similar papers at core.ac.uk

broug
provided by Elsevie

Incremental Convex Planarity Testing?

Giuseppe Di Battista

Dipartimento di Informatica e Automazione, Univessitegli Studi di Roma Tre,
Via della Vasca Navale 79, 00146 Rome, Italy
E-mail: gdb@dia.uniroma3.it

and

Roberto Tamassia and Luca Vismara

Center for Geometric Computing, Department of Computer Science, Brown University,
Providence, Rhode Island 02912-1910
E-mail: t@cs.brown.edu, Iv@cs.brown.edu

Received February 17, 1997; final manuscript received September 29, 2000

An important class of planar straight-line drawings of graphs are convex drawings, in which all
the faces are drawn as convex polygons. A planar graph is said to be convex planar if it admits a
convex drawing. We give a new combinatorial characterization of convex planar graphs based on the
decomposition of a biconnected graph into its triconnected components. We then consider the problem
of testing convex planarity in an incremental environment, where a biconnected planar graph is subject
to on-line insertions of vertices and edges. We present a data structure for the on-line incremental
convex planarity testing problem with the following performance, winatenotes the current number
of vertices of the graph: (strictly) convex planarity testing tak¥4) worst-case time, insertion of
vertices take(logn) worst-case time, insertion of edges takeflogn) amortized time, and the
space requirement of the data structur®{®). © 2001 Academic Press

INTRODUCTION

Planar straight-line drawings of planar graphs are especially interesting for their combinatoria
geometric properties. A classical result independently established by Steinitz and Rademache
Wagner [56], Fary [29], and Stein [44] shows that every planar graph has a planar straight-line dra
A grid drawing is a drawing in which the vertices have integer coordinates. Independently, de Fray
et al.[12], and Schnyder [40] have shown that evaryertex planar graph has a planar straight-lin
grid drawing withO(n?) area.

An important class of planar straight-line drawings are convex drawings, in which all the faces
drawn as convex polygons (see Figs. 1aand 2a). Convex drawings of planar graphs have been exte
studied in graph theory. A planar graph is said to be convex planar if it admits a convex drawing.
[54, 55] has considered strictly convex drawings, in which faces are strictly convex polygons (ice.,
angles are not allowed). He has shown that every triconnected planar graph is strictly convex plan:
that a strictly convex drawing can be constructed by solving a system of linear equations. Tutte [54
Thomassen [52, 53], Chilet al. [6], and Djidjev [24] have presented combinatorial characterizatio
of convex and strictly convex planar graphs. Chébal. [6] have presented a linear time algorithm fol
testing convex planarity, based on their characterization, and a linear time algorithm for constru

1 Research supported in part by the National Science Foundation under Grants CCR-9732327 and CDA-9703080, by t
Army Research Office under Grant DAAH04-96-1-0013, by the NATO Scientific Affairs Division under Collaborative Rese
Grant 911016, by Grant 94.00023.CTO07 of the Consiglio Nazionale delle Ricerche, and by the ESPRIT Long Term Re
of the European Community under Project 20244 (ALCOM-IT). A preliminary version of this paper was presented at the '
International Workshop on Graph-Theoretic Concepts in Computer Science (WG '94), Herrsching (Miinchen), Germany, -

2 Research performed in part while this author was with the Dipartimento di Informatica e Sistemistica, Universita degli
di Roma “La Sapienza” and with the Dipartimento di Ingegneria e Fisica dell’Ambiente, Universita degli Studi della Basilic

3 Research performed in part while this author was with the Dipartimento di Informatica e Sistemistica, Universita degli
di Roma “La Sapienza”.

94

0890-5401/01 $35.00
Copyright© 2001 by Academic Press
All rights of reproduction in any form reserved.

https://core.ac.uk/display/82689324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INCREMENTAL CONVEX PLANARITY TESTING 95

(b)

FIG. 1. (a) A convex drawing of a biconnected planar grdph(b) The SPQR-tree o& with respect to reference edge
(vs, v7) and the skeletons of its non-Q-nodes.

convex drawings with real coordinates for the vertices, based on Thomassen’s characterizatic
alternative linear time algorithm for testing convex planarity has been presented by Djidjev [24]. C
et al. [5] have extended the results of [6] to construct “quasi-convex” drawings of graphs that ar
convex planar. Kant [33] has presented a linear time algorithm for constructing convex drawin
triconnected planar graphs with integer coordinates for the vertices and quadratic area. The c
factors for the area were later reduced by Chrobak and Kant [8]. Chretbak[7] have presented
algorithms for constructing convex drawings in the plane and in 3D space with integer or rat
coordinates for the vertices under various resolution rules.

The study ofdynamicgraph problems has acquired increasing interest in the past decade and is
vated by various important applications in network optimization, VLSI layout, computational geom
and distributed computing. The existing literature includes work on connected, biconnected, at
connected components, transitive closure, shortest path, minimum spanning tree, planar emb
and planarity testing (for a brief survey, see Section 2 of [20]). A dynamic graph problem consist:
sequence of query and update operations on a graph, such that each operation is completed be
next one is processed. If the sequence of operations is not known in advance, tbaderedynamic
graph problem is used. Typically, the update operations are insertions and deletions of vertice
edges. If only insertions or deletions are allowed, the graph problem is salheddynamic; otherwise,

96 DI BATTISTA, TAMASSIA, AND VISMARA

(b)

FIG. 2. (a) A strictly convex drawing of a biconnected planar gr&hb) The SPQR-tree db with respect to reference
edge (g, v7) and the skeletons of its non-Q-nodes.

it is calledfully dynamic. In particular, semi-dynamic graph problems are also referreiitcrasental
graph problems, if only insertions are allowed, aletrementagraph problems, if only deletions are
allowed.

The concept of amortized complexity [1, 10, 51] is often used in the analysis of algorithms
data structures for dynamic graph problems. In an amortized analysis, the time required to per
sequence of operations is averaged over all the operations performed. Through amortized analy
can show that the average cost of an operation in the sequence is small, even though a single o
may be expensive. Note that, unlike average-case analysis, probability is not used in amortized a

Two of the most studied dynamic graph problems aréstmamic embeddingroblem and thdynamic
planarity testingproblem. In both cases, the graph is subject to on-line insertions and deletions of ve
and edges. In the dynamic embedding problem, a specific embedding of the graph is maintain
query is to determine whether there is a face of the current embedding that contains two given ve
The dynamic planarity testing problem is more general: instead of maintaining a specific embe
of the graph, an implicit representation of all the possible embeddings of the graph is maintaine
recall that a graph may have an exponential number of different embeddings); the query is to det
whether there is an embedding of the current graph such that two given vertices are on the san
Tamassia [47] has presented a data structure for the incremental embedding problem (and for a re

INCREMENTAL CONVEX PLANARITY TESTING 97

version of the fully dynamic embedding problem) wiii{log n) query and update time (amortized fo
edge insertion). A data structure for the fully dynamic embedding problem@ibg? n) query and
update time has been presented by Italiahal. [32]. As for the dynamic planarity testing problem
Di Battista and Tamassia [20] have presented a data structure for the incremental planarity f
problem with O(logn) query and update time (amortized for edge insertion). This time bound"
reduced first by Westbrook [57], who showed that a sequenkeoéry and update operations can k
performed inO(ka/(k, n)) expected time, and then by La Poutré [35], who showed that the sequ
of operations can be performed @(ka/(Kk, n)) deterministic timeg(k, n) is the very slowly growing
inverse of Ackermann’s function. The best result for the fully dynamic planarity testing problel
that of Eppsteiret al. [26], who presented a data structure wit{,/n) amortized query and update
time.
In this paper, we present the following results on convex planarity:

e \We give anew combinatorial characterization of convex planar graphs and strictly convex
graphs, alternative to those present in the literature [6, 24, 52-55], which is based on the decomp
of a biconnected graph into its triconnected components [31].

o We consider the problem of testing convex planarity in an incremental environment, w
a biconnected planar graph is subject to on-line insertions of vertices and edges. We present
structure for the on-line incremental convex planarity testing problem with the following performa
wheren denotes the number of vertices of the graph: (strictly) convex planarity testing @gs
worst-case time, insertion of vertices takalog n) worst-case time, insertion of edges tak&dogn)
amortized time, and the space requirement of the data structQrg)s

Note that the (strictly) convex planarity property for planar graphs is not monotone. Namely, 1
exist sequences of insertions of vertices and edges such that the current graph alternates betwe
(strictly) convex planar and being nonconvex.

Besides their theoretical significance, our results are motivated by the development of advancec
drawing systems in information visualization applications. Examples include programming env
ments (e.g., displaying entity-relationship diagrams and subroutine-call graphs), algorithm anin
systems (e.g., representing data structures), and project planning systems (e.qg., disptagiagrams
and organization charts). Several advanced graph drawing systems have been developed (see, fi
ple, [2, 4, 14, 17, 30]); they usually contain a library of graph drawing algorithms, each devised tc
into account a specific set of aesthetic requirements. Thus, in these systems, the problem of selec
algorithm of the library that provides the “best” visualization of a certain graph is of crucial importa
Since advanced graph drawing systems are often used interactively, the above selection proble
be solved under tight performance requirements, especially for large graphs. The problem be
harder when the graph to be represented is subject to frequent updates. In an ideal scenario, ea
drawing algorithm of the library should be supplemented with a data structure for efficiently te:
whether it can be used to represent the current graph. Typically, after each update of the grap
a certain number of tests will succeed, quickly indicating which of the available drawing algorit
can actually be applied to the current graph. For example, one can use the data structure desc
this paper for efficiently testing if, after a certain number of updates, a graph is (strictly) convex pl
if this is the case, one of the existing algorithms for constructing (strictly) convex drawings (e.g
algorithm presented in [6]) can be used.

On the other hand, the problem of efficiently maintaining the drawing of a graph in a semi-dyn
or fully dynamic environment is a long-standing open problem in graph drawing. Its difficulty ar
from the fact that even a single update to the graph may cause a major restructuring of the draw
model for dynamic graph drawing and its application to particular classes of planar graphs is pre:
in [9]. We will further discuss the issue in the open problems section.

The rest of the paper is organized as follows. Preliminary definitions are given in Section
Section 3 we present a combinatorial characterization of (strictly) convex planar graphs. The reg
of query and update operations for the on-line incremental convex planarity testing problem is des
in Section 4. In Section 5 we present a data structure that supports this repertory. The impleme
of query and update operations is described in Sections 6 and 7, respectively. In Section 8, we ¢
the time complexity of the various operations. Open problems are discussed in Section 9.

98 DI BATTISTA, TAMASSIA, AND VISMARA
2. PRELIMINARIES

We assume familiarity with graph terminology and basic properties of planar graphs (see, e.g.,
The graphs whose convex planarity we test are assumed to be simple, i.e., without self-looj
multiple edges. We recall some basic definitions on connectivityeparating k-sedf a graph is a
set ofk vertices whose removal disconnects the graph; separating 1-sets and 2-sets areutall
verticesandseparation pairs, respectively. A graphksconnectedf it contains more thark vertices
and no separating (1)-set; 1-connected, 2-connected, and 3-connected graphs areccaliestted,
biconnected, antticonnected, respectively. Aeparating edgef a graph is an edge whose remov:
disconnects the graph.

Thebiconnected component$ a connected graph (also callblbcks) are its maximal biconnecte
subgraphs and its separating edges.

Thetriconnected components a biconnected grap@ are defined as follows [31]. I& is tricon-
nected, ther® itself is the unique triconnected componeni&fOtherwise, lefu, v} be a separation
pair of G. We patrtition the edges db into two disjoint subset&; and Ey, |E;| > 2, |Ex| > 2,
such that the subgrapl@; and G, induced by them have only verticesandv in common. Graphs
G; = G1+(u, v) andG}, = G, +(u, v) are called theplit graphsof G with respect tdu, v} (multiple
edges are allowed); edge, @) in G} andG, is called avirtual edge. DividingG into split graphsG}
andG,, is calledsplitting. Reassembling split grapis and G, into G, is calledmerging. Note that
only split graphs that resulted from the same splitting operation can be merged together. We contit
splitting process recursively g&; andG/, until no further splitting is possible. The resulting graphs &
each either a triconnected simple graph, or a set of three multiple edges {gplkedondin [31]), or a
cycle of length three (callettianglein [31]). Thetriconnected component$ G are obtained from these
graphs by merging the triple bonds into maximal sets of multiple edges (¢tadledsin [31]), and the
triangles into maximal simple cycles (callpdlygons in31]). When merging triple bonds into bond:
and triangles into polygons, virtual edges with both endvertices in common are removed; we will
to the remaining virtual edges at the end of the merging process astthed edges of the triconnectec
components. Note that, although the graphs obtained at the end of the splitting process depen
order of the splittings, the triconnected component& @fre unique. See [31] for further details.

For background on graph drawing, see [3, 11, 13, 15, 16, 18, 22, 23, 34, 39, 46, 48, 49, ¢
drawing of a graph maps each vertex to a distinct point of the plane and eachwedgedd a simple
Jordan curve with endpointsandv. A drawing isplanarif no two edges intersect, except, possibly, .
common endpoints. A graph is planar if it has a planar drawingtraight-linedrawing is a drawing
in which every edge is mapped to a straight-line segment. Two planar drawings of a plana6gr:
areequivalentf, for each vertexv, they have the same clockwise circular sequence of edges inci
with v. Hence, the planar drawings Gf are partitioned into equivalence classes. Each of those cla
is called anembeddingf G. An embeddegblanar graph (alsplanegraph) is a planar graph with &
prescribed embedding. A triconnected planar graph has a unique embedding, up to a reflection. A
drawing divides the plane into topologically connected regions; cycl&stbht bound a topologically
connected region are calléates. Theexternalface is the boundary of the external region; all the oth
faces ardnternal. Two equivalent planar drawings have the same faces. Hence, one can refer
faces of an embedding.

A polygonis a finite set of segments such that every segment endpoint is shared by exactl
segments and no subset of segments has the same property. A polgguopl&f there is no pair of
nonconsecutive segments sharing a point. A simple polygoarigexf its interior is a convex set. A
simple polygon isstrictly convexf its interior is a strictly convex set; i.e., no 18@ngle is allowed.
A convexdrawing of a planar grapls is a planar straight-line drawing & in which all the faces
are drawn as convex polygons.sirictly convexdrawing of a planar grap® is a planar straight-line
drawing ofG in which all the faces are drawn as strictly convex polygons. See Figs. 1a and 2a com
to Fig. 3a. A planar graph is said to ketr{ctly) convex planaif it admits a (strictly) convex drawing.

Lemva 1. A planar graph ig(strictly) convex planar only if it is biconnected.

Proof. Let G be a planar graph. We prove the claim by contradictior s connected but not
biconnected, two cases are possible:

INCREMENTAL CONVEX PLANARITY TESTING 99

(b)

FIG. 3. (a) A nonconvex drawing of a biconnected planar gr&plib) The SPQR-tree d& with respect to reference edge
(v3, v7) and the skeletons of its non-Q-nodes.

1. If Gis apath, then in any drawing @ the two distinct points representing the first and tt
last vertex ofG are not shared by two segments from the set of segments representing the (only
f of G. Thus, the set of segments representing not a polygon.

2. Otherwise, there exist at least one cut-veitexf G and one face of G containingv such
that, in any drawing o€, the point representingis shared by more than two segments from the set
segments representirfg Thus, the set of segments representing not a polygon.

If G is not connected, then in any drawing®fthere exists at least one face represented by a se
segments that do not satisfy the minimality property in the definition of polygmn.

In the rest of this section, tHePQR-tregoresented in [19, 20] is described. l@the a biconnected
graph. Asplit pair of G is either a pair of adjacent vertices or a separation pair (note that the two c
are not disjoint, since the vertices of a separation pair may be adjacent). If the two vertices are ac
then the split pair is callettivial, otherwise it is callechontrivial. A split componenbf a split pair
{u, v} is either an edgeu(v) or a maximal subgrap@ of G such thaCC containai andv, and{u, v} is not
a split pair ofC. In the former case the split component is catiddal, in the latternontrivial. Vertices
u andv are called theolesof the split component. Note that each vertexa#listinct fromu andv
belongs to exactly one nontrivial split componentofv}. Let {s, t} be a split pair ofG. A maximal

100 DI BATTISTA, TAMASSIA, AND VISMARA

split pair {u, v} of G with respect tds, t} is a split pair ofG distinct from{s, t} such that for any other
split pair{u’, v’} of G, there exists a split componentfaf, v’} containing verticesl, v, s, andt.

In the graph in Fig. 1&ws, vs} is a trivial split pair,{vg, v12} is a nontrivial split pair, edgev{, vs) is
a trivial split component, the subgraph inducedvlyv1o, v11, andvy, is a nontrivial split component,
and split paifvy, v1s} is maximal with respect tfvs, v7}, while split pair{vy, v12} is not maximal with
respect tqvs, v7}.

Lete = (s, t) be an edge of5, called thereference edge. The SPQR-tfEeof G with respect tee
describes a recursive decompositiofsahduced by its split pairs. TreBis a rooted ordered tree whos
nodes are of four types: S, P, Q, and R. Each nodé T has an associated biconnected multigray
called theskeletorof . and denotedkeleton(u). Also, each nodeof T (except the root) is associate
with an edge of the skeleton of the parerdf «, called thevirtual edgeof 1 in skeleton(y; at the same
time, v is associated with a virtual edgeskeleton(w). Tred is recursively defined as follows.

Trivial case: IfG consists of exactly two multiple edges betwsemdt, thenT consists of a single
Q-node whose skeleton G itself.

Parallel case: If the split paifs, t} has at least three split compone@igs= e, Gy, ..., Gk, k > 2,
then the root off is a P-nodes. Graphskeleton(u) consists &+ 1 multiple edges betweenandt,
denotede,, €,1, . . ., €,k Whereg,go = e.

Series case: If the split pafs, t} has exactly two split components and one of them has at least
cut-vertex, then the root df is an S-nodec. One of the split components (s, t} is the reference edge

Letcy, ..., c_1, kK > 2, be the cut-vertices that partiti@h— einto its blocksGy, .. ., Gy, in this order
from s to t. Graphskeleton(u) is the cyclee,o, €,1, . . ., €., Wheree,o = €,¢o = s, 6 = t, ande,,
connectg; 3 with ¢, i = 1, ..., k. Note that in this cas€y, .. ., Gk are not split components ¢, t}.

Rigid case: If none of the cases above applies, then the rdoi®in R-nodes. Let{s;, t1}, . . .,
{s, &}, k > 1, be the maximal split pairs o& with respect tofs, t}, and, fori = 1, ...k, letG;
be the union of all the split components{af, t;} except that containing the reference egg&raph
skeleton(u) is obtained froi@ by replacing each subgraj with the edgee,, = (s, t;). Note that in

this caseGy, . .., Gk are not split components ¢, t}.
For each split componef@;,i = 1, ..., k, defined in the above cases, égtbe an additional edge
between the poles @;. Except for the trivial casey has childrernus, .. ., uk in this order, such that

wi is the root of the SPQR-tree of graggh Ue,,i = 1, ..., k, with respect to reference edgg. The
tree so obtained has a Q-node associated with each e@ertept the reference edgéNe complete
the SPQR-tree by replacing the reference eslpeskeleton(w) with a virtual edge, by adding anoth
Q-node, representing and by making it the parent ¢f so that it becomes the root. Note that, frol
the above definition, it follows that two P-nodes or two S-nodes cannot be adjadenExamples of
SPQR-trees are shown in Figs. 1b, 2b, and 3b; the Q-nodes are represented by squares and the -
of the Q-nodes are not shown.

The virtual edge of nodg; is edgee,, of skeleton(u), while edge, of skeleton(y) is the virtual
edge of nodeu. A virtual edgee,; is said to betrivial if the corresponding nodg; is a Q-node,
nontrivial otherwise. The endverticasandt; of e,, are called th@olesof w;. In Figs. 1b, 2b, and 3b,
the nontrivial virtual edges are represented by dashed or dotted lines and the trivial virtual edg
represented by solid lines.

Letting « be a node off, we have the following:

e if uis an R-node, theskeleton(u) is a triconnected simple graph;
e if uis an S-node, theskeleton(u) is a cycle;
e if uis aP-node, theskeleton(w) is a multigraph consisting of a bundle of multiple edges;
e if uis a Q-node, theskeleton(w) is a multigraph consisting of two multiple edges.
The skeletons of the nodes ©fare homeomorphic to subgraphs®f Also, the union of the sets
of split pairs of the skeletons of the nodesTofs equal to the set of split pairs &. It is possible to

show that SPQR-trees of the same graph with respect to different reference edges are isomorg
are obtained one from the other by selecting a different Q-node as the root.

INCREMENTAL CONVEX PLANARITY TESTING 101

SPQR-trees are closely related to the decomposition of biconnected graphs into triconnecte
ponents [31]. Namely, the triconnected components of a biconnected Grapé in one-to-one cor-
respondence with the skeletons of the non-Q-nodes of the SPQR-toées: the skeletons of the
R-nodes correspond to the triconnected simple graphs, the skeletons of the S-nodes correspor
polygons, and the skeletons of the P-nodes correspond to the bonds. In particular, for each non-
w of T, the nontrivial virtual edges afkeleton(u) are in one-to-one correspondence with the virt
edges of a triconnected componeniGfand the trivial virtual edges akeleton(w) are in one-to-one
correspondence with the (nonvirtual) edges of a triconnected componént of

The SPQR-tred of a planar graph with vertices andn edges has Q-nodes and(n) S-nodes,
P-nodes, and R-nodes. Also, the total number of vertices of the skeletons stored at the Masl€Xnj.

3. ACHARACTERIZATION OF (STRICTLY) CONVEX PLANAR GRAPHS

Let " be a planar straight-line drawing of a biconnected planar g&ph vertex of G is said to be
external(respectivelyinternal) in Tif it is (respectively, it is not) a vertex of the external facdbfAn
external(respectivelyinternal) edge inl" is defined analogously. A subgraf of G is drawn outside
(respectivelyjnside) in T'if G’ has (respectively, does not have) external edgé&s in

Lemma 2. LetI be a strictly convex drawing of a biconnected planar graph G. The nontrivial s|
components of G are drawn outsidelin

Proof. Suppose, for a contradiction, that a nontrivial split compor@mtf a split pair{u, v} is
drawn inside i (see Fig. 4). Lep; (p2) be the path o€ betweeru andv such that all the vertices anc
edges ofC not in py (p2) are on its right (left) side ii". Note thatp; and p, may have some vertices
(besidesu andv) and edges in common. Pagh (py) is part of an internal facd,(f;) of G . By easy
geometric considerations, it follows that,fif is drawn as a strictly convex polygonih then f; is not
and vice versa. Thug; is not a strictly convex drawing, which is a contradictiom

CoroLLary 1. LetT be a strictly convex drawing of a biconnected planar graph G. For ea
separation pair{u, v} of G, vertices u and must be external iir.

Proof. Suppose, for a contradiction, that one vertex of a separatiorjynaig, sayv, is internal in
I'. Hence, all the vertices and edges®that are external i, exceptu, belong to a common split
component ofu, v}, while all the other split components @fi, v} are drawn inside if". Thus, by
Lemma 2,I" is not a strictly convex drawing, which is a contradictiom

We are now ready to state the main results of this section.

Trveorem1l. Let G be a biconnected planar graph. Graph G is strictly convex planar if and anly
for each triconnected component C of tBere exists an embedding of C such that all the virtual edc
of C are on the same face.

FIG. 4. A planar straight-line drawin@' of a biconnected planar graph. One of the split components of spli{yait is
drawn inside in".

102 DI BATTISTA, TAMASSIA, AND VISMARA

In Section 2, we have described how the triconnected components of a biconnectedGgaaph
in one-to-one correspondence with the skeletons of the non-Q-nodes of the SPQRefr& and
how the virtual edges of the triconnected components afe in one-to-one correspondence with tt
nontrivial virtual edges of the skeletons of the non-Q-node§ .ofhis allows us to restate and prov
Theorem 1 as follows.

THeorem 2. Let G be a biconnected planar graph and let T be the SPQR-tree of G. Graph
strictly convex planar if and only iffor each nodex of T, there exists an embedding of skelefan
such that all the nontrivial virtual edges of skeletgr) are on the same face.

Proof. Only if. LetI indicate a strictly convex drawing &.

If uis a Q-node or an S-node, thekeleton(u) is a pair of multiple edges or a cycle, respective
and the claim is trivially true.

If uisaP-node, then suppose, for a contradiction gkeleton(u) contains three (multiple) nontrivie
virtual edges with common endvertice@ndv. Even ifu andv are external vertices ifi, one of the
three (nontrivial) split components @i, v} is drawn “between” the other two, that is, insiddinThus,
by Lemma 2 is not strictly convex, which is a contradiction.

If «is an R-node, then suppose, for a contradiction, $kateton(i) contains two nontrivial virtual
edges (y, v1) and (, vp) that are not on the same face. We recall #ialeton(u) is a triconnectec
simple planar graph, and thus not all four vertiagsv1, U2, andv, can be on the same face in the uniqt
embedding ofkeleton(u). A straight-line drawing skeleton(x) can be obtained frdmby using the
points and the segments representing the vertices and the trivial virtual edgjesaibn(..), and by
drawing the nontrivial virtual edges skeleton(u) as straight-line segments (that is, by replacing
drawings of some split components with straight-line segments). It follows that, alsaiot all four
verticesu,, v, Uz, andv, can be on the same face, in particular the external one; thus, at least o
them is internal im". Since{u, v1} and{u,, v,} are separation pairs &, from Corollary 1 it follows
thatT is not strictly convex, which is a contradiction.

If. We show how to construct a strictly convex drawingf G while performing a preorder visit of
T. All the external vertices o6 in T" are mapped to distinct points of a ciradeFor each node of
T, we choose as external the facest&leton(i) containing the nontrivial virtual edges and we dr:
skeleton(w) in a circular segment af

At the beginning of the preorder visit df, the circular segment coincides wittand we draw the
skeleton of the root of (two multiple virtual edges, one of which is trivial) as a chorccoft each
following step, letu be the node currently visited and letbe its parent. Ifx is not a Q-node, the
virtual edgee, in skeleton() is represented by a chord ofwhich identifies a circular segmes)t (see
Fig. 5a).

If uis a Q-nodeskeleton(w) is drawn by placing the polesiofi.e., the common endvertices gf
and of the trivial virtual edge iskeleton(u)) at the endpoints of the chord identifying

() (b)

FIG. 5. An example of the construction in the proof of Theorem 2. (a) The current drawing and the skeleton of the
currently visited. (b) The new drawing.

INCREMENTAL CONVEX PLANARITY TESTING 103

If 1 is a P-nodeskeleton(w) is drawn by placing the polesiofi.e., the common endvertices af
and of the other two virtual edges s$keleton(w), one of which is trivial) at the endpoints of the cho
identifying s,,.

If ©is an S-nodeskeleton(ur) is drawn by placing the poles (of(i.e., the endvertices df, in
skeleton(w)) at the endpoints of the chord identifyfpgand the other vertices at distinct points of th
circular arc ofs,,.

If uis an R-nodeskeleton(u) is a triconnected simple planar graph. A strictly convex drawing
skeleton(w) with a prescribed shape for an arbitrarily chosen external face can be obtained by
e.g., the algorithm of Tutte [55], or the algorithm of Chiétaal. [6]. In particular, the poles of (i.e.,
the endvertices o, in skeleton(w)) are placed at the endpoints of the chord identifgingnd the
other external vertices askeleton(u) are placed at distinct points of the circular ais;, of

Thene, ande, are removed from the drawing. ifis a Q-node, the whole step consists of replacil
a trivial virtual edge of the drawing with an edge @f. If i is a P-node, it consists of replacing «
nontrivial virtual edge of the drawing with two multiple virtual edges, one of which is trivigk i§
an S-node, it consists of appending a strictly convex polygon to the drawing along a nontrivial v
edge, which is then removed. fis an R-node, it consists of appending a strictly convex drawing c
triconnected simple planar graph to the drawing along a nontrivial virtual edge, which is then ren
(see Fig. 5b).

Note that, at each step, the following invariants hold for the drawing that is being constructed:

1. The nontrivial virtual edges are external in the drawing, and are represented by chards ¢

2. If uis an S-node or an R-node, the internal fdcgenerated by the removal ef ande, is a
strictly convex polygon sincei) the two faces sharing, = e, before the removal are strictly conve
polygons; andi{) the common endverticasandv of e, ande, are placed o and the drawing is
contained irc, and thus the two angles dfaroundu andv are less than 180

3. The external face is a strictly convex polygon, since all its vertices ace on

Finally, the planarity off" can be proved by observing that, for each nadef T, the drawing of
skeleton(w) used in the constructionlofs planar; by the third invarians,, only containge,, which is
then removed together wily; and the drawing o$keleton(u) is contained &),. m

CoroLLARY 2. The strictly convex planarity of an n-vertex biconnected planar graph can be te
in O(n)time.

Proof. Let G be ann-vertex biconnected planar graph. Computing the triconnected componen
G takesO(n) time [31]. The total number of virtual edges in the triconnected compone@3oO(n)
[31]; hence testing the condition of Theorem 1 takig) time. m

It is easy to verify that the SPQR-tree in Fig. 2b satisfies the condition of Theorem 2. Hence
graph in Fig. 2a is strictly convex planar. Consider, instead, the SPQR-trees in Figs. 1b and 3b. |
figures, the skeleton of R-nodedoes not admit an embedding with all the nontrivial virtual edges
the same face. Hence, the condition of Theorem 2 is not satisfied, and the graphs in Figs. 1a anc
not strictly convex planar.

In the rest of this section we extend the characterization of Theorem 2 to nonstrictly convex drav
Let G be a biconnected graph different from a cycle, Tebe the SPQR-tree d&, and letu be an
S-node ofT whose adjacent nodes, except onare Q-nodes. Then all the virtual edgeskéleton(u)
are trivial, excepe, = (u, v), which is nontrivial. The pair of verticesl, v} is a split pair ofG, and the
edges ofG corresponding to the trivial virtual edges sKeleton(x) form a nontrivial split componen
C of {u, v}. C is a path and is called a (u)-chainof G. Nodev is either a P-node or an R-node, an
the nontrivial virtual edge,, of skeleton() is called achainvirtual edge. In Figs. 1b, 2b, 3b, 6b, 8b
and 10a, the chain virtual edges are represented by dotted lines.

Lemma 3. LetD be a convex drawing of a biconnected planar graph G. For each split{jpaiv}
of G, at most ondu, v)-chain can be drawn inside if.

Proof. Suppose, for a contradiction, that twa, ¢)-chainsC; andC, are drawn inside i, and
that no other split component @, v} is drawn inside if". ChainC, (C,) is part of two internal faces

104 DI BATTISTA, TAMASSIA, AND VISMARA

f; and f3 (f and f3) of G . By easy geometric considerations, it follows thafiifand f; are drawn as
convex polygons i (by placing the vertices dE; on a straight-line segment) thefa is not, and if
f, and f3 are drawn as convex polygonslin(by placing the vertices af, on a straight-line segment)
then f1 is not. Thus[is not a convex drawing, which is a contradictions

CoroLLARY 3. LetT be a convex drawing of a biconnected planar graph G. For each split
{u, v} of G, the following properties hold:

1. there exist at most thre@, v)-chains;and
2. if there exists qu, v)-chain drawn inside i7", then u and v are not adjacent.

Proof. Property 1 is proved by contradiction. Suppose that there existfiou)-chains. Even ifi
andv are external vertices ift, two of the (u v)-chains are drawn “between” the other two, that i
inside inT", but this contradicts Lemma 3.

Property 2 is proved, again, by contradiction. Suppose that there exists)achain drawn inside
in I and thau andv are adjacent. As seen in the proof of Lemm&3s drawn by placing the vertices
of C on a straight-line segment with endpoints correspondingdndv. Thus,I" is not planar, which
is a contradiction. m

A reducedyraph of a biconnected graghis a graphs’, homeomorphic t&, obtained fronG in the
following way. If G is a cycle, therG’ is equal toG . If G is not a cycle, then, for each nontrivial spli
pair{u, v} of G that has one or more (w)-chains, exactly one (w)-chain is replaced with edge (u),
called abypass edge. Note that, for the nontrivial split pgirsv} that have more than one,(u)-chain,
different choices of theu, v)-chain to be replaced with a bypass edge lead to different reduced gre
Thus, in general, a biconnected graph has more than one reduced graph.

Observe that the SPQR-tré&é of G’ can be obtained from the SPQR-trfE®f G as follows. IfG is
acycle, thel’ is equal toT . If G is not a cycle, then, for each S-nodef T identifying a (u v)-chain
C, let v be its only adjacent non-Q-node. is replaced with a bypass edge, then npdand its
adjacent Q-nodes are replaced with a Q-nogand the chain virtual edgs, in skeleton(yis replaced
with the trivial virtual edges,.

A reduced graph of the biconnected planar graph in Fig. 1a is shown in Fig. 6a; it is obtaine
replacing one of theug, vs)-chains, the (1, vig)-chain, and thew;, vi4)-chain with bypass edges. It:
SPQR-tree with respect to reference edge) is shown in Fig. 6b.

Lemma 4. Let G be a biconnected graph and let & a reduced graph of G. Then (5 simple and
biconnected.

Proof. G issimple since: (i) al, v)-chainis replaced with a bypass edge onlyifv} is a nontrivial
split pair; (ii) if there exist two or morey; v)-chains for a nontrivial split paifu, v}, exactly one of
them is replaced with a bypass ed@2.is biconnected since each path@®fcontaining a (uv)-chain
as a subpath is not affected by its replacement with a bypass eage.

THeorem 3. Let G be a biconnected planar graph and letlig a reduced graph of G. G is conve
planar if and only if G is strictly convex planar.

Proof. If G is a cycle the claim is trivially proved. In the rest of the proof we assumeGhiatot
acycle.

Only if. Let I'¢c be a convex drawing o&. W.l.o.g., we can assume that there are no°l&tyles
around vertices of degree greater than 2, since they can be easily reduced to less traagtE&Oby
local adjustments at those vertices. We modifyas follows. We consider each nontrivial split pa
{u, v} of G that has at least ona,(v)-chain. By Property 1 of Corollary 3, we have three possible cas

e There exists only one (w)-chainC, which can be drawn inside or outsidelip.

e There exist exactly twal, v)-chains. Sincé& is not a cycle, there exists a third split compone
C’ of {u, v}, which is not a {, v)-chain. With an argument similar to that used in the proof of Lemme
we can prove that’ must be drawn outside iR.. It follows that one of the two (uw)-chains is drawn
“between” the other one an@, that is, inside iM¢. Let C be such a (uv)-chain.

INCREMENTAL CONVEX PLANARITY TESTING 105

FIG. 6. (a) A strictly convex drawing of a reduced gra@h of the biconnected planar graph in Fig. 1a. (b) The SPQR-tr
of G’ with respect to reference edgey(v7) and the skeletons of its non-Q-nodes.

e There exist threeu, v)-chains. Since at most twai(v)-chains can be drawn outside I,
one of the three (w)-chains is drawn “between” the other two, that is, insid&inLet C be such a
(u, v)-chain.

We replaceC with bypass edge (w), drawn as a straight-line segment. We now show that the con
planarity of the drawing is not affected by this modification. From the discussion above, two cas
possible:

e Cisdrawn inside im¢. Then, as seen in the proof of Lemma 3, the vertice€ afe placed
on a straight-line segment.

e Cisdrawn outside i'c. Then there is noy, v)-chain drawn inside ilc. Letl be the straight-
line through the points representingandv. Sincel'. is convex and there are no X8&ngles around
vertices of degree greater than 2, the vertices and edgésaoé on one side df (or possibly o),
while the vertices and edges Gf— C are on the other side.

In both cases, bypass edge () does not overlap any vertex or edge®f- C, and the replacement of
C with bypass edge (w) does not alter the convexity of the drawing.

106 DI BATTISTA, TAMASSIA, AND VISMARA

The overall result of the modification @t is a convex drawing’; of G’. There may still be 180
angles around vertices of degree 2 that are externgl.irk strictly convex drawind";, of G’ can be
obtained froml"; by local adjustment at those vertices.

If. LetI';. be a strictly convex drawing d&’. A convex drawing ofS can be obtained frorit,, by
replacing each bypass edge () with the correspondingu(v)-chain, drawn by placing the vertice:
on a straight-line segments

CoroLLARY 4. The convex planarity of an n-vertex biconnected planar graph can be testdd)n
time.

Proof. LetG be am-vertex biconnected planar graph and3ébe a reduced graph &. Computing
the triconnected components Gf takesO(n) time [31]. The triconnected components®f can be
computed from those @ as follows. We consider each polygon triconnected compoeritG with
only one virtual edge; C — eis a (U, v)-chain ofG. If the triconnected compone@, of G associated
with e is either a triconnected simple planar graph or a bond consisting only of virtual edges§ tr
is not a triconnected component @f, and the graph obtained fro@ by replacing the virtual edge
corresponding t& with a (nonvirtual) bypass edge is a triconnected componef@’ oAll the other
triconnected components@fare also triconnected component§€of Thus, computing the triconnectec
components o6’ takesO(n) time. The claim follows from Corollary 2 and from Theorem 3a

It is easy to verify that the SPQR-tree in Fig. 6b satisfies the condition of Theorem 2. Henc
graphin Fig. 1a, of which the graph in Fig. 6a is a reduced graph, is convex planar. Consider, inste
SPQR-tree in Fig. 3b. Since the skeleton of R-naa®ntains no chain virtual edge, it is not modified i
the construction of the SPQR-tree of a reduced graph of the biconnected planar graph in Fig. 3a.
as shown before, the condition of Theorem 2 is not satisfied, and the graph in Fig. 3ais not convex |

4. REPERTORY OF QUERY AND UPDATE OPERATIONS

In the rest of the paper, we consider an incremental environment where a biconnected planal
G is updated by on-line insertions of vertices and edges that preserve planarity. We recall tha
on-line dynamic graph problem the sequence of operations is not known in advance. The reper
guery and update operations extends that given for biconnected planar graphs in [20]:

Strictly Convex: Determine wheth€ris strictly convex planar.
Convex: Determine wheth& is convex planar.

Test(vy, v2): Determine whether edges(w-) can be added t& while preserving planarity. As a
particular case, the result of the queryatseif edge (u, v,) already exists.

Insert Vertexv, e, e1, &): Split edgee of G into two edge®; ande;, by inserting vertex.

Insert Edgdle, u, v2): Add edgee between vertices; andv, of G. The operation is allowed only
if the resulting graph is planar.

As shown in [20], am-vertex biconnected planar graph can be assembled starting from a tl
vertex cycle by means of a sequenceQih) InsertVertexand InsertEdgeoperations, such that eacl
intermediate graph is planar and biconnected.

As stated in the Introduction, the (strictly) convex planarity property for planar graphsis not mono
there exist sequences of update operations from the above repertory such that the current graph a
between being (strictly) convex planar and being nonconvex. One such sequence of operations is
in Fig. 7. LetG be the strictly convex planar graph in Fig. 7a. The first operation of the sequen
InsertEdgg(es, U, v), after whichG is still strictly convex planar (see Fig. 7b). The second operatiot
InsertVertex(x, ey, €, €), after whichG is no longer strictly convex planar but is convex planar (s
Fig. 7c). In factu andv are the poles of a P-node whose skeleton has three (multiple) nontrivial vi
edges; thus, the condition of Theorem 2 is no longer true. After the third operaisentEdge(g u, v),
Gisnolonger convex planar (see Fig. 7d). Inféat,v} is now a trivial split pair and the only(v)-chain
of G cannot be replaced with a bypass edge; thus, the reduced gr&is & itself, and the condition
of Theorem 3 is no longer true. Finally, after operatinsertEdge(e w, x), G is strictly convex planar
again (see Fig. 7e). In contrast, note that, in an incremental environment, the nonplanarity prope

INCREMENTAL CONVEX PLANARITY TESTING 107

S

AN
e

v
(e)

FIG. 7. A sequence omsertEdgeandinsertVertexoperations in a biconnected planar grapluch that: (a, bl is strictly
convex planar, (c¥5 is convex planar, (d§ is not convex planar, and (§ is strictly convex planar.

graphs is monotone: should the graph be allowed to become nonplanar as a resulisgrdfdge
operation, it could not become planar again as a result of an update operation from the above rej

5. DATA STRUCTURE

The data structure for on-line incremental planarity testing described in [20] makes use of the dy!
trees of Sleator and Tarjan [42, 43] in order to maintain information about the SPQR-tree. These dy
trees support link/cut operations and various queries (such as finding the lowest common ance
two nodes) in logarithmic time, and they can be modified to support ordered trees and expand/c
operations, as shown in [27, 28]. Our data structure for on-line incremental convex planarity te
extends that described in [20]. In particular, we add the following data structures, which we use
implementation of query operatiorictlyConvexandConvex(see Section 6):

e Foreach P-nodg of T:
—A variable

0 if skeleton(u) consists of one trivial virtual edge and
P 3nontrivial(w) = two nontrivial virtual edges (see Fifa)
1 otherwise (see Fig8b and 8c).

Value 0 ofP3nontrivial (1) indicates that there exists an embeddingkdleton(x) such that all the
nontrivial virtual edges are on the same face.

—A variable

0 if P3nontrivial(u) = 0 orif skeleton(i) consists of three
nontrivial virtual edgesat least one of which is a chain
virtual edge (see Fig8a and 8b)

1 otherwise (see Figc).

P3nonchain(u)=

108 DI BATTISTA, TAMASSIA, AND VISMARA

7’ Y 1,\ /.\
’ \ V2EREREN VAR
’ \ N VAR N
7 \ ! N \] t \
1 \ 1 : \ 1 1 \
1] i :] 1 1 1
' 1 1 :] | 1 1
\ i \ :] \] 1
\ [\ : 1 \ i i
\ ’ \ : ’ \ 1 7
\ ’ N Ny
N 4 \‘/ \‘l
(a) (b) (c)

FIG. 8. Three skeletons of P-nodes consisting of: (a) one trivial virtual edge and two nontrivial virtual edges, (b)
nontrivial virtual edges, one of which is a chain virtual edge, and (c) three nontrivial virtual edges.

Value 0 of P3nonchain(u) indicates that there exists an embeddingkeleton(w) such that all the
nontrivial virtual edges, with the exception of at most one chain virtual edge, are on the same fa

e [Foreach S-nodg of T:

—TFor an arbitrarily chosen facé of skeleton(u) (recall that the skeleton of an S-node is
cycle), a balanced binary tre®s(u), where each leaf oBg(u) corresponds to an edgeof f, and
stores valuenontrivial(e), which is 0 or 1 according to whetheris a trivial or nontrivial virtual edge
(see Fig. 9b). Each internal node B$() stores the sum of the values of the leaves in its subtree |
Fig. 9b). Hence, the root @s(u) stores the number of nontrivial virtual edgess&életon(u), denoted
Snontrivial(i) (see Fig. 9b). The edges bfare circularly ordered so that, ff is traversed according
to this order, the region bounded Wyis, say, on the left side. The circular order of the edge$ of
represented by the left-to-right linear order of the leaveBgff:). In particular, note that:

= Snontrivial(u)= 0 if and only if G is a cycle, and thug is the only non-Q-node of;
= Snontrivial(u)= 1 if and only if the edges d& corresponding to the trivial virtual edge:
of skeleton(u) form au, v)-chain of G.
For each non-Q-node adjacent tqu, variableSnontrivial(i) allows us to test i@(1) time whether
nontrivial virtual edgee,, of skeleton() is a chain virtual edge.
e For each R-nodg of T:

—TFor each facef of skeleton(u) (recall that the embedding of the skeleton of an R-nod
unique), a balanced binary tr&x(f), where each leaf oBg(f) corresponds to an edgeof f, and
stores two values (see Fig. 10mpntrivial(e), which is 0 or 1 according to whetheris a trivial or
nontrivial virtual edge, andhain(e, which is 1 or 0 according to whetheliis or is not a chain virtual
edge. Each internal node Bk(f) stores two values (see Fig. 10b):

1. the sum of th@ontrivial(e) values of the leaves in its subtree; and
2. the sum of thehain(g values of the leaves in its subtree.

Hence, the root oBgr(f) stores two values (see Fig. 10b):

Snontrivial(Ll)

[J
I
I
I
t

€

(a) (b)
FIG. 9. (a) The skeleton of an S-node (b) The balanced binary tree far

INCREMENTAL CONVEX PLANARITY TESTING 109

Rnontrivial(f,),Rchain(f|) Rnontrivial(f,),Rchain(f,) Rnontrivial(f,),Rchain(f;)

(0.0)
[0.0] {0.0] L0
e, e, ey es e e;

Rnontrivial(f,),Rchain(f,) Rnontrivial(fs),Rchain(fs)

(3222) (4332)

L T T R
(c)

FIG.10. (a) The skeleton of an R-node (b) The balanced binary trees for the faceslaleton(w). (c) The balanced binary
tree foru.

1. the number of nontrivial virtual edges éf denotedRnontrivial(f) =), nontrivial
(e); and

2. the number of chain virtual edges 6f denotedRchain(f) = >, chain(g; note that
Rchain(f) < Rnontrivial(f).

The edges of are circularly ordered so that, ffis traversed according to this order, the region bound
by f is, say, on the left side. The circular order of the edgekisfrepresented by the left-to-right linea
order of the leaves dBg(f).

110 DI BATTISTA, TAMASSIA, AND VISMARA

—A balanced binary tre8g(u) associated witlu, where each leaf oBgr(«) corresponds to a
face f of u and store®knontrivial(f) andRchain(f) (see Fig. 10c). Each internal nodeR¥(u) stores
four values (see Fig. 10c):

the sum of th&knontrivial(f) values of the leaves in its subtree;

the sum of th&nontrivial(f) — Rchain(f) values of the leaves in its subtree;
the maximunRnontrivial(f) value of the leaves in its subtree; and

the maximunRnontrivial(f) — Rchain(f) value of the leaves in its subtree.

A wbdpR

Hence, the root oBg(u) stores four values (see Fig. 10c):

1. two times the total number of nontrivial virtual edgesskeleton(u), this last denotec
totalRnontrivial(u)= %Zf Rnontrivial(f);

2. two times the total number of nontrivial virtual edges that are not chain virtual edge
skeleton(w), this last denotéatalRnonchain(u)= % > ¢ (Rnontrivial(f) — Rchain(f)); note thatotal-
Rnonchain(u)> 0;

3. the maximum value oRnontrivial(f) over all facesf of skeleton(u), denotethax-
Rnontrivial(it) = max; {Rnontrivial(f)}; and

4. the maximum value oRnontrivial(f) — Rchain(f) over all facesf of skeleton(u),
denotednaxRnonchain(uy= max; {Rnontrivial(f) — Rchain(f)}; note thatmaxRnonchain(u} 0.

The purpose of the above four variables is the followittdalRnontrivial(x) = maxRnontrivial(u)
indicates that, in the unique embeddings&Eleton(w), all the nontrivial virtual edges sieleton()
are on the same facetaxRnontrivial(u)= maxRnonchain(u) indicates that, in the unique embedd
of skeleton(u), all the nontrivial virtual edgessKeleton(u) that are not chain virtual edges are on 1
same face.

e For the entire grapks, the following variables are obtained by summing those above ove
the P-nodes or all the R-nodesDf

—the number of P-nodes df whose skeleton contains more than two nontrivial virtual edg
denoted

sumP3nontrivialg) = Y P3nontrivial(w);
P-nodeu

—the number of P-nodes af whose skeleton contains more than two nonchain, nontriv
virtual edges, denoted

sumP3nonchail®) = » _ P3nonchain(u);

P-nodeu

—the total number of nontrivial virtual edges in the skeletons of the R-nod€saénoted

sumtotalRnontrivialG) = » " totalRnontrivial();

R-nodeu

—the total number of nonchain, nontrivial virtual edges in the skeletons of the R-nodes
denoted

sumtotalRnonchail}) = Z totalRnonchain(u);

R-nodeu
—the sum of thenaxRnontrivial(x) values over all the R-nodesIgfdenoted

summaxRnontriva) = Y~ maxRnontrivial(s);
R-nodeu

INCREMENTAL CONVEX PLANARITY TESTING 111

TABLE 1

The Values of Some of the Additional Variables for the
Graphsin Figs. 1, 2, and 3

Fig. 1 Fig. 2 Fig. 3

P3nontrivial(r)
P3nonchain(
Snontrivial(p
totalRnontrivial()
totalRnonchain(u)
maxRnontrivial(i)
maxRnonchain(u)
sumP3nontrivialG)
sumP3nonchairt)
sumtotalRnontrivialG)
sumtotalRnonchaii)
summaxRnontrivia)
summaxRnonchaif)

0
0
2
2

2
2
2

(ﬂ@m\lOI—‘NNNwNOH
@\I\IOOOONNwwNOO

(S Né) e e Ne)

—the sum of themaxRnonchain(u) values over all the R-noded ptlenoted

summaxRnonchai®) = » maxRnonchain(u).
R-nodeu

As an example, in Table 1 we give the values of some of the above variables for the graphs in F
2,and 3.

6. IMPLEMENTATION OF THE QUERY OPERATIONS

In this section, we describe the implementation of operatiingEtlyConvexand Convex. As for
operationTest, it does not use any of the additional data structures and thus it is implemented e
as described in [20].

In the implementation of operatioBtrictlyConvex, we use three of the six variables for the ent

graph described in Section 5. Namely, operatgrictlyConvexs implemented as the logicahd of
the following two conditions:

1. sumP3nontrivialG) = 0; and
2. sumtotalRnontrivialG) = summaxRnontrivia().

Lemma 5. The above implementation of operation StrictlyConvex is correct.

Proof. Condition 1 holds if and only iP3nontrivial(i)= O for each P-nodg of T: necessity can
be proved by contradiction; sufficiency is trivial. It follows that Condition 1 expresses the fact tha
every P-node: of T, skeleton(w) consists of one trivial and two nontrivial virtual edges.

Foreach R-nodg of T, totalRnontrivial(x) > maxRnontrivial(x), where equality holds ifand only i
allthe nontrivial virtual edges akeleton(w) are on the same face. Thus@psumtotalRnontrivial(G¥
summaxRnontrivial(G). Condition 2 holds if and onlyatalRnontrivial(x)= maxRnontrivial(w) for
each R-nodes of T: necessity can be proved by contradiction; sufficiency is trivial. It follows t
Condition 2 expresses the fact that, for each R-nod&T, all the nontrivial virtual edges akeleton(u)
are on the same face.

Thus, the logicahnd of Conditions 1 and 2 is equivalent to Theorem &

In the implementation of operatioBonvex, we use the other three variables for the entire gr

described in Section 5. Namely, operati@onvexis implemented as the logicahd of the following
two conditions:

1. sumP3nonchai®) = 0; and
2. sumtotalRnonchai®) = summaxRnonchai€).

112 DI BATTISTA, TAMASSIA, AND VISMARA

Lemma 6. Let G be a biconnected planar graph and let e a reduced graph of G. Ther
sumP3nonchai®) = 0 if and only if sumP3nontrivialg’) = 0.

Proof. LetT andT’bethe SPQR-trees &andG’, respectively. ConditiosaumP3nonchair) = 0
holds ifand only ifP3nonchain(u)= 0 for every P-nodg of T, and conditiorsumP3nontrivialG’) = 0
holds if and only ifP3nontrivial(t/) = O for every P-nodeu’ of T': necessity can be proved by
contradiction; sufficiency is trivial.

Thus, to prove the claim, it is sufficient to prove that, for each P-nodeT, P3nonchain(u)= 0 if
and only ifP3nontrivial(«) = 0, whereu' is the node ofl’ corresponding tq.

As observed in Section 3keleton(/) is obtained frorrskeleton(uw) by replacing at most one chai
virtual edge with a trivial virtual edge. In particular, three cases are possipkkgleton(i) consists
of one trivial and two nontrivial virtual edges; thekeleton(/) = skeleton(u) andP3nonchain(u)=
P3nontrivial(y/) = 0; (ii) skeleton(u) consists of three nontrivial virtual edges, at least one of wi
is a chain virtual edge; theskeleton(/) consists of one trivial and two nontrivial virtual edges, ar
P3nonchain(u)= P3nontrivial(i/) = 0; (iii) skeleton(w) consists of more than three virtual edges; tt
alsoskeleton() consists of more than three virtual edges B8donchain(u)= P3nontrivial(i) = 1.
Hence the claim is proved.m

Lemva 7. Let G be a biconnected planar graph and let Be a reduced graph of G. Then
sumtotalRnonchain(G summaxRnonchain(Gif and only if sumtotalRnontriviéz") = summax-
Rnontrivial G).

Proof. Let T and T’ be the SPQR-trees @& and G’, respectively. For each R-node of T,
totalRnonchain(u)> maxRnonchain(ui), where equality holds if and only if all the nonchain, n
trivial virtual edges ofskeleton(u) are on the same face. It follows teamtotalRnonchain(G}
summaxRnonchain(G), where equality holds if and ontigtdlRnonchain(u)= maxRnonchain(u) for
every R-node: of T: necessity can be proved by contradiction; sufficiency is trivial. Similarly, for e:
R-nodew’ of T, totalRnontrivial(i/) > maxRnontrivial(t4), where equality holds if and only if all the
nontrivial virtual edges ofkeleton(y) are on the same face. It follows thatmtotalRnontrivialG’) >
summaxRnontriviatg), where equality holds if and onlyibtalRnontrivial(x) = maxRnontrivial(t)
for every R-nodequ’ of T': again, necessity can be proved by contradiction; sufficiency is trivial.

Thus, to prove the claim, it is sufficient to prove that, for each R-nodé T, totalRnonchain(u)=
maxRnonchain(w) if and only tbtalRnontrivial(i/) = maxRnontrivial(/4), whereu’ is the node ofl’
corresponding tq.

As observed in Section 3keleton(y) is obtained fromskeleton(w) by replacing each chain vir
tual edge with a trivial virtual edge. It follows thadtalRnonchain(u)= totalRnontrivial(i{) and
maxRnonchain(u)x maxRnontrivial(/). Hence the claim is proved.m

Lemma 8. The above implementation of operation Convex is correct.

Proof. It immediately follows from Lemmas 4, 5, 6, and 7, and from TheoremsB.
7. IMPLEMENTATION OF THE UPDATE OPERATIONS

In the description of operatioriasertVertexandInsertEdge, we use the terminology and concej
of [20]. In particular, for each update operation, we recall the structural changes of the SPQR-tre
describe in detail how the additional data structures are modified.

We adopt a top-down approach by defining a hierarchy of transformations. A pseudocode desc
of operationinsertEdgeis given (see Algorithm 1), based on the following transformatidfisal-
TransformationllnitialTransformation ElementaryTransformatiofinalTransformation2, anfinal-
Transformation3. The first, third, and fourth of these transformations, plus opehasieri\ertex, are
described in terms ok-transformationsor RX-transformations, wher¥ is R, P, or S, depending on
whether a specified node is an R-node, P-node, or S-node, respectively. In tufrtraimsformations
and RX-transformationsgelative to operationnsertEdge, andnitialTransformationare described in
terms of two auxiliary operations, call&plitFaceandMergeFaces.

We describe here, once and for all, certain updates of the additional data structures that occt
the transformations:

INCREMENTAL CONVEX PLANARITY TESTING 113

e For each R-nodg, every time one of the values stored at the root of the balanced binary
Br(f) associated with a facé of skeleton(u) changes, the same value stored at the leBg@f)
corresponding td is updated.

e Foreach P-node, every timeP3nontrivial() or P3nonchain(u) changessimP3nontrivial(G)
or sumP3nonchain(G) is updated, respectively.

e For each R-nodg, every timetotalRnontrivial(u),totalRnonchain(u)maxRnontrivial(w), or
maxRnonchain(x) changesyumtotalRnontrivial(G)sumtotalRnonchain(GsummaxRnontrivial(G),
or summaxRnonchain(G) is updated, respectively.

All the additional data structures not explicitly mentioned in the various transformations are ass
to remain unchanged.

Finally, we have a notational remark. When a fdcis split by operatiorSplitFace, the two resulting
faces are denoted’ and f”. When two facesfy and f, are merged by operatioMergeFaces, the
resulting face is denotetl,y.

7.1. Insert Vertex

In this section we consider operatibrsertVertex(ve, e, €). Let p be the Q-node corresponding te
e and letr be the node adjacent ta Nodex can be either an R-node, a P-node, or an S-node; tr
different cases are possible floisertVertex(ve, e, &), respectively:

1. R-transformation. Node is replaced with an S-nodehaving two adjacent Q-nodes, and s,
corresponding t@, ande,, respectively. The trivial virtual edge, in skeleton(7 is replaced with a
nontrivial virtual edges; .

We create a new balanced binary trBg(1) with three leaves, and we sabntrivial(e,,) and
nontrivial(e,,) equal to 0, andhontrivial(e,) equal to 1.

Let f; andf, be the two faces afkeleton(s containinge,, now renamed, . We set botmontrivial(e,)
andchain(e) equal to 1 in the two leaves ®&x(f1) andBg(f2) corresponding te; .

2. P-transformation. Node is replaced with an S-nodehaving two adjacent Q-nodes, and s,
corresponding t@, ande,, respectively. The trivial virtual edge, in skeleton(7 is replaced with a
nontrivial virtual edges; .

We create a new balanced binary trBg(x) with three leaves, and we sabntrivial(e,,) and
nontrivial(e,,) equal to 0, andhontrivial(e,) equal to 1.

If, before the transformationP3nontrivial(r) = 0 (and thusP3nonchain(= 0), we set
P3nontrivial() equal to 1 and leai@3nonchain(equal to 0. (Note that, being simple, the skeleton
of a P-node may contain at most one trivial virtual edge, while the other virtual edges are nontriv

3. S-transformation. Nodg is replaced with two Q-nodegp; andp,, corresponding te; ande,,
respectively. The trivial virtual edge, in skeleton(s is replaced with two trivial virtual edges,, and
e,,, having an endvertex in common.

We delete the leaf oBs(rr) corresponding te, and insert two new leaves corresponding@joand
e,,. We set nontrivial(g) and nontrivial(g,) equal to 0 in these two leaves.

The above discussion on the various transformations in opefasent\Vertexcan be summarized in
the following lemma.

Lemma 9. The transformations in operation InsertVertex require:
e the creation of 1) balanced binary trees, each with an(Q) number of leaves;

e the execution of Q) insert and delete operations on a balanced binary tese]
e the update of Q1) values stored either at a leaf of a balanced binary tree or in a variable.

7.2. InsertEdge

In this section we consider operatitmsertEdge(ev1, vz). In order to describe the correspondin
transformations of the SPQR-trdeof graphG, we need some more definitions. Lebe a vertex
of G. Theallocation nodef v are the nodes of whose skeleton contains The lowest common

114 DI BATTISTA, TAMASSIA, AND VISMARA

ancestor of the allocation nodesiofs itself an allocation node af and is called th@roperallocation
node ofv, denotedproper(v). If v is one of the endvertices of the reference edge, we convention
defineproper(v) as the unique child of the root @f. In all other caseqroper(v) is either an R-node
or an S-node; als@roper(v) is the only allocation nodg of v such that is not a pole ofx. As an
example, in Fig. 1 R-nodes andu, P-noder, and S-nodes andp are all allocation nodes of vertex
v1, With x as the proper allocation node. R-ngdés also, by convention, the proper allocation node
vertexvy.

In Algorithm 1 we recall the pseudo-code description of operdtisartEdge(evs, v,) from Section
5 of [20]. The proper allocation nodes of v and u, andv,, and their lowest common ancesgor
are computed. Four cases are possible: the three nodes are coincident, the three nodes are di
one proper allocation node is an ancestor of the other (two cases). In all four cases, theTsubfre
T rooted atu and the corresponding additional data structures are subject to some transformatiol
describe these transformations in the rest of the section.

7.2.1. FinalTransformation(x)

From Algorithm 1, it follows thaskeleton(contains bothy; andv,. As described in Section 5 of
[20], v; andv, belong to a common facg, andy can be either an R-node or an S-node; two differe
cases are possible fémalTransformationX(y), respectively:

AlcoritHm 1. OperatiorinsertEdge(evs, v2) and its subroutin®athCondensation(y x) Insert-
Edge(e v1, v2)
begin
find the proper allocation nodes of v; andu, of v,, and their lowest common ancesjor
case of
M1 = 1 = [2:
FinalTransformation1(u);
M1 F 1 F K2
PathCondensation(u w);
PathCondensation(u w);
FinalTransformation2(a, u2);
1= p F# Q2!
determine the lowest nodeon the path fromu, to u such thaskeleton(¢ containsvy;
if w = uothen
FinalTransformation1(g);
else
PathCondensation(y w);
FinalTransformation3(g);
endif
M1 F Qo= [
{this case is analogous to the previous one and therefore omitted}
endcase
end

PathCondensation(ju x)
begin
InitialTransformation();
find the childi; of x on the path fromu; to x;
setp equal tou;;
while p # A do {ui “bubbles up” alondr until it becomes a child of }
setw equal to the parent of;
ElementaryTransformation(p, yr
setp equal tor;
endwhile
end

INCREMENTAL CONVEX PLANARITY TESTING 115

1. R-transformation. Two cases are possible:

() skeleton() does not contain edge(, v2). A new Q-node, corresponding to edgeis
added as a child of, and a trivial virtual edge (v v,) is added tcskeleton(y, splitting facef into
facesf’and f”.

We perform operatiosplitFaceBr(f), v1, vy, trivial) obtaining Br(f’) andBgr(f”). We delete the
leaf of Br()) corresponding td and insert two new leaves corresponding tand f”.

(b) skeleton(y) contains edgeuvf, v2). Then {1, v2) is the nontrivial virtual edge of a child
of x, and two cases are possible:

i. visaP-node. A new Q-node, corresponding to eelgs added as a child of, and a
trivial virtual edge (u, v2) is added teskeleton(y.

If, before the transformatiof®3nonchain(y is equal to 0, we set it equal to 1. (Note that, before tl
transformationP3nontrivial(y) is equal to 1 sincekeleton()y does not contain a trivial virtual edge
(v1, v2).)

ii. wvisnota P-node. Itis replaced with a new P-nadevhose children are and a new
Q-nodep, corresponding to edge skeleton(i) consists of the nontrivial virtual edgesinde, and of
the trivial virtual edges,.

We set botHP3nontrivial(A) andP3nonchain()) equal to 0.

Let f; and f, be the two faces dfkeleton()) containinge,, now renamea, . We setontrivial(e,)
equal to 1 anc¢thain(g) equal to 0 in the two leaves &z (;) and Bg(f) corresponding te,.

If v is an S-node, we consider the leaf B§(v) corresponding te,, now renameds;,. We set
nontrivial(e) equal to 1 in this leaf.

If vis an R-node, lef, and f, be the two faces afkeleton() containinge,, now renamede, . We set
nontrivial(e,) equal to 1 an@hain(g) equal to 0 in the two leaves &x(f,) and Br(fp) corresponding
toe,.

2. S-transformation. Two cases are possible:

(a) skeleton() does not contain edge(, v2). Let o be the parent of, let p be the path
of skeleton() betweenv; andv, not containinge, (see Fig. 11a), and le4y, ..., Bk, k > 2, be the
children of x corresponding to the edges pf Nodesps, ..., Bk are replaced with a new P-node
whose children are a new Q-nogdecorresponding to edge and a new S-node, whose children are
B1, ..., Bk. Pathpis replaced irskeleton() with the nontrivial virtual edge; ; skeleton()) consists of
the nontrivial virtual edges, ande,, and of the trivial virtual edge,; skeleton(y consists op plus a
nontrivial virtual edge®, = (vi1, v2) (see Fig. 11b).

We set botHP3nontrivial(A) andP3nonchain()) equal to 0.

We perform operatiosplitFaceBs(x), v1, vz, nontrivial) obtainingBs(v) and the newBs(x). We
consider the leaf oBs(x) corresponding te,, now renamee;, . We setontrivial(e,) equal to 1 in this
leaf. We then consider the leaf &(v) corresponding t@,, now renamea,. We set nontrivial(g)
equal to 1 in this leaf.

.® .®
A R
e ' , '
’ ' ’ t
4 1 // ' V1 Vi
’
13 (‘) Vi t ‘ Vl , ,
! ! i ’ AN .
' ! 1 . \ ’
' ! 1 ‘ \ t
l’ |' 1 i 1 i
) ' 1 '
e(S' [] eG ! ' 67\, eXI i eV e?u
1 1 ' I t i 1 1
1 | '] \ 1 \ 1
1 1 ' 1 \ ’ [N
v 1 \ | \ ’ [N
\ A} ~ 7’ N
\ C) Vy \ Vs "
AY AY
N N Va Va
N AY
N N
~ ~
\\ \\
[]

FIG. 11. An example ofS-transformationin FinalTransformationl: (a)skeleton() before theS-transformation, and
(b) skeleton(y), skeleton()), andkeleton(), after theS-transformation.

116 DI BATTISTA, TAMASSIA, AND VISMARA

If o is a P-node whose skeleton consistgptind two other virtual edges ande,, ande; ande,
are neither chain virtual edges (Snontrividl¢g 1 andSnontrivial(y) > 1) nor trivial virtual edges,
then we seP3nonchain(g equal to 1.

(b) skeleton(y contains edgeu, v2). Analogous to the second case of Rransformation.

7.2.2. InitialTransformation(y)

If i is an S-node, it is transformed into an R-node. &dte the parent ofi;; note thats is neither
an S-node, since two S-nodes cannot be adjacent imor a Q-node, sincg;, having at least. as an
ancestor (see Algorithm 1), cannot be the child of the rodt.of

If s,, andv; are not adjacent iskeleton(y), let ps be the path o$keleton(y) betweers,, andv; not
containinge, (see Fig. 12a), and let, .. ., ax, k > 2, be the children ofi; corresponding to the edge:
of ps. Nodesay, ..., ax are replaced with a new S-nodewhose children ares, ..., ax. Pathps is
replaced irskeleton() with the nontrivial virtual edge, ; skeleton(f) consists ofps plus a nontrivial
virtual edgee,, = (s, vi) (see Fig. 12b).

We perform operatioSplitFaceBs(wi), Sy, vi, hontrivial) obtainingBs(v’) and the newBg(w;).
Similarly, if v; andt,, are not adjacent inkeleton(y), let p; be the path ofkeleton(x) betweerny;
andt,, not containings, (see Fig. 12a), and le4, ..., yn, h > 2, be the children ofi; corresponding
to the edges ofy.. Nodesys, . . ., v, are replaced with a new S-nodéwhose children args, . . ., yh.
Pathp is replaced irskeleton(g) with the nontrivial virtual edge,; skeleton(#)) consists ofp; plus

a nontrivial virtual edgee,, = (vi, t,,) (See Fig. 12b).

We perform operatioSplitFaceBs(wi), vi, t,;, nontrivial) obtainingBs(v”) and the newBs(w;).

To complete the transformation, we must convert the pgwnto an R-node. Note that; will be
a degenerate R-node until operatimsertEdgeis completed, since its skeleton is not a triconnect
simple planar graph, but a cycle of three virtual edges. We did8&(id), and create two new balance:
binary treesBg(f1) and Br(f2), with three leaves each, for the two facRsand f, of skeleton(z). In
the leaves of both trees, we set:

e nontrivial(e,) = 1 andchain(g,) = 0

1 if Snontrivial(v) = 1
0 otherwise

1 if Snontrivial(y) =1
0 otherwise.

¢ nontrivial(e,) = 1 andchain(g/) = {
e nontrivial(e,”) = 1 andchain(e,") = {

Finally, we create a new balanced binary tBg/.;) with two leaves corresponding tQ and f;.
Note that, ifo is a P-node, the possible updateR#nonchain(g is performed either ifclementary
Transformatioror in FinalTransformationZsee below).

o5,
’
A '
[[P
4 \ .7 | ' '
// ' ’ 1 e“.:
’ s 1 i
’ e, '
/ i, o \
' i h \
' ! ' AN
' ' \ v,
')
e v e Ov;
S, it G, fZ 7 oV
') ' 1 oyt
\\ ' \\ : ’/ !
\ ! \ : / !
\ \ Iev., 1 1
\ v ' e !
N N ' Hr“
N N ! \
o AN \
~ ~ t \
tHi] M N t

FIG. 12. An example oflnitialTransformation: (a)skeleton(i) before thelnitialTransformation, and (bykeleton(s),
skeleton(f), andskeleton({}), after thelnitialTransformation.

INCREMENTAL CONVEX PLANARITY TESTING 117

(a) (b)

FIG. 13. An example ofR Rtransformationin ElementaryTransformation: (gkeleton(s} andskeleton(p before theR R-
transformation, and (b3keleton(s after theR R-transformation.

7.2.3. ElementaryTransformation(p, yr

As described in Section 5 of [20$,is an R-node, while its parent can be either an R-node, or a P
node, or an S-node; three different cases are possitiiddorentary Transformation(p, yrrespectively:

1. RR-transformation. Nodg is absorbed into node; edgee, in skeleton(7 is replaced with
skeleton() — e, (see Fig. 13). Note that will be a degenerate R-node until operatiosertEdgeis
completed, since its skeleton is not a triconnected simple planar graph, but contains a nontrivi
pair.

We first consider the balanced binary trees associated with the faskslefon(andskeleton().
Let f; be the external face skeleton(s, and letf, be the other face afkeleton(s containinge, (see
Fig. 13a). Letf, be the face ofkeleton() containinge, andv;, and letf, be the other face akeleton()
containinge, (see Fig. 13a). We perform operatidbfergeFacesBr(f1), e,, Br(fa). €;), obtaining
balanced binary treBg(f1a) for the new facefi,, and operatiodergeFacesBr(f2), €,, Br(fv), €r),
obtaining balanced binary tré&x(f2p) for the new facef,, (see Fig. 13b).

We now consider the balanced binary trees associated with modad p. We delete the leaves of
Br(r) corresponding td; and f,, and the leaves d8g(p) corresponding td, and f,; then we modify
Br(7r) by joining it with Bgr(p); and finally we insert two new leaves correspondindtpand fyy, into
BR(T[).

2. RP-transformation. Nodes andsx are swapped iff. Let o be the parent ofr; edgee, is
removed fromskeleton(s and inserted irskeleton() (see Fig. 14). If, after the swap, has only one
child ¢, noder is absorbed into node, and edges, in skeleton(p is replaced witre,, . Note that, in
both casesy will be a degenerate R-node until operatlosertEdgeas completed, since its skeleton i
not a triconnected simple planar graph, but contains a nontrivial split pair.

(a) (b)

FIG. 14. An example ofR P-transformationin ElementaryTransformation: (akeleton(s andskeleton() before theRP-
transformation, and (b3keleton() andskeleton(s after theR P-transformation.

118 DI BATTISTA, TAMASSIA, AND VISMARA

We first consider the balanced binary tree associated with theffaceskeleton(p containinge,
andv; (see Fig. 14a). We perform operati@plitFaceBr(fa). S, t,, nontrivial), obtaining balanced
binary treesBr(f;) andBg(;) for the new faced, and f. into which f; is split (see Fig. 14b).

We now consider the balanced binary tree associated with podfée delete the leaf oBgr(p)
corresponding td, and insert two new leaves corresponding fand f,.

If, after the swaps has only one childy, we discardP3nontrivial() andP3nonchain(s. Let f;
and f, be the two faces askeleton() containinge,, now renamee,, . We suitably sehontrivial(e;)
andchain(g,) in the two leaves oBg(f1) and Br(f,) corresponding te,.

Otherwise, if, after the swaskeleton(s consists of three virtual edges, we may have to mod
P3nontrivial(z) and P3nonchain(s. In particular, if skeleton(s contains a trivial virtual edge, we
set bothP3nontrivial(x) and P3nonchain(s equal to 0; otherwise, iskeleton(s contains a chain
virtual edgee, (Snontrivial() = 1), we leaveP3nontrivial() equal to 1 and sét3nonchain(z equal
to 0.

3. RS-transformation. Let be the parent ofr; note thats is neither an S-node, since two S
nodes cannot be adjacenflinnor a Q-node, since, having at least as an ancestor (see Algorithm 1]
cannot be the child of the root af.

If s, ands, are neither coincident nor adjacentskeleton(s, let ps be the path ofkeleton(z
betweens, ands, not containinge, (see Fig. 15a), and lety, ..., ax, k > 2, be the children ofr
corresponding to the edgesmf Nodesy;, . . ., ax are replaced with a new S-nodevhose children are
ai, ..., ag. Pathps is replaced irskeleton(s with the nontrivial virtual edge, ; skeleton(i) consists
of ps plus a nontrivial virtual edge, = (s;, s,) (see Fig. 15b).

We perform operatio®plitFaceBs(r), s;, S,, nontrivial) obtainingBs(v’) and the newBg(r).

Similarly, if t, andt, are neither coincident nor adjacenskeleton(s, let p; be the path ofkleton(n)
betweent, andt, not containinge, (see Fig. 15a), and let, ..., yn, h > 2, be the children ofr
corresponding to the edges pf. Nodesy;, .. ., y, are replaced with a new S-nodéwhose children
areys, ..., vh. Pathp, is replaced inskeleton(s with the nontrivial virtual edges,~; skeleton({))
consists ofp; plus a nontrivial virtual edge, = (t,, t;) (see Fig. 15b).

We perform operatio®plitFaceBs(r), t,, t,, nontrivial) obtainingBs(v”) and the newBg().

To complete the transformation we first must convert the newto an R-node. After that, node
is absorbed into node by replacing edge, in skeleton(s with skeleton() — e, (see Fig. 15b). Note
thatz will be a degenerate R-node until operatiosertEdgeis completed, since itskeletoris not a
triconnected simple planar graph, but contains a nontrivial split pair.

(a) (b)

FIG. 15. An example ofR Stransformationin ElementaryTransformation: (&keleton(s andskeleton() before theRS-
transformation, and (b3keleton(s, skeleton({), andskeleton(f)) after theR Stransformation.

INCREMENTAL CONVEX PLANARITY TESTING 119

We discardBs(r), and create two new balanced binary tr&¢f1) and Bg(f,), with at most four
leaves each, for the two facdg and f;, of skeleton(7. In the leaves of both trees, we set:

e nontrivial(e,) = 1 andchain(g) =0
¢ nontrivial(e,) = 1 andchain(g/) = { (1) gtﬁgs;itsrglal(‘;) =1

e nontrivial(e,) = 1 andchain(e,) = 0
1 if Snontrivial(y') =1

e nontrivial(e,r) = 1 andchain(g-) = {0 otherwise

Let f, be the face ofkeleton(p containinge, andv;, and letf, be the other face afkeleton(p con-
taininge, . W.1.0.g., assume thgf immediately precedes in the circular ordering of, (see Fig. 15a).
Let f; be the face oskeleton(s in whose circular ordering, immediately followss,, and let f, be
the other face otkeleton(;. We perform operatiodergeFacesg(f1), €,, Br(fa), €;), obtaining
balanced binary treBg(f1a) for the new facef;,, and operatioergeFacesBr(f2), €,, Br(fy), €r),
obtaining balanced binary treé&x(f) for the new facef,, (see Fig. 15b).

Finally, we consider the balanced binary tree associated with podée delete the leaves &z (p)
corresponding td, and f,; we makeBg(p) the newBg(rr); and we insert two new leaves correspondir
to fi5 and fy, into Br().

7.2.4. Final Transformation2(4, A2)

Nodex; is the R-node whose skeleton containsnodex; is the R-node whose skeleton contair
vo. Let x be their common parent. As described in Section 5 of [204an be either an R-node, or
P-node, or an S-node; three different cases are possibifaliTransformation2(y), respectively:

1. R-transformationNodesk; anda, are absorbed into noge In skeleton(y, nontrivial virtual
edgee,, is replaced wittskeleton(i) — e,, nontrivial virtual edges,, is replaced witlskeleton() —
e,, and a trivial virtual edge (@ v,) is finally added (see Fig. 16).

We first consider the balanced binary trees associated with the faglesleton(;), skeleton(}), and
skeleton(3). Let f; be the face ofkeleton() containinge,, but note,,, let f, be the face ogkeleton()
containinge,, but note,,, and let f; be the face okeleton() containing botte,, ande,,. Let f, be
the face okkeleton(}) containinge, andv;, and f, be the other face afkeleton(}) containinge, . Let
fc be the face o$keleton(}) containinge, andv,, and fyq be the other face afkeleton(}) containing
e, (see Fig. 16a).

We perform operations MergeFacesBr(f1), €,, Br(fp), €,) and MergeFacesBgr(fs3), €,.
Br(fa), &), obtaining balanced binary treéz(fip) and Br(fsa) for the two new facesf;, and
faa, respectively. We also perform operatiadiergeFacesBr(f2), €,,, Br(fq), €,) andMergeFaces-
(Br(fsa), &,. Br(fc), &), obtaining the balanced binary treBg(f2g) and Br(fzac) for the two new
facesf,q and 34, respectively.

FIG. 16. An example ofR-transformationin FinalTransformation2: (aykeleton(), skeleton(i), andskeleton(z) before
the R-transformation, and (b3keleton(after theR-transformation.

120 DI BATTISTA, TAMASSIA, AND VISMARA

(a) (b)

FIG. 17. An example ofP-transformationin FinalTransformation2: (agkeleton(y, skeleton(i), andskeleton(z) before
the P-transformation, and (b3keleton() andskeleton()) after th&-transformation.

We still must add edgev(, v2), which will divide fz,¢ into two new facesf,, . and f, .. We perform
operationSplitFaceBr(faac), v1, v, trivial), obtaining Br(f3,.) andBr(f4,.) (see Fig. 16b).

We now consider the balanced binary trees associated with gdesandi,. We delete the leaves
of Br(x) corresponding tof;, f, and f3, the leaves oBg()1) corresponding tofy and f,, and the
leaves ofBr (1) corresponding td; and fq. Next, we modifyBg(x) by joining it first with Bg(A1) and

then with Bgr(X2). Finally, we insert four leaves correspondingft@, foq, 4. and g into Br(x).

2. P-transformation. Node$; and X, are contracted into a new R-nodle Graphskeleton(1)
is obtained by the union afkeleton(i) — e, skeleton(3) — e,, a nontrivial virtual edge, between
the poles, and a trivial virtual edge;(v2). In skeleton(}, the nontrivial virtual edges,, ande,, are
replaced with a single nontrivial virtual edgg (see Fig. 17). If, after the contraction, the only chil
of x is A, x is absorbed into its parent, edgee, in skeleton(i) is replaced wit,, and edges, in
skeleton(qg is replaced witte, .

We first consider the balanced binary trees associated with the faslieslefon(}) andskeleton(3).
Let f, be the face ofkeleton(4) containinge, andvy, and letf; be the face okeleton() containing
e, andv; (see Fig. 17a).

We perform operatioMergeFacesBr(fa), e, Br(fc), €,), obtaining balanced binary tregx(fac)
for the new facef,..

We still must add edgev(, vz), which will divide f,¢ into two new facesf;. and f.. We perform
operationSplitFaceBgr(fac), v1, vz, trivial), obtaining Br(f;.) andBr(;) (see Fig. 17b).

We now consider the balanced binary trees associated with nedasdx,. We delete the leaf of
Br(A1) corresponding td,, and the leaf oBr(A,) corresponding td.. We then joinBg(11) andBgr(1,)
to obtain a new balanced binary tr&g(1), and insert two leaves correspondingftf and f, into
Br(%).

If after the contraction, the only child ¢f is A, we discard®3nontrivial(x) andP3nonchain(y. If
the parent of x is an S-node an8&nontrivial(o) = 1, let f; and f, be the two faces afkeleton()
containinge, , now renamed, . We leave nontrivial(g) equal to 1 and sethain(e.) equal to 1.

Otherwise, if, after the contractioskeleton() consists of three virtual edges, we may have to mod
P3nontrivial(x) andP3nonchain(). In particular, ifskeleton() contains a trivial virtual edge, we se
bothP3nontrivial(x) andP3nonchain() equal to O; otherwise, gkeleton() contains a chain virtual
edgee, (Snontrivial() = 1), we leaveP3nontrivial(x) equal to 1 and sé23nonchain(y equal to 0.

3. S-transformation. Nodes; and).; are contracted into a new R-noklelets; andt; (s, andt,)
be the endvertices &, (e,,) in skeleton(y; w.l.0.g., assume thaj, t1, S, andt, appear in this order

INCREMENTAL CONVEX PLANARITY TESTING 121

!
i

FIG. 18. An example ofS-transformationin FinalTransformation2: (agkeleton(y, skeleton(x), andskeleton(z) before
the Stransformation, and (b§keleton(y, skeleton(1), andkeleton() after theS-transformation.

between the poles akeleton(). Let p be the path ofkeleton() betweers; andt, not containing the
virtual edge of the parent gf (see Fig. 18a). Path is replaced irskeleton(} with a nontrivial virtual
edgee, ; skeleton() consists qf plus a nontrivial virtual edge, = (sy, t2). Then, ift; ands; are neither
coincident nor adjacent skeleton(1), the subpathi of p betweert; ands; is replaced with a nontrivial
virtual edgee,, and a new S-node is createdskeleton() consists ofp’ plus a nontrivial virtual edge
&. = (11,). Finally, the nontrivial virtual edge,, in skeleton(1) is replaced wittkeleton(4) - e, the
nontrivial virtual edges,, in skeleton(}) is replaced witkeleton(g) — e,, and a trivial virtual edge
(v1, v2) is added (see Fig. 18b).

We first consider the balanced binary trees associated with a fateleton(y, and with the faces
of skeleton(}) andskeleton().

We perform operatioplitFaceBs(x), s1, to, nontrivial), obtainingBs(1) and the newBs(x). Then,
if t; ands, are neither coincident nor adjacentskeleton()), we perform operati@plitFaceBs()),
t1, S, nontrivial), obtainingBs(v) and the newBs(1.).

We now must convert the new into an R-node. Note that will be a degenerate R-node unti
operationinsertEdgels completed, since its skeleton is not a triconnected simple planar graph, |
cycle of at most four virtual edges. We discd8¢()), and create two new balanced binary trégéf;)
and Bg(f,), with at most four leaves each, for the two fadgsand f, of skeleton(1). In the leaves of
both trees, we set:

1 if Snontrivial(y) = 1

* nontrivial(e,) = 1 andchain(e) = {0 otherwise

e nontrivial(g,) = 1 andchain(g,) =0

1 if Snontrivial(y) = 1

e nontrivial(e,) = 1 andchain(g) = {0 otherwise

e nontrivial(g,) = 1 andchain(e,) = 0.

Let f, be the face oBkeleton(}) containinge, andv;, and f, be the other face adkeleton(})
containinge,. W.l.o.g., assume thdi immediately precedes; in the circular ordering off, (see
Fig. 18a). Letf; be the face ofkeleton()) in whose circular orderingimmediately followss;, and
let f, be the other face afkeleton(x). We perform operaticviergeFacesBr(f1), €y,. Br(fa), &),
obtaining balanced binary treBr(f1a) for the new facefi,, and operatioiMergeFacesBgr(), &,,
Br(fb), €,), obtaining balanced binary trégx(f2y) for the new facefyy,.

122 DI BATTISTA, TAMASSIA, AND VISMARA

Analogously, letf; be the face obkeleton(}) containinge, andv,, and fy be the other face of
skeleton(z) containinge, (see Fig. 18a). We perform operatitdergeFacesBr(f1a), €,, Br(fc),
e,), obtaining balanced binary trdx(f1ac) for the new facefi,¢, and operatioMergeFacesBr(f2p),
€., Br(f4), &), obtaining balanced binary tré&(fong) for the new facef,yq.

We still must add edgev(, v2), which will divide f15¢ into two new facesf;,. and f;, .. We perform
operationSplitFaceBg(f1ac), v1, vo, trivial), obtaining Br(f;,.) andBr(f[,.) (see Fig. 18b).

Finally, we consider the balanced binary trees associated with nedesii,. We delete the leaves
of Br(A1) corresponding td, and f,, and the leaves d#z (1) corresponding td. and f4. We then join
Br(11) andBg(1,) to obtain a new balanced binary tiBg(1), and insert three new leaves correspondil
to f, ., fi.. and f,q into Br(1).

lac' "lac?

7.2.5. FinalTransformation3(3)

Node; is the R-node whose skeleton contaipd_et x be its parent. As described in Section 5 of [20
x can be either an R-node or an S-noéi@alTransformation3(3) can be viewed as a particular cas
of FinalTransformation2(4, A,), with skeleton(}) collapsed to a single vertaex of skeleton(y. The
updates of the additional data structures are simple variations of those descriRettdosformation
andS-transformationn Section 7.2.4.

7.2.6. Summary of Operation InsertEdge

The above discussion on the various transformations in operatsentEdgecan be summarized in
the following lemma.

Lemma 10. The transformations in operation InsertEdge require:

e the creation of @1) balanced binary treesach with an @1) number of leaves;

e the execution of @) join, insert,and delete operations on a balanced binary tree;

e the update of Q1) values stored either at a leaf of a balanced binary tree or in a varigzdnhel
¢ the execution QL) SplitFace and MergeFaces operations.

7.3. SplitFaceandMergeFace

In the previous section we have describedtheansformationandRX-transformationsf operation
InsertEdgean terms of the auxiliary operatior&plitFaceandMergeFaces. We have seen how operati
SplitFaceis performed when a face of a skeleton is split into two new faces by inserting a new vi
edge, and we have seen how operafibergeFacedss performed when two faces (of two differen
skeletons) having a virtual edge with the same endvertices are merged into a new face. In this !
we show how these auxiliary operations are implemented.

We first consider operatidBplitFaceB, u, v, edge-type), wherB is the balanced binary tree assoc
ated with a facé of the skeleton of an R-node or S-nadeu andv are two vertices of, andedge-type
€ {trivial, nontrivial} is the type of the virtual edge= (u, v) to be inserted into the two new facés
and f” created by this operation. Note thapifis an R-node, theri’ and f” belong toskeleton(w); if
wu is an S-node, then is split into two new S-nodeg’ andu”, with f’ belonging toskeleton(/) and
f” belonging toskeleton().

Letprev(w) andnext(u) be the edges preceding and following, respectively, vestiexf . We describe
the most general case, where neither the leaf correspondim@¥@ nor the leaf corresponding tc
prev(v) is the rightmost leaf oB. The cases in which either the leaf correspondingrav(u) or the
leaf corresponding tprev(v) is the rightmost leaf oB are similar.

We first split B at the lowest common ancestor of the leaves correspondipgetgu) andnext(y,
thus obtaining two balanced binary treBs and By, neither of which is empty. W.l.0.g., assume th:
the leaf corresponding tprev(v) is contained inB,. We split B, at the lowest common ancestor o
the leaves corresponding poev(v) andnext(y), thus obtaining two balanced binary tre&sg and By,
neither of which is empty. We joiB, and By, (in this left-to-right order) to obtain the new balance
binary treeB’ for f’, while By, is the new balanced binary tr& for f”. Finally, we insert a new leaf
corresponding teinto B’ andB”. If edge-type-= trivial, we setnontrivial(€) equal to 0; otherwise, we

INCREMENTAL CONVEX PLANARITY TESTING 123

setnontrivial(e) equal to 1. In both cases, ff is a face of the skeleton of an R-node, we dwin(e
equal to 0.

We now consider operatioMergeFaces®’, e,, B”, e;), wherep andx are two R-nodesB’ is the
balanced binary tree associated with a féitef skeleton(s, B” is the balanced binary tree associate
with a facef” of skeleton(p, e, is the nontrivial virtual edge of in skeleton(z, e, is the nontrivial
virtual edge ofr in skeleton(p, ande, ande, have the same endvertices. Note thandx are merged
into a new node., with the new facef created by this operation belongingskeleton(i).

We first split B” at the leaf corresponding), thus obtaining two balanced binary trees (one
which is possibly empty)B/ containing the leaves to the left of the leaf corresponding,t@nd By
containing the leaves to the right. Similarly, we sjit at the leaf corresponding &, thus obtaining
balanced binary treeB” andB;’ (one of which is possibly empty). We then jdgj, B/, B/, andB; (in
this left-to-right order) to obtain the balanced binary tBéor f.

The above discussion on operati@litFaceandMergeFacexan be summarized in the following
lemma.

Lemma 11. Operation SplitFace requires the execution afi{split, join, and insert operations on
balanced binary trees. Operation MergeFaces requires the executiorflgfsplit and join operations
on balanced binary trees.

8. COMPLEXITY ANALYSIS

In this section, we analyze the space complexity of the data structure and the time complexity
query and update operations. Throughout the section we indicateGadtibiconnected planar grapt
that is updated on-line by adding vertices and edges, andnattile current number of vertices &.
In order to make the paper more self-contained, we quote one of the main theorems of [20], whi
will refer to in our analysis.

THeOREM4 [20]. Let G be abiconnected planar graph thatis dynamically updated by adding vert
and edges, and let n be the current number of vertices of G. There exists a data structure for the ¢
incremental planarity testing problem on G with the following performatioe space requirement is
O(n), operations Test and InsertVertex tak€l@ n) worst-case timeand operation InsertEdge takes
O(logn) amortized time.

Our data structure requir€3(n) space. This follows from Theorem 4 and from the easily checka
O(n) space complexity of the additional data structures.

OperationsStrictlyConvexand Convextake O(1) worst-case time (see Section 6). Since operati
Testdoes not use any of the additional data structures, by Theorem 4 it@dlagpn) worst-case time.

The time complexity of the update operations follows from Theorem 4, once we prove tha
additional data structures can be maintained within the specified time bounds. This immediately fc
from Lemmas 9, 10, and 11, and from the following observations:

e Splitting a balanced binary tree, joining two balanced binary trees, and inserting or del
a leaf of a balanced binary tree tak€glogn) worst-case time, and the resulting binary trees &
themselves balanced (see, e.g., Chapter 4 of [50]).

e Asaconsequence of each split, join, insert, and delete operation, or update of the values
at a leaf of a balanced binary tree, the values stored at the nodes of one or two leaf-to-root (sut
must be updated, and this also tak¥og n) worst-case time.

e Maintaining variablesP3nontrivial and P3nonchain, and updating variablesimP3-
nontrivial, sumP3nonchainsumtotalRnontrivial sumtotalRnonchainsummaxRnontrivial, ansum-
maxRnonchaimakesO(1) time.

The entire discussion on the on-line incremental convex planarity testing problem on biconn
planar graphs can be summarized in the following theorem.

THeEOREM 5. Let G be a biconnected planar graph that is updated on-line by adding vertices
edges,and let n be the current number of vertices of G. There exists a data structure for the o

124 DI BATTISTA, TAMASSIA, AND VISMARA

incremental convex planarity testing problem on G with the following performdheespace require-
ment is dn), operations StrictlyConvex and Convex takélpworst-case timeoperations Test and
InsertVertex take Qogn) worst-case timeand operation InsertEdge takes(log n) amortized time.

Two slightly more complicated data structures can be devised for the on-line incremental ¢
planarity testing problem on nonbiconnected planar graphs, similarly to what is done in [20] fc
on-line incremental planarity testing problem. For connected planar graphs, we augment the
repertory with the following update operation:

AttachVertex(ve, u): Add vertexv and connect it to verte by means of edge.

As shown in [20], am-vertex connected planar graph can be assembled starting from a single ver
means of a sequence©f{n) AttachVertexandinsertEdgeoperations, such that each intermediate gra
is planar and connected. For general planar graphs, we augment the above repertory with the fo
update operation:

MakeVertex(): Add an isolated vertex.

We recall that am-vertex planar graph can be assembled starting from a single vertex by mean
sequence 0O (n) MakeVertexandInsertEdgeoperations, such that each intermediate graph is plar

With techniques similar to those used to prove Theorem 5, it is possible to prove that there
two data structures for the on-line incremental convex planarity testing problem on connected ¢
general planar graphs with the same performance as in Theorem 5, and the following perfor
for the additional operations: operatidiitachVertexakesO(log n) worst-case time, and operatiol
MakeVertexakesO(1) worst-case time.

9. OPEN PROBLEMS

Open problems related to this work include:

e Reducing the amortized time complexity of operatidrest, InsertVertex,InsertEdge, and
Attach Vertexo O(x(k, n)), wherex(K, n) is the inverse of Ackermann’s functionjs the final number
of vertices of the graph, arld> n is the total number of query and update operations. The invers
Ackermann’s function grows very slowly; namely

2
17
alk,n) <4 for n<2? } ,
that is, for all values ofi up to a number much greater than the estimated number of atoms ir

observable universe (see, e.g., [10]). La Poutré [35] has shown that on-line incremental planar
be tested within this time bound.

¢ Devising a data structure for the on-line fully dynamic convex planarity testing problem.
best data structure for the on-line fully dynamic planarity testing problem supports query and u
operations inD(,/n) amortized time [26].

e Characterizing the area required by a strictly convex grid drawing. Kant [33] has shown
convex grid drawings of triconnected planar graphs can be constructed with quadratic area (s
[21, 41]). Lin and Skiena [36] have shown that drawing a cycle as a strictly convex polygon with in
vertex coordinates requir€¥n®) area. Chrobakt al. [7] have presented an algorithm for constructir
strictly convex grid drawings of triconnected planar graphs véin®) x O(n®) area.

e Devising a data structure for efficiently maintaining straight-line drawings of planar graph
particular (strictly) convex drawings, in a semi-dynamic or fully dynamic environment. This is a Ic
standing open problem in graph drawing. Its difficulty arises from the fact that even a single u
to the graph may cause a major restructuring of the drawing. One can consider, as an exam|
insertion of an edge between two antipodal vertices in a convex drawing; it is easy to see that di
the new edge as a straight-line segment and, if possible, making the two new faces convex may
changing the coordinates of a large number of vertices. In addition, other aspects play an importz
in dynamic graph drawing. For instance, it is important that the new drawing be as similar as po

INCREMENTAL CONVEX PLANARITY TESTING 125

to the one before the update, in order to preservettital maghe viewer has of the drawing [25, 37]
even though this is at the expense of some other aesthetic criteria.

ACKNOWLEDGMENTS

We thank the anonymous referees for their helpful comments and suggestions on how to improve the presentation.

10.
11.
12.
13.

14.

15.

16.

17.

18.

19.

20.
21.

22

24.

25.

26.

27.

28.

29.

30.
31.

REFERENCES

. Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1974), “The Design and Analysis of Computer Algorithms,” Addison-We

Reading, MA.

. Alberts, D., Gutwenger, C., Mutzel, P., and Naher, S. (1997), AGD-Library: A library of algorithms for graph di

ing, in “Proc. Workshop on Algorithm Engineering,” (G. F. Italiano and S. Orlando, Eds.), pp. 112-123. [Availabl
http://www.dsi.unive.it/ ~wae97/proceedings/ ONLYPAPER%ap12.ps.gz.]

. Brandenburg, F. J. (Ed.) (1996), “Graph Drawing (Proc. GD '95),” Lecture Notes Comput. Sci., Vol. 1027, Springer-V

Berlin.

. Bridgeman, S., Garg, A., and Tamassia, R. (1999), A graph drawing and translation service on the World Wdtkiah,

J. Comput. Geom. Ap, 419-446.

. Chiba, N., Onoguchi, K., and Nishizeki, T. (1985), Drawing planar graphs nigetg, Inform.22, 187-201.
. Chiba, N., Yamanouchi, T., and Nishizeki, T. (1984), Linear algorithms for convex drawings of planar gndftiegress

in Graph Theory” (J. A. Bondy and U. S. R. Murty, Eds.), pp. 153-173, Academic Press, New York.

. Chrobak, M., Goodrich, M. T., and Tamassia, R. (1996), Convex drawings of graphs in two and three dimen$oas,

12th Annu. ACM Sympos. Comput. Geom.,” pp. 319-328.

. Chrobak, M., and Kant, G. (1997), Convex grid drawings of 3-connected planar girsiehsat. J. Comput. Geom. Apyl,

211-223.

. Cohen, R. F,, Di Battista, G., Tamassia, R., and Tollis, I. G. (1995), Dynamic graph drawings: Trees, series-parallel di

and planast-digraphsSIAM J. Comput24, 970-1001.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990), “Introduction to Algorithms,” MIT Press, Cambridge, MA.
Cruz, |. F., and Eades, P. (Eds.) (1995), Special issue on graph visualidatf@ual Lang. Compu6.

de Fraysseix, H., Pach, J., and Pollack, R. (1990), How to draw a planar graph onGogrhipatorical0, 41-51.

Di Battista, G. (Ed.) (1997), “Graph Drawing (Proc. GD '9Mgcture Notes Comput. Sci., Vol. 1353, Springer-Verla
Berlin.

Di Battista, G., Didimo, W., Leonforte, A., Patrignani, M., and Pizzonia, M. GDToolkit. [Availabttpt//www.dia.
uniroma3.it/ ~gdt/.]

DiBattista, G., Eades, P., de Fraysseix, H., Rosenstiehl, P., and Tamassia, R. (Eds.) (1993), “Graph Drawing '93 (Proc. /
Internat. Workshop on Graph Drawing).” [Availabletdtp://www.cs.brown.edu/people/rt/gd-93.html.]

Di Battista, G., Eades, P., Tamassia, R., and Tollis, I. G. (1999), “Graph Drawing,” Prentice-Hall, Upper Saddle Rivelr
Di Battista, G., Liotta, G., and Vargiu, F. (1995), Diagram sedié¥jsual Lang. Compug, 275-298.

Di Battista, G., and Mutzel, P. (Eds.) (1999), New trends in graph drawing: Special issue on selected papers fr
1997 Symposium on Graph Drawing, Graph Algorithms Appl3. [Available athttp://www.cs.brown.edu/
publications/jgaa/papers.html.]

Di Battista, G., and Tamassia, R. (1996), On-line maintenance of triconnected components with SPQiRytnetbsnica
15, 302-318.

Di Battista, G., and Tamassia, R. (1996), On-line planarity tesiitigyl J. Comput25, 956—997.

DiBattista, G., Tamassia, R., and Vismara, L. (1999), Output-sensitive reporting of disjoin#gthithmica23, 302—-340.

. Di Battista, G., and Tamassia, R. (Eds.) (1996), Special issue on graph drAlgiogthmical6.
23.

Di Battista, G., and Tamassia, R. (Eds.) (1998), Special issue on geometric representations dEgnaplis Geom. Theory
Appl.9.

Djidjev, H. N. (1995), On drawing a graph convexly in the plane'Graph Drawing (Proc. GD '94)" (R. Tamassia and
I. G. Tollis, Eds.) Vol. 894| ecture Notes Comput. Sci., pp. 76—83, Springer-Verlag, Berlin.

Eades, P., Lai, W., Misue, K., and Sugiyama, K. (1991), Preserving the mental map of a diagPaot. 1st Internat. Conf.
on Computational Graphics and Visualization Techniques,” pp. 34—43.

Eppstein, D., Galil, Z., Italiano, G. F., and Spencer, T. H. (1996), Separator based sparsification. |. Planarity testi
minimum spanning treed, Comput. Syst. S&2, 3-27.

Eppstein, D., ltaliano, G. F., Tamassia, R., Tarjan, R. E., Westbrook, J., and Yung, M. (1992), Maintenance of a mi
spanning forest in a dynamic plane grafhAlgorithms13, 33-54.

Eppstein, D., ltaliano, G. F., Tamassia, R., Tarjan, R. E., Westbrook, J., and Yung, M. (1993), Corrigendum (Mainten:
a minimum spanning forest in a dynamic plane graghf\lgorithms 15, 173.

Fary, 1. (1948), On straight lines representation of planar graatta,Sci. Math11, 229-233.

Himsolt, M. (2000), Graphlet: Design and implementation of a graph e8itdtw.-Pract. Exp30, 1303-1324.

Hoproft, J., and Tarjan, R. E. (1973), Dividing a graph into triconnected compofSéatd,J. Comput2, 135-158.

126 DI BATTISTA, TAMASSIA, AND VISMARA

32.

33.
34.
35.

36.
37.

38.

39.
40.

41.
42.
43.
44.
45,
46.
47.
48.

49.
50.
51.
52.
53.
54,
55.
56.
57.

58.

Italiano, G. F., La Poutré, J. A., and Rauch, M. H. (1993), Fully dynamic planarity testing in planar embeddedigra
“Algorithms-ESA'93” (T. Lengauer, Ed.), Lecture Notes Comput. Sci., Vol. 726, pp. 212-223, Springer-Verlag, Berlin.
Kant, G. (1996), Drawing planar graphs using the canonical ordelggrithmical6, 4-32.

Kratochvil, J. (Ed.) (1999), “Graph Drawing (Proc. GD '9%)¢cture Notes Comput. Sci., Vol. 1731, Springer-Verlag, Berli
La Poutré, J. A. (1994), Alpha-algorithms for incremental planarity tesiintProc. 26th Annu. ACM Sympos. Theory
Comput.,” pp. 706-715.

Lin, Y.-L., and Skiena, S. S. (1995), Complexity aspects of visibility graiplstnat. J. Comput. Geom. Apfl, 289-312.
Misue, K., Eades, P., Lai, W., and Sugiyama, K. (1995), Layout adjustment and the mental Yfsyeal Lang. Compus,
183-210.

Nishizeki, T., and Chiba, N. (1988), “Planar Graphs: Theory and Algorithims). Discrete Math., Vol. 32, North-Holland,
Amsterdam.

North, S. (Ed.) (1997), “Graph Drawing (Proc. GD "9@)écture Notes Comput. Sci., Vol. 1190, Springer-Verlag, Berlin.
Schnyder, W. (1990), Embedding planar graphs on theigriBroc. 1st Annu. ACM-SIAM Sympos. Discrete Algorithms,”
pp. 138-148.

Schnyder, W., and Trotter, W. T. (1992), Convex embeddings of 3-connected plane gizgifects AMI 3, 502.

Sleator, D. D., and Tarjan, R. E. (1983), A data structure for dynamic tre€smput. System S&i6, 362—381.

Sleator, D. D., and Tarjan, R. E. (1985), Self-adjusting binary search Iréessoc. Comput. MacB2, 652—686.

Stein, S. K. (1951), Convex magpapc. Amer. Math. So@, 464—-466.

Steinitz, E., and Rademacher, H. (193&)lesungerniiber die Theorie der Polyeder, Julius Springer, Berlin.

Tamassia., R., Graph drawing. [Availablénttp://www.cs.brown.edu/people/rt/gd.html.]

Tamassia, R. (1996), On-line planar graph embeddin§igorithms21, 201-239.

Tamassia, R. (1997), Graph drawing,“Handbook of Discrete and Computational Geometry,” (J. E. Goodman &
J. O'Rourke, Eds.), Chap. 44, pp. 815-832. CRC Press, Boca Raton, FL.

Tamassia, R., and Tollis, I. G. (Eds.) (1995), “Graph Drawing (Proc. GD '84)ture Notes Comput. ScMol. 894,
Springer-Verlag, Berlin.

Tarjan, R. E. (1983), “Data Structures and Network AlgorithrB8MS-NSF Regional Conference Series in Applied Mat
ematics, Vol. 44, Society for Industrial and Applied Mathematics, Philadelphia.

Tarjan, R. E. (1985), Amortized computational comple@tyAM J. Algebraic Discrete Methodis 306—318.

Thomassen, C. (1980), Planarity and duality of finite and infinite planar grhpgbembin. Theory Ser. B9, 244-271.
Thomassen, C. (1984), Plane representations of graptirogress in Graph Theory” (J. A. Bondy and U. S. R. Murty
Eds.), pp. 43-69, Academic Press, New York.

Tutte, W. T. (1960), Convex representations of graphs;. London Math. Sod.0, 304-320.

Tutte, W. T. (1963), How to draw a gragProc. London Math. Sod.3, 743-768.

Wagner, K. (1936), Bemerkungen zum vierfarbenproblihresbericht der Deutschen Mathematiker-Vereinigd&g26—
32.

Westbrook, J. (1992), Fast incremental planarity tesitirf§utomata, Languages and Programming (Proc. ICALP'92)” (W
Kuich, Ed.),Lecture Notes Comput. Sci., Vol. 623, pp. 342-353, Springer-Verlag, Berlin.

Whitesides, S. H. (Ed.) (1998), “Graph Drawing (Proc. GD '9Bgtture Notes Comput. Sciol. 1547, Springer-Verlag,
Berlin.

	INTRODUCTION
	FIG. 1.
	FIG. 2.

	2. PRELIMINARIES
	FIG. 3.

	3. A CHARACTERIZATION OF (STRICTLY) CONVEX PLANAR GRAPHS
	FIG. 4.
	FIG. 5.
	FIG. 6.

	4. REPERTORY OF QUERY AND UPDATE OPERATIONS
	FIG. 7.

	5. DATA STRUCTURE
	FIG. 8.
	FIG. 9.
	FIG. 10.
	TABLE 1

	6. IMPLEMENTATION OF THE QUERY OPERATIONS
	7. IMPLEMENTATION OF THE UPDATE OPERATIONS
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.
	FIG. 15.
	FIG. 16.
	FIG. 17.
	FIG. 18.

	8. COMPLEXITY ANALYSIS
	9. OPEN PROBLEMS
	ACKNOWLEDGMENTS
	REFERENCES

