
Information and Computation169, 94–126 (2001)
doi:10.1006/inco.2001.3031, available online at http://www.idealibrary.com on

Incremental Convex Planarity Testing1

Giuseppe Di Battista2

Dipartimento di Informatica e Automazione, Università degli Studi di Roma Tre,
Via della Vasca Navale 79, 00146 Rome, Italy

E-mail: gdb@dia.uniroma3.it

and

Roberto Tamassia and Luca Vismara3

Center for Geometric Computing, Department of Computer Science, Brown University,
Providence, Rhode Island 02912-1910

E-mail: rt@cs.brown.edu, lv@cs.brown.edu

Received February 17, 1997; final manuscript received September 29, 2000

An important class of planar straight-line drawings of graphs are convex drawings, in which all
the faces are drawn as convex polygons. A planar graph is said to be convex planar if it admits a
convex drawing. We give a new combinatorial characterization of convex planar graphs based on the
decomposition of a biconnected graph into its triconnected components. We then consider the problem
of testing convex planarity in an incremental environment, where a biconnected planar graph is subject
to on-line insertions of vertices and edges. We present a data structure for the on-line incremental
convex planarity testing problem with the following performance, wheren denotes the current number
of vertices of the graph: (strictly) convex planarity testing takesO(1) worst-case time, insertion of
vertices takesO(logn) worst-case time, insertion of edges takesO(logn) amortized time, and the
space requirement of the data structure isO(n). C© 2001 Academic Press

INTRODUCTION

Planar straight-line drawings of planar graphs are especially interesting for their combinatorial and
geometric properties. A classical result independently established by Steinitz and Rademacher [45],
Wagner [56], Fary [29], and Stein [44] shows that every planar graph has a planar straight-line drawing.
A grid drawing is a drawing in which the vertices have integer coordinates. Independently, de Fraysseix
et al. [12], and Schnyder [40] have shown that everyn-vertex planar graph has a planar straight-line
grid drawing withO(n2) area.

An important class of planar straight-line drawings are convex drawings, in which all the faces are
drawn as convex polygons (see Figs. 1a and 2a). Convex drawings of planar graphs have been extensively
studied in graph theory. A planar graph is said to be convex planar if it admits a convex drawing. Tutte
[54, 55] has considered strictly convex drawings, in which faces are strictly convex polygons (i.e., 180◦

angles are not allowed). He has shown that every triconnected planar graph is strictly convex planar, and
that a strictly convex drawing can be constructed by solving a system of linear equations. Tutte [54, 55],
Thomassen [52, 53], Chibaet al. [6], and Djidjev [24] have presented combinatorial characterizations
of convex and strictly convex planar graphs. Chibaet al. [6] have presented a linear time algorithm for
testing convex planarity, based on their characterization, and a linear time algorithm for constructing

1 Research supported in part by the National Science Foundation under Grants CCR-9732327 and CDA-9703080, by the U.S.
Army Research Office under Grant DAAH04-96-1-0013, by the NATO Scientific Affairs Division under Collaborative Research
Grant 911016, by Grant 94.00023.CT07 of the Consiglio Nazionale delle Ricerche, and by the ESPRIT Long Term Research
of the European Community under Project 20244 (ALCOM-IT). A preliminary version of this paper was presented at the “20th
International Workshop on Graph-Theoretic Concepts in Computer Science (WG ’94), Herrsching (München), Germany, 1994.”

2 Research performed in part while this author was with the Dipartimento di Informatica e Sistemistica, Università degli Studi
di Roma “La Sapienza” and with the Dipartimento di Ingegneria e Fisica dell’Ambiente, Università degli Studi della Basilicata.

3 Research performed in part while this author was with the Dipartimento di Informatica e Sistemistica, Università degli Studi
di Roma “La Sapienza”.

94

0890-5401/01 $35.00
Copyright C© 2001 by Academic Press
All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82689324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INCREMENTAL CONVEX PLANARITY TESTING 95

FIG. 1. (a) A convex drawing of a biconnected planar graphG. (b) The SPQR-tree ofG with respect to reference edge
(v3, v7) and the skeletons of its non-Q-nodes.

convex drawings with real coordinates for the vertices, based on Thomassen’s characterization. An
alternative linear time algorithm for testing convex planarity has been presented by Djidjev [24]. Chiba
et al. [5] have extended the results of [6] to construct “quasi-convex” drawings of graphs that are not
convex planar. Kant [33] has presented a linear time algorithm for constructing convex drawings of
triconnected planar graphs with integer coordinates for the vertices and quadratic area. The constant
factors for the area were later reduced by Chrobak and Kant [8]. Chrobaket al. [7] have presented
algorithms for constructing convex drawings in the plane and in 3D space with integer or rational
coordinates for the vertices under various resolution rules.

The study ofdynamicgraph problems has acquired increasing interest in the past decade and is moti-
vated by various important applications in network optimization, VLSI layout, computational geometry,
and distributed computing. The existing literature includes work on connected, biconnected, and tri-
connected components, transitive closure, shortest path, minimum spanning tree, planar embedding,
and planarity testing (for a brief survey, see Section 2 of [20]). A dynamic graph problem consists of a
sequence of query and update operations on a graph, such that each operation is completed before the
next one is processed. If the sequence of operations is not known in advance, the termon-linedynamic
graph problem is used. Typically, the update operations are insertions and deletions of vertices and
edges. If only insertions or deletions are allowed, the graph problem is calledsemi-dynamic; otherwise,

96 DI BATTISTA, TAMASSIA, AND VISMARA

FIG. 2. (a) A strictly convex drawing of a biconnected planar graphG. (b) The SPQR-tree ofG with respect to reference
edge (v3, v7) and the skeletons of its non-Q-nodes.

it is calledfully dynamic. In particular, semi-dynamic graph problems are also referred to asincremental
graph problems, if only insertions are allowed, anddecrementalgraph problems, if only deletions are
allowed.

The concept of amortized complexity [1, 10, 51] is often used in the analysis of algorithms and
data structures for dynamic graph problems. In an amortized analysis, the time required to perform a
sequence of operations is averaged over all the operations performed. Through amortized analysis one
can show that the average cost of an operation in the sequence is small, even though a single operation
may be expensive. Note that, unlike average-case analysis, probability is not used in amortized analysis.

Two of the most studied dynamic graph problems are thedynamic embeddingproblem and thedynamic
planarity testingproblem. In both cases, the graph is subject to on-line insertions and deletions of vertices
and edges. In the dynamic embedding problem, a specific embedding of the graph is maintained; the
query is to determine whether there is a face of the current embedding that contains two given vertices.
The dynamic planarity testing problem is more general: instead of maintaining a specific embedding
of the graph, an implicit representation of all the possible embeddings of the graph is maintained (we
recall that a graph may have an exponential number of different embeddings); the query is to determine
whether there is an embedding of the current graph such that two given vertices are on the same face.
Tamassia [47] has presented a data structure for the incremental embedding problem (and for a restricted

INCREMENTAL CONVEX PLANARITY TESTING 97

version of the fully dynamic embedding problem) withO(logn) query and update time (amortized for
edge insertion). A data structure for the fully dynamic embedding problem withO(log2 n) query and
update time has been presented by Italianoet al. [32]. As for the dynamic planarity testing problem,
Di Battista and Tamassia [20] have presented a data structure for the incremental planarity testing
problem withO(logn) query and update time (amortized for edge insertion). This time bound was
reduced first by Westbrook [57], who showed that a sequence ofk query and update operations can be
performed inO(kα(k, n)) expected time, and then by La Poutré [35], who showed that the sequence
of operations can be performed inO(kα(k, n)) deterministic time;α(k, n) is the very slowly growing
inverse of Ackermann’s function. The best result for the fully dynamic planarity testing problem is
that of Eppsteinet al. [26], who presented a data structure withO(

√
n) amortized query and update

time.
In this paper, we present the following results on convex planarity:

• We give a new combinatorial characterization of convex planar graphs and strictly convex planar
graphs, alternative to those present in the literature [6, 24, 52–55], which is based on the decomposition
of a biconnected graph into its triconnected components [31].

• We consider the problem of testing convex planarity in an incremental environment, where
a biconnected planar graph is subject to on-line insertions of vertices and edges. We present a data
structure for the on-line incremental convex planarity testing problem with the following performance,
wheren denotes the number of vertices of the graph: (strictly) convex planarity testing takesO(1)
worst-case time, insertion of vertices takesO(logn) worst-case time, insertion of edges takesO(logn)
amortized time, and the space requirement of the data structure isO(n).

Note that the (strictly) convex planarity property for planar graphs is not monotone. Namely, there
exist sequences of insertions of vertices and edges such that the current graph alternates between being
(strictly) convex planar and being nonconvex.

Besides their theoretical significance, our results are motivated by the development of advanced graph
drawing systems in information visualization applications. Examples include programming environ-
ments (e.g., displaying entity-relationship diagrams and subroutine-call graphs), algorithm animation
systems (e.g., representing data structures), and project planning systems (e.g., displayingPERTdiagrams
and organization charts). Several advanced graph drawing systems have been developed (see, for exam-
ple, [2, 4, 14, 17, 30]); they usually contain a library of graph drawing algorithms, each devised to take
into account a specific set of aesthetic requirements. Thus, in these systems, the problem of selecting the
algorithm of the library that provides the “best” visualization of a certain graph is of crucial importance.
Since advanced graph drawing systems are often used interactively, the above selection problem must
be solved under tight performance requirements, especially for large graphs. The problem becomes
harder when the graph to be represented is subject to frequent updates. In an ideal scenario, each graph
drawing algorithm of the library should be supplemented with a data structure for efficiently testing
whether it can be used to represent the current graph. Typically, after each update of the graph, only
a certain number of tests will succeed, quickly indicating which of the available drawing algorithms
can actually be applied to the current graph. For example, one can use the data structure described in
this paper for efficiently testing if, after a certain number of updates, a graph is (strictly) convex planar;
if this is the case, one of the existing algorithms for constructing (strictly) convex drawings (e.g., the
algorithm presented in [6]) can be used.

On the other hand, the problem of efficiently maintaining the drawing of a graph in a semi-dynamic
or fully dynamic environment is a long-standing open problem in graph drawing. Its difficulty arises
from the fact that even a single update to the graph may cause a major restructuring of the drawing. A
model for dynamic graph drawing and its application to particular classes of planar graphs is presented
in [9]. We will further discuss the issue in the open problems section.

The rest of the paper is organized as follows. Preliminary definitions are given in Section 2. In
Section 3 we present a combinatorial characterization of (strictly) convex planar graphs. The repertory
of query and update operations for the on-line incremental convex planarity testing problem is described
in Section 4. In Section 5 we present a data structure that supports this repertory. The implementation
of query and update operations is described in Sections 6 and 7, respectively. In Section 8, we analyze
the time complexity of the various operations. Open problems are discussed in Section 9.

98 DI BATTISTA, TAMASSIA, AND VISMARA

2. PRELIMINARIES

We assume familiarity with graph terminology and basic properties of planar graphs (see, e.g., [38]).
The graphs whose convex planarity we test are assumed to be simple, i.e., without self-loops and
multiple edges. We recall some basic definitions on connectivity. Aseparating k-setof a graph is a
set of k vertices whose removal disconnects the graph; separating 1-sets and 2-sets are calledcut-
verticesandseparation pairs, respectively. A graph isk-connectedif it contains more thank vertices
and no separating (k− 1)-set; 1-connected, 2-connected, and 3-connected graphs are calledconnected,
biconnected, andtriconnected, respectively. Aseparating edgeof a graph is an edge whose removal
disconnects the graph.

Thebiconnected componentsof a connected graph (also calledblocks) are its maximal biconnected
subgraphs and its separating edges.

The triconnected componentsof a biconnected graphG are defined as follows [31]. IfG is tricon-
nected, thenG itself is the unique triconnected component ofG. Otherwise, let{u, v} be a separation
pair of G. We partition the edges ofG into two disjoint subsetsE1 and E2, |E1| ≥ 2, |E2| ≥ 2,
such that the subgraphsG1 andG2 induced by them have only verticesu andv in common. Graphs
G′1 = G1+ (u, v) andG′2 = G2+ (u, v) are called thesplit graphsof G with respect to{u, v} (multiple
edges are allowed); edge (u, v) in G′1 andG′2 is called avirtual edge. DividingG into split graphsG′1
andG′2 is calledsplitting. Reassembling split graphsG′1 andG′2 into G, is calledmerging. Note that
only split graphs that resulted from the same splitting operation can be merged together. We continue the
splitting process recursively onG′1 andG′2 until no further splitting is possible. The resulting graphs are
each either a triconnected simple graph, or a set of three multiple edges (calledtriple bondin [31]), or a
cycle of length three (calledtrianglein [31]). Thetriconnected componentsof G are obtained from these
graphs by merging the triple bonds into maximal sets of multiple edges (calledbondsin [31]), and the
triangles into maximal simple cycles (calledpolygons in[31]). When merging triple bonds into bonds
and triangles into polygons, virtual edges with both endvertices in common are removed; we will refer
to the remaining virtual edges at the end of the merging process as thevirtual edges of the triconnected
components. Note that, although the graphs obtained at the end of the splitting process depend on the
order of the splittings, the triconnected components ofG are unique. See [31] for further details.

For background on graph drawing, see [3, 11, 13, 15, 16, 18, 22, 23, 34, 39, 46, 48, 49, 58]. A
drawingof a graph maps each vertex to a distinct point of the plane and each edge (u, v) to a simple
Jordan curve with endpointsu andv. A drawing isplanar if no two edges intersect, except, possibly, at
common endpoints. A graph is planar if it has a planar drawing. Astraight-linedrawing is a drawing
in which every edge is mapped to a straight-line segment. Two planar drawings of a planar graphG
areequivalentif, for each vertexv, they have the same clockwise circular sequence of edges incident
with v. Hence, the planar drawings ofG are partitioned into equivalence classes. Each of those classes
is called anembeddingof G. An embeddedplanar graph (alsoplanegraph) is a planar graph with a
prescribed embedding. A triconnected planar graph has a unique embedding, up to a reflection. A planar
drawing divides the plane into topologically connected regions; cycles ofG that bound a topologically
connected region are calledfaces. Theexternalface is the boundary of the external region; all the other
faces areinternal. Two equivalent planar drawings have the same faces. Hence, one can refer to the
faces of an embedding.

A polygon is a finite set of segments such that every segment endpoint is shared by exactly two
segments and no subset of segments has the same property. A polygon issimpleif there is no pair of
nonconsecutive segments sharing a point. A simple polygon isconvexif its interior is a convex set. A
simple polygon isstrictly convexif its interior is a strictly convex set; i.e., no 180◦ angle is allowed.
A convexdrawing of a planar graphG is a planar straight-line drawing ofG in which all the faces
are drawn as convex polygons. Astrictly convexdrawing of a planar graphG is a planar straight-line
drawing ofG in which all the faces are drawn as strictly convex polygons. See Figs. 1a and 2a compared
to Fig. 3a. A planar graph is said to be (strictly) convex planarif it admits a (strictly) convex drawing.

LEMMA 1. A planar graph is(strictly) convex planar only if it is biconnected.

Proof. Let G be a planar graph. We prove the claim by contradiction. IfG is connected but not
biconnected, two cases are possible:

INCREMENTAL CONVEX PLANARITY TESTING 99

FIG. 3. (a) A nonconvex drawing of a biconnected planar graphG. (b) The SPQR-tree ofG with respect to reference edge
(v3, v7) and the skeletons of its non-Q-nodes.

1. If G is a path, then in any drawing ofG the two distinct points representing the first and the
last vertex ofG are not shared by two segments from the set of segments representing the (only) face
f of G. Thus, the set of segments representingf is not a polygon.

2. Otherwise, there exist at least one cut-vertexv of G and one facef of G containingv such
that, in any drawing ofG, the point representingv is shared by more than two segments from the set of
segments representingf . Thus, the set of segments representingf is not a polygon.

If G is not connected, then in any drawing ofG there exists at least one face represented by a set of
segments that do not satisfy the minimality property in the definition of polygon.

In the rest of this section, theSPQR-treepresented in [19, 20] is described. LetG be a biconnected
graph. Asplit pair of G is either a pair of adjacent vertices or a separation pair (note that the two cases
are not disjoint, since the vertices of a separation pair may be adjacent). If the two vertices are adjacent
then the split pair is calledtrivial, otherwise it is callednontrivial. A split componentof a split pair
{u,v} is either an edge (u,v) or a maximal subgraphC of G such thatC containsu andv, and{u,v} is not
a split pair ofC. In the former case the split component is calledtrivial, in the latternontrivial. Vertices
u andv are called thepolesof the split component. Note that each vertex ofG distinct fromu andv
belongs to exactly one nontrivial split component of{u, v}. Let {s, t} be a split pair ofG. A maximal

100 DI BATTISTA, TAMASSIA, AND VISMARA

split pair {u, v} of G with respect to{s, t} is a split pair ofG distinct from{s, t} such that for any other
split pair{u′, v′} of G, there exists a split component of{u′, v′} containing verticesu, v, s, andt .

In the graph in Fig. 1a,{v1, v5} is a trivial split pair,{v9, v12} is a nontrivial split pair, edge (v1, v5) is
a trivial split component, the subgraph induced byv9, v10, v11, andv12 is a nontrivial split component,
and split pair{v1, v15} is maximal with respect to{v3, v7}, while split pair{v1, v12} is not maximal with
respect to{v3, v7}.

Let e = (s, t) be an edge ofG, called thereference edge. The SPQR-treeT of G with respect toe
describes a recursive decomposition ofG induced by its split pairs. TreeT is a rooted ordered tree whose
nodes are of four types: S, P, Q, and R. Each nodeµ of T has an associated biconnected multigraph,
called theskeletonof µ and denotedskeleton(µ). Also, each nodeµ of T (except the root) is associated
with an edge of the skeleton of the parentν of µ, called thevirtual edgeof µ in skeleton(ν); at the same
time,ν is associated with a virtual edge inskeleton(µ). TreeT is recursively defined as follows.

Trivial case: IfG consists of exactly two multiple edges betweens andt , thenT consists of a single
Q-node whose skeleton isG itself.

Parallel case: If the split pair{s, t} has at least three split componentsG0 = e,G1, . . . ,Gk, k ≥ 2,
then the root ofT is a P-nodeµ. Graphskeleton(µ) consists ofk + 1 multiple edges betweens andt ,
denotedeµ0, eµ1, . . . ,eµk whereeµ0 = e.

Series case: If the split pair{s, t} has exactly two split components and one of them has at least one
cut-vertex, then the root ofT is an S-nodeµ. One of the split components of{s, t} is the reference edgee.
Let c1, . . . , ck−1, k ≥ 2, be the cut-vertices that partitionG−e into its blocksG1, . . . ,Gk, in this order
from s to t . Graphskeleton(µ) is the cycleeµ0, eµ1, . . . ,eµk, whereeµ0 = e, c0 = s, ck = t , andeµi

connectsci−1 with ci , i = 1, . . . ,k. Note that in this caseG1, . . ., Gk are not split components of{s, t}.
Rigid case: If none of the cases above applies, then the root ofT is an R-nodeµ. Let {s1, t1}, . . . ,
{sk, tk}, k ≥ 1, be the maximal split pairs ofG with respect to{s, t}, and, fori = 1, . . . ,k, let Gi

be the union of all the split components of{si , ti } except that containing the reference edgee. Graph
skeleton(µ) is obtained fromG by replacing each subgraphGi with the edgeeµi = (si , ti). Note that in
this caseG1, . . . ,Gk are not split components of{s, t}.

For each split componentGi , i = 1, . . . ,k, defined in the above cases, leteµ be an additional edge
between the poles ofGi . Except for the trivial case,µ has childrenµ1, . . . , µk in this order, such that
µi is the root of the SPQR-tree of graphGi ∪ eµ, i = 1, . . . ,k, with respect to reference edgeeµ. The
tree so obtained has a Q-node associated with each edge ofG, except the reference edgee. We complete
the SPQR-tree by replacing the reference edgee in skeleton(µ) with a virtual edge, by adding another
Q-node, representinge, and by making it the parent ofµ so that it becomes the root. Note that, from
the above definition, it follows that two P-nodes or two S-nodes cannot be adjacent inT . Examples of
SPQR-trees are shown in Figs. 1b, 2b, and 3b; the Q-nodes are represented by squares and the skeletons
of the Q-nodes are not shown.

The virtual edge of nodeµi is edgeeµi of skeleton(µ), while edgeeµ of skeleton(µi) is the virtual
edge of nodeµ. A virtual edgeeµi is said to betrivial if the corresponding nodeµi is a Q-node,
nontrivial otherwise. The endverticessi andti of eµi are called thepolesof µi . In Figs. 1b, 2b, and 3b,
the nontrivial virtual edges are represented by dashed or dotted lines and the trivial virtual edges are
represented by solid lines.

Lettingµ be a node ofT , we have the following:

• if µ is an R-node, thenskeleton(µ) is a triconnected simple graph;

• if µ is an S-node, thenskeleton(µ) is a cycle;

• if µ is a P-node, thenskeleton(µ) is a multigraph consisting of a bundle of multiple edges;

• if µ is a Q-node, thenskeleton(µ) is a multigraph consisting of two multiple edges.

The skeletons of the nodes ofT are homeomorphic to subgraphs ofG. Also, the union of the sets
of split pairs of the skeletons of the nodes ofT is equal to the set of split pairs ofG. It is possible to
show that SPQR-trees of the same graph with respect to different reference edges are isomorphic and
are obtained one from the other by selecting a different Q-node as the root.

INCREMENTAL CONVEX PLANARITY TESTING 101

SPQR-trees are closely related to the decomposition of biconnected graphs into triconnected com-
ponents [31]. Namely, the triconnected components of a biconnected graphG are in one-to-one cor-
respondence with the skeletons of the non-Q-nodes of the SPQR-treeT of G: the skeletons of the
R-nodes correspond to the triconnected simple graphs, the skeletons of the S-nodes correspond to the
polygons, and the skeletons of the P-nodes correspond to the bonds. In particular, for each non-Q-node
µ of T , the nontrivial virtual edges ofskeleton(µ) are in one-to-one correspondence with the virtual
edges of a triconnected component ofG, and the trivial virtual edges ofskeleton(µ) are in one-to-one
correspondence with the (nonvirtual) edges of a triconnected component ofG.

The SPQR-treeT of a planar graph withn vertices andm edges hasm Q-nodes andO(n) S-nodes,
P-nodes, and R-nodes. Also, the total number of vertices of the skeletons stored at the nodes ofT is O(n).

3. A CHARACTERIZATION OF (STRICTLY) CONVEX PLANAR GRAPHS

Let 0 be a planar straight-line drawing of a biconnected planar graphG. A vertex ofG is said to be
external(respectively,internal) in 0 if it is (respectively, it is not) a vertex of the external face of0. An
external(respectively,internal) edge in0 is defined analogously. A subgraphG′ of G is drawn outside
(respectively,inside) in 0if G′ has (respectively, does not have) external edges in0.

LEMMA 2. Let0 be a strictly convex drawing of a biconnected planar graph G. The nontrivial split
components of G are drawn outside in0.

Proof. Suppose, for a contradiction, that a nontrivial split componentC of a split pair{u, v} is
drawn inside in0 (see Fig. 4). Letp1 (p2) be the path ofC betweenu andv such that all the vertices and
edges ofC not in p1 (p2) are on its right (left) side in0. Note thatp1 and p2 may have some vertices
(besidesu andv) and edges in common. Pathp1 (p2) is part of an internal facef1(f2) of G . By easy
geometric considerations, it follows that, iff1 is drawn as a strictly convex polygon in0, then f2 is not
and vice versa. Thus,0 is not a strictly convex drawing, which is a contradiction.

COROLLARY 1. Let 0 be a strictly convex drawing of a biconnected planar graph G. For each
separation pair{u, v} of G, vertices u andv must be external in0.

Proof. Suppose, for a contradiction, that one vertex of a separation pair{u, v}, sayv, is internal in
0. Hence, all the vertices and edges ofG that are external in0, exceptu, belong to a common split
component of{u, v}, while all the other split components of{u, v} are drawn inside in0. Thus, by
Lemma 2,0 is not a strictly convex drawing, which is a contradiction.

We are now ready to state the main results of this section.

THEOREM1. Let G be a biconnected planar graph. Graph G is strictly convex planar if and only if,

for each triconnected component C of G, there exists an embedding of C such that all the virtual edges
of C are on the same face.

FIG. 4. A planar straight-line drawing0 of a biconnected planar graph. One of the split components of split pair{u, v} is
drawn inside in0.

102 DI BATTISTA, TAMASSIA, AND VISMARA

In Section 2, we have described how the triconnected components of a biconnected graphG are
in one-to-one correspondence with the skeletons of the non-Q-nodes of the SPQR-treeT of G, and
how the virtual edges of the triconnected components ofG are in one-to-one correspondence with the
nontrivial virtual edges of the skeletons of the non-Q-nodes ofT . This allows us to restate and prove
Theorem 1 as follows.

THEOREM 2. Let G be a biconnected planar graph and let T be the SPQR-tree of G. Graph G is
strictly convex planar if and only if, for each nodeµ of T, there exists an embedding of skeleton(µ)
such that all the nontrivial virtual edges of skeleton(µ) are on the same face.

Proof. Only if. Let 0 indicate a strictly convex drawing ofG.
If µ is a Q-node or an S-node, thenskeleton(µ) is a pair of multiple edges or a cycle, respectively,

and the claim is trivially true.
If µ is a P-node, then suppose, for a contradiction, thatskeleton(µ) contains three (multiple) nontrivial

virtual edges with common endverticesu andv. Even ifu andv are external vertices in0, one of the
three (nontrivial) split components of{u, v} is drawn “between” the other two, that is, inside in0. Thus,
by Lemma 2,0 is not strictly convex, which is a contradiction.

If µ is an R-node, then suppose, for a contradiction, thatskeleton(µ) contains two nontrivial virtual
edges (u1, v1) and (u2, v2) that are not on the same face. We recall thatskeleton(µ) is a triconnected
simple planar graph, and thus not all four verticesu1, v1, u2, andv2 can be on the same face in the unique
embedding ofskeleton(µ). A straight-line drawing ofskeleton(µ) can be obtained from0 by using the
points and the segments representing the vertices and the trivial virtual edges ofskeleton(µ), and by
drawing the nontrivial virtual edges ofskeleton(µ) as straight-line segments (that is, by replacing the
drawings of some split components with straight-line segments). It follows that, also in0, not all four
verticesu1, v1, u2, andv2 can be on the same face, in particular the external one; thus, at least one of
them is internal in0. Since{u1, v1} and{u2, v2} are separation pairs ofG, from Corollary 1 it follows
that0 is not strictly convex, which is a contradiction.

If. We show how to construct a strictly convex drawing0 of G while performing a preorder visit of
T . All the external vertices ofG in 0 are mapped to distinct points of a circlec. For each nodeµ of
T , we choose as external the face ofskeleton(µ) containing the nontrivial virtual edges and we draw
skeleton(µ) in a circular segment ofc.

At the beginning of the preorder visit ofT , the circular segment coincides withc and we draw the
skeleton of the root ofT (two multiple virtual edges, one of which is trivial) as a chord ofc. At each
following step, letµ be the node currently visited and letν be its parent. Ifµ is not a Q-node, the
virtual edgeeµ in skeleton(ν) is represented by a chord ofc, which identifies a circular segmentsµ (see
Fig. 5a).

If µ is a Q-node,skeleton(µ) is drawn by placing the poles ofµ (i.e., the common endvertices ofeν
and of the trivial virtual edge inskeleton(µ)) at the endpoints of the chord identifyingsµ.

FIG. 5. An example of the construction in the proof of Theorem 2. (a) The current drawing and the skeleton of the node
currently visited. (b) The new drawing.

INCREMENTAL CONVEX PLANARITY TESTING 103

If µ is a P-node,skeleton(µ) is drawn by placing the poles ofµ (i.e., the common endvertices ofeν
and of the other two virtual edges inskeleton(µ), one of which is trivial) at the endpoints of the chord
identifyingsµ.

If µ is an S-node,skeleton(µ) is drawn by placing the poles ofµ (i.e., the endvertices ofeν in
skeleton(µ)) at the endpoints of the chord identifyingsµ, and the other vertices at distinct points of the
circular arc ofsµ.

If µ is an R-node,skeleton(µ) is a triconnected simple planar graph. A strictly convex drawing of
skeleton(µ) with a prescribed shape for an arbitrarily chosen external face can be obtained by using,
e.g., the algorithm of Tutte [55], or the algorithm of Chibaet al. [6]. In particular, the poles ofµ (i.e.,
the endvertices ofeν in skeleton(µ)) are placed at the endpoints of the chord identifyingsµ, and the
other external vertices ofskeleton(µ) are placed at distinct points of the circular arc ofsµ.

Theneµ andeν are removed from the drawing. Ifµ is a Q-node, the whole step consists of replacing
a trivial virtual edge of the drawing with an edge ofG . If µ is a P-node, it consists of replacing a
nontrivial virtual edge of the drawing with two multiple virtual edges, one of which is trivial. Ifµ is
an S-node, it consists of appending a strictly convex polygon to the drawing along a nontrivial virtual
edge, which is then removed. Ifµ is an R-node, it consists of appending a strictly convex drawing of a
triconnected simple planar graph to the drawing along a nontrivial virtual edge, which is then removed
(see Fig. 5b).

Note that, at each step, the following invariants hold for the drawing that is being constructed:

1. The nontrivial virtual edges are external in the drawing, and are represented by chords ofc.

2. If µ is an S-node or an R-node, the internal facef generated by the removal ofeµ andeν is a
strictly convex polygon since: (i) the two faces sharingeµ = eν before the removal are strictly convex
polygons; and (i i) the common endverticesu andv of eµ andeν are placed onc and the drawing is
contained inc, and thus the two angles off aroundu andv are less than 180◦.

3. The external face is a strictly convex polygon, since all its vertices are onc.

Finally, the planarity of0 can be proved by observing that, for each nodeµ of T , the drawing of
skeleton(µ) used in the construction of0 is planar; by the third invariant,sµ only containseµ, which is
then removed together witheν ; and the drawing ofskeleton(µ) is contained insµ.

COROLLARY 2. The strictly convex planarity of an n-vertex biconnected planar graph can be tested
in O(n) time.

Proof. Let G be ann-vertex biconnected planar graph. Computing the triconnected components of
G takesO(n) time [31]. The total number of virtual edges in the triconnected components ofG is O(n)
[31]; hence testing the condition of Theorem 1 takesO(n) time.

It is easy to verify that the SPQR-tree in Fig. 2b satisfies the condition of Theorem 2. Hence, the
graph in Fig. 2a is strictly convex planar. Consider, instead, the SPQR-trees in Figs. 1b and 3b. In both
figures, the skeleton of R-nodeµ does not admit an embedding with all the nontrivial virtual edges on
the same face. Hence, the condition of Theorem 2 is not satisfied, and the graphs in Figs. 1a and 3a are
not strictly convex planar.

In the rest of this section we extend the characterization of Theorem 2 to nonstrictly convex drawings.
Let G be a biconnected graph different from a cycle, letT be the SPQR-tree ofG, and letµ be an
S-node ofT whose adjacent nodes, except one,ν, are Q-nodes. Then all the virtual edges ofskeleton(µ)
are trivial, excepteν = (u, v), which is nontrivial. The pair of vertices{u, v} is a split pair ofG, and the
edges ofG corresponding to the trivial virtual edges ofskeleton(µ) form a nontrivial split component
C of {u, v}. C is a path and is called a (u, v)-chainof G. Nodeν is either a P-node or an R-node, and
the nontrivial virtual edgeeµ of skeleton(ν) is called achainvirtual edge. In Figs. 1b, 2b, 3b, 6b, 8b,
and 10a, the chain virtual edges are represented by dotted lines.

LEMMA 3. Let0 be a convex drawing of a biconnected planar graph G. For each split pair{u, v}
of G, at most one(u, v)-chain can be drawn inside in0.

Proof. Suppose, for a contradiction, that two (u, v)-chainsC1 andC2 are drawn inside in0, and
that no other split component of{u, v} is drawn inside in0. ChainC1 (C2) is part of two internal faces

104 DI BATTISTA, TAMASSIA, AND VISMARA

f1 and f3 (f2 and f3) of G . By easy geometric considerations, it follows that iff1 and f3 are drawn as
convex polygons in0 (by placing the vertices ofC1 on a straight-line segment) thenf2 is not, and if
f2 and f3 are drawn as convex polygons in0 (by placing the vertices ofC2 on a straight-line segment)
then f1 is not. Thus,0 is not a convex drawing, which is a contradiction.

COROLLARY 3. Let 0 be a convex drawing of a biconnected planar graph G. For each split pair
{u, v} of G, the following properties hold:

1. there exist at most three(u, v)-chains;and

2. if there exists a(u, v)-chain drawn inside in0, then u and v are not adjacent.

Proof. Property 1 is proved by contradiction. Suppose that there exist four (u, v)-chains. Even ifu
andv are external vertices in0, two of the (u, v)-chains are drawn “between” the other two, that is,
inside in0, but this contradicts Lemma 3.

Property 2 is proved, again, by contradiction. Suppose that there exists a (u, v)-chain drawn inside
in 0 and thatu andv are adjacent. As seen in the proof of Lemma 3,C is drawn by placing the vertices
of C on a straight-line segment with endpoints corresponding tou andv. Thus,0 is not planar, which
is a contradiction.

A reducedgraph of a biconnected graphG is a graphG′, homeomorphic toG, obtained fromG in the
following way. If G is a cycle, thenG′ is equal toG . If G is not a cycle, then, for each nontrivial split
pair{u, v} of G that has one or more (u, v)-chains, exactly one (u, v)-chain is replaced with edge (u, v),
called abypass edge. Note that, for the nontrivial split pairs{u, v} that have more than one (u, v)-chain,
different choices of the (u, v)-chain to be replaced with a bypass edge lead to different reduced graphs.
Thus, in general, a biconnected graph has more than one reduced graph.

Observe that the SPQR-treeT ′ of G′ can be obtained from the SPQR-treeT of G as follows. IfG is
a cycle, thenT ′ is equal toT . If G is not a cycle, then, for each S-nodeµ of T identifying a (u, v)-chain
C, let ν be its only adjacent non-Q-node. IfC is replaced with a bypass edge, then nodeµ and its
adjacent Q-nodes are replaced with a Q-nodeρ, and the chain virtual edgeeµ in skeleton(ν) is replaced
with the trivial virtual edgeeρ .

A reduced graph of the biconnected planar graph in Fig. 1a is shown in Fig. 6a; it is obtained by
replacing one of the (v1, v3)-chains, the (v1, v16)-chain, and the (v7, v14)-chain with bypass edges. Its
SPQR-tree with respect to reference edge (v3, v7) is shown in Fig. 6b.

LEMMA 4. Let G be a biconnected graph and let G′ be a reduced graph of G. Then G′ is simple and
biconnected.

Proof. G′ is simple since: (i) a (u, v)-chain is replaced with a bypass edge only if{u, v} is a nontrivial
split pair; (ii) if there exist two or more (u, v)-chains for a nontrivial split pair{u, v}, exactly one of
them is replaced with a bypass edge.G′ is biconnected since each path ofG containing a (u, v)-chain
as a subpath is not affected by its replacement with a bypass edge.

THEOREM 3. Let G be a biconnected planar graph and let G′ be a reduced graph of G. G is convex
planar if and only if G′ is strictly convex planar.

Proof. If G is a cycle the claim is trivially proved. In the rest of the proof we assume thatG is not
a cycle.

Only if. Let 0c be a convex drawing ofG. W.l.o.g., we can assume that there are no 180◦ angles
around vertices of degree greater than 2, since they can be easily reduced to less than 180◦ angles by
local adjustments at those vertices. We modify0c as follows. We consider each nontrivial split pair
{u, v} of G that has at least one (u, v)-chain. By Property 1 of Corollary 3, we have three possible cases:

• There exists only one (u, v)-chainC, which can be drawn inside or outside in0c.

• There exist exactly two (u, v)-chains. SinceG is not a cycle, there exists a third split component
C′ of {u, v}, which is not a (u, v)-chain. With an argument similar to that used in the proof of Lemma 3,
we can prove thatC′ must be drawn outside in0c. It follows that one of the two (u, v)-chains is drawn
“between” the other one andC′, that is, inside in0c. Let C be such a (u, v)-chain.

INCREMENTAL CONVEX PLANARITY TESTING 105

FIG. 6. (a) A strictly convex drawing of a reduced graphG′ of the biconnected planar graph in Fig. 1a. (b) The SPQR-tree
of G′ with respect to reference edge (v3, v7) and the skeletons of its non-Q-nodes.

• There exist three (u, v)-chains. Since at most two (u, v)-chains can be drawn outside in0c,
one of the three (u, v)-chains is drawn “between” the other two, that is, inside in0c. Let C be such a
(u, v)-chain.

We replaceC with bypass edge (u, v), drawn as a straight-line segment. We now show that the convex
planarity of the drawing is not affected by this modification. From the discussion above, two cases are
possible:

• C is drawn inside in0c. Then, as seen in the proof of Lemma 3, the vertices ofC are placed
on a straight-line segment.

• C is drawn outside in0c. Then there is no (u, v)-chain drawn inside in0c. Let l be the straight-
line through the points representingu andv. Since0c is convex and there are no 180◦ angles around
vertices of degree greater than 2, the vertices and edges ofC are on one side ofl (or possibly onl),
while the vertices and edges ofG− C are on the other side.

In both cases, bypass edge (u, v) does not overlap any vertex or edge ofG−C, and the replacement of
C with bypass edge (u, v) does not alter the convexity of the drawing.

106 DI BATTISTA, TAMASSIA, AND VISMARA

The overall result of the modification of0c is a convex drawing0′c of G′. There may still be 180◦

angles around vertices of degree 2 that are external in0′c. A strictly convex drawing0′sc of G′ can be
obtained from0′c by local adjustment at those vertices.

If. Let 0′sc be a strictly convex drawing ofG′. A convex drawing ofG can be obtained from0′sc by
replacing each bypass edge (u, v) with the corresponding (u, v)-chain, drawn by placing the vertices
on a straight-line segment.

COROLLARY 4. The convex planarity of an n-vertex biconnected planar graph can be tested in O(n)
time.

Proof. LetG be ann-vertex biconnected planar graph and letG′ be a reduced graph ofG. Computing
the triconnected components ofG takesO(n) time [31]. The triconnected components ofG′ can be
computed from those ofG as follows. We consider each polygon triconnected componentC of G with
only one virtual edgee; C− e is a (u, v)-chain ofG. If the triconnected componentCe of G associated
with e is either a triconnected simple planar graph or a bond consisting only of virtual edges, thenC
is not a triconnected component ofG′, and the graph obtained fromCe by replacing the virtual edge
corresponding toC with a (nonvirtual) bypass edge is a triconnected component ofG′. All the other
triconnected components ofG are also triconnected components ofG′. Thus, computing the triconnected
components ofG′ takesO(n) time. The claim follows from Corollary 2 and from Theorem 3.

It is easy to verify that the SPQR-tree in Fig. 6b satisfies the condition of Theorem 2. Hence, the
graph in Fig. 1a, of which the graph in Fig. 6a is a reduced graph, is convex planar. Consider, instead, the
SPQR-tree in Fig. 3b. Since the skeleton of R-nodeµ contains no chain virtual edge, it is not modified in
the construction of the SPQR-tree of a reduced graph of the biconnected planar graph in Fig. 3a. Hence,
as shown before, the condition of Theorem 2 is not satisfied, and the graph in Fig. 3a is not convex planar.

4. REPERTORY OF QUERY AND UPDATE OPERATIONS

In the rest of the paper, we consider an incremental environment where a biconnected planar graph
G is updated by on-line insertions of vertices and edges that preserve planarity. We recall that in an
on-line dynamic graph problem the sequence of operations is not known in advance. The repertory of
query and update operations extends that given for biconnected planar graphs in [20]:

Strictly Convex: Determine whetherG is strictly convex planar.

Convex: Determine whetherG is convex planar.

Test(v1, v2): Determine whether edge (v1, v2) can be added toG while preserving planarity. As a
particular case, the result of the query isfalseif edge (v1, v2) already exists.

Insert Vertex(v, e, e1, e2): Split edgee of G into two edgese1 ande2 by inserting vertexv.

Insert Edge(e, v1, v2): Add edgeebetween verticesv1 andv2 of G. The operation is allowed only
if the resulting graph is planar.

As shown in [20], ann-vertex biconnected planar graph can be assembled starting from a three-
vertex cycle by means of a sequence ofO(n) InsertVertexand InsertEdgeoperations, such that each
intermediate graph is planar and biconnected.

As stated in the Introduction, the (strictly) convex planarity property for planar graphs is not monotone:
there exist sequences of update operations from the above repertory such that the current graph alternates
between being (strictly) convex planar and being nonconvex. One such sequence of operations is shown
in Fig. 7. LetG be the strictly convex planar graph in Fig. 7a. The first operation of the sequence is
InsertEdge(e1, u, v), after whichG is still strictly convex planar (see Fig. 7b). The second operation is
InsertVertex(x, e1, e′1, e

′′
1), after whichG is no longer strictly convex planar but is convex planar (see

Fig. 7c). In fact,u andv are the poles of a P-node whose skeleton has three (multiple) nontrivial virtual
edges; thus, the condition of Theorem 2 is no longer true. After the third operation,InsertEdge(e2, u, v),
G is no longer convex planar (see Fig. 7d). In fact,{u, v} is now a trivial split pair and the only (u, v)-chain
of G cannot be replaced with a bypass edge; thus, the reduced graph ofG is G itself, and the condition
of Theorem 3 is no longer true. Finally, after operationInsertEdge(e3, w, x), G is strictly convex planar
again (see Fig. 7e). In contrast, note that, in an incremental environment, the nonplanarity property for

INCREMENTAL CONVEX PLANARITY TESTING 107

FIG. 7. A sequence ofInsertEdgeandInsertVertexoperations in a biconnected planar graphG such that: (a, b)G is strictly
convex planar, (c)G is convex planar, (d)G is not convex planar, and (e)G is strictly convex planar.

graphs is monotone: should the graph be allowed to become nonplanar as a result of anInsertEdge
operation, it could not become planar again as a result of an update operation from the above repertory.

5. DATA STRUCTURE

The data structure for on-line incremental planarity testing described in [20] makes use of the dynamic
trees of Sleator and Tarjan [42, 43] in order to maintain information about the SPQR-tree. These dynamic
trees support link/cut operations and various queries (such as finding the lowest common ancestor of
two nodes) in logarithmic time, and they can be modified to support ordered trees and expand/contract
operations, as shown in [27, 28]. Our data structure for on-line incremental convex planarity testing
extends that described in [20]. In particular, we add the following data structures, which we use in the
implementation of query operationsStrictlyConvexandConvex(see Section 6):

• For each P-nodeµ of T:

—A variable

P3nontrivial(µ)=
0 if skeleton(µ) consists of one trivial virtual edge and

two nontrivial virtual edges (see Fig. 8a)
1 otherwise (see Figs.8b and 8c).

Value 0 ofP3nontrivial (µ) indicates that there exists an embedding ofskeleton(µ) such that all the
nontrivial virtual edges are on the same face.

—A variable

P3nonchain(µ)=


0 if P3nontrivial(µ) = 0 or if skeleton(µ) consists of three

nontrivial virtual edges, at least one of which is a chain
virtual edge (see Figs. 8a and 8b)

1 otherwise (see Fig. 8c).

108 DI BATTISTA, TAMASSIA, AND VISMARA

FIG. 8. Three skeletons of P-nodes consisting of: (a) one trivial virtual edge and two nontrivial virtual edges, (b) three
nontrivial virtual edges, one of which is a chain virtual edge, and (c) three nontrivial virtual edges.

Value 0 ofP3nonchain(µ) indicates that there exists an embedding ofskeleton(µ) such that all the
nontrivial virtual edges, with the exception of at most one chain virtual edge, are on the same face.

• For each S-nodeµ of T :

—For an arbitrarily chosen facef of skeleton(µ) (recall that the skeleton of an S-node is a
cycle), a balanced binary treeBS(µ), where each leaf ofBS(µ) corresponds to an edgee of f , and
stores valuenontrivial(e), which is 0 or 1 according to whethere is a trivial or nontrivial virtual edge
(see Fig. 9b). Each internal node ofBS(µ) stores the sum of the values of the leaves in its subtree (see
Fig. 9b). Hence, the root ofBS(µ) stores the number of nontrivial virtual edges ofskeleton(µ), denoted
Snontrivial(µ) (see Fig. 9b). The edges off are circularly ordered so that, iff is traversed according
to this order, the region bounded byf is, say, on the left side. The circular order of the edges off is
represented by the left-to-right linear order of the leaves ofBS(µ). In particular, note that:

∗ Snontrivial(µ)= 0 if and only if G is a cycle, and thusµ is the only non-Q-node ofT ;

∗ Snontrivial(µ)= 1 if and only if the edges ofG corresponding to the trivial virtual edges
of skeleton(µ) form a (u, v)-chain ofG.

For each non-Q-nodeν adjacent toµ, variableSnontrivial(µ) allows us to test inO(1) time whether
nontrivial virtual edgeeµ of skeleton(ν) is a chain virtual edge.

• For each R-nodeµ of T :

—For each facef of skeleton(µ) (recall that the embedding of the skeleton of an R-node is
unique), a balanced binary treeBR(f), where each leaf ofBR(f) corresponds to an edgee of f , and
stores two values (see Fig. 10b):nontrivial(e), which is 0 or 1 according to whethere is a trivial or
nontrivial virtual edge, andchain(e), which is 1 or 0 according to whethere is or is not a chain virtual
edge. Each internal node ofBR(f) stores two values (see Fig. 10b):

1. the sum of thenontrivial(e) values of the leaves in its subtree; and

2. the sum of thechain(e) values of the leaves in its subtree.

Hence, the root ofBR(f) stores two values (see Fig. 10b):

FIG. 9. (a) The skeleton of an S-nodeµ. (b) The balanced binary tree forµ.

INCREMENTAL CONVEX PLANARITY TESTING 109

FIG. 10. (a) The skeleton of an R-nodeµ. (b) The balanced binary trees for the faces ofskeleton(µ). (c) The balanced binary
tree forµ.

1. the number of nontrivial virtual edges off , denotedRnontrivial(f) = ∑
e nontrivial

(e); and

2. the number of chain virtual edges off , denotedRchain(f) = ∑
e chain(e); note that

Rchain(f) ≤ Rnontrivial(f).

The edges off are circularly ordered so that, iff is traversed according to this order, the region bounded
by f is, say, on the left side. The circular order of the edges off is represented by the left-to-right linear
order of the leaves ofBR(f).

110 DI BATTISTA, TAMASSIA, AND VISMARA

—A balanced binary treeBR(µ) associated withµ, where each leaf ofBR(µ) corresponds to a
face f of µ and storesRnontrivial(f) andRchain(f) (see Fig. 10c). Each internal node ofBR(µ) stores
four values (see Fig. 10c):

1. the sum of theRnontrivial(f) values of the leaves in its subtree;

2. the sum of theRnontrivial(f)−Rchain(f) values of the leaves in its subtree;

3. the maximumRnontrivial(f) value of the leaves in its subtree; and

4. the maximumRnontrivial(f)−Rchain(f) value of the leaves in its subtree.

Hence, the root ofBR(µ) stores four values (see Fig. 10c):

1. two times the total number of nontrivial virtual edges inskeleton(µ), this last denoted
totalRnontrivial(µ)= 1

2

∑
f Rnontrivial(f);

2. two times the total number of nontrivial virtual edges that are not chain virtual edges in
skeleton(µ), this last denotedtotalRnonchain(µ)= 1

2

∑
f (Rnontrivial(f)−Rchain(f)); note thattotal-

Rnonchain(µ)≥ 0;

3. the maximum value ofRnontrivial(f) over all faces f of skeleton(µ), denotedmax-
Rnontrivial(µ)= maxf {Rnontrivial(f)}; and

4. the maximum value ofRnontrivial(f) − Rchain(f) over all faces f of skeleton(µ),
denotedmaxRnonchain(µ)= maxf {Rnontrivial(f) − Rchain(f)}; note thatmaxRnonchain(µ)≥ 0.

The purpose of the above four variables is the following:totalRnontrivial(µ)= maxRnontrivial(µ)
indicates that, in the unique embedding ofskeleton(µ), all the nontrivial virtual edges ofskeleton(µ)
are on the same face;maxRnontrivial(µ)=maxRnonchain(µ) indicates that, in the unique embedding
of skeleton(µ), all the nontrivial virtual edges ofskeleton(µ) that are not chain virtual edges are on the
same face.

• For the entire graphG, the following variables are obtained by summing those above over all
the P-nodes or all the R-nodes ofT :

—the number of P-nodes ofT whose skeleton contains more than two nontrivial virtual edges,
denoted

sumP3nontrivial(G) =
∑

P-nodeµ

P3nontrivial(µ);

—the number of P-nodes ofT whose skeleton contains more than two nonchain, nontrivial
virtual edges, denoted

sumP3nonchain(G) =
∑

P-nodeµ

P3nonchain(µ);

—the total number of nontrivial virtual edges in the skeletons of the R-nodes ofT , denoted

sumtotalRnontrivial(G) =
∑

R-nodeµ

totalRnontrivial(µ);

—the total number of nonchain, nontrivial virtual edges in the skeletons of the R-nodes ofT ,
denoted

sumtotalRnonchain(G) =
∑

R-nodeµ

totalRnonchain(µ);

—the sum of themaxRnontrivial(µ) values over all the R-nodes ofT , denoted

summaxRnontrival(G) =
∑

R-nodeµ

maxRnontrivial(µ);

INCREMENTAL CONVEX PLANARITY TESTING 111

TABLE 1

The Values of Some of the Additional Variables for the
Graphs in Figs. 1, 2, and 3

Fig. 1 Fig. 2 Fig. 3

P3nontrivial(π) 1 0 0
P3nonchain(π) 0 0 0
Snontrivial(ρ) 2 2 2
totalRnontrivial(µ) 3 2 3
totalRnonchain(µ) 2 2 3
maxRnontrivial(µ) 2 2 2
maxRnonchain(µ) 2 2 2
sumP3nontrivial(G) 1 0 0
sumP3nonchain(G) 0 0 0
sumtotalRnontrivial(G) 7 6 8
sumtotalRnonchain(G) 5 5 7
summaxRnontrivial(G) 6 6 7
summaxRnonchain(G) 5 5 6

—the sum of themaxRnonchain(µ) values over all the R-nodes ofT , denoted

summaxRnonchain(G) =
∑

R-nodeµ

maxRnonchain(µ).

As an example, in Table 1 we give the values of some of the above variables for the graphs in Figs. 1,
2, and 3.

6. IMPLEMENTATION OF THE QUERY OPERATIONS

In this section, we describe the implementation of operationsStrictlyConvexandConvex. As for
operationTest, it does not use any of the additional data structures and thus it is implemented exactly
as described in [20].

In the implementation of operationStrictlyConvex, we use three of the six variables for the entire
graph described in Section 5. Namely, operationStrictlyConvexis implemented as the logicalandof
the following two conditions:

1. sumP3nontrivial(G) = 0; and

2. sumtotalRnontrivial(G) = summaxRnontrivial(G).

LEMMA 5. The above implementation of operation StrictlyConvex is correct.

Proof. Condition 1 holds if and only ifP3nontrivial(µ)= 0 for each P-nodeµ of T : necessity can
be proved by contradiction; sufficiency is trivial. It follows that Condition 1 expresses the fact that for
every P-nodeµ of T , skeleton(µ) consists of one trivial and two nontrivial virtual edges.

For each R-nodeµof T , totalRnontrivial(µ)≥maxRnontrivial(µ), where equality holds if and only if
all the nontrivial virtual edges ofskeleton(µ) are on the same face. Thus, forG,sumtotalRnontrivial(G)≥
summaxRnontrivial(G). Condition 2 holds if and only iftotalRnontrivial(µ)= maxRnontrivial(µ) for
each R-nodeµ of T : necessity can be proved by contradiction; sufficiency is trivial. It follows that
Condition 2 expresses the fact that, for each R-nodeµ of T , all the nontrivial virtual edges ofskeleton(µ)
are on the same face.

Thus, the logicalandof Conditions 1 and 2 is equivalent to Theorem 2.
In the implementation of operationConvex, we use the other three variables for the entire graph

described in Section 5. Namely, operationConvexis implemented as the logicalandof the following
two conditions:

1. sumP3nonchain(G) = 0; and

2. sumtotalRnonchain(G) = summaxRnonchain(G).

112 DI BATTISTA, TAMASSIA, AND VISMARA

LEMMA 6. Let G be a biconnected planar graph and let G′ be a reduced graph of G. Then
sumP3nonchain(G) = 0 if and only if sumP3nontrivial(G′) = 0.

Proof. LetT andT ′ be the SPQR-trees ofG andG′, respectively. ConditionsumP3nonchain(G) = 0
holds if and only ifP3nonchain(µ)= 0 for every P-nodeµof T , and conditionsumP3nontrivial(G′) = 0
holds if and only ifP3nontrivial(µ′) = 0 for every P-nodeµ′ of T ′: necessity can be proved by
contradiction; sufficiency is trivial.

Thus, to prove the claim, it is sufficient to prove that, for each P-nodeµ of T , P3nonchain(µ)= 0 if
and only ifP3nontrivial(µ′) = 0, whereµ′ is the node ofT ′ corresponding toµ.

As observed in Section 3,skeleton(µ′) is obtained fromskeleton(µ) by replacing at most one chain
virtual edge with a trivial virtual edge. In particular, three cases are possible: (i) skeleton(µ) consists
of one trivial and two nontrivial virtual edges; thenskeleton(µ′) = skeleton(µ) andP3nonchain(µ)=
P3nontrivial(µ′) = 0; (ii) skeleton(µ) consists of three nontrivial virtual edges, at least one of which
is a chain virtual edge; thenskeleton(µ′) consists of one trivial and two nontrivial virtual edges, and
P3nonchain(µ)=P3nontrivial(µ′) = 0; (iii) skeleton(µ) consists of more than three virtual edges; then
alsoskeleton(µ′) consists of more than three virtual edges andP3nonchain(µ)= P3nontrivial(µ′) = 1.
Hence the claim is proved.

LEMMA 7. Let G be a biconnected planar graph and let G′ be a reduced graph of G. Then,
sumtotalRnonchain(G)= summaxRnonchain(G)if and only if sumtotalRnontrivial(G′)= summax-
Rnontrivial(G′).

Proof. Let T and T ′ be the SPQR-trees ofG and G′, respectively. For each R-nodeµ of T ,
totalRnonchain(µ)≥ maxRnonchain(µ), where equality holds if and only if all the nonchain, non-
trivial virtual edges ofskeleton(µ) are on the same face. It follows thatsumtotalRnonchain(G)≥
summaxRnonchain(G), where equality holds if and only iftotalRnonchain(µ)=maxRnonchain(µ) for
every R-nodeµ of T : necessity can be proved by contradiction; sufficiency is trivial. Similarly, for each
R-nodeµ′ of T ′, totalRnontrivial(µ′) ≥maxRnontrivial(µ′), where equality holds if and only if all the
nontrivial virtual edges ofskeleton(µ′) are on the same face. It follows thatsumtotalRnontrivial(G′) ≥
summaxRnontrivial(G′), where equality holds if and only iftotalRnontrivial(µ′) =maxRnontrivial(µ′)
for every R-nodeµ′ of T ′: again, necessity can be proved by contradiction; sufficiency is trivial.

Thus, to prove the claim, it is sufficient to prove that, for each R-nodeµ of T , totalRnonchain(µ)=
maxRnonchain(µ) if and only iftotalRnontrivial(µ′) =maxRnontrivial(µ′), whereµ′ is the node ofT ′

corresponding toµ.
As observed in Section 3,skeleton(µ′) is obtained fromskeleton(µ) by replacing each chain vir-

tual edge with a trivial virtual edge. It follows thattotalRnonchain(µ)= totalRnontrivial(µ′) and
maxRnonchain(µ)= maxRnontrivial(µ′). Hence the claim is proved.

LEMMA 8. The above implementation of operation Convex is correct.

Proof. It immediately follows from Lemmas 4, 5, 6, and 7, and from Theorem 3.

7. IMPLEMENTATION OF THE UPDATE OPERATIONS

In the description of operationsInsertVertexandInsertEdge, we use the terminology and concepts
of [20]. In particular, for each update operation, we recall the structural changes of the SPQR-tree, and
describe in detail how the additional data structures are modified.

We adopt a top-down approach by defining a hierarchy of transformations. A pseudocode description
of operationInsertEdgeis given (see Algorithm 1), based on the following transformations:Final-
Transformation1,InitialTransformation,ElementaryTransformation,FinalTransformation2, andFinal-
Transformation3. The first, third, and fourth of these transformations, plus operationInsertVertex, are
described in terms ofX-transformationsor RX-transformations, whereX is R, P, or S, depending on
whether a specified node is an R-node, P-node, or S-node, respectively. In turn, theX-transformations
andRX-transformationsrelative to operationInsertEdge, andInitialTransformationare described in
terms of two auxiliary operations, calledSplitFaceandMergeFaces.

We describe here, once and for all, certain updates of the additional data structures that occur in all
the transformations:

INCREMENTAL CONVEX PLANARITY TESTING 113

• For each R-nodeµ, every time one of the values stored at the root of the balanced binary tree
BR(f) associated with a facef of skeleton(µ) changes, the same value stored at the leaf ofBR(µ)
corresponding tof is updated.

• For each P-nodeµ, every timeP3nontrivial(µ) or P3nonchain(µ) changes,sumP3nontrivial(G)
or sumP3nonchain(G) is updated, respectively.

• For each R-nodeµ, every timetotalRnontrivial(µ),totalRnonchain(µ),maxRnontrivial(µ), or
maxRnonchain(µ) changes,sumtotalRnontrivial(G),sumtotalRnonchain(G),summaxRnontrivial(G),
or summaxRnonchain(G) is updated, respectively.

All the additional data structures not explicitly mentioned in the various transformations are assumed
to remain unchanged.

Finally, we have a notational remark. When a facef is split by operationSplitFace, the two resulting
faces are denotedf ′ and f ′′. When two facesfx and fy are merged by operationMergeFaces, the
resulting face is denotedfxy.

7.1. Insert Vertex

In this section we consider operationInsertVertex(v,e, e1, e2). Letρ be the Q-node corresponding to
e and letπ be the node adjacent toρ. Nodeπ can be either an R-node, a P-node, or an S-node; three
different cases are possible forInsertVertex(v,e, e1, e2), respectively:

1. R-transformation. Nodeρ is replaced with an S-nodeλ having two adjacent Q-nodes,ρ1 andρ2,
corresponding toe1 ande2, respectively. The trivial virtual edgeeρ in skeleton(π) is replaced with a
nontrivial virtual edgeeλ.

We create a new balanced binary treeBS(λ) with three leaves, and we setnontrivial(eρ1) and
nontrivial(eρ2) equal to 0, andnontrivial(eπ) equal to 1.

Let f1 and f2 be the two faces ofskeleton(π) containingeρ , now renamedeλ. We set bothnontrivial(eλ)
andchain(eλ) equal to 1 in the two leaves ofBR(f1) andBR(f2) corresponding toeλ.

2. P-transformation. Nodeρ is replaced with an S-nodeλ having two adjacent Q-nodes,ρ1 andρ2,
corresponding toe1 ande2, respectively. The trivial virtual edgeeρ in skeleton(π) is replaced with a
nontrivial virtual edgeeλ.

We create a new balanced binary treeBS(λ) with three leaves, and we setnontrivial(eρ1) and
nontrivial(eρ2) equal to 0, andnontrivial(eπ) equal to 1.

If, before the transformation,P3nontrivial(π) = 0 (and thusP3nonchain(π) = 0), we set
P3nontrivial(π) equal to 1 and leaveP3nonchain(π) equal to 0. (Note that, beingG simple, the skeleton
of a P-node may contain at most one trivial virtual edge, while the other virtual edges are nontrivial.)

3. S-transformation. Nodeρ is replaced with two Q-nodes,ρ1 andρ2, corresponding toe1 ande2,
respectively. The trivial virtual edgeeρ in skeleton(π) is replaced with two trivial virtual edges,eρ1 and
eρ2, having an endvertex in common.

We delete the leaf ofBS(π) corresponding toeρ and insert two new leaves corresponding toeρ1 and
eρ2. We set nontrivial(eρ1) and nontrivial(eρ2) equal to 0 in these two leaves.

The above discussion on the various transformations in operationInsertVertexcan be summarized in
the following lemma.

LEMMA 9. The transformations in operation InsertVertex require:

• the creation of O(1) balanced binary trees, each with an O(1) number of leaves;

• the execution of O(1) insert and delete operations on a balanced binary tree;and

• the update of O(1) values stored either at a leaf of a balanced binary tree or in a variable.

7.2. InsertEdge

In this section we consider operationInsertEdge(e, v1, v2). In order to describe the corresponding
transformations of the SPQR-treeT of graphG, we need some more definitions. Letv be a vertex
of G. Theallocation nodesof v are the nodes ofT whose skeleton containsv. The lowest common

114 DI BATTISTA, TAMASSIA, AND VISMARA

ancestor of the allocation nodes ofv is itself an allocation node ofv and is called theproperallocation
node ofv, denotedproper(v). If v is one of the endvertices of the reference edge, we conventionally
defineproper(v) as the unique child of the root ofT . In all other cases,proper(v) is either an R-node
or an S-node; also,proper(v) is the only allocation nodeµ of v such thatv is not a pole ofµ. As an
example, in Fig. 1 R-nodesχ andµ, P-nodeπ , and S-nodesσ andρ are all allocation nodes of vertex
v1, with χ as the proper allocation node. R-nodeχ is also, by convention, the proper allocation node of
vertexv7.

In Algorithm 1 we recall the pseudo-code description of operationInsertEdge(e, v1, v2) from Section
5 of [20]. The proper allocation nodesµ1 of v1 andµ2 andv2, and their lowest common ancestorµ
are computed. Four cases are possible: the three nodes are coincident, the three nodes are distinct, or
one proper allocation node is an ancestor of the other (two cases). In all four cases, the subtreeTµ of
T rooted atµ and the corresponding additional data structures are subject to some transformations. We
describe these transformations in the rest of the section.

7.2.1. FinalTransformation1(χ)

From Algorithm 1, it follows thatskeleton(χ) contains bothv1 andv2. As described in Section 5 of
[20], v1 andv2 belong to a common facef , andχ can be either an R-node or an S-node; two different
cases are possible forFinalTransformation1(χ), respectively:

ALGORITHM 1. OperationInsertEdge(e, v1, v2) and its subroutinePathCondensation(µi , χ) Insert-
Edge(e, v1, v2)
begin

find the proper allocation nodesµ1 of v1 andµ2 of v2, and their lowest common ancestorµ;
case of
µ1 = µ = µ2:

FinalTransformation1(µ);
µ1 6= µ 6= µ2:

PathCondensation(µ1, µ);
PathCondensation(µ2, µ);
FinalTransformation2(µ1, µ2);

µ1 = µ 6= µ2:
determine the lowest nodeω on the path fromµ2 toµ such thatskeleton(ω) containsv1;
if ω = µ2 then

FinalTransformation1(µ2);
else

PathCondensation(µ2, ω);
FinalTransformation3(µ2);

endif
µ1 6= µ = µ2:
{this case is analogous to the previous one and therefore omitted}

endcase
end

PathCondensation(µi , χ)
begin

InitialTransformation(µi);
find the childλi of χ on the path fromµi to χ ;
setρ equal toµi ;
while ρ 6= λi do {µi “bubbles up” alongT until it becomes a child ofχ}

setπ equal to the parent ofρ;
ElementaryTransformation(ρ, π);
setρ equal toπ ;

endwhile
end

INCREMENTAL CONVEX PLANARITY TESTING 115

1. R-transformation. Two cases are possible:
(a) skeleton(χ) does not contain edge (v1, v2). A new Q-node, corresponding to edgee, is

added as a child ofχ , and a trivial virtual edge (v1, v2) is added toskeleton(χ), splitting face f into
faces f ′ and f ′′.

We perform operationSplitFace(BR(f), v1, v2, trivial) obtaining BR(f ′) andBR(f ′′). We delete the
leaf of BR(χ) corresponding tof and insert two new leaves corresponding tof ′ and f ′′.

(b) skeleton(χ) contains edge (v1, v2). Then (v1, v2) is the nontrivial virtual edge of a childν
of χ , and two cases are possible:

i. ν is a P-node. A new Q-node, corresponding to edgee, is added as a child ofν, and a
trivial virtual edge (v1, v2) is added toskeleton(ν).

If, before the transformation,P3nonchain(ν) is equal to 0, we set it equal to 1. (Note that, before the
transformation,P3nontrivial(ν) is equal to 1 sinceskeleton(ν) does not contain a trivial virtual edge
(v1, v2).)

ii. ν is not a P-node. It is replaced with a new P-nodeλ, whose children areν and a new
Q-nodeρ, corresponding to edgee; skeleton(λ) consists of the nontrivial virtual edgeseν andeχ and of
the trivial virtual edgeeρ .

We set bothP3nontrivial(λ) andP3nonchain(λ) equal to 0.
Let f1 and f2 be the two faces ofskeleton(χ) containingeν , now renamedeλ. We setnontrivial(eλ)

equal to 1 andchain(eλ) equal to 0 in the two leaves ofBR(f1) andBR(f2) corresponding toeλ.
If ν is an S-node, we consider the leaf ofBS(ν) corresponding toeχ , now renamedeλ. We set

nontrivial(eλ) equal to 1 in this leaf.
If ν is an R-node, letfa and fb be the two faces ofskeleton(ν) containingeχ , now renamedeλ. We set

nontrivial(eλ) equal to 1 andchain(eλ) equal to 0 in the two leaves ofBR(fa) andBR(fb) corresponding
to eλ.

2. S-transformation. Two cases are possible:
(a) skeleton(χ) does not contain edge (v1, v2). Let σ be the parent ofχ , let p be the path

of skeleton(χ) betweenv1 andv2 not containingeσ (see Fig. 11a), and letβ1, . . . , βk, k ≥ 2, be the
children ofχ corresponding to the edges ofp. Nodesβ1, . . . , βk are replaced with a new P-nodeλ
whose children are a new Q-nodeρ, corresponding to edgee, and a new S-nodeν, whose children are
β1, . . . , βk. Pathp is replaced inskeleton(χ) with the nontrivial virtual edgeeλ; skeleton(λ) consists of
the nontrivial virtual edgeseχ andeν , and of the trivial virtual edgeeρ ; skeleton(ν) consists ofp plus a
nontrivial virtual edgeseλ = (v1, v2) (see Fig. 11b).

We set bothP3nontrivial(λ) andP3nonchain(λ) equal to 0.
We perform operationSplitFace(BS(χ), v1, v2, nontrivial) obtainingBS(ν) and the newBS(χ). We

consider the leaf ofBS(χ) corresponding toeν , now renamedeλ. We setnontrivial(eλ) equal to 1 in this
leaf. We then consider the leaf ofBS(ν) corresponding toeχ , now renamedeλ. We set nontrivial(eλ)
equal to 1 in this leaf.

FIG. 11. An example ofS-transformationin FinalTransformation1: (a)skeleton(χ) before theS-transformation, and
(b) skeleton(χ), skeleton(λ), andskeleton(ν), after theS-transformation.

116 DI BATTISTA, TAMASSIA, AND VISMARA

If σ is a P-node whose skeleton consists ofeχ and two other virtual edgeseξ andeψ , andeξ andeψ
are neither chain virtual edges (Snontrivial(ξ) > 1 andSnontrivial(ψ) > 1) nor trivial virtual edges,
then we setP3nonchain(σ) equal to 1.

(b) skeleton(χ) contains edge (v1, v2). Analogous to the second case of theR-transformation.

7.2.2. InitialTransformation(µi)

If µi is an S-node, it is transformed into an R-node. Letσ be the parent ofµi ; note thatσ is neither
an S-node, since two S-nodes cannot be adjacent inT , nor a Q-node, sinceµi , having at leastµ as an
ancestor (see Algorithm 1), cannot be the child of the root ofT .

If sµi andvi are not adjacent inskeleton(µi), let ps be the path ofskeleton(µi) betweensµi andvi not
containingeσ (see Fig. 12a), and letα1, . . . , αk, k ≥ 2, be the children ofµi corresponding to the edges
of ps. Nodesα1, . . . , αk are replaced with a new S-nodeν ′ whose children areα1, . . . , αk. Pathps is
replaced inskeleton(µi) with the nontrivial virtual edgeeν ′ ; skeleton(ν′) consists ofps plus a nontrivial
virtual edgeeµi = (sµi , vi) (see Fig. 12b).

We perform operationSplitFace(BS(µi), sµi , vi , nontrivial) obtainingBS(ν ′) and the newBS(µi).
Similarly, if vi andtµi are not adjacent inskeleton(µi), let pt be the path ofskeleton(µi) betweenvi

andtµi not containingeσ (see Fig. 12a), and letγ1, . . . , γh, h ≥ 2, be the children ofµi corresponding
to the edges ofpt . Nodesγ1, . . . , γh are replaced with a new S-nodeν ′′ whose children areγ1, . . . , γh.
Pathpt is replaced inskeleton(µi) with the nontrivial virtual edgeeν ′′ ; skeleton(ν′′) consists ofpt plus
a nontrivial virtual edgeeµi = (vi , tµi) (see Fig. 12b).

We perform operationSplitFace(BS(µi), vi , tµi , nontrivial) obtainingBS(ν ′′) and the newBS(µi).
To complete the transformation, we must convert the newµi into an R-node. Note thatµi will be

a degenerate R-node until operationInsertEdgeis completed, since its skeleton is not a triconnected
simple planar graph, but a cycle of three virtual edges. We discardBS(µi), and create two new balanced
binary treesBR(f1) andBR(f2), with three leaves each, for the two facesf1 and f2 of skeleton(µi). In
the leaves of both trees, we set:

• nontrivial(eσ) = 1 andchain(eσ) = 0

• nontrivial(eν ′) = 1 andchain(eν ′) =
{

1 if Snontrivial(ν′) = 1
0 otherwise

• nontrivial(eν ′′) = 1 andchain(eν ′′) =
{

1 if Snontrivial(ν′′) = 1
0 otherwise.

Finally, we create a new balanced binary treeBR(µi) with two leaves corresponding tof1 and f2.
Note that, ifσ is a P-node, the possible update ofP3nonchain(σ) is performed either inElementary

Transformationor in FinalTransformation2(see below).

FIG. 12. An example ofInitialTransformation: (a)skeleton(µi) before theInitialTransformation, and (b)skeleton(µi),
skeleton(ν′), andskeleton(ν′′), after theInitialTransformation.

INCREMENTAL CONVEX PLANARITY TESTING 117

FIG. 13. An example ofRR-transformationin ElementaryTransformation: (a)skeleton(π) andskeleton(ρ) before theRR-
transformation, and (b)skeleton(π) after theRR-transformation.

7.2.3. ElementaryTransformation(ρ, π)

As described in Section 5 of [20],ρ is an R-node, while its parentπ can be either an R-node, or a P-
node, or an S-node; three different cases are possible forElementaryTransformation(ρ, π), respectively:

1. RR-transformation. Nodeρ is absorbed into nodeπ ; edgeeρ in skeleton(π) is replaced with
skeleton(ρ) − eπ (see Fig. 13). Note thatπ will be a degenerate R-node until operationInsertEdgeis
completed, since its skeleton is not a triconnected simple planar graph, but contains a nontrivial split
pair.

We first consider the balanced binary trees associated with the faces ofskeleton(π) andskeleton(ρ).
Let f1 be the external face ofskeleton(π), and let f2 be the other face ofskeleton(π) containingeρ (see
Fig. 13a). Letfa be the face ofskeleton(ρ) containingeπ andvi , and letfb be the other face ofskeleton(ρ)
containingeπ (see Fig. 13a). We perform operationMergeFaces(BR(f1), eρ, BR(fa), eπ), obtaining
balanced binary treeBR(f1a) for the new facef1a, and operationMergeFaces(BR(f2), eρ, BR(fb), eπ),
obtaining balanced binary treeBR(f2b) for the new facef2b (see Fig. 13b).

We now consider the balanced binary trees associated with nodesπ andρ. We delete the leaves of
BR(π) corresponding tof1 and f2, and the leaves ofBR(ρ) corresponding tofa and fb; then we modify
BR(π) by joining it with BR(ρ); and finally we insert two new leaves corresponding tof1a and f2b into
BR(π).

2. RP-transformation. Nodesρ andπ are swapped inT . Let σ be the parent ofπ ; edgeeσ is
removed fromskeleton(π) and inserted inskeleton(ρ) (see Fig. 14). If, after the swap,π has only one
childψ , nodeπ is absorbed into nodeρ, and edgeeπ in skeleton(ρ) is replaced witheψ . Note that, in
both cases,ρ will be a degenerate R-node until operationInsertEdgeis completed, since its skeleton is
not a triconnected simple planar graph, but contains a nontrivial split pair.

FIG. 14. An example ofRP-transformationin ElementaryTransformation: (a)skeleton(π) andskeleton(ρ) before theRP-
transformation, and (b)skeleton(ρ) andskeleton(π) after theRP-transformation.

118 DI BATTISTA, TAMASSIA, AND VISMARA

We first consider the balanced binary tree associated with the facefa of skeleton(ρ) containingeπ
andvi (see Fig. 14a). We perform operationSplitFace(BR(fa), sρ, tρ , nontrivial), obtaining balanced
binary treesBR(f ′a) andBR(f ′′a) for the new facesf ′a and f ′′a into which fa is split (see Fig. 14b).

We now consider the balanced binary tree associated with nodeρ. We delete the leaf ofBR(ρ)
corresponding tofa and insert two new leaves corresponding tof ′a and f ′′a .

If, after the swap,π has only one childψ , we discardP3nontrivial(π) andP3nonchain(π). Let f1

and f2 be the two faces ofskeleton(ρ) containingeπ , now renamedeψ . We suitably setnontrivial(eψ)
andchain(eψ) in the two leaves ofBR(f1) andBR(f2) corresponding toeψ .

Otherwise, if, after the swap,skeleton(π) consists of three virtual edges, we may have to modify
P3nontrivial(π) andP3nonchain(π). In particular, ifskeleton(π) contains a trivial virtual edge, we
set bothP3nontrivial(π) and P3nonchain(π) equal to 0; otherwise, ifskeleton(π) contains a chain
virtual edgeeη (Snontrivial(η) = 1), we leaveP3nontrivial(π) equal to 1 and setP3nonchain(π) equal
to 0.

3. RS-transformation. Letσ be the parent ofπ ; note thatσ is neither an S-node, since two S-
nodes cannot be adjacent inT , nor a Q-node, sinceπ , having at leastµ as an ancestor (see Algorithm 1),
cannot be the child of the root ofT .

If sπ andsρ are neither coincident nor adjacent inskeleton(π), let ps be the path ofskeleton(π)
betweensπ andsρ not containingeσ (see Fig. 15a), and letα1, . . . , αk, k ≥ 2, be the children ofπ
corresponding to the edges ofps. Nodesα1, . . . , αk are replaced with a new S-nodeν ′whose children are
α1, . . . , αk. Pathps is replaced inskeleton(π) with the nontrivial virtual edgeeν ′ ; skeleton(ν′) consists
of ps plus a nontrivial virtual edgeeπ = (sπ , sρ) (see Fig. 15b).

We perform operationSplitFace(BS(π), sπ , sρ, nontrivial) obtainingBS(ν ′) and the newBS(π).
Similarly, if tρ andtπ are neither coincident nor adjacent inskeleton(π), let pt be the path ofskleton(π)

betweentρ and tπ not containingeσ (see Fig. 15a), and letγ1, . . . , γh, h ≥ 2, be the children ofπ
corresponding to the edges ofpt . Nodesγ1, . . . , γh are replaced with a new S-nodeν ′′ whose children
areγ1, . . . , γh. Path pt is replaced inskeleton(π) with the nontrivial virtual edgeeν ′′ ; skeleton(ν′′)
consists ofpt plus a nontrivial virtual edgeeπ = (tρ, tπ) (see Fig. 15b).

We perform operationSplitFace(BS(π), tρ, tπ , nontrivial) obtainingBS(ν ′′) and the newBS(π).
To complete the transformation we first must convert the newπ into an R-node. After that, nodeρ

is absorbed into nodeπ by replacing edgeeρ in skeleton(π) with skeleton(ρ)− eπ (see Fig. 15b). Note
thatπ will be a degenerate R-node until operationInsertEdgeis completed, since itsskeletonis not a
triconnected simple planar graph, but contains a nontrivial split pair.

FIG. 15. An example ofRS-transformationin ElementaryTransformation: (a)skeleton(π) andskeleton(ρ) before theRS-
transformation, and (b)skeleton(π), skeleton(ν′), andskeleton(ν′′) after theRS-transformation.

INCREMENTAL CONVEX PLANARITY TESTING 119

We discardBS(π), and create two new balanced binary treesBR(f1) andBR(f2), with at most four
leaves each, for the two facesf1 and f2 of skeleton(π). In the leaves of both trees, we set:

• nontrivial (eσ) = 1 andchain(eσ) = 0

• nontrivial(eν ′) = 1 andchain(eν ′) =
{

1 if Snontrivial(ν′) = 1
0 otherwise

• nontrivial(eρ) = 1 andchain(eρ) = 0

• nontrivial(eν ′′) = 1 andchain(eν ′′) =
{

1 if Snontrivial(ν′′) = 1
0 otherwise.

Let fa be the face ofskeleton(ρ) containingeπ andvi , and let fb be the other face ofskeleton(ρ) con-
tainingeπ . W.l.o.g., assume thattρ immediately precedessρ in the circular ordering offa (see Fig. 15a).
Let f1 be the face ofskeleton(π) in whose circular orderingtρ immediately followssρ , and let f2 be
the other face ofskeleton(π). We perform operationMergeFaces(BR(f1), eρ, BR(fa), eπ), obtaining
balanced binary treeBR(f1a) for the new facef1a, and operationMergeFaces(BR(f2), eρ, BR(fb), eπ),
obtaining balanced binary treeBR(f2b) for the new facef2b (see Fig. 15b).

Finally, we consider the balanced binary tree associated with nodeρ. We delete the leaves ofBR(ρ)
corresponding tofa and fb; we makeBR(ρ) the newBR(π); and we insert two new leaves corresponding
to f1a and f2b into BR(π).

7.2.4. Final Transformation2(λ1, λ2)

Nodeλ1 is the R-node whose skeleton containsv1, nodeλ2 is the R-node whose skeleton contains
v2. Let χ be their common parent. As described in Section 5 of [20],χ can be either an R-node, or a
P-node, or an S-node; three different cases are possible forFinalTransformation2(χ), respectively:

1. R-transformation.Nodesλ1 andλ2 are absorbed into nodeχ . In skeleton(χ), nontrivial virtual
edgeeλ1 is replaced withskeleton(λ1) – eχ , nontrivial virtual edgeeλ2 is replaced withskeleton(λ2) –
eχ , and a trivial virtual edge (v1, v2) is finally added (see Fig. 16).

We first consider the balanced binary trees associated with the faces ofskeleton(χ), skeleton(λ1), and
skeleton(λ2). Let f1 be the face ofskeleton(χ) containingeλ1 but noteλ2, let f2 be the face ofskeleton(χ)
containingeλ2 but noteλ1, and let f3 be the face ofskeleton(χ) containing botheλ1 andeλ2. Let fa be
the face ofskeleton(λ1) containingeχ andv1, and fb be the other face ofskeleton(λ1) containingeχ . Let
fc be the face ofskeleton(λ2) containingeχ andv2, and fd be the other face ofskeleton(λ2) containing
eχ (see Fig. 16a).

We perform operationsMergeFaces(BR(f1), eλ1, BR(fb), eχ) and MergeFaces(BR(f3), eλ1,

BR(fa), eχ), obtaining balanced binary treesBR(f1b) and BR(f3a) for the two new facesf1b and
f3a, respectively. We also perform operationsMergeFaces(BR(f2), eλ2, BR(fd), eχ) andMergeFaces-
(BR(f3a), eλ2, BR(fc), eχ), obtaining the balanced binary treesBR(f2d) and BR(f3ac) for the two new
faces f2d and f3ac, respectively.

FIG. 16. An example ofR-transformationin FinalTransformation2: (a)skeleton(χ), skeleton(λ1), andskeleton(λ2) before
the R-transformation, and (b)skeleton(χ) after theR-transformation.

120 DI BATTISTA, TAMASSIA, AND VISMARA

FIG. 17. An example ofP-transformationin FinalTransformation2: (a)skeleton(χ), skeleton(λ1), andskeleton(λ2) before
the P-transformation, and (b)skeleton(χ) andskeleton(λ) after theP-transformation.

We still must add edge (v1, v2), which will divide f3ac into two new faces,f ′3ac and f ′′3ac. We perform
operationSplitFace(BR(f3ac), v1, v2, trivial), obtainingBR(f ′3ac) andBR(f ′′3ac) (see Fig. 16b).

We now consider the balanced binary trees associated with nodesχ , λ1, andλ2. We delete the leaves
of BR(χ) corresponding tof1, f2 and f3, the leaves ofBR(λ1) corresponding tofa and fb, and the
leaves ofBR(λ2) corresponding tofc and fd. Next, we modifyBR(χ) by joining it first with BR(λ1) and
then withBR(λ2). Finally, we insert four leaves corresponding tof1b, f2d, f ′3ac, and f ′′3ac into BR(χ).

2. P-transformation. Nodesλ1 andλ2 are contracted into a new R-nodeλ. Graphskeleton(λ)
is obtained by the union ofskeleton(λ1) − eχ , skeleton(λ2) − eχ , a nontrivial virtual edgeeχ between
the poles, and a trivial virtual edge (v1, v2). In skeleton(χ), the nontrivial virtual edgeseλ1 andeλ2 are
replaced with a single nontrivial virtual edgeeλ (see Fig. 17). If, after the contraction, the only child
of χ is λ, χ is absorbed into its parentσ , edgeeχ in skeleton(λ) is replaced witheσ , and edgeeχ in
skeleton(σ) is replaced witheλ.

We first consider the balanced binary trees associated with the faces ofskeleton(λ1) andskeleton(λ2).
Let fa be the face ofskeleton(λ1) containingeχ andv1, and let fc be the face ofskeleton(λ2) containing
eχ andv2 (see Fig. 17a).

We perform operationMergeFaces(BR(fa), eχ , BR(fc), eχ), obtaining balanced binary treeBR(fac)
for the new facefac.

We still must add edge (v1, v2), which will divide fac into two new faces,f ′ac and f ′′ac. We perform
operationSplitFace(BR(fac), v1, v2, trivial), obtainingBR(f ′ac) andBR(f ′′ac) (see Fig. 17b).

We now consider the balanced binary trees associated with nodesλ1, andλ2. We delete the leaf of
BR(λ1) corresponding tofa, and the leaf ofBR(λ2) corresponding tofc. We then joinBR(λ1) andBR(λ2)
to obtain a new balanced binary treeBR(λ), and insert two leaves corresponding tof ′ac and f ′′ac into
BR(λ).

If after the contraction, the only child ofχ is λ, we discardP3nontrivial(χ) andP3nonchain(χ). If
the parentσ of χ is an S-node andSnontrivial(σ) = 1, let f1 and f2 be the two faces ofskeleton(λ)
containingeχ , now renamedeσ . We leave nontrivial(eσ) equal to 1 and setchain(eσ) equal to 1.

Otherwise, if, after the contraction,skeleton(χ) consists of three virtual edges, we may have to modify
P3nontrivial(χ) andP3nonchain(χ). In particular, ifskeleton(χ) contains a trivial virtual edge, we set
bothP3nontrivial(χ) andP3nonchain(χ) equal to 0; otherwise, ifskeleton(χ) contains a chain virtual
edgeeη (Snontrivial(η) = 1), we leaveP3nontrivial(χ) equal to 1 and setP3nonchain(χ) equal to 0.

3. S-transformation. Nodesλ1 andλ2 are contracted into a new R-nodeλ. Lets1 andt1 (s2 andt2)
be the endvertices ofeλ1 (eλ2) in skeleton(χ); w.l.o.g., assume thats1, t1, s2, andt2 appear in this order

INCREMENTAL CONVEX PLANARITY TESTING 121

FIG. 18. An example ofS-transformationin FinalTransformation2: (a)skeleton(χ), skeleton(λ1), andskeleton(λ2) before
theS-transformation, and (b)skeleton(χ), skeleton(λ), andskeleton(ν) after theS-transformation.

between the poles ofskeleton(χ). Let p be the path ofskeleton(χ) betweens1 andt2 not containing the
virtual edge of the parent ofχ (see Fig. 18a). Pathp is replaced inskeleton(χ) with a nontrivial virtual
edgeeλ; skeleton(λ) consists ofp plus a nontrivial virtual edgeeχ = (s1, t2). Then, ift1 ands2 are neither
coincident nor adjacent inskeleton(λ), the subpathp′ of p betweent1 ands2 is replaced with a nontrivial
virtual edgeeν , and a new S-nodeν is created;skeleton(ν) consists ofp′ plus a nontrivial virtual edge
eλ = (t1, s2). Finally, the nontrivial virtual edgeeλ1 in skeleton(λ) is replaced withskeleton(λ1) - eχ , the
nontrivial virtual edgeeλ2 in skeleton(λ) is replaced withskeleton(eλ2) − eχ , and a trivial virtual edge
(v1, v2) is added (see Fig. 18b).

We first consider the balanced binary trees associated with a face ofskeleton(χ), and with the faces
of skeleton(λ1) andskeleton(λ2).

We perform operationSplitFace(BS(χ), s1, t2, nontrivial), obtainingBS(λ) and the newBS(χ). Then,
if t1 ands2 are neither coincident nor adjacent inskeleton(λ), we perform operationSplitFace(BS(λ),
t1, s2, nontrivial), obtainingBS(ν) and the newBS(λ).

We now must convert the newλ into an R-node. Note thatλ will be a degenerate R-node until
operationInsertEdgeis completed, since its skeleton is not a triconnected simple planar graph, but a
cycle of at most four virtual edges. We discardBS(λ), and create two new balanced binary treesBR(f1)
andBR(f2), with at most four leaves each, for the two facesf1 and f2 of skeleton(λ). In the leaves of
both trees, we set:

• nontrivial(eχ) = 1 andchain(eχ) =
{

1 if Snontrivial(χ) = 1
0 otherwise

• nontrivial(eλ1) = 1 andchain(eλ1) = 0

• nontrivial(eν) = 1 andchain(eν) =
{

1 if Snontrivial(ν) = 1
0 otherwise

• nontrivial(eλ2) = 1 andchain(eλ2) = 0.

Let fa be the face ofskeleton(λ1) containingeχ andv1, and fb be the other face ofskeleton(λ1)
containingeχ . W.l.o.g., assume thatt1 immediately precedess1 in the circular ordering offa (see
Fig. 18a). Let f1 be the face ofskeleton(λ) in whose circular orderingt1 immediately followss1, and
let f2 be the other face ofskeleton(λ). We perform operationMergeFaces(BR(f1), eλ1, BR(fa), eχ),
obtaining balanced binary treeBR(f1a) for the new facef1a, and operationMergeFaces(BR(f2), eλ1,
BR(fb), eχ), obtaining balanced binary treeBR(f2b) for the new facef2b.

122 DI BATTISTA, TAMASSIA, AND VISMARA

Analogously, let fc be the face ofskeleton(λ2) containingeχ andv2, and fd be the other face of
skeleton(λ2) containingeχ (see Fig. 18a). We perform operationMergeFaces(BR(f1a), eλ2, BR(fc),
eχ), obtaining balanced binary treeBR(f1ac) for the new facef1ac, and operationMergeFaces(BR(f2b),
eλ2, BR(fd), eχ), obtaining balanced binary treeBR(f2bd) for the new facef2bd.

We still must add edge (v1, v2), which will divide f1ac into two new faces,f ′1ac and f ′′1ac. We perform
operationSplitFace(BR(f1ac), v1, v2, trivial), obtainingBR(f ′1ac) andBR(f ′′1ac) (see Fig. 18b).

Finally, we consider the balanced binary trees associated with nodesλ1 andλ2. We delete the leaves
of BR(λ1) corresponding tofa and fb, and the leaves ofBR(λ2) corresponding tofc and fd. We then join
BR(λ1) andBR(λ2) to obtain a new balanced binary treeBR(λ), and insert three new leaves corresponding
to f ′1ac, f ′′1ac, and f2bd into BR(λ).

7.2.5. FinalTransformation3(λ2)

Nodeλ2 is the R-node whose skeleton containsv2. Letχ be its parent. As described in Section 5 of [20],
χ can be either an R-node or an S-node.FinalTransformation3(λ2) can be viewed as a particular case
of FinalTransformation2(λ1, λ2), with skeleton(λ1) collapsed to a single vertexv1 of skeleton(χ). The
updates of the additional data structures are simple variations of those described forR-transformation
andS-transformationin Section 7.2.4.

7.2.6. Summary of Operation InsertEdge

The above discussion on the various transformations in operationInsertEdgecan be summarized in
the following lemma.

LEMMA 10. The transformations in operation InsertEdge require:

• the creation of O(1) balanced binary trees,each with an O(1) number of leaves;

• the execution of O(1) join, insert,and delete operations on a balanced binary tree;

• the update of O(1) values stored either at a leaf of a balanced binary tree or in a variable; and

• the execution O(1) SplitFace and MergeFaces operations.

7.3. SplitFaceandMergeFace

In the previous section we have described theX-transformationsandRX-transformationsof operation
InsertEdgein terms of the auxiliary operationsSplitFaceandMergeFaces. We have seen how operation
SplitFaceis performed when a face of a skeleton is split into two new faces by inserting a new virtual
edge, and we have seen how operationMergeFacesis performed when two faces (of two different
skeletons) having a virtual edge with the same endvertices are merged into a new face. In this section
we show how these auxiliary operations are implemented.

We first consider operationSplitFace(B, u, v, edge-type), whereB is the balanced binary tree associ-
ated with a facef of the skeleton of an R-node or S-nodeµ, u andv are two vertices off, andedge-type
∈ {trivial, nontrivial} is the type of the virtual edgee= (u, v) to be inserted into the two new facesf ′

and f ′′ created by this operation. Note that ifµ is an R-node, thenf ′ and f ′′ belong toskeleton(µ); if
µ is an S-node, thenµ is split into two new S-nodesµ′ andµ′′, with f ′ belonging toskeleton(µ′) and
f ′′ belonging toskeleton(µ′′).

Letprev(w) andnext(w) be the edges preceding and following, respectively, vertexw in f . We describe
the most general case, where neither the leaf corresponding toprev(u) nor the leaf corresponding to
prev(v) is the rightmost leaf ofB. The cases in which either the leaf corresponding toprev(u) or the
leaf corresponding toprev(v) is the rightmost leaf ofB are similar.

We first split B at the lowest common ancestor of the leaves corresponding toprev(u) andnext(u),
thus obtaining two balanced binary treesBp and Bn, neither of which is empty. W.l.o.g., assume that
the leaf corresponding toprev(v) is contained inBp. We split Bp at the lowest common ancestor of
the leaves corresponding toprev(v) andnext(v), thus obtaining two balanced binary treesBpp andBpn,
neither of which is empty. We joinBn and Bpp (in this left-to-right order) to obtain the new balanced
binary treeB′ for f ′, while Bpn is the new balanced binary treeB′′ for f ′′. Finally, we insert a new leaf
corresponding toe into B′ andB′′. If edge-type= trivial, we setnontrivial(e) equal to 0; otherwise, we

INCREMENTAL CONVEX PLANARITY TESTING 123

setnontrivial(e) equal to 1. In both cases, iff is a face of the skeleton of an R-node, we setchain(e)
equal to 0.

We now consider operationMergeFaces(B′, eρ , B′′, eπ), whereρ andπ are two R-nodes,B′ is the
balanced binary tree associated with a facef ′ of skeleton(π), B′′ is the balanced binary tree associated
with a face f ′′ of skeleton(ρ), eρ is the nontrivial virtual edge ofρ in skeleton(π), eπ is the nontrivial
virtual edge ofπ in skeleton(ρ), andeρ andeπ have the same endvertices. Note thatρ andπ are merged
into a new nodeλ, with the new facef created by this operation belonging toskeleton(λ).

We first split B′ at the leaf corresponding toeρ , thus obtaining two balanced binary trees (one of
which is possibly empty):B′l containing the leaves to the left of the leaf corresponding toeρ , andB′r
containing the leaves to the right. Similarly, we splitB′′ at the leaf corresponding toeπ , thus obtaining
balanced binary treesB′′l andB′′r (one of which is possibly empty). We then joinB′l , B′′r , B′′l , andB′r (in
this left-to-right order) to obtain the balanced binary treeB for f .

The above discussion on operationsSplitFaceandMergeFacescan be summarized in the following
lemma.

LEMMA 11. Operation SplitFace requires the execution of O(1) split, join, and insert operations on
balanced binary trees. Operation MergeFaces requires the execution of O(1) split and join operations
on balanced binary trees.

8. COMPLEXITY ANALYSIS

In this section, we analyze the space complexity of the data structure and the time complexity of the
query and update operations. Throughout the section we indicate withG a biconnected planar graph
that is updated on-line by adding vertices and edges, and withn the current number of vertices ofG.
In order to make the paper more self-contained, we quote one of the main theorems of [20], which we
will refer to in our analysis.

THEOREM4 [20]. Let G be a biconnected planar graph that is dynamically updated by adding vertices
and edges, and let n be the current number of vertices of G. There exists a data structure for the on-line
incremental planarity testing problem on G with the following performance: the space requirement is
O(n), operations Test and InsertVertex take O(logn) worst-case time,and operation InsertEdge takes
O(logn) amortized time.

Our data structure requiresO(n) space. This follows from Theorem 4 and from the easily checkable
O(n) space complexity of the additional data structures.

OperationsStrictlyConvexandConvextake O(1) worst-case time (see Section 6). Since operation
Testdoes not use any of the additional data structures, by Theorem 4 it takesO(logn) worst-case time.

The time complexity of the update operations follows from Theorem 4, once we prove that the
additional data structures can be maintained within the specified time bounds. This immediately follows
from Lemmas 9, 10, and 11, and from the following observations:

• Splitting a balanced binary tree, joining two balanced binary trees, and inserting or deleting
a leaf of a balanced binary tree takesO(logn) worst-case time, and the resulting binary trees are
themselves balanced (see, e.g., Chapter 4 of [50]).

• As a consequence of each split, join, insert, and delete operation, or update of the values stored
at a leaf of a balanced binary tree, the values stored at the nodes of one or two leaf-to-root (sub)paths
must be updated, and this also takesO(logn) worst-case time.

• Maintaining variablesP3nontrivial and P3nonchain, and updating variablessumP3-
nontrivial, sumP3nonchain,sumtotalRnontrivial,sumtotalRnonchain,summaxRnontrivial, andsum-
maxRnonchaintakesO(1) time.

The entire discussion on the on-line incremental convex planarity testing problem on biconnected
planar graphs can be summarized in the following theorem.

THEOREM 5. Let G be a biconnected planar graph that is updated on-line by adding vertices and
edges,and let n be the current number of vertices of G. There exists a data structure for the online

124 DI BATTISTA, TAMASSIA, AND VISMARA

incremental convex planarity testing problem on G with the following performance: the space require-
ment is O(n), operations StrictlyConvex and Convex take O(1) worst-case time,operations Test and
InsertVertex take O(logn) worst-case time,and operation InsertEdge takes O(logn) amortized time.

Two slightly more complicated data structures can be devised for the on-line incremental convex
planarity testing problem on nonbiconnected planar graphs, similarly to what is done in [20] for the
on-line incremental planarity testing problem. For connected planar graphs, we augment the above
repertory with the following update operation:

AttachVertex(v,e, u): Add vertexv and connect it to vertexu by means of edgee.

As shown in [20], ann-vertex connected planar graph can be assembled starting from a single vertex by
means of a sequence ofO(n)AttachVertexandInsertEdgeoperations, such that each intermediate graph
is planar and connected. For general planar graphs, we augment the above repertory with the following
update operation:

MakeVertex(v): Add an isolated vertexv.

We recall that ann-vertex planar graph can be assembled starting from a single vertex by means of a
sequence ofO(n) MakeVertexandInsertEdgeoperations, such that each intermediate graph is planar.

With techniques similar to those used to prove Theorem 5, it is possible to prove that there exist
two data structures for the on-line incremental convex planarity testing problem on connected and on
general planar graphs with the same performance as in Theorem 5, and the following performance
for the additional operations: operationAttachVertextakesO(log n) worst-case time, and operation
MakeVertextakesO(1) worst-case time.

9. OPEN PROBLEMS

Open problems related to this work include:

• Reducing the amortized time complexity of operationsTest, InsertVertex,InsertEdge, and
Attach Vertexto O(α(k, n)),whereα(k, n) is the inverse of Ackermann’s function,n is the final number
of vertices of the graph, andk ≥ n is the total number of query and update operations. The inverse of
Ackermann’s function grows very slowly; namely

α(k, n) ≤ 4 for n < 22··
·2
}

17
,

that is, for all values ofn up to a number much greater than the estimated number of atoms in the
observable universe (see, e.g., [10]). La Poutré [35] has shown that on-line incremental planarity can
be tested within this time bound.

• Devising a data structure for the on-line fully dynamic convex planarity testing problem. The
best data structure for the on-line fully dynamic planarity testing problem supports query and update
operations inO(

√
n) amortized time [26].

• Characterizing the area required by a strictly convex grid drawing. Kant [33] has shown that
convex grid drawings of triconnected planar graphs can be constructed with quadratic area (see also
[21, 41]). Lin and Skiena [36] have shown that drawing a cycle as a strictly convex polygon with integer
vertex coordinates requiresÄ(n3) area. Chrobaket al. [7] have presented an algorithm for constructing
strictly convex grid drawings of triconnected planar graphs withO(n3)× O(n3) area.

• Devising a data structure for efficiently maintaining straight-line drawings of planar graphs, in
particular (strictly) convex drawings, in a semi-dynamic or fully dynamic environment. This is a long-
standing open problem in graph drawing. Its difficulty arises from the fact that even a single update
to the graph may cause a major restructuring of the drawing. One can consider, as an example, the
insertion of an edge between two antipodal vertices in a convex drawing; it is easy to see that drawing
the new edge as a straight-line segment and, if possible, making the two new faces convex may require
changing the coordinates of a large number of vertices. In addition, other aspects play an important role
in dynamic graph drawing. For instance, it is important that the new drawing be as similar as possible

INCREMENTAL CONVEX PLANARITY TESTING 125

to the one before the update, in order to preserve themental mapthe viewer has of the drawing [25, 37],
even though this is at the expense of some other aesthetic criteria.

ACKNOWLEDGMENTS

We thank the anonymous referees for their helpful comments and suggestions on how to improve the presentation.

REFERENCES

1. Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1974), “The Design and Analysis of Computer Algorithms,” Addison-Wesley,
Reading, MA.

2. Alberts, D., Gutwenger, C., Mutzel, P., and Näher, S. (1997), AGD-Library: A library of algorithms for graph draw-
ing, in “Proc. Workshop on Algorithm Engineering,” (G. F. Italiano and S. Orlando, Eds.), pp. 112–123. [Available at
http://www.dsi.unive.it/ ∼wae97/proceedings/ ONLYPAPERS/pap12.ps.gz.]

3. Brandenburg, F. J. (Ed.) (1996), “Graph Drawing (Proc. GD ’95),” Lecture Notes Comput. Sci., Vol. 1027, Springer-Verlag,
Berlin.

4. Bridgeman, S., Garg, A., and Tamassia, R. (1999), A graph drawing and translation service on the World Wide Web,Internat.
J. Comput. Geom. Appl.9, 419–446.

5. Chiba, N., Onoguchi, K., and Nishizeki, T. (1985), Drawing planar graphs nicely,Acta Inform.22, 187–201.
6. Chiba, N., Yamanouchi, T., and Nishizeki, T. (1984), Linear algorithms for convex drawings of planar graphs,in “Progress

in Graph Theory” (J. A. Bondy and U. S. R. Murty, Eds.), pp. 153–173, Academic Press, New York.
7. Chrobak, M., Goodrich, M. T., and Tamassia, R. (1996), Convex drawings of graphs in two and three dimensions,in “Proc.

12th Annu. ACM Sympos. Comput. Geom.,” pp. 319–328.
8. Chrobak, M., and Kant, G. (1997), Convex grid drawings of 3-connected planar graphs,Internat. J. Comput. Geom. Appl. 7,

211–223.
9. Cohen, R. F., Di Battista, G., Tamassia, R., and Tollis, I. G. (1995), Dynamic graph drawings: Trees, series-parallel digraphs,

and planarst-digraphs,SIAM J. Comput.24, 970–1001.
10. Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990), “Introduction to Algorithms,” MIT Press, Cambridge, MA.
11. Cruz, I. F., and Eades, P. (Eds.) (1995), Special issue on graph visualization.J. Visual Lang. Comput.6.
12. de Fraysseix, H., Pach, J., and Pollack, R. (1990), How to draw a planar graph on a grid,Combinatorica10, 41–51.
13. Di Battista, G. (Ed.) (1997), “Graph Drawing (Proc. GD ’97),”Lecture Notes Comput. Sci., Vol. 1353, Springer-Verlag,

Berlin.
14. Di Battista, G., Didimo, W., Leonforte, A., Patrignani, M., and Pizzonia, M. GDToolkit. [Available athttp://www.dia.

uniroma3.it/ ∼gdt/.]
15. Di Battista, G., Eades, P., de Fraysseix, H., Rosenstiehl, P., and Tamassia, R. (Eds.) (1993), “Graph Drawing ’93 (Proc. ALCOM

Internat. Workshop on Graph Drawing).” [Available athttp://www.cs.brown.edu/people/rt/gd-93.html.]
16. Di Battista, G., Eades, P., Tamassia, R., and Tollis, I. G. (1999), “Graph Drawing,” Prentice-Hall, Upper Saddle River, NJ.
17. Di Battista, G., Liotta, G., and Vargiu, F. (1995), Diagram server,J. Visual Lang. Comput.6, 275–298.
18. Di Battista, G., and Mutzel, P. (Eds.) (1999), New trends in graph drawing: Special issue on selected papers from the

1997 Symposium on Graph Drawing,J. Graph Algorithms Appl.3. [Available at http://www.cs.brown.edu/
publications/jgaa/papers.html.]

19. Di Battista, G., and Tamassia, R. (1996), On-line maintenance of triconnected components with SPQR-trees,Algorithmica
15, 302–318.

20. Di Battista, G., and Tamassia, R. (1996), On-line planarity testing,SIAM J. Comput.25, 956–997.
21. Di Battista, G., Tamassia, R., and Vismara, L. (1999), Output-sensitive reporting of disjoint paths.Algorithmica23, 302–340.
22. Di Battista, G., and Tamassia, R. (Eds.) (1996), Special issue on graph drawing,Algorithmica16.
23. Di Battista, G., and Tamassia, R. (Eds.) (1998), Special issue on geometric representations of graphs,Comput. Geom. Theory

Appl.9.
24. Djidjev, H. N. (1995), On drawing a graph convexly in the plane,in “Graph Drawing (Proc. GD ’94)” (R. Tamassia and

I. G. Tollis, Eds.) Vol. 894,Lecture Notes Comput. Sci., pp. 76–83, Springer-Verlag, Berlin.
25. Eades, P., Lai, W., Misue, K., and Sugiyama, K. (1991), Preserving the mental map of a diagram,in “Proc. 1st Internat. Conf.

on Computational Graphics and Visualization Techniques,” pp. 34–43.
26. Eppstein, D., Galil, Z., Italiano, G. F., and Spencer, T. H. (1996), Separator based sparsification. I. Planarity testing and

minimum spanning trees,J. Comput. Syst. Sci.52, 3–27.
27. Eppstein, D., Italiano, G. F., Tamassia, R., Tarjan, R. E., Westbrook, J., and Yung, M. (1992), Maintenance of a minimum

spanning forest in a dynamic plane graph,J. Algorithms13, 33–54.
28. Eppstein, D., Italiano, G. F., Tamassia, R., Tarjan, R. E., Westbrook, J., and Yung, M. (1993), Corrigendum (Maintenance of

a minimum spanning forest in a dynamic plane graph),J. Algorithms15, 173.
29. Fáry, I. (1948), On straight lines representation of planar graphs,Acta Sci. Math.11, 229–233.
30. Himsolt, M. (2000), Graphlet: Design and implementation of a graph editor,Softw.-Pract. Exp.30, 1303–1324.
31. Hoproft, J., and Tarjan, R. E. (1973), Dividing a graph into triconnected components,SIAM J. Comput.2, 135–158.

126 DI BATTISTA, TAMASSIA, AND VISMARA

32. Italiano, G. F., La Poutré, J. A., and Rauch, M. H. (1993), Fully dynamic planarity testing in planar embedded graphs,in
“Algorithms-ESA’93” (T. Lengauer, Ed.), Lecture Notes Comput. Sci., Vol. 726, pp. 212–223, Springer-Verlag, Berlin.

33. Kant, G. (1996), Drawing planar graphs using the canonical ordering,Algorithmica16, 4–32.
34. Kratochvı́l, J. (Ed.) (1999), “Graph Drawing (Proc. GD ’99),”Lecture Notes Comput. Sci., Vol. 1731, Springer-Verlag, Berlin.
35. La Poutré, J. A. (1994), Alpha-algorithms for incremental planarity testing,in “Proc. 26th Annu. ACM Sympos. Theory

Comput.,” pp. 706–715.
36. Lin, Y.-L., and Skiena, S. S. (1995), Complexity aspects of visibility graphs,Internat. J. Comput. Geom. Appl.5, 289–312.
37. Misue, K., Eades, P., Lai, W., and Sugiyama, K. (1995), Layout adjustment and the mental map,J. Visual Lang. Comput. 6,

183–210.
38. Nishizeki, T., and Chiba, N. (1988), “Planar Graphs: Theory and Algorithms,”Ann. Discrete Math., Vol. 32, North-Holland,

Amsterdam.
39. North, S. (Ed.) (1997), “Graph Drawing (Proc. GD ’96),”Lecture Notes Comput. Sci., Vol. 1190, Springer-Verlag, Berlin.
40. Schnyder, W. (1990), Embedding planar graphs on the grid,in “Proc. 1st Annu. ACM-SIAM Sympos. Discrete Algorithms,”

pp. 138–148.
41. Schnyder, W., and Trotter, W. T. (1992), Convex embeddings of 3-connected plane graphs,Abstracts AMS13, 502.
42. Sleator, D. D., and Tarjan, R. E. (1983), A data structure for dynamic trees,J. Comput. System Sci.26, 362–381.
43. Sleator, D. D., and Tarjan, R. E. (1985), Self-adjusting binary search trees,J. Assoc. Comput. Mach.32, 652–686.
44. Stein, S. K. (1951), Convex maps,Proc. Amer. Math. Soc.2, 464–466.
45. Steinitz, E., and Rademacher, H. (1934),Vorlesungen̈uber die Theorie der Polyeder, Julius Springer, Berlin.
46. Tamassia., R., Graph drawing. [Available athttp://www.cs.brown.edu/people/rt/gd.html.]
47. Tamassia, R. (1996), On-line planar graph embedding,J. Algorithms21, 201–239.
48. Tamassia, R. (1997), Graph drawing,in “Handbook of Discrete and Computational Geometry,” (J. E. Goodman and

J. O’Rourke, Eds.), Chap. 44, pp. 815–832. CRC Press, Boca Raton, FL.
49. Tamassia, R., and Tollis, I. G. (Eds.) (1995), “Graph Drawing (Proc. GD ’94),”Lecture Notes Comput. Sci., Vol. 894,

Springer-Verlag, Berlin.
50. Tarjan, R. E. (1983), “Data Structures and Network Algorithms,”CBMS-NSF Regional Conference Series in Applied Math-

ematics, Vol. 44, Society for Industrial and Applied Mathematics, Philadelphia.
51. Tarjan, R. E. (1985), Amortized computational complexity,SIAM J. Algebraic Discrete Methods6, 306–318.
52. Thomassen, C. (1980), Planarity and duality of finite and infinite planar graphs,J. Combin. Theory Ser. B29, 244–271.
53. Thomassen, C. (1984), Plane representations of graphs,in “Progress in Graph Theory” (J. A. Bondy and U. S. R. Murty,

Eds.), pp. 43–69, Academic Press, New York.
54. Tutte, W. T. (1960), Convex representations of graphs,Proc. London Math. Soc.10, 304–320.
55. Tutte, W. T. (1963), How to draw a graph,Proc. London Math. Soc.13, 743–768.
56. Wagner, K. (1936), Bemerkungen zum vierfarbenproblem,Jahresbericht der Deutschen Mathematiker-Vereinigung46, 26–

32.
57. Westbrook, J. (1992), Fast incremental planarity testing,in “Automata, Languages and Programming (Proc. ICALP’92)” (W.

Kuich, Ed.),Lecture Notes Comput. Sci., Vol. 623, pp. 342–353, Springer-Verlag, Berlin.
58. Whitesides, S. H. (Ed.) (1998), “Graph Drawing (Proc. GD ’98),”Lecture Notes Comput. Sci., Vol. 1547, Springer-Verlag,

Berlin.

	INTRODUCTION
	FIG. 1.
	FIG. 2.

	2. PRELIMINARIES
	FIG. 3.

	3. A CHARACTERIZATION OF (STRICTLY) CONVEX PLANAR GRAPHS
	FIG. 4.
	FIG. 5.
	FIG. 6.

	4. REPERTORY OF QUERY AND UPDATE OPERATIONS
	FIG. 7.

	5. DATA STRUCTURE
	FIG. 8.
	FIG. 9.
	FIG. 10.
	TABLE 1

	6. IMPLEMENTATION OF THE QUERY OPERATIONS
	7. IMPLEMENTATION OF THE UPDATE OPERATIONS
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.
	FIG. 15.
	FIG. 16.
	FIG. 17.
	FIG. 18.

	8. COMPLEXITY ANALYSIS
	9. OPEN PROBLEMS
	ACKNOWLEDGMENTS
	REFERENCES

