Penicillium Stoloniferum
virus (PSV), a virus that infects the fungus that makes Penicillin. Figure 6.6(a)
shows a volume rendering of the PSV. The dataset shown here is a cryo-electron
microscopy (cryoEM) image at 7.35Å resolution. The volume size is 381×381×
381 voxels. Interface initialization for the virus for three implicit functions
consisted of a sphere for the double stranded RNA (dsRNA), a spherical shell
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for the capsid and another spherical shell for the outer matter respectively (see
Figure 6.6(b)). The level set parameters are kept the same as before. The
serial runtime for the segmentation is 1673.9 seconds per iteration, while the
parallel runtime reduces to 267.4 seconds per iteration. A total of 300 iterations
with a time step of 0.005 were carried out. Speedups for individual kernels are
shown in Figure 6.14. An overall speedup of 6.26 times is achieved for this
dataset (indicated with red dotted marker line in Figure 6.14). The reason for
faster convergence in this case is attributed to the modified initialization of the
interfaces suited to the features present in the PSV volume data.

(a) The symmetrical virus
capsid showing arches on the
surface

(b) Virus dsRNA (c) Composite view of the
capsid and the dsRNA indi-
cating their relative sizes

(d) Cut view showing separa-
tion between of the two sur-
faces

(e) Volume slice (f) Volume slice with seg-
mented surfaces

Figure 6.7: Penicillium Stoloniferum virus (PSV) segmentation. Convergence
was declared in 300 iterations running at 267.4 seconds/iteration and yielding
an overall speedup of 6.26 times.

The segmentation results in the symmetrical capsid (see Figure 6.7(a)) showing
a local 2-fold symmetry forming prominent surface arches. The dsRNA of the
virus also has a prominent symmetrical structure with projections on the sur-
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face (see Figure 6.7(b)). The implicit function corresponding to the outer region
segments the remaining volume of the virus (not shown here), which is comple-
mentary to the union of the two other segmented regions. Figure 6.7(c) shows
a composite view of the capsid and the dsRNA indicating the relative sizes of
the two segments. Shown in Figure 6.7(d) is a cut through section of the two
surfaces showing a clear separation between the two. Figure 6.7(e) shows a slice
of the volume highlighting the density variations inside the scanned volume.
Figure 6.7(f) overlays the extracted surfaces on top of the volume slice to show
details of the dsRNA and the capsid.

6.5.1 Reconstruction accuracy

We analyze the reconstruction accuracy with a synthetic example of a phantom
volume of size 128×128×128 consisting of a CSG (Constructive Solid geometry)
object formed by the union of a cuboid and a sphere as shown in Figure 6.8.
Additive Gaussian noise of specific standard deviations are added to the clean
volume (see Figures 6.9(a), 6.10(b), 6.11(a), and 6.12(a)). The reconstructed
objects are shown in Figures 6.9-6.12 along with the distribution of the Hausdorff
distance on the model surface. The vertical bar alongside the distribution shows
the range of the distance values (absolute) and their histogram. We measure
the reconstruction error by means of the symmetrical Hausdorff distance which
is a good measure of the distance between two meshes (see Aspert et al. [6]).

Figure 6.8: The CSG Phantom object consisting of a sphere and a cuboid.

Symmetrical Hausdorff distance, dH , between two surfaces M0 and M1 is given
by

dH(M0,M1) = max

{
sup
x0∈M0

inf
x1∈M1

d(x0, x1), sup
x1∈M1

inf
x0∈M0

d(x0, x1)

}
, (6.8)

where d(·, ·) is an appropriate metric for measuring distance between two points
in a metric space. dH(M0,M1) measures the maximum possible distance that
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(a) A cross section of
the volume

(b) Reconstruction surface (c) Distribution of the Haus-
dorff distance on the phan-
tom surface

Figure 6.9: Reconstruction from phantom image.

(a) A cross section of
the volume

(b) Reconstruction surface (c) Distribution of the Haus-
dorff distance on the phan-
tom surface

Figure 6.10: Reconstruction from phantom image with added Gaussian noise
of σ = 0.01.

will be required to travel from surface M0 to M1. We compute this metric
and use it to quantify the error in reconstruction of a surface from noisy vol-
ume. Table. 6.1 shows maximum, mean and RMS dH for increasing noise (zero
mean) in the volumes with standard deviations of 0.00, 0.01, 0.05, and 0.10
voxel units respectively. In the table, BBox% refers to the relative Hausdorff
distance measured as the percentage of the model bounding box diagonal. From
the results, the accuracy of reconstruction (considering mean and RMS dH) de-
creases with increasing noise, nevertheless it always remains below a relative
dH of 0.2% of the bounding box diagonal of the object. The results presented
here are produced without any filtering on the synthetic volumes. For very high
noise content in the images, a preprocessing stage such as median filtering or
anisotropic filtering is generally recommended that smears out the noise.
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(a) A cross section of
the volume

(b) Reconstruction surface (c) Distribution of the Haus-
dorff distance on the phan-
tom surface

Figure 6.11: Reconstruction from phantom image with added Gaussian noise
of σ = 0.05.

(a) A cross section of
the volume

(b) Reconstruction surface (c) Distribution of the Haus-
dorff distance on the phantom
surface

Figure 6.12: Reconstruction from phantom image with added Gaussian noise
of σ = 0.10.

6.5.2 Speedup

The speedup of a parallel program is defined as the ratio of the time taken to
solve a problem on a single processing element to the time required to solve the
same problem on a parallel computer with p processors [55]. Denoting by Ts
the serial runtime and by Tp the parallel runtime, the speedup S is given by

S =
Ts
Tp
. (6.9)

For a given problem if there exist parts of the algorithm that cannot be paral-
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Table 6.1: Reconstruction error in noisy volumes.

dH Noise (µ = 0) standard deviation σ
0.00 0.01 0.05 0.10

Max Absolute 0.9392 1.0117 1.3946 1.6909
(BBox %) (0.565 %) (0.608 %) (0.836 %) (1.001 %)

Mean Absolute 0.0509 0.0457 0.1814 0.2605
(BBox %) (0.031 %) (0.027 %) (0.109 %) (0.154 %)

RMS Absolute 0.0786 0.0804 0.2100 0.3041
(BBox %) (0.047 %) (0.048 %) (0.126 %) (0.180 %)

lelized, then these must also be considered in Tp. Thus, for a given problem if
α is the fraction of algorithm that cannot be parallelized, then the speedup can
be written as

S =
Ts

αTs + (1− α)Ts/p
=

p

1 + α(p− 1)
. (6.10)

This expression of S results from the so called Gustafson’s law [57]. As α be-
comes smaller, S becomes close to p. In case of GPU computing, an expression
for S becomes more complicated and many other factors come into play. Global
memory access is rather slow in the whole GPU computation pipeline and intro-
duces delays in the application. Thread synchronization also adds to the delay
by idling the threads. At an application level, the memory manager is sub-
jected to the overheads of blocking the full volume into sub volumes and of data
transfers to and from the device. This overhead can be reduced by choosing a
larger blocking size provided the device has more onboard memory. In order to
evaluate the performance of our solver, we calculate speedups of the individual
kernels and the whole application.

We use datasets of different sizes to quantify speedups with our CUDA based
streaming solver. A total of five datasets were used to benchmark both the
tri-linear and the tri-cubic level set segmentation. The runtimes are averaged
over ten iterations of each run. the dataset sizes are indicated in Figures 6.13
and 6.14. In increasing order of size of the volumes in voxels, the datasets that
we used for the benchmark tests are the brain CT image of size 512× 512× 28,
cryo-EM image of the PSV at 7.3Å resolution and size 381×381×381, cryo-EM
image of the Reovirus at 6.6Å resolution and size 403× 403× 403, CT scan of
the human thoracic region of size 512 × 512 × 368, and electron tomography
image of the Simian Immunodeficiency Virus (SIV) of size 830 × 950 × 200.
Due to the streaming nature of the solver, the computational resolution of the
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CUDA kernels is limited to the size of the computational volume. Therefore,
marginally more computations are performed by the GPU solver compared to a
CPU implementation. For example, for a computational volume of size 1283 and
the PSV volume of size 381× 381× 381, the number of blocks of computational
volumes processed in every solver iteration is 64(= 4 × 4 × 4). It must be
noticed that the computational volume also includes a 1-voxel border used for
padding. For a slightly larger volume of size 403 × 403 × 403 of the Reovirus
data, the number of computational volumes processed by the solver are also 64,
thus resulting in a similar runtime as with the PSV data. However, the CPU
runtimes are different for these two.
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Figure 6.13: GPU speedup for tri-linear segmentation. Specific volume sizes
used for the benchmark are indicated at the top (marked in red are the human
thoracic case and the PSV datasets).

Interface initialization CUDA kernel has low arithmetic intensity, therefore very
high speedups from 35 times to 92 times are achieved for different sized volumes.
Signed distance computation on the GPU yields speedups in the range 3-12
times. On the other hand, PDE updates are expensive in terms of arithmetic
operations, thus giving an average speedup of about 3.7 times with tri-linear
update and that of 10 times with tri-cubic update. It should be noted that the
tri-cubic PDE update is faster than the tri-linear one since the later uses finite
differencing to compute higher order derivatives, while the earlier uses texture
lookups and fewer computations. Cubic coefficients are expensive to compute,
thus yielding an average speedup of about 1.5 times. We must note here that
none of the kernels hit the memory limit on the device, which is attributed to
the streaming nature of the solver and an appropriately chosen subvolume size.
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multi-phase segmentation
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Figure 6.14: GPU speedup for tri-cubic segmentation. Specific volume sizes
used for the benchmark are indicated at the top (marked in red are the human
thoracic case and the PSV datasets).

Performance speedup graphs of GPU computations compared to CPU ones are
shown in Figures 6.13 and 6.14. Speedup curves for interface initialization,
which have very high values, are not shown for sake of clarity of other curves.
The shown speedup curves show a single peak for varying volume size. GPU
performance is a complicated phenomenon and various factors contribute to the
final speedup. With an increase in the problem size, the increase in speedup
increases until a point, thus reaching a limit of the speedup. Various factors
such as excessive memory paging, and increased block transfer overhead come
into play and decrease the rate of change of speedup. For a larger problem,
the overhead of memory transfer increases with the cube of the increase in size.
Since the device computation reads the volume in small chunks of memory,
this access pattern hits the performance even more by increasing the number of
page faults. Nevertheless, the overall speedup, computed using (6.10), is always
greater than three. Average overall performance for the tri-linear case is 5.8
times and for the tri-cubic case is 5.1 times.
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6.6 Conclusions

In this work we presented a framework for streaming computations on the
GPU. The framework is employed for efficient computation of the multi-domain,
and higher order level set method applied to the Mumford-Shah energy func-
tional. The presented framework is generic and can be easily used with other
energy functional as well. We show results of the segmentation on two dif-
ferent imaging modalities along with performance speedups obtained with the
solver. The overall performance gain obtained is about 6 times for the two-
domain segmentation and about 5 times for the multi-domain segmentation.
The solver has been implemented in the freely available UT-CVC image pro-
cessing and visualization software called VolRover [135] that can be downloaded
at http://cvcweb.ices.utexas.edu/cvc/projects/project.php?proID=9.
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Abstract

This work introduces a new algorithm for surface reconstruction in R3

from spatially arranged one-dimensional cross sections embedded in R3.

This is generally the case with acoustic signals that pierce an object non-

destructively. Continuous deformations (homotopies) that smoothly re-

construct information between any pair of successive cross sections are

derived. The zero level set of the resulting homotopy field generates the

desired surface. Four types of homotopies are suggested that are well

suited to generate a smooth surface. We also provide derivation of nec-

essary higher order homotopies that can generate a C2 surface. An al-

gorithm to generate surface from acoustic sonar signals is presented with
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results. Reconstruction accuracies of the homotopies are compared by

means of simulations performed on basic geometric primitives.

7.1 Introduction

Surface reconstruction is a frequently encountered problem in computer graphics
and computer vision. The reconstruction problem that we address in this paper
is the one of generating a topologically and geometrically convincing surface
from a set of acoustic signals acquired using multi-beam echo-sounders.

The problem of object reconstruction from cross sections is quite old and has
been addressed in different forms. A lot of work has been done in 3D object
reconstruction from planar cross sections (see, for example, [70, 47, 19, 12]).
The cross sections considered in these are generally contours of the objects that
could be parallel or non-parallel as discussed by Boissonnat and Memari [20],
and later by Liu et al. [83]. Hoppe et al. [61] discuss the problem of object
reconstruction from a point cloud which is also of widespread interest. This
problem has been analyzed from different perspectives. For example, Carr et
al. [22] use radial basis functions for reconstruction. Amenta and Bern [4] use
Voronoi filtering to generate surface from point clouds.

In the context of reconstruction from acoustic signals, most of the work fo-
cusses on reconstruction from cross section images (see, for example, the work
by Zhang et al. [146]). In fact, acoustic images are obtained by interpolating in-
tensities from planar acoustic beams arranged in a fan. A better algorithm can
be designed to reconstruct the underlying object from original signals without
relying on a simple interpolation based estimate.

Homotopy continuation is a powerful mathematical tool for robustly solving a
complex system of equations (see Allgower and Georg [3]). Continuation based
method suggested for surface reconstruction from planar contours by Shina-
gawa and Kunii [124] uses a straight line homotopy to generate smooth sur-
face. Their method generates a minimal surface by finding optimal path in the
toroidal graph representation. Berzin and Hagiwara [17] analyze minimal area
criterion in surface reconstruction using homotopy and show that such criteria
lead to defective surfaces. An isotopy based reconstruction scheme is proposed
by Fujimura and Kuo [48], in which bifurcations are handled separately. In this
paper we present a different reconstruction algorithm that utilizes continuous
deformations of functions for tracing the reconstruction boundary. We develop
homotopies other than linear homotopies that can generate smooth surface. The
homotopies developed here are built to take advantage of the spatial arrange-
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ment of the signals.

This paper is organized as follows. In section 7.2 we review the basic homotopy
theory. Section 7.3 presents a brief overview of the acoustic signals from which
a reconstruction is desired. Section 7.4 outlines our approach to reconstruc-
tion using homotopy deformation. We develop various homotopies suited to
reconstruction. Section 7.5 is devoted to the reconstruction algorithm utilizing
the concepts developed so far. In sections 7.6 and 7.7 we present the results
and time complexity of the presented algorithm, respectively. We conclude the
discussion in section 7.8.

7.2 Homotopy continuation

The central idea of the reconstruction algorithm presented here is homotopy
(see Armstrong [5]) or continuous deformation. Two continuous functions f0(x)
and f1(x), x ∈ RN , are called homotopic if one can be continuously deformed
into the other. Such a deformation is called a homotopy H(x, λ) (in parameter
λ ∈ R) between the two functions.

In other words, a family of continuous mappings

hλ : X 7→ Y, λ ∈ [0, 1] (7.1)

is called a homotopy if the function

H : X × [0, 1] 7→ Y (7.2)

defined by

H(x, λ) = hλ(x),x ∈ X,λ ∈ [0, 1] (7.3)

is continuous. The maps h0 and h1 are called the initial map and the terminal
map of the homotopy hλ. A typical choice is a linear homotopy such as

H(x, λ) = (1− λ)f0(x) + λf1(x). (7.4)

The use of deformations to solve non-linear system of equations gives robust
results. A homotopy tries to solve a difficult problem with unknown solutions by
starting with a simple problem with known solutions. Stable predictor-corrector
and piecewise-linear methods for solving such problems exist (see Allgower and
Georg [3]). The system H(x, λ) = 0 implicitly defines a curve or one-manifold
of solution points.
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Given smoothH and existence of u0 ∈ RN+1 such thatH(u0) = 0 and rank(H′(u0)) =
N , there exists a smooth curve α ∈ J 7→ c(α) ∈ RN+1 for some open interval J
containing zero such that for all α ∈ J (Allgower and Georg [3])

1. c(0) = u0,

2. H(c(α)) = 0,

3. rank(H′(c(α))) = N ,

4. c′(α) 6= 0.

The map H deforms f0 to f1 in a smooth fashion via the path c.

We use these concepts in section 7.4 where we define non-linear, spline and shape
preserving homotopies. Next section introduces the nature of acoustic signals
and their spatial arrangement.

7.3 Acoustic signals

Multibeam sonar data acquisition results in huge amount of data in small time.
The data is in the form of multiple beams of signals that are arranged in a
particular geometry for an instrument. The MS70 Multibeam echo-sounder
from Simrad is a 3D sonar where a total of 500 beams are arranged in a fashion
such that an angular cone of 45◦ by 60◦ is spanned by a matrix of 20×25 beams.
The echo-sounder operates on a frequency range of 75 to 112 kHz (see Ona et
al. [99] for details).

Multibeam echo-sounders sample the space non uniformly since the linear spac-
ing between individual beams increases with distance along the beams. As a
result, the objects far away from the instrument have a very coarse resolution
in the sampled volume. Figure 7.1(a) shows a typical arrangement of the MS70
echo-sounder. A volume rendering of a single ping capturing a moving school
of Sprat fish is shown in Figure 7.1(b).

In order to reconstruct a surface representation of the objects imaged by the
sonar, we formulate homotopies for beams. These are discussed in the next
section.
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(a) MS70 beam configuration (b) Volume rendering of
sample data (high intensities
in red)

Figure 7.1: The MS70 echo-sounder.

7.4 Homotopic reconstruction

Consider a signal S and its piecewise constant representation G. In other words,
G is a segmentation of S with classes (or levels) C0, C1, · · · , and Cn−1. Let us
denote by χk the characteristic function of S for class Ck, such that

χk =

{
1 if G = Ck,

0 otherwise.
(7.5)

The main idea behind reconstruction for any level Ck using continuous defor-
mations is to trace the path c = ker (H) = {(x, λ) : H = 0} between functions
defined on any two consecutive signals (as shown in Figure 7.2 in R2).

Figure 7.2: Homotopy path between two beams.
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In order to be able to define homotopies between pairs of beams, we need to
associate functions with each beam. Such a beam function should completely
describe the boundary, interior and exterior of regions belonging to any class
Ck along the respective beam. These regions are intervals in one-dimensional
cross sections. The rest of the discussion applies to any class, therefore we drop
the subscript k for sake of simplicity of notation. Given roots ri, i ∈ [0, p − 1]
of the characteristic function χ of a beam, we define its beam function as a
piecewise polynomial. This can be done by selecting slopes at the roots of the
desired piecewise polynomial and enforcing continuity at borders of adjacent
polynomials. The simplest piecewise polynomial exhibiting C1 continuity is a
piecewise quadratic

f(r) =

p−2∑
i=0

αi(−r2 + r(ri + ri+1)− riri+1))

(ri+1 − ri)
, (7.6)

where r is the distance along the beam, and αi is the positive gradient
∣∣d f

d r

∣∣
r=ri

defined as
αi = (−1)i+1α0, (7.7)

with α0 being a chosen positive slope at r0. A quadratic polynomial also keeps
the system simple to solve. Figure 7.3 illustrates such a beam function.

Figure 7.3: Piecewise quadratic function representing a beam.

With this background, we define various homotopies in the following subsections.

7.4.1 Linear homotopy

Consider beam functions fj(r) and fj+1(r) for two consecutive beams with
angles θj and θj+1 respectively in the polar plane (r, θ). We define a homotopy
H : R2 7→ R of smooth transition from fj(r) to fj+1(r) using a real parameter
λ ∈ [0, 1] as

Hj(r, λ) = (1− λ)fj(r) + λfj+1(r), (7.8)

where the parameter λ is related to the angle θ as

λ =
θ − θj

θj+1 − θj
. (7.9)
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Such an H is a linear homotopy that transforms fj(r) to fj+1(r) using a linear
combination of these functions in parameter λ. We can now define a set of
homotopies that reconstructs the underlying object from a set of beams as the
set H = {Hj} where each homotopy Hj is defined for a pair of beam signals Sj
and Sj+1.

A reconstruction from H is then given by the curve c = ker(H) =
⋃
j∈J ker(Hj).

Figure 7.4 shows part of the reconstruction of a set of radial beams.
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Figure 7.4: Reconstruction using linear homotopy. Reconstructed object (with
more than one connected components) boundary connects the end points of radial
cross sections (in gray).

Proposition 7.1 H defined in (7.8) results in a piecewise non-linear curve c
that is only C0 in θ.

Proof. We prove this by showing that

1. c is C0 at (ri, θj+1)1, and

2. c is not C1 at (ri, θj+1).

For 1), it is sufficient to show that Hj(ri, θj+1) = Hj+1(ri, θj+1). From (7.8)

Hj(ri, θj+1) = fj+1(ri), and

Hj+1(ri, θj+1) = fj+1(ri).

Therefore, c is C0.

1This point belongs to c since ri is a zero of fj+1(r) by construction.
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For 2), consider the tangent at any point (r, θ) for Hj

Tj =

(
∂Hj
∂r

,
∂Hj
∂θ

)
(7.10)

=

(
(1− λ)f ′j(r) + λf ′j+1(r),

−fj(r) + fj+1(r)

4θj

)
,

where 4θj = (θj+1 − θj). At r = ri, we note that

lim
θ→θ−j+1

Tj+1 =

(
f ′j+1(ri),

−fj(ri) + fj+1(ri)

4θj

)
, and (7.11)

lim
θ→θ+j+1

Tj+1 =

(
f ′j+1(ri),

−fj+1(ri) + fj+2(ri)

4θj+1

)
.

Therefore, limθ→θ−j+1
Tj+1 6= limθ→θ+j+1

Tj+1, and c is not C1. This shows that

c is only C0 in θ. �

Therefore, we seek a homotopy that preserves tangent slopes at the joins. This
leads us to the introduction of non-linear homotopy.

7.4.2 Non-linear homotopy

The curve c = ker(H) resulting from (7.8) is a piecewise smooth curve in R2.
We are interested in at least a C1 continuous curve generated by a homotopy
function. Let’s consider the following non-linear homotopy in λ

Hj(r, λ, η) = (1− λ)ηfj(r) + ληfj+1(r). (7.12)

Figure 7.5 shows a reconstruction using the non-linear homotopy defined by
(7.12).

Proposition 7.2 For η > 1, ker(H) generates at least a C1 curve in θ for
constant angular spacing of beams.

Proof. We prove this by showing that

1. c is C0 at (ri, θj+1), and

2. c is C1 at (ri, θj+1) for uniform angular spacing of beams.
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Figure 7.5: Reconstruction using non-linear homotopy (η = 2) from the same
set of radial cross sections. Staircase effect is prominent in this reconstruction.

As before we can prove 1) using (7.8) by showing thatHj(ri, θj+1) = Hj+1(ri, θj+1).

For 2), we again consider the tangent at any point (r, θ) for Hj

Tj =

(
∂Hj
∂r

,
∂Hj
∂θ

)
=
(

(1− λ)ηf ′j(r) + ληf ′j+1(r),

−η(1− λ)η−1fj(r) + ηλη−1fj+1(r)

4θj

)
.

At r = ri, we note that

lim
θ→θ−j+1

Tj+1 =

(
f ′j+1(ri),

ηfj+1(ri)

4θj

)
, and (7.13)

lim
θ→θ+j+1

Tj+1 =

(
f ′j+1(ri),

−ηfj+1(ri)

4θj+1

)
.

If 4θ = 4θj = 4θj+1 is the constant angular spacing between the beams, then

lim
θ→θ−j+1

Tj+1 = lim
θ→θ+j+1

Tj+1.

This shows that c is at least C1 in θ. Further, it can also be shown that the
slope at beam end is normal to the radial line at angle θj+1. This is left as an
exercise to the reader. �

A non-linear homotopy is a general case of the linear homotopy. This class of
deformations can be extended to higher dimensions in a straightforward manner.
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A formulation in R3 for an arrangement of beams shown in Figure 7.6 can be
made as a two parameter homotopy in α and β as

Hj,k(r, α, β, η, ζ) = fj,k(r)(1− α)η(1− β)ζ +

fj,k+1(r)(1− α)ηβζ +

fj+1,k(r)αη(1− β)ζ +

fj+1,k+1(r)αηβζ , (7.14)

where α and β are linearly related to the inclination θ and azimuth φ in a
spherical coordinate system (r, θ, φ) (similar to (7.9) in R2). The two-parameter
homotopy (7.14) can also be written as a tensor product of one-parameter ho-
motopies.

Figure 7.6: Top view of beam arrangement in R3. Each dot represents a beam
orthogonal to the plane of the paper.

For the Hj,k defined above, it can be shown that the surface H = 0 is C1

continuous for η > 1, ζ > 1. For η = 1 and ζ = 1, Hj,k reduces to a linear
homotopy.

A non-linear homotopy is continuous at joins and satisfies all the required crite-
ria, however the reconstruction looks unnatural due to the fact that the tangent
at the joins are always orthogonal to the respective beams (see Figure 7.5). This
constrains the solution to a small class of possible reconstructions. In the next
subsection, we relax the tangent constraint that gives rise to the cubic spline
homotopy.
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7.4.3 Cubic spline homotopy

Consider N radial beam functions {fj(r)}, j ∈ [0, N − 1] in the polar plane
(r, θ). While deriving the necessary conditions, we replace the local parameter
λ by its global counterpart θ. These two are related by (7.9). We construct
homotopies Hj between fj and fj+1 such that following conditions are met:

1. For any homotopy, the initial and terminal maps are satisfied

Hj(r, θj) = fj(r), and

Hj(r, θj+1) = fj+1(r), (7.15)

for j ∈ [0, N − 2].

2. The first derivatives ∂H(r, θ)/∂θ at the boundary of any two successive
homotopies match

lim
θ→θ−j+1

∂Hj(r, θ)
∂θ

= lim
θ→θ+j+1

∂Hj+1(r, θ)

∂θ
, (7.16)

for j ∈ [0, N − 3].

3. The second derivatives ∂2H(r, θ)/∂θ2 at the boundary of any two succes-
sive homotopies match

lim
θ→θ−j+1

∂2Hj(r, θ)
∂θ2

= lim
θ→θ+j+1

∂2Hj+1(r, θ)

∂θ2
, (7.17)

for j ∈ [0, N − 3].

We start with a general cubic homotopy in θ of the form

Hj(r, θ) =

3∑
i=0

gj,i(r)(θ − θj)i, (7.18)

with unknown coefficient functions gj,i. We note the following partial derivatives
of Hj(r, θ) w.r.t θ

∂Hj(r, θ)
∂θ

=

3∑
i=1

igj,i(r)(θ − θj)i−1, and (7.19)

∂2Hj(r, θ)
∂θ2

=

3∑
i=2

i(i− 1)gj,i(r)(θ − θj)i−2. (7.20)
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Note that in the above conditions, we are not concerned with the derivatives of
H w.r.t. r since these have no influence on continuity of c w.r.t. θ. Continuity
of c w.r.t. r depends on the choice of beam functions f(r). Conditions (7.15),
(7.16) and (7.17) result in the following linear system (argument r of g’s and
f ’s is removed for space consideration):

gj,0 = fj , for

j ∈ [0, N − 2],

gj,0 + gj,14+ gj,2 (4θj)2
+ gj,3 (4θj)3

= fj+1, for

j ∈ [0, N − 2],

gj,1 + 2gj,24θj + 3gj,3 (4θj)2
= gj+1,1, for

j ∈ [0, N − 3],

gj,2 + 3gi,34θj = gj+1,2, for

j ∈ [0, N − 3]. (7.21)

Since, system (7.21) is devoid of two conditions, we enforce free boundary con-
dition ∂2H(r, θ)/∂θ2 = 0 at θ0 and θN−1. This yields the following two linear
equations

g0,2 = 0, and

gN−2,2 + 3gN−2,34θj = 0. (7.22)

The system formed by (7.21) and (7.22) has the form Ax = B. The coefficients
gj,i are functions of fj . The homotopy (7.18) can be rewritten in terms of
the local homotopy variable λ. Figure 7.7 shows a reconstruction using the
developed cubic spline homotopy. It is possible to extend the single parameter
cubic spline homotopy to a two parameter spline homotopy for a reconstruction
in R3 via the tensor product.
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Figure 7.7: Reconstruction using spline homotopy using same set of radial
cross sections. Spline resonstruction clearly shows smoothness of the recon-
struction.

With the cubic homotopy it is possible to have a continuous reconstruction with
no restriction on tangents at the beam ends, however the the resulting surface
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suffers from undesirable extremum points between places of high difference in
radial distance between beam boundaries (see Figure 7.8). This is due to the
fact that it is not always possible to have C2 continuity while maintaining mono-
tonicity [62, 144]. To overcome this problem, we introduce a shape preserving
C1 homotopy in the next subsection.

Figure 7.8: Cubic spline reconstruction of a circle from a set of radial cross
sections showing undesirable bulge on the sides.

7.4.4 Shape preserving homotopy

Monotonicity preserving splines overcome the problem associated with cubic
splines. Späth [131] introduced generalized exponential splines in tension that
were further studied by Pruess [107] and others. These splines are piecewise ex-
ponential curves joining together to form a smooth curve in tension. The tension
parameters, however, must be selected by some heuristic based on the gradient
of the data points, or otherwise. Further, computation of tension splines is
expensive due to evaluation of hyperbolic functions. The computation is also
sensitive to the choice of tension parameters. This is specially true for very
small tension parameters causing underflow of machine precision and for very
large tension parameters causing overflow of machine precision [16].

Monotonicity can be attained by sacrificing smoothness while still using poly-
nomials. We develop a C1 homotopy based on the monotonic splines of Hymen
[62]. This requires availability of derivatives ∂Hj(r, λ)/∂λ at λ = 0. A monotone
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homotopy can be written in terms of Hermite basis functions as

Hj(r, λ) =(1− 3λ2 + 2λ3)fj(r) + (3λ2 − 2λ3)fj+1(r)

+ (λ− 2λ2 + λ3)

[
∂Hj(r, λ)

∂λ

]
λ=0

+ (λ3 − λ2)

[
∂Hj+1(r, λ)

∂λ

]
λ=0

. (7.23)

The derivatives ∂Hj/∂λ appearing in (7.23) enforce piecewise monotonicity in
c. The de Boor and Swartz [37] piecewise monotonicity range can be extended
for functions as

0 ≤ ḟj ≤ 3 min(4fj ,4fj+1), (7.24)

where, 4fj = (fj+1 − fj−1) and ḟj denotes the required derivative. Starting
with an approximation of the derivatives (either from a spline representation or
differencing), these are then projected into the monotonicity region defined by
(7.24) above according to

ḟj =

{
min(max(0, ḟj), 3 min(|4fj |, |4fj+1|))
max(min(0, ḟj),−3 min(|4fj |, |4fj+1|))

. (7.25)

The reader is referred to work by Hyman [62] for a detailed discussion on this.
The constrained derivatives can be used in (7.23). The derivatives can only be
computed numerically. Other procedures outlined by Paolo et al. [33] and Wol-
berg [144] employ optimizations to compute the derivatives. A two parameter
family of monotone shape preserving homotopy can be formulated, as before,
via tensor product. The result of monotone reconstruction is shown in section
7.6.

A reconstruction algorithm based on the developed homotopies is presented
next.

7.5 Reconstruction algorithm

The MS70 sonar gives a 3D view of the ensonified volume as shown in Fig-
ure 7.1(b). The received signal represents the raw acoustic backscatter from the
seabed and the fish school. In order to infer useful object information from the
signals, these must first be corrected for spreading and absorption losses during
acoustic wave propagation (see Simmonds and MacLennan [126] for details).
The resulting Volume backscattering strength Sv values can then be used for
analysis.
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7.5.1 Characteristic function generation

To generate a good segmentation, anisotropic diffusion by Perona and Malik
[106] may be performed on the Sv signals. The usual practice is to binary
segment the signals by choosing a suitable threshold value depending on the
species of the schooling fish seen in the volume. The threshold should be chosen
so as to eliminate as much of the background and instrument noise as possible
(see Simmonds and MacLennan [126]).

Following is the general procedure adopted to generate characteristic signals
from raw acoustic signals.

1. Perform anisotropic diffusion filtering on the input volume Vi to generate
Vdiff .

2. Generate a binary volume Vbin by using a threshold value Sthres.

3. Close holes in Vbin by 3D morphological closing (see Soille [129]). Isolated
voxels are eliminated by a morphological opening.

4. Label the resulting volume, as Vseg, into different connected components
(see Gonzalez and Woods [53]).

5. Select a component or combine several components from Vseg into Vχ that
represents the object to reconstruct. This is a binary volume representing
the characteristic signal of the desired object.

7.5.2 Solution of homotopy

Starting with a binary volume Vχ of size M × N × R, where R is the number
of samples along a signal beam, we associate beam functions to all MN beams
according to (7.6). A system of (M − 1)× (N − 1) homotopies are formulated.

The reconstructionH = 0 traces the homotopy path without any problem except
at places where the path encounters a singularity (self-intersection) in between
the initial and terminal maps for λ ∈ (0, 1). In such a case, the path becomes a
non-manifold, as illustrated in Figure 7.9(a). Such a case can be avoided by first
identifying a root rk of any one of the beam functions that causes a singularity,
and perturbing it such that the singularity in the path is avoided, as shown in
Figure 7.9(b).

The set of homotopies can be solved to find points belonging to ker(H) that lie
on the boundary of the reconstruction. An analytical solution to H = 0 is not
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(a) Singularity in the path (b) Avoiding singularity by
perturbation of roots

Figure 7.9: Handling cross-overs in the homotopy solution. Radial cross sec-
tions are shown in gray with location of roots along each radial line marked in
green. A root on any radial line is projected on adjacent radial lines for clarity.

always possible, and a computational solution for all λ ∈ [0, 1] is not realizable.
Therefore, we construct a scalar field of H on a sampled grid. The homotopy
path is then found by tracing zero level set of the scalar field.

7.6 Results

We present results of our reconstruction algorithm here. Although the recon-
struction algorithm operates in the beam space, for sake of clarity we show all
the 2D illustrations in polar coordinates. It must be noted that a coordinate
transformation from beam space to spherical coordinates is needed only before
the level set extraction and not before.

The raw data is shown in Figure 7.1(b) where the high intensity regions of
the ensonified volume are rendered in red. These regions are mainly the fish
school, seabed and noise at the top. We show a slice of the raw volume in
Figure 7.10(a). Note that the intensity of the target diminishes as the distance
from the transducer (located at the tip of the sector) increases. Figure 7.10(b)
shows volume compensated for acoustic losses due to spreading and absorption.
The intensities after compensation are distributed evenly (for example, typical
fish school echo strength values are around -60 dB).

A threshold of -62 dB removes much of the background noise in this case. Com-
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(a) Sector of the volume showing raw in-
tensities

(b) Volume corrected for spreading and ab-
sorption losses

Figure 7.10: Intensity correction on raw volume.

bined characteristic functions of the seabed and the fish school are shown in
Figure 7.11. In the figure, thick black lines show the ranges where the charac-
teristic function takes a value of 1.

Figure 7.11: Combined characteristic signal for seabed and fish school. Com-
plete radial lines are shown in gray while the cross section is shown in black.

A full reconstruction in R3 is shown in Figure 7.12. Here, different connected
components are colored differently and the noise component is not considered
during reconstruction. The seabed is shown in brown, while the fish school is
colored in light blue. The difference in the reconstructions computed via the
four homotopies is apparent and shows that the shape preserving monotone ho-
motopy outperforms the others. A linear homotopy renders the reconstruction
piecewise C0 that does not look natural, while the non-linear homotopy intro-
duces staircase like artifacts. The cubic homotopy on the other hand produces
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large variations in the surface at the sides causing undesired bumps.

(a) Linear homotopy (b) Non-linear homotopy with η = 2

(c) Spline homotopy (d) Shape preserving homotopy

Figure 7.12: Homotopy reconstruction of moving school of Sprat.

With the real signals, it is not possible to quantify accuracy of the suggested
homotopies. Therefore, we perform simulation tests described next.
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7.6.1 Accuracy comparison

In order to evaluate the relative performance of the suggested homotopies, we
reconstruct various simple geometric primitives. We compare the reconstructed
surfaces with the respective primitives by means of certain measures. In all
the simulations, we use a set of 20 × 25 beams of length 100 units and span-
ning an angular volume of 45◦ × 60◦ (see Figure 7.13). A primitive is placed
symmetrically in the spanned volume such that the center of the primitive is
halfway from the apex of the sonar. With the given beam density, it must be
noted that any primitive is sampled sparsely (i.e., not following the Nyquist
criterion), and therefore it is not possible to completely recover an object with
all details. This represents the practical case with acoustic instruments where
beam density is constrained by various physical factors and cannot be arbitrar-
ily increased. Also, beneath the water, objects to be mapped have unknown
geometry and location. In our analysis, we use several parameters for shape
comparison. Two simple parameters are ratio of the two surface areas Ar/Ao
and ratio of the two volumes Vr/Vo. Further, we measure the reconstruction
error by means of the symmetrical Hausdorff distance which is a good measure
of the distance between two manifolds (see Aspert et al. [6]).

Symmetrical Hausdorff distance, dH , between two surfaces M0 and M1 is given
by

dH(M0,M1) = max

{
sup
x0∈M0

inf
x1∈M1

d(x0, x1),

sup
x1∈M1

inf
x0∈M0

d(x0, x1)

}
, (7.26)

where d(·, ·) is an appropriate metric for measuring distance between two points
in a metric space. dH(M0,M1) measures the maximum possible distance that
will be required to travel from surface M0 to M1. We compute this metric and
use it to quantify the error in reconstruction of a phantom surface. Similarly, a
mean Hausdorff error dH [6] can also be defined as

dH(M0,M1) = max

{
1

AM0

∫ ∫
x0∈M0

d(x0,M1) dM0,

1

AM1

∫ ∫
x1∈M1

d(x1,M0) dM1

}
, (7.27)

where AM0
and AM1

denote the area of M0 and M1 respectively and dM0 and
dM1 denote a differential area element on M0 and M1 respectively. In the
following tables, a % refers to the relative Hausdorff distance measured as the
percentage of the model bounding box diagonal.
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Figure 7.13: The simulation test bed consisting of a set of simulated sonar
beams (20× 25) in a frustum of angular volume of 45◦ × 60◦. The sonar beams
emerge from the origin denoted by the intersection of the coordinate axes.

The first primitive we consider is a sphere of radius 10 units. The reconstructions
are shown in Figure 7.14 with the sphere drawn in wireframe. It can be seen that
linear and monotone reconstructions produce satisfactory results, since both are
shape preserving. Non-linear reconstruction produces the ringing effect while
the cubic homotopy produces bumps in the surface at the sides. Table 7.1 shows
the three shape measures for these reconstructions. The reconstructed volume
and surface area for cubic reconstruction are larger than that of the sphere.
The best ratios are obtained for the shape preserving C1 reconstruction with an
exception of the volume ratio for cubic reconstruction. The Hausdorff distances
(both maximum and mean) are very high for the cubic reconstruction indicating
that the reconstructed surface has regions of high deviation from the phantom
sphere surface. The minimum error is obtained for the monotone reconstruction
indicating that the two surfaces are closest to each other.

Next we consider a cube of side length 20 units. A cube is an interesting
primitive since the surface is only C0, therefore a linear reconstruction gives a
shape that is closest to it (see Figure 7.15). The surface area ratio shown in
Table 7.2 indicates that a better reconstruction is monotone. The volume ratios
show that the reconstructed surface is an underestimation of the primitive except
for the cubic reconstruction that has overhangs in the reconstruction. The
Hausdorff error gives a clear indication that the cubic reconstruction deviates
most from the phantom surface while the monotone reconstruction deviates the
least.
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(a) Linear homotopy (b) Non-linear homotopy with η = 2

(c) Spline homotopy (d) Shape preserving homotopy

Figure 7.14: Homotopy reconstruction of a sphere.

Table 7.1: Reconstruction performance with sphere

Reconstruction Ar/Ao Vr/Vo dH(%) dH(%)

Linear (C0) 0.963 0.865 4.340 0.896
Non-linear(Cη−1) 0.988 0.885 4.686 0.920
Cubic (C2) 1.384 1.051 8.933 1.467
Monotone (C1) 1.011 0.932 3.891 0.659
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(a) Linear homotopy (b) Non-linear homotopy with η = 2

(c) Spline homotopy (d) Shape preserving homotopy

Figure 7.15: Homotopy reconstruction of a cube.

Table 7.2: Reconstruction performance with cube

Reconstruction Ar/Ao Vr/Vo dH(%) dH(%)

Linear (C0) 0.880 0.902 6.206 0.778
Non-linear(Cη−1) 0.899 0.916 6.596 0.975
Cubic (C2) 1.116 1.038 13.467 1.173
Monotone (C1) 0.912 0.957 4.754 0.647
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Next we experiment with a cone of semi-angle 30◦ and height 20 units, and a
cylinder of radius 10 units and height 20 units. The reconstructions for these
primitives are shown in Figs. 7.16 and 7.17, respectively. These surfaces have
both planar and curved sections. As seen in the previous cases, the linear
and monotone reconstructions perform better in this case as well with area
and volume ratios closest to one, and least Hausdorff errors for the monotone
reconstruction (as shown in Tables 7.3 and 7.5).

(a) Linear homotopy (b) Non-linear homotopy with η = 2

(c) Spline homotopy (d) Shape preserving homotopy

Figure 7.16: Homotopy reconstruction of a cone.

So far the primitives considered here are convex in geometry. Lastly, we consider
a torus for reconstruction to show that a non-convex geometry with holes can
be reconstructed in a similar fashion and poses no limitation on the algorithm
developed here. Here again, the accuracy measures indicate that the monotone
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Table 7.3: Reconstruction performance with cone

Reconstruction Ar/Ao Vr/Vo dH(%) dH(%)

Linear (C0) 0.859 0.858 8.012 0.950
Non-linear(Cη−1) 0.885 0.876 7.640 0.998
Cubic (C2) 1.460 1.186 19.049 2.509
Monotone (C1) 0.901 0.944 6.979 0.641

(a) Linear homotopy (b) Non-linear homotopy with η = 2

(c) Spline homotopy (d) Shape preserving homotopy

Figure 7.17: Reconstruction of a cylinder.
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Table 7.4: Reconstruction performance with cylinder

Reconstruction Ar/Ao Vr/Vo dH(%) dH(%)

Linear (C0) 0.917 0.913 4.511 0.544
Non-linear(Cη−1) 0.944 0.926 4.862 0.731
Cubic (C2) 1.192 1.063 15.674 1.094
Monotone (C1) 0.954 0.975 4.104 0.377

reconstruction is closest to the original torus model. Also looking at the results,
the cubic reconstruction shows the presence of unwanted peaks.

Table 7.5: Reconstruction performance with torus

Reconstruction Ar/Ao Vr/Vo dH(%) dH(%)

Linear (C0) 0.967 0.820 4.309 0.860
Non-linear(Cη−1) 0.984 0.842 4.514 0.782
Cubic (C2) 1.632 1.092 8.852 1.818
Monotone (C1) 1.000 0.889 3.847 0.625

The simulations shown here clearly indicate superiority of the monotone re-
construction compared to other homotopies. This is supported by the least
Hausdorff errors in case of monotone homotopic reconstruction. The main ad-
vantage comes with suppression of bumps while still remaining smooth. The
volume ratio does not seem to be the best indicator of the geometry of the re-
constructed surface. Depending on the arrangement of intersecting beams, in
some cases the deviation of this measure from one is less than such a deviation
in other methods. This indicates that in those cases the cubic method performs
better than other methods, which is clearly not the case as shown by the area
ratio and the Hausdorff error metrics. If the geometry of the original object is
known a priori, a suitable homotopy can be chosen. It must be noted that an
increase in beam density will increase the accuracy of reconstruction.

To our knowledge, we presented an algorithm for direct reconstruction of a
surface from one-dimensional cross sections embedded in 3D and the existing
methods of surface reconstruction from acoustic cross sections rely on inter-
polation to first compute an acoustic image/volume before deriving a surface.
Methods like the level set method operate on such a volume to reconstruct an
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(a) Linear homotopy (b) Non-linear homotopy with η = 2

(c) Spline homotopy (d) Shape preserving homotopy

Figure 7.18: Homotopy reconstruction of a torus.

object using a deformable surface. A comparison of volume based methods with
the proposed method will be not be justified due to different input types of
these methods. In the next section we present the complexity of the presented
algorithm.

7.7 Time complexity

The time complexity of the homotopy reconstruction algorithm depends on the
number of linear cross sections nsec = MN . The cost of assigning beam func-
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tions is O(nr) per beam, where nr is the number of roots along the beam. Since
nr depends on the object-beam intersection, it depends on the complexity of the
objects considered. The complexity of formulating homotopies for the beams
is O(nsec) for linear and non-linear homotopies. In case of spline homotopy,
there is an additional one-time cost of inverting a matrix that amounts to a
complexity of O((4(nsec− 1))2.376) using the Coppersmith-Winograd algorithm
[32]. Such a computational cost can be drastically reduced by formulating a
B-spline homotopy where every homotopy depends only on its four neighboring
beam functions. Complexity of formulating the monotone homotopy is similar
to the linear homotopy once the derivatives are computed (thereby suggesting
the local nature). Computation of derivatives is an image space operation and
therefore it is O(V ), where V is the number of voxels in the grid of discretized
space. Complexity of computing the solution path of the homotopy H = 0 using
isosurface extraction is O(V ).

To get a notion of actual computation times for the reconstruction, a scene com-
posed of two primitive objects (a cuboid and a sphere) is reconstructed from its
intersection with sonar beams. The computational resource consisted of a 32-
processor AMD Quad-Core machine with 256 GB of memory and an OpenMP
implementation of the reconstruction algorithm running with 32 threads. Ta-
ble 7.6 shows computation times in seconds for all the four reconstruction meth-
ods. Here, Tbf is the time taken in assigning beam functions to all the sonar
beams, Tinv is the time taken in inverting the coefficient matrix (in case of cu-
bic homotopy reconstruction), TH is the time taken in evaluating the homotopy
over a grid of volume, and Tiso is isosurface computation time. For monotone
reconstruction method, TH includes computation time of derivatives. The re-
construction is computed over a volume grid of size 154× 201× 201.

Table 7.6: Computation times (in seconds) for reconstruction. The scene
composed of a cuboid and a sphere with the reconstruction performed on a raster
volume grid of size 154× 201× 201.

Tbf Tinv TH Tiso

Linear 0.001328 1.071854 1.052210
Non-linear 0.001322 1.022518 1.307745
Cubic 0.001258 0.000247 4.100427 1.361817
Monotone 0.001273 3.801818 1.169319
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7.8 Conclusions

We have developed a reconstruction algorithm based on homotopy continuation.
Different formulations of homotopies suitable for smooth surface generation were
presented. The resulting surface is of good quality both topologically and ge-
ometrically. The presented algorithm associates piecewise quadratic functions
with the initial and terminal maps. In general, any smooth function that satis-
fies the design criteria can be used as a beam function. Furthermore, the results
are readily extensible to higher dimensions. We conclude that homotopy based
methods are quite powerful in predicting the information from the initial and
the terminal maps.
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Abstract

This paper addresses the problem of 2D object reconstruction from its

1D cross sections along straight lines. We impose no particular ordering

restriction on the linear sections so that they can be arbitrary placed in

the 2D plane. We propose a method based on homotopy continuation for

topologically plausible reconstruction. By defining implicit functions on

the computational domain, the topological properties of the object being

reconstructed are preserved by the reconstruction.
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8.1 Introduction

Object reconstruction from cross sections is a well known problem. Generally
a spatial ordering within the cross sections aids reconstruction. We consider
the case of reconstructing an object from arbitrary linear cross sections. Such
cross sectional information can be obtained with many devices. An example
is acoustic probes that obtain range information of the subject by sending an
acoustic pulse.

The problem of reconstruction from arbitrary cross sections has been studied
by Sidlesky et al. [125], Liu et al. [83], and Memari and Boissonnat [89]. Si-
dlesky et al.[125] define sampling conditions on the reconstruction, while in our
reconstruction algorithm, we allow the sampling to be sparse. Our approach to
reconstruction considers the “presence” or “absence” of information along any
intersecting line. This is in contrast to work by Sidlesky et al. [125], where
the authors consider that a line not intersecting the object does not contribute
to the reconstruction. In our algorithm, such a line is considered to contribute
to the reconstruction by defining a linear section, no part of which belongs to
the reconstruction. Methods proposed by Liu at al. [83], and Memari and
Boissonnat [89] are both based on Voronoi diagrams. Memari and Boissonnat
also provide sampling conditions for topological correctness of their reconstruc-
tion. However, their reconstruction consists of line segments in the plane that
originate from the Delaunay complex of the cross sections, thus resulting in a
C0 reconstruction curve in the plane. On the contrary, our reconstruction is
based on the solution of homotopy of polynomials resulting in smoothness that
depends on the order of the chosen polynomial.

This paper is organized as follows. Section 8.2 defines the reconstruction prob-
lem mathematically. We introduce the concept of homotopy continuation in
section 8.3 followed by the main reconstruction algorithm in section 8.4. In
the same section 8.4, we discuss our edge barycentric coordinates on convex
polygons and provide details of our homotopy based reconstruction algorithm.
Finally we provide results of the reconstruction and accuracy using hierarchical
sampling.

8.2 Problem definition

Given a set of lines {Li : i ∈ [0, n − 1]} in a plane, intersecting an object O
along segments {Si,j : j ∈ [0,mi − 1]}, the problem of object reconstruction
from arbitrary linear cross sections is to reconstruct an object O from Si,j such
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that the reconstruction R satisfies

Li
⋂
O = Li

⋂
R, (8.1)

and that R is homeomorphic to O. Further, the reconstruction should also be
geometrically close to the object. We quantify the geometric closeness in our
reconstruction by means of several area based ratios viz. the ratio of area of
reconstruction and the area of the object, and the ratio of the absolute difference
of the two areas and the area of the object. Length ratio is also a good indicator
of geometric closeness. Furthermore, Hausdorff distance between the two curves
gives a good measure of the distance between them.

In this context we impose no restrictions on the ordering or arrangement of
the intersecting lines. However, the placement of intersecting lines plays an im-
portant role in the correctness of the reconstruction. A placement that covers
salient object features results in a better reconstruction. In order to quantify
an optimal placement, consider a set of intersecting lines in a plane along with
the object to be reconstructed. The intersecting lines partition the object into
smaller regions. Considering the simply connected boundary of the object that
belongs to a region (see the highlighted curve segment in Figure 8.1(a)), tor-
tuousity [42], which gives a simple measure of how twisted a curve is, can be
computed. It is defined as the ratio of curve length and the span of the curve
y = f(x) in one direction

τ(f) =

∫ b

a

√
1 +

(
df

dx

)2

b− a =
L

C
, (8.2)

where a and b are real numbers, L is the length of the curve, and C is the span
of curve. τ can be considered as a measure of straightness of a curve. For parts
of the object boundary that are not intersected by the lines, we define τ to be
∞.

It is not difficult to see that higher the value of τ for any region, more it is
susceptible to generate part of the reconstruction that is non-homeomorphic
to the object. However, if the sampling is such that the intersecting lines are
chosen along the medial axis of the object, then such regions can be avoided
(see Figure 8.1(b)). In that case, τ remains close to one for different regions.
Such a sampling is illustrated in subsection 8.5.1 for deriving accuracy statistics
for the proposed reconstruction method. The endoskeleton and the exoskeleton
provide optimal placement of the cutting lines along the loci of high curvature
of the object boundary.

Another desired trait of a reconstruction is smoothness, and we will show that
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(a) Undersampling (b) Optimal sampling along medial axis

Figure 8.1: Sampling condition on the intersecting lines.

the proposed method of continuous deformations results in a reconstruction that
is at least C1.

8.3 Homotopy continuation

Homotopy is, roughly speaking, concerned with identification of paths between
objects that can be continuously deformed into each other. The history of study
of homotopy dates back in the late 1920’s when the the homotopy theory was
formalized [66].

Definition 8.1 Let f : X 7→ Y and g : X 7→ Y be two continuous maps
between topological spaces X and Y . These maps are called homotopic, f ' g,
if there is a homotopy or a continuous map H : X × [0, 1] 7→ Y between them,
such that H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X.

Therefore, we can write the homotopy Hλ : X 7→ Y as

Hλ(x) = H(x, λ), (8.3)

and thus, H0 = f and H1 = g. One can visualize how the deformation Hλ
continuously takes f to g (see Figure 8.2) by varying the parameter λ.

One can impose additional constraints on the deformation path. For example, a
specific constraint on fixed endpoints leads to homotopy of paths. For two pairs
of homotopic maps X −−−→

f'g
Y −−−→

f̄'ḡ
Z, the compositions f̄ ◦ f and ḡ ◦ g are also
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H0

H1

Figure 8.2: Continuous deformation of a circle into Habenicht’s clover.

homotopic via the composition H̄λ ◦ Hλ. Further, for two pairs of homotopic
maps fi ' gi : Xi 7→ Yi, i = 1, 2, the maps f1×f2 and g1×g2 from X1×X2 into

Y1 × Y2 are also homotopic via H(1)
λ ×H

(2)
λ , in which case it is called a product

homotopy [66].

Continuous deformations have been successfully used to solve non-linear system
of equations that are otherwise hard to solve. A homotopy tries to solve a
difficult problem with unknown solution by starting with a simple problem with
known solution. Stable predictor-corrector and piecewise-linear methods for
solving such problems exist (see Allgower and Georg [3]). The system H(x, λ) =
0 implicitly defines a curve or 1-manifold of solution points.

Given a smooth H and an u0 ∈ RN+1 such that H(u0) = 0 and rank(H′(u0)) =
N , there exists a smooth curve c : α ∈ J 7→ c(α) ∈ RN+1 for some open interval
J containing zero such that for all α ∈ J (Allgower and Georg [3])

1. c(0) = u0,

2. H(c(α)) = 0,

3. rank(H′(c(α))) = N ,

4. c′(α) 6= 0.

In this work, we use homotopy or continuous deformations for object recon-
struction. This is discussed in the next section.
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8.4 Reconstruction algorithm

We start with a set of lines {Li} and cross sections S = {Si,j : Si,j is the jth

cross section on Li} in a plane, with the reconstruction domain restricted to
the extended bounding box Bbox of the cross sections. The set of lines {Li}
partition Bbox into a set of convex polygons {Gk : k ∈ [0, p− 1]}. This is shown
in Figure 8.3 where O is drawn dotted, the intersecting lines are shown dashed
with the cross sections as thick solid lines, and the boundary of the extended
bounding box shown dashed. Our reconstruction algorithm consists of assigning
a homotopy Hk to every Gk. The reconstruction is then obtained as

R =
⋃
k

{(x, y) : Hk = 0}. (8.4)

Figure 8.3: A set of lines intersecting an object (dotted).

A homotopy can be seen as a smooth transition from one map to another. We
can extend this definition to multiple maps by defining a homotopy in multiple
variables

H(λ0, λ1, · · · , λs−1) =

s−1∑
t=0

ftλt, (8.5)

with
s−1∑
t=0

λt = 1, λt ≥ 0. (8.6)
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8.4.1 Edge maps

Using (8.5), a smooth map can be defined over Gk for a choice of maps {ft :
t ∈ [0, sk − 1]} defined on sk edges of Gk. Let these maps be called edge maps.
Since a homotopy is defined over each polygon, continuity in H at the polygon
boundaries is required. For continuity across all polygons, the definition of the
edge maps must be consistent. Since polygon edges are a subset of the cross
section lines, it suffices to define edge maps over {Li}.

An edge map fi should completely describe the boundary, interior and exterior
of the intersection of Li with O. To define fi, we associate a local coordinate
system with each line with the x-axis measuring distance r along Li from a
chosen origin. Given abscissae rq, q ∈ [0, 2j − 1] of the intersections Si,j on Li,
we define the corresponding edge map as a C1 piecewise quadratic polynomial

fi(r) =

2mi−2∑
q=0

αq(−r2 + r(rq + rq+1)− rqrq+1))

(rq+1 − rq)
, (8.7)

where αq is the positive gradient
∣∣d f

d r

∣∣
r=rq

defined as

αq = (−1)q+1α0, (8.8)

with α0 being a chosen positive slope at r0. Figure 8.4 illustrates such an edge
map. Note that an edge map fi should not be interpreted geometrically in R2,
but in R3.

Figure 8.4: Piecewise quadratic function as an edge map.

8.4.2 Barycentric coordinates

It is natural to consider barycentric coordinates of a polygon as homotopy vari-
ables because of the two useful properties that they offer. Barycentric coordi-
nates span a complete polygon and are a partition of unity. Traditional barycen-
tric coordinates for a point in a triangle (and simplices in general) are defined by
its vertices. Relevant generalization of barycentric coordinates to polygons were
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provided by Wachspress [138] and later by Meyer et al. [90]. In the current con-
text, we define barycentric coordinates in terms of the edges of a polygon rather
than the vertices. Such a definition allows us to apply the concepts developed
so far to associate a suitable homotopy to a polygon.

8.4.2.1 Barycentric Coordinates based on Orthogonal Distance

Consider a polygon G1 and one of its sides ei with end points pi and pi+1. For
any point p inside G1, let p̂ be the foot of the perpendicular from p on ei. Let
di be the distance from the local origin Oj of line Lj (corresponding to edge ei)
and p̂, and hi be the distance between p and p̂ (see Figure 8.5). We suggest the
following barycentric coordinates on the edges of polygon G1

λi =
1/ψ(hi)

s−1∑
j=0

1/ψ(hj)

, i ∈ [0, s− 1], (8.9)

where ψ : R 7→ R is a monotonically increasing smooth function with ψ(0) = 0.
Defined in this way, the barycentric coordinates satisfy positivity, partition of
unity, and smoothness. It can be shown that for any edge ek, when hk → 0, we
get the following limits: λk → 1 and λi,i6=k → 0.

ei

Oj

p̂

pi

pi+1

Lj

di

p

hi

G1

G2

1

Figure 8.5: Setup for defining barycentric coordinates.

Barycentric coordinates defined over the edges of the polygon allow us to for-
mulate a smooth deformation of the edge maps of the polygon over the polygon.
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8.4.3 Homotopy

Equipped with the above defined edge maps and barycentric coordinates for any
polygon Gk, we define a homotopy Hk as

Hk(p) =

sk−1∑
i=0

fi (di(p))λi(p), (8.10)

where di(p) is the distance along line Lj as discussed in (8.4.2.1). The homotopy
(8.10) continuously deforms edge maps fi within the polygon and thus generates
a smooth field.

Across polygons, the homotopies are continuous and at least C1 smooth (see
Appendix A for the proof). However, at all the intersection points of the lines
with the boundary ∂O of the object O, Q = {Qi,j : Qi,j ∈ Li

⋂
∂O}, the gen-

erated curve H−1(0) is orthogonal to lines Li (see Appendix A). Therefore, the
resulting reconstruction is somewhat unnatural. Given normals at the intersec-
tion points Q (which is the case with many range scanning physical devices), we
propose a tangent alignment scheme for the resulting curve by locally warping
the domain of the homotopies.

8.4.4 Tangent alignment using local space rotations

Given unit normals N̂ at intersection points Q, the reconstruction can be con-
strained to be normally aligned to these normals at these points. We enforce
this constraint by local space rotations around points Q.

The reconstruction H−1(0) is orthogonal to the intersecting lines at Q. Starting
with a point p in the neighborhood of one of the points pc of Qk,j lying on Lk,
we rotate p about pc by an angle −θ to give point p̃ in the plane (see Figure 8.6).

The angle θ is chosen to be the signed angle between N̂ and ∇Lk about the
point pc. The resulting homotopy H̃ for a polygon G can be written as

H̃ =

sk−1∑
i=0

fi

(
d̃i

)
λ̃i, (8.11)
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Figure 8.6: Rotation of a point for tangent alignment.

where,

d̃i =||Ok − pi||+
4xi(x̃− xi) +4yi(ỹ − yi)

li
, (8.12)

λ̃i =
1/ψ(h̃i)

s−1∑
j=0

1/ψ(h̃j)

, i ∈ [0, s− 1], and (8.13)

h̃i =
4yi(x̃− xi)−4xi(ỹ − yi)

li
. (8.14)

The rotated point p̃ can be written as

p̃ =

(
x̃
ỹ

)
=

(
xc
yc

)
+

[
cos θ sin θ
− sin θ cos θ

](
x− xc
y − yc

)
=pc + R−θ(p− pc) (8.15)

The modified gradient of the homotopy in the neighborhood of pc can be now
computed using the chain rule. The partial derivative of H̃ w.r.t. x is

∂H̃
∂x

=

s−1∑
i=0

(
f ′i(d̃i)

[
∂d̃i
∂x̃

∂x̃

∂x
+
∂di
∂ỹ

∂ỹ

∂x

]
λ̃i

+fi(di)

[
∂λ̃i
∂x̃

∂x̃

∂y
+
∂λ̃i
∂ỹ

∂ỹ

∂y

])
(8.16)
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In the limit as point hk → 0 (or p → pc), using a similar derivation as in
Appendix A, we can write

lim
hk→0

∂H̃
∂x

=f ′k(d̃k)

[
∂d̃k
∂x̃

∂x̃

∂x
+
∂dk
∂ỹ

∂ỹ

∂x

]

=f ′k(d̃k)

[4xk
li

cos θ − 4yk
li

sin θ

]
, and

lim
hk→0

∂H̃
∂y

=f ′k(d̃k)

[4xk
li

sin θ +
4yk
li

cos θ

]
. (8.17)

We know that the gradient

lim
hk→0

∇H =

(
f ′k(dk)

4xk
lk

, f ′k(dk)
4yk
lk

)
. (8.18)

From (8.18) and (8.17) it can be seen that in the limit hk → 0

∇H̃
||∇H̃||

= Rθ

( ∇H
||∇H||

)
. (8.19)

Therefore, we can achieve the desired rotation of the reconstruction curve by
rotating the local coordinates around points Q in the opposite direction.

8.4.4.1 Smooth rotations of the reconstruction curve

In order to generate a smooth distortion H̃−1(0) of the curve H−1(0) the neigh-
borhoods of points Q must be carefully chosen. A natural neighborhood for
points in Q is their respective Voronoi polygons. However, a constant rotation
for all the points in a particular Voronoi region results in a discontinuous curve
at the boundary of these polygons. Therefore, we seek a continuous weight
function wpi inside the Voronoi region VQ(pi) of any generator pi ∈ Q such that

wpi(pi) = 1, and

wpi(∂VQ(pi)) = 0. (8.20)

These requirements on the weight function impose a smooth transition of ro-
tations from one influence zone to another and ensure little or no rotation at
points far away from the centers of rotations. For any point p inside VQ(pi),

consider its nearest neighbor pi and the next nearest neighbor p
(2)
i ∈ Q. Denote

by d1(p) the distance between p and pi and by d2(p) the one between p and p
(2)
i .

We can formulate the required weight function as

wpi(p) =
d2(p)− d1(p)

d2(p) + d1(p)
. (8.21)
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The first nearest neighbor pi is the generator point pi of VQ(pi). The second

nearest neighbor p
(2)
i can be found by computing the second order Voronoi

diagram of Q. The weight function resulting from (8.21) is shown in Figure 8.7.
The complete method is outlined in Algorithm 8.1.
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Figure 8.7: Weights based on higher order Voronoi diagram.

8.5 Results

We test our reconstruction method on a hand drawn curve intersected by a set
of arbitrarily oriented lines. The lines yield a polygonal tessellation in the plane.
We reconstruct the original curve from the intersections over the polygons of
this tessellation.

The choice of ψ influences the overall shape of the curve H−1(0). This curve is
guaranteed to pass through the end-points of the intersections. Figures 8.8(a),
8.9(a), 8.10(a), and 8.11(a) shows results of our reconstruction for four choices of
the function. The proof given in Appendix A shows that the reconstructed curve
is always orthogonal to the intersecting lines. For ψ(x) = x, the orthogonality
is not apparent in Figure 8.8(a) at a large scale. We note that for a flatter curve
ψ, the reconstruction becomes orthogonal to the line segments earlier while
approaching them. This can be seen for ψ(x) = 2x4 + 3x6 in Figure 8.10(a).

We also show results of the reconstructed curve after applying local rotations at
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Input: {Si,j} on {Li}, N̂ at Q
Output: R
Define an edge map fi on each Li using {Si,j}
Partition Bbox into polygonal tiles {Gk}k<pk=0 with {Li}
Compute first order Voronoi diagram V1

q of Q
Compute second order Voronoi diagram V2

q of Q
Compute w from V1

Q and V2
Q

for k ∈ [0, p− 1] do
Compute Voronoi diagram Vk of Gk
for x ∈ Gk do

Let xc ∈ Q be the generator of Voronoi polygon of x
x̃← xc + R(−θ)(x− xc)
Compute {λi(x̃)}i<si=0 for all s edges of Gk
Compute di(x̃) for all edges of Gk
Compose H̃k

end

end

H̃ ←
⋃
H̃k

R ← ker H̃
Algorithm 8.1: The reconstruction algorithm.

points Q. The local rotations distort the original curve in the desired direction
as seen in Figures 8.8(b), 8.9(b), 8.10(b), and 8.11(b).

The next section discusses accuracy statistics of our method based on how much
information is provided to the reconstruction algorithm in terms of the number
of intersections.

8.5.1 Reconstruction accuracy

A good reconstruction depends on the choice of cutting lines placed carefully
to cover salient geometric features of the object to be reconstructed. In order
to test the reconstruction algorithm for accuracy, we sample intersecting lines
from the skeleton of the test object. We choose to sample the skeleton of the
object since it captures the salient details of the object. To show the dependence
of reconstruction accuracy on the number of intersecting lines, a hierarchy of
skeletons is used.

A skeleton hierarchy is computed from a straight line skeleton [2]. The hierarchy



138
Homotopy based 2D topologic reconstruction from arbitrary linear cross

sections

(a) H−1(0) (b) H̃−1(0)

Figure 8.8: Reconstruction with ψ(x) = x.

(a) H−1(0) (b) H̃−1(0)

Figure 8.9: Reconstruction with ψ(x) = x/L.
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(a) H−1(0) (b) H̃−1(0)

Figure 8.10: Reconstruction with ψ(x) = 2x4 + 3x6.

(a) H−1(0) (b) H̃−1(0)

Figure 8.11: Reconstruction with ψ(x) = −(e−1)e
−1

+ (x+ e−1)(x+e−1).
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provides an incremental simplification of the skeleton based on discrete curve
evolution of the skeleton branches [77, 8]. Curve simplification by discrete curve
evolution uses local angles at every vertex of the curve to assign a relevance
to each vertex. Based on the computed relevance values, the curve is evolved
(simplified) by deletion of vertices. Figure 8.12 shows such a skeleton hierarchy
with five levels. The base skeleton is computed using the straight line skeleton
module of the CGAL library [24] .

Sampled segments from the skeleton at every level are used as cutting lines
for reconstruction. Thus, for every level of hierarchy of skeletons, we compute a
reconstruction of the object. We next compute various error metrics for different
reconstructions thus obtained. To get a comprehensive idea of the reconstruction
accuracy, metrics based on area, mean distance error, and curve lengths are
considered here.

Denoting the area of the model object by Amod, the area of the reconstruction
at level i by Airec, the absolute difference of Amod and Airec is given by

Aidiff =
(
Amod

⋃
Airec

)
−
(
Amod

⋂
Airec

)
. (8.22)

Figure 8.12 shows Aidiff for different levels of hierarchy. Another important

indicator of reconstruction accuracy is the ratio of areas Airec/Amod. Both
of these measures are shown in Table 8.1. The tests show that with better
sampling, the reconstruction accuracy increases. Also the ratio of areas indicate
that the reconstructed curve has a slightly larger area than the original curve.

Table 8.1: Reconstruction accuracy with respect to areas.

Amod = 0.3228

Level Edges Airec Aidiff %

(
Aidiff
Amod

)
Airec
Amod

1 59 0.3266 0.0123 3.8 1.0119
2 40 0.3247 0.0168 5.2 1.0058
3 29 0.3279 0.0297 9.2 1.0160
4 23 0.3287 0.0333 10.3 1.0182
5 21 0.3283 0.0349 10.8 1.0171

The Hausdorff distance is a good measure of the distance between two manifolds
[96]. Hausdorff distance, dH , between two curves L and L′ is given by

dH(L,L′) = sup
x0∈L

inf
x1∈L′

d(x, x′), (8.23)
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(a) Level 1 with 59 edges (b) Level 2 with 40 edges

(c) Level 3 with 29 edges (d) Level 4 with 23 edges

(e) Level 5 with 21 edges

Figure 8.12: Skeleton hierarchy and reconstruction accuracy.
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where d(·, ·) is an appropriate metric for measuring distance between two points
in a metric space. A mean value of the Hausdorff distance can be defined as [6]

dm(L,L′) =
1

|L|

∫
x∈L

inf
x′∈L′

d(x, x′)dL, (8.24)

where |L| is the length of the curve L. A relative value of this distance is
computed with respect to the bounding box of the object, as shown in Table 8.2.
Also shown in the table is the length ratio of the reconstructed curve with respect
to the original object contour. Here again, the tests show that a better sampling
increases the accuracy of the reconstruction. However, we must point out that
a topologically correct reconstruction is achievable with as few cutting lines as
there are salient features in the object.

Table 8.2: Reconstruction accuracy with respect to lengths.

Level Edges %

(
dH
Ldiag

)
Lirec
Lmod

1 59 0.75 1.0842
2 40 0.82 1.0919
3 29 1.02 1.1227
4 23 1.08 1.1191
5 21 1.11 1.1186

8.5.2 Comparison

A comparison of our reconstruction with the results of Memari and Boissonnat
[89] shows some of the shortcomings of their method that can be overcome
with a reconstruction using continuous deformations. Reconstruction method
proposed by Memari and Boissonnat is derived from the Delaunay complex of
the cross sections. The reconstruction curve (see Figure 8.13) is only C0 and
misses some of the high curvature regions of the original object boundary.

We produce comparative statistics for our reconstruction with the method by
Memari and Boissonnat [89]. The measures used for comparison are based
on area and length of the reconstructed curve as introduced in the previous
subsection. Table 8.3 shows reconstruction accuracy of three methods for the
set of intersection lines shown in Figure 8.3. Here, Homotopy1 refers to the
reconstruction using continuous deformations with no tangent alignment and
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Figure 8.13: Piecewise linear reconstruction using algorithm by [89].

Homotopy2 refers to the reconstruction resulting from tangent alignment, both
with ψ(x) = x. Since [89] results in a piecewise linear reconstruction, the area
(possibly) and length of the curve are underestimated. The ratio of absolute
difference of area with the area of the model is low for Memari’s reconstruction
that matches up with Homotopy2 reconstruction, but the relative Hausdorff
measure goes bad and turns out to be more than double of that obtained with
either of the Homotopy based reconstructions. Further, the relative ratio of the
lengths of the reconstruction and the original object shows that homotopy based
reconstructions perform better with estimating the length of the object.

Table 8.3: Comparison of reconstructions.

Method %

(Adiff
Amod

) Arec
Amod

%

(
dH
Ldiag

)
Lrec
Lmod

Memari 14.6025 0.9652 3.9323 0.9149
Homotopy1 17.5470 1.0407 1.4831 1.0256
Homotopy2 14.6690 1.0425 1.3243 1.0303
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8.6 Conclusion

In this work, we have presented a novel method of curve reconstruction from
arbitrary cross sections in a planar setting. The presented algorithm uses con-
tinuous deformations to reconstruct the object smoothly. We also introduced
generalized barycentric coordinates for polygons defined on its edges. The pre-
sented method is general in nature and can be applied to higher dimensions.
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Abstract

One of the challenging problems in computer vision is object reconstruc-

tion from cross sections. In this paper, we address the problem of 2D

object reconstruction from arbitrary linear cross sections. This problem

has not been much discussed in the literature, but holds great importance

since it lifts the requirement of order within the cross sections in a re-

construction problem, consequently making the reconstruction problem

harder. Our approach to the reconstruction is via continuous deforma-

tions of line intersections in the plane. We define Voronoi diagram based
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barycentric coordinates on the edges of n-sided convex polygons as the

area stolen by any point inside a polygon from the Voronoi regions of

each open oriented line segment bounding the polygon. These allow us to

formulate homotopies on edges of the polygons from which the underly-

ing object can be reconstructed. We provide results of the reconstruction

including the necessary derivation of the gradient at polygon edges.

9.1 Introduction

Object reconstruction from cross sections is a well known problem. Generally a
spatial ordering within the cross sections aids reconstruction. We consider the
problem of reconstructing an object from arbitrary linear cross sections. Such
cross sectional data can be obtained from many physical devices. An example
is acoustic probes that obtain range information of the object by sending an
acoustic pulse.

The problem of reconstruction from arbitrary cross sections has been studied
by [125, 83, 89]. Sidlesky et al. [125] define sampling conditions on the recon-
struction, while in our reconstruction algorithm, we allow the sampling to be
sparse. Methods proposed by Liu et al. [83], and Memari and Boissonnat [89]
are both based on Voronoi diagrams. Memari and Boissonnat also provide rig-
orous proof of their reconstruction. Our approach to reconstruction considers
the “presence” or “absence” of information along any intersecting line. This is
in contrast to [125], where the authors consider that a line not intersecting the
object does not contribute to the reconstruction. In our algorithm, such a line
is considered to contribute to the reconstruction by defining a linear section, no
part of which belongs to the reconstruction.

Memari and Boissonnat [89] provide a topological reconstruction method utiliz-
ing the Delaunay triagulation of the set of segments of intersecting lines. They
claim an improvement over the method by Liu et al. [83] by producing recon-
structions that are not topologically effected by lines that do not intersect the
object under consideration. Their reconstruction boundary, however, is a piece-
wise linear approximation of the boundary of the original object. In this work,
we produce smooth reconstruction of the object via continuous deformations.
Therefore, we anticipate better reconstruction accuracy compared to the work
by Memari and Boissonnat [89].

This paper is organized as follows. Section 9.2 defines the reconstruction prob-
lem mathematically. We introduce the concept of homotopy continuation in
section 9.3 followed by the main reconstruction algorithm in section 9.4. We
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discuss our Voronoi diagram based edge barycentric coordinates on convex poly-
gons here and provide details of our homotopy based reconstruction algorithm.
Finally we provide results of the reconstruction.

9.2 Problem definition

Given a set of lines {Li : i ∈ [0, n − 1]} in a plane, intersecting an object O to
generate segments {Si,j : j ∈ [0,mi − 1]}, the problem of object reconstruction
from arbitrary linear cross sections is to reconstruct object R from Si,j such
that

Li
⋂
O = Li

⋂
R, (9.1)

and R is similar to O. In this context we impose no restriction on the ordering
or arrangement of the intersecting lines. One desired trait of the reconstruc-
tion is smoothness, and we will show that the proposed method of continuous
deformations results in a reconstruction that is at least C1.

In the next section, we define homotopy continuation that forms the basis of
our reconstruction algorithm.

9.3 Homotopy continuation

Homotopy is concerned with identification of paths between objects that can be
continuously deformed into each other. The history of study of homotopy dates
back in the late 1920’s when the the homotopy theory was formalized.

Definition 9.1 Let f : X 7→ Y and g : X 7→ Y be two continuous maps
between topological spaces X and Y . These maps are called homotopic, f ' g,
if there is a homotopy or a continuous map H : X × [0, 1] 7→ Y between them,
such that H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X.

Therefore, we can write the homotopy Hλ : X 7→ Y as

Hλ(x) = H(x, λ), (9.2)

and thus, H0 = f and H1 = g. One can visualize how the deformation Hλ
continuously takes f to g (see Figure 9.1) by varying the parameter λ.
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Figure 9.1: Continuous deformation.

One can impose additional constraints on the deformation path. For example, a
specific constraint on fixed endpoints leads to homotopy of paths. For two pairs
of homotopic maps X −−−→

f'g
Y −−−→

f̄'ḡ
Z, the compositions f̄ ◦ f and ḡ ◦ g are also

homotopic via the composition H̄λ ◦ Hλ. Further, for two pairs of homotopic
maps fi ' gi : Xi → Yi, i = 1, 2, the maps f1×f2 and g1×g2 from X1×X2 into

Y1 × Y2 are also homotopic via H(1)
λ ×H

(2)
λ , in which case it is called a product

homotopy [66].

Continuous deformations have been successfully used to solve non-linear system
of equations that are otherwise hard to solve. A homotopy tries to solve a
difficult problem with unknown solutions by starting with a simple problem with
known solutions. Stable predictor-corrector and piecewise-linear methods for
solving such problems exist (see Allgower and Georg [3]). The system H(x, λ) =
0 implicitly defines a curve or one-manifold of solution points as λ varies in [0, 1]
and x is fixed.

Given smooth H and existence of u0 ∈ RN+1 such that H(u0) = 0 and
rank(H′(u0)) = N , there exists a smooth curve c : α ∈ J 7→ c(α) ∈ RN+1 for
some open interval J containing zero such that for all α ∈ J (Allgower and
Georg [3])

1. c(0) = u0,

2. H(c(α)) = 0,

3. rank(H′(c(α))) = N ,

4. c′(α) 6= 0.

In this work, we use homotopy or continuous deformations for object recon-
struction. This is discussed in the next section.
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9.4 Reconstruction algorithm

Starting with a set of cross sections {Si,j} for lines {Li} in a plane, we restrict
reconstruction in the bounding box Bbox of the cross sections. The set of lines
{Li} partition Bbox into a set of convex polygons {Gk : k ∈ [0, p − 1]}. This is
shown in Figure 9.2 where O is drawn dotted, the set of lines are shown dashed
with the cross sections as thick solid lines, and the boundary of the bounding box
shown dashed. Our reconstruction algorithm consists of assigning a homotopy
Hk to every Gk. The reconstruction is then obtained as

R =
⋃
k

{(x, y) : Hk = 0}. (9.3)

Figure 9.2: A set of lines intersecting an object (dotted).

A homotopy can be seen as a smooth transition from one map to another. We
can extend this definition to multiple maps by defining a homotopy in multiple
variables

H(λ0, λ1, · · · , λs−1) =

s−1∑
t=0

ftλt, (9.4)

with
s−1∑
t=0

λt = 1. (9.5)
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9.4.1 Edge maps

Using (9.4), a smooth map can be defined over Gk for a choice of maps {ft :
t ∈ [0, sk − 1]} defined on sk edges of Gk. Let these maps be called edge maps.
For continuity across all polygons, the definition of the edge maps must be
consistent. Since, polygon edges are a subset of the cross section lines, it suffices
to define edge maps over {Li}.

An edge map fi should completely describe the boundary, interior and exterior
of the intersection of Li with O. To define fi, we associate a local coordinate
system with each line Li whose x-axis measures distance r along it from a chosen
origin. Given abscissae rq, q ∈ [0, 2mi − 1] of the intersections Si,j , we define
the corresponding edge map as a piecewise quadratic polynomial

fi(r) =

2mi−2∑
q=0

αq(−r2 + r(rq + rq+1)− rqrq+1))

(rq+1 − rq)
, (9.6)

where αq is the positive gradient
∣∣d f

d r

∣∣
r=rq

defined as

αq = (−1)q+1α0, (9.7)

with α0 being a chosen positive slope at r0. Figure 9.3 illustrates such an edge
map.

Figure 9.3: Piecewise quadratic function as an edge map.

9.4.2 Barycentric coordinates

It is natural to consider barycentric coordinates of a polygon as homotopy vari-
ables because of the two useful properties that they offer. Barycentric coordi-
nates span a complete polygon and are a partition of unity. Traditional barycen-
tric coordinates for triangles (and simplices in general) are defined by its ver-
tices. Relevant generalizations of barycentric coordinates to n-sided polygons
were provided by Wachspress [138] and later by Meyer et al. [90]. In the current
context, we define barycentric coordinates in terms of the edges of a polygon
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rather than the vertices. Such a definition allows us to apply the concepts de-
veloped so far to associate a suitable homotopy to a polygon. We define Voronoi
diagram based barycentric coordinates of edges for an n-sided polygon.

An interesting class of barycentric coordinates can be derived from Voronoi
diagram of line segments and a point. Consider again a polygon G and a point
p inside it. The Voronoi region of a point inside a polygon is a closed region of
piecewise parabolic arcs as shown in Figure 9.4. From the Voronoi diagram of
the edges {ei} in a polygon, introduction of a point p steals an area from two
or more existing Voronoi regions. If the stolen area for any edge ei and p is
denoted by Ai, the barycentric coordinates for the edge can be written as

λi =
Ai

s−1∑
j=0

Aj
, i ∈ [0, s− 1], (9.8)

Figure 9.4: Voronoi diagram of polygon and a point inside.

Area Ai can be computed as the area between the parabolic arc and involved
angle bisectors. Again, the barycentric coordinates defined in this way satisfy
positivity, partition of unity and continuity. In the limiting case as p approaches
one of the sides ek, the stolen area Ak becomes very small, but simultaneously
areas Ai,i 6=k become smaller (and eventually zero) by a rate higher than that of
the former. Thus as p approaches ek, λk → 1, and λi,i 6=k → 0.
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9.4.3 Homotopy

Equipped with the above defined edge maps and barycentric coordinates for any
polygon Gk, we define a homotopy Hk in sk variables as

Hk(p) =

sk−1∑
i=0

fi (di(p))λi(p), (9.9)

where di(p) is the distance along line Lk from a chosen origin Ok on it until the
foot of the perpendicular from point p . We can write

di(p) = ||Ok − pi||+ (p− pi)T
(pi+1 − pi)

li
, (9.10)

where pi+1 and pi are two end points of an edge ei of Gk lying on Lk. Homotopy
(9.9) continuously deforms edge maps fi within the polygon and thus generates
a smooth field. It can be seen as a linear combination of edge maps fi with
barycentric coordinates λi. We can further extend this so called linear homotopy
to a non-linear homotopy as

Hk(p, η) =

sk−1∑
i=0

fi (di(p))λi(p)
η, (9.11)

Across polygons, the homotopy (9.9) is continuous and at least C1 smooth. We
prove this for a planar triangulation in Appendix B. Results for a polygonal
tessellation directly follow from the proof.

At all the intersection points of the lines with the boundary of the object,
q : {Li

⋂
∂O}, the generated curve H−1(0) is orthogonal to lines Li. There-

fore, the resulting reconstruction is somewhat unnatural. Given normals at the
intersection points q (which is the case with many range scanning physical de-
vices), we propose a tangent alignment scheme for the resulting curve by locally
warping the domain of the homotopy field.

9.4.4 Tangent alignment using local space rotations

Given unit normals N̂ at intersection points q, the reconstruction can be con-
strained to be normally aligned to these normals at these points. We enforce
this constraint by local space rotations around points q. The reconstruction
c = H−1(0) is orthogonal to the intersecting lines at q. Starting with a point
p in the neighborhood of one of the points pc of q lying on Lk, we rotate p
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Figure 9.5: Rotation of a point for tangent alignment.

about pc by an angle −θ to give point p̃ in the plane (see Figure 9.5). The angle

θ is chosen to be the signed angle between N̂ and ∇Lk at the point pc. The
resulting homotopy H̃ for a polygon G can be written as

H̃ =

sk−1∑
i=0

fi

(
d̃i

)
λ̃i, (9.12)

where,

d̃i = di(p̃) = ||Ok − pi||+ (p̃− pi)T
(pi+1 − pi)

li
, and

λ̃i = λi(p̃) =
Ãi

s−1∑
j=0

Ãj
, i ∈ [0, s− 1].

The rotated point p̃ can be written as

p̃ =pc + R(−θ)(p− pc), (9.13)

where R is the rotation matrix

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
. (9.14)

The modified gradient of the homotopy field in the neighborhood of pc can be
now computed using chain rule

∇H̃ =

s−1∑
i=0

(
f ′i(d̃i)∇d̃iλ̃i + fi(d̃i)∇λ̃i

)
. (9.15)
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In the limit as point p→ pc (or the orthogonal distance to Lk, µk → 0 ), using
a similar derivation as in Appendix B, we can write

lim
µk→0

∇H̃ = f ′k(d̃i)∇d̃k (9.16)

Computing the gradient of d̃k,

∇d̃k = ∇
(

(p̃− pk)T
(pk+1 − pk)

lk

)
= ∇

(
(pc + R(−θ)(p− pc)− pk)

T (pk+1 − pk)

lk

)
= R(−θ)T (pk+1 − pk)

lk
= R(θ)∇dk (9.17)

Therefore,

lim
µk→0

∇H̃ = f ′k(d̃i)R(θ)∇dk (9.18)

We know that the gradient

lim
µk→0

∇H = f ′k(di)∇dk. (9.19)

From (9.19) and (9.18) it can be seen that in the limit µk → 0

∇H̃
||∇H̃||

= R(θ)

( ∇H
||∇H||

)
. (9.20)

Therefore, we can achieve the desired rotation of the reconstruction curve by
rotating the local coordinates around the points of interest in the opposite di-
rection.

9.4.5 Smooth rotations of the reconstruction curve

In order to generate a smooth distortion H̃−1(0) of the curve H−1(0) the neigh-
borhoods of points q must be carefully chosen. A natural neighborhood for
points in q is their respective Voronoi polygons. However, a constant rotation
for all the points in a particular Voronoi region results in a discontinuous curve
at the boundary of these polygons. Therefore, we seek a continuous weight
function wpi inside a Voronoi region Vq(pi) of any point pi of q such that

wpi(pi) = 1, and

wpi(∂Vq(pi)) = 0. (9.21)
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These requirements on the weight function impose a smooth transition of ro-
tations from one influence zone to another and ensure little or no rotation at
points far away from the centers of rotations. For any point p inside Vq(pi), con-

sider its nearest neighbor p
(1)
i and the next nearest neighbor p

(2)
i from the set

of generators q. Denote by d1(p) the distance between p and p
(1)
i and by d2(p)

the one between p and p
(2)
i . We can formulate the required weight function as

wpi(p) =
d2(p)− d1(p)

d2(p) + d1(p)
. (9.22)

The first nearest neighbor p
(1)
i is the generator point pi of Vq(pi). The second

nearest neighbor p
(2)
i can be found by computing the second order voronoi di-

agram of q. The weight function resulting from (9.22) is shown in Figure 9.6.
We outline the complete algorithm in Algorithm 9.1.
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Figure 9.6: Weights based on higher order Voronoi diagram.

9.5 Results

We test our reconstruction method on a hand drawn curve intersected by a set
of arbitrarily oriented lines. The lines yield a polygonal tessellation in the plane.
We reconstruct the original curve from the intersections over the polygons of
this tessellation.
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Input: {Si,j} on {Li}, N̂ at q
Output: R
Define an edge map fi on each Li using {Si,j}
Partition Bbox into polygonal tiles {Gk} with {Li}
Compute first order Voronoi diagram V1

q of q
Compute second order Voronoi diagram V2

q of q
Compute w from V1

q and V2
q

for k ∈ [0, p− 1] do
Compute Voronoi diagram Vk of Gk
for x ∈ Gk do

Let xc ∈ q be the generator of Voronoi polygon of x
x̃← xc + R(−θ)(x− xc)
Compute {λi(x̃)} for all edges of Gk using Vk
Compute di(x̃) for all edges of Gk
Compute H̃k

end

end

H̃ ←
⋃
H̃k

R ← ker H̃
Algorithm 9.1: The reconstruction algorithm.

This reconstructed curve is guaranteed to pass through the end-points of the
intersections. Figures 9.7(a), and 9.8(a) show results of our reconstruction for
the linear and the non-linear homotopies. The reconstructed curve is always
orthogonal to the intersecting lines. The orthogonality is not apparent in Fig-
ure 9.7(a) at a large scale, but is more visible for the non-linear homotopy with
η = 2 in Figure 9.8(a).

We also show results of the reconstructed curve after applying local rotations at
points q. The local rotations distort the original curve in the desired direction
as seen in Figures 9.7(b), and 9.8(b).

9.6 Conclusion

In this work, we have presented a novel method of curve reconstruction from
arbitrary cross sections in a planar setting. The presented algorithm uses con-
tinuous deformations to reconstruct the object smoothly. We also introduced
generalized barycentric coordinates for polygons defined on its edges using the
line and point Voronoi diagram. The presented method is general in nature and
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(a) H−1(0) (b) H̃−1(0)

Figure 9.7: Reconstruction with linear homotopy.

(a) H−1(0) (b) H̃−1(0)

Figure 9.8: Reconstruction with non-linear homotopy.
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can be applied to higher dimensions.



Chapter 10

Discussion

This chapter puts the presented work in perspective of the objectives of this
research and summarizes the thesis. A discussion is followed by a conclusion
and future directions.

10.1 Discussion

The emphasis in this research has been to develop methods for object recon-
struction via continuous deformations. While homotopy based methods have
a solid topological background, they also provide natural insight into smoothly
generating what is missing between the bits and pieces of available information.
Various homotopies for smooth reconstruction are developed here and their suit-
ability for reconstruction from underwater acoustic signals is shown. Validation
of the reconstruction is shown on synthetic examples. The next subsections
discuss some of the important points of this research work.
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10.1.1 Comparison of level set method and homotopy re-
construction

Level set method has been suggested as effective means of segmentation of acous-
tic data in this research. Chapter 5 [115] introduces level set method and sug-
gests a noise suppression scheme for reconstruction of moving fish in acoustic
images. Level set methods are robust and produce topologically viable results.
These are also the key arguments of using this method for segmentation in the
suggested homotopy reconstruction framework. The level set method can also
be seen as a reconstruction method and therefore, it is of interest to compare it
with homotopy based reconstruction. Both of these methods have similarities
and differences as outlined below.

Topological correctness

Both level set method and the suggested homotopy based reconstruction meth-
ods work in an implicit setting. Level set method evolves a deformable interface
that aligns itself to various features of the image (in R2 and R3). Such an in-
terface can be thought of as an elastic membrane that can be stretched to fit
on to the desired object. Since, the interface is defined as a zero level set of
an implicit function, topological changes are very well handled during deforma-
tion. On the other hand, Homotopy based reconstruction methods presented
here define the reconstruction as the zero level set of a homotopy field that is
constructed based on successive input signals. Between any two signals, the de-
fined homotopy smoothly reconstructs the information. While the two methods
are fundamentally different in the way a solution is obtained, they both benefit
from the implicit setting they operate in.

Geometric smoothness

Traditional level set method obtain a solution of a time varying PDE in a
tri-linear fashion by discretizing the equation and updating the implicit field.
Therefore the resulting surface is C0. Bajaj et al. [10, 11, 14] suggest a C2

smooth solution to the level set equation that updates the implicit field by us-
ing a tri-cubic spline representation for the higher order terms in the level set
PDE. For the homotopy based methods, C0, C1, and C2 smooth homotopies are
suggested in Chapter 7 [117]. The smoothness of the homotopy can be increased
to any desired order by increasing the degree of the polynomial embedded in
the beam (as a beam function) and by increasing the order of the homotopy via
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the homotopy parameter λ. Therefore, a homotopy based reconstruction can be
made as smooth as desired.

Choice of parameters

Extraction of useful features in the level set framework rests on a suitable choice
of parameters that keep a balance between the smoothness of the resulting sur-
face and extraction of sharp features of objects. In the homotopy reconstruction
framework, the smoothness is built into the reconstruction via choice of beam
functions and the homotopy parameter. Sharp features result from singulari-
ties in the solution to the homotopy system. The present choice of piecewise
quadratic beam functions is discussed in next subsection.

Computational burden

Level set methods are computationally expensive since an iterative solution to
the governing PDE is required until convergence is reached. In the traditional
level set method, the underlying implicit function is also required to be close
to a signed distance field. Thus, a single solution step in the iteration involves
a PDE update step followed by a redistancing (or reinitialization) step to keep
the implicit a signed distance field. Redistancing is generally performed by
solving (iteratively) the Eikonal equation [101] or by employing the Fast March-
ing method [134], for which efficient narrow-band implementations exist. Even
though the PDE evolution is inherently parallel in nature, volumetric level set
methods can still be slow due to their iterative nature. This is in contrast to the
homotopy reconstruction method that involves formulating homotopies for pairs
of beams and deriving a homotopy field from these. The method is non-iterative
in nature and once the homotopy field is computed, the surface is extracted in a
single step. A complexity analysis of the homotopy based reconstruction algo-
rithm is discussed in section 7.7. Thus, the computational cost of the homotopy
based reconstruction is lower and can be made real-time with the use of GPU
assisted reconstruction.

10.1.2 Choice of beam functions in homotopy reconstruc-
tion

Piecewise-quadratic functions were considered in Chapter 7 as the choice of
beam functions that constitute initial and terminal homotopy maps. This choice
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reflects the facts that quadratic equations are simple to solve analytically, a
piecewise quadratic function is computationally inexpensive to formulate (i.e.,
the coefficients of piecewise quadratic functions are trivial to derive), and such
a beam function has only one extrema between any two roots. These prop-
erties make sure that the reconstruction curve can be decomposed into parts
containing either

• monotonic chains of the reconstructed curve (or a surface in R3) that start
from the initial map and end at the terminal map, or

• simple curves that start and end at the initial map (or the terminal map)
with exactly one extrema in between the curve branch.

This is shown in Figure 10.1 with critical points marked in red. Instead of
a piecewise quadratic polynomial, a higher order piecewise-polynomial is also
possible.
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Figure 10.1: Decomposition of the reconstruction curve. Points marked in red
indicate the location of extrema.

10.1.3 Parallel nature of algorithms

It is worth noting that the developed algorithms are highly parallel in nature
and are suitable for computation on a GPU or in a parallel CPU environment.
This is crucial for near real-time performance of the method to be usable in
commercial systems (for example in sonar systems in ships). At the moment,
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Aquanaut provides an OpenMP parallelization of the reconstruction routines.
CUDA based GPU solver has been developed for the level set segmentation of
volumetric images.

10.1.4 Generalization to higher dimensions

Chapter 7 presents reconstructions in R2 and R3, while Chapters 8 and 9 show
the results of reconstruction from arbitrary cross sections in R2. The presented
reconstruction methods are generic in nature and can be easily generalized to
higher dimensions.

A physically realistic generalization of the homotopy reconstruction algorithm
[117] is in space-time reconstruction of objects. Such a problem is very com-
monly encountered in reconstructing moving objects. This problem can be topo-
logically challenging if the objects under consideration also change their shapes
(non-rigid objects). For a time varying signal S(x, t) : R3×R 7→ R, time-varying
beam functions f(x, t) : R3×R 7→ R can be assigned to the beams. A homotopy
then takes the generalized form of (7.14)

Hi,j,k(x, t, α, β, γ) = Hi,j(x, t, α)⊗Hj,k(x, t, β)⊗Hk,i(x, t, γ).

An interesting generalization of the problem of reconstruction from arbitrary
cross sections [118] is 3D reconstruction from arbitrary cutting planes. These
cutting planes partition the domain of computation into polyhedra, and also
embed the intersection with the object. Similar to the approach suggested in
Chapters 8 and 9 [118, 116], a function f : R2 7→ R can be embedded in a
cutting plane such that ker(f) represents the boundary of this intersection. An
example of one such function is the signed distance function. Higher degree
polynomial functions can be designed based on this distance function. A multi-
variate homotopy can then be constructed from the functions defined previously
on the faces of a polyhedron. A possible parameterization of such a homotopy is
with respect to the orthogonal distance of any point inside the polyhedron to the
polyhedron faces (see Figure 10.2). Parameterization in terms of the Voronoi
volume (a volume consisting of a paraboloid face and planar faces) stolen by a
point inside the polyhedron is another choice. A zero level set of the derived
homotopy field provides a reconstruction surface.
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Figure 10.2: Reconstruction from arbitrary cutting planes in R3.

10.2 Conclusion

The main goal set forth in this research was to apply the method of continuous
deformation to object reconstruction from acoustic signals. The project started
with a survey of various techniques for volumetric segmentation. Level set
method is explored as an effective means of segmentation and is adapted for
acoustic volume segmentation as shown in Chapter 5 [115]. For large volume
processing, CUDA based streaming GPU solver is designed. The solver is further
enhanced with a higher-order, and multi-domain level set method in as described
in Chapter 6 [123]. Results on medical tomography and microscopy volumes are
shown and reconstruction accuracy is discussed.

The linear and non-linear homotopy methods for reconstruction were first de-
signed and subsequently refined iteratively to derive the higher order homotopy
methods in Chapter 7 [117]. The linear homotopy surface is piecewise mono-
tonic, but is only C0 smooth, while the non-linear surface is Cn−1 smooth but
suffers from the stair-casing effect in the reconstructed surface. The local na-
ture of the linear homotopy is improved by extending it to the cubic spline
homotopy which is global in nature. A computationally faster form of the cubic
spline homotopy is formulated as the B-spline homotopy. Although the cubic
spline homotopy generates a smooth C2 surface with no artifacts at the border
of two beams, it is not piecewise monotonic. This problem manifests itself as
unnatural bumps on the surface near sharp corners (due to undesired extrema
on the surface). This problem is addressed in the design of shape preserving or
monotone cubic homotopy. The generated surface is C1 smooth at the beam
boundaries and C2 smooth otherwise.

An offshoot of reconstruction from linear cross sections was the problem of
reconstruction from arbitrary cross sections addressed in Chapters 8 and 9
[118, 116]. Such a problem is a natural extension of the existing one since or-
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dering in cross sections might not always be present. This problem is discussed
in context of smooth 2D object reconstruction. The interesting part here is to
design barycentric coordinates based on edges of a polygon. Classical vertex
based barycentric coordinates cannot be used here since the information of ob-
ject intersection is associated with the polygon edges and not with the polygon
vertices. It is proved that the reconstructed object is at least C1 smooth. The
boundary of the reconstruction is orthogonal to the intersecting lines. If infor-
mation about the normals at the extremities of the intersections along beams is
known, the orthogonality can be eliminated by means of local space rotations
around these extremities. The suggested method is easily extensible to higher
dimensions as discussed before in subsection 10.1.4.

10.3 Future directions

The developed reconstruction methods are applicable to real world sonar data
and an immediate extension is to incorporate rotations and translations in the
sonar instrument caused by vessel movement and turbulence in the water during
a marine survey (see Figure 10.3). The motion of the vessel, assumed piecewise-

Figure 10.3: Tilt and translation in real sonar systems.

linear, for a set of sonar observations between any two successive frames can be
parameterized in terms of

• the translation (t ∈ [t0, t1]) along the axis of motion,

• the three rotations (θ ∈ [θ0, θ1], φ ∈ [φ0, φ1], γ ∈ [γ0, γ1]) about the axis of
motion, and orthogonal to it.

For a two parameter family of homotopy H(α, β), β ∈ [0, 1] parameterizes the
homotopy within a sonar fan and α parameterizes the homotopy between suc-
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cessive sonar fans, where

α = f(t, θ, φ, γ), (10.1)

such that f : R4 7→ [0, 1] is a bijection. Instead of a piece-wise linear motion
profile, a spline representation can also be used.

In conclusion, this thesis provides a direction in the less explored tool of homo-
topy continuation for the much sought problem of object reconstruction. The
prospect of this research is in emergence of better algorithms for reconstruction.
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Smoothness in homotopies -
Barycentric coordinates based

on orthogonal distance

Proposition A.1 For a polygon G in a planar tessellation , we show that the
homotopy

H(p) =

s−1∑
i=0

fi (di(p))λi(p) = 0, (A.1)

is at least C1 for barycentric coordinates defined as

λi =
1/ψ(hi)

s−1∑
j=0

1/ψ(hj)

, i ∈ [0, s− 1], (A.2)

where ψ : R→ R is a monotonically increasing smooth function with ψ(0) = 0,
and hi is the orthogonal distance from point p to any edge ei of G.

Proof. We can prove this by showing that (A.1) is C0 and C1.

1. H = 0 is C0.
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From the properties of barycentric coordinates, we know that

s−1∑
i=0

λi = 1.

This implies that at any edge ek of G, λk = 1 and λi,i 6=k = 0. Therefore,
for any p lying on ek, H(p) = fk(dk(p)). The same holds for any other
polygon in the tessellation and since the functions fi are globally defined
on lines Li, H = 0 is C0.

2. H = 0 is C1.

In order to show that H = 0 is C1, we calculate the gradient of H at
any ek. For any point p(x, y) inside G and an edge ei connecting vertices
pi(xi, yi) and pi+1(xi+1, yi+1) of G, we note that the distance di along line
Lj (corresponding to ei) until the foot of the perpendicular from p is given
by

di =
4xi(x− xi) +4yi(y − yi)

li
, (A.3)

where 4xi = (xi+1 − xi), 4yi = (yi+1 − yi), and li is the length of ei.
Further, the orthogonal distance hi from p on to ei is given by

hi =
4yi(x− xi)−4xi(y − yi)

li
. (A.4)

We can compute the derivatives of di and hi as

∇di =

(
∂di
∂x

,
∂di
∂y

)
=

(4xi
li

,
4yi
li

)
(A.5)

∇hi =

(
∂hi
∂x

,
∂hi
∂y

)
=

(4yi
li
,−4xi

li

)
(A.6)
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We compute the derivative of λi as defined in (A.2)

∂λi
∂x

=
−1

(ψ(hi))2

ψ′(hi)
s−1∑
j=0

1/ψ(hj)

∂hi
∂x

+
1

ψ(hi)

−
s−1∑
j=0

−ψ′(hj)
(ψ(hj))2

∂hj
∂xs−1∑

j=0

1/ψ(hj)

2

=− λi
ψ′(hi)
ψ(hi)

∂hi
∂x

+ λi

s−1∑
j=0

λj
ψ′(hj)
ψ(hj)

∂hj
∂x

(A.7)

∂λi
∂y

=− λi
ψ′(hi)
ψ(hi)

∂hi
∂y

+ λi

s−1∑
j=0

λj
ψ′(hj)
ψ(hj)

∂hj
∂y

(A.8)

We can now compute the derivative of H w.r.t. x as

∂H
∂x

=

s−1∑
i=0

(
f ′i(di)

∂di
∂x

λi + fi(di)
∂λi
∂x

)
(A.9)

=

s−1∑
i=0

f ′i(di)∂di∂x
λi + fi(di)λi

−ψ′(hi)ψ(hi)

∂hi
∂x

+

s−1∑
j=0

λj
ψ′(hj)
ψ(hj)

∂hj
∂x


 .

In order to check continuity of H = 0 at ek (or at the corresponding line
Lk′), we are interested in the limit limhk→0∇H from two sides of the Lk′
shared by polygons G1 and G2. In G1, as hk → 0(1), we note that Tk → 0,
λk → 1, λi,i6=k → 0. Thus,

lim
hk→0(1)

∂H
∂x

=f ′k(dk)
∂dk
∂x
− fk(dk)

ψ′(hk)

ψ(hk)

∂hk
∂y

+ fk(dk)
ψ′(hk)

ψ(hk)

∂hk
∂y

=f ′k(dk)
4xk
lk

. (A.10)
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Therefore limit of the gradient ∇H as hk → 0 is

lim
hk→0

∇H =

(
f ′k(dk)

4xk
lk

, f ′k(dk)
4yk
lk

)
. (A.11)

For the line Lj passing through pi and pi+1,

Lj : 4yi(x− xi)−4xi(y − yi) = 0, (A.12)

the gradient is

∇Lj = (4yi,−4xi) . (A.13)

In G1, we see that limhk→0∇H ⊥ ∇Lj . On the other side of Lj in polygon
G2, the limit of the gradient of H gives the same result. This shows that
the gradients of H are equal from the two sides of Lj and are orthogonal
to the gradient of Lj .

Therefore, the reconstructed curve is at least C1. �
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Smoothness in homotopies -
Barycentric coordinates based

on stolen area

Proposition B.1 For a triangle T in a planar triangulation , we show that the
curve H−1(0) defined by the homotopy (9.9),

H(p) =

2∑
i=0

fi (di(p))λi(p) = 0, (B.1)

is at least C1 for barycentric coordinates based on the stolen area Ai for any
edge ei of T and point p, defined as

λi =
Ai

2∑
j=0

Aj
, i ∈ [0, 2]. (B.2)

Proof. We can prove this by showing that H−1(0) is C0 and C1.

1. H−1(0) is C0.
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From the properties of barycentric coordinates, we know that

2∑
i=0

λi = 1.

This implies that at any edge ek of T , λk = 1 and λi,i6=k = 0. Therefore, for any
p lying on ek, H(p) = fk(dk(p)). The same holds for any other triangle in the
triangulation and since the functions fi are globally defined on lines Li, H = 0
is C0.

2. H−1(0) is C1.

In order to show that H−1(0) is C1, we calculate the gradient of H at any ek.
The derivative of H is

∇H =

2∑
i=0

(f ′i(di)∇diλi + fi(di)∇λi) (B.3)

where di is the distance along line Lj corresponding to edge ei of the triangle.

The gradient of λi from (B.2) can be calculated using the chain rule as

∇λi =
∇Ai
2∑
j=0

Aj
− Ai 2∑

j=0

Aj

2

2∑
j=0

∇Aj

=
∇Ai
2∑
j=0

Aj
− λi

2∑
j=0

∇Aj
2∑
j=0

Aj
(B.4)

Using (B.3) and (B.4),

∇H =

2∑
i=0

f ′i(di)∇diλi + fi(di)


∇Ai
2∑
j=0

Aj
− λi

2∑
j=0

∇Aj
2∑
j=0

Aj



 (B.5)

To compute the gradient of H at the intersection of line Lj and the object, we
must take the derivative at a point p in the limit as p approaches line Lj . In
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this limit,

λk → 1

λi,i 6=k → 0 (B.6)

Before the gradient in the limit can be evaluated, the behavior of ∇Ai and Ai
should be analyzed. To do so, we define several quantities as following.

Consider the triangle T shown in Figure B.1. Let the vertices of T be denoted
by p0(x0, y0), p1(x1, y1), and p2(x2, y2), and the edges by e0 = (p1 − p0), e1 =
(p2−p1), and e2 = (p0−p2). Let an edge ei of T be parameterized by distance
α along it

ei : p = pi + α
(pi+1 − pi)

li
, (B.7)

where index i is to be taken in a circular sense in the triangle. The Voronoi
diagram of edges of T divide it internally in three regions. We consider a point
p lying in the Voronoi region of an edge ei of T (see Figure B.1).

Figure B.1: Parameterization along triangle edge.

A parabola with focus at point p and directrix ei is given by

Pi : µ(α) =
(α− αp)2

2µp
+
µp
2
, (B.8)
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where (α, µ) form an orthonormal basis, and

αp =(p− pi)T
(pi+1 − pi)

li
, (B.9)

µp =(p− pi)TM
(pi+1 − pi)T

li
, (B.10)

with

M =

[
0 1
−1 0

]
, (B.11)

and li is the length of ei.

Let the parabola Pi intersects the boundary of the Voronoi region at points
bi(α0, µ0) and bi+1(α1, µ1) respectively. Denote by q(αq, µq) the incenter of T .
The parabola can intersect the two angle bisectors of the triangle Bi : µ = k0α,
and Bi+1 : µ = k1(li − α), ki = tan(θi/2), in three possible ways

I. α1 ≤ αq: both branches of the parabola intersect Bi, and µm = k0αm,m =
{0, 1},

II. α0 ≥ αq: both branches of the parabola intersect Bi+1, and µm = k1(li −
αm),m = {0, 1}, and

III. α0 < αq and α1 > αq: the branches of the parabola intersect Bi and Bi+1

respectively, and µ0 = k0α0 and µ1 = k1(li − α1).

It is sufficient to treat one of these cases here. Considering case I, α0 and α1

are the roots of

α2 − 2α(αp + k0µp) + (α2
p + µ2

p) = 0. (B.12)

The areas to compute the barycentric coordinates can be written as

Ai = Apari +Atrii (B.13)

where, Apari is the area enclosed between the parabolic arc and line connecting
bi and bi+1, and Atrii is the area of the triangle connecting points bi, bi+1, and
q. Using (B.8)

Apari =
µ0 + µ1

2
(α1 − α0)

−
∫ α1

α0

(
(α− αp)2

2µp
+
µp
2

)
dα, (B.14)
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and

Atrii =
µ0 + µq

2
(αq − α0) +

µ1 + µq
2

(α1 − αq)

− µ0 + µ1

2
(α1 − α0). (B.15)

Therefore,

Ai =
µ0 + µq

2
(αq − α0) +

µ1 + µq
2

(α1 − αq)

−
∫ α1

α0

(
(α− αp)2

2µp
+
µp
2

)
dα (B.16)

Note that (B.16) holds for all the three cases above. Simplifying (B.16), we get

2Ai = (µ0 + µq)(αq − α0) + (µ1 + µq)(α1 − αq)

−
[

(α− αp)3

3µp
− µpα

]α1

α0

= (µ0 + µq)(αq − α0) + (µ1 + µq)(α1 − αq)

− (α1 − αp)3 − (α0 − αp)3

3µp
− µp(α1 − α0) (B.17)

Distance di in (9.9) can be written as

di(p) = ||Oj − pi||+ αp, (B.18)



176 Appendix B

where we know that pi lies on Lj and Oj is the chosen origin on Lj . We note
the following derivatives

2∇Ai = ∇α0(−µ0 − µp) +∇α1(µ1 + µp)

+∇µ0(−α0 + αq) +∇µ1(α1 − αq)

+
(α1 − αp)3 − (α0 − αp)3

3µ2
p

∇µp

− (α1 − αp)2(∇α1 −∇αp)
µp

+
(α0 − αp)2(∇α0 −∇αp)

µp

− (α1 − α0)∇µp − µp(∇α1 −∇α0) (B.19)

∇di = ∇αp =
(pi+1 − pi)

li
(B.20)

∇µp = M
(pi+1 − pi)

li
(B.21)

∇αm =
∇αp(αm − αp) +∇µp(µm − µp)

(αm − αp − k0µp)
,m = {0, 1} (B.22)

∇µm = k0∇αm, m = {0, 1} (B.23)

In the limit µp → 0 for some edge ek of T ,

αm → αp, m ∈ {0, 1}
µm → k0αp m ∈ {0, 1} (B.24)

Consequently, Ai → 0, but Ai,i6=k becomes 0 much faster than Ak. Therefore,
using (B.6) and (B.24), the gradient (B.5) in the limit is

lim
µp→0

∇H = f ′k(dk)∇dk + fk(dk)


∇Ak
2∑
j=0

Aj
− ∇Ak

2∑
j=0

Aj


= f ′k(dk)∇dk. (B.25)

Gradient of line ek is

∇ek = M
(pi+1 − pi)

li
. (B.26)
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We note that〈
lim
µp→0

∇H,∇ek
〉

= f ′k(dk)
(pi+1 − pi)T

li
M

(pi+1 − pi)
li

= 0.

A similar result can be shown for the gradient of the homotopy on the other side
of Lj . This implies that the reconstructed curve is orthogonal to the intersecting
lines from either side. Therefore, the curve reconstruction is at least C1.
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Aquanaut - A homotopy
reconstruction library

The homotopy continuation based algorithms presented in this work for recon-
struction from sonar signals have been implemented as a set of libraries called
Aquanaut . It implements the following homotopies for reconstruction

• Linear,

• Non-linear,

• Cubic spline, and

• Shape preserving.

The library comprises of the following components

• Dynamic libraries

– Homotopy (libHomotopy): provides homotopy reconstruction algo-
rithms.
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– Raytracer (libRaytracer): provides raytracing capabilities of basic
geometric primitives for a simulation of reconstruction. Available
primitives are: Sphere, Ellipsoid, Cuboid, Cone, Cylinder, and Torus.
Dummy sonar classes provide containers for these geometric primi-
tives.

– VTK I/O (libVtkIO): provides basic read and write functionality for
VTK volumetric images.

• Aquanaut
A graphical user interface for the libraries and an integrated application
for surface reconstruction for both real data and simulated scenes.

• Plugins: A collection of plugins for the application Aquanaut. At the
moment, only following plugins are available

– Data import (libDataImport): provides wizards and interfaces for
import of data from Simrad MS70, RESON s7k, and Aquanaut smass
(binary segmentation or characteristic function of signals) datasets.

• External dependencies

– GEL (GEometric and Linear algebra tools) [7]: It is a framework
for computer graphics and computer vision written mostly by An-
dreas Bærentzen and colleagues at DTU Informatics, The Technical
University of Denmark.

A class diagram of Aquanaut is shown in Figure C.1. The main Aquanaut
interface consists of an OpenGL display and menu options for loading raw data.
Aquanaut operates in two modes, the simulation mode (see Figure C.3(a)) and
the analyser mode (see Figure C.3(b)).

In the simulation mode, basic geometric primitives can be added to a sonar
simulator scene. The simulator can produce sonar beam intersections with the
primitives. These intersections can be used as starting points for reconstruction
using the available homotopy based methods. Available options in this mode
are

• Dummy sonar parameters such as the type of sonar (stack of 2D frames or
3D volume) with its parameters (such as vertical/horizontal angle, number
of beams per frame, and beam length),

• Adding scene objects, loading a scene, and saving an existing scene,

• Modifying spatial properties of an object in the scene. An object in the
scene can be translated, rotated and scaled arbitrarily in the scene, and
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• Reconstruction of the existing scene. The simulation tab provides options
to perform the beam-object intersection, and using those intersections,
perform a reconstruction using the available homotopy methods. A re-
construction can be saved either as an implicit homotopy field (a VTK
volume) or as an iso-surface mesh (OBJ format).

The analyser mode, on the other hand, works on the real data. Signal masses
can be read into Aquanaut and these serve as beam-object intersections. Similar
options to save the reconstruction are available here as well.

Figure C.1: Aquanaut class diagram.
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Figure C.2: Aquanaut main window.

(a) Simulator dialog (b) Analyser dialog

Figure C.3: Aquanaut modes of operation.
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multihomogenous, 36
bifurcation point, 33
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contractible space, 28
critical point, 32
critical value, 32
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block, 47
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kernel, 46, 48
solver, see streaming solver

curve of zeros, 37

Davidenko’s equation, 37
decibel, 8

device, see GPU
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orthogonal distance, 132
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far field, 8, 20
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GPU, 3, 46, 162
Graphics Processing Unit, see GPU
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homotopy parameter, 27
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initial map, 27, 99
inverse square law, 8
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level set method, 58–61, 75
multi-phase, 76

main lobe, 14
maximum response axis, 14
median noise suppression, 61–63
Mills Cross, 15
mixed volume, 36
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multi-beam sonar, 10
Mumford-Shah functional, 59

near field, 20
null-homotopic, 28
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fork/join model, 44

Piecewise-linear method, 35–36
piezo-electric, 10
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polynomial continuation, 36
Predictor-corrector method, 34–35
pulse, see ping

reconstruction
homotopy, 54

regular point, 32
regular value, 32
reverberation, 19

sector scanner, 10
shading, 15

Dolph-Chebyshev, 15
sidelobe

intensities, 52
simplex method, 36
sonar

active, 10
passive, 10

speckle pattern, 41, 42
spherical scattering cross-section, 17
straight line skeleton, 137
streaming solver, 63–67, 77–85
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target strength, 17, 42, 49
terminal map, 27, 99
thresholding, 42
time-varied-gain, 18
tortuousity, 127
transducer, 10
transmitter, 10
triangulation, 35
TVG, see time-varied-gain

volume backscattering coefficient, 18
volume backscattering strength, 18, 48
Voronoi diagram, 54
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plane, 7
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weighted median, 62
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