
Universitat Politècnica de Catalunya

PhD. Thesis

Doctoral Program in Biomedical Engineering

Skeletal representations of
orthogonal shapes

Jonàs Mart́ınez Bayona

Advisors:

Dr. Marc Vigo Anglada
Dra. Núria Pla Garcia

Barcelona
November 5, 2013

Resum

L’esquelet d’un objecte representa propietats topològiques i geomètriques de l’objecte i
alhora redueix la seva dimensió. Els esquelets s’utilitzen en diversos àmbits de la ciència
i atreuen l’atenció de nombrosos investigadors. En l’àmbit del BioCAD, l’anàlisi de
propietats estructurals com ara la porositat dels biomaterials requereix el càlcul previ de
l’esquelet. A mesura que les imatges 3D µCT es fan més grans, es requereixen algorismes
eficients i robusts que calculin esquelets més simples. L’esquelet més popular és el “medial
axis”, definit com el conjunt de punts de l’objecte que tenen almenys dos punts més
propers en la frontera de l’objecte. Malauradament el medial axis és molt sensible a
petites pertorbacions de la frontera de l’objecte. És a dir, un petit canvi en la frontera de
l’objecte pot implicar un canvi considerable del seu medial axis. A més, el càlcul exacte
del medial axis només és possible per determinats tipus d’objectes. Per exemple, el medial
axis dels poliedres té una estructura no lineal i és dif́ıcil de calcular de manera robusta.
Aquests problemes van motivar l’aparició d’aproximacions del medial axis. Existeixen
dos mètodes d’aproximació principals: aquells en què l’objecte s’aproxima amb un altre
classe d’objecte i aquells en què la mètrica Euclidiana es substitueix per una altra mètrica
aproximada.

La principal aportació d’aquesta tesi és la simplificació conjunta, a l’hora de calcu-
lar l’esquelet, de l’objecte d’entrada i de la mètrica considerada. L’objecte d’entrada
s’aproxima amb un objecte ortogonal, que són poĺıgons o poliedres delimitats per seg-
ments o cares, respectivament, paral·lels als eixos de coordenades o plans coordenats. En
el mateix sentit, la mètrica Euclidiana es substitueix per la mètrica L∞ o mètrica de
Chebyshev. Tot i la seva estructura simple, existeixen pocs treballs en la literatura sobre
esquelets d’objectes ortogonals. Gran part dels esforços s’han dedicat a imatges i volums
binaris, que són un subconjunt dels objectes ortogonals. En aquesta tesi s’introdueixen
dos nous tipus d’esquelet basats en aquest paradigma: el “cube skeleton” i el “scale cube
skeleton”. El cube skeleton es compon de segments rectes o cares planes i és homotopica-
ment equivalent a l’objecte d’entrada. El scale cube skeleton es basa en el cube skeleton i
presenta una famı́lia d’esquelets que són menys sensibles a pertorbacions de la frontera
de l’objecte. A més, es presenten els algorismes necessaris per calcular el cube skeleton
de poĺıgons i poliedres aix́ı com el scale cube skeleton de poĺıgons. Diversos resultats
experimentals confirmen l’eficiència, la robustesa i l’aplicació pràctica de tots els mètodes
presentats.

i

Abstract

Skeletal representations are important shape descriptors which encode topological and
geometrical properties of shapes and reduce their dimension. Skeletons are used in several
fields of science and attract the attention of many researchers. In the BioCAD field, the
analysis of structural properties such as porosity of biomaterials requires the previous
computation of a skeleton. As the size of three-dimensional µCT images become larger,
efficient and robust algorithms that extract simple skeletal structures are required. The
most popular and prominent skeletal representation is the medial axis, defined as the
shape points which have at least two closest points on the shape boundary. Unfortunately,
the medial axis is highly sensitive to noise and perturbations of the shape boundary.
That is, a small change of the shape boundary may involve a considerable change of its
medial axis. Moreover, the exact computation of the medial axis is only possible for a
few classes of shapes. For example, the medial axis of polyhedra is composed of non
planar surfaces, and its accurate and robust computation is difficult. These problems
led to the emergence of approximate medial axis representations. There exists two main
approximation methods: the shape is approximated with another shape class or the
Euclidean metric is approximated with another metric.

The main contribution of this thesis is the combination of a specific shape and metric
simplification. The input shape is approximated with an orthogonal shape, which are
polygons or polyhedra enclosed by axis-aligned edges or faces, respectively. In the same
vein, the Euclidean metric is replaced by the L∞ or Chebyshev metric. Despite the simpler
structure of orthogonal shapes, there are few works on skeletal representations applied to
orthogonal shapes. Much of the efforts have been devoted to binary images and volumes,
which are a subset of orthogonal shapes. Two new skeletal representations based on this
paradigm are introduced: the cube skeleton and the scale cube skeleton. The cube skeleton
is shown to be composed of straight line segments or planar faces and to be homotopical
equivalent to the input shape. The scale cube skeleton is based upon the cube skeleton,
and introduces a family of skeletons that are more stable to shape noise and perturbations.
In addition, the necessary algorithms to compute the cube skeleton of polygons and
polyhedra and the scale cube skeleton of polygons are presented. Several experimental
results confirm the efficiency, robustness and practical use of all the presented methods.

iii

Acknowledgments

Foremost, I would like to express my gratitude to my advisors, Núria Pla and Marc Vigo,
for his patience and guidance throughout my research.

I am also grateful to my thesis committee members, Tao Ju and Evanthia Papadopoulou,
for their suggestions and insightful comments.

My sincere thanks also goes to Oswin Aichholzer and Guido Brunnett for welcoming
me into their research groups, where I gained valuable insights.

I want to thank my fellow labmates Pascual Abellán, Irving Cruz, Eloy Félix, Marc
Freixas, Marta Hidalgo, Sergio Moya, and Eduard Vergés who have accompanied me
during these four years. I would like to extend my gratitude to the faculty and staff in
the research group GIE.

Finally, I would like to thank my family and friends for their support and love. This
thesis is dedicated to them.

This thesis has been partially supported by the project TIN2008-02903 and TIN2011-
24220 of the Spanish government and by the IBEC (Bioengineering Institute of Catalonia).

v

Contents

1 Introduction 1
1.1 Objectives . 4
1.2 Document outline . 4
1.3 Machine specifications . 5

2 Notation and previous definitions 7

3 Related work 15
3.1 Skeletal representations . 15

3.1.1 Properties . 15
3.1.2 Medial axis . 17
3.1.3 The λ medial axis . 20
3.1.4 The scale axis transform . 20
3.1.5 Straight skeleton . 21
3.1.6 Other skeletal representations . 23

3.2 Skeleton algorithms . 24
3.2.1 Properties . 25
3.2.2 Methods to compute the medial axis 25
3.2.3 Methods to compute the straight skeleton 32
3.2.4 Methods to compute the curve skeleton 34

3.3 Skeleton applications . 34
3.4 Conclusions . 36

4 Preprocess: B-Rep extraction of orthogonal shapes 37
4.1 Introduction . 37
4.2 Related work . 38
4.3 B-Rep extraction of orthogonal polygons 41

4.3.1 Algorithm design . 41
4.3.2 Managing orthogonal pseudomanifold polygons 44
4.3.3 Algorithm complexity . 46

4.4 B-Rep extraction of orthogonal polyhedra 46
4.4.1 Algorithm design . 46
4.4.2 Managing orthogonal pseudomanifold polyhedra 47
4.4.3 Algorithm complexity . 48

vii

4.5 B-Rep extraction from other representation schemes 49
4.6 Experimental results . 51
4.7 Conclusions . 51

5 Preprocess: trihedralization of orthogonal polyhedra 53
5.1 Introduction . 53
5.2 Existence and uniqueness of trihedralization 58
5.3 Computing the trihedralization . 59
5.4 Experimental results . 62
5.5 Conclusions . 63

6 L∞ Voronoi diagram of orthogonal polygons 71
6.1 Introduction . 71
6.2 Previous definitions and properties . 72
6.3 Edge-based algorithm . 73

6.3.1 Edge event . 75
6.3.2 Ray-ray junction event . 76
6.3.3 Algorithm complexity . 77

6.4 Vertex-based algorithm . 77
6.4.1 Vertex event . 80
6.4.2 Ray-edge junction event . 80
6.4.3 Algorithm complexity . 81

6.5 Treatment of degenerate cases . 83
6.5.1 Non-manifold polygon vertices . 84
6.5.2 Degeneracy by collinearity . 84
6.5.3 Degeneracy by coincidence . 86

6.6 Straight skeleton equivalence . 87
6.7 Experimental results . 89
6.8 Conclusions . 91

7 L∞ Voronoi diagram of orthogonal polyhedra 93
7.1 Introduction . 93
7.2 Previous definitions and properties . 94
7.3 Algorithm overview . 95
7.4 Vertex event . 99
7.5 Junction event . 100

7.5.1 Ray-ray junction event . 100
7.5.2 Ray-face junction event . 103

7.6 Nearest junction event computation . 104
7.7 Algorithm complexity . 105
7.8 Treatment of degenerate cases . 108

7.8.1 Degeneracy by coplanarity . 109
7.8.2 Degeneracy by coincidence . 110

7.9 Straight skeleton equivalence . 112

viii

7.10 Experimental results . 112
7.11 Conclusions . 113

8 The cube skeleton 119
8.1 Introduction . 119
8.2 Cube skeleton definition . 121
8.3 Cube skeleton properties . 126

8.3.1 Homotopy equivalence . 126
8.3.2 Dimension reduction . 133
8.3.3 Shape representation . 134

8.4 The interior cube skeleton of orthogonal polygons 135
8.5 Computing the cube skeleton of orthogonal shapes 137

8.5.1 Computing the cube skeleton of orthogonal polygons 137
8.5.2 Computing the cube skeleton of orthogonal polyhedra 141

8.6 Experimental results . 144
8.7 Conclusions . 144

9 The scale cube skeleton 151
9.1 Introduction . 151
9.2 Scale cube skeleton definition . 151
9.3 Scale cube skeleton properties . 152
9.4 Computing the scale cube skeleton of orthogonal polygons 155
9.5 Experimental results . 157
9.6 Conclusions . 158

10 Conclusions and future work 163

List of publications 165

Glossary 167

Bibliography 185

ix

List of Figures

1.1 Skeletal representation of a planar shape. 1
1.2 Virtual porosimeter illustration. 2
1.3 Shape and distance function approximation. 3

2.1 An orthogonal manifold and pseudomanifold polygon. 8
2.2 A simple orthogonal polygon and its L∞ Voronoi diagram. (1) 10
2.3 A simple orthogonal polygon and its L∞ Voronoi diagram. (2) 12

3.1 Medial axis of a polygon. 17
3.2 Types of points of the medial axis of a polyhedron. 18
3.3 Medial axis instability. 19
3.4 Lower bound example of a medial axis combinatorial complexity. 20
3.5 Straight skeleton of a polygon. 22
3.6 Straight skeleton instability. 23
3.7 Level set diagram of a shape. 24
3.8 Medial axis of a polyhedron. 26
3.9 Approximation paradigm. 27
3.10 Progressive medial axis approximation using the Voronoi diagram. 28
3.11 Discrete shape which skeleton cannot be computed. 30
3.12 Illustration of the thinning algorithm to compute the box skeleton. 31
3.13 Distance transform of a polygon according to different metrics. 32
3.14 Straight skeleton and the motorcycle graph. 33
3.15 Computation of the cortical folds of a brain. 35
3.16 Shape matching of two shapes by using their skeletons. 35
3.17 Straight skeleton extraction of a building roof. 36

4.1 Different orthogonal shape representations. 40
4.2 Sweep line algorithm to compute the B-Rep of an orthogonal polygon. . . 42
4.3 Status of the data structure to compute the B-Rep of an orthogonal polygon. 43
4.4 Edge loop reconstruction of an orthogonal pseudomanifold polygon. . . . 45
4.5 Vertices of an orthogonal manifold polyhedron. 47
4.6 Vertices of an orthogonal pseudomanifold polyhedron. 48
4.7 Examples of weighted vertex lists. 50
4.8 Running times of the boundary extraction algorithm. 51

5.1 Dual of the trihedralization problem. 54

xi

5.2 Impossible trihedralization of a vertex. 54
5.3 The twenty-two cases of combinations of boxes surrounding a vertex of an

orthogonal polyhedron. 56
5.4 Local trihedralization of two non-trihedral vertices. 57
5.5 Impossible trihedralization of vertex configuration l. 59
5.6 Draw of the graph representing the connected faces of an orthogonal

polyhedron. 60
5.7 Draw of the graph representing the trihedralization constraints. 61
5.8 Running times of the trihedralization algorithm. 64
5.9 Trihedralization of vertex configuration j. 64
5.10 Trihedralization of vertex configuration l. 65
5.11 Trihedralization of vertex configuration d. 65
5.12 Trihedralization of vertex configuration g. 66
5.13 Trihedralization of vertex configuration p. 66
5.14 Trihedralization of vertex configuration k. 67
5.15 Trihedralization of vertex configuration s. 67
5.16 Trihedralization of vertex configuration e. 68
5.17 Trihedralization of vertex configuration t. 68
5.18 Trihedralization of vertex configuration h. 69
5.19 Trihedralization of vertex configuration q. 69
5.20 Trihedralization of vertex configuration n. 70

6.1 Sweep line algorithm to compute the L∞ Voronoi diagram of an orthogonal
polygon. 73

6.2 Illustration of Lemma 9. 74
6.3 Edge event processing of an edge with the interior at the right. 76
6.4 Edge event processing of an edge with the interior at the left. 77
6.5 Computation of the wavefront edge intersected by a vertex ray. 78
6.6 Ray-ray junction event processing of the edge-based algorithm. 80
6.7 Vertex-based event processing. 82
6.8 Worst-case degenerate Voronoi vertex of a polygon. 83
6.9 Processing a non-manifold vertex of an orthogonal polygon. 84
6.10 Bisector area induced by collinear edges. 85
6.11 Illustration of the perturbation of collinear edges. 86
6.12 Three degeneracies by coincidence. 87
6.13 Illustration of Lemma 16. 88
6.14 Running times to compute the L∞ Voronoi diagram of polygons. 90
6.15 L∞ Voronoi diagram of two-dimensional some datasets. 91

7.1 Sweep plane algorithm to compute the L∞ Voronoi diagram of an orthogonal
polyhedron. 95

7.2 Ray-ray junction event. 101
7.3 First unalterable ray-ray junction event case. 102
7.4 Second unalterable ray-ray junction event case. 103

xii

7.5 Ray-face junction event. 103
7.6 Illustration of the processing of vertex and ray-ray junction events. . . . 106
7.7 Illustration of the processing of a ray-face junction event. 107
7.8 Illustration of the processing of a ray-face junction event. 107
7.9 Worst-case degenerate Voronoi vertex of an orthogonal polyhedron. . . . 108
7.10 Degeneracies by coplanarity and coincidence. 109
7.11 Degeneracy by coplanarity induced by two coplanar faces and their bisector

volume. 109
7.12 Two degeneracies by coincidence. 111
7.13 Straight skeleton wavefront propagation of an orthogonal polyhedron. . . 113
7.14 Running times to compute the L∞ Voronoi diagram of several polyhedra. 114
7.15 Vertices of the L∞ Voronoi diagram of several polyhedra. 115
7.16 L∞ Voronoi diagram of some three-dimensional datasets. (1) 116
7.17 L∞ Voronoi diagram of some three-dimensional datasets. (2) 117

8.1 Using the L∞ Voronoi diagram as a skeletal representation. 120
8.2 Illustration of the orthogonal projection of a point onto a flat and the

intersection between a flat and an orthogonal shape. 124
8.3 Illustration of Definitions 19, 60 and 66. 125
8.4 Illustration of Lemma 40 and its Corollary 1. 128
8.5 Directions of the vector v (x) of an orthogonal polygon. 129
8.6 Directions of the vector v (x) of an orthogonal polyhedron. 130
8.7 Evolution of the deformation retract presented in Theorem 1. 132
8.8 Cube skeleton of a simple orthogonal polyhedron. 134
8.9 Cube skeleton of a simple orthogonal polyhedron, with a hole face. 134
8.10 Interior cube skeleton of an orthogonal polygon. 136
8.11 Computing the cube skeleton from the L∞ Voronoi diagram. 139
8.12 Illustration of the traversal algorithm to compute the central segments of

the cube skeleton. 140
8.13 Illustration of the binary search algorithm to compute the central segments.141
8.14 A portion of or an orthogonal polyhedron with a face hole and central faces.142
8.15 Computing the cube skeleton of an orthogonal polyhedron from the L∞

Voronoi diagram. 146
8.16 Simple orthogonal polyhedron inducing a three-dimensional swept vertex. 147
8.17 Running times to compute the central segments of an orthogonal polygon. 147
8.18 Six simple orthogonal polygons and its interior cube skeleton. 148
8.19 Two orthogonal polygons and its interior cube skeleton. 149

9.1 Illustration of the s-scaled shape of an orthogonal polygon when s > 1 and
when s < 1. 153

9.2 Different s-scaled shapes of an orthogonal polygon. 154
9.3 Illustration of the s-scaled shape of an orthogonal polyhedron, when s > 1. 155
9.4 Interior scale cube skeleton of an orthogonal polygon. (1) 157
9.5 Interior scale cube skeleton of an orthogonal polygon. (2) 157

xiii

9.6 Comparison between the medial axis, straight skeleton, cube skeleton and
scale cube skeleton of some two-dimensional shapes. 160

9.7 Evolution of the s-scaled shape of a two-dimensional shape. 161

xiv

List of Tables

2.1 Basic notation. 7

5.1 Topological and trihedralization properties of non-trihedral vertices. . . . 57

9.1 Comparison between the medial axis, straight skeleton, cube skeleton and
scale cube skeleton of some two-dimensional shapes. 158

xv

List of Algorithms

1 Sweep line algorithm. 13
2 Two-dimensional B-Rep extraction algorithm. 44
3 Algorithm to trihedralize an orthogonal polyhedron. 62
4 Algorithm to trihedralize a vertex of an orthogonal polyhedron. 63
5 Edge event processing algorithm of the edge-based approach. 79
6 Ray-ray junction event processing algorithm of the edge-based approach. 79
7 Vertex event processing algorithm of the vertex-based approach. 80
8 Ray-edge junction event processing algorithm. 81
9 Vertex event processing algorithm. 100
10 Ray-ray junction event processing algorithm. 101
11 Unalterable ray-ray junction event processing algorithm. 102
12 Ray-face junction event processing algorithm. 104

xvii

Chapter 1

Introduction

Skeletal representations are a powerful tool used in a broad number of scientific fields. A
recent survey of skeleton applications [198] presents its practical use in shape matching
and retrieval, geographical and urban models, archeology, visual perception, generation
of artistic content, motion analysis and animation, medical imaging, biology, chemistry,
and molecular design among others. Thus, skeletons still attract the attention of many
researchers and numerous scientific articles are devoted to them.

Skeletons reduce the dimension of shapes, try to capture their geometric and topological
properties, and seek to understand how these structures encode local and global features.
Intuitively, the skeleton of a shape is a thin version of that shape (see Figure 1.1). However,
there is not a unique way to define a skeleton. The skeleton usually emphasizes shape
properties such as its connectivity, topology, length or direction.

Figure 1.1: A skeletal representation of a planar shape is shown in red.

In recent years, the spectacular development of bioengineering has yield to the ap-
parition of a new application field of computer aided design, the BioCAD, aimed at
the design of new models for biological structures and simulation methods for biological
processes. One of the challenges of the BioCAD field is to understand the morphology
of the pore space of bone, biomaterials, rocks, etc. There exist several approaches that
obtain a network with pores and connections between them or that characterize plate
and rod elements, which rely on a previous computation of a skeleton. Vergés et al. [216]
presented a framework to analyse structural properties such as porosity of bioimplants
for bone reconstruction, which rely on the previous computation of the porous space

1

CHAPTER 1. INTRODUCTION

skeleton. Their method mimics the operation of the mercury porosimeter device that
intrudes this liquid into the sample by applying increasing pressures forcing it to traverse
smaller narrows or throats. The skeleton is used to detect the propagation paths (see
Figure 1.2). As real datasets obtained from µCT tend to be very large, robust and fast
algorithms to extract their skeletal representation are required.

Figure 1.2: Porous material shown in blue. Filling process of a porous material guided
by its skeleton (courtesy of Vergés et al. [216]).

The most prominent skeletal structure is the medial axis [46]. The medial axis of a
shape can alternatively be defined as the locus of centers of maximally inscribed balls
or as the set of points which have at least two closest points on the shape boundary.
A significant disadvantage of medial axis is related to its high instability under small
perturbations of a shape: two similar shapes may have very different medial axes. An
approach to deal with instability consists in removing irrelevant parts of the medial axis.
However, it is known that removing these parts can lead to undesirable results with
shapes that have features at different scales [21]. A reliable computation of stable skeletal
representations is still considered to be an open problem, despite the intense efforts of
prior years.

In addition, the medial axis of polyhedra is composed of quadric surfaces and its
combinatorial complexity is between O (n2) and O (n3+ε) for any ε > 0. Thus, fewer
algorithms are able to compute the exact medial axis of polyhedra [75]. The high
instability of the medial axis lead to the development of approximate approaches. There
exist two main approximation methods:

• The shape is approximated with another shape class for which the computation
of a skeleton is easier. For example, the medial axis of a planar shape can be
approximated by a subset of the Voronoi diagram of a finite set of shape boundary
points [52].

• The Euclidean metric is approximated with another metric. For example, the medial
axis can be approximated by considering a convex distance function [8].

The main contribution of this thesis is the intelligent combination of simplifying both
the shape and the distance function. More specifically, the input shape is approximated

2

CHAPTER 1. INTRODUCTION

by an orthogonal polygon or polyhedron and the L∞ metric is considered to compute the
skeleton (see Figure 1.3b). It will be shown that this combination gives skeletons with
bounded combinatorial complexity, composed of straight line segments or planar faces
with restricted orientation, and that can be computed robustly and efficiently.

(a) (b)

Figure 1.3: (a) Medial axis of a simple planar shape shown in red. (b) Shape approximate
by an orthogonal polygon and L∞ metric considered. Resulting skeletal representation
shown in red.

Orthogonal polygons and polyhedra have their edges and faces axis-aligned, respectively.
Binary images and volumes are a discrete subset of orthogonal polygons and polyhedra
respectively. Orthogonal representations are often used in computational geometry, where
their constrained structure has enabled advances on complex problems for arbitrary
shapes. Sudhalkar et al. [208] observed that the L∞ metric behaves well with discrete
shapes. Despite the simpler structure of orthogonal shapes, only few works on skeletal
representations applied to orthogonal shapes have been found in the literature. Much of
the efforts have been focused on binary images and volumes.

Classical methods to compute the skeleton of discretized datasets are based on thinning
methods. These methods iteratively erode the shape boundary in order to obtain a skeleton.
The time complexity of thinning methods is constrained by the size of the discretized
space. Thus, computing the skeleton of huge datasets with thinning approaches is very
time-consuming. On the contrary, the time complexity of all the methods presented in
this thesis are constrained by the number of boundary vertices of the orthogonal shape.

Most existing geometric algorithms are not designed for numerical robustness; they
are based on a machine model with exact real arithmetic. Thus, floating point arithmetic
may cause implementations to fail. For a practical use, it is required to implement correct
and robust algorithms for carrying out geometric computations. However, geometric
computations have an underlying difficulty that sets the problem apart from other
application areas in computer science and engineering [124].

Robustness issues are a major problem when dealing with orthogonal shapes. There
is a high probability of suffering from geometric degeneracies. Furthermore, discretized
datasets usually contain non-manifold features that must be considered. This thesis
will also cover how to robustly obtain skeletons by treating geometric degeneracies and
non-manifold features.

3

CHAPTER 1. INTRODUCTION

This thesis addresses the aforementioned stability problems of skeletal representations.
A new skeletal representation named cube skeleton is introduced and proven to be
homotopically equivalent to the shape. Moreover, the cube skeleton reduces the dimension
of the input shape and it is composed of line segments or planar polygons with restricted
orientation. In addition, the scale cube skeleton is a new skeletal representation based on
the cube skeleton that defines a simplification scheme where shape features are ignored
first, if they are small relative to their neighborhood. A family of more stable skeletons
can be computed with the scale cube skeleton.

The input of all the algorithms presented along this thesis requires that the orthogonal
shape is represented as a boundary representation (B-Rep). Unfortunately, most of the
available datasets are discrete and need to be converted to a boundary representation.
An efficient method that allows the conversion of a wide range of different representations
is presented. In addition, the presented algorithms require the orthogonal polyhedron to
only be composed of trihedral vertices, which are vertices with three incident faces. An
algorithm to correctly modify the topology of a polyhedron, such that is only composed
of trihedral vertices, is also presented.

1.1 Objectives

Summarizing, the objectives of this thesis are the following:

1. Design and implement an algorithm to obtain the boundary representation of
orthogonal polygons and polyhedra, from different types of solid representation
schemes.

2. Design and implement an algorithm to trihedralize an orthogonal polyhedron.

3. Implement an existing algorithm to compute the L∞ Voronoi diagram of orthogonal
polygons, with a specific implementation aimed to the three-dimensional case.

4. Design and implement a novel robust algorithm to compute the L∞ Voronoi diagram
of orthogonal polyhedra.

5. Introduce a more stable skeletal representation applied to orthogonal shapes.

1.2 Document outline

This document is structured as follows. Chapter 2 introduces the notation used along
this thesis and the previous definitions. Chapter 3 presents the state of the art in
skeletal representations: the different types and its properties, the algorithms to compute
them and their applications. Chapter 4 describes an algorithm to extract the boundary
representation of orthogonal polygons and polyhedra. Chapter 5 describes a procedure
to trihedralize an orthogonal polyhedron, required to compute its L∞ Voronoi diagram.
Chapter 6 specific implementation to compute the L∞ Voronoi diagram of orthogonal

4

CHAPTER 1. INTRODUCTION

polygons efficiently and robustly. Chapter 7 presents an algorithm to compute the L∞
Voronoi diagram of orthogonal polyhedra efficiently and robustly. Chapter 8 introduces
the cube skeleton and its properties. Chapter 9 introduces the scale cube skeleton and its
properties. Finally, there is an annex with a glossary explaining terms and acronyms used
along the thesis and the list of referenced bibliography.

1.3 Machine specifications

All the results presented in this thesis were carried on a 64-bit PC with a 3.9GHz core
and 16 GB of RAM memory.

5

Chapter 2

Notation and previous definitions

In this chapter, the notation and previous definitions applied throughout this thesis are
introduced. The dimension of the Euclidean space is denoted by n. For a point x ∈ Rn,
xi denotes its coordinate i ∈ {1 . . . n}. Table 2.1 shows basic notation employed along
this thesis.

Notation Description

|A| Cardinality of the set A.
∂A Boundary of the set A.
Ac Complement of the set A.

cl (A) Closure of the set A.
int (A) Interior of the set A.
A \B Relative complement of the set B in A.
inf (A) Infimum of the set A ⊂ R.
abs (x) Absolute value of x ∈ R.
||x|| Euclidean norm of x ∈ Rn.

d (x, y) Euclidean distance between two points x, y ∈ Rn.
v̂ Unit vector of a non-zero vector v ∈ Rn.

[x, y] Closed segment between points x, y ∈ Rn.

Table 2.1: Basic notation.

Shape representations

In the following, some shape representations are introduced.

Definition 1. A planar straight line graph is a set of non-intersecting line segments.

Definition 2. A polygon is a bounded subset of R2 enclosed by a finite set of line segments,
called edges. The edges meet only at their endpoints, called vertices. A polygon face is a
single connected component of polygon edges.

7

CHAPTER 2. NOTATION AND PREVIOUS DEFINITIONS

An axis-aligned object is an object in n-dimensional space whose shape is aligned with
the coordinate axes of the space.

Definition 3. An orthogonal polygon is a polygon enclosed by axis-aligned edges. An
edge is called vertical if it is parallel to the ordinate and horizontal if it is parallel to the
abscissa.

Definition 4. An orthogonal manifold polygon is an orthogonal polygon such that every
vertex is shared by a vertical and a horizontal edge (see Figure 2.1a).

Definition 5. An orthogonal pseudomanifold polygon is a generalization of an orthogonal
manifold polygon, which allows non-manifold vertices. A non-manifold vertex is a polygon
vertex with four incident edges (see Figure 2.1b).

Property 1. The interior angle between two neighboring edges of an orthogonal polygon
is either π

2
or 3π

2
.

Definition 6. A manifold vertex of an orthogonal polygon is called convex if their incident
edges form an interior angle of π

2
, and reflex if the angle is 3π

2
.

(a) (b)

Figure 2.1: (a) An orthogonal manifold polygon. (b) An orthogonal pseudomanifold
polygon.

Definition 7. A polyhedron is a bounded subset of R3 enclosed by a finite set of non-
intersecting planar polygons, called faces.

Definition 8. A trihedral vertex is a vertex of a polyhedron that has exactly three incident
faces.

Definition 9. An orthogonal polyhedron is a polyhedron enclosed by axis-aligned faces.

Definition 10. An orthogonal manifold polyhedron is an orthogonal polyhedron such
that every edge of a face is shared by exactly one other face.

8

CHAPTER 2. NOTATION AND PREVIOUS DEFINITIONS

Definition 11. An orthogonal pseudomanifold polyhedron is a generalization of an
orthogonal manifold polyhedron, which allows non-manifold edges or vertices. A non-
manifold edge is an edge adjacent to four faces and a non-manifold vertex is a non-trihedral
vertex.

Definition 12. An orthogonal shape is an orthogonal polygon or polyhedron.

Definition 13. A boundary representation model (B-Rep) represents a shape by a
collection of its boundary elements. Boundary representation models are composed of two
parts: geometry (surfaces, curves and points) and topology. The main topological items
are: faces, edges and vertices. A face is a bounded portion of a surface; an edge is a
bounded piece of a curve and a vertex lies at a point. Other elements are a shell, a set of
connected faces, and a loop, a circuit of edges bounding a face.

The vertices of an orthogonal shape are denoted as vj, edges as ej, and faces as
fj, where the subscript j ∈ N is their identifier. In addition, a face of an orthogonal
polyhedron can also be denoted as fdj , where the subscript d ∈ {x, y, z} indicates that the
face f is parallel to the axis-aligned plane {x, y, z} \ d. For example, f1x is parallel to the
axis-aligned plane yz, and as a consequence all its points have a constant x coordinate.

The L∞ distance

The L∞ distance or Chebyshev distance is a metric defined on a vector space where the
distance between two vectors is the greatest of their differences along any dimension.

Definition 14. The L∞ distance between two points x, y ∈ Rn is:

d∞ (x, y) = max
i

(abs (xi − yi))

Definition 15. Let x be a point of Rn and let g be a bounded subset of Rn. The L∞
distance from x to g is:

d∞ (x, g) = inf {d∞ (x, y) : ∀y ∈ g}

Observe that as g is a bounded set, it follows that the distance d∞ (x, g) is also
bounded.

Definition 16. Let x be a point of Rn and let G be a disjoint collection of bounded subsets
of Rn. The L∞ distance from x to G is:

d∞ (x,G) = inf {d∞ (x, g) : ∀g ∈ G}

The L∞ Voronoi diagram

The Voronoi diagram is a space decomposition determined by a metric and a family
of objects in the space. Voronoi diagrams play an important role in computational
geometry and other related topics [27]. The classical definition of the Voronoi diagram

9

CHAPTER 2. NOTATION AND PREVIOUS DEFINITIONS

of polygons [201, 175] or polyhedra [96, 206] assumes that the boundary is decomposed
disjointly into vertices, open edges, and open faces, in the case of polyhedra, which are
referred to as sites. Then, the Voronoi region associated to each site s is the set of points
inside the polygon or polyhedron that are closer to s, under a given metric, than to
any other site. However, in the case of orthogonal shapes (see Definition 12) and the
L∞ metric, this classical definition gives two or three-dimensional regions, that are L∞
equidistant to several sites laying on a common axis-aligned line or plane, and the resulting
Voronoi diagram does not have a meaningful application because it does not reduce the
original dimension (see Figure 2.2).

(a) (b)

Figure 2.2: A simple orthogonal polygon and its Voronoi diagram. The points of the
orthogonal polygon which do not belong to any Voronoi region are shown in red. (a) L∞
Voronoi diagram that considers vertices and open edges as sites. (b) L∞ Voronoi diagram
that only considers open edges as sites.

In order to overcome this problem, two complementary aspects of the Voronoi diagram
definition are slightly modified with respect to the classical definition. First, the sites are
restricted to be open edges and faces of polygons and polyhedra, respectively.

Definition 17. Let P be an orthogonal polygon. Then, sites (P) is the set of open edges
of P.

Definition 18. Let P be an orthogonal polyhedron. Then, sites (P) is the set of open
faces of P.

Second, the set of closest sites from a point x, which is referred to as ε (x, sites (P))
(see Definition 19), only considers the L∞ distance to a point in a site, which are now
open, and not as an infimum. Thus, as it can be seen in the following definition, the
boundary of sites is effectively ignored.

Definition 19. Let x be a point of Rn and let G be a disjoint collection of bounded subsets
of Rn. ε (x,G) is the subset of G defined as:

ε (x,G) = {g ∈ G : ∃y ∈ g, d∞ (x, y) = d∞ (x,G)}

10

CHAPTER 2. NOTATION AND PREVIOUS DEFINITIONS

Now, the L∞ Voronoi regions and Voronoi diagram can be properly defined.

Definition 20. Let P be an orthogonal shape and s a site of P. The Voronoi region of s
is the set:

V or∞ (s,P) = {x ∈ P : ε (x, sites (P)) = {s}}

Definition 21. The L∞ Voronoi diagram of an orthogonal shape P is the space partition
induced by its Voronoi regions. That is, the tuple:

V∞ (P) = (V or∞ (s,P))s∈sites(P)

Definition 22. The set E∞ (P) of an orthogonal shape P is the closure of the set of
points in P that do not belong to any Voronoi region:

E∞ (P) = cl

P \ ⋃
s∈sites(P)

V or∞ (s,P)

The classical definition of Voronoi diagrams considers that the points that do not

belong to any Voronoi region have two or more closest sites. Similarly, the set of points
from E∞ (P) can be classified in one of the following cases:

• |ε (x, sites (P))| ≥ 2. This point follows the classical definition of Voronoi diagrams.

• ε (x, sites (P)) = ∅. In this case, the minimum L∞ distance from x to the sites of P
is only attained at the boundary of a site s. As the boundary of s is shared with at
least one another site, x is at minimum L∞ distance to the closure of two or more
sites (considering the usual definition, obtained as an infimum). Thus, it can be
considered that x also follows the classical definition of Voronoi diagrams.

Observe that under Definition 20 the L∞ Voronoi regions are not necessarily open
sets. There may exist some point x, such that the set ε (x, sites (P)) contains a single site
s, and x is contained in the boundary of V or∞ (s,P) (see Figure 2.3). The closure of
Definition 22 ensures that these points also belong to E∞ (P). In fact, these points are at
the same infimum L∞ distance to two or more sites and also follow the classical definition
of Voronoi diagrams.

It will be shown in Chapters 6 and 7 that if an orthogonal polygon or polyhedron has
collinear edges or coplanar faces, respectively, then the set E∞ (P) may not reduce the
dimension of the orthogonal shape. Moreover, the three dimensional E∞ (P) set may be
not homotopical equivalent to the input shape P (see Chapter 8).

Property 2. The L∞ Voronoi regions of a polygon are bounded by straight line segments,
which can be axis-aligned or rotated π

4
radians [175].

Definition 23. Each Voronoi region of an orthogonal polygon is bounded by Voronoi
edges. The endpoint of a Voronoi edge, that is not a polygon vertex, is called Voronoi
vertex.

11

CHAPTER 2. NOTATION AND PREVIOUS DEFINITIONS

Figure 2.3: A simple orthogonal polygon P and its Voronoi diagram. The L∞ Voronoi
region associated to the open edge e, is shown in blue. The point x also drawn in blue,
only contains e in the set ε (x, sites (P)) and belongs to the boundary of V or∞ (e,P). The
point x is also contained in E∞ (P).

Analogously to the two-dimensional case, it will be seen that the L∞ Voronoi regions
of an orthogonal polyhedron are bounded by planar faces with restricted orientation.

Definition 24. Each Voronoi region of an orthogonal polyhedron is bounded by Voronoi
faces. The segments bounding a Voronoi face, that are not polyhedron edges, are called
Voronoi edges. The endpoint of a Voronoi edge, that is not a polyhedron vertex, is called
Voronoi vertex.

Sweep line algorithms

A relevant type of algorithm used extensively in computational geometry is the sweep line
algorithm [80]. Different algorithms presented in this thesis are based on the sweep line
technique. The strategy in a sweep line algorithm is to sweep the plane with a line. While
the sweep line moves, information is maintained by the status data structure regarding the
intersection between the sweep line and the processed object. This information does not
change, except at certain special points called event points. An event has an associated
priority that corresponds to the time when it occurs. The events are ordered in a priority
queue, usually implemented as a self-balancing binary search tree. The sweep line approach
can be generalized to three dimensions by considering a sweeping plane instead of a line.
See Algorithm 1 for an overview of the sweep line algorithm.

Homotopy equivalence

Speaking colloquially, a topological space is homotopy equivalent to another if it can
be “continuously deformed”, by bending, shrinking and expanding operations, into the
another. For example, a solid sphere is homotopy equivalent to a point.

Definition 25. Let X and Y be two topological spaces, and f, g : X → Y continuous
maps. A homotopy from f to g is a continuous function F : X × [0, 1]→ Y satisfying:

F (x, 0) = f (x) , F (x, 1) = g (x) ,∀x ∈ X

12

CHAPTER 2. NOTATION AND PREVIOUS DEFINITIONS

Algorithm 1 Sweep line algorithm.

Let E be an empty priority queue of events
Let W be the status data structure
Insert in E the initial events
while |E| > 0 do

e← pop element (E)
Process event e
Insert new events, if they exist, in E
Update W

end while

If such a homotopy exists, then f is homotopic to g.

Definition 26. Two topological X spaces and Y are homotopy equivalent if there exist
continuous maps f : X → Y and g : Y → X, such that the composition g ◦ f is homotopic
to the identity map of X and f ◦ g is homotopic to the identity map of Y [100].

Homotopy equivalence is important because many properties are homotopy invariant,
that is, they respect the relation of homotopy equivalence. As an example, the Euler
characteristic is a homotopy invariant between homotopy equivalent polygons or polyhedra,
and as a consequence they must have the same number of connected components, cycles,
holes and tunnels.

13

Chapter 3

Related work

Contents
3.1 Skeletal representations . 15

3.1.1 Properties . 15

3.1.2 Medial axis . 17

3.1.3 The λ medial axis . 20

3.1.4 The scale axis transform . 20

3.1.5 Straight skeleton . 21

3.1.6 Other skeletal representations 23

3.2 Skeleton algorithms . 24

3.2.1 Properties . 25

3.2.2 Methods to compute the medial axis 25

3.2.3 Methods to compute the straight skeleton 32

3.2.4 Methods to compute the curve skeleton 34

3.3 Skeleton applications . 34

3.4 Conclusions . 36

3.1 Skeletal representations

In this section some properties of skeletal representations are characterized. Thereafter the
medial axis, the straight skeleton and other skeletal representations are introduced. The
reader is referred to the book by Siddiqi and Pizer [198] and to surveys [179, 38, 185, 21, 210]
for a detailed review of skeletal representations.

3.1.1 Properties

A skeletal representation must not necessarily meet all the following properties and some
of them may be mutually exclusive.

15

CHAPTER 3. RELATED WORK

Dimension reduction and homotopy equivalence

Skeletal representations normally reduce the dimensionality of the input shape [207, 142,
73, 185]. That is, if the shape has dimension n > 1, its skeleton must have a dimension
lower than n. Homotopy equivalence (see Definition 26) is also a commonly desired
property [225, 195, 150, 61]. However, it should be noted that homotopy equivalence does
not necessarily imply dimension reduction.

Hierarchical representation

The skeleton parts can be organized in a hierarchical structure [171, 133, 72, 127]. A
hierarchical representation could concisely describe the relation between the different
regions of the skeleton and the shape. Moreover, a multiresolution hierarchy could
define multiple skeletons of the same shape with different resolutions. The hierarchical
representation may be intrinsic to the formulation of the skeleton or may be directly
derived from it.

Reconstructability

A skeletal representation can exactly or approximately reconstruct the original shape [44,
10, 14]. Thus, the skeleton becomes a transformation of the original shape. Usually, this
transformation associates to each point of the skeleton with the nearest distance, under
some metric, to the shape boundary.

Stability and smoothness

A skeletal representation may be desired to be stable under perturbations of the shape
boundary [61, 63, 21]. Commonly, boundary perturbations are defined either by parametric
continuity Cn or by the Hausdorff distance. The smoothness of a skeleton is strongly
connected to its stability under perturbations.

Invariance under isometric transformations

A skeletal representation may be required to be invariable under isometric transforma-
tions [171, 121, 73, 60]. An isometric transformation preserves the distances between
points of a shape. Any reflection, translation and rotation is an isometry on Euclidean
spaces.

Shape abstraction

A skeletal representation may be desired to represent the shape concisely, capturing only
those shape aspects that are relevant for a specific application [40, 54, 107]. For example,
it may be required that the skeleton intuitively resembles the shape and that the relevant
features for the application are captured.

16

CHAPTER 3. RELATED WORK

3.1.2 Medial axis

In the late 1960s, Blum [46] proposed the medial axis as a tool for biological shape
recognition. In the technical literature, the definition of medial axis and skeleton might
change from one author to another. The definitions given in [150] are adopted here. Let
O be an open subset of Rn. The strictly positive, real valued function R defined on O is
the Euclidean distance to the boundary:

R (x) = inf {d (x, y) : ∀y ∈ ∂O}

For any point x ∈ O the set of closest boundary points Γ (x) is defined as:

Γ (x) = {y ∈ ∂O : d (x, y) = R (x)}

Then, the medial axis M (O) of O is the set of points with at least two closest points
on the boundary of the shape (see Figure 3.1):

M (O) = {x ∈ O : |Γ (x)| ≥ 2}

The medial axis together with the associated radius function R is called the medial
axis transform (MAT). The MAT can be used to reconstruct the shape of the original
domain. The medial axis transform of O is denoted by MAT (O).

Figure 3.1: Medial axis of a simple polygon is shown in red. A ball of MAT (O) is
shown with dotted lines.

The skeleton is defined as the set of centres of maximal balls. An open ball B ⊂ O
is maximal if every ball that contains B and is contained in O equals B. The concepts
of skeleton and medial axis are used interchangeably by some authors, while some other
authors regard them as related, but not the same. In fact, the medial axis is a subset of
the skeleton which is, in turn, a subset of the closure of the medial axis [162].

Homotopy equivalence

It has been proved by Lieutier [150] that O is homotopically equivalent (see Definition 26)
to its medial axis. The vector function ∇ (x), introduced in [106], has an important role
in the proof of homotopical equivalence. Let x be a point of Rn \M (O) and let Θ (x) be
the center of the smallest ball enclosing the set Γ (x). Then, the function ∇ (x) is:

17

CHAPTER 3. RELATED WORK

∇ (x) =
x−Θ (x)

R (x)

This vector function is an extension of the gradient of R outside O \M (O) and is
used to construct a continuous deformation in order to prove the homotopy equivalence.

Wolter [225] previously proved the homotopy equivalence in the particular case of
open sets with a C2 boundary in Rn and open sets with a piecewise C2 boundary in the
plane. The proof relies on a deformation retract. If x ∈ O \M (O), there is a unique
point y ∈ ∂O that minimizes the Euclidean distance to x. Then, the point m (x) is
the intersection between the half line that passes through x and y, and the medial axis.
The map m is well defined and continuous and therefore it is possible to construct a
deformation retract. In addition, Sherbrook et al.[195] proved that a path connected
polyhedral solid without cavities has a path connected medial axis.

Finiteness properties

The medial axis can be composed of infinitely many branches, even if the shape boundary
is C∞ smooth. Choi et al. [67] proved that in the smoother case of a piecewise analytic
boundary in the plane, the medial axis is made of a finite number of curves. Chazal and
Soufflet [63] extended the finiteness property to semianalytic bounded open sets which
are bounded and open subsets for which every point has a neighborhood defined by a
finite system of analytic equations and inequalities. Giblin and Kimia [105] proposed a
classification of each medial axis point in R3 based upon the order of contact between the
shape boundary and the maximal ball associated with the skeletal point. The points are
then organized into sheets, curves and points (see Figure 3.2).

Point

Curve

Sheet

Figure 3.2: Types of points of the medial axis of a polyhedron.

Stability properties

The medial axis has high sensitivity to small changes in the shape boundary [21] (see
Figure 3.3). However, small modifications of a shape do not usually affect the entire
medial axis. This is so because the medial axis is semicontinuous with respect to the

18

CHAPTER 3. RELATED WORK

Hausdorff distance [162]. More formally, let X and Y be two subsets of Rn. The one-sided
Hausdorff distance dH (X|Y) of X from Y is:

dH (X|Y) = sup
x∈X

inf
y∈Y

d (x, y)

The Hausdorff distance between X and Y is defined as the maximum between both
one-sided Hausdorff distances:

dH (X, Y) = max {dH (X|Y) , dH (Y |X)}

As the function M is semicontinuous, for every bounded open subset X ⊂ Rn and for
every λ > 0, there exists ε > 0 such that for every subset Y ⊂ Rn:

dH (Xc, Y c) < ε→ dH (M (X) |M (Y)) < λ

In other words, a small Hausdorff distance between the complements of X and Y
implies that the one-sided Hausdorff distance of the medial axis of X from the medial
axis to Y is bounded [21]. Note that this bound is only in one direction.

The medial axis is continuous when C2 perturbations are applied to some classes of
shape in R3[63]. However, this result does not provide a solution to practical problems
because usually data describing shapes are given with noise which is not C2 smooth.

(a) (b)

Figure 3.3: (a) A small perturbation in the boundary of a circle (b) causes a large
change of its medial axis, shown in red.

Giblin and Kimia [104] classified the transitions of the medial axis in three dimensions.
Transitions are changes of the medial axis encountered under deformations of shape. An
enumeration of all possible transitions is done by examining the type of contact between
the MAT (O) balls and the shape boundary.

The medial axis of polygons and polyhedra

In the case of polygons and polyhedra, the medial axis is a subset of the generalized Voronoi
diagram of the vertices, edges, and faces of the shape. The combinatorial complexity
of the Voronoi diagram of a polyhedron is high: the upper bound on its combinatorial

19

CHAPTER 3. RELATED WORK

complexity is between O (n2) (see Figure 3.4) and O (n3+ε) for any positive ε, where n is
its number of faces, edges and vertices [192]. Koltun and Sharir [140] have shown that
under a convex distance function, as an example the L1 and L∞ metric, the combinatorial
complexity reduces to O (n2+ε) for any ε > 0. The medial axis of a polygon is composed
of linear and quadratic curve segments. The medial axis of a polyhedron is a piecewise
algebraic of degree two: each quadric surface is the bisector of two boundary features
(vertices, edge, or faces). The complex structure of the medial axis of polyhedra is an
important drawback.

Figure 3.4: Lower bound example of a polyhedron which have a medial axis with O (n2)
faces. Every upper face interacts with the lower faces, giving the quadratic bound.

3.1.3 The λ medial axis

Chazal and Lieutier [62] presented the λ medial axis of O, denoted by Mλ (O). They
proved its stability under Hausdorff distance perturbations of Oc. Mλ (O) is a subset
of M (O) and it is defined as the set of points for which any ball containing the set of
closest points on the boundary has a radius of at least λ. That is:

F (x) = inf {r,∃y ∈ Rn,By,r ⊃ Γ (x)}
And the λ medial axis is defined as:

Mλ = {x ∈ O : F (x) ≥ λ}
The weak feature size wfs (O) is the minimum distance between Oc and the critical

points of O. A point x is critical if ∇ (x) = 0. Then, Mλ (O) is homotopically equivalent
to O when λ < wfs (O).

3.1.4 The scale axis transform

Giesen et al. [107] presented the scale axis transform, that is based upon the medial axis
transform. The scale axis transform induces a family of skeletons that yield a family of

20

CHAPTER 3. RELATED WORK

successively simplified skeletons, where shape features are ignored first if they are small
relative to their neighborhood. Its definition is based on the scaling of the MAT balls.
For s > 0 the s-scaled shape Os is defined as:

Os =
⋃

Bc,r∈MAT (O)

Bc,sr

Then, the s-scale axis transform SAT (O) is defined as the set balls associated with
the medial axis of the grown shape Os that are scaled back by a factor of 1/s, that is:

SAT (O) = {B (c, r/s) : Bc,r ∈MAT (Os)}

The study of topological properties of the scale axis is done by analysing the properties
of the gradient field induced by the multiplicative distance to the medial balls of O. As
the λ medial axis, the scale axis transform is homotopical equivalent to the shape when
the weak feature size, associated to the gradient of the multiplicative distance, is greater
than the scaling factor s. Unfortunately, the scale axis transform is not necessarily a
subset of the O and it may lie outside.

3.1.5 Straight skeleton

Although the straight skeleton was first introduced to computational geometry in 1995 by
Aichholzer et al. [11, 10] their roots actually go back to the 19th century (see e.g. [177,
p. 215-122]), motivated by the construction of building roofs. The straight skeleton will be
explained in detail because it has an important relation with the skeletal representations
presented in this thesis. The straight skeleton of a polygon relies on a shrinking process
in which the edges of the polygon are moved inward parallel to themselves at a constant
speed. Each vertex moves along the angular bisector of its incident edges. The shrinking
continues as long as one event of the following types are found (see Figure 3.5):

1. Edge event : An edge collapses to length zero. If its neighboring edges still have non
zero length, they become adjacent.

2. Split event : An edge is split by a reflex vertex. The edges adjacent to the reflex
vertex are now adjacent to the two parts of the split edge.

The straight skeleton of a polygon is only composed of straight line segments, while
the medial axis of a polygon may involve parabolic curves. Thus, the straight skeleton
effectively characterizes the shape of a polygon and preserves its linear structure. In
the case of orthogonal polygons, it is known that the straight skeleton of a polygon
in general position is equivalent to the L∞ Voronoi diagram [175]. Vyatkina [218] also
proved that the straight skeleton contains a set of pruned medial axis for some of its parts.
Aurenhammer [28] introduced the concept of weighted straight skeleton of a polygon, that
allows the edges to move inward at different speeds.

The straight skeleton can be extended to polyhedra and it is defined by the shrinking
of the polyhedron faces [81]. Assume that the polyhedron is in general position and all of

21

CHAPTER 3. RELATED WORK

Figure 3.5: Straight skeleton shown in red of a simple polygon. Split events correspond
to the green vertices of the straight skeleton and edge events to the blue ones.

its vertices are trihedral. Then, the three-dimensional straight skeleton is defined by the
next events found during the shrinking [33]:

1. Edge event : The meeting point of the four faces around an edge that vanishes.

2. Split event : A vertex, with one or two incident reflex edges, that runs into an
opposite edge.

3. Hole event : A vertex, with all its three incident edges being reflex, that runs into a
face.

4. Edge-Split event : Two reflex edges that cross each between them.

In three dimensions, the straight skeleton is only composed by vertices, edges and
planar faces. The combinatorial complexity of the straight skeleton of a simple polyhedron
is O (n2α2 (n)) in the worst-case, where α (n) is the inverse of the Ackermann function
and n is the number of vertices [33]. In the case of orthogonal polyhedra, the complexity
is reduced to O (n2) [33]. Thus, the straight skeleton has a combinatorial complexity
tighter than the medial axis.

Each vertex of a polygon, that moves inward during the construction of the straight
skeleton, has a certain velocity. The velocity of a polygon vertex only depends on the
dihedral angle between its two incident edges. Let α be the angle of a vertex. Consider

that its incident edges are shrunk by a unit. Then, sin
(
α
2

)−1
gives the distance from the

origin vertex and the shrunk vertex.
As shown in Figure 3.6 the velocity of a vertex dramatically increases for reflex angles

that approach 2π and 0 radians. A major drawback of straight skeletons arises from the
non-locality effects of reflex vertices: a reflex vertex may collide with a far element. It is
expected that the same problem happens in three dimensions. This non-locality makes
it difficult to use straight skeletons in applications where locality defined by a distance
function is needed. Aichcholzer et al. [11] observed that if a polygon contains no acute
angles, the resulting skeleton closely resembles its Voronoi diagram.

22

CHAPTER 3. RELATED WORK

(a)

 0

 5

 10

 15

 20

π/2 π 3π/2 2π

V
el

oc
ity

Angle α

(b)

Figure 3.6: (a) Non-locality effects in the straight skeleton induced by reflex vertices of
a simple polygon. The reflex vertex moves much faster than the other vertices. (b) Plot
of the velocity of a vertex according to its angle. Note that the velocity tends to increase
rapidly for higher and lower angle values.

3.1.6 Other skeletal representations

There exist alternative skeletal representations apart from the medial axis and the straight
skeleton. Some of which are analyzed below.

The linear axis

The linear axis [215] is a skeletal representation derived from the straight skeleton that
approximates the medial axis of a polygon while trying to reduce the aforementioned
non-locality effects of reflex vertices. The initial set of shrinking edges is an altered version
of the original polygon: zero-length edges are added at reflex vertices. A special class of
equivalence between the linear axis and the medial axis is introduced. An algorithm to
add the appropriate number of zero length edges is proposed. Vyatkina [219] generalized
the linear axis to the case of planar straight line graphs and showed that in some cases
the medial axis equivalence may not exist. The computation of the linear axis requires
the previous computations of the medial axis. Thus, it seems more reasonable to directly
approximate the parabolic curves of the medial axis with straight line segments rather
than computing the linear axis.

Reeb graph and level set

Shinagawa et al. [197, 196] introduced a diagram encoding the topology of a shape. They
called this diagram the reeb graph, in reference to a classical topological graph associated
with a Morse function defined on a smooth surface [166]. The vertices of the reeb graph
are critical points of the Morse function: points where the gradient of the Morse function
are zero. The vertices of the reeb graph can be thought of as representing different
components of the shape and the edges can be regarded as connections between these
different components. The reeb graph is an accurate representation of the shape topology.

23

CHAPTER 3. RELATED WORK

However, the geometric features of the shape, important in many skeleton applications,
may not be captured

The reeb graph is not defined in the same space as the original shape. Level set
diagrams [144] try to embed into the three-dimensional space each edge of the reeb graph
using level sets of a real-valued function defined over the vertices of a shape (see Figure 3.7).
The properties of reeb graphs strongly depend on the election of the function defined over
the shape and the induced gradient. Biasotti et al. [41] presented a detailed overview on
possible choices of that function and an extended reeb graph which can handle degenerate
critical points [39].

Figure 3.7: The level set diagram of a shape, defined by the centres of the connected
components of the level sets (shown with thin lines) of a given function (courtesy of
Lazarus and Verroust [144])

Curve skeleton

In a variety of applications, it is desirable that a three-dimensional shape skeletal rep-
resentation is a linear or curvilinear one-dimensional structure. In the literature, these
skeletal representations are commonly referred to as curve skeletons or center-line skeletons.
However, there is not a unique way to define curve skeletons. Cornea et al. [73] presented
a set of desired properties and algorithms to compute curve skeletons. While the curve
skeleton captures the essential topology of a shape more compactly than the medial axis,
it cannot be used to reconstruct the shape.

3.2 Skeleton algorithms

In this section, the most relevant properties to evaluate skeleton algorithms are presented.
Thereafter an overview of the different types of algorithms to compute different skeletal
representations is also provided.

24

CHAPTER 3. RELATED WORK

3.2.1 Properties

Input shape

Generally, the input shape of a skeleton algorithm can be classified into the following
categories:

• Continuous representation: the shape is represented as a collection of connected
surface elements.

• Discrete representation: the shape is represented by a set of points sampled along
its boundary or by a cell decomposition of the shape.

Robustness

The input of a geometric algorithm may be a set of geometric elements that are not in
general position. A set of at least n+ 1 points in n-dimensional Euclidean space is said to
be in general position if no hyperplane contains more than n points. A set containing
k points for k < d+ 1 is in general linear position if and only if no (k − 2)-dimensional
flat contains all k points. If a set of points is not in general linear position, it is called a
degenerate case. When it comes to implementing geometric algorithms degenerate cases
are difficult to treat, in particular if there are several cases that have to be distinguished.
As exact arithmetic computations are slow, algorithms using them are usually inefficient.
The robustness of an algorithm is measured by its ability to handle degenerate cases.

Accuracy

An algorithm may compute either an exact or an approximate skeleton. An exact
representation of the skeleton has to explicitly include all the skeleton parts. However,
there are applications where an approximate representation is sufficient. The algorithm
accuracy is strongly connected with some skeleton properties such as the stability under
perturbations.

Efficiency

Algorithm efficiency is mainly related to the time complexity. In the case of algorithms
that compute skeletons it is desirable to have a fast algorithm. As the size of real datasets
grows, it becomes more important to develop efficient algorithms.

3.2.2 Methods to compute the medial axis

In the following, different methods to compute the medial axis are presented.

25

CHAPTER 3. RELATED WORK

Exact methods

The medial axis can be computed exactly only for few types of shape representations. In
practice, few algorithms compute exactly the medial axis because of its complexity. One
class for which it is possible in principle are semi-algebraic sets [21], defined by a finite
sequence of polynomial equations and inequalities. The medial axis of such sets is also
semi-algebraic and it may be computed with tools from computer algebra, although no
current implementations exist.

There exist approaches that try to compute the exact medial axis of free form shapes.
In [90] the bisector between rational boundary curves is analyzed. However, few methods
are able to compute the exact medial axis of free form shapes [9]. In fact, most approaches
approximate the geometry of the shape using straight line segments and planar faces.

The medial axis of a union of balls in Rn can be computed from the Apollonius diagram
of the balls or from convex hulls of finitely many balls in Rn [29, 48]. In addition, the
medial axis of the union of balls is piecewise linear and can be constructed from the
Voronoi diagram of a finite set of points [20].

In 1979 Kirkpatrick [136] presented a Voronoi based algorithm to compute the medial
axis of polygons. The algorithm is based on the previous computation of a generalized
Voronoi diagram. A much simpler algorithm based on a divide and conquer approach
was introduced by Lee [145]. In this case, the medial axis is constructed by subdividing
the polygon into small parts, recursively computing its Voronoi diagram and merging
them. A linear time algorithm for computing the medial axis of convex polygons [3] and
simple polygons [66] finally established the time complexity of medial axis computation of
polygons. In the case of planar straight line graphs, the best algorithm runs in O (n log n)
time [230]. Held [119] presented an efficient and robust implementation to compute the
Voronoi diagram of points and line segments. In the case of polyhedra, Held [118] proposed
a simple algorithm only suitable for convex polyhedra. Culver et al. [75] presented an exact
approach that employs exact arithmetic and works with algebraic curves and surfaces (see
Figure 3.8). However, the exact computation of the medial axis of polyhedra is usually
not feasible for practical applications.

Figure 3.8: Medial axis of a simple polyhedron shown in red.

26

CHAPTER 3. RELATED WORK

Approximated methods

The high instability of the medial axis has led to the development of approximate medial
axis representations. A common way to approximate the medial axis is to consider the
approximation paradigm described in [21]. First, the input shape is approximated with
another class of shape for which the medial axis can be computed exactly and easier.
Second, the medial axis of the approximated shape is computed. Finally, the unstable
parts of the medial axis are pruned (see Figure 3.9). Most of the approximate methods
require a pruning step which, in some cases, cannot effectively remove unstable parts of
the medial axis (see Section 3.1.2).

O O

P
(
M
(
O
))

M
(
O
)

Approximate M

Approximate shape

Prune

Compute M

Figure 3.9: Approximation paradigm.

Voronoi diagram and medial axis

The medial axis can also be approximated directly from the Voronoi diagram [86] by
computing a subset of the Voronoi diagram that converges to the medial axis as the
sampling density increases. Brandt [51] showed that given a shape in R2, the Voronoi
diagram defined by a sample of points of the boundary approximates its medial axis (see
Figure 3.10). A sample of the boundary is a finite set of points on that boundary. In [14],
the required sampling density of the boundary varies with the local feature size on the
curve so that areas of less detail can be sampled less densely. Unfortunately, Amenta and
Bern [13] showed that this property does not directly hold in R3. The problem is that
some vertices of the Voronoi Diagram may lie too close to the shape boundary creating
undesired artifacts. To handle this problem they introduced the concept of a pole. The
poles of a sample point are the two farthest vertices of its Voronoi region, one on each
side of the boundary. For a shape whose boundary is a smooth C1-manifold the poles
approximate the medial axis [15].

Attali and Montanvert [25] showed that a three-dimensional shape can be approximated
by a finite union of balls. Amenta and Kolluri [16] extended this result and pointed that
given a sample of points on the boundary shape, the union of a subset of the Voronoi
balls approximates the original shape. Giesen et al. [108] proposed an algorithm that,
given a sample from the surface of a three-dimensional shape with smooth boundary,
computes a medial axis approximation that captures the topology of the shape. Balint et
al. [164] presented an approach to compute an approximate the scale axis transform (see

27

CHAPTER 3. RELATED WORK

Figure 3.10: Progressive approximation of the medial axis using the Voronoi diagram of
a sample of points (courtesy of Attali and Montanvert [24]). Medial axis approximation
shown in red.

Section 3.1.2) of a three-dimensional shape by considering the union of balls approximating
the shape. Yang et al. [229] also employed the union of balls in order to extract a simplified
medial axis by sampling points on the surface of the balls and determining their closest
features on the shape.

There has also been attempts to linearize and reduce the complexity of the medial
axis of polygons by simplifying the underlying Voronoi diagram. These strategies try
to obtain an approximated skeletal representation only composed by flat surfaces and
straight segments. Canny and Donald [55] define a Voronoi diagram based on a measure of
distance which is not a true metric. This leads to a formulation with lower combinatorial
complexity of the Voronoi diagram. MacAllister et al. [163] proposed a linear representation
of the Voronoi diagram with a space complexity linear in the number of polygons rather
than in the number of edges. The medial axis can also be organized in a hierarchical
structure. Ogniewick and Kübler [171] introduced a hierarchical organization of the
medial axis branches of a polygon using the Voronoi diagram leading to a multiresolution
representation of the skeleton.

Approximate methods for polyhedra

The approximate methods for polyhedra are discussed in more detail in a separate section
because of its relevence in this thesis. Sherbrooke et al. [194] used a tracing classification
scheme that computes an approximated medial axis of a polyhedron. Seam curves are
represented with a piecewise-linear approximation. The vertices of the medial axis are
connected by tracing along adjacent edges, and finally the faces of the medial axis are
found by traversing closed loops of vertices and edges. Milenkovic [165] approximated the
Voronoi diagram of polyhedra by computing all the points equidistant to four features
(vertex, edge or face).

Sud et al. [206, 205] proposed a homotopy preserving algorithm to compute a simplified
medial axis that removes unstable features of the original medial axis and retains its
topological structure. They first compute an approximated medial axis and then prune
by considering the separation angle formed by connecting a point on the medial axis to

28

CHAPTER 3. RELATED WORK

the closest points on the shape boundary.

The use of the dual representation of the Voronoi diagram (the Delaunay triangulation)
to obtain the skeleton was also explored [193, 181, 23]. Etzion and Rappoport [96]
constructed the Voronoi diagram of a polyhedron by separating the computation of the
symbolic and geometric parts of the diagram. The symbolic part of the diagram, the
Voronoi graph, is computed by a space subdivision algorithm and the geometric part is
constructed by approximation. A divide and conquer approach to compute the medial
axis was described in [204].

Aichholzer et al. [8] proposed an approach to compute an approximated medial axis
of triangulated solids, with respect to a piecewise linear metric instead of the Euclidean
one, that induces a piecewise linear skeletal representation. Martin et al. [157] introduced
a skeletal representation called generalized swept mid-structure. The input shape is
decomposed into a set of slices and the two-dimensional skeletons of adjacent slices are
matched in order to obtain the swept mid-structure. Hisada et al. [122] presented a
Voronoi based skeleton that tries to capture features of the medial axis that are more
relevant to the human perception.

Other approximate methods

Hoffman [125] presented an algorithm to compute the medial axis of CSG. For each pair
of boundary elements the set of points equidistant to both elements and with minimum
distance is computed and sorted according to its distance to the boundary. Finally, the
skeleton is constructed by tracing the arising edges and faces.

There also exists approaches to compute and approximate the medial axis of three-
dimensional point clouds. Goswami et al. [112] introduced a Voronoi based algorithm
that identifies flat and tubular regions of a three-dimensional point cloud. Ma et al. [154]
introduced an algorithm to approximate the medial axis given a point cloud and the
normal vectors to the surface at every point.

Musuvathy et al. [170] presented an approach to compute the medial axis of three-
dimensional shapes bounded by C4-smooth parametric B-spline surfaces by determining
the self-intersection of the boundary moving along the inward normal direction. Cao et
al. [56] presented a method to compute the medial axis of planar shapes based on the
saddle point programming approach. Ba et al [31] extended the saddle point approach to
the three-dimensional case.

Pruning methods

Pruning methods remove peripheral branches of the medial axis by trying to capture its
stable part [189]. Pruning can either be performed implicitly as a post processing step or
be implicitly integrated in the skeleton computation. Commonly, branches on the border
of the medial axis are removed until some stopping condition is satisfied. The condition
usually estimates the stability of portions of the medial axis [22, 24] or is defined by
the difference between the shape and the shape reconstructed from the pruned medial
axis [52]. Ward and Ghassan [223] presented the groupwise medial axis transform: the

29

CHAPTER 3. RELATED WORK

information derived from a similar group of shapes determines the significance of every
medial axis branch that may be pruned. Ming-Ching and Kimia [58] proposed an approach
to regularize the medial axis of three-dimensional shapes, so that similar shapes yield
similar medial axis after the regularization.

Discrete methods

Discrete methods are applied to discrete representations such as images and volumes.
Discrete methods are very robust since they work with integer arithmetic and geometric
degeneracies are easier to treat. One class of discrete methods are thinning algorithms [79],
that propagate the boundary of a discrete shape until a thin skeletal representation is
found. In [143] a survey of thinning algorithms in R2 is presented. Thinning algorithms
operate in discrete space and commonly rely on the concept of simple point [168]. A simple
point of a discrete shape can be removed without changing the shape topology and can
be characterized by only checking its local neighborhood. This property makes thinning
algorithms well-suited for parallelization [231, 110, 153]. Recently, new characterizations
of simple points which hold up to four dimensions have been presented [74]. Thinning
algorithms may not be able to obtain a thin skeleton since there may exist simple points
which cannot be eroded unless the shape topology is altered (see Figure 3.11). In addition,
the time complexity of discrete algorithms is bounded by the number of pixels or voxels,
which grows rapidly for large datasets.

Directional thinning algorithms alternate the direction to remove simple points [17].
However, the resulting skeleton is sensitive to the remove order and it is not unique.
Subfield sequential thinning algorithms divide the discrete space into several subsets
named subfields and at each iteration, only voxels belonging to one of the subfields are
considered for deletion [37]. Thinning algorithms can benefit from spatial decompositions
such as quadtrees [183] and octrees [226]. The computation of the approximate discrete
medial axis can be greatly accelerated by computing the approximate Voronoi diagram by
using a GPU [123].

Figure 3.11: A two-dimensional discrete shape that cannot be reduced to a thin skeleton
by using a thinning algorithm, since there are not any simple point to remove.

Ayala et al. [30] presented a thinning algorithm to compute the skeleton of an encoded
volume [4] by using Boolean operations. Sudhalkar et al. [208] introduced the box skeleton

30

CHAPTER 3. RELATED WORK

of discrete shapes that relies on the L∞ metric. The box skeleton is the set of centers of
all the maximal squares in 2D or cubes in 3D included in the shape. However, if only
these maximal squares or cubes are considered the homotopy equivalence may be lost
(see Figure 3.12a). The discrete space induces a dual graph that is iteratively pruned
until a thin skeleton is found. The set of simplicial complexes induced by the discrete
space and the graph is also considered. At every thinning step, a part of the graph is
removed if the associated simplicial complex collapse preserves the homotopy equivalence
(see Figure 3.12b). All possible configurations of the collapse of simplicial complexes are
analyzed. Thus, it is proved by induction that the resulting skeleton is homotopically
equivalent to the discrete shape.

(a) (b)

Figure 3.12: Illustration of the thinning algorithm to compute the box skeleton. (a) Set
of centers, shown in red, of the maximal squares included into an orthogonal polygon.
(b) The iterative pruning of the skeleton graph induced by the 2D discrete shape preserves
the homotopy equivalence.

The generalized potential field model [7] is derived from the MAT and it is applied to
discretized shapes. The shape boundary is assumed to be charged and the valleys of the
resulting potential field are used to estimate the axes for the medial axis transform. The
potential valleys are found by following a force field.

Ju et al. [131] introduced a thinning algorithm, combined with a pruning step that is
able to create a family of simplified skeletons. Liu et al. [151] presented a thinning algorithm
that operates on shapes represented as cell complexes and introduced a significance measure
of the skeleton parts called medial persistence. Postolski et al. [180] proposed a filtered
medial axis of two-dimensional discrete shapes inspired by the scale axis simplification
scheme.

Another class of discrete methods rely on the distance transform or distance field
of a shape, that defines for each interior point the minimum distance to the boundary
under a given metric. Common metrics are the Euclidean distance L2, the Manhattan
distance L1 and the Chessboard distance L∞ (see Figure 3.13). A Euclidean distance
transform was first proposed by Danielsson [77]. See [97] and [129] for a survey about
two and three-dimensional distance fields, respectively. Lee and Horng [146] proved that
the L∞ distance transform and the L1 distance transform of a discretized image are
interchangeable.

31

CHAPTER 3. RELATED WORK

(a) Euclidean metric (b) L1 metric (c) L∞ metric

Figure 3.13: Distance transform of the interior of a simple polygon according to different
metrics. The darker regions are the farther regions from the shape boundary. Medial axis,
under each metric, shown in red.

The ridges of the distance transform are points that are locally centered according to a
metric. By detecting the ridges of the distance transform a skeleton can be extracted [135].
The set of candidate ridges are pruned and connected to obtain a skeletal representation.
The main advantage of distance transform algorithms is that computing the distance
transform is fast, although, the ridge extraction slows the overall process.

Some algorithms use an approximate distance transform in order to reduce the com-
putation complexity [232] or use local features to guide the skeleton extraction [155].
In [148], a Euclidean distance mapping combined with an active contour model is used for
a minimization process. An approximate medial axis computation based on the distance
transform [99, 202] is also possible. Hesselink et al [120] presented the integer medial axis,
that uses a modification of an algorithm for Euclidean transforms. Soĺıs and Lang [200]
compute the skeleton of a 2D discrete shape by approximating it with a contour and
computing its integer medial axis. Chaussard et al. [59] proposed a discrete version of the
λ-medial axis (see Section 3.1.2) that relies on the integer medial axis.

General field functions [7] rely on a general transform guided by a repulsive force. The
skeleton computation is done by detecting the local extremes of the field and connecting
them [69]. The advantage of general field functions over the distance transform is that
they are less sensitive to noise on the boundary of a shape although its computation is
less efficient.

3.2.3 Methods to compute the straight skeleton

Aichholzer et al. [11] first proposed a trivial method to compute the straight skeleton of
polygons that considers each pair of edges of the polygon, in order to detect the next
possible events. An algorithm of the same authors for planar straight graphs [10] maintains
a triangulation of the part of the plane that has not been reached yet by the propagating
set of edges. Felkel and Obdrzalek [98] provided details on the implementation of a straight
skeleton algorithm based on [11].

In general, the time complexity to compute straight skeletons of polygons and polyhedra
is greater than the medial axis. This is because the medial axis is defined with a distance

32

CHAPTER 3. RELATED WORK

function, that is a local property, while the straight skeleton is defined by the sequence of
collision events during the shrinking process, that is a global property. For example, it is
possible to apply a divide and conquer scheme to compute the medial axis, while it is not
possible in general for straight skeletons.

Eppstein and Erickson [92] simulate the sequence of collisions between edges and
vertices during the straight skeleton shrinking process using a complex technique for
maintaining extrema of binary functions [91]. In [64] a connection between the straight
skeleton and the motorcycle graph is presented. Consider a set of points in the plane,
called motorcycles, that drive along straight line rays according to its speed and start
time, and a set of straight line segments, called walls. Every motorcycle leaves a trace
behind it and stops driving when reaching the trace of another motorcycle or a wall. The
arrangement of these traces is called motorcycle graph (see Figure 3.14). Huber and
Held [128] presented an approach that also relies on the previous computation of the
motorcycle graph and that is focused for a practical use. Das et al. [78] introduced a
deterministic algorithm for monotone polygons. Palfrader et al. [174] proposed a fast
algorithm based on a kinetic triangulation data structure.

Figure 3.14: The motorcycle graph, in dashed line, is defined by the motorcycles and
walls. Every arrow depicts the speed vector of a motorcycle. Walls are shown bold
(courtesy of Huber and Held [128])

The first algorithm found in the literature that addresses the construction of straight
skeletons of three-dimensional polyhedra was presented by Barequet et al. [33]. In the
case of orthogonal polyhedra, the planar straight skeleton of every polyhedron face is
computed. Thus, the collision between each pair of features of the polyhedron or of the
straight skeleton of each polyhedron face is computed. There are in the worst-case n2

collisions, where n is the number of vertices of the polyhedron, and the validity of a
collision can be checked in logarithmic time. This leads to an algorithm with O (n2 log n)
time complexity. A more complex output sensitive algorithm that uses orthogonal range
searching techniques is proposed. Both algorithms are not implemented. An advantage of
the orthogonal algorithm is that its complexity is bound by a quadratic factor with respect
to the number of vertices of the polyhedron. In the case of simple polyhedra, all the initial
collisions between pairs of features are computed. Then, every time a valid collision is
processed new future collisions are found on neighboring features around the collision.
The complexity of the output-sensitive algorithm is O (kn), where k is the number of

33

CHAPTER 3. RELATED WORK

vertices of the straight skeleton.

3.2.4 Methods to compute the curve skeleton

Most of the algorithms to compute the curve skeleton are designed for the discrete case.
Zhou and Toga [233] presented a technique to extract the curve skeleton by considering
a three-dimensional distance transform. Bitter et al. [45] also considered the distance
transform and implicitly mapped the voxels to graph vertices and the voxel neighbor
relations to graph edges in order to apply the Dijkstra algorithm [88] as a substep of their
skeleton algorithm. While most of the existing thinning algorithms compute the medial
axis of a shape, some of them also apply to curve skeleton [228, 222]. Cornea et al. [72]
presented a hierarchical curve skeleton, to define a whole family of skeletons, that relies
on the computation of a repulsive force field over a discrete shape. A common technique
is to obtain a curve skeleton by pruning a higher dimensional skeletal representation [18].
Some authors [191, 212, 126] also proposed different approaches to compute the curve
skeleton of point clouds.

There also exists approaches to compute the curve skeleton by considering a continuous
representation of the input shape. The curve skeleton can be formulated as a subset of
the medial axis with the help of a medial geodesic function [84]. Au et al. [26] presented
an algorithm that works directly on the shape boundary by contracting it into a curve
skeleton. Tagliasacchi et al. [211] presented a curve skeleton that relies on the mean
curvature flow [83]: the shape geometry is collapsed, driven by the curvature flow, until
the curve skeleton is obtained. Sobiecki et al. [199] compared some contraction based
methods to extract the curve skeleton and analyzed their limitations.

3.3 Skeleton applications

A high number of scientific applications employ skeletal representations. This can be
verified according to the huge amount of available literature related to skeleton applications.
In this section, some of the most relevant skeleton application fields are reviewed. A more
extensive survey of skeleton applications has been presented by Leymarie et al. [149].

The first application of skeletal representations were in the areas of medicine and
biology as Blum [47] conceived them as a natural descriptor for shapes such as cells and
body tissues. Skeletons are used for segmentation of medical images and volumes [178] (see
Figure 3.15), analysis of vascular structures [221], path planning in surgical navigation [101],
morphometry and recognition of body tissues. Skeletons are also useful to analyse molecular
and atomic structures.

The problem of shape recognition relates to the process of searching a database of
shapes in order to efficiently retrieve instances that are similar to a particular shape.
Skeletal representations provide a particularly attractive choice because they encode the
shape topology and geometry [121] (see Figure 3.16).

Skeletons also have been extensively used to analyze the motion and animate artic-
ulated figures such as humans. The most common skeletal representation used for this

34

CHAPTER 3. RELATED WORK

Figure 3.15: The cortical folds of a brain are extracted by computing a three-dimensional
medial axis using a thinning procedure (courtesy of Mangin et al. [156])

purpose is the curve skeleton. In motion planning, the skeletons are used as a constraint
to find optimal paths leading from a goal to a target locus [220], as an example to devise
a routing scheme for networks [54]. In addition, it has been used for surface meshing
and FEM [203], solid representation [190], shape morphing, reconstruction [13], simplifi-
cation [213], deformation [57], decomposition [133], and generation [184]. The skeleton
is also useful tool in collision detection [50], self-intersection detection, and visibility
problems. Skeletal representations are also relevant in the fields of engineering analysis
and CAD [85], and applications in fluid simulation [2].

Figure 3.16: Shape matching of two shapes by using their skeletons (courtesy of Sebastian
et al. [188]).

Perception studies confirm that the human visual system relies on skeletal structures
to understand and identify shapes. A computational scheme proposed by Kimia [134]
supports the speculation that a skeleton representation of a shape is generated early in
visual processing. Lescroart and Biederman [147] studied how the visual system represent
shapes by specifying the relations between the medial axes of its parts: a magnetic
resonance study verified that the medial axis structure is represented earlier in the human
visual system. Thus, skeletons are relevant shape representations in fields where human
perception must be considered.

The ability of straight skeletons to define the roofs [6] (see Figure 3.17) of a building has
been used in procedural modeling of cities [169]. It has been also used in computational
origami [82], interpolation between polygons [34] and crowd simulation [116]. Barequet et
al. [35] computed the straight skeleton of polyhedra as a step to reconstruct a subdivision
of the three-dimensional space, given by arbitrarily oriented slices, into labeled domains.

35

CHAPTER 3. RELATED WORK

(a) (b)

Figure 3.17: Building roof (b) extracted from the straight skeleton of the roof base (a).

3.4 Conclusions

In this chapter, the state of the art in skeletal representations has been reviewed. It can
be summarized in the following main observations:

• The medial axis is unstable and difficult to compute exactly. Most of the existing
approaches to approximate the medial axis involve approximating the shape or the
Euclidean metric and removing unstable parts of the skeleton.

• The straight skeleton of polygons and polyhedra has tighter combinatorial complexity
upper bounds compared with the medial axis. Moreover, it is only composed of
linear segments and planar faces. In the literature, the straight skeleton of polyhedra
has been little studied and skeletal representations derived or having a certain
connection with the straight skeleton are rare.

• Reeb graphs and curve skeletons, accurately capture the topological information of
a shape but may fail to encode some of its geometric features.

• Most of the approaches to compute skeletons operate in the discrete space. This
is mainly due to these reasons: discrete methods avoid geometric degenerate cases,
use integer arithmetic, and their algorithmic complexity is, in general, lower than
geometric methods.

• Although the constrained structure or orthogonal shapes, few skeletal representations
specifically designed for them are found in the literature.

36

Chapter 4

Preprocess: B-Rep extraction of
orthogonal shapes

Contents
4.1 Introduction . 37

4.2 Related work . 38

4.3 B-Rep extraction of orthogonal polygons 41

4.3.1 Algorithm design . 41

4.3.2 Managing orthogonal pseudomanifold polygons 44

4.3.3 Algorithm complexity . 46

4.4 B-Rep extraction of orthogonal polyhedra 46

4.4.1 Algorithm design . 46

4.4.2 Managing orthogonal pseudomanifold polyhedra 47

4.4.3 Algorithm complexity . 48

4.5 B-Rep extraction from other representation schemes 49

4.6 Experimental results . 51

4.7 Conclusions . 51

4.1 Introduction

Extracting the boundary of two and three-dimensional orthogonal shapes is a fundamental
operation in fields such as image and volume processing or CAD applications. Moreover,
the algorithms presented in Chapter 6 and 7 require as input a B-Rep model describing an
orthogonal polygon or polyhedron, respectively. Unfortunately, the boundary extraction
techniques reviewed in the literature were unable to appropriately treat pseudomanifold
shapes. In this chapter, two sweep line algorithms to compute a boundary representation

37

CHAPTER 4. PREPROCESS: B-REP EXTRACTION OF ORTHOGONAL SHAPES

(B-Rep) of orthogonal polygons and polyhedra are presented. This chapter is an adapted
version of [217].

The input of the presented methods is the set of vertices of the orthogonal shape and,
in the case of orthogonal polyhedra, some neighborhood information. The output of the
algorithms is a B-Rep model composed by the set of vertices, the set of edge loops, the set
of faces and the relations face:loop and loop:vertices. The relation face:loop distinguishes
the external loop of the face from the rest of the loops, the holes of the face. The relation
loop:vertices is stored as a connected list of vertices such that the normal of the face
points toward the exterior of the orthogonal shape. This implies that while the external
loop of a face is oriented clockwise, hole loops are oriented counterclockwise. Note that
edges are implicit and can easily be recovered. Besides, it is also straightforward to obtain
all other topological relations from the given ones. Although the presented method can
deal with orthogonal polyhedra with any number of shells with cavities, the problem of
classifying three-dimensional shells and its cavities is not addressed.

In addition, methods to obtain the input vertices of the presented methods from
several other models are presented. In the following, the literature of boundary extraction
techniques is reviewed.

4.2 Related work

In this section, a binary image is either a two-dimensional binary image or a three-
dimensional regular grid composed of voxels.

Boundary extraction of binary images is approached by two main methods: polygonal
and digital. Polygonal or bevelled-form methods represent the boundary as a set of edges
(2D) or triangles (3D) [70]. Digital or block-form methods represent the boundary as a
set of axis-aligned edges (2D) or faces (3D) that can be voxel size [182] or not restricted
to any size [5].

In general, digital models exhibit formal properties such as closure, orientedness and
connectedness, whereas polygonal models and related techniques are mainly devoted
to visualization purposes [114]. Polygonal models tend to produce poorly shaped and
degenerate polygons that can be partially corrected with smoothing [152] or by modifying
the regular grid [87].

A common drawback of the existing boundary extraction techniques is that the
resulting boundary elements consist of several little edges (2D) or little quadrangular
or triangular faces (3D). Several adaptive attempts have been developed to reduce this
redundancy. A k-d tree can be used to extract a manifold quadrilateral mesh [113] while
the dual contouring method uses an octree and produces a manifold mesh [186].

Alternatively, digital methods interpret the boundary of a binary image as orthogonal
polygons or polyhedra that can be manifold or pseudomanifold. An adjacency pair
(m,n) is associated to a binary image, meaning that foreground voxels are m-adjacent
and background voxels are n-adjacent [141]. Using the same adjacency relations for the
foreground and background voxels means that paradoxes can be avoided by restricting
these pairs to (4, 8) and (8, 4) for 2D, and (6, 26) and (26, 6) for 3D [141]. However, images

38

CHAPTER 4. PREPROCESS: B-REP EXTRACTION OF ORTHOGONAL SHAPES

with this adjacency pair present pseudomanifold configurations.

The constrained structure of orthogonal polygons and polyhedra has been attractive
in several research fields. Orthogonal shapes are directly studied to solve several problems,
but they are also used as bounding or approximated shapes of arbitrary polygons and
polyhedra. Examples of the first case are found in manufacturing applications as unfolding
the boundary of a polyhedron [173], mesh reconstruction from scanner data [42], two
and three-dimensional visibility problems [103, 68] and urban models [209]. Moreover,
orthogonal shapes are used as bounding structures for spatial databases [94], and as
approximate shapes in motion planning [12], grasping in manufacturing processes [65] and
for reachable states of dynamical systems [19].

In the following, some papers that deal with the extraction of orthogonal boundaries
and seek for suitable representations for orthogonal objects are reviewed in more detail.
Some approaches are based on spatial enumeration models, while others use vertex lists
to represent orthogonal shapes.

Regarding spatial enumeration models, Montani and Scopigno [167] proposed algo-
rithms to convert quadtrees to polygons and octrees to polyhedra. The authors do not
mention how to treat non-manifolds, neither in two nor in three dimensions, and they
avoid to compute inclusion relationships as they only consider the case with only one
loop of edges bounding a face. Karunakaran and Shringi [132] also developed a program
that converts an octree to a B-Rep. The main drawback of their proposal is that it is
very specific for numerical control (NC) machines, and as a consequence it is difficult to
generalize.

Heijmans [117] computed the zonal graph for two-dimensional images and used it
to perform image processing. The zonal graph is a graph representing the inclusion
relationships between loops. Every vertex of the graph represents a loop and it is specified
whether it belongs to the foreground (external loop) or to the background (hole loop). Park
and Choi [176] presented a different method to extract the boundary of a two-dimensional
image, with all its loops and inclusion relationships, in order to extract cutting areas
from a sculptured surface in the NC field. The sculptured surface is first discretized and
cutting areas are obtained. They use a run-length codification of the 2D image and devise
an algorithm which is O(nr), nr being the number of runs. The boundary consists of
axis-aligned polygons with maximal horizontal edges and vertical edges of pixel size, as
a consequence of the run length encoding being used. This method does not deal with
pseudomanifold images. Concerning 3D images, Damiand [76] presented a topological
map describing the boundary between voxels and an incremental algorithm to extract the
boundary. The model is a combinatorial map, and the method obtains first the B-Rep of
every voxel and then, it applies removal operators for faces, edges and vertices.

The problem of inclusion relationship has also been studied for three-dimensional
shells. Gargantini et al. [102] presented a method that computes inclusion relationships
between shells and represents them in a tree structure.

Vertex list representations are a compact way to represent orthogonal shapes that can
perform geometric transformations, general interrogations and even Boolean operations.
It has been shown that a list of all vertices of an orthogonal shape without any additional
information is ambiguous, even in two dimensions [49]. Figure 4.1a shows two different

39

CHAPTER 4. PREPROCESS: B-REP EXTRACTION OF ORTHOGONAL SHAPES

(a)

-1

+1-1

+1

-1

+1

+1

-2

+2

-1

+1

-1

+1

-2

+2

-1

-1

+1

-1

+1

(b) (c) (d) (e)

Figure 4.1: (a) Two different orthogonal polygons that have the same vertices. (b)-(d)
A pseudomanifold shape represented using the weighted vertex set, the EVM and the
neighborhood models, respectively. (e) For the same shape, the set of vertices that the
presented approach needs as input.

orthogonal polygons with the same vertices. However, vertex lists, with some additional
information associated to the vertices, constitute an implicit and complete representation
model. Vertex lists represent the same kind of shapes that can be represented by spatial
enumeration models with the advantage that they require less storage and are not sensitive
to translation [95]. With respect to run length encoding, the number of runs depends on
the precision of the underlying pixel or voxel model as well as on the run-length direction
chosen. Although run-length encoding is a compressed model, it represents the interior of
the shape while vertex lists represent the boundary.

In two dimensions, the problem of reconstructing an orthogonal polygon from its
vertices has been solved by O’Rourke [172]. The authors presented an O(n log n) algorithm
based on sorting points on any axis-aligned line and then adding an edge between every
other pair of points. This proposal is only valid for orthogonal manifold polygons and
does not recover the hole-face containment relationship.

Esperança and Samet presented and formalized a vertex list based model [93, 95],
suitable for polygons and polyhedra as well as for multi-valued regular grids. To avoid
confusion with other vertex lists models, this model is referred to the weighted vertex
list representation. In this model, orthogonal polyhedra are represented by a subset
of lexicographically sorted vertices with an associated weight. The model as, well as
the processes applied to it, is recursive in the dimension. For example, vertex list
representations in n-dimensional space can be represented and processed by vertex list
representations in n − 1 dimensional space using the project and unproject operators.
These authors presented methods to apply geometric transformations, set operations and
display solids represented as vertex lists. However, they did not describe any conversion
algorithm from vertex lists to a more explicit B-Rep model.

Two other models use lexicographically sorted vertex lists and are recursive in the
dimension: the neighborhood representation and the Extreme Vertices Model (EVM).
The neighborhood representation [49] is a model for orthogonal polyhedra used as an
approximate model for reachable states in dynamical systems. The authors of this work

40

CHAPTER 4. PREPROCESS: B-REP EXTRACTION OF ORTHOGONAL SHAPES

present algorithms for point membership and Boolean operations. They also describe
a method to detect faces of the polyhedron. The method has linear time complexity
on the number of vertices. However, it only finds the set of vertices associated to an
axis-aligned plane and it does not obtain an explicit B-Rep model with hole-face inclusion
relationships.

The EVM [4, 5] is another vertex list model that stores a subset of vertices, called
extreme vertices, without any associated information, and represents indistinctly manifolds
and pseudomanifolds. General set membership including Boolean operations have been
developed with this model as well as an algorithm [5] that extracts from the EVM an
explicit B-Rep. The method obtains all vertex coordinates and oriented faces applying a
sweep-based process. However, the inclusion relationship between loops is computed with
a quadratic complexity brute-force method. Moreover, the method presents a flaw when
dealing with vertices with four incident faces, since some kind of non-manifold vertices
are not properly managed [217].

There exists another model that uses a vertex list [43], but it is restricted to orthogonally
convex polyhedra which are the subset of orthogonal polyhedra that satisfies the following
condition: any axis-aligned line intersects the polyhedron in at most one line segment.
This restricted class of polyhedra can be represented with all its vertices and without any
associated information. The authors present a O(n log n) algorithm to extract faces from
the vertex list, but they do not study the hole-face inclusion problem.

4.3 B-Rep extraction of orthogonal polygons

A sweep line algorithm (see Section 2) to compute the B-Rep of an orthogonal polygon is
presented. The events are the vertical polygon edges encountered by the sweep line. The
status data structure maintains the intersection between the sweep line and the polygon.
The input of the algorithm is the set of vertices of an orthogonal manifold polygon. The
output is its B-Rep model including the hole:face relation information: the set of holes
corresponding to each polygon face.

4.3.1 Algorithm design

The two-dimensional algorithm is based on the following lemma, which is the same
observed by O’Rourke [172] but stated in terms of a sorted list:

Lemma 1. Let Lxy be the lexicographically xy-sorted list of vertices of an orthogonal
manifold polygon. Then, the pairs of consecutive vertices sorted in Lxy are the vertical
polygon edges. Conversely, the pairs of consecutive vertices of the lexicographically yx-
sorted list of vertices Lyx are the horizontal polygon edges.

Note that given a vertex v of a vertical edge, it is possible to find the other vertex of
the edge searching for v in Lxy and taking either the next element or the previous element,
depending on whether v is in an odd or even position in Lxy.

41

CHAPTER 4. PREPROCESS: B-REP EXTRACTION OF ORTHOGONAL SHAPES

Therefore, a loop of edges can be formed by starting from one vertical edge e, search
for it in Lxy, take the endpoint of e that is in an even position, search for it in Lyx, take the
corresponding endpoint, and so forth until e is found again. If during this alternate search
the visited edges are marked, it is possible to form all the loops of edges by traversing
the vertices of Lxy and forming a loop each time a non-marked vertex is visited. This
approach is very similar to the O’Rourke algorithm used to reconstruct polygons [172].
The alternate search always forms loops of edges clockwise oriented, regardless of whether
they are external or not and does not recover the information on whether the loops are
external or holes.

Having all of this in mind, a sweep line algorithm to extract the B-Rep of an orthogonal
manifold polygon has been designed. Let L be the vertical sweep line, sweeping from left
to right. The events correspond to the vertical edges of the polygon and their priority is
defined by the x coordinate. In addition, the intersection between L and the polygon is
maintained by the status data structure S and used to recover the hole-face containment
relationships during the sweep. More precisely, S is the intersection of L with the set of
polygon faces. It is stored as a y-sorted set of vertical segments, each one labeled with
the identifier of the face it belongs to. The orientation of the hole loops is changed once
the sweep is finished. Figures 4.2 and 4.3 illustrate the sweeping process.

Property 3. At any moment of the sweeping process, the edge loops with some vertices
located left to L have already been formed and classified, either as external or as hole loops
of a polygon face.

Figure 4.2: Scheme of the sweep line algorithm to compute the B-Rep of an orthogonal
polygon. The status of S corresponds to the step j of Figure4.3

42

CHAPTER 4. PREPROCESS: B-REP EXTRACTION OF ORTHOGONAL SHAPES

xor xor xor

step j step j+1 step j+2

Figure 4.3: Three steps showing how the status data structure S of Figure 4.2 is updated
using a XOR operation with the new segments.

In addition, the algorithm needs to know which face belongs to each visited vertical
edge: the edge:face relationship. This information is stored as edge marks: edges are
marked with the identifier of the face they belong to.

An event is processed in the following way: if the edge is already marked, S needs to
be updated, since it is an edge of an already formed loop. Otherwise, if the edge is not
marked, it must be the leftmost vertical edge of an unformed loop. S is updated and the
edge is classified as belonging to the external loop of a new face or as a hole loop of an
already formed face. Then, the loop is formed by performing the alternate search method,
and finally all the edges of the recently formed loop are marked as related to the face.

Observe that the update of S with a new vertical edge e can be done as a XOR
operation between S and e. This denotes searching for the y coordinate of the lower
endpoint of e in S and then merging the segment endpoints using its y values. Note that
at most three segments, the new one and two in S, are implied in this merge.

A non-marked edge is classified as belonging to an external loop if it falls outside all
segments in S. Otherwise, the edge must be part of a hole loop and must fall strictly
inside one of the segments of S. In other words, both y values of the edge endpoints fall

43

CHAPTER 4. PREPROCESS: B-REP EXTRACTION OF ORTHOGONAL SHAPES

inside a segment of S. In fact, the labels of segments in S are stored in order to know
the face that a hole belongs to. See Algorithm 2 for an overview of the two-dimensional
B-Rep extraction.

Algorithm 2 Two-dimensional B-Rep extraction algorithm.

Lxy ← Lexicographically xy-sorted list of vertices
Lyx ← Lexicographically yx-sorted list of vertices
i← 0
while i < |Lxy| do

edge ← {Lxy [i] , Lxy [i+ 1]}
if edge not marked then

Classify the loop as a face or a hole
Form the loop by performing the alternate search on Lxy and Lyz

end if
Update the intersection S
i← i+ 2

end while

As an example, Figure 4.2 shows an intermediate step j of the algorithm. At the
current state, S is composed of three segments (shaded intervals in the figure): one for face
f3, and two for face f1. The external loops f1, f2, f3 and the hole loop h1 that have some
vertices on the left of L have already been formed and classified. The next three events
are the vertical edges v7v8, v9v10, and v11v12. Figure 4.3 shows the update of S according
to these three steps. Notice that each update requires a XOR operation between a set of
sorted segments and a new segment. Processing edge v7v8 will activate the reconstruction
of loop f4, since it is a non-marked edge. This loop will be classified as the external loop
of a face, since v7v8 falls outside segments in S and a new face f4 is added to the set
of faces. Then, S will be updated, adding a new face segment f4 to it between the two
segments of face f1. When edge v9v10 is processed, loop h2 will be formed, and it will be
classified as a hole loop of face f1 since v9v10 falls inside the upper segment of S. S will
be updated by splitting the last segment into two new ones belonging to f1. When edge
v11v12 is processed no loop will be formed, as it is a marked edge belonging to f3, and
only S will be updated.

4.3.2 Managing orthogonal pseudomanifold polygons

Orthogonal pseudomanifold polygons include non-manifold vertices with four incident
edges. Dealing with these vertices implies that to properly form loops following the
pseudomanifold definition: edge cycles have to separate the four edges properly. By taking
into account that, later, when dealing with polyhedra, the output polygon faces will
correspond to the faces of a polyhedron, the separation is done in such a way that the
interior set of each face must be a single connected component (see Figure 4.4). Note that
a face of an orthogonal manifold polyhedron can be a pseudomanifold polygon.

44

CHAPTER 4. PREPROCESS: B-REP EXTRACTION OF ORTHOGONAL SHAPES

Figure 4.4: Edge loop reconstruction of an orthogonal pseudomanifold polygon. Three
faces will be formed, one of them with a hole. The blue path shows the way loops are
formed.

In general, a pseudomanifold polygon cannot be reconstructed only from the set of its
vertices [49]. However, the method proposed in the previous section, may be modified
to handle pseudomanifold polygons by slightly varying the input and some parts of the
algorithm.

First of all, non-manifold vertices are inserted twice in the input list. As a consequence,
when the lexicographically sorted lists are computed, Lemma 1 still holds true. Deciding
whether a vertex is manifold or non-manifold must be done with the help of the original
representation scheme. For example, if the original model is a binary image, all pixel
vertices with a non-manifold configuration around them must be inserted twice in the
input list.

Second, the procedure to form loops must be modified in order to handle non-manifold
vertices. During the alternate search, when a duplicated vertex is found, only one of the
two vertical or horizontal edges that emanate from it belong to a loop. Consider that
all loops are formed clockwise. If the loop that is being formed is an external one, the
edge that forms a convex vertex with the last edge belongs to the loop. Otherwise, two
non-connected components could be merged (vertex v1 in Figure 4.4) or form a loop that
leaves a complete cycle to its right, that would be incorrectly identified as one of its holes
(vertex v2 in Figure 4.4). Conversely, when a hole loop is being formed, the opposite rule
is considered: the edge that forms a concave vertex in the hole loop is chosen (vertex v3
in Figure 4.4).

And thirdly, the update of S must also be slightly modified. Since non-manifold
vertices have two vertical edges, an endpoint of a segment in S may coincide with the
beginning point of the next segment, although the two segments may belong to different
faces. As a consequence, the XOR operation will merge two segments only if they share

45

CHAPTER 4. PREPROCESS: B-REP EXTRACTION OF ORTHOGONAL SHAPES

an end and belong to the same face.

4.3.3 Algorithm complexity

Lemma 2. The boundary representation of an orthogonal polygon can be computed by
the sweep line algorithm in O (n log n) time and O (n) space, where n is the number of
vertices of the input orthogonal polygon.

Proof. Lexicographical sorting of the set of input vertices requires O(n log n) time. Once
sorted, looking for a vertex when forming the polygons can be done with a binary search,
and since each vertex is searched only once in Lxy or Lyx, forming all polygons requires
O(n log n) time. Segments in S are sorted by their vertical position, therefore it may be
implemented as a balanced binary search tree. Updating S with a new segment requires
first a search for one of the edge endpoints in S, and then a modification where at most
three vertical segments are implied, so, it requires a maximum of two insertions and/or
two deletions in the binary tree. Search, insert and delete operations in a balanced
binary search tree require O(log n) time. Overall, n updates in S require O(n log n) time.
Therefore, the overall time complexity is O(n log n).

In addition, the algorithm requires few lists of vertices and a balanced binary search
tree whose worst-case size is O(n). The edge marks may be stored as inverse pointers
inside Lxy. Thus, the space complexity is O (n).

4.4 B-Rep extraction of orthogonal polyhedra

4.4.1 Algorithm design

The boundary representation of orthogonal polyhedra is composed of the boundary
representations describing the polyhedron faces parallel to the three coordinate planes.
Following an approach similar to [167], three traversals in the three axis directions can be
done. Each traversal visits all planes parallel to an axis-aligned plane that contain faces
of the polyhedron, forms the lists of vertices of the polyhedron that lie on the plane, and
calls the 2D algorithm that given this list extracts the faces lying onto the plane. Before
dealing with the different traversals of the polyhedron, it has to be decided which vertices
are duplicated.

Orthogonal manifold polyhedra have three kinds of vertices, depending on the number
of faces incident to them: V3, V4 and V6 (see Figure 4.5). V3 vertices are inserted in the
vertex list once. V6 vertices have to be inserted twice in each list, because each pair of
incident coplanar faces of a V6 vertex correspond to a 2D pseudomanifold vertex.

V4 vertices are the most particular case. The faces incident to a V4 vertex parallel
to one of the coordinate directions also have a pseudomanifold configuration. But in the
other two coordinate directions, there is only one face incident to the vertex, and these
two faces contain two consecutive collinear edges (see Figure 4.5). However, observe that
if the V4 vertices are always inserted twice in the lists, regardless of the coordinate axis
being traversed, the 2D algorithm forms edge loops even if they contain collinear edges.

46

CHAPTER 4. PREPROCESS: B-REP EXTRACTION OF ORTHOGONAL SHAPES

V3

V6 V4
Figure 4.5: The three types of orthogonal manifold vertices and the faces they give place
to.

Indeed, when the input list of vertices is sorted into Lxy and Lyx, two consecutive collinear
edges will induce a zero length edge in one of these lists. As a post-process, the duplicate
vertices are removed from the edge loops in a row, so that zero length edges are deleted.

Instead of performing these three traversals, a more simple approach which only needs
three calls to the 2D algorithm is possible. Note that if the lexicographically zxy-sorted
list Lzxy of all the vertices of the orthogonal polyhedron is created, a single call to the
2D algorithm outputs the entire set of faces parallel to the Z plane. Being the first
sorting criterion the z value, vertices with the same z are grouped in Lzxy. Then, the
2D sweep line will be performed successively with vertices on each plane parallel to z,
and the alternate search will look for vertices in lists Lzxy and Lzyx as required. Needless
to say, the 2D algorithm must be adapted to handle 3D coordinates. In summary, the
polyhedron vertices are sorted using the six possible lexicographical orders into six lists
Lzxy, Lzyx, Lyxz, Lyzx, Lxyz, Lxzy, and then the 2D algorithm is applied three times.

Notice that this approach may be slower than the original 3D idea that traverses all
orthogonal plane layers, while in one case the alternate search uses a single list with all
the vertices, the other a collection of smaller lists are used. However, the worst-case
algorithmic complexity of both approaches is the same, as all vertices of a polyhedron
may be located in only two planes.

There is one thing that remains unexplained concerning the 3D boundary extraction:
output faces have to be oriented according to face normals. This is left to the next section,
where the processing of orthogonal pseudomanifold polyhedra is explained.

4.4.2 Managing orthogonal pseudomanifold polyhedra

The 3D boundary extraction algorithm must handle 3D non-manifold vertices in order
to extract the boundary of orthogonal pseudomanifold polyhedra. There are some 3D
non-manifold vertex configurations such that more than two faces meeting at a vertex lie
on the same axis-aligned plane (see Figure 4.6). Therefore, the algorithm presented in the

47

CHAPTER 4. PREPROCESS: B-REP EXTRACTION OF ORTHOGONAL SHAPES

previous section is not able to completely handle pseudomanifolds.

+X

+Y

+Z

(a) (b) (c) (d) (e)

(j)(i)(h)(g)(f)

(1,0,1,0,1,0) (2,0,1,1,1,1) (1,1,1,1,1,1) (1,0,1,0,1,0) (0,1,0,1,1,0)

(2,1,1,2,2,1) (2,0,0,2,2,0) (2,0,1,1,2,0) (1,1,1,1,1,1) (2,2,2,2,2,2)

Figure 4.6: Vertices of an orthogonal pseudomanifold polyhedron and the number of
times they must be inserted in the six sorted lists. Printed values correspond to orientations
(+X,−X,+Y,−Y,+Z,−Z).

Observe that any orthogonal non-manifold 3D vertex has at most two incident faces
having the same oriented plane. Therefore, a list of vertices for each oriented axis direction
(+X,−X,+Y,−Y,+Z and −Z) is computed and then it is proceeded as in the manifold
case, applying six times the 2D algorithm. The 3D algorithm needs an input list of
vertices with six values associated to each vertex that indicate the number of times (0, 1
or 2) the vertex must be repeated for each call of the 2D algorithm. Except for the V4
vertices, these values coincide with the number of incident faces to the vertex that are
oriented with each different coordinate axis. Figure 4.6 shows manifold and non-manifold
vertices and their corresponding six values. The ten cases represented in the figure cover
all possible vertex configurations; the 256 total cases can be deduced by either rotations
and/or dual configurations of these ten cases [4].

As each call to the 2D algorithm is performed for each oriented axis, it is straightforward
to orient the output set of edge loops, by reversing either the hole loops or the external
loops depending on the axis orientation.

4.4.3 Algorithm complexity

Lemma 3. The boundary representation of an orthogonal polyhedron can be computed in
O (n log n) time and O (n) space, where n is the number of vertices of the input orthogonal
polyhedron.

48

CHAPTER 4. PREPROCESS: B-REP EXTRACTION OF ORTHOGONAL SHAPES

Proof. The algorithm requires six lexicographical sortings of the input list of vertices
followed by six calls to the 2D boundary extraction algorithm. Thus, the overall time and
space complexity is the same as in the two-dimensional case.

4.5 B-Rep extraction from other representation schemes

In this section, it is explained how the input vertex list is obtained from different existing
representation schemes. In particular, the set of vertices of a non-manifold polyhedron
and the classification to obtain their corresponding six values have to be computed from
different enumeration models: the voxel model and the octree model; and from models
based on vertex lists: the neighborhood representation, the EVM model and the weighted
vertex list representation.

In the case of a voxel model, a traversal of all the voxel vertices is performed. Then,
for each voxel, it is decided whether it contributes any polyhedron vertex and, in this case,
the number of incident faces to the vertex. Moreover, as the voxels are usually stored in
lexicographical order, the consistency between consecutive voxels can be used to compute
the corresponding six values. Therefore, the time complexity depends linearly on the
number of voxels. In most of the cases the number of polyhedron vertices is smaller than
the number of voxels and, it is expected that the time spent to compute the input set of
vertices will be greater than to compute the B-rep.

In case of an octree representation, the terminal nodes of the octree have to be visited,
and the same analysis of that in the voxel model is performed. Now, the time complexity
depends on the size of the shape boundary that gives the number of octree nodes to
analyze.

The neighborhood representation [49] represents an orthogonal polyhedron by its set
of vertices, and any vertex has attached its neighboring information. In the 3D case,
the neighboring information of a vertex v gives information about the inclusion in the
polyhedron of the eight vertices of a box centered in v. Thus, it is straightforward to
compute the number of oriented faces incident in each vertex, necessary to compute the
corresponding six values. The time complexity to compute the input vertex list is O(n),
because it requires the traverse of all the vertices. Thus, the B-Rep model is obtained in
O(n log n) time, where n is the number of vertices.

In case of an EVM [5], the boundary extraction method can be applied directly to
a two-dimensional EVM because the extreme vertices and manifold vertices coincide.
For 2D pseudomanifolds a preprocess that extracts non-manifold vertices is needed.
Three-dimensional EVM can be converted into its complete set of oriented faces with
pseudomanifold polygons, using EVM appropriate methods [217]. Then, the 2D boundary
extraction algorithm can be applied to each oriented face.

The weighted vertex list model represents a d-dimensional scalar field as a set of
weighted vertices [95]. Each vertex of the set v placed at p(v) with weight w(v) and
coordinates pi, i = 1 . . . d modifies the scalar field by adding w(v) to all points q such that
p(v) ≤ q, that is to all points q with coordinates qi, i = 1 . . . d such that pi ≤ qi,∀i = 1 . . . d.
A set of vertices V = {v1, . . . vn}, where the position of vertex vi is denoted by p(vi) and

49

CHAPTER 4. PREPROCESS: B-REP EXTRACTION OF ORTHOGONAL SHAPES

its weight by w(vi), assigns a scalar field Qv to any point q, being Qv(q) =
∑

p(vi)≤q w(vi).
For convenience, the authors propose to store the set of vertices as a lexicographically
sorted list. An orthogonal solid is represented by a vertex list that maps the interior
of the solid to 1 and the outside to 0. Figure 4.1b shows an example of an orthogonal
manifold represented as a weighted vertex list. The weight can be computed by examining
the scalar field values in a neighborhood of the vertex: assuming classical numbering of
quadrants, in 2D, the weight of any vertex is the sum of the field values of the two even
quadrants around the vertex minus the odd quadrant field values; similarly, in 3D, if
octants are numbered as in Figure 4.7a, the weight of a vertex can be computed by adding
the four even octant values and subtracting the odd octant values. As a consequence, for
example, non-manifold 2D vertices have weight +2 or -2.

x
y

z

672 1

5
8

3
4

(a)

32

1

-3

+1 -1

+20+2

-2 -1

(b)

-1

+1

-1
-1

-1

+1
-1

+1

-1
+1

-1
+1

0

(c)

Figure 4.7: (a) Octant numbering. (b) and (c) are two examples of models represented
as a weighted vertex set that have a vertex with zero weight. (b) A 2D multivalued scalar
field. (c) An orthogonal polyhedron with a V 4 vertex that has zero weight.

As the weighted vertex list represents a polyhedron with lexicographically sorted lists
of weighted vertices, it seems very suitable to use the presented approach to transform
from this model to a B-Rep. However, the authors state that this vertex representation is
unique only if two restrictions are fulfilled: no two vertices may lie at the same point in
the space, and no vertices may have zero weight [95]. Notice that in 3D, some kind of
vertices of a pseudomanifold have zero weight (cases c, h and the dual configuration of c
in Figure 4.6). Incidentally, multivalued 2D fields can also have zero weight vertices (see
Figure 4.7b). This can easily be checked by summing and subtracting field values around
the vertex. This implies that these zero weight vertices will not be in the vertex list.
Therefore, some kind of vertices that are not explicit in weighted vertex list model are
needed by the B-Rep extraction algorithm. Recovering these missing zero weight vertices
and also the six corresponding values of all vertices can be done in a very similar way than
in the EVM case explained in [217], using a traversal of vertex list that temporarily stores
sections. Notice that the zero weighted missing vertices in this representation scheme are
also missing in the EVM model.

50

CHAPTER 4. PREPROCESS: B-REP EXTRACTION OF ORTHOGONAL SHAPES

4.6 Experimental results

The presented B-Rep extraction algorithms have been tested extensively with several
datasets. The experiments were conducted with a database of around three thousand
randomly generated voxel models and on several voxel models from scanned objects.
Figure 4.8 shows the B-Rep extraction times. The available memory was limited to 16GB
and the time computation was at most twenty minutes for each dataset. The presented
approach revealed an average runtime of 59.3 n log n µs, where n is the number of vertices
of the orthogonal polyhedron. These tests have also been useful to ensure the robustness
of the presented approach, since large random models include several non-manifold vertex
and hole-face containment configurations. Typically, in voxel models from scanned objects,
the number of voxels is hundreds of times higher than the number of vertices and only
about 5% of the vertices of the shape are non-manifold.

Figure 4.8: Running times of the boundary extraction algorithm. The abscissa denotes
the number of input vertices. The ordinate denotes the running time in seconds. Every
blue point depicts the runtime for a single dataset. The red line corresponds to the curve
fitted to the expected linearithmic time complexity of the algorithm.

4.7 Conclusions

The problem of reconstructing an orthogonal pseudomanifold polygon or polyhedron given
its set of vertices and, in 3D, the number of incident faces to a vertex has been studied.
Algorithms to compute the B-Rep representation of any orthogonal pseudomanifold
polygon and polyhedron in O(n log n) time, where n is the number of vertices, have been
presented. Although the introduced approach can be used to convert spatial enumeration
models as well as vertex lists based models, it is best suited for the second category of
models, because in the spatial enumeration models the number of elements rules the global
time complexity of the whole conversion process. However, it is also recommended for the

51

CHAPTER 4. PREPROCESS: B-REP EXTRACTION OF ORTHOGONAL SHAPES

first category, since the presented approach correctly handles all kinds of non-manifold
vertices and outputs, a complete hierarchical B-Rep model which includes all hole-face
relationships.

52

Chapter 5

Preprocess: trihedralization of
orthogonal polyhedra

Contents
5.1 Introduction . 53

5.2 Existence and uniqueness of trihedralization 58

5.3 Computing the trihedralization 59

5.4 Experimental results . 62

5.5 Conclusions . 63

5.1 Introduction

An orthogonal polyhedron can have vertices with more than three incident faces, that is,
non-trihedral vertices. The approach presented in Chapter 7, to compute the L∞ Voronoi
diagram of orthogonal polyhedra, requires that the vertices of the input polyhedron are
trihedral.

Barequet et al. [33] noticed that the vertices of a polyhedron with more than three
incident faces need to be split into trihedral vertices in order to compute the straight
skeleton. During the straight skeleton shrinking process, the topology of non-trihedral
vertices may change, and the splitting into trihedral vertices must capture these changes.

Definition 27. (BRÉDIF [53]) Given an input polyhedron, the trihedralization process
consists in changing only its topology such that the modified polyhedron is only composed
of trihedral vertices and it is self-intersection free.

The local trihedralization of a non-trihedral vertex can be seen as the dual problem of
planar polygon triangulation, where polygon vertices correspond to polyhedron faces and
polygon faces correspond to polyhedron vertices [53] (see Figure 5.1). Two dual vertices
are connected if they have an incident edge to the non-trihedral vertex. It is known that
the trihedralization problem does not always have a solution [53]. For example, Figure 5.2

53

CHAPTER 5. PREPROCESS: TRIHEDRALIZATION OF ORTHOGONAL
POLYHEDRA

shows a polyhedron vertex that cannot be trihedralized without perturbing the position
of the incident faces.

(a) (b)

Figure 5.1: Local trihedralization of a vertex. The dual representation is shown at the
right of both figures. (a) A vertex with five incident faces. (b) Trihedralization of the
vertex into three trihedral vertices (b).

(a) (b)

Figure 5.2: (a) A vertex v with four incident faces that is impossible to trihedralize.
Observe that there are only two ways to triangulate the dual polygon. For more details
on all possible invalid combinations see [53, p. 150]. (b) An invalid self-intersecting
trihedralization of v, where two new trihedral vertices v1 and v2 are introduced.

Barequet et al. [33] trihedralize by using two complementary weighted straight skele-
tons [28] and consider that the adjacent faces of a non-trihedral vertex undergo a translation
inwards along their normal of the same infinitesimal distance. Unfortunately, it is un-
proven whether this method forms a trihedralization that is not self intersecting in the
general case [53]. In addition, the specific trihedralization of orthogonal polyhedra is not
considered, when actually it may be needed.

A kinetic framework [115] to compute the trihedralization of a polyhedron is presented
in [53]. The polyhedron faces are continuously moved during a kinetic evolution, while
guaranteeing locally self-intersection free faces. The proposed approach only guarantees

54

CHAPTER 5. PREPROCESS: TRIHEDRALIZATION OF ORTHOGONAL
POLYHEDRA

that the polyhedron faces are not locally self-intersecting but does not ensure that the
polyhedron as a whole is non-self-intersecting. Thus, trihedralizing a polyhedron in the
general case is still an open problem.

However, the trihedralization of orthogonal polyhedra is simpler, as the number of
vertex configurations is finite. The main idea of the presented approach is to consider
that some polyhedron faces are translated along their normal vector and inwards an
infinitesimal amount, such that non-trihedral vertices are split into trihedral vertices and
the polyhedron remains self-intersection free. Each polyhedron face could be moved a
different infinitesimal amount. Observe that an alternative would have been to consider
that the polyhedron faces are moved outwards instead of inwards.

Throughout this chapter P denotes an orthogonal polyhedron, either manifold or
pseudomanifold. Next, the trihedralization of each vertex configuration is analyzed.

The vertices of P can be classified into different configurations according to the number
and type of incident edges and faces [4]. Figure 5.3 shows all possible configurations that
a vertex can have, without taking into account symmetries and rotations. The following
parameters characterize the trihedralization of each vertex configuration:

• Number of trihedral vertices. A non-trihedral vertex may be split into more than
one trihedral vertex.

• Number of new zero-length edges. Zero-length edges between new trihedral vertices
may be introduced.

• Number of possible trihedralizations. A non-trihedral vertex may admit more than
one trihedralization.

• Number of introduced constraints. The trihedralization of a vertex may introduce
constraints between its incident coplanar faces.

The trihedralization may introduce the next types of constraints between faces of P
that are coplanar and have the same orientation:

• Two faces of f1, f2 ∈ P are merged into a single one. This constraint is denoted as
f1 = f2. It is equivalent to consider that the infinitesimal inwards displacement of
both faces is the same.

• Two faces of f1, f2 ∈ P cannot be merged and the infinitesimal inwards displacement
of f1 must be greater than f2. This constraint is denoted as f1 > f2.

Table 5.1 contains a classification of all possible trihedralizations according to the
previously mentioned vertex and trihedralization properties, and a reference to a figure
analyzing each trihedralization in detail. Each referenced figure at the left shows an
illustration of the vertex trihedralization. The planes containing the faces of P are not
perturbed and only the topology of P is modified in the process.

After a case analysis of all vertex configurations, it is observed that the only non-
trihedral vertices that admit more than one possible trihedralization are the configurations

55

CHAPTER 5. PREPROCESS: TRIHEDRALIZATION OF ORTHOGONAL
POLYHEDRA

a b

c d e

f g h

i j k l m n

o p q

r s t

u v

Figure 5.3: The vertices of an orthogonal polyhedron are determined according to the
presence or absence of each of eight surrounding boxes. There are 28 combinations which,
by applying rotational symmetries, may be grouped into twenty-two equivalence classes
(courtesy of Aguilera [4]). Observe that some cases are the same vertex configuration.

l and q of Table 5.1. In fact, q can be seen as a vertex l split apart from a trihedral
vertex and its analysis can be reduced to the configuration l. In addition, l, q and s
are the only vertex configurations that introduce constraints between faces. Thus, most
of the complexity of trihedralizing an orthogonal polyhedron is related to these three
configurations.

Next, a set of trihedralizing constraints that avoid global self-intersections is presented.

Property 4. Consider the vertex configuration l (see Figure 5.10a) with incident faces
fx1, fx2, fy1, fy2, fz1 and fz2. The trihedralizing constraints can be described by the next
Boolean function:

((fx1 = fx2) ∧ (fy1 > fy2) ∧ (fz1 > fz2))∨
((fx1 < fx2) ∧ (fy1 = fy2) ∧ (fz1 < fz2))∨

((fx1 > fx2) ∧ (fy1 < fy2) ∧ (fz1 = fz2))

The constraints introduced by the vertex configuration q are analogous to the vertex
configuration l.

Property 5. Consider the vertex configuration s of Figure 5.15a with incident coplanar
faces fx1 and fx2. The trihedralizing constraint can be described by the Boolean function
fx1 = fx2.

56

CHAPTER 5. PREPROCESS: TRIHEDRALIZATION OF ORTHOGONAL
POLYHEDRA

Manifold Pseudomanifold

Configuration j l d g p k s e t h q n

Incident faces 4 6 4 5 5 6 6 6 6 9 9 12

Trihedral vertices 2 2 2 1 3 2 2 2 6 3 3 4

Trihedralizations 1 3 1 1 1 1 1 1 1 1 3 1

New edges 1 0 0 0 2 0 0 0 6 0 2 0

Constraints 0 3 0 0 0 0 1 0 0 0 3 0

Figure 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20

Table 5.1: Topological and trihedralization properties of non-trihedral vertices.

(a) (b)

Figure 5.4: The local trihedralization of two vertices of type p and s connected by a
common edge yields a global trihedralization that is self-intersection free.

As previously mentioned, in the general case of polyhedra a trihedralization that is
locally self-intersection free in the neighborhood of a vertex does not necessarily guarantee
global self-intersection [53]. Fortunately, the simple structure of the orthogonal polyhedra
allows to obtain a trihedralization by simply using a local criterion at each non-trihedral
vertex (see Figure 5.4 as an example) and satisfying all the trihedralization constraints.

Definition 28. The constraint satisfaction problem (CSP) is the process of finding a
solution to a set of constraints that impose conditions that a set of variables must satisfy.

Lemma 4. Finding a trihedralization of P is equivalent to solving the constraint satis-
faction problem over the set of constraints induced by the vertex configurations l, q and
s.

Proof. The set of constraints is restricted to equality and strict inequalities induced by
vertex configurations l, q and s (see Property 4 and 5). All the other vertex configurations

57

CHAPTER 5. PREPROCESS: TRIHEDRALIZATION OF ORTHOGONAL
POLYHEDRA

can be directly trihedralized while ensuring non-self-intersections. Note that constraints
can only be defined between coplanar faces of P with the same orientation. Every face of
P is associated to an integer, that represents the infinitesimal amount of displacement,
as follows. Consider a maximal subset F of coplanar faces. Every face f ∈ F can be
mapped to an integer of the finite domain {1 . . . |F|}. The problem of trihedralizing is
reduced to mapping these integers to every face of P such that the all the constraints
introduced by the trihedralization are satisfied.

5.2 Existence and uniqueness of trihedralization

It is important to determine if a trihedralization always exist. It is known that a trihedral-
ization of general polyhedra without self-intersections may not exist (see Brédif [p. 149][53]).
In the restricted setting of orthogonal polyhedra, and under the introduced constraint set,
it also may not exist.

Lemma 5. Every orthogonal polyhedron without vertices of configuration l or q can be
trihedralized with the presented method. However, there are cases of orthogonal polyhedra,
with vertices of configuration l or q, such that the trihedralizing constraints cannot be
satisfied.

Proof. The vertex configurations q and l introduce the same restrictions, as the case q is
reduced to the case l. If a vertex l has only five different incident faces it is still possible
to trihedralize it. But if only four different incident faces (see Figure 5.5) converge to the
vertex l, the constraint of Property 4 cannot be satisfied in any way. Thus, in some cases
and with the presence of vertices l or q, a self-intersection free trihedralization may not
exist.

On the other hand, if there are not vertices l and q, all the remaining trihedralizations
do not introduce any constraint apart from the case s. However, the equality constraint
of case s (see Property 5) can always be satisfied, as only equality constraints are present.
Thus, without the presence of vertices l or q a trihedralization always exists.

Lemma 6. There can be at most 3n different trihedralizations of P, where n is the number
of vertices of configuration l and q.

Proof. For each vertex of type configuration l and q there are three different ways to
trihedralize it. Thus, 3n different trihedralizations exist.

As there can exist several trihedralizations, the straight skeleton of P (see Chapter 7)
may have a different topology depending on the trihedralization. In fact, the topology
changes only affect zero-length edges or zero-area faces of the straight skeleton that are
contained in other edges or faces of the skeleton. Thus, any trihedralization yields a
geometrically equivalent straight skeleton.

58

CHAPTER 5. PREPROCESS: TRIHEDRALIZATION OF ORTHOGONAL
POLYHEDRA

(a) (b)

Figure 5.5: (a) A vertex configuration l with four different incident faces fx1, fx2, fy
and fz. The faces axis-aligned with the x coordinate are drawn in green, the axis-aligned
with the y coordinate in red, and the axis-aligned with the z coordinate in blue. Two
pairs of incident faces are forced to be equally displaced inwards in order to trihedralize
the vertex. As a consequence, it is not possible to satisfy Property 4. (b) Graph drawing
of the constraints, impossible to satisfy, imposed by the faces fy and fz.

5.3 Computing the trihedralization

To solve a CSP on a finite domain is a NP-complete problem in general. Specific classes of
constraint satisfaction problems are shown to be tractable. A problem is tractable if there
exists a polynomial time algorithm to solve it. Tractability can be obtained by restricting
the domain of variables and the constraints. In particular, two kinds of restrictions can
be considered:

• Relational restrictions. These restrictions determine the domain and the values
satisfying the constraints.

• Structural restrictions. These restrictions determine the way constraints are dis-
tributed over the variables.

The objective is to design a specific algorithm that takes into account these restrictions.
Concerning the relational restrictions, it has been shown that the domain of the values
satisfying the constraints is bound by each finite set of coplanar faces of P (see Lemma 4).
Some structural restrictions of the trihedralization problem are described next.

59

CHAPTER 5. PREPROCESS: TRIHEDRALIZATION OF ORTHOGONAL
POLYHEDRA

Definition 29. Let P be an orthogonal polyhedron. Let V be set of vertices of configuration
l, q or s of P. Let E be the set of tuples (v1, v2), where v1, v2 ∈ V are two vertices of a
common face of P. Then, Gv = (V,E) is an undirected graph (see Figure 5.6b).

(a) (b)

Figure 5.6: (a) An orthogonal polyhedron with two vertices v1 and v2 of configuration l.
(b) Graph drawing of Gv.

Definition 30. A connected component of an undirected graph is a maximal subgraph
where any two vertices are connected to each other by edges.

Lemma 7. The complete trihedralization of P can be divided into independent trihedral-
izations associated to each connected component of Gv.

Proof. Consider each connected component of Gv. It is possible to trihedralize indepen-
dently each one, as the constraints that are introduced in one connected component cannot
affect the ones of another.

Definition 31. Backtracking [139] is a general algorithm for finding all or some solutions
to a computational problem, that incrementally builds candidates to the solutions, and
abandons each partial candidate, that is backtracks, as soon as it determines that the
partial candidate cannot be a valid solution.

It is possible to design a simple backtracking algorithm that solves the CSP trihe-
dralization problem. Initially, the presented algorithm takes into account the constraints
induced by vertices s. Then, for each vertex l and q, a pair of coplanar faces is merged
while ensuring that the current constraints are satisfied. The algorithm backtracks if the
current constraints cannot be satisfied. Next, some definitions and properties of vertices
of Gv and its associated constraints are given.

60

CHAPTER 5. PREPROCESS: TRIHEDRALIZATION OF ORTHOGONAL
POLYHEDRA

Definition 32. Let v be a vertex of Gv. At any moment of the backtracking process, the
set constraints (v) contains all the equality and strict inequality constraints associated to
the incident faces of the vertex v.

The next property can be easily seen as there can only be, for each three orthogonal
directions, one constraint associated to vertex of Gv.

Property 6. Let v be a vertex of Gv. At any moment of the backtracking process,
|constraints (v)| ≤ 3.

Property 7. Let v be a vertex of Gv that has not yet been trihedralized. At any moment
of the backtracking process, if v is a vertex configuration l or q and |constraints (v)| = 1,
then it is always possible to merge a pair of coplanar faces of v (see Property 4) such that
all the current constraints are satisfied.

Definition 33. Gc is an undirected graph where a vertex of Gc corresponds to a face of
an orthogonal polyhedron P and an edge between two graph vertices of Gc indicates a
constraint between the two faces, either equality or strict inequality (see Figure 5.7b).

(a) (b)

Figure 5.7: (a) An illustrative visualization of a trihedralization of the polyhedron shown
in Figure 5.6a. (b) A drawing of the graph Gc that contains the constraints between faces.

The constraints between pairs of coplanar faces are stored in the data structure Gc
that must support insertion and deletion of constraints. Moreover, Gc must support the
search of the constraint associated to a pair of faces, if it exists.

The algorithm proceeds as follows. First of all, the connected components of the
graph Gv are computed (see Lemma 7). Then, for every vertex of configuration s, its
associated equality constraints are inserted into Gc. Then a backtracking process (see

61

CHAPTER 5. PREPROCESS: TRIHEDRALIZATION OF ORTHOGONAL
POLYHEDRA

Algorithm 4) is performed over the remaining vertices of configuration l and q in order
to find a trihedralization of P. For every vertex, a different pair of coplanar faces to be
merged is selected until its associated constraints are satisfied. This is always possible if
less than two constraints are associated to the vertex (see Property 7). Otherwise, the
algorithm may backtrack to the previously processed vertex of Gv.

Algorithm 3 Algorithm to trihedralize P .

Gv ← non-trihedral P vertices of configuration s, l and q
for v ∈ Gv do

if v is a vertex configuration s then
Insert constraint of v in Gc

end if
end for
CC ← connected components of Gv (only consider vertices l and q)
for G ′v ∈ CC do

if ¬ selectMergeFace(G ′v, first vertex of G ′v) then (see Algorithm 4)
It is impossible to trihedralize P

end if
end for

Gv and Gc can be stored as an adjacency list [71], such that insertions of vertices and
edges are performed in constant time and deletions in linear time with respect to the
number of graph edges. In the case of Gc, searching the constraint between two graph
vertices can be done in linear time, with respect to the number of graph vertices. The
connected components of Gv can be computed straightforwardly in linear time, using either
breadth-first search or depth-first search. Besides, the backtracking process may require
an exponential number of steps (see Lemma 6) and the algorithm remains NP-complete.
However, experimental results over real and randomly generated datasets confirm that in
practice few backtracking steps are required.

5.4 Experimental results

The constraint satisfaction problem defined by the trihedralization problem has been
implemented by the presented approach and a publicly available constraint solver [111].
The experiments were conducted with a database of around one thousand real datasets
and orthogonal polyhedrons generated randomly. The available memory was limited
to 16GB and the time computation was at most twenty minutes for each dataset. The
presented approach was on average sixty times faster than the generic constraint solver
(see Figure 5.8). Only 0.0001% of the datasets had some vertex impossible to trihedralize,
which is almost negligible (see Figure 5.5). As expected, the datasets impossible to
trihedralize were the most time consuming of all. However, all the real datasets could be
trihedralized.

62

CHAPTER 5. PREPROCESS: TRIHEDRALIZATION OF ORTHOGONAL
POLYHEDRA

Algorithm 4 Backtracking algorithm that selects a pair of incident coplanar faces of v
to merge. v is a vertex configuration l or q.

function selectMergeFace(Gv,v)
if all vertices of Gv processed then

return true
end if
for dir ∈ the three orthogonal directions do

Let cdir be the three constraints of merging the faces of v parallel to dir
Find current constraints of v in Gc
if cdir satisfy the current constraints of v then

Insert cdir in Gc
if ¬ selectMergeFace(Gv, next vertex of Gv to process) then

Delete cdir from Gc
else

return true
end if

end if
end for
return false

end function

5.5 Conclusions

The problem of modifying the topology of an orthogonal polyhedron in order to only
have trihedral vertices and self-intersection faces has been analyzed. This problem is
known as the trihedralization problem. It has been shown that in the case of orthogonal
polyhedra the trihedralization problem is equivalent to a constraint satisfaction problem.
In addition, it has been shown that in some cases a trihedralization may not be possible
(see Section 5.2). Although, a specific algorithm to compute the trihedralization has
been introduced. Experimental results confirm the efficiency of the presented algorithm
compared with a state of the art CSP solver. Moreover, the number of vertices from the
tested datasets that do not admit a trihedralization has been very small and has only
appeared in randomly generated datasets.

63

CHAPTER 5. PREPROCESS: TRIHEDRALIZATION OF ORTHOGONAL
POLYHEDRA

(a) Presented approach. (b) Approach of [111].

Figure 5.8: Running times of different methods to compute the trihedralization of P.
The abscissa denotes the number of vertices of Gv. The ordinate denotes the running time
in seconds. Every blue point depicts the runtime for a single dataset.

(a) Original vertex (b) Trihedralized vertex

Figure 5.9: The manifold vertex configuration j has four incident faces, two of them
being coplanar with opposed orientation.

64

CHAPTER 5. PREPROCESS: TRIHEDRALIZATION OF ORTHOGONAL
POLYHEDRA

(a) Original vertex (b) Trihedralized vertex

Figure 5.10: The manifold vertex configuration l introduces three constraints between
pairs of coplanar faces and admits three different trihedralizations depending on the
merged pair. In (b), the pair of faces fx1 and fx2 are merged. Thus, in this particular
case the constraints fx1 = fx2, fy1 > fy2 and fz1 > fz2 must be taken into account.

(a) Original vertex (b) Trihedralized vertex

Figure 5.11: The pseudomanifold vertex configuration d has four incident faces, where
two pairs of faces are coplanar with opposed orientation. Two new trihedral vertices are
introduced.

65

CHAPTER 5. PREPROCESS: TRIHEDRALIZATION OF ORTHOGONAL
POLYHEDRA

(a) Original vertex (b) Trihedralized vertex

Figure 5.12: The pseudomanifold vertex configuration g has five incident faces, where
two pairs of them are coplanar. Only one new trihedral vertex is introduced.

(a) Original vertex (b) Trihedralized vertex

Figure 5.13: The pseudomanifold vertex configuration p has five incident faces, where
two pairs of them are coplanar. Three new trihedral vertices are introduced, lying in the
remaining non-coplanar incident face. Although two new trihedral vertices may suffice to
trihedralize it, a complementary third trihedral vertex is needed in order to ensure that
the trihedralized polyhedron remains orthogonal.

66

CHAPTER 5. PREPROCESS: TRIHEDRALIZATION OF ORTHOGONAL
POLYHEDRA

(a) Original vertex (b) Trihedralized vertex

Figure 5.14: The pseudomanifold vertex configuration k has six incident faces, where
three pairs are coplanar faces with opposed orientation. Two new trihedral vertices are
introduced.

(a) Original vertex (b) Trihedralized vertex

Figure 5.15: The pseudomanifold vertex configuration s has six incident faces, where
two pairs of faces are coplanar with opposed orientation and the other one has the same
orientation. The pair of coplanar faces with the same orientation are merged. In (b), the
constraint fx1 = fx2 must be considered.

67

CHAPTER 5. PREPROCESS: TRIHEDRALIZATION OF ORTHOGONAL
POLYHEDRA

(a) Original vertex (b) Trihedralized vertex

Figure 5.16: The pseudomanifold vertex configuration e has six incident faces, where
three pairs are coplanar faces with opposed orientation. Two new trihedral vertices are
introduced.

(a) Original vertex (b) Trihedralized vertex

Figure 5.17: The pseudomanifold vertex configuration t has six incident faces, where
three pairs are coplanar faces with opposed orientation. Six new trihedral vertices are
introduced. Although three new trihedral vertices may suffice to trihedralize it, three
more complementary trihedral vertices are needed in order to ensure that the trihedralized
polyhedron remains orthogonal.

68

CHAPTER 5. PREPROCESS: TRIHEDRALIZATION OF ORTHOGONAL
POLYHEDRA

(a) Original vertex (b) Trihedralized vertex

Figure 5.18: The pseudomanifold vertex configuration h has nine incident faces, where
three pairs are coplanar faces with the same orientation. Three new trihedral vertices are
introduced.

(a) Original vertex (b) Trihedralized vertex

Figure 5.19: The pseudomanifold vertex configuration q has nine incident faces. The
trihedralization introduces a vertex configuration of type l and a simple trihedral vertex.

69

CHAPTER 5. PREPROCESS: TRIHEDRALIZATION OF ORTHOGONAL
POLYHEDRA

(a) Original vertex (b) Trihedralized vertex

Figure 5.20: The pseudomanifold vertex configuration n has twelve incident faces, where
three pairs of coplanar faces have the same orientation. Four new trihedral vertices are
introduced.

70

Chapter 6

L∞ Voronoi diagram of orthogonal
polygons

Contents
6.1 Introduction . 71

6.2 Previous definitions and properties 72

6.3 Edge-based algorithm . 73

6.3.1 Edge event . 75

6.3.2 Ray-ray junction event . 76

6.3.3 Algorithm complexity . 77

6.4 Vertex-based algorithm . 77

6.4.1 Vertex event . 80

6.4.2 Ray-edge junction event . 80

6.4.3 Algorithm complexity . 81

6.5 Treatment of degenerate cases 83

6.5.1 Non-manifold polygon vertices 84

6.5.2 Degeneracy by collinearity . 84

6.5.3 Degeneracy by coincidence . 86

6.6 Straight skeleton equivalence 87

6.7 Experimental results . 89

6.8 Conclusions . 91

6.1 Introduction

It has been observed that the L∞ Voronoi diagram and the straight skeleton of an
orthogonal polygon in general position coincide (see Section 3.1.5). Thus, the Voronoi

71

CHAPTER 6. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYGONS

edges may serve as a skeletal representation of the polygon. Apart from the algorithm of
Barequet et al. [33], which is mostly theoretical, there has not been found in the literature
other algorithms to compute the L∞ Voronoi diagram of polyhedra. Thus, it is desirable to
have a two-dimensional algorithm which can be easily extended to the three-dimensional
case.

In this chapter two specific implementations of a sweep line algorithm to compute
the L∞ Voronoi diagram of an orthogonal polygon are presented. One of the algorithms
processes the edges of the orthogonal polygon, while the other one processes its vertices.
The algorithm that processes the vertices has been developed in order to extend it to
three dimensions. In addition, a detailed proof of the equivalence between the L∞ Voronoi
diagram and the straight skeleton of an orthogonal polygon is given. This chapter is an
extended and adapted version of the article [160].

6.2 Previous definitions and properties

In the following, some basic previous definitions and properties are introduced. In this
chapter, P denotes an orthogonal polygon. The Voronoi diagram of P under the L∞
metric is denoted as V∞ (P) (see Definition 21).

Property 8. (PAPADOPOULOU et al. [175]) Let P be in general position. The Voronoi
diagram V∞ (P) has exactly 2n− 2 vertices and 2n− 3 edges, where n is the number of
vertices of P.

Lemma 8. Three axis-aligned open half-planes in R2 define a square if and only if two
of them are parallel, their intersection is not empty and the remaining half-plane is
perpendicular.

Proof. It is clear that if three orthogonal half-planes are parallel they cannot define a
square. Consider, without loss of generality, the next three open half-planes, two of them
parallel and the other one perpendicular:

h1 : x > c1 , h2 : x < c2 , h3 : y > c3 c1 6= c2

The intersection of half-planes h1 and h2 is non empty if c1 > c2. In this case, the square
is bound by the abscissas c1 and c2, and the ordinates c3 and c3 + c2 − c1. The length of
the square edges is c1 − c2 and the coordinate of its center is

(
c1+c2

2
, c3 + c1−c2

2

)
.

Property 9. Three edges of P define a square if and only if their associated half-planes
oriented inside P define a square (see Lemma 8) and the intersection between the square
boundary and every edge is not empty.

Definition 34. A Voronoi vertex of V∞ (P) is degenerate if it is L∞ equidistant to more
than three edges of P.

Definition 35. An orthogonal polygon P is in general position if it is an orthogonal
manifold polygon, without collinear edges and V∞ (P) has no degenerate Voronoi vertices.

In the following Sections 6.3 and 6.4, P is considered to be in general position.

72

CHAPTER 6. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYGONS

6.3 Edge-based algorithm

The edge-based algorithm to compute V∞ (P) is based on the more general sweep line
algorithm (see Section 2) of Papadopoulou et al. [175] which calculates the L∞ Voronoi
diagram of planar straight line graphs. Let L be the vertical sweep line, sweeping from
left to right. The priority queue E stores the events encountered during the sweep. The
events are either vertical edges of P or candidate Voronoi vertices of V∞ (P).

Computed Voronoi diagram

Wavefront

Sweep line

Ray

x

y

Figure 6.1: Scheme of the sweep line algorithm to compute the L∞ Voronoi diagram of
an orthogonal polygon. The orthogonal polygon, drawn in gray, is in general position.

Definition 36. At any moment t of the sweeping process, L partitions the edges of P into
three subsets: Et are the edges completely to the left of L, It are the edges that intersect
L, and Rt are the edges completely to the right of L. Ct is the portion of It that lies at
the left of L. Lt are the edges of P contained in the line L and with the interior of P at
the left, plus the portion of L that belongs to the interior of P.

An invariant of the algorithm is that, at any moment t of the sweeping process, the
L∞ Voronoi diagram of Et ∪ Ct ∪ Lt is already computed.

Definition 37. At any moment t of the sweeping process, the wavefront is the boundary of
the Voronoi regions (see Definition 20) induced by the edges Lt. The Voronoi edges induced
by Lt are the wavefront edges and their Voronoi vertices are the wavefront vertices.

Lemma 9. The wavefront edges are monotone with respect to the sweep line.

Proof. Let p = (x, y) be a point in Lt, and let e be the edge of Lt where p lies. Let
p′ = (x′, y) be the point with ordinate y and smallest abscissa x′ in the Voronoi region of
e. The maximal square centered at p′ is empty, and contains every square centered at a
point on the segment [p, p′], hence all of these are empty as well, and must belong to the
Voronoi region of e. So there cannot exist any point of the wavefront between p and p′

and it follows that the wavefront edges are monotone with respect to the sweep line (see
Figure 6.2).

73

CHAPTER 6. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYGONS

Figure 6.2: Illustration of Lemma 9. There cannot exist any point of the wavefront
between p and p′. The maximal square associated to p′ is drawn in blue.

Definition 38. At any moment of the sweeping process, a ray is a half-line that supports
a Voronoi edge, with its origin in a vertex of P or a Voronoi vertex of V∞ (P). The end
of the Voronoi edge remains to be calculated. Once calculated, the ray becomes a Voronoi
edge of V∞ (P) (see Figure 6.1).

In general position, a ray is contained in the L∞ bisector of two edges e1 and e2 of P
and is denoted by {e1, e2}.

Definition 39. The ray emanating from a vertex of P is defined by its two incident edges
and it is called vertex ray.

Definition 40. The intersection point between two rays {e1, e2} and {e1, e3} is the center
of the square defined by the edges e1, e2 and e3 (see Property 9).

Note that as P is in general position, the two intersecting rays {e1, e2} and {e1, e3}
must share an edge e1.

Definition 41. The intersection point between a ray {e1, e2} and an edge e3 of P is the
center of the square defined by the edges e1, e2 and e3 (see Property 9).

Definition 42. At any moment t of the sweeping process, the set of rays that define a
square with L are called wavefront rays (see Figure 6.1).

Property 10. At any moment t of the sweeping process, the vertices of the wavefront are:

• The center of the square defined by a wavefront ray and L.

• The intersection between a horizontal edge of It and L.

The wavefront edges can be obtained by connecting consecutive wavefront vertices
because they are monotone with respect to the sweep line (see Lemma 9). The wavefront
rays are stored in a height-balanced binary tree W, which is the status data structure

74

CHAPTER 6. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYGONS

(see Section 2), and sorted according to the ordinate of their associated wavefront vertices.
Note that W describes the combinatorial structure of the wavefront. The wavefront data
structure only needs to be updated each time an event occurs. Initially, the priority queue
E is the sorted set of edge events induced by the vertical edges of P . The priority of an
edge event is determined by the edge constant x coordinate. Two different types of events
may occur during the sweep:

• Edge event: it occurs when L meets a vertical edge of P . The priority of an edge
event is defined by the abscissa of the vertical edge.

• Ray-ray junction event: the intersection of two rays that could induce a Voronoi
vertex. The priority of a ray-ray junction event is defined by the rightmost abscissa
of the square defined by both rays. That is, as soon as the intersection is reached
by the wavefront.

The correctness of the next algorithms follows using the same arguments as in [175].
In the following, it is described how to process each event.

6.3.1 Edge event

Two types of edge events are distinguished depending on the orientation of the vertical
edges that induce them: vertical edges that have the interior of P at the right, and vertical
edges with the interior of P at the left.

Property 11. If the incident vertical edge of a vertex of P has the interior of P at the
right then, after processing the edge, its vertex ray must be a wavefront ray.

Consider first that a vertical edge has the interior of P at the right (see Figure 6.3).
In this case, two new wavefront rays, that correspond to the two vertex rays of the edge,
are inserted in W.

Second, consider that a vertical edge has the interior of P at the left (see Figure 6.4).
In this case, the algorithm must compute the portion of the wavefront that belongs to the
Voronoi region of the vertical edge. First, the intersection between both vertex rays of the
edge and the wavefront edges is computed. Then, the portion of the wavefront between
the two intersected points becomes part of the final Voronoi diagram and the wavefront
rays between the two intersected points are deleted from W. In addition, consider a reflex
vertex of the vertical edge, with an incident horizontal edge eh, whose ray intersects the
wavefront edge ei. In this case, a new wavefront ray {eh, ei} is inserted in W.

The computation of the intersection between a vertex ray, whose interior of P is on
its left, and the wavefront edges can be done efficiently with a binary search in W (see
Figure 6.5). Two cases are distinguished depending on the vertex. Consider first that the
incident horizontal edge of the vertex has the interior of P above (see Figure 6.5a). Let
eb and ea be two consecutive wavefront edges, such that eb is below ea, and let {eb, ea}
be its associated wavefront ray. Let ly denote the lower ordinate of the square defined
by {eb, ea} and L. If the ordinate of the vertex lies below ly then all the wavefront edges

75

CHAPTER 6. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYGONS

(a) (b)

Figure 6.3: (a) Edge event processing of the vertical edge e3, with the interior of P at
the left. Two new wavefront rays {e4, e3} and {e3, e2} are inserted in W. In addition,
a new ray-ray junction event induced by the wavefront rays {e5, e4} and {e4, e3}, and
another one induced by the wavefront rays {e3, e2} and {e2, e1} are inserted in E. (b)
Status of W after processing the edge event.

above and including ea can be excluded from the search. If the ordinate of the vertex
lies above ly then all the wavefront edges below eb are excluded from the search. Finally,
if the ordinate of the vertex is equal to ly then the intersection is a degenerate Voronoi
vertex. In the same way, if the incident horizontal edge of the vertex has the interior of P
below the reverse search is applied (see Figure 6.5b).

Finally, the intersection of the wavefront rays inserted in W with other neighboring
wavefront rays in W may induce new ray-ray junction events that are inserted in E. See
Algorithm 5 for an overview of the edge event processing.

6.3.2 Ray-ray junction event

A ray-ray junction event corresponds to the intersection between two rays (see Defini-
tion 40). The priority of a ray-ray junction is defined by the rightmost abscissa of the
square defined by both junction event rays: as soon as the intersection is reached by the
wavefront (see Figure 6.6). A ray-ray junction event defines a Voronoi vertex if the two
rays still belong to W and are neighbors in W. Observe that the junction event rays could
have been removed from W by a previous event with higher priority, or W could have
been updated such that both rays are no longer neighbors in W. If the ray-ray junction
defines a Voronoi vertex, the two rays are deleted from W and the two incident Voronoi
edges to the Voronoi vertex are inserted in V∞ (P). In addition, a wavefront ray defined
by the two different edges between the two rays is inserted in W, and new ray-ray junction
events induced by its neighboring wavefront rays in W may be found and inserted in E.
See Algorithm 6 for an overview of the ray-ray junction event processing.

76

CHAPTER 6. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYGONS

(a) (b)

Figure 6.4: (a) Edge event processing of the vertical edge e6, with the interior of P at
the left. The vertex ray {e5, e6} intersects the wavefront edge e4. {e6, e7} intersects the
wavefront edge e1. The portion of W between both intersected points is added to the
completed V∞ (P) and the rays {e4, e3}, {e3, e2} and {e2, e1} are deleted from W. Finally,
as both vertices of the edge e6 are reflex, the rays {e4, e5} and {e7, e1} are inserted in W.
(b) Status of W after processing the edge event.

6.3.3 Algorithm complexity

Lemma 10. The V∞ (P) can be computed by the edge-based sweep line algorithm in
O (n log n) time and O (n) space, where n is the number of vertices of P.

Proof. As a consequence of Property 8 there are O (n) events to process. In all the events
it is required to insert and delete a constant number of rays in W, each of which can
be done in O (log n) time using a binary search in W. Processing an edge event or a
ray-ray junction event, that inserts new wavefront rays in W, requires to check new ray-ray
junction events induced by neighboring wavefront rays, also in O (log n) time. Processing
an edge event associated to a vertical edge that has the interior of P on its left requires
computation of two intersection points of the wavefront and can be done in O (log n) time
with a binary search in W, as explained in Section 6.3.1. Thus, O (log n) time is required
to process an event and the overall time complexity is O (n log n). As W and E are linear
data structures and O (n) events are processed, the space complexity is O (n).

6.4 Vertex-based algorithm

The vertex-based algorithm is a variation of the edge-based algorithm, such that the
events are associated to vertices of P or V∞ (P). In addition, the vertex-based algorithm
allows the insertion in W of rays that does not intersect L. These rays are sorted in
W according to the ordinate of its origin. For example, the wavefront ray {e2, e5} of

77

CHAPTER 6. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYGONS

(a) (b)

Figure 6.5: Computation of the wavefront edge intersected by a vertex ray. The blue
squares are defined by the wavefront rays and L. (a) The thick blue lines correspond
to the lower ordinate of the squares. The binary search is finally bounded by the rays
{e5, e4} and {e4, e3}. Thus, the wavefront edge e3 is intersected. (b) The thick blue lines
correspond to the lower ordinate of the squares. The binary search is finally bounded by
the rays {e3, e2} and {e2, e1}. Thus, the wavefront edge e2 is intersected.

Figure 6.7b does not intersect L. One of the edges defining a ray that does not intersect
L must be a vertical edge with the interior of P at the left. It is important for the
vertex-based algorithm to determine the direction of these rays.

Property 12. Let {e1, e2} be a ray, with its origin in the Voronoi vertex equidistant to
the edges e1, e2 and e3. If any vertex bounded by the edges e1e3 and e2e3 form a reflex
angle, then the ray is oriented towards the interior of P defined by e3. Otherwise, the ray
is oriented in the opposite direction.

At any moment of the sweeping process, if two rays of W are defined by the same
two edges, a Voronoi edge connecting their origins is added to V∞ (P) and both rays are
deleted from W. For example, the ray {e3, e4} of Figure 6.7c is deleted from W after
processing the vertex ray defined by the same edges.

Three different types of events may occur during the sweep:

• Vertex event: the occurrence of a vertex of P. The priority of a vertex event is
defined first by the vertex abscissa and then by its ordinate.

78

CHAPTER 6. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYGONS

Algorithm 5 Edge event processing algorithm of the edge-based approach.

if edge has the interior of P on its right then
Insert the two wavefront rays of the edge vertices in W

else if edge has the interior of P on its left then
Compute the intersection of the two rays of the edge vertices and W
Insert the portion of W between the two intersected points in V∞ (P)
Delete the wavefront rays between the two intersected points from W
if any vertex of the edge is reflex then

Let eh be the incident horizontal edge to the reflex vertex
Let ei be the intersected edge by the reflex vertex ray
Insert the ray {eh, ei} in W

end if
end if
Insert ray-ray junction events, induced by new rays of W and its neighbors, in E

Algorithm 6 Ray-ray junction event processing algorithm of the edge-based approach.

Let the ray-ray junction event be defined by two rays {e3, e2} and {e2, e1}
if both rays are neighbors in W then

Delete both rays from W
Insert the two incident Voronoi edges to the Voronoi vertex in V∞ (P)
Insert the new wavefront ray {e3, e1} in W
Insert ray-ray junction events, induced by ray {e3, e1} and its neighbors, in E

end if

• Junction event: the intersection between two rays or a ray and an edge that could
induce a Voronoi vertex. The priority of a junction event is defined first by the
left-most abscissa and then by the lowest ordinate of the square induced by the
intersection. There exist two types of junction events:

– Ray-ray junction event: the intersection of two rays.

– Ray-edge junction event: the intersection of a ray and an edge of P .

The events of E are sorted lexicographically according to its priority. If the priority
of a vertex event and a junction event coincide, the vertex event is processed first. If
two junction events have the same priority, the junction event whose square is bigger is
processed first. Initially, E is the sorted set of vertex events induced by the vertices of
P. New events may be inserted in E each time an event is processed. The events are
processed until E is empty. In the following, it is presented how to process each event. The
ray-ray junction event processing is not detailed because it coincides with the edge-based
algorithm one (see Section 6.3.2).

79

CHAPTER 6. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYGONS

(a) (b)

Figure 6.6: (a) Ray-ray junction event processing induced by the wavefront rays {e3, e2}
and {e2, e1}. Square defined by both rays is shown in blue. Both rays are deleted from W
and their associated Voronoi edges are inserted in V∞ (P). A new wavefront ray (e3, e1)
is inserted in W and a ray-ray junction event induced by the wavefront rays (e4, e3) and
(e3, e1) is inserted in E. (b) Status of W after processing the ray-ray junction event.

6.4.1 Vertex event

The vertex event processing is done as follows. First, the vertex ray is inserted in W. If the
vertex has the interior of P at the left and it is reflex (see Figure 6.7a), the wavefront edge
intersected by the vertex ray is computed, as described in Section 6.3.1, and a ray-edge
junction event induced by the vertex ray and the intersected wavefront edge is inserted in
E. Otherwise, neighboring wavefront rays in W may induce new ray-ray junction events
that are inserted in E. See Algorithm 7 for an overview of the vertex event processing.

Algorithm 7 Vertex event processing algorithm of the vertex-based approach.

Insert the vertex ray in W
if the interior of P is on the left of the vertex and the vertex is reflex then

Compute the intersected wavefront edge e by the vertex
Insert the ray-edge junction event induced by the vertex ray and e in E

else
Insert ray-ray junction events, induced by the vertex ray and its neighbors, in E

end if

6.4.2 Ray-edge junction event

A ray-edge junction event corresponds to the intersection between a ray and an edge of P
(see Definition 41). Consider that a ray-edge junction event is defined by the ray {e4, e5}
and the intersected edge e2 (see Figure 6.7b). A Voronoi edge between the origin of the
ray and the induced Voronoi vertex is inserted in V∞ (P). The ray {e4, e5} is deleted from

80

CHAPTER 6. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYGONS

W and two new rays {e4, e2} and {e5, e2} are inserted in W. New ray-ray junction events
induced by the neighboring wavefront rays in W of the two new rays may be found and
inserted in E. See Algorithm 8 for an overview of the ray-edge junction event processing.

Algorithm 8 Ray-edge junction event processing algorithm.

Let {e4, e5} be the ray and e2 the intersected edge
Insert the Voronoi edge connecting the Voronoi vertex and the ray origin in V∞ (P)
Delete the ray {e4, e5} from W
Insert the ray {e4, e2} and {e5, e2} in W
Insert ray-ray junction events induced by the two new wavefront rays in E

6.4.3 Algorithm complexity

Lemma 11. The V∞ (P) can be computed by the vertex-based algorithm in O (n log n)
time and O (n) space.

Proof. The operations performed to E and W are the same as with the edge-based
algorithm. Thus, the algorithm takes the same time and space complexity (see Lemma 10).

81

CHAPTER 6. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYGONS

(a) (b)

(c) (d)

Figure 6.7: (a) The vertex event associated to the ray {e4, e5} inserts the vertex ray in
W and the ray-edge junction event, induced by the vertex ray and the edge e2, in E. (b)
The ray-edge junction event induced by the ray {e4, e5} and the edge e2 inserts two new
rays {e4, e2} and {e5, e2} in W and removes the ray {e4, e5} from W. A ray-ray junction
event induced by the rays {e4, e2} and {e3, e2} is inserted in E. Note that the ray {e4, e2}
is a ray that does not intersect L. (c) The ray-ray junction event induced by rays {e4, e2}
and {e3, e2} inserts the ray {e3, e2} in W. Later, when it is processed the vertex event
associated to the ray {e3, e2}, both equal rays are deleted and a Voronoi edge between its
origin is added to V∞ (P). (d) Status of W after processing all the junction and vertex
events induced by the edge e4.

82

CHAPTER 6. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYGONS

6.5 Treatment of degenerate cases

In this section, P is considered to be an orthogonal polygon, either manifold or pseudo-
manifold, that could not be in general position.

Lemma 12. Let P be an orthogonal pseudomanifold polygon, and let p be a point in the
interior of P. At most eight Voronoi edges of V∞ (P) converge to p.

Proof. The Voronoi edges of V∞ (P) are axis-aligned or rotated π
4

radians (see Property 2).
Thus, there are at most eight Voronoi edges converging to p, one for each possible direction
(see Figure 6.8).

Figure 6.8: Worst-case degenerate Voronoi vertex of V∞ (P) induced by eight edges of
P .

Observe that under the Euclidean metric, an arbitrary amount of Voronoi edges may
converge to a Voronoi vertex of a polygon. Thus, a more simple and robust approach can
be designed for the case of orthogonal polygons and L∞ metric. Three types of geometrical
degeneracies are distinguished:

• Non-manifold vertices of P : a vertex with four incident edges.

• Degeneracy by collinearity: a polygonal area whose points are L∞ equidistant
to two or more collinear edges.

• Degeneracy by coincidence: a Voronoi vertex L∞ equidistant to more than three
non-collinear edges of P .

A technique to treat degeneracies based on a simulated perturbation is presented. This
approach has certain connections to the simulation of simplicity proposed by Edelsbrunner
et al. [89]. First, every non-manifold vertex is split into two manifold vertices that induce
two vertex rays, similarly to the B-Rep extraction method of Chapter 4. Observe that
this step is analogous to the three-dimensional trihedralization of orthogonal polyhedra
presented in Chapter 5.

83

CHAPTER 6. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYGONS

Finally, if a degeneracy is detected, the degeneracy by collinearity is treated before
the degeneracy by coincidence. A degeneracy by collinearity is treated by simulating a
perturbation of the collinear edges, such that only non-collinear edges are L∞ equidistant
to the Voronoi vertex. After that, a degeneracy by coincidence is treated by simulating
a perturbation of the remaining set of non-collinear edges, such that the degeneracy is
completely removed. In the following, it is presented how to treat each degeneracy.

6.5.1 Non-manifold polygon vertices

A non-manifold vertex of P is defined by two pairs of incident collinear edges. In addition,
two pairs of incident edges define a convex interior angle and are considered to induce
two different vertex rays.

Consider first the edge-based algorithm and a set of collinear vertical edges. It is
enough to consider that the edge events associated to vertical edges with the interior of
P at the left have higher priority than the ones with the interior at the right, in order
to correctly process non-manifold vertices. Similarly, in the case of the vertex-based
algorithm the vertex events associated to vertices with the interior of P at the left have
higher priority than the ones with the interior at the right. Figure 6.9 illustrates how the
non-manifold vertex v is managed.

(a) (b)

Figure 6.9: Non-manifold vertex v with four incident edges e2, e5, e6 and e7. Two rays
{e2, e7} and {e5, e6} are induced by the vertex. (a) The vertical edge e7 or the ray {e2, e7}
is processed first, depending on the sweep line algorithm considered. (b) Status of the
wavefront after processing the edge e7.

6.5.2 Degeneracy by collinearity

A degeneracy by collinearity occurs when a set points that are L∞ equidistant to two or
more collinear edges, define an area in P that separates different Voronoi regions.

84

CHAPTER 6. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYGONS

Property 13. The set of points of P that are L∞ equidistant to two or more collinear
edges of P can define a polygonal area, called bisector area, that separates Voronoi regions
and it is bound by Voronoi edges (see Figure 6.10a).

A classical method found in the Voronoi diagram literature to avoid degeneracies by
collinearity is to only select some Voronoi edges bounding the bisector areas. This is done
by defining a lexicographical order between the set of objects that induce the Voronoi
diagram [138]. Following this idea, the next specific priority, called collinear priority, is
additionally defined between collinear edges of P: the rightmost horizontal edges have
higher collinear priority and the above vertical edges also have higher collinear priority. As
a consequence, when a degeneracy by coincidence is detected, the Voronoi edge bounding
a bisector area that emanates from an edge of P with higher collinear priority is selected
(see Figure 6.10b).

(a) (b)

Figure 6.10: (a) The bisector areas induced by the two collinear horizontal edges and
two vertical edges are shown in red. (b) Selection of the Voronoi edges bounding bisector
areas by considering the collinear priority.

The collinear priority can also be seen as a simulated perturbation of the set of collinear
edges. Suppose that the horizontal collinear edges are displaced by an infinitesimal amount
towards the interior of P , such that the rightmost edges are more displaced (see Figure 6.11).
Similarly, the vertical edges above are displaced a little more.

Lemma 13. Consider a set of collinear edges inducing a degeneracy by collinearity. It is
possible to perturb them such that the degeneracy is removed.

Proof. Consider that each edge of the collinear edges is moved inwards P by a different
infinitesimal amount. Then, the distance that considers only the coordinate aligned
with the collinear edges is different for each perturbed collinear edge. Thus, after the
perturbation, the points of the bisector area must belong to a Voronoi region or to a
Voronoi edge.

85

CHAPTER 6. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYGONS

(a) (b)

Figure 6.11: (a) An orthogonal polygon with three collinear horizontal edges inducing
three bisector areas: two of them are L∞ equidistant to two collinear edges and the other
one is equidistant to three collinear edges.(b) Illustration of the infinitesimal perturbation
of the collinear edges that simulates the collinear priority.

6.5.3 Degeneracy by coincidence

A degeneracy by coincidence occurs when a Voronoi vertex is equidistant to more than
three non-collinear edges. Observe that after treating a degeneracy by collinearity, a
degeneracy by coincidence still may arise.

Lemma 14. A coincident degenerate vertex of V∞ (P) is L∞ equidistant to four non-
collinear edges of P.

Proof. At most eight Voronoi edges converge to a degenerate vertex is (see Lemma 12).
These eight Voronoi edges must be associated to four reflex vertices with eight incident
edges. However, four sets of two edges are collinear. After the collinear perturbation, only
one edge of each set of four collinear edges can be L∞ equidistant to a Voronoi vertex.
Thus, at most four non-collinear edges can be L∞ equidistant to a Voronoi vertex.

Lemma 15. A coincident degenerate Voronoi vertex of V∞ (P) can be separated into two
non degenerate Voronoi vertices with the same coordinate and a zero length Voronoi edge
connecting them.

Proof. Consider, without loss of generality, that the four edges defining a coincident
degenerate Voronoi vertex (see Lemma 14) are associated to the next half-planes oriented
inside P :

h1 : x > c1 , h2 : x < c2 , h3 : y > c3 , h4 : y < c4 c1 6= c2 ∧ c3 6= c4

Thus, as the Voronoi vertex is degenerate, it follows that c2 − c1 = c4 − c3 > 0. Consider
that a perturbation of one infinitesimal unit ε is done for the horizontal edges, such that
h1 : x > c1 + ε and h2 : x < c2 − ε. Then, the four edges cannot define a single square
as the horizontal length is now c2 − c1 + 2ε 6= c4 − c3. Thus, two different squares can
be defined by the four edges and their centers are two Voronoi vertices with the same
coordinates connected by a zero length Voronoi edge.

86

CHAPTER 6. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYGONS

Thus, every time a coincident degeneracy is detected, a simulated perturbation is
applied to the horizontal edges of the degeneracy (see Lemma 15). Figure 6.12 shows
all the possible combinations of coincident degenerate Voronoi vertices, when two vertex
rays are implied, and the result of applying the simulated perturbation. Note that the
computation of the Voronoi vertex coordinates are not affected by the perturbation.

(a) (b)

(c) (d)

(e) (f)

Figure 6.12: In the left column, there are coincident degenerate Voronoi vertices induced
by four edges associated to two vertex rays. In the right column, there is an illustration
of the horizontal edges perturbation, which result in two Voronoi vertices connected by a
Voronoi edge.

6.6 Straight skeleton equivalence

In this section, a detailed proof of the known equivalence between the Voronoi edges of
V∞ (P) and the straight skeleton (see Section 3.1.5) of P is given.

87

CHAPTER 6. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYGONS

Lemma 16. Let P be an orthogonal polygon without collinear edges. The Voronoi edges
of V∞ (P) coincide with the straight skeleton of P.

Proof. Let p be a point of the Voronoi edges of V∞ (P) that is L∞ equidistant to a set
E of two or more non-collinear edges of P (see for example Figure 6.13a). First, as all
the vertices of P have an angle of π

2
or 3π

2
, they move at equal speed during the straight

skeleton wavefront propagation. Thus, the edges E are moved inwards P , at equal speed,
and parallel to themselves during the straight skeleton shrinking process. At any time
of the propagation, p is L∞ equidistant to the moving edges E, as they are axis-aligned.
Observe that if the edges move at equal speed but are not axis-aligned, then V∞ (P) may
not coincide with the straight skeleton (see for example Figure 6.13b). Suppose that at
some time of the straight skeleton propagation, some edges of P and not from E are L∞
equidistant to p. However, this would imply that these edges moved inwards at a higher
velocity than the edges of E. Otherwise, they would belong to E. Then, the straight
skeleton propagation of the edges E reach p at the same time and as a consequence p
must belong to the straight skeleton of P .

Observe that if P contains collinear edges, p could be L∞ equidistant to an arbitrary
amount of collinear edges, and as a consequence the straight skeleton of P could not
coincide with V∞ (P).

(a) (b)

Figure 6.13: Illustration of Lemma 16. The straight skeleton is shown in red and the
L∞ Voronoi diagram is shown in green. The dotted lines illustrate the straight skeleton
wavefront propagation. (a) The point p is L∞ equidistant to e1 and e2 during the straight
skeleton wavefront propagation. (b) The straight skeleton and the L∞ Voronoi diagram
may not coincide, although all the vertices of the straight skeleton wavefront propagate at
an equal speed.

In the literature, some authors consider that the collinear edges of P may be considered
to be equal or different, during the straight skeleton wavefront propagation. If they are
considered to be equal, the Voronoi edges of V∞ (P) that do not bound a bisector area

88

CHAPTER 6. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYGONS

(see Section 6.5.2) coincide with the straight skeleton. The following lemma assumes the
latter case.

Lemma 17. The straight skeleton of an orthogonal polygon withouth collinear edges can
be computed in O (n log n) time and O (n) space, where n is the number of vertices of P.

Proof. The straight skeleton coincide with the edges of V∞ (P) (see Lemma 16). The
edges of V∞ (P) can be computed in O (n log n) time and O (n) space (see Lemmas 10
and 11).

6.7 Experimental results

The presented specific implementations to compute the L∞ Voronoi diagram and the
straight skeleton of orthogonal polygons have been compared with an optimized thinning
approach [30] that computes the straight skeleton of a binary image and the CGAL
implementation of the straight skeleton of a polygon with holes [1]. Both algorithms have
been implemented in C++ and the source code consists of about two thousand lines of
code. Unfortunately, there is no publicly available software to compute the L∞ Voronoi
diagram of a polygon or line segments. The experiments were conducted with a database
of around one thousand binary shapes and three thousand samples of randomly generated
orthogonal manifold polygons with varying densities (see Figure 6.14). In addition, the
presented approaches were tested with thousand datasets containing pseudomanifold
vertices and floating point coordinates, in order to verify their robustness. The available
memory was limited to 16GB and the time computation was at most twenty minutes for
each dataset. The polygons have at most one and a half million vertices. The running
times of the edge-based approach are almost equal to those of the vertex-based approach
and are included in the same category. In order to be faithful with the comparison of the
presented approach and the discrete approach of [30] the times of the presented Voronoi
based approach also include the discretization of the Voronoi edges, which is almost
negligible. Figure 6.15 shows the V∞ (P) of two simple datasets.

The CGAL straight skeleton computation has a theoretically quadratic complexity
with respect to the number of vertices of the polygon (see Figure 6.14c). The average
runtime was 0.037 n2 µs. Unfortunately, for polygons with more than seventeen thousand
vertices the CGAL approach consumed all the avaliable RAM memory, thus slowing the
computation process. For this reason these polygons have not been tested.

The CGAL straight skeleton computation using exact arithmetic also consumed all
the available RAM memory for polygons with more than ten thousand vertices (see
Figure 6.14d). Its average runtime was 11.5 n2 µs. The exact arithmetic dramatically
dropped the performance by an average factor of three hundred compared with the inexact
arithmetic approach.

The thinning method to compute the skeleton exceeded the twenty minutes limit of
computation time for datasets with more than eight hundred thousand vertices. The time
complexity of the thinning approach is bounded by the number of pixels of the binary
image representing P and not by the number of vertices of P . Thus, the time data shown
in Figure 6.14b is not correlated with the number of vertices.

89

CHAPTER 6. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYGONS

The presented implementations revealed an average runtime of 1.03 n log n µs and
are an order of magnitude faster than the CGAL approaches. Surprisingly, the curve
fitting of the runtimes of the presented approaches had the best asymptotic standard error
when assuming that the algorithm has lineal time complexity compared with assuming
linearithmic time complexity (see Figure 6.14a). However, it is expected that for datasets
bigger than the tested ones the runtimes may exhibit a linearithmic complexity. As
expected, the thinning approach was much slower than the presented approach because
its time complexity depends on the size of the binary image, which grows fast.

(a) Presented approach (b) Approach of [30]

(c) CGAL (d) CGAL, exact arithmetic

Figure 6.14: Running times of different methods to compute V∞ (P). The abscissa
denotes the number of vertices of P. The ordinate denotes the running time in seconds.
Every blue point depicts the runtime for a single dataset. The red line corresponds to
the curve fitted to the theoretical time complexity of each algorithm, with respect to the
number of vertices of the polygon.

90

CHAPTER 6. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYGONS

(a) (b)

Figure 6.15: The edges of V∞ (P) are shown in red. Dataset (b) has been randomly
generated.

6.8 Conclusions

Two practical specific implementations to compute the L∞ Voronoi diagram and the
straight skeleton of an orthogonal polygon have been presented. All the algorithms run
in O (n log n) time and O (n) space, where n is the number of vertices of the orthogonal
polygon. Geometrical degeneracies and pseudomanifold orthogonal polygons are correctly
treated. The equivalence of the straight skeleton and the L∞ Voronoi diagram has been
studied. In addition, experimental results over several datasets demonstrate the efficiency
of the presented methods.

91

Chapter 7

L∞ Voronoi diagram of orthogonal
polyhedra

Contents
7.1 Introduction . 93

7.2 Previous definitions and properties 94

7.3 Algorithm overview . 95

7.4 Vertex event . 99

7.5 Junction event . 100

7.5.1 Ray-ray junction event . 100

7.5.2 Ray-face junction event . 103

7.6 Nearest junction event computation 104

7.7 Algorithm complexity . 105

7.8 Treatment of degenerate cases 108

7.8.1 Degeneracy by coplanarity . 109

7.8.2 Degeneracy by coincidence . 110

7.9 Straight skeleton equivalence 112

7.10 Experimental results . 112

7.11 Conclusions . 113

7.1 Introduction

Although the combinatorial complexity of the L∞ Voronoi diagram of polyhedra (O (n2+ε),
for any ε > 0) has been studied [140] , little has been done in relation to its computation.
As with the two-dimensional case (see Chapter 6), the three-dimensional L∞ Voronoi
diagram may serve as a skeletal representation of orthogonal polyhedra. Thus, it is
desirable to have a practical and robust algorithm to compute it.

93

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

In this chapter a sweep line algorithm to compute the L∞ Voronoi diagram of an
orthogonal polyhedron is presented. The two-dimensional vertex-based algorithm (see
Chapter 6) is extended to three dimensions. The introduced method is proven theoretically
and experimentally to be efficient and robust. In addition, a detailed proof of the
equivalence between the L∞ Voronoi diagram and the straight skeleton of an orthogonal
polyhedron is given. This chapter is an extended and adapted version of the article [159].

7.2 Previous definitions and properties

In the following, some needed previous definitions and properties are introduced. Most of
them are analogous to the ones provided for the two-dimensional case. In this chapter,
P denotes an orthogonal polyhedron with only trihedral vertices (see Chapter 5). The
Voronoi diagram of P under the L∞ metric is denoted as V∞ (P) (see Definition 21). It is
known that the straight skeleton of orthogonal polyhedra is a superset of the L∞ Voronoi
diagram [33]. Thus, it follows that the combinatorial complexity of V∞ (P) is O (n2) (see
Section 3.1.5).

Lemma 18. Four axis-aligned open half-spaces in R3 define a cube if and only if two of
them are parallel, their intersection is not empty and the other two are aligned with the
two remaining axis.

Proof. It is clear that if three or more half-spaces are parallel they cannot define a cube.
Consider, without loss of generality, the next open half-spaces, two of them parallel and
the other two aligned with the two remaining axis:

h1 : x > c1 , h2 : x < c2 , h3 : y > c3 , h4 : z > c4 c1 6= c2

The intersection of half-spaces h1 and h2 is non empty if c1 > c2. In this case, the length
of the cube edges is c1 − c2. The coordinates of the cube vertices are directly obtained
from the cube vertex(c1, c3, c4) and the cube edges length. The center of the cube is(
c1+c2

2
, c3 + c1−c2

2
, c4 + c1−c2

2

)
.

Property 14. Four faces of P define a cube if and only if their associated half-spaces
oriented inside P define a cube (see Lemma 18) and the intersection between the cube
boundary and all four faces is not empty.

Definition 43. A Voronoi vertex of V∞ (P) is degenerate if it is L∞ equidistant to more
than four faces of P.

Definition 44. An orthogonal polyhedron P is in general position if it is an orthogonal
manifold polyhedron, without coplanar faces and V∞ (P) has no degenerate Voronoi vertices.

The orthogonal polyhedron P is considered to be in general position from Section 7.3
to 7.6. Section 7.8 deals with geometrical degeneracies.

94

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

7.3 Algorithm overview

The presented algorithm is based on the vertex-based sweep line algorithm (see Section 2)
to compute the L∞ Voronoi diagram of a polygon (see Section 6.4) and considers a sweep
plane instead of a sweep line. The main idea of the method is to trace rays, corresponding
to Voronoi edges, that progressively construct the Voronoi diagram. Let L be the sweep
plane perpendicular to the z-axis (z = t). The sweep process is done by decreasing the
value of t: by sweeping from top to bottom. The priority queue E stores the events found
during the sweep. Like the two-dimensional case, the events are either vertices of P or
candidate Voronoi vertices of V∞ (P). The status data structure W, that maintains the
wavefront, is an undirected graph.

Computed Voronoi diagram

Wavefront

Sweep plane

Ray

Figure 7.1: Scheme of the sweep plane algorithm to compute the L∞ Voronoi diagram
of an orthogonal polyhedron. The orthogonal polyhedron, drawn in gray, is in general
position. The sweep plane L is considered to move down the z axis.

Definition 45. At any moment t of the sweeping process, L partitions the faces of P into
three subsets: At are the faces that lie above of L, It are the faces that intersect L, and
Bt are the faces that lie below of L. Ct is composed of the portions of the faces It that lie
above L. Lt is the set of faces of P contained in L and with the interior of P above, plus
the portion of L that belongs to the interior of P.

Definition 46. At any moment t of the sweeping process, the faces of P that lie above L,
that is At ∪ Ct, are called Pt.

An invariant of the algorithm is that, at any moment t of the sweeping process, the
L∞ Voronoi diagram of At ∪ Ct ∪ Lt, which is called Vt (P), is already computed.

Definition 47. At any moment t of the sweeping process, the wavefrontWt is the boundary
of the Voronoi regions (see Definition 20) of Vt (P) associated to the faces Lt, and that are
not Lt itself. The Voronoi faces induced by Lt are the wavefront faces and their Voronoi
edges and vertices are the wavefront edges and wavefront vertices, respectively.

95

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

The following lemma, related to the wavefront monotonicity, is analogous to the
two-dimensional Lemma 9.

Lemma 19. The wavefront faces are monotone with respect to the sweep plane.

Proof. Let p = (x, y, z) be a point in Lt, in wavefront face f of Lt, and let p′ = (x, y, z′)
be the point with maximal z′ value in the Voronoi region of f . Thus, p′ belongs to the
wavefront. The interior of the cube centered at p′ and touching p, do not intersect the
boundary of At ∪ Ct ∪ Lt. For every x ∈ [p, p′], the cube centered at x that touches p
cannot intersect any face from At ∪ Ct ∪ Lt, apart from the one that contains p. Thus,
the maximal cube centered at p′ is empty, and contains every cube centred at a point on
the segment [p, p′], hence all of those are empty as well, and must belong to the Voronoi
region of f . So, there cannot exist any point of the wavefront between p and p′ and it
follows that the wavefront faces are monotone with respect to the sweep plane.

Definition 48. At any moment of the sweeping process, a ray is a half-line that supports
a Voronoi edge, with its origin in a vertex of P or in a Voronoi vertex of V∞ (P). The end
of the Voronoi edge remains to be calculated. Once calculated, the ray becomes a Voronoi
edge of V∞ (P) (see Figure 7.1).

In general position, a ray is contained in the L∞ bisector of three faces f1, f2 and f3
of P and is denoted by {f1, f2, f3}.

Definition 49. The ray emanating from a vertex of P is defined by its three incident
faces and it is called vertex ray.

Definition 50. The intersection point between two rays {f1, f2, f3} and {f1, f2, f4} is the
center of the cube defined by the faces f1, f2, f3 and f4 (see Property 14).

Note that as P is in general position, the two intersecting rays {f1, f2, f3} and
{f1, f2, f4} must share two faces, f1 and f2.

Definition 51. The intersection point between a ray {f1, f2, f3} and a face f4 of P is the
center of the cube defined by the faces f1, f2, f3 and f4 (see Property 14).

The next property determines the direction of a ray that emanates from a Voronoi
vertex.

Property 15. Let {f1, f2, f3} be a ray, with origin in the Voronoi vertex equidistant to
the faces f1, f2, f3 and f4. If any edge bounded by the faces f1f4 and f2f4 and f3f4 form
a reflex angle, then the ray is oriented towards the interior of P defined by f4. Otherwise,
the ray is oriented in the opposite direction.

For example, consider the ray {fy1, fy2, fz} of Figure 7.5, that emanates from the
Voronoi vertex defined by the faces fx, fy1, fy2, and fz. As the edge bounded by the faces
fxfy1 is reflex, the ray is inversely oriented towards the interior of P defined by fx.

Definition 52. At any moment t of the sweeping process, the set of rays that define a
cube with L are called wavefront rays (see Figure 7.1).

96

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

Property 16. At any moment t of the sweeping process, the vertices of the wavefront are:

• The center of the cube defined by a wavefront ray and L.

• The intersection point between an edge from a face of It, parallel to the z-axis, and
L.

Observe that during the sweep process some rays that do not define a cube with L
may appear (for example, the ray {fy1, fy2, fz1} of Figure 7.6b).

Definition 53. The status data structure W is an undirected graph, whose vertices are
the rays. An edge of this graph indicates that the corresponding rays share two faces.

Note that the edges of the graph W are wavefront edges. The wavefront vertices
defined by the intersection between an edge e of It and L (see Property 16) are implicitly
defined by the wavefront ray induced by the faces bounding e and another face. For
example, the ray {fx2, fy1, fy2} of Figure 7.6d explicitly defines a wavefront vertex that
corresponds to the center of the cube defined with L, and implicitly defines two wavefront
vertices that correspond to the intersection between the edges, parallel to the z-axis and
bounded by the faces fx2fy1 and fx2fy2, and L.

Lemma 20. W is a planar graph.

Proof. As a consequence of Lemma 19, the wavefront vertices can be projected in the
sweep plane, and it follows that W is a planar graph.

Lemma 21. A vertex of W has at most three incident edges.

Proof. Two rays are connected by an edge through two common faces. As a ray is defined
by three faces, there can be at most three different pairs of faces that define three edges
of W.

In fact, W is a bounded degree graph, a graph where no vertex has more than k
neighbors. There exist algorithms to test efficiently some properties of bounded degree
graphs [109].

Lemma 22. W has at most O (n) vertices, where n is the number of vertices of P.

Proof. At any moment t of the sweeping process, consider a single face ft of Lt, which
induces part or all the wavefront. The Voronoi region of ft is bounded by at most O (n)
planes, which correspond to the L∞ bisectors between ft and the rest of faces of Pt (see
Definition 46). Thus, the Voronoi region of ft has at most O (n) vertices and it follows
that W also has at most O (n) vertices.

W is stored in a dynamic data structure for planar graphs [214], which uses balanced
search trees. The insertion and deletion of vertices and edges on that dynamic data
structure can be done in O (log n) time, where n is the number of graph vertices. Thus,
the next property follows from Lemma 22.

97

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

Property 17. The insertion and deletion of vertices and edges of W can be done in
O (log n) time, where n is the number of vertices of W.

At any moment of the sweeping process, if two rays are defined by the same three
faces, a Voronoi edge connecting their origins is added to V∞ (P) and, if necessary, both
rays are deleted from W. For example, the ray {fy1, fy2, fz1} of Figure 7.6b will be deleted
from W when another ray, defined by the same three faces and origin in the opposite
endpoint of the Voronoi edge containing the ray, will be created.

The wavefront faces can be obtained by traversing edge loops of wavefront rays from
W induced by vertices with a common face. Note that W describes the combinatorial
structure of the wavefront. The wavefront data structure only needs to be updated each
time an event occurs. Two different types of events may occur during the sweep:

• Vertex event: the occurrence of a trihedral vertex of P . The priority of a vertex
event is defined by the vertex coordinate.

• Junction event: the intersection between two rays or a ray and a face that could
induce a new Voronoi vertex. The priority of a junction event is given by the vertex
of the junction event cube that has the lowest z, y and x coordinate, in this order.
That is, as soon as the intersection is reached by the wavefront and not by the
sweeping plane. There exist two types of junction events:

– Ray-ray junction event: the intersection of two rays.

– Ray-face junction event: the intersection of a ray and a face of P .

The events of E are sorted according to its priority in zyx-lexicographical order. If
two junction events have the same priority, the junction event whose cube has the bigger
side length is processed first. In addition, if the z coordinate priority of a vertex event
and a junction event coincide, the vertex event is processed first. Initially, E is the sorted
set of vertex events induced by the vertices of P . New events may be inserted in E each
time an event is processed. The events are processed until E is empty. Every time a
junction event is processed it must be checked if it is a Voronoi vertex. If not, the event is
rejected. Observe that the event processing is analogous to the two-dimensional vertex
based algorithm (see Section 6.4).

As the sweep plane moves below, the L∞ distance from L and the set of faces Pt above
L cannot decrease because the L∞ distance is convex. Therefore, the following property
holds.

Property 18. For any t > t′, and for any face f ∈ Pt, V or∞ (f, Pt) ⊆ V or∞ (f, Pt′).

The correctness of the presented algorithm is due to the following lemma.

Lemma 23. The wavefront can only change its structure when an event occurs.

Proof. First, suppose that no event occurs within a time interval and a wavefront face is
removed from the wavefront. The wavefront faces move along their rays. Since the rays

98

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

do not cross or do not intersect other faces, as junction events do not occur, it follows
that no wavefront face can be removed from the wavefront.

Second, suppose that at time t in the interval t′ > t > t′′, a new wavefront face appears
in the wavefront. Observe that this new wavefront face must be associated to a face
of Pt′ , otherwise a vertex event should have occured during the time interval. Due to
Property 18, f has already contributed one or more wavefront faces to Wt′ and none of
them has yet been removed, as their respective Voronoi regions cannot decrease in size.
For each wavefront face of Wt associated to f , consider an arc that connects it with f .
Since the arc is contained in the Voronoi region of f , it must pass through a wavefront
face of Wt′ . As Wt′ contains fewer wavefront faces associated to f than to Wt, there must
be two arcs leading through the same wavefront face of Wt′ . Thus, a wavefront face of Wt

that is neighboring any of the wavefront faces associated to f , may be separated from its
respective Voronoi region. This can only happens if new polyhedron faces that do not
belong to Pt′ appear, which is a contradiction. It follows that the topological structure of
the wavefront cannot change before time t′′.

The Voronoi edges and vertices of V∞ (P) are stored in a static undirected graph [71].
Every Voronoi vertex is L∞ equidistant to four faces of P or, in the case of the vertices of
P , to three faces. A Voronoi edge is defined by the three faces shared by its two endpoint
vertices. A Voronoi face can be obtained by traversing the edge loops of the graph that
share a common Voronoi face.

In the following two sections, it is described how to process each event. Next, the
computation of new junction events is discussed in Section 7.6. Section 7.8 presents a
technique to cope with geometric degeneracies.

7.4 Vertex event

Thanks to the trihedralization step presented in Chapter 5, the vertex event processing
becomes much simpler because only one vertex ray emanates from any vertex of P .

Foremost, the vertex ray is inserted in W. Then, consider that the incident face of the
vertex, perpendicular to the z-axis, has the interior of P above. In this case, the vertex
ray must intersect a wavefront face. Otherwise, the vertex ray will become a wavefront
ray once the sweep plane is moved down.

The vertex ray is connected with its two adjacent vertex rays with the same z coordinate,
if they are present, in W. For example, Figure 7.6a shows the status of W after processing
the four vertex events contained in the upper face, perpendicular to the z-axis.

In addition, consider the edge ez of P , incident to the vertex and parallel to the z-axis.
The vertex ray may be connected with the wavefront ray of W defined by the two faces
of P that bound the edge ez and another face. For example, the vertex event induced
by the ray {fx2, fy2, fz2} of Figure 7.6d is connected to the wavefront ray {fx2, fy1, fy2},
because it is defined by the two faces bounding the incident edge of the vertex, parallel to
the z-axis, and an additional third face.

99

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

Lemma 24. The vertex event update of W can be done in O (log n) time, where n is the
number of vertices of W.

Proof. The connection with the two adjacent vertex rays that have the same z coordinate
can be done in O (log n) time (see Property 17). In addition, consider that for each edge
ez of P , parallel to the z-axis, it is stored a pointer to the last wavefront ray, if it exists,
that contains the faces bounding ez. Observe that, at any moment of the sweeping process
only one wavefront ray that can be associated to ez is stored. Thus, the vertex ray can be
also connected in O (log n) time.

Finally, the nearest junction event induced by the vertex ray is computed (see Sec-
tion 7.6) and inserted in E. See Algorithm 9 for an overview of the vertex event processing.

Algorithm 9 Vertex event processing algorithm.

Update W by inserting the vertex ray
Insert the nearest junction event induced by the vertex ray in E

7.5 Junction event

A junction event corresponds to the center of the cube defined by four faces of P (see
Property 14) and may define a Voronoi vertex of V∞ (P). The priority of a junction event
is given by the vertex of the defined cube that has the lowest priority according to the
zyx-lexicographical order. A junction event may be invalidated before its priority point is
reached, because new faces of L may induce new junction events that are closer. Next, it
is described how to process each type of junction event.

7.5.1 Ray-ray junction event

A ray-ray junction event corresponds to the intersection between two rays (see Defini-
tion 50). A ray-ray junction event defines a Voronoi vertex if both rays belong to W and
are connected in W. If the ray-ray junction defines a Voronoi vertex, the two rays are
deleted from W and the two Voronoi edges incident to the Voronoi vertex are inserted
in V∞ (P). In addition, two new rays defined by the two different faces between the
intersecting rays and each common face between them are inserted in W (see Figure 7.2
for an example).

The connectivity of every ray deleted or inserted in W, during the processing of the
ray-ray junction event, must be updated. The neighboring rays in W of the deleted rays
are retrieved and connected, if necessary, with the new rays. Two rays are connected if
they share two faces. For example, in Figure 7.6b the ray-ray junction event induced by
the rays {fx2, fy1, fz1} and {fx2, fy2, fz1} creates two new rays, one that does not intersect
L and the other a wavefront ray, that are connected with the neighboring rays in W
with two common faces. In Figure 7.6c, three rays are deleted from W after processing
the ray-ray junction event induced by the rays {fx1, fy1, fz1} and {fx1, fy2, fz1}. The
connectivity of the two remaining wavefront rays in W is updated.

100

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

z

x
y

Figure 7.2: Ray-ray junction event. The rays {fx, fy1, fz} and {fx, fy2, fz} intersect and
define a cube whose center is a Voronoi vertex. As a result, two new rays {fx, fy1, fy2}
and {fy1, fy2, fz} are created.

Lemma 25. The ray-ray junction event update of W can be done in O (log n) time, where
n is the number of vertices of W.

Proof. The graph vertices and edges associated to the set of deleted rays are removed
from W in O (log n) time (see Property 17). The wavefront graph connectivity of the new
rays inserted must be updated. A ray-ray event may create at most two new rays that
have at most six neighboring rays (see Lemma 21). Thus, only a constant number of
possible connections between graph vertices must be checked.

Finally, the nearest junction events induced by both new rays are computed (see
Section 7.6) and inserted in E. See Algorithm 10 for an overview of the vertex event
processing.

Algorithm 10 Ray-ray junction event processing algorithm.

Let {f1, f2, f3} and {f1, f2, f4} be two intersecting rays
if both rays are in W and connected then

Delete both intersecting rays from W
Insert the edges connecting the Voronoi vertex and both rays origin in V∞ (P)
Insert the rays {f1, f3, f4} and {f2, f3, f4} in W
Update connectivity of inserted and deleted rays in W
Insert the nearest junction event induced by both new rays in E

end if

Unalterable ray-ray junction event

In some cases, a ray-ray junction event does not involve any change of W. These junction
events are called unalterable ray-ray junction events. The well-formed property of rays is
introduced in order to characterize them.

101

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

Definition 54. A point contained in a ray defines a cube if there exists a cube centered
in the point whose boundary touches the three faces defining the ray.

Definition 55. A ray is well-formed if there exists a non empty segment s, with origin
in the ray origin and contained in the ray, such that all the points of s define a cube with
the ray.

Definition 56. An unalterable ray-ray junction event is a ray-ray junction event that
will create at least one new ray that is not well-formed.

Observe that unalterable ray-ray junction events may even appear in general position
(see Figure 7.3 and 7.4) and can be detected by locally analyzing if each of the two new
rays are well-formed. An unalterable ray-ray junction is processed by placing the origin
of both rays inducing the junction event on the new Voronoi vertex. In addition, the
nearest junction of both junction event rays needs to be recalculated (see Section 7.6) and
inserted in E. See Algorithm 11 for an overview of the unalterable ray-ray junction event
processing.

Figure 7.3: The ray-ray junction event induced by the red rays {fx, fy, fz1} and
{fx, fy, fz2} is unalterable. The rays {fy, fz1, fz2} and {fx, fz1, fz2} are not well-formed
since either the face fx1 or the face fx2 do not intersect any cube contained in both rays,
except for the rays origin. Thus, the outgoing blue rays, after processing the junction
event, are the original junction event rays with its origin changed to the new Voronoi
vertex.

Algorithm 11 Unalterable ray-ray junction event processing algorithm.

Insert the edges connecting the Voronoi vertex and the origin of each ray in V∞ (P)
Change the origin of both rays to the Voronoi vertex
Insert the nearest junction event of both rays in E

102

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

z
x

y

Figure 7.4: The ray-ray junction event induced by the red rays {fy1, fy2, fz} and
{fx, fy1, fz} is unalterable. The ray {fx, fy1, fy2} is not well-formed since either the face
fx or the face fy2 do not intersect any cube contained in the ray. The outgoing rays are
shown in blue.

7.5.2 Ray-face junction event

A ray-face junction event corresponds to the intersection between a ray and a face (see
Definition 51). A ray-face junction event defines a Voronoi vertex if the ray belongs to
W. If the ray-face junction defines a Voronoi vertex, the ray is deleted from W and the
incident Voronoi edge to the Voronoi vertex is inserted in V∞ (P). In addition, three new
rays defined by each different pair faces from the intersecting ray and the intersected face
are inserted in W (see Figure 7.5).

z
x

y

Figure 7.5: Ray-face junction event. The ray {fx, fy1, fz} intersects the face fy2 and
define a cube whose center is a Voronoi vertex. Three new rays {fx, fy1, fy2}, {fx, fy2, fz}
and {fy1, fy2, fz} are created.

Similarly to the ray-ray junction event, the connectivity of every deleted and inserted
ray in W, during the processing of the ray-face junction event, must be updated. The
neighboring rays in W of the deleted rays are retrieved and they are connected, if necessary,

103

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

with the new junction event rays.
In addition, some wavefront edges of W may be split by the new rays. Let {f1, f2, f3}

be a new ray, with origin in the junction event defined by the faces F = {f1, f2, f3, f4}. If
the pair of faces (fi, f4), with i ∈ {1 . . . 3}, bounds a reflex edge of P and the pair of faces
F \ (fi, f4), corresponds to an existing wavefront edge containing the ray origin, then the
new ray may split the wavefront edge into two wavefront edges. For example, consider
the ray-face event of Figure 7.7b induced by the ray {fx2, fy2, fz} and the face fy3. The
new rays {fy2, fy3, fz} and {fx2, fy3, fz} split the wavefront edge, defined by the faces fy2
and fy3, into two separate wavefront edges.

Lemma 26. The ray-face junction event update of W can be done in O (log n) time,
where n is the number of vertices of W.

Proof. As seen in Lemma 25, the connectivity of new rays inserted in W can be updated
in O (log n) time. In addition, consider that every ray-face junction stores a pointer to
each wavefront edge, if they exist, that may be split. At most, three pointers are required.
Thus, the wavefront edge split can also be done in O (log n) time.

Finally, the nearest junction events induced by the three new rays are computed (see
Section 7.6) and inserted in E. See Algorithm 12 for an overview of the vertex event
processing.

Algorithm 12 Ray-face junction event processing algorithm.

Let {f1, f2, f3} be the ray and f4 the intersected face
if the intersecting ray is in W then

Delete the intersecting ray from W
Insert the edges connecting the Voronoi vertex and the ray origin in V∞ (P)
Insert the rays {f1, f2, f4}, {f2, f3, f4} and {f1, f3, f4} in W
Update connectivity of inserted and deleted rays in W
Update split wavefront edges of W
Insert Compute the nearest junction event induced by three new rays in E

end if

7.6 Nearest junction event computation

A fundamental step of the presented algorithms is the computation of the nearest junction
event of a ray. Each time a new ray is created or after processing an unalterable ray-ray
junction event, the nearest junction event of a ray must be inserted in E.

Lemma 27. The computation of the nearest ray-ray junction event can be done in O (1)
time.

Proof. The total number of feasible ray-ray junctions of a ray is bound by the number of
neighboring rays in W. There are at most three neighbors (see Lemma 21), so, at most,
three possible ray-ray junctions must be checked.

104

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

For example, consider the ray {fx2, fy3, fz} of Figure 7.7b. The ray-ray junction events
induced by its neighbors rays, {fx2, fy1, fz} and {fx1, fy3, fz}, in W may be the nearest
junction events.

Clearly, the most time consuming step of the nearest ray junction computation is the
detection of ray-face junctions.

Property 19. A ray may induce a ray-face junction event only if any pair of faces
defining the ray form a reflex edge of P.

Lemma 28. The computation of the nearest ray-face junction event can be done in O (n)
time, where n is the number of vertices of P.

Proof. Observe that W has linear size (see Lemma 22). First, consider that the incident
face of the vertex ray, perpendicular to the z-axis, has the interior of P above. In this
case, the wavefront face of W that is being intersected by the ray is found. This wavefront
face can be found straightforwardly in linear time by checking all the wavefront faces.
Observe that this ray-face junction event is always a Voronoi vertex.

Otherwise, the ray may intersect some wavefront edge. More precisely, let f be a face
defining the ray. If f corresponds to a wavefront face, the ray may intersect a wavefront
edge of f bound by the faces {f, fi}. Observe, that this wavefront edge intersection is
equivalent to the intersection between the ray and the face fi. Thus, at most a linear
number of wavefront edges may be checked.

An example of the computation of the nearest ray-face junction event induced by a
vertex ray, such that its incident face is perpendicular to the z-axis, and has the interior of
P above, can be seen in Figure 7.8. As P is in general position, the vertex ray induced by
the vertex v must intersect a single wavefront face. This intersection is found by checking
all the wavefront faces.

An example of the computation of the ray-face junction event induced by a ray, that
is not a vertex ray with an incident face, perpendicular to the z-axis, and having the
interior of P above, can be seen in Figure 7.7a. The vertex ray {fx2, fy2, fz} intersects
the wavefront edge defined by the faces fz and fy3. In this case, the intersection is found,
if it exists, by checking all the wavefront edges of the wavefront face of fz.

7.7 Algorithm complexity

Lemma 29. The V∞ (P) can be computed in O (kn) time, where k is the number of events
processed by the algorithm and n the number of vertices of P.

Proof. Each time an event is processed, the wavefront update is done in logarithmic time
(see Lemmas 24, 25 and 26). The nearest ray-ray junction computation is done in constant
time (see Lemma 27) and the nearest ray-face junction computation in linear time (see
Lemma 28) with respect to n. Thus, the overall time complexity is O (kn).

105

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

z

x
y

(a)

z

x
y

(b)

z

x
y

(c)

z

x
y

(d)

Figure 7.6: Illustration of the processing of vertex and ray-ray junction events. Status
of W shown to the right. The blue arrows are wavefront rays, that currently define a zero
length Voronoi edge, shown for illustrative purposes.

106

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

z

x
y

(a)

z

y
x

(b)

Figure 7.7: Illustration of the processing of a ray-face junction event, where a ray
intersects a wavefront edge. Status of W shown at the right.

z

y
x

(a)

z

y
x

(b)

Figure 7.8: Illustration of the processing of a ray-face junction event, where a ray
intersects a wavefront face. (a) The vertex ray induced by the vertex v must intersect a
wavefront face. (b) After processing the ray-face junction event induced by the vertex
ray of v, that intersects the wavefront face fy, three new rays are created.

107

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

7.8 Treatment of degenerate cases

In this section, P could not be in general position. Geometrical degeneracies commonly
arise in the case of orthogonal polyhedra, especially in the case of orthogonal polyhedra
obtained from voxel representations. A robust algorithm must consider all of them.

Lemma 30. Let P be an orthogonal polyhedron, ant let p be a point in the interior of P.
At most twenty-four Voronoi faces of V∞ (P) converge to p.

Proof. The Voronoi edges of V∞ (P) are axis-aligned or rotated π
4

radians along one or
two axes. Each Voronoi edge may be L∞ equidistant to three different faces of P . Thus,
there are at most twenty-four Voronoi faces converging to p (see Figure 7.9).

Figure 7.9: Worst-case degenerate Voronoi vertex of V∞ (P) induced by twenty-four
faces of P .

Observe that under the Euclidean metric, an arbitrary amount of Voronoi faces may
converge to a Voronoi vertex of a polyhedron. Thus, a more simple and robust approach
can be designed for the case of orthogonal polyhedra and L∞ metric. Two types of
geometrical degeneracies are distinguished:

• Degeneracy by coplanarity: a three-dimensional volume containing points that
are L∞ equidistant to two or more coplanar faces.

• Degeneracy by coincidence: there exists a Voronoi vertex L∞ equidistant to
more than four non-collinear faces of P .

Note that it is not required to treat pseudomanifold degeneracies, as the trihedralization
step previously solves these kinds of degeneracies.

A technique to treat degeneracies based on a simulated perturbation, that relies on
simple geometric comparisons, is presented. This approach has a certain connection with
the simulation of simplicity proposed by Edelsbrunner et al. [89]. When a degeneracy
is detected, it is considered that the involved faces of P are displaced inwards by an

108

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

(a) (b)

Figure 7.10: (a) Degeneracy by coplanarity. The junction between the ray {f1, f2, f5}
and {f3, f4, f5} is degenerate due to coplanar faces f1 and f4. (b) Degeneracy by coin-
cidence. The junction between the ray {f1, f2, f5} and {f3, f4, f5} is degenerate because
the Voronoi vertex is equidistant to five faces.

infinitesimal amount. However, the computation of the coordinate of Voronoi vertices is
always based on the original coordinates of P . If a degeneracy is detected, the degeneracy
by coplanarity is treated before the degeneracy by coincidence. In the following, it is
presented how to treat each kind of degeneracy.

7.8.1 Degeneracy by coplanarity

A degeneracy by coplanarity occurs when a set of points that are L∞ equidistant to two
or more collinear faces define a three-dimensional volume in P which separates different
Voronoi regions.

Property 20. The set of points of P that are L∞ equidistant to two or more coplanar
faces of P can define a three-dimensional volume, called bisector volume, that separates
Voronoi regions and it is bound by Voronoi faces (see Figure 7.11).

Figure 7.11: A portion of an orthogonal polyhedron. Degeneracy by coplanarity induced
by two coplanar faces. The bisector volume is shown in red.

109

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

In two dimensions, two or more collinear edges may induce a bisector area (see
Section 6.5.2). By choosing any part of the boundary of that area the degeneracy is solved.
Analogously, in three dimensions the boundary of the bisector volume is selected. Every
time a degeneracy by coplanarity is detected, a perturbation of the involved coplanar
faces is simulated. The perturbation arbitrarily selects a portion of the bisector volume
boundary that is L∞ equidistant to the coplanar faces.

Lemma 31. Consider a set of coplanar faces inducing a degeneracy by coplanarity. It is
possible to perturb them such that the degeneracy is removed.

Proof. Consider that each face of the coplanar faces is moved inwards P by a different
infinitesimal amount. Then, the distance along the coordinate aligned with the coplanar
faces is different for each perturbed coplanar face. As a consequence, the L∞ distance
must differ between each coplanar face. Thus, after the perturbation the points of the
bisector volume must belong to a Voronoi region or to a Voronoi face.

7.8.2 Degeneracy by coincidence

A degeneracy by coincidence occurs when a Voronoi vertex is equidistant to more than
four non-coplanar faces. Observe that after treating first a degeneracy by coplanarity, a
degeneracy by coincidence still may arise.

Lemma 32. After the coplanar perturbation, a coincident degenerate vertex of V∞ (P) is
L∞ equidistant to at most six non-coplanar faces of P.

Proof. A degenerate vertex is L∞ equidistant to at most twenty-four faces (see Lemma 30).
However, six sets of four of these faces must be coplanar. After the coplanar perturbation,
only one face of each set of four coplanar faces can be L∞ equidistant to a Voronoi vertex.
Thus, at most six non-coplanar faces can be L∞ equidistant to a Voronoi vertex.

Lemma 33. A coincident degenerate vertex of V∞ (P) can be separated into two or
four non degenerate Voronoi vertices with the same coordinates and a zero length edge
connecting them or a zero area Voronoi face bounding them, respectively.

Proof. First, consider without loss of generality that six faces defining a coincident
degenerate vertex of V∞ (P) (see Lemma 32) are associated to the next half-spaces
oriented inside P :

h1 : x > c1 , h2 : x < c2 , h3 : y > c3 , h4 : y < c4 , h5 : z > c5 , h6 : z < c6

c1 6= c2 ∧ c3 6= c4 ∧ c5 6= c6

Thus, as the Voronoi vertex is L∞ equidistant to six faces it follows that c2−c1 = c4−c3 =
c6 − c5 > 0. Assume that a perturbation of one infinitesimal unit ε is done for the faces
aligned with the y coordinate, such that h3 : y > c3 + ε and h4 : y < c4 − ε and a
perturbation of two infinitesimal ε units is done for the faces aligned with the z coordinate,
such that h5 : z > c5 + 2ε and h6 : z < c6 − 2ε. Then, the six faces cannot define a single

110

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

cube as the y length of the cube is now c4− c3 + 2ε and the z length is c6− c5 + 4ε. Thus,
four different cubes must be defined by the six faces and their centers are four Voronoi
vertices with the same coordinates bounded by a zero area Voronoi face.

Finally, the case of five faces defining a coincident degenerate vertex can be reasoned
similarly to the case of six faces, and induce two Voronoi vertices with the same coordinates
connected by a zero area Voronoi edge.

Thus, every time a coincident degeneracy is detected a simulated perturbation is
applied to the faces aligned with the y and the z coordinate that are involved in the
degeneracy (see Lemma 33). Figure 7.12 shows two degeneracies by coincidence and the
result of applying the simulated perturbation.

(a) (b)

(c) (d)

Figure 7.12: In the left column, a degeneracy by coincidence induced by six non-coplanar
faces. In the right column, illustration of the faces perturbation, that results in four
Voronoi vertices bounded by a Voronoi face. Observe that the two vertex rays of (c) have
three incident reflex edges.

111

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

7.9 Straight skeleton equivalence

In this section, a detailed proof of the known equivalence between the Voronoi faces of
V∞ (P) and the straight skeleton (see Section 3.1.5) of P is given.

Lemma 34. The edges and vertices of P move at constant velocity during the straight
skeleton propagation.

Proof. All the edges of P have an angle of π
2

or 3π
2

. Thus, they move at a constant velocity.
Moreover, all the vertices of P have three incident edges, each one aligned with a different
axis, that move at constant speeds. As a consequence, all the vertices of P also move at
constant speeds.

Figure 7.13 shows the straight skeleton wavefront propagation of a simple orthogonal
polyhedron. The following lemma is analogous to the two-dimensional straight skeleton
equivalence Lemma 16.

Lemma 35. Let P be an orthogonal polyhedron without coplanar faces. The Voronoi
faces of V∞ (P) coincide with the straight skeleton of P.

Proof. Let p be a point of the Voronoi faces of V∞ (P), which is L∞ equidistant to a set
F of two or more non-coplanar faces of P . Lemma 34 states that the edges and vertices
of P move at a constant velocity during the straight skeleton wavefront propagation.
Thus, at any time of the propagation, p is L∞ equidistant to all the faces F . As with
the two-dimensional case, in order to maintain this latter property it is crucial that the
faces of P are axis-aligned. Furthermore, it is not possible that at any time of the straight
skeleton wavefront propagation any face f of P not included in F becomes L∞ equidistant
to p, as this would imply that f has been moving inwards at a greater speed than the
faces of F . Then, it follows that the straight skeleton propagation of F reaches p at the
same time and as a consequence p must belong to the straight skeleton of P .

Observe that, analogously to the two-dimensional case, if P contains coplanar edges, p
could be L∞ equidistant to an arbitrary amount of coplanar faces and the equivalence do
not holds.

For the sake of simplicity, it is considered that coplanar faces become a single face
when they collapse, during the wavefront propagation, to a straight skeleton edge or
vertex. In this case, the Voronoi faces of V∞ (P) that do not bound a bisector volume (see
Section 7.8.1) coincide with the straight skeleton. Observe that the straight skeleton of
orthogonal polyhedra can be computed by the previously presented sweep plane algorithm.

7.10 Experimental results

The presented sweep line algorithm to compute the L∞ Voronoi diagram and the straight
skeleton of orthogonal polyhedra have been implemented and compared with an optimized
thinning approach [30] that computes the straight skeleton of a binary volume. The
introduced algorithm has been implemented in C++ and the source code consists of about

112

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

Figure 7.13: The dotted lines illustrate the straight skeleton wavefront propagation.
The straight skeleton and L∞ Voronoi diagram faces coincide. The L∞ Voronoi diagram
edges are shown in red.

three thousand lines of code. The experiments were conducted with a database of around
one hundred binary shapes and three thousand samples of randomly generated orthogonal
polyhedra with varying densities (see Figure 7.14). The available memory was limited to
16GB and the time computation was at most thirty minutes for each dataset. Figures 7.16
and 7.17 shows the V∞ (P) of some datasets.

It has been verified experimentally that the combinatorial complexity of V∞ (P) is in
fact linear (see Figure 7.15), although the theoretical combinatorial complexity of the
straight skeleton of P is quadratic [33]. The average number of vertices of V∞ (P) was
5.62 n, where n is the number of vertices of P .

The thinning method to compute the skeleton exceeded the thirty minutes limit of
computation time datasets with more than ten thousand vertices. The time complexity
of the thinning approach is bounded by the number of voxels of the binary volume
representing P and not by the number of vertices of P. Thus, the time data shown in
Figure 7.14b is not correlated with the number of vertices.

As expected, the thinning approach was much slower than the presented approach
because its time complexity depends on the size of the binary volume, which grows fast.
The presented method to compute the skeleton exceeded the thirty minutes limit of
computation time for datasets with more than sixty thousand vertices (see Figure 7.14a).
As it has been verified that the combinatorial complexity of V∞ (P) is linear in the average
case, the expected runtime of the presented algorithm may be quadratic. Thus, the
expected average runtime was 0.72 n2 µs, where n is the number of vertices of P .

7.11 Conclusions

A method to compute the L∞ Voronoi diagram and the straight skeleton of an orthogonal
polyhedron has been presented. Although the medial axis of polyhedra has been extensively

113

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

(a) Presented approach. (b) Approach of [30].

Figure 7.14: Running times of different methods to compute V∞ (P). The abscissa
denotes the number of vertices of P. The ordinate denotes the running time in seconds.
Every blue point depicts the runtime for a single dataset. The red line corresponds to the
curve fitted to the expected time complexity of the algorithm, with respect to the number
of vertices of the polyhedron.

explored, the straight skeleton of polyhedra has devised less interest. However, the straight
skeleton it is just composed of planar faces. A sweep line algorithm that works directly
with the boundary of the shape is introduced. As a consequence, the time complexity of
the presented algorithm is constrained by the size of its boundary. On the contrary, the
time complexity of thinning and distance transform approaches are bound by the volume
of the discretized object. Unlike the existing straight skeleton approaches that simulate a
shrink of the object boundary, a plane-sweep algorithm has been considered. Furthermore,
the presented algorithm is output sensitive with respect to the number of events generated
by the algorithm. As the presented algorithm is designed for practical purposes, it is
important that it is also robust. A technique to treat geometric degeneracies based on a
simulated perturbation of the input polyhedron has been presented.

114

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

Figure 7.15: Vertices of V∞ (P) of several random and real datasets. The abscissa
denotes the number of vertices of P. The ordinate denotes the number of vertices of
the straight skeleton of P. The red line corresponds to the curve fitted to the expected
number of vertices of V∞ (P), with respect to the number of vertices of P .

115

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

(a) (b)

(c) (d)

(e) (f)

Figure 7.16: L∞ Voronoi diagram of some three-dimensional datasets. The edges of
V∞ (P) are shown in red. Dataset 7.16b has been randomly generated.

116

CHAPTER 7. L∞ VORONOI DIAGRAM OF ORTHOGONAL POLYHEDRA

(a)

(b)

Figure 7.17: L∞ Voronoi diagram of some three-dimensional datasets. (a) An aneurysm
in the wall of a blood vessel. (b) A human pelvis.

117

Chapter 8

The cube skeleton

Contents
8.1 Introduction . 119

8.2 Cube skeleton definition . 121

8.3 Cube skeleton properties . 126

8.3.1 Homotopy equivalence . 126

8.3.2 Dimension reduction . 133

8.3.3 Shape representation . 134

8.4 The interior cube skeleton of orthogonal polygons 135

8.5 Computing the cube skeleton of orthogonal shapes 137

8.5.1 Computing the cube skeleton of orthogonal polygons 137

8.5.2 Computing the cube skeleton of orthogonal polyhedra 141

8.6 Experimental results . 144

8.7 Conclusions . 144

8.1 Introduction

This chapter introduces the cube skeleton of orthogonal shapes, a skeletal representation
that extends and refines the L∞ Voronoi diagram of orthogonal shapes (see Chapter 2).

First, it is discussed the problems with the L∞ Voronoi diagram and the straight
skeleton of orthogonal shapes, motivating the introduction of the cube skeleton. Let S be
an orthogonal shape and let E∞ (S) be the set of points of S which do not belong to a
single Voronoi region of the L∞ Voronoi diagram (see Definition 22). Note that the set
E∞ separates Voronoi regions. The set E∞ may be regarded as a skeletal representation of
orthogonal shapes. However, E∞ may not be homotopically equivalent to the orthogonal
shape or may not effectively reduce its dimension.

Consider to the orthogonal polygon of Figure 8.1a. There exists a set of points in
E∞ that are equidistant to the two horizontal collinear edges of the polygon and are

119

CHAPTER 8. THE CUBE SKELETON

contained in the triangular area shown in red, as seen in Property 13. In this case, E∞
does not reduce the dimension of the orthogonal shape. Similarly, a set of points in E∞
of Figure 7.11 are equidistant to two coplanar faces and contained in a volume, as seen
in Property 20. Papadopoulou et al. [175] consider only the outermost boundary of the
region of E∞ induced by two or more collinear edges of an orthogonal polygon, according
to a lexicographical order between collinear edges [27]. Similarly, a perturbation technique
of the collinear edges is considered in Chapter 6. However, this simple criterion defines a
subset of E∞ that may not be unique because it depends on the lexicographical order.
In addition, the set E∞ of Figure 8.1b is not homotopically equivalent to the orthogonal
polyhedron because the Voronoi region associated to the face with a hole, disconnects the
upper and lower connected sets of E∞ points. Assigning a lexicographical order between
coplanar faces, in analogy to the two-dimensional classical technique (see Section 6.5),
does not ensure homotopy equivalence. Thus, the main motivation of the cube skeleton
resides on the problems that exclusively arise in three dimensions.

(a) (b)

Figure 8.1: Using the L∞ Voronoi diagram as a skeletal representation. Set of points
E∞ shown in red. (a) Orthogonal polygon. (b) Orthogonal polyhedron.

Concerning the straight skeleton of orthogonal shapes, in the literature it is not
analyzed in detail how to deal with collinear edges and coplanar faces. In theory, these
edges and faces move inwards during the straight skeleton propagation until they vanish
into one or more points or segments. In two dimensions, some authors consider that after
both collinear edges vanish, a new ray with its origin on the vanishing point and moving
perpendicular to both edges is created. However, the three-dimensional case has not yet
been analyzed and requires a more careful solution. As an example, for the polyhedron of
Figure 8.1b the straight skeleton may not be homotopically equivalent to the orthogonal
shape: the face with a hole is moved inwards until the hole vanishes into a single edge
and the lower part of the straight skeleton remains disconnected to the upper part.

In this chapter a novel skeletal representation of orthogonal shapes, called the cube
skeleton, is presented. It is proved that the cube skeleton preserves the homotopy of the
original shape and reduces its dimension. The cube skeleton extends and refines the set
E∞ of an orthogonal shape in order to ensure homotopical equivalence and dimension
reduction. As it will be shown, orthogonal shapes are well suited with the L∞ metric in
order to define skeletal representations. This chapter is an extended and adapted version

120

CHAPTER 8. THE CUBE SKELETON

of the first half of the article [158].

8.2 Cube skeleton definition

In this section the basic definitions and properties that will be used to define the cube
skeleton are introduced.

Definition 57. A boundary element of an orthogonal shape is:

• A vertex of an orthogonal shape.

• The set of collinear edges of an orthogonal shape, without their boundary vertices.

• The set of coplanar faces of an orthogonal polyhedron, without their boundary edges.

Along this chapter, S is the interior of an orthogonal shape and ∂S is the set of all
the boundary elements of S. Observe that the intersection between every two different
boundary elements of ∂S is empty and their union is exactly the boundary set of S.

Definition 58. Let b be a boundary element. The set τ (b) defines the coordinates of b
that have a constant value:

τ (b) = {i ∈ {1 . . . n} : ∀x, y ∈ b, xi = yi}

If i ∈ τ (b), bi denotes the constant value of the coordinate i for all points in the
boundary element b.

Definition 59. Let b be a boundary element and let n be the dimension of the orthogonal
shape. The dimension of b is denoted by dim (b) and is directly related to n and τ (b):

dim (b) = n− |τ (b)|

If the boundary element is a vertex or composed of open edges or open faces its
dimension is zero, one and two, respectively. The boundary elements of arbitrary dimension
are denoted by the letter b. The boundary elements of dimension strictly zero, one or
two are denoted by the letters v, e and f , respectively. Let e, f ∈ ∂S, then ∂e and ∂f
contains the vertices and edges of ∂S enclosing e and f , respectively.

Under the Euclidean metric, each point in the interior of an orthogonal shape has
a non empty set of closest points on the shape boundary [150]. The number of closest
points is used to define the medial axis. However, under the L∞ metric it does not make
sense to consider the number of closest points on the boundary because this number is
usually infinite. For this reason, the cube skeleton will be defined by the set of closest
boundary elements. The following definitions are given in order to properly define the set
of closest boundary elements of a point in S.

Note that the set ε (x, ∂S) (see Definition 19) defines a set of boundary elements
strictly at a distance d∞ (x, ∂S) from x and ignores those edges or faces that exclusively
contain the nearest points to x in its vertices or edges, respectively. As an example,

121

CHAPTER 8. THE CUBE SKELETON

consider the point x2 of Figure 8.3. The set ε (x2, ∂S) = {v3} only contain the vertex v3,
because the distance to its incident edges e1 and e2 do not consider the vertex v3 shared
by both edges.

Definition 60. Let x be a point of S. The set σp (x,S) defines a subset of boundary
elements from ε (x, ∂S) such that:

σp (x,S) = {b1 ∈ ε (x, ∂S) : @b2 ∈ ε (x, ∂S) , b1 ∈ ∂b2}

Several boundary elements of ε (x, ∂S) may lie on a common plane or line supporting
them. For example, a set of edges enclosing a face lie on a common plane. Only the
boundary elements of ε (x, ∂S) that are not contained in the boundary of another boundary
element of ε (x, ∂S) belong to σp (x,S). As an example, consider the point x1 of Figure 8.3.
The set ε (x1, ∂S) = {e1, e3, v1, v2} is properly refined by its subset σp (x1,S) = {e1, e3}.

Definition 61. A flat is a point, line or plane in the n-dimensional space.

Definition 62. Let b be a boundary element. flat (b) is the flat that supports b and has
the same dimension than b:

flat (b) = {x ∈ Rn : ∀i ∈ τ (b) , xi = bi}

For example, an edge is contained in a line and a face is contained in a plane, that are
one and two-dimensional flats, respectively.

Definition 63. Let b be a boundary element of ∂S. inter (b,S) is the intersection between
the flat supporting b and S:

inter (b,S) = flat (b) ∩ S

Observe that inter (b,S) could be empty because S is an open set.

Lemma 36. Let b be a boundary element of ∂S. Then, inter (b,S) has the following
properties:

• If dim (b) = 0 the set inter (b,S) is empty.

• If dim (b) = 1 the set inter (b,S) is either empty or a set of collinear open segments.

• If dim (b) = 2, the set inter (b,S) is either empty or enclosed in an orthogonal
polygon.

Proof. If dim (e) = 0, the intersection between a single point on ∂S and S is empty,
because S is an open set. If dim (b) = 1, inter (b,S) is the intersection between a line and
S which, if not empty, is composed of a set of collinear open segments contained in the
line (see Figure 8.2b). Note that if flat (b) contains any reflex vertex of ∂S then inter (b,S)
is not empty. Finally, if dim (b) = 2 the set inter (b,S) is the intersection between a plane
and S, bounded by a set of axis-aligned segments such that every endpoint of a segment
must be shared by exactly another endpoint (see Figure 8.2a). As S is open, inter (b,S)
is open and a segment enclosing inter (b,S) cannot be shared by more than one other
segment. Thus, the intersection is enclosed by an orthogonal polygon. In this case, if
flat (b) contains any reflex edge of ∂S then inter (b,S) is not empty.

122

CHAPTER 8. THE CUBE SKELETON

Definition 64. Let b be a boundary element. The set τ (b) defines the coordinates of b
that do not have a constant value:

τ (b) = {1 . . . n} \ τ (b)

Definition 65. Let b be a boundary element of ∂S and x a point of S. proj (x, b) is the
orthogonal projection of x onto the flat supporting b:

proj (x, b) = {y ∈ Rn : ∀i ∈ τ (b) ,∀j ∈ τ (b) , yi = bi, yj = xj}

Figure 8.2 illustrates the orthogonal projection of a point onto a flat and the intersection
between a flat and S.

Lemma 37. Let x be a point of S and σp (x,S) = {b1}. Suppose that the projection of
x onto the flat of b1 is contained in the intersection between the flat of b1 and S. Then,
any boundary element in σp of the projected point belongs to the boundary of b1. More
formally:

proj (x, b1) ∈ inter (b1,S)⇒ ∀b2 ∈ σp (proj (x, b1) , inter (b1,S)) , b2 ∈ ∂b1

Proof. Consider in order to arrive to a contradiction that b2 /∈ ∂b1. As b2 ∈ flat (b1) then
b2 /∈ ∂S. Otherwise, there would be another boundary element in σp (x,S), with at least
the same dimension of b1 and containing in its boundary b2. It follows that the distance
from x to b1 must be strictly lower than to b2:

d∞ (x, b1) < d∞ (x, b2) (8.1)

In addition, observe that the distance d∞ (x, b1) is defined by the coordinates τ (b1):

∃i ∈ τ (b1) , d∞ (x, b1) = |xi − b1i|

Thus, the distance from x to b1 must be greater or equal than the distance from
proj (x, b1) to b1:

d∞ (x, b1) ≥ d∞ (proj (x, b1) , b1) (8.2)

On the contrary, the distance d∞ (x, b2) must be defined by the coordinates τ (b1).
Otherwise, b2 would have belonged to ε (x, ∂S) and b2 ∈ ∂b1, by definition of σp. Then, it
follows that:

d∞ (x, b2) = d∞ (proj (x, b1) , b2) (8.3)

Finally, it follows from the three previous Equations 8.1, 8.2 and 8.3 that:

d∞ (proj (x, b1) , b1) < d∞ (proj (x, b1) , b2)

Which leads to a contradiction: the set σp (proj (x, b1) , inter (b1,S)) cannot contain b2
because the distance from proj (x, b1) to b2 is greater than to b1. This concludes the proof
of Lemma 37.

123

CHAPTER 8. THE CUBE SKELETON

(a) S.

(b) inter (f,S). (c) inter (e, inter (f,S)).

Figure 8.2: Illustration of the orthogonal projection of a point onto a flat and the
intersection between a flat and an orthogonal shape. (a) The set σp (x,S) contains the
face f , drawn in red. The green cube is a cube centered at x whose boundary are the
points at distance d∞ (x, ∂S) from x. The orthogonal polygon shown in blue is inter (f,S)
and x′ = proj (x, f). (b) The set σp (x′, inter (f,S)) contains the edge e, drawn in red.
The green square is a square centered at x whose boundary are the points at distance
d∞ (x, ∂S) from x. The blue segment is inter (e, inter (f,S)) and x′′ = proj (x′, e). (c) The
set σp (x′′, inter (e, inter (f,S))) contains the vertex v, drawn in red.

An illustration for Lemma 37 can be seen in Figure 8.2. The set σp (x,S) contains the
face f (see Figure 8.2a). Thus, the nearest boundary elements of the point x projected onto
the orthogonal polygon inter (f,S) (see Figure 8.2b) or the segment inter (e, inter (f,S))
(see Figure 8.2c) must be either an edge or a vertex on ∂f .

Suppose that a skeletal representation is defined by the set of points in S whose set

124

CHAPTER 8. THE CUBE SKELETON

σp (x,S) contains two or more boundary elements. Then, this skeletal representation
could not be homotopically equivalent to S (see Figure 8.3 as an example). Thus, the
definition of the set σp must be extended.

So far the definitions and properties that will be necessary to define a proper set of
closest boundary elements have been presented. For this purpose the recursively defined
set σ (x,S) is introduced.

Definition 66. Let x be a point of S. The set σ (x,S) contains the closest boundary
elements from x to ∂S:

σ (x,S) =

{
σ (proj (x, b) , inter (b,S)) If σp (x,S) = {b} and proj (x, b) ∈ inter (b,S)

σp (x,S) Otherwise

The above definition distinguishes two cases: if σp (x,S) defines a single boundary
element b and proj (x, b) ∈ inter (b,S), the closest boundary elements are found in the
set inter (b,S). Otherwise, the set σ (x,S) is equal to the set σp (x,S). Notice that the
recursion must finish when the set σp (x,S) contains two or more boundary elements or not
later than when dim (b) = 0, because the set inter (b,S) will be empty (see Lemma 36).

Figure 8.3: An orthogonal polygon. Illustration of Definitions 19, 60 and 66. The set of
points such that |σp (x,S)| ≥ 2 are drawn with the continuous red line. The dashed red
line, contains the set of points such that |σp (x,S)| = 1 and |σ (x,S)| ≥ 2. Note that the
boundary element e1 is composed of two collinear edges. In green, the squares centered at
the points x1, x2 ∈ S with radius equal to d∞ (x1, ∂S) and d∞ (x2, ∂S), respectively.

In the rest of the chapter, the set σ (x,S) is denoted by σ (x) when S is the input
orthogonal shape.

Lemma 38. Let x be a point of S. Then σ (x) ⊂ ε (x, ∂S) ⊂ ∂S and σ (x) 6= ∅.

Proof. As a consequence of Lemma 37, the boundary elements found when x is projected
onto a flat must be boundary elements of ∂S contained in ε (x, ∂S). In addition, as the

125

CHAPTER 8. THE CUBE SKELETON

closure of S is compact the set ε (x, ∂S) cannot be empty and its subset σp (x,S) is also
not empty because at least one boundary element must contain in its boundary other
boundary elements of ε (x, ∂S). Thus, it follows that σ (x) 6= ∅.

Definition 67. (Cube skeleton) The cube skeleton CS of S is the set of points in S
that have two or more closest boundary elements:

CS = {x ∈ S : |σ (x)| ≥ 2}

Lemma 39. Let x be a point of S \ CS. Then |σ (x)| = 1.

Proof. By Lemma 38 the set σ (x) is not empty and if x ∈ S \ CS by Definition 67 must
contain a single boundary element.

Definition 68. The open n-dimensional cube Cc,r with center c and radius r is the set:

Cc,r = {x ∈ Rn : d∞ (c, x) < r}

Definition 69. (Cube transform) The cube transform CT of S is the set of n-
dimensional cubes associated to each point of the cube skeleton with radius equal to
the L∞ distance to the boundary:

CT =
{
Cx,d∞(x,∂S) : x ∈ CS

}
8.3 Cube skeleton properties

In this section, it is shown in Theorem 1 that the cube skeleton is homotopically equivalent
to S and in Theorem 2 that the cube skeleton reduces the dimension of S and has a
constrained structure. In general, the proof of the important properties of the cube
skeleton takes advantage of a piecewise partition of S induced by the boundary elements
of ∂S.

8.3.1 Homotopy equivalence

Definition 70. Let b be a boundary element of ∂S. The set λ (b) are the points of S \CS
whose closest boundary element is b:

λ (b) = {x ∈ S \ CS : σ (x) = {b}}

Note that the set λ (b) may be empty, for example, if the boundary element b is a
convex vertex or edge of ∂S. Next, some properties of the set λ (b) are analyzed.

Lemma 40. Let x be a point of S \ CS and let b1 and b2 be two boundary elements of
∂S. If x ∈ λ (b1) and σp (x,S) = {b2} then x /∈ ∂λ (b2) and b1 ∈ ∂b2.

126

CHAPTER 8. THE CUBE SKELETON

Proof. As σ (x,S) = {b1} and σp (x,S) = {b2} then:

dim (b2) > dim (b1)

And by Lemma 37:
b1 ∈ σ (proj (x, b2) , inter (b2,S))

Thus, as b1 ∈ flat (b2) it follows that:

b1 ∈ ∂b2

As inter (b2,S) is a non empty open set there exists a neighborhood Nx of x such that:

∀y ∈ Nx, proj (y, b2) ∈ inter (b2,S)

There cannot exist a point y ∈ Nx such that σ (y,S) = {b2}. Thus, ∀y ∈ Nx it holds that
σ (y,S) 6= {b2} and as a consequence:

x /∈ ∂λ (b2)

This concludes the proof of Lemma 40.

Corollary 1. Let x be a point of S \ CS and let b be a boundary element of ∂S. If
x ∈ λ (b) and proj (x, b) ∈ b then x ∈ int (λ (b)).

Proof. Two different cases depending on the set σp (x,S) are distinguished:

• σp (x,S) 6= {b} = {b′}. In this case the set σ (x,S) has been determined by recursion.
Thus, inter (b′,S) must be a non empty open set and there exists a neighborhood
Nx of x such that:

∀y ∈ Nx, proj (y, b′) ∈ inter (b′,S)

In addition, the projection of the points of Nx onto a boundary element that contains
b′ on its boundary is also in inter (b′,S). As a consequence:

∀y ∈ Nx, σp (y,S) 6= σ (y,S)

As σ (x,S) is obtained by recursion, the dimension of S can be reduced until having
that σp (x,S) = σ (x,S) = {b}. This situation corresponds to the next base case.

• σp (x,S) = {b}. If dim (b) > 0 then b is open and there exists a neighborhood Nx of
x such that:

∀y ∈ Nx, proj (y, b) ∈ b (8.4)

Otherwise, if dim (b) = 0 the projection proj (x, b) is always contained in b and
there also exist a neighborhood Nx fulfilling Equation 8.4. Thus, it follows that
x ∈ int (λ (b)). This concludes the Corollary 1.

127

CHAPTER 8. THE CUBE SKELETON

Figure 8.4: Illustration of Lemma 40 and its Corollary 1. Orthogonal polygon and its
cube skeleton are drawn in red. The region λ (v) is drawn in blue.

An illustration of Lemma 40 and its Corollary 1 can be seen in Figure 8.4. As proved in
Lemma 40, the point x2 ∈ λ (v) such that σp (x2,S) = {e} cannot be on the boundary of
λ (v) and the vertex v belongs to the boundary of the edge e. As shown by Corollary 1 the
points x1 ∈ λ (e) and x2 ∈ λ (v) such that proj (x1, e) ∈ e and proj (x2, v) ∈ v, respectively,
must belong to the interior of their λ regions.

Definition 71. Let x be a point and let b be a boundary element. The function v (x, b) is:

v (x, b) = x− proj (x, b)

Definition 72. Let x be a point of S \ CS and let b be a boundary element such that
x ∈ λ (b). The function v (x) is:

v (x) = v (x, b)

The function v (x) will be used to prove the homotopy equivalence. Figures 8.5 and 8.6
illustrate the direction of v (x) of the set of points S \ CS of a two and three-dimensional
orthogonal shape, respectively.

Lemma 41. For x ∈ S \ CS the function v (x) is continuous.

Proof. Let x be a point of S \CS and b a boundary element of ∂S. Let us first analyze the
continuity of v (x) in the interior of each non empty set λ (b). In this case, it is clear that
the function v (x) is continuous because the coordinates τ (b) of proj (x, b) are constant
and the coordinates i ∈ τ (b) of proj (x, b) are just the i-th coordinate of x.

Let b1 and b2 be two boundary element of ∂S. As a consequence of Corollary 1 the
continuity problems of v (x) may arise when x ∈ λ (b1) and proj (x, b1) ∈ ∂b1. Observe
that this is equivalent to x ∈ λ (b1) and proj (x, b1) ∈ b2, such that b2 ∈ ∂b1. Thus, the
continuity of v (x) is preserved if and only if:

v (x, b1) = v (x, b2) (8.5)

128

CHAPTER 8. THE CUBE SKELETON

That is equivalent to:
proj (x, b1) = proj (x, b2)

The possible critical points are studied by cases:

• dim (b2) = dim (b1)− 1. In this case there are two different subcases. If b1 is a one-
dimensional boundary element and b2 is a vertex of its boundary, then x ∈ ∂λ (b2).
This may occur if S is either an orthogonal polygon or polyhedron. Otherwise, b1 is
a two-dimensional boundary element and b2 a one-dimensional boundary element
on its boundary. In this case, S must be an orthogonal polyhedron and x ∈ ∂λ (b2).

• dim (b2) = dim (b1) − 2. In this case b1 is a two-dimensional boundary element
and the projection of x onto b1 lies on a vertex b2 of ∂b1. The point x belongs to
x ∈ ∂λ (b2) plus the boundary set of the λ regions of the incident edges of b2 that
belong to ∂b1.

In both previous cases of critical points the next equation holds:

proj (x, b1) ∈ b2

Thus, the equivalence of Equation 8.5 is always true and the proof of Lemma 41 is now
complete.

An illustration for Lemma 41 can be seen in Figures 8.5 and 8.6. The point x ∈ S \CS
of Figure 8.5 belongs to λ (e) and ∂λ (v) and corresponds to the first case of possible
critical points. The point x ∈ S of Figure 8.6 belongs to λ (f), ∂λ (e1), ∂λ (e2) and ∂λ (v)
and corresponds to the second case of possible critical points.

Figure 8.5: An orthogonal polygon and its cube skeleton are shown in red. Directions
of v (x) are indicated with arrows. The gray and blue arrows and portions of S \ CS are
induced by boundary elements of dimension one and zero, respectively. The gray lines
separating these regions are the points where the vector v (x) needs to be smooth (see
Lemma 41).

129

CHAPTER 8. THE CUBE SKELETON

(a) (b)

Figure 8.6: (a) A vertex v of an orthogonal polyhedron with three incident reflex
edges. (b) Directions of v (x) are indicated with arrows. The gray, blue and green arrows
and portions of S are induced by boundary elements of dimension two, one and zero,
respectively. The planes separating the colored portions are regions where the vector v (x)
needs to be smooth (see Lemma 41).

Lemma 42. Let b be a boundary element of ∂S and let x ∈ S \ CS be a point of λ (b).
Consider the open segment s = int ([x, proj (x, b)]). Then, ∀y ∈ s it holds that:

y ∈ λ (b) , v̂ (y) = v̂ (x) , d∞ (y, ∂S) < d∞ (x, ∂S)

Proof. Observe that if y ∈ s then y = µx + (1− µ) proj (x, b), with µ ∈ [0, 1]. Thus,
∀i ∈ τ (b) it holds that yi = µxi + (1− µ) bi and ∀j ∈ τ (b) it holds that yj = xj.

On the other hand, notice that as x ∈ λ (b), then there exists a point z ∈ b such
that d∞ (x, z) = d∞ (x, ∂S). This is due to the fact that if {b2} = σp (x, S) then there
exists a point z ∈ b2 such that d∞ (x, z) = d∞ (x, ∂S) and, as b2 is taken as an open
set, the distance is achieved in a coordinate i ∈ τ(b2). Thus, if b ∈ ∂b2, which occurs
when σ (x,S) is obtained by recursion, the points in b also give the minimum distance.
Moreover, z can be taken as proj (x, b), if proj (x, b) ∈ b, or as close as required from
proj (x, b), if proj (x, b) ∈ ∂b. Thus, consider that z ∈ b such that d∞ (proj (x, b) , z) <
d∞ (proj (x, b) , y). Then, if i ∈ τ (b) it follows that:

d∞(x, ∂S) = d∞(x, z) =| xi − zi |>| yi − zi |= d∞(y, z) ≥ d∞(y, ∂S)

In addition, y must belong to λ (b), otherwise there would be a boundary element
b3 ∈ ∂S such that b3 ∈ ∂b and d∞ (y, b3) < d∞ (y, z), where z is the point of the previous

130

CHAPTER 8. THE CUBE SKELETON

argument. In this case, if d∞ (y, b3) is achieved in a coordinate i /∈ τ (b), as xi = yi, leads
to a contradiction with the fact that x ∈ λ (b). Let a be a point of S at a minimum
distance from b3. On the contrary, if d∞ (y, b3) is achieved in a coordinate i ∈ τ(b) it
follows that:

| ai − xi |≤| ai − yi | + | yi − xi |<| zi − yi | + | yi − xi |=| zi − xi |

Which also gives a contradiction. Finally, as y ∈ λ (b) then proj (x, b) = proj (y, b)
and y − proj (y, b) = µ (x− proj (x, b)). As a consequence, the normalized vectors are
equal, that is v̂ (y) = v̂ (x). Observe that it is possible to move in direction v̂ (x) on a
neighborhood of x, and still remain in λ (b). Thus, the intersection of s and λ (b) is an
open set. This concludes the proof of Lemma 42.

Definition 73. Let x be a point of S \CS. The distance from x to CS along the direction
v (x) is:

dCS (x) = inf {d (x, y) : y ∈ CS, l > 0, y = x+ lv̂ (x)}

Lemma 43. Let x be a point of S \ CS. The distance dCS (x) is well defined and
continuous.

Proof. First, it is shown that the distance dCS (x) is well defined. It is known from
Lemma 42 that the distance from x to ∂S must increase along the direction v (x).
Consider in order to arrive to a contradiction that no point of CS is of the form x+ lv̂ (x),
where l > 0. Thus, the distance d (x, ∂S) might grow to infinity. However, S is a bounded
set, which leads to a contradiction.

Let b be a boundary element such that x ∈ λ (b). As shown in the proof of Lemma 42
the intersection of s and λ (b) is an open set and it is possible to move from x to CS. Then,
there exists a point of CS at a distance dCS (x) from x. In addition, the continuity of
dCS (x) is a direct consequence of the continuity of v (x) (see Lemma 41). This concludes
the proof of Lemma 43.

Definition 74. Let x be a point of S. For any point x ∈ S \CS the function ψ (x) maps
x to the cube skeleton:

ψ (x) = x+ dCS (x) v̂ (x)

And for points x ∈ CS the function ψ (x) is:

ψ (x) = x

Lemma 44. For x ∈ S the function ψ (x) is continuous.

Proof. It is known from Lemma 41 and 43 that v (x) and dCS (x) are continuous when
x ∈ S \ CS. Thus, it directly follows that ψ (x) is continuous in S \ CS. It remains to
show that ψ (x) is also continuous in CS. There exists a neighborhood Nx ⊂ S of x ∈ CS.
Thus, for any sequence (yn)n∈N of points in Nx which converges to x, the corresponding
sequence (ψ (yn))n∈N converges to x, because the term v̂ (x) is bound and the distance
dCS (x) converges to zero. This concludes the proof of Lemma 44.

131

CHAPTER 8. THE CUBE SKELETON

Definition 75. (MASSEY [161]) A deformation retraction of a space S onto a subspace
CS is a continuous map:

F : S × [0, 1]→ S

Such that for every x ∈ S, t ∈ [0, 1] and a ∈ CS:

F (x, 0) = x, F (x, 1) ∈ CS and F (a, t) = a

In other words, a deformation retraction is a homotopy between a retraction and the
identity map on S. The subspace CS is called a deformation retract of S. A deformation
retract is a special case of homotopy equivalence (see Definition 26). The next theorem
follows a similar retraction as the one defined by Wolter [225] to prove the homotopy
equivalence of the medial axis with respect to C2-smooth shapes.

Figure 8.7: The cube skeleton is shown in red. The evolution of F (x, t) (see Theorem 1)
is shown with thin dotted lines inside the orthogonal polygon. Observe that as t approaches
1, F (x, t) converges with the cube skeleton.

Theorem 1. The cube skeleton is a deformation retract of S.

Proof. The map F (x, t) (see Definition 75) is:

F (x, t) = (1− t)x+ tψ (x)

Note that F (x, t) is just a linear interpolation between x and ψ (x). It is known from
Lemma 44 that ψ (x) is continuous when x ∈ S. Thus, it follows that F (x, t) is continuous
in x ∈ S.

By definition of F (x, t) it is clear that F (x, 0) = x. If a ∈ CS then ψ (a) = a and
it follows that (1− t) a + ta = a. Finally, for F (x, 1) it directly holds that F (x, 1) =
ψ (x) ∈ CS. Therefore, the proof of Theorem 1 is now complete.

An illustration of the deformation retraction defined in Theorem 1 can be seen in
Figure 8.7.

132

CHAPTER 8. THE CUBE SKELETON

8.3.2 Dimension reduction

Theorem 2. The cube skeleton of an orthogonal shape reduces its dimension. Specifically,
the cube skeleton of an orthogonal polygon or polyhedron is composed of line segments
or polygons, respectively, that can be either axis-aligned or rotated π

4
radians along an

orthogonal axis.

Proof. First, the points of CS that are related as boundary points of CS are characterized.
Let b be a boundary element of ∂S and let x be a point of CS such that b ∈ σp (x,S)
and dim (b) < n− 1. Then, there exists at least one boundary element b2 ∈ ∂S such that
b ∈ ∂b2, dim (b2) = n − 1 and d∞ (x, b2) = d∞ (x, ∂S). In addition, observe that there
exists a neighborhood Nx of x such that:

∃y ∈ Nx, b2 ∈ σp (y,S)

As a consequence, the points of CS such that the set σ (x,S) contains at least one
boundary element of dimension lower than n− 1 must be either in the boundary of other
points of CS induced by boundary elements of dimension n − 1 or the set σ (x,S) has
been found by recursion. In the following, the different cases of points that do not belong
to the boundary points of CS are analyzed.

First, consider the cube skeleton points of an n-dimensional orthogonal shape whose
σ (x) set contains exactly two boundary elements b1 and b2 of dimension n − 1. For
example, two edges of an orthogonal polygon or two faces of an orthogonal polyhedron.
The shape of the L∞ bisector that contains these cube skeleton points is analyzed. Only
have two cases depending on the orientation of b1 and b2 may arise:

• The supporting lines or planes of b1 and b2 are parallel. The cube skeleton points
are contained in a line segment, if n = 2, or in a plane, if n = 3, that is also parallel
to b1 and b2.

• The supporting lines or planes of b1 and b2 are not parallel. The cube skeleton points
are contained in a line segment, if n = 2, or in a plane, if n = 3, that is rotated π

4

radians along an orthogonal axis.

Notice that in both cases the obtained CS fulfills the properties of Theorem 2. Now,
the different cases in which the recursion is used to obtain the set σ (x) are studied. This
study is done depending on the dimension of the space:

• If n = 1, in this case the boundary elements must be of dimension n− 1 and there
cannot be boundary points of CS.

• If n = 2, in addition to the case of boundary elements of maximal dimension n− 1,
the recursion gives portions of CS which are obtained from a point sweeping in
a perpendicular direction to an orthogonal flat and fulfills the properties of the
Theorem 2.

• If n = 3, similarly to the two-dimensional case, the sweep in a perpendicular direction
to an orthogonal flat also preserves the properties of the Theorem 2.

133

CHAPTER 8. THE CUBE SKELETON

As a consequence, the rest of the points of CS are in the closure of the aforementioned
cases. This concludes the proof of Theorem 2.

Note that the cube skeleton of an orthogonal polygon or polyhedron can also be
composed of points or segments and points, respectively. However, these are degenerate
cases which correspond to a segment or polygon described in Theorem 2 that has a length
or area of zero, respectively. An illustration of some of the cube skeleton polygon types
related in Theorem 2 are shown in Figures 8.8 and 8.9.

Figure 8.8: A cube skeleton of a simple orthogonal polyhedron is shown in red. The
interior of the triangle shaded in red is the set of points whose closest boundary elements
are the edges e1 and e2. Observe that only the edges bounding the cube skeleton polygons
are drawn.

Figure 8.9: A cube skeleton of an orthogonal polyhedron is shown in red. The homotopy
equivalence between the cube skeleton and the orthogonal polyhedron is preserved.

In the following, it is proved that the cube axis transform can represent S, analogously
to the medial axis transform.

8.3.3 Shape representation

Theorem 3. The orthogonal shape S can be reconstructed from its cube transform CT .

134

CHAPTER 8. THE CUBE SKELETON

Proof. It is clear that:

S ⊃
⋃
x∈CS

Cx,d∞(x,∂S)

It remains to show that:

S ⊂
⋃
x∈CS

Cx,d∞(x,∂S)

That is, for every point y ∈ S there exists a point x such that y ∈ Cx,d∞(x,∂S). If
y ∈ CS it is obvious that x = y can be selected. If y /∈ CS, it is shown that if x = ψ (y)
is selected the next condition met:

Cy,d∞(y,∂S) ⊂ Cψ(y),d∞(ψ(y),∂S) (8.6)

The maximal cube associated to ψ (y) is empty and contains any maximal cube
associated with a point of the segment [y, ψ (y)]. Therefore Equation 8.6 is proved and
the proof of Theorem 3 is now complete.

8.4 The interior cube skeleton of orthogonal poly-

gons

The interior cube skeleton of orthogonal polygons, which is a subset of the cube skeleton,
homotopy equivalent to S, is introduced. In this section, S denotes an orthogonal polygon.
All the results are based on the simplicial complexes theory [224].

Definition 76. A n-simplex is the n-dimensional convex hull of n+1 affinely independent
points. The convex hull of any non empty subset of the n+1 points that define an n-simplex
is called a face of the simplex. A simplex s1 is a coface of a simplex s2 if s2 is a face of
s1.

For example, a 0-simplex is a vertex and a 1-simplex is a line segment. The faces of a
1-simplex are its two bounding vertices.

Definition 77. A simplicial complex K is a set of simplices that satisfies the following
conditions:

• Any face of a simplex from K is also in K.

• The non empty intersection of any two simplices K is a face of both simplices.

Lemma 45. The cube skeleton of an orthogonal polygon can be represented by a simplicial
complex, composed of 0-simplices and 1-simplices.

135

CHAPTER 8. THE CUBE SKELETON

Proof. It is known from Theorem 2 that the cube skeleton of orthogonal polygons is
composed of a set of non intersecting line segments. Assume that the segments of
the cube skeleton are closed, such that the vertices of ∂S are also included. Thus,
the two-dimensional cube skeleton is a simplicial complex composed of 0-simplices and
1-simplices.

Definition 78. Let K be a simplicial complex, and suppose that s is a simplex in K. s
has a free face f if f is a face of s and f has no other cofaces. If s and f are removed
from K, another simplicial complex is obtained, which is called an elementary collapse of
K.

Property 21. (WHITEHEAD [224]) Two simplicial complexes are homotopy equivalent
if they are related by a sequence of elementary collapses.

Definition 79. Let K be the simplicial complex associated to the cube skeleton of an
orthogonal polygon. The interior cube skeleton is obtained by collapsing all the simplices
of K whose intersection with ∂S is not empty (see Figure 8.10).

Figure 8.10: Interior cube skeleton of an orthogonal polygon.

Theorem 4. The cube skeleton and the interior cube skeleton of an orthogonal polygon
are homotopy equivalent.

Proof. Consider a 0-simplex v of K that is a vertex of ∂S. Observe that v is a convex
vertex of the orthogonal polygon and must necessarily be a free face of a 1-simplex e of
K. If v and e are removed from K, an elementary collapse is obtained (see Definition 78).
Thus, the sequence of collapses proposed in Definition 79 is a valid sequence of elementary
collapses and it follows that the two-dimensional CS and the interior CS are homotopy
equivalent (see Property 21).

Observe that the interior cube skeleton of polyhedra could be defined, in analogy to
the two-dimensional case, by subdividing the cube skeleton faces into triangles, that are

136

CHAPTER 8. THE CUBE SKELETON

2-simplices, and collapsing at least the ones that touch the boundary of the orthogonal
polyhedron. However, this definition must be carefully done, because the sequence of
proper elementary collapses is not trivial. In addition, note that the resulting interior
cube skeleton may not be uniquely defined as it depends on the triangulation of the cube
skeleton faces.

8.5 Computing the cube skeleton of orthogonal shapes

In this section, algorithms to compute the cube skeleton of orthogonal shapes from their
L∞ Voronoi diagram are introduced. The following definition is required in the next two
subsections.

Definition 80. Let S be an n-dimensional orthogonal shape and let b be a n−1 dimensional
boundary element of ∂S. CSp (b) is a subset of points from the cube skeleton:

CSp (b) = {x ∈ CS : b ∈ σ (x,S)}

Observe that CSp (b) only contains the parts of the cube skeleton which have not been
found by recursion of the set σ (x,S) (see Figure 8.13a). The next lemma, about the
monotonocity of CSp (b), has some connection with Lemmas 9 and 19.

Lemma 46. Let S be an n-dimensional orthogonal shape and let b be a n− 1 dimensional
boundary element of ∂S. CSp (b) is monotone with respect to the flat containing b.

Proof. Let x be an arbitrary point in CSp (b) and let y = proj (x, b). It will be shown
that:

∀t ∈ int ([x, y]) , t /∈ CSp (b)

Consider the n-dimensional cube Cx (see Definition 68) centered at x and with radius
d∞ (x, ∂S). The facets of an n-dimensional cube either are its boundary edges (2D) or
boundary faces (3D).

Thus, Cx has one of its facets on flat (b) and its interior does not intersect with ∂S.
Assume that there exists t ∈ int ([x, y]) such that t ∈ CSp (b). Then Ct = Ct,d∞(t,∂S) has
also one facet on flat (b), by using the previous property.

Notice that Cx ⊃ Ct, because d∞(x, ∂S) > d∞(t, ∂S).
Moreover, if t ∈ CSp (b), then t ∈ CS. Thus, Ct intersects another n− 1 dimensional

boundary element of ∂S, different from b, which intersects with the interior of Cx, giving
a contradiction.

8.5.1 Computing the cube skeleton of orthogonal polygons

In this section, two different algorithms to compute the cube skeleton of orthogonal
polygons are presented. In the following, S denotes an orthogonal polygon and V∞ (S) is
its L∞ Voronoi diagram (see Chapter 6).

137

CHAPTER 8. THE CUBE SKELETON

Lemma 47. The cube skeleton of an orthogonal polygon S can be extracted from its L∞
Voronoi diagram.

Proof. The Voronoi edges are included in the set E∞ (S), which is analyzed in Section 2.
Next, the correspondence between the Voronoi edges and the cube skeleton segments, if it
exists, is studied. Let ev be a Voronoi edge. For a dense set of points x ∈ ev:

• |ε (x, sites (S))| ≥ 2, and at least two sites in ε (x, sites (S)) are non-collinear. The
set ε (x, ∂S) must contain two or more one dimensional boundary elements and
possibly other vertices on the boundary of these boundary elements. The refined set
σp (x,S) contains at least two non-collinear boundary elements. As |σp (x,S) = 2|
then σp (x,S) = σ (x,S). As a consequence, the Voronoi edge coincides with the
cube skeleton segment.

• ε (x, sites (S)) = ∅. The set ε (x, ∂S) must contain a vertex which is reflex, and
cannot contain the two incident polygon edges to the reflex vertex. Thus, x does
not have more than one closest boundary element, and it follows that the Voronoi
edge does not belong to the cube skeleton (see Figure 8.11b).

• |ε (x, sites (S))| ≥ 2, and all the sites in ε (x, sites (S)) are collinear. The Voronoi
edge ev bounds a bisector area (see Property 13), and does not belong to the cube
skeleton, as the set σp (x,S) generally contains only one boundary element that
includes a set of collinear polygon edges.

Observe that the cube skeleton segments that coincide with the Voronoi edges are
those which are not found by recursion of the set σ (x,S). The rest of the parts of the
cube skeleton, found by recursion, are called central segments (see Figure 8.11a). A
central segment is defined by the points such that σp (x,S) = {e}, and σ (x,S) contains
two vertices on the boundary of e. That central segment is swept perpendicular to e, as
defined by the set σ (x,S) (see Theorem 2). This is the only possible case of recursion
and concludes the proof of Lemma 47.

Consider a ray with origin in the endpoint, whose set σp contains two closest reflex
vertices, of a central segment, and that is perpendicular and oriented towards the interior
of the one-dimensional boundary element containing both closest vertices. This ray is
called the central swept vertex (see Figure 8.12a). The remaining endpoint of any central
segment can be obtained by computing the intersection of its central swept vertex with
the edges of V∞ (S) that belong to CS.

Two methods to compute the central segments of the cube skeleton, once V∞ (S) has
been computed, are introduced.

Central segment traversal algorithm

Next, an straightforward algorithm to compute the central segments, which is not time-
optimal, is provided. As V∞ (S) has been computed by considering the perturbation
technique described in Section 6.5.2, the central segments can be directly derived from
the edges of V∞ (S).

138

CHAPTER 8. THE CUBE SKELETON

(a) (b)

Figure 8.11: Computing the cube skeleton from the L∞ Voronoi diagram. (a) Selection
of the central segments of the cube skeleton shown in blue lines (the original computed L∞
Voronoi diagram is shown in Figure 6.10a). (b) Removing the edges of the L∞ Voronoi
diagram that emanate from reflex vertices and do not belong to the cube skeleton.

Lemma 48. The central segments of the cube skeleton of S can be straightforwardly
computed from V∞ (S) by the central segment traversal algorithm in time θ (n2) and O (n)
space, where n is the number of vertices of S.

Proof. Consider a Voronoi edge ev of V∞ (S) bounding a bisector area (see Property 13).
Consider also the central swept vertex, with origin in a vertex of the edge ev, which is L∞
equidistant to two reflex vertices of the polygon. The remaining endpoint of this central
segment is found by traversing the Voronoi edges, until the Voronoi edge intersected by
the central swept vertex is found (see Figure 8.12). There can be at most O (n) central
segments. Retrieving the intersection of the central swept vertex and the edges of the
Voronoi diagram can be done in O (n), as there are at most O (n) Voronoi edges L∞
equidistant to an edge of S. Thus the worst-case time complexity is θ (n2).

Although the time complexity to compute the central segments with the traversal
algorithm is quadratic, in practice a little number of edge traversals are performed to
compute the Voronoi edge intersected by the central swept vertex. Experimental results
(see Section 8.6) confirm that the traversal algorithm always takes a negligible amount of
time compared with the computation of the L∞ Voronoi diagram, although its theoretical
worst-case time complexity is higher.

Central segment binary search algorithm

A second strategy to compute the central segments, with a better theoretical time
complexity than the traversal algorithm, is introduced. Assume that all the Voronoi edges
that bound a bisector area have been removed (see Lemma 47).

139

CHAPTER 8. THE CUBE SKELETON

(a) (b)

Figure 8.12: Illustration of the traversal algorithm to compute the central segments
of the cube skeleton. (a) Central swept vertex shown in blue. The Voronoi edges are
traversed in the direction of the central swept vertex until one is intersected by the central
swept vertex. The black arrows indicate the direction of the edge traversal. (b) The edge
ev bounding the bisector area do not belong to the cube skeleton.

Let e be a one-dimensional boundary element of ∂S. Then, CSp (e) (see Definition 80)
is a set of segments of V∞ (S) (see Lemma 47). Observe that the central swept vertex
induced by any pair of reflex vertices of ∂e must intersect CSp (e).

Lemma 49. The central segments of the cube skeleton of S can be computed from V∞ (S)
by a binary search algorithm in time O (n log n) and O (n) space, where n is the number
of vertices of S.

Proof. Let e be a one-dimensional boundary element of S that has at least one central
swept vertex associated to it. The central segments are computed by searching which
segment of CSp (e) is intersected by the central swept vertices. As the set CSp (e) is
monotone with respect to the line containing e (see Lemma 46), it is possible to project
them onto flat (e) and obtain a set of disjoint one-dimensional intervals (see Figure 8.13b).
Let p be the orthogonal projection of a central swept vertex to the line containing e. The
intersection of the central swept vertex can be computed by searching which interval
contains p. If the intervals are stored in a binary tree their insertion requires O (k log k)
time, and searching which interval contains a point requires O (log k) time, where k is
the number of vertices of CSp (e). Thus, as there are at most O (n) central segments, the
binary search algorithm has O (n log n) time and O (n) space complexity.

Theorem 5. The cube skeleton of an orthogonal polygon with n vertices can be computed
in O (n log n) time and O (n) space complexity.

Proof. The L∞ Voronoi diagram of an orthogonal polygon can be computed in O (n log n)
time and n space (see Lemma 10). The Voronoi edges emanating from the reflex vertices

140

CHAPTER 8. THE CUBE SKELETON

of the orthogonal polygon and bounding bisector areas, which do not belong to the cube
skeleton (see Lemma 47), can be erased in O (n) time. The central segments can be
computed in O (n log n) time and n space (see Lemma 49).

(a) (b)

Figure 8.13: Illustration of the binary search algorithm to compute the central segments.
The n− 1 dimensional boundary element e contains two collinear polygon edges. (a) The
set CSp (e), shown in thick lines, is monotone with respect to the line containing e. Central
swept vertex shown in blue. (b) The projection of CSp (e) onto the line containing e,
that is flat (e), induce a set of disjoint intervals. The interval that contains the projected
origin x of the central swept vertex is the edge intersected by the central swept vertex.

The central segment binary search algorithm has a better theoretical time complexity
than the traversal algorithm, but it is expected in practice to be probably less efficient.
This is due to the fact that it may require the initialization of several interval binary trees,
while the traversal algorithm does not require any data structure initialization. Finally,
observe that the cube skeleton also could be computed by appropriately treating the
central swept vertices as a special event of the two-dimensional sweep line algorithm (see
Chapter 6).

8.5.2 Computing the cube skeleton of orthogonal polyhedra

A practical algorithm to compute the cube skeleton of orthogonal polyhedra is presented.
In this section, S denotes an orthogonal polyhedron and V∞ (S) is its L∞ Voronoi diagram
(see Chapter 7). As with orthogonal polygons, the cube skeleton of orthogonal polyhedra
can be extracted from V∞ (S). Unfortunately, it will be seen that some parts of the three
dimensional cube skeleton are not included into the L∞ Voronoi diagram.

Lemma 50. The cube skeleton of an orthogonal polyhedron can be extracted from its L∞
Voronoi diagram.

141

CHAPTER 8. THE CUBE SKELETON

Figure 8.14: Illustration of Lemma 50. A portion of or an orthogonal polyhedron with
a face hole. Central faces are shown in blue. The endpoints of the segment bounding the
central swept segments are shown with blue arrows. The central part Fc highlighted in a
dark blue tone, is associated to the edges e1 and e2 and swept perpendicular to the face f ,
such that σp (x,S) = {f} and σ (x,S) = {e1, e2}. ec is the Voronoi edge that coincides
with the central swept segment.

Proof. The Voronoi faces are included in the set E∞ (S), which is analyzed in Section 2.
Next, the correspondence between the Voronoi faces and the cube skeleton faces, if it
exists, is studied. Let fv be a Voronoi face. For a dense set of points x ∈ fv:

• |ε (x, sites (S))| ≥ 2, and at least two sites in ε (x, sites (S)) are non-coplanar. In this
case, there is a direct equivalence between the Voronoi face and the face of the cube
skeleton. The set σp (x,S) must contain two boundary elements of dimension two and
it follows that the set σ (x,S) is not defined by recursion. That is σp (x,S) = σ (x,S).
As a consequence, the Voronoi face coincides with the cube skeleton face.

• ε (x, sites (S)) = ∅. This Voronoi face does not belong to the cube skeleton because
the set σ (x,S) contains a single one dimensional boundary element e that includes
a reflex edge, and proj (x, e) /∈ inter (e,S) such that |σ (x,S)| = 1.

• |ε (x, sites (S))| ≥ 2, and all the sites in ε (x, sites (S)) are coplanar. The Voronoi
face fv bounds a bisector volume (see Property 20). This Voronoi face does not
belong to the cube skeleton because the set σp (x,S) will, in general, only contain
a single two dimensional boundary element, which encloses the set of polyhedron
coplanar faces that induce the bisector volume.

Analogously to the two-dimensional case, the cube skeleton faces that coincide with the
Voronoi faces are those which are not found by recursion of the set σ (x,S). In addition,
there exists parts of the cube skeleton that are not a Voronoi face, which are called central
parts. It will be shown that the central parts can be computed from the L∞ Voronoi
diagram by retrieving the intersection between some swept segments, and the rest of
Voronoi faces that coincide with the cube skeleton. Let Fc be a central part. For all points
x ∈ Fc the next cases, depending on the recursion of the set σ (x,S), are distinguished:

• σp (x,S) = {f} and σ (x,S) = {e1, e2} (see Figure 8.14). In this case, the set σ (x,S)
have been found in the first recursion step. Thus, both one dimensional boundary

142

CHAPTER 8. THE CUBE SKELETON

elements e1 and e2 belong to the boundary of the two dimensional boundary element
f , that is e1, e2 ∈ ∂f . The central part Fc is the part of σ (proj (x, f) , inter (f,S))
such that σ (x,S) = {e1, e2}, that is swept in the direction of the orthogonal axis
perpendicular to f . One edge bounding the central part Fc corresponds to a Voronoi
edge ec, which is called central swept segment. More precisely, ec coincides with the
set of points in the boundary of Fc such that σ (x,S) = σp (x,S) = {e1, e2}, where
e1 and e2 are reflex polyhedron edges. Thus, the central part Fc is computed by
retrieving the intersection between the swept Voronoi edge ec and the Voronoi faces
included in CSp (f).

• σp (x,S) = {f}, σp (x, inter (f,S)) = {e} and σ (x,S) = {v1, v2} (see Figure 8.15b).
In this case, the set σ (x,S) has been found in the second recursion step. Thus,
v1, v2 ∈ ∂e and v1, v2, e ∈ ∂f . Fc is the part of σ (proj (x, f) , inter (f,S)) such that
σ (x,S) = {v1, v2}, that is swept in the direction of the orthogonal axis perpendicular
to f . In this case, the central swept segment ec has one endpoint in the Voronoi
vertex vc bounding Fc such that σp (x,S) = {e}. Consider that vc is swept in the
direction of the orthogonal axis perpendicular to τ (e)\τ (f). The intersection of the
projected swept vertex and the Voronoi edges CSp (e) (of the orthogonal polygon
inter (f,S)) defines the remaining endpoint of ec. Thus, anagously to the previous
case, the central part Fc is computed by retrieving the intersection between the
swept segment ec and the Voronoi faces in CSp (f).

• σp (x,S) = {e} and σ (x,S) = {v1, v2} (see Figure 8.16). In this case, σ (x,S)
has been found in the first recursion step. Thus v1, v2 ∈ ∂e. These points must
correspond to a segment bounding a central part of the previous case.

No more cases of cube skeleton recursion, besides of those already mentioned, exist.
This concludes the proof of Lemma 50.

Observe that the set CSp only contains the aforementioned parts of the cube skeleton
which have a direct correspondence with the L∞ Voronoi diagram. Next, an efficient
algorithm to compute the central parts of the cube skeleton from V∞ (S) is introduced.
Thanks to Lemma 46, the problem of computing the intersection of three-dimensional
swept segments and vertices can be reduced to a two-dimensional point location and
segment intersection problem.

Lemma 51. (KIRKPATRICK [137]) Given a planar subdivision with n line segments
and a query point p, the region of the subdivision that contains p can be determined in
O (log n) time, O (n) space, and O (n) pre-processing time.

Lemma 52. (BALABAN [32]) Given a set of n line segments in the plane, it is possible
to report all k intersections between the segments in O (n log n+ k) time and O (n) space.

Lemma 53. The central parts of the cube skeleton of S can be computed from V∞ (S) in
time O (n log n+ k) and O (n) space, where n is the number of vertices of V∞ (S) and k
is the number of vertices of the central parts.

143

CHAPTER 8. THE CUBE SKELETON

Proof. Let f be a two-dimensional boundary element of ∂S with at least one central
swept segment or vertex associated to it (see Lemma 50). CSp (f) correspond to a set of
faces of V∞ (S). The faces CSp (f) are monotone with respect to the plane containing f
(see Lemma 46) and it is possible to project them onto the plane flat (f) and obtain a
planar subdivision (see Figure 8.15). As a consequence, computing the intersection of the
endpoints of central segments with these Voronoi faces is equivalent to the planar point
location problem (see Lemma 51). As there are at most O (n) central parts, the overall
time complexity of this step is O (n log n) time and O (n) space.

Finally, computing the remaining segments that bound each central part is equivalent
to report all the intersections between a set of line segments, which are the non-intersecting
segments associated to the projected planar subdivision of CSp (f) plus the set of query
segments induced by the central swept segments (see Figure 8.15). This second step can
be done in O (n log n+ k) time and O (n) space (see Lemma 52) and dominates the overall
time complexity to compute the central parts.

Lemma 54. The cube skeleton of an orthogonal polyhedron S can be computed from
V∞ (S) in O (n log n+ k) time and O (n) space complexity, where n is the number of
vertices of V∞ (S) and k is the number of vertices of the central parts.

Proof. The Voronoi faces emanating from reflex edges of the orthogonal polyhedron and
bounding bisector volumes, which do not belong to the cube skeleton (see Lemma 50),
can be erased in O (n) time. The central parts can be computed in O (n log n+ k) time
and n space (see Lemma 53).

8.6 Experimental results

The traversal algorithm to compute the cube skeleton of orthogonal polygons (see Sec-
tion 8.5.1) has been evaluated. The algorithm is implemented in C++ and its source
code consists of about two hundred lines. The experiments were conducted with the
same database of orthogonal polygons used in Section 6.7 (see Figure 8.17). Although
the worst-case theoretical complexity of the algorithm is quadratic, experimental results
suggest that is in average linear with respect to the number of central segments. More
specifically, the introduced approach revealed an average runtime of 18.7 n : µs. The
average overhead time to compute the cube skeleton, with respect to the computation
of the L∞ Voronoi diagram, was of 1− 2%. Figure 8.18 and 8.19 show the interior cube
skeleton of some orthogonal polygons extracted from cube skeleton. As a future work it
remains to implement the algorithm to compute the cube skeleton of orthogonal polyhedra.

8.7 Conclusions

A novel skeletal representation of orthogonal shapes, defined according to the L∞ metric,
has been presented. The cube skeleton shares some important properties with the medial
axis (homotopy equivalence, dimension reduction and shape representation) while being
only composed of segments and polygons of restricted orientation. The interior cube

144

CHAPTER 8. THE CUBE SKELETON

skeleton of orthogonal polygons retains the properties of the cube skeleton and is composed
of less segments, which do not intersect the shape boundary.

Algorithms to compute the cube skeleton of orthogonal shapes have been introduced.
Experimental results over several datasets reveal that the overhead to extract the two-
dimensional cube skeleton from the L∞ Voronoi diagram is small. Moreover, there is little
empirical evidence that the central segment binary search algorithm is faster than the
traversal one.

145

CHAPTER 8. THE CUBE SKELETON

(a) (b)

(c) (d)

Figure 8.15: Illustration of Lemma 50. Computing the cube skeleton of an orthogonal
polyhedron from the L∞ Voronoi diagram. (a) An orthogonal polyhedron with a face f ,
highlighted in a dark tone, that has a hole with two collinear edges. (b) Central faces are
shown in blue. The endpoints of the segment bounding the central swept segments are
shown with blue arrows. The central part highlighted in a dark blue tone, is associated to
the vertices v1 and v2 and swept perpendicular to the face f , such that σp (x,S) = {f} and
σ (x,S) = {v1, v2}. The swept segment that induces the central part is shown in green. (c)
The projection of CSp (f) onto the plane containing f induces a planar subdivision that
is shown in red. The central swept-segments projected onto f are straight line segments
shown in blue. (d) The projection of CSp (e) onto the plane containing f induces a
monotone polygonal chain that is shown in red. The central swept vertex projected onto
e is the point shown in blue.

146

CHAPTER 8. THE CUBE SKELETON

Figure 8.16: Illustration of Lemma 50. A simple orthogonal polyhedron. Voronoi
diagram edges shown in red. For illustrative purposes only the Voronoi faces that do not
intersect the polyhedron boundary, are shown in red. The central parts induced by central
swept segments are shown in blue. The segment with points such that σp (x,S) = {e}
and σ (x,S) = {v1, v2} bound two central parts and is shown in green.

Figure 8.17: Running times to compute the central segments of an orthogonal polygon.
The abscissa denotes the number of central segments. The ordinate denotes the running
time in seconds. Every blue point depicts the runtime for a single dataset.

147

CHAPTER 8. THE CUBE SKELETON

(a) (b)

(c) (d)

(e) (f)

Figure 8.18: Six simple orthogonal polygons and interior cube skeleton shown in red.
Shapes are extracted from the database of binary shapes collected by the LEMS Vision
Group at Brown University http://www.lems.brown.edu/~dmc/main.html

148

http://www.lems.brown.edu/~dmc/main.html

CHAPTER 8. THE CUBE SKELETON

(a)

(b)

Figure 8.19: A biomaterial sample (a), a section of a rock (b) and its interior cube
skeleton shown in red.

149

Chapter 9

The scale cube skeleton

Contents
9.1 Introduction . 151

9.2 Scale cube skeleton definition 151

9.3 Scale cube skeleton properties 152

9.4 Computing the scale cube skeleton of orthogonal polygons 155

9.5 Experimental results . 157

9.6 Conclusions . 158

9.1 Introduction

Like the medial axis, the cube skeleton (see Chapter 8) has a high instability under
perturbations of the shape. In this chapter, a novel skeletal representation of orthogonal
shapes, called the scale cube skeleton, is presented. The scale cube skeleton, that is based
upon the scale axis transform of Giesen et al. [107] (see Section 3.1.4), tries to overcome
these instability problems of the cube skeleton by defining a simplification scheme where
shape features are ignored first if they are small relative to their neighborhood. An
algorithm to compute the scale cube skeleton of orthogonal polygons is also presented.
In addition, the scale cube skeleton of two-dimensional shapes is compared with other
relevant skeletal structures and it is shown its ability to obtain more simple and stable
skeletons. This chapter is an extended and adapted version of the second part of the
article [158].

9.2 Scale cube skeleton definition

In this section, the scale cube skeleton and scale cube transform of orthogonal shapes are
introduced.

151

CHAPTER 9. THE SCALE CUBE SKELETON

Definition 81. Let S be an orthogonal shape. When s > 0, the multiplicatively s-scaled
shape of S is:

Ss =
⋃

Cc,r∈CT

Cc,sr

It will be shown in Lemma 58 that when s ≥ 1, Ss is an orthogonal shape. The next
definition assumes this property.

Definition 82. (Scale cube skeleton) When s ≥ 1, the s-scale cube skeleton CSs is the
cube skeleton (see Definition 67) of Ss and CTs is the cube transform (see Definition 69)
of Ss.

Definition 83. (Scale cube transform) When s ≥ 1, the scale cube transform of S is:

SCTs =
{
Cc,r/s : Cc,r ∈ CTs

}
The scale cube skeleton is able to compute a family of simplified skeletal representations.

Bigger cubes of the cube transform tend to cover the smaller ones, as they are grown
according to its radius. Bigger cubes are associated with features of the input shape that
are more relevant. Thus, the scaling operation tends to preserve relevant features of S,
while small cubes are associated to less relevant features and are rapidly covered by bigger
cubes. This simplification scheme is expected to produce skeletons with less features: as
the scaled shape is more likely to be simpler than the original shape, its skeleton will also
be simpler than the skeleton of the original shape.

9.3 Scale cube skeleton properties

Some properties of the scaled shape are shown below. For this purpose, the structure of
the union of cubes induced by the cube transform is analyzed.

Lemma 55. Let S be an orthogonal polygon and s ≥ 1. Ss can be represented by the
union of a finite set of rectangles.

Proof. According to Theorem 2, the next types of segments from CS are identified:

• A segment defined by two parallel edges of ∂S. The set of squares from CT associated
to the segment can be bounded by an axis-aligned rectangle. Note that this rectangle
is the convex hull of the two CT squares associated to the segment endpoints.
Growing this rectangle is equivalent to the growth of all the CT squares of the
segment. One of the sides of this rectangle has a length equal to the uniform distance
from the segment points to both edges of ∂S multiplied by the scale factor. The
other side, must have a length equal or higher.

• A segment defined by two non parallel edges of ∂S. In this case, it suffices to consider
the biggest square of the two squares associated to the endpoints of the segment.
This square encloses all the squares associated with the segment when s ≥ 1.

152

CHAPTER 9. THE SCALE CUBE SKELETON

• A segment defined by two vertices of ∂S that lie on the boundary of a one-dimensional
boundary element. Both vertices of ∂S must be on the boundary of two different
collinear edges. As in the previous case, the biggest square of the two segment
endpoints covers all the other squares when grown. This square is associated with the
farthest segment endpoint with respect to the one-dimensional boundary element.

Figure 9.1a shows the rectangles associated with some of the segment cases related in
Lemma 55.

(a) (b)

Figure 9.1: (a) The s-scaled shape when s < 1 is found by obtaining the boundary of
the union of rectangles, shown in dashed lines. (b) The s-scaled shape when s < 1 is
found by obtaining the boundary of the union of rectangles and convex polygons, shown
in dashed lines.

Definition 84. A monotone orthogonal polyhedron is an orthogonal polyhedron obtained
by extruding an orthogonal polygon in a single coordinate.

Lemma 56. Let S be an orthogonal polyhedron and s ≥ 1. Ss can be represented by a
finite set of monotone orthogonal polyhedra and axis-aligned boxes.

Proof. A similar proof as Lemma 55 is followed. According to Theorem 2 the next types
of polygons from CS appear:

• A polygon defined by two parallel faces of ∂S. The union of all the cubes of CT
associated to the polygon induce a monotone orthogonal polyhedron. This orthogonal
polyhedron is just an orthogonal polygon extruded in the direction of the coordinate
aligned with the polygon of CS. The length of the extruded polyhedron is equal to
the uniform distance from the polygon to both parallel faces of ∂S multiplied by
the scale factor.

153

CHAPTER 9. THE SCALE CUBE SKELETON

Figure 9.2: Different s-scaled shapes of an orthogonal polygon. Note that when s > 1
the scaled shapes are orthogonal polygons, while when s < 1 they are not orthogonal
polygons.

• A polygon defined by two non parallel faces of ∂S. In this case, the bigger cubes of
CT must be in the edges of the polygon. Then, there exist two different cases of
edges: an edge whose points have a uniform coordinate in an orthogonal direction
or the edges without this property. In the first case, the cubes of CT associated to
the edge can be simply bounded by an axis-aligned box. In the second case, it is
enough to consider the biggest cube of one of the endpoints of the edge.

• A segment defined by two vertices or two edges of ∂S that lie on the boundary of
a one or two-dimensional boundary element, respectively. As in the previous case,
the biggest cubes of CT are found on the edges of the polygon. In particular, these
edges are the farthest to the one or two-dimensional boundary element that contains
both vertices or edges from ∂S, respectively.

A characterization of the three-dimensional scaled shape by using axis-aligned boxes is
provided. It is more desirable to compute the union of axis-aligned boxes than to compute
the union of a monotone orthogonal polyhedra.

Lemma 57. Let S be an orthogonal polyhedron and s ≥ 1. Ss can be represented by a
finite set of axis-aligned boxes.

Proof. It is known from Lemma 56 that the shape Ss can be represented by a finite
set of monotone orthogonal polyhedra and axis-aligned boxes. In addition, a monotone

154

CHAPTER 9. THE SCALE CUBE SKELETON

orthogonal polyhedron can be divided into a finite set of axis-aligned boxes. It suffices to
partition the orthogonal polygon associated to the monotone orthogonal polyhedron in
a set of rectangles. Every rectangle induces an axis-aligned box and all the axis-aligned
boxes cover the extruded orthogonal polyhedron.

Figure 9.3 shows the axis-aligned boxes associated with some of the polygon cases
related in Lemma 56.

Lemma 58. Let S be an orthogonal shape and s ≥ 1. Ss is an orthogonal shape.

Proof. The boundary of the union of axis-aligned rectangles (see Lemma 55) or boxes
(see Lemma 57) must be enclosed by axis-aligned edges or faces, respectively. As Ss is an
open set, it is possible to obtain a set of boundary elements that enclose Ss, such that Ss
is considered to be an orthogonal shape.

(a) (b)

Figure 9.3: (a) Simple polyhedron and its cube skeleton. (b) The s-scaled shape when
s > 1 is found by obtaining the union of axis-aligned boxes, shown in dashed lines.

When 0 < s < 1, the s-scaled shape is not an orthogonal polygon (see Figure 9.2). In
two and three dimensions, the shrunk shape will be a polygon or polyhedron, respectively.
The shrunk shape converges to the cube skeleton as the scale factor approaches zero.
Thus, the cube skeleton also serves as a skeletal representation of the shrunk shape.

9.4 Computing the scale cube skeleton of orthogonal

polygons

A practical algorithm to compute the scale cube skeleton of orthogonal polygons is
presented. In this section S denotes an orthogonal polygon. The presented algorithm

155

CHAPTER 9. THE SCALE CUBE SKELETON

requires as input the boundary of the orthogonal polygon and the scale value s > 1. The
general steps are the following:

1. Compute the cube skeleton S.

2. Compute the s-scaled shape Ss.

3. Compute the cube skeleton of Ss.

Section 8.5.1 and 8.5.2 presented algorithms to compute the cube skeleton of S. Once
the cube skeleton is computed, the subset of rectangles that cover the cube transform CT ,
such that when grown represent the shape Ss, is extracted (see Lemma 55).

Lemma 59. (WOOD [227]) The boundary of the union of m axis-aligned rectangles can
be computed in O (m logm+ k) time and O (m) space, where k is the number of vertices
of the boundary.

Property 22. (LIPSKI AND PREPARATA [130]) The boundary of the union of m
axis-aligned rectangles has less or equal than m2 + 4m edges.

Lemma 60. When s > 1, the s-scaled shape of an orthogonal polygon can be computed in
O (n log n+ k) time and O (n) space, where n is the number of vertices of the orthogonal
polygon and k is the number of vertices of the scaled shape.

Proof. It is known from Lemma 55 that it is possible to represent the set of squares CT
by a finite set of rectangles that are grown. There are O (n) segments in CS, each of them
defining a single bounding rectangle. Then, the number of rectangles necessary to cover
the s-scaled shape is O (n). Thus, the boundary of Ss can be computed in O (n log n+ k)
time and O (n) space (see Lemma 59).

Lemma 61. When s > 1, the scale cube skeleton of an orthogonal polygon can be computed
in O (max (n log n, k log k)) time and O (max (n, k)) space, where n is the number of
vertices of the orthogonal polygon and k is the number of vertices of the scaled shape.

Proof. The scale cube skeleton requires two different types of computations: the cube
skeleton computation of S and Ss and the computation of the s-scaled shape Ss. From
Theorem 5, the cube skeleton can be computed in O (n log n) time and O (n) space.
When s > 1 the s-scaled shape can be computed in O (n log n+ k) and O (n) space (see
Lemma 60). Finally, the scaled shape can be computed in O (k log k) time and O (k)
space. Thus, the overall time complexity is dominated by the maximum between n and
k.

Definition 85. The interior scale cube skeleton of is the interior cube skeleton of the
s-scaled shape. The interior scale cube transform is the scale cube transform of the interior
cube skeleton (see Figure 9.4 and Figure 9.5).

156

CHAPTER 9. THE SCALE CUBE SKELETON

Figure 9.4: Interior scale cube skeleton of an orthogonal shape. Boundary of the scaled
shape is shown in dotted lines.

(a) (b) (c)

Figure 9.5: (a) A simple orthogonal polygon and its interior cube skeleton drawn in
red. (b) The interior cube skeleton of the s-scaled shape removes an irrelevant branch.
(c) As the s-scaled shape grows, the interior cube skeleton becomes more simple.

9.5 Experimental results

Although the introduced skeletal representations are applied to orthogonal shapes, it is
possible to use them with any kind of shape by considering the approximation framework
described in [21]. First, an orthogonal shape approximating an input shape is computed.
Secondly, the cube skeleton is computed and simplified with the multiplicative scaling,
providing a more stable skeletal approximation of the input shape. This approximation
paradigm allows for a trade-off between the skeletal representation resolution and the
computation time.

Approximating a shape by an orthogonal shape is straightforward and efficient (see
Section 4). A fast way to extract an orthogonal shape is to first discretize the input shape
and then extract the boundary of the discretized data. The discretization can be greatly
accelerated with the help of modern GPUs [187] when dealing with 3D shapes and is
straightforward in the 2D case. On the contrary, the discrete scale axis transform [164]
relies on the shape approximation by a union of balls, that is slower.

157

CHAPTER 9. THE SCALE CUBE SKELETON

The medial axis, straight skeleton, interior cube skeleton and interior scale cube
skeleton of some shapes have been computed. The medial axis and the straight skeleton
of polygons have been implemented using the C++ CGAL library [1]. The theoretical
time complexity of the medial axis and straight skeleton algorithms is O

(
n log2 n

)
and

O (n2), respectively, where n is the number of vertices of the polygon. The algorithm to
compute the scaled shape has been implemented in C++ and the source code consists of
about only three hundred lines of code. Table 9.1 shows the results for six sample objects
that are shown in Figure 9.6. The segments of the medial axis and the straight skeleton
emanating from the vertices of the input polygon are erased, in order to compare their
skeletal structure with the interior cube skeleton. A metric to quantify the similarity
between a polygon and the approximated orthogonal polygon is presented. The normalized
Hausdorff distance between two sets (dHN) is defined as the Hausdorff distance between
the two sets, divided by the diameter of the bounding box of both sets. For all the models
in the Table 9.1, the approximation of the input polygon with an orthogonal polygon is
accurate (dHN < 0.001). Figure 9.6 demonstrates that the interior scale cube skeleton is
able to simplify the skeleton while retaining its important topological features. In addition,
the time to compute the interior scale cube skeleton is comparable to the performance of
CGAL library and is also slightly faster than the straight skeleton computation, although
the computation of the union of rectangles is done with a naive algorithm. Thus, the
computation time of the SCT can be further improved.

Figure 9.7 illustrates the fact that a less accuracy of the shape approximation produces
skeletons composed of less vertices and less accurate. As the scale factor increases the
scale cube skeleton and the scaled shape are simplified. In fact, the scaled shape may also
be employed for shape simplification.

Medial axis Straight skeleton Cube skeleton Scale cube skeleton
Figure Vertices Elements Time Vertices Time Vertices Time Vertices Time s-scale
(a) 533 530 0.018 528 0.235 1998 0.013 674 0.046 1.3
(b) 573 581 0.013 1112 0.226 2679 0.022 1169 0.069 1.1
(c) 521 537 0.016 517 0.209 2893 0.018 1390 0.059 1.2
(d) 1045 1112 0.066 1103 2.56 1812 0.014 1656 0.138 1.2
(e) 1414 1418 0.051 1412 0.423 1636 0.013 1006 0.086 1.2
(f) 4321 4974 0.176 4623 4.58 5902 0.046 4322 0.197 1.2
(g) 2549 2677 0.091 2559 3.99 5894 0.057 3918 0.161 1.4

Table 9.1: Comparison between the skeleton of some two-dimensional shapes (see
Figure 9.6). Running times are in seconds.

9.6 Conclusions

A novel skeletal representation of orthogonal shapes, that extends the cube skeleton and
is based upon the scale axis transform, has been presented. The scale cube skeleton can
be used as a simple alternative to the scale axis. In addition, an algorithm to compute the
scale cube skeleton of orthogonal polygons has been introduced and the ability of the scale
cube skeleton to obtain stable skeletal structures has been demonstrated experimentally.
Moreover, approximating an orthogonal shape from other classes of shape representations

158

CHAPTER 9. THE SCALE CUBE SKELETON

is efficient and robust. The approximation paradigm allows a trade-off between the skeletal
representation resolution and the computation time.

Although the worst-case time complexity to compute the scale cube skeleton of
orthogonal polygons may be quadratic, with respect to the number of vertices of the input
orthogonal polygon (see Property 22), the bigger rectangles tend to cover the smaller ones
when they are grown. In fact, the boundary of the scaled shape is expected to have less
vertices than the boundary of the input orthogonal shape. In this latter case, the time
complexity will be just O (n log n), where n is the number of vertices of the orthogonal
polygon. While the time complexity of discrete methods is bounded by the number of
pixels and voxels of the discretized shape the time complexity of the presented algorithm
is constrained by the number of vertices of the orthogonal shape.

159

CHAPTER 9. THE SCALE CUBE SKELETON

Medial axis Straight skeleton Interior CS Interior CSs

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 9.6: Comparison between the medial axis, straight skeleton, cube skeleton and
scale cube skeleton of some two-dimensional shapes. The input polygon is shown in gray.
The skeleton is shown in red.

160

CHAPTER 9. THE SCALE CUBE SKELETON

s=1 s=1.2 s=1.6 s=2.5 s=4

0.01

0.003

0.001

Figure 9.7: The first column indicates the dHN of the orthogonal polygons with respect
to the original shape. The first row shows the scale factor values associated to each
column. The interior s-scaled shape, drawn in gray, and the interior scale cube skeleton,
drawn in red, are shown together.

161

Chapter 10

Conclusions and future work

The first objective of this thesis was to develop practical and robust algorithms to
compute the L∞ Voronoi diagram of orthogonal shapes, which could serve as a skeletal
representation with linear structure and constrained combinatorial complexity. However,
the L∞ Voronoi diagram do not fulfilled some properties, such as dimension reduction
and homotopy equivalence, that are important in many applications. In addition, some
desirable properties of two-dimensional L∞ Voronoi diagrams could not directly extended
to three dimensions. These aforementioned limitations lead the introduction of the cube
skeleton, which appropriately extends and refine the L∞ Voronoi diagram. Finally, the
scale cube skeleton was introduced in order to overcome the stability problems of the cube
skeleton.

Thus, the main contributions of this thesis are the design of a sweep line algorithm
to compute the L∞ Voronoi diagram of orthogonal polyhedra, and the introduction of
two skeletal representations of orthogonal shapes. A specific implementation to compute
the L∞ Voronoi diagram of orthogonal polygons has also been provided. In addition, an
algorithm to extract the B-Rep of orthogonal shapes as well as an algorithm to trihedralize
an orthogonal polyhedron have been presented. The presented skeletal structures and
algorithms could be used to compute the structural properties of porous biomaterials
in an efficient and robust manner, and could be extended to biomedical applications
that analyze the structure of shapes. For a more detailed review of the conclusions, see
the conclusion section included in each chapter. Next, the future work related to each
contribution of this thesis is presented.

Concerning the B-Rep extraction of orthogonal polyhedra, the presented algorithm
may be extended in order to identify and classify the three-dimensional shells of the input
polyhedron. Once the B-Rep model is computed, identifying the shells can be done by
traversing the graph and extracting the connected components. Depending on the desired
criterion, non-manifold vertices may separate different shells. After the shells are identified,
obtaining the inclusion relationship between them could be done similarly as in 2D, using
a sweep-plane algorithm. The status data structure of the sweep-plane algorithm may be
required to efficiently maintain a two-dimensional structure, that represents the current
intersection of the input orthogonal polyhedron with the sweeping plane.

Although the trihedralization of general polyhedra clearly seems to be an NP-complete

163

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

problem, it is not still clear whether the trihedralization of orthogonal polyhedra is possibly
NP-complete or if it can be solved by a polynomial time algorithm. As orthogonal polyhedra
have a constrained structure and the restrictions introduced by the trihedralization are
also constrained, an approach to compute the trihedralization with a polynomial time
complexity may exist. Moreover, it could be studied how to guarantee the existence of a
trihedralization by, for example, introducing new faces to the orthogonal polyhedron.

The performance of the algorithm to compute the L∞ Voronoi diagram of polyhedra
could be improved by using some sort of kinetic data structure [36] that maintains the
moving Voronoi wavefront. Apart from the efficient dynamic insertion and deletion of
graph vertices and edges, this data structure should withstand the following two queries:
obtain the collision between a moving ray of the wavefront and an edge of the wavefront,
which corresponds to a ray-face junction event induced by a ray wavefront, and locate the
wavefront face that contains a given point, which corresponds to a ray-face junction event
induced by a vertex ray with the interior of the polyhedron above the z-plane.

Presently, a non orthogonal shape is approximated by a discrete shape, composed of
pixels or voxels, in order to obtain an approximated orthogonal shape. In the Appendix
of [164], the approximation of an input shape by a union of balls is analyzed. More
precisely, the value of the required Hausdorff distance between both shapes, and a bound
on the number of balls required by the homotopy equivalent approximation are given.
It will be desirable to give similar bounds in the case of a shape approximated by an
orthogonal shape.

The interior cube skeleton of orthogonal polyhedra could be properly defined. In
addition, an algorithm to compute the scale cube skeleton of orthogonal polyhedra,
which would compute the union of axis-aligned boxes, could be developed. In addition,
the homotopy equivalence between the scaled shape and the original shape may be
characterized. For large values of the scale factor the interior scale cube skeleton of an
orthogonal polygon may lie outside the shape. This property is not desirable and it could
be investigated how to avoid it.

Finally, observe that the orthogonal projection of a point and the flat intersection
operators may be extended to higher dimensions. Thus, it is expected that the formulation
of the cube skeleton and scale cube skeleton could be extended to higher dimensional
orthogonal polytopes.

164

List of publications

• Martinez, J., Vigo, M., Pla-Garcia, N., and Ayala, D. Skeleton computa-
tion of an image using a geometric approach. In Proceedings of Eurographics (2010),
pp. 13–16

• Martinez, J., Vigo, M., and Pla-Garcia, N. Skeleton computation of orthog-
onal polyhedra. Computer Graphics Forum 30, 5 (2011), 1573–1582

• Vigo, M., Pla, N., Ayala, D., and Martinez, J. Efficient algorithms for
boundary extraction of 2D and 3D orthogonal pseudomanifolds. Graphical Models
74, 3 (2012), 61 – 74

• Martinez, J., Pla-Garcia, N., and Vigo, M. Skeletal representations of
orthogonal shapes. Graphical Models 75 (2013), 189–207

165

Glossary

Ackermann function In computability theory, the Ackermann function is a total com-
putable function that is not primitive recursive. Its value grows rapidly, even for
small inputs. 22

Apollonius diagram The Apollonius Voronoi diagram (also known as additively weighted
Voronoi diagram) is defined when positive weights are subtracted from the distances
between points. 26

BioCAD Discipline that uses CAD techniques to analyze the structure of biomaterials
or to simulate, design and manufacture them. i, iii, 1

CAD Computer aided design (CAD) is the use of computer systems to assist in the
creation, modification, analysis, or optimization of a design. 35, 37

CSG Constructive Solid Geometry (CSG) is a technique that creates complex objects by
combining simpler objects with successive Boolean operations. 29

dynamical system A concept in mathematics consisting of a function that describes the
time dependence of a point in a geometrical space. For example, the mathematical
model that describe the swinging of a clock pendulum. 39, 40

FEM Finite element analysis (FEM) is a numerical technique for finding approximate
solutions to partial differential equations and their systems, as well as integral
equations. 35

GPU A graphics processing unit (GPU) is a specialized electronic circuit designed to
rapidly manipulate and alter memory to accelerate the building of images intended
for output to a display. 30, 157

k-d tree A k-dimensional tree (k-d tree) is a space-partitioning data structure for orga-
nizing points in a k-dimensional space. 38

Morse function A smooth real-valued function on a manifold is a Morse function if it
has no degenerate critical points. 23

167

motion planning A term used in robotics for the process of detailing a task into discrete
motions. 34, 39

NC Numerical control (NC) is the automation of machine tools that are operated by
abstractly programmed commands encoded on a storage medium. 39

octree A tree data structure that partitions a three-dimensional space by recursively
subdividing it into eight octants. 30, 38, 39, 49

origami The traditional Japanese art of paper folding. The goal of this art is to transform
a flat sheet of paper into a finished sculpture through folding and sculpting techniques.
35

quadtree A tree data structure that partitions a two-dimensional space by recursively
subdividing it into four quadrants or regions. 30, 39

regular grid A tessellation of the Euclidean space by congruent parallelotopes, which
are the generalization of parallelepipeds in higher dimensions. 38

run length encoding Run-length encoding (RLE) is a very simple form of data com-
pression in which runs of data, that is, sequences in which the same data value
occurs in many consecutive data elements, are stored as a single data value and
count, rather than as the original run. 39, 40

spatial enumeration A solid representation scheme represented by a list of spatial cells
occupied by the solid. The cells, also called voxels are cubes of a fixed size and are
arranged in a fixed spatial grid. 39, 40, 51

urban model Computer simulations used for testing theories about spatial location and
interaction between land uses and related activities. 1, 39

visibility problem Given a set of obstacles in the Euclidean space, two points in the
space are said to be visible to each other, if the line segment that joins them does
not intersect any obstacles. 35, 39

voxel A volume element representing a value on a regular grid in three-dimensional space.
30, 34, 38, 164

168

Bibliography

[1] Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.

[2] Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. Adaptively sampled
particle fluids. ACM Transactions on Graphics 26, 3 (2007), 48–54.

[3] Aggarwal, A., Guibas, L., Saxe, J., and Shor, P. A linear-time algorithm for
computing the Voronoi diagram of a convex polygon. Discrete and Computational
Geometry 4 (1989), 591–604.

[4] Aguilera, A. Orthogonal Polyhedra: Study and Application. PhD thesis, Universi-
tat Politècnica de Catalunya, 1998.

[5] Aguilera, A., and Ayala, D. Converting orthogonal polyhedra from extreme
vertices model to B-Rep and to alternating sum of volumes. Computing Supplement
14 (2001), 1–28.

[6] Ahn, H.-K., Bae, S. W., Knauer, C., Lee, M., Shin, C.-S., and Vigneron,
A. Realistic roofs over a rectilinear polygon. Computational Geometry 46, 9 (2013),
1042 – 1055.

[7] Ahuja, N., and Chuang, J.-H. Shape representation using a generalized potential
field model. IEEE Transactions on Pattern Analysis and Machine Intelligence 19
(1997), 169–176.

[8] Aichholzer, O., Aigner, W., Aurenhammer, F., and Jüttler, B. Exact
medial axis computation for triangulated solids with respect to piecewise linear
metrics. In Proceedings of the Seventh International Conference on Curves and
Surfaces 2010 (2010), Lecture Notes in Computer Science.

[9] Aichholzer, O., Aigner, W., Hackl, T., and Wolpert, N. Exact medial
axis computation for circular arc boundaries. Curves and Surfaces 6920 (2012),
28–42.

[10] Aichholzer, O., and Aurenhammer, F. Straight skeletons for general polygonal
figures in the plane. In Proceedings of the second Annual International Conference
on Computing and Combinatorics (1996), pp. 117–126.

169

http://www.cgal.org

[11] Aichholzer, O., Aurenhammer, F., Alberts, D., and Gärtner, B. A novel
type of skeleton for polygons. Journal of Universal Computer Science 1 (1995),
752–761.

[12] Albers, S., Kursawe, K., and Schuierer, S. Exploring unknown environments
with obstacles. In Proceedings of the tenth annual ACM-SIAM symposium on Discrete
algorithms (1999), pp. 842–843.

[13] Amenta, N., and Bern, M. Surface reconstruction by Voronoi filtering. Discrete
and Computational Geometry 22 (1999), 481–504.

[14] Amenta, N., Bern, M., and Eppstein, D. The crust and the beta-skeleton:
combinatorial curve reconstruction. Graphical models and image processing 60
(1998), 125–135.

[15] Amenta, N., Choi, S., and Kolluri, R. K. The power crust. In Proceedings of
the sixth ACM symposium on Solid modeling and applications (2001), pp. 249–266.

[16] Amenta, N., and Kolluri, R. K. The medial axis of a union of balls. Computa-
tional Geometry Theory and Applications 20 (2001), 25–37.

[17] Arcelli, C., and Di Baja, G. S. A width-independent fast thinning algorithm.
IEEE Transactions on Pattern Analysis and Machine Intelligence 7 (1985), 463–474.

[18] Arcelli, C., Sanniti Di Baja, G., and Serino, L. From 3D discrete surface
skeletons to curve skeletons. In Proceedings of the 5th international conference on
Image Analysis and Recognition (2008), pp. 507–516.

[19] Asarin, E., Bournez, O., Dang, T., and Maler, O. Approximate reachability
analysis of piecewise-linear dynamical systems. Lecture Notes in Computer Science
1790 (2000), 20–31.

[20] Attali, D. Squelettes et graphes de Voronoi 2D et 3D. PhD thesis, Université
Joseph-Fourier, 1995.

[21] Attali, D., Boissonnat, J. D., and Edelsbrunner, H. Stability and com-
putation of medial axes - a state-of-the-art report. In Mathematical Foundations
of Scientific Visualization, Computer Graphics, and Massive Data Exploration,
Mathematics and Visualization. Springer Berlin / Heidelberg, 2009, pp. 109–125.

[22] Attali, D., di Baja, G., and Thiel, E. Pruning discrete and semicontinuous
skeletons. Lecture Notes in Computer Science 974 (1995), 488–493.

[23] Attali, D., and Lachaud, J. O. Delaunay conforming iso-surface, skeleton
extraction and noise removal. Computational Geometry 19 (2001), 175–189.

[24] Attali, D., and Montanvert, A. Modeling noise for a better simplification of
skeletons. In International Conference on Image Processing (1996), vol. 3, pp. 13–16.

170

[25] Attali, D., and Montanvert, A. Computing and simplifying 2D and 3D
continuous skeletons. Computer Vision and Image Understanding 67 (1997), 261–
273.

[26] Au, O. K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D., and Lee, T.-Y.
Skeleton extraction by mesh contraction. ACM Transactions on Graphics 27 (2008),
44:1–44:10.

[27] Aurenhammer, F. Voronoi diagrams. A survey of a fundamental geometric data
structure. ACM Computing Surveys 23 (1991), 345–405.

[28] Aurenhammer, F. Weighted skeletons and fixed-share decomposition. Computa-
tional Geometry Theory and Applications 40 (2008), 93–101.

[29] Aurenhammer, F., and Imai, H. Geometric relations among Voronoi diagrams.
Geometriae Dedicata 27, 1 (1988), 65–75.

[30] Ayala, D., Vergara, E., and Vergés, E. Improved skeleton computation of
an encoded volume. In Proceedings of Eurographics (2007), pp. 33–36.

[31] Ba, W., Cao, L., and Liu, J. Research on 3D medial axis transform via the saddle
point programming method. Computer-Aided Design 44, 12 (2012), 1161–1172.

[32] Balaban, I. J. An optimal algorithm for finding segments intersections. In
Proceedings of the eleventh annual symposium on Computational geometry (1995),
pp. 211–219.

[33] Barequet, G., Eppstein, D., Goodrich, M. T., and Vaxman, A. Straight
skeletons of three-dimensional polyhedra. Lecture Notes in Computer Science 5193
(2008), 148 – 160.

[34] Barequet, G., Goodrich, M. T., Levi-Steiner, A., and Steiner, D.
Straight-skeleton based contour interpolation. In Proceedings of the fourteenth
annual ACM-SIAM symposium on Discrete algorithms (2003), pp. 119–127.

[35] Barequet, G., and Vaxman, A. Reconstruction of multi-label domains from
partial planar cross-sections. Computer Graphics Forum 28, 5 (2009), 1327–1337.

[36] Basch, J. Kinetic data structures. PhD thesis, Stanford University, 1999.

[37] Bertrand, G., and Aktouf, Z. Three-dimensional thinning algorithm using
subfields. In Proceedings of SPIE (1995), vol. 2356, p. 113.

[38] Biasotti, S., Attali, D., Boissonnat, J.-D., Edelsbrunner, H., Elber, G.,
Mortara, M., Baja, G. S., Spagnuolo, M., Tanase, M., and Veltkamp, R.
Skeletal structures. In Shape Analysis and Structuring. Springer Berlin / Heidelberg,
2008, pp. 145–183.

171

[39] Biasotti, S., Falcidieno, B., and Spagnuolo, M. Extended reeb graphs
for surface understanding and description. In Proceedings of the 9th International
Conference on Discrete Geometry for Computer Imagery (2000), pp. 185–197.

[40] Biasotti, S., Falcidieno, B., and Spagnuolo, M. Shape abstraction using
computational topology techniques. In From geometric modeling to shape modeling.
Kluwer Academic Publishers, 2002, pp. 209–222.

[41] Biasotti, S., Marini, S., Mortara, M., and Patane, G. An overview on
properties and efficacy of topological skeletons in shape modeling. In Shape Modeling
International (2003), pp. 245–254.

[42] Biedl, T., Durocher, S., and Snoeyink, J. Reconstructing polygons from
scanner data. Lecture Notes in Computer Science 5878 (2009), 862–871.

[43] Biedl, T., and Genç, B. Reconstructing orthogonal polyhedra from putative
vertex sets. Computational Geometry 44 (2011), 409–417.

[44] Bittar, E., Tsingos, N., and Gascuel, M.-P. Automatic reconstruction of
unstructured 3D data: Combining a medial axis and implicit surfaces. Computer
Graphics Forum 14, 3 (1995), 457–468.

[45] Bitter, I., Kaufman, A., and Sato, M. Penalized-distance volumetric skeleton
algorithm. IEEE Transactions on Visualization and Computer Graphics 7 (2001),
195 –206.

[46] Blum, H. A transformation for extracting new descriptors of shape. In Models for
the Perception of Speech and Visual Form. MIT Press, 1967, pp. 362–380.

[47] Blum, H. Biological shape and visual science (part I). Journal of theoretical Biology
38, 2 (1973), 205–287.

[48] Boissonnat, J., and Karavelas, M. On the combinatorial complexity of
Euclidean Voronoi cells and convex hulls of d-dimensional spheres. In Proceedings
of the fourteenth annual ACM-SIAM symposium on Discrete algorithms (2003),
pp. 305–312.

[49] Bournez, O., Maler, O., and Pnueli, A. Orthogonal polyhedra: Representa-
tion and computation. Lecture Notes in Computer Science 1569 (1999), 46–60.

[50] Bradshaw, G., and O’Sullivan, C. Adaptive medial-axis approximation for
sphere-tree construction. ACM Transactions on Graphics 23 (2004), 1–26.

[51] Brandt, J. Convergence and continuity criteria for discrete approximations of the
continuous planar skeleton. CVGIP: Image Understanding 59 (1994), 116–124.

[52] Brandt, J. W., and Algazi, V. R. Continuous skeleton computation by Voronoi
diagram. CVGIP: Image Understanding 55 (1991), 329–338.

172

[53] Brédif, M. Modélisation 3D de bâtiments: reconstruction automatique de super-
structures de toits et recalage cinétique de toits polyédriques prenant en compte la
topologie. PhD thesis, Télécom ParisTech, 2010.

[54] Bruck, J., Gao, J., and Jiang, A. A. MAP: medial axis based geometric routing
in sensor networks. In Proceedings of the 11th annual international conference on
Mobile computing and networking (2005), pp. 88–102.

[55] Canny, J., and Donald, B. Simplified Voronoi diagrams. Discrete and Compu-
tational Geometry 3, 1 (1988), 219–236.

[56] Cao, L., Ba, W., and Liu, J. Computation of the medial axis of planar domains
based on saddle point programming. Computer-Aided Design 43 (2011), 979–988.

[57] Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z.
Interactive skeleton-driven dynamic deformations. ACM Transactions on Graphics
21, 3 (2002), 586–593.

[58] Chang, M.-C., and Kimia, B. Regularizing 3D medial axis using medial scaffold
transforms. In IEEE Conference on Computer Vision and Pattern Recognition
(2008), pp. 1–8.

[59] Chaussard, J., Couprie, M., and Talbot, H. A discrete lambda-medial axis.
In International Conference on Discrete Geometry for Computer Imagery (2009),
vol. 5810, pp. 421–433.

[60] Chazal, F., Cohen-Steiner, D., and Lieutier, A. A sampling theory for
compact sets in Euclidean space. Discrete and Computational Geometry 41 (2009),
461–479.

[61] Chazal, F., and Lieutier, A. Stability and homotopy of a subset of the medial
axis. In Proceedings of the ninth ACM symposium on Solid modeling and applications
(2004), pp. 243–248.

[62] Chazal, F., and Lieutier, A. The λ medial axis. Graphical Models 67 (2005),
304–331.

[63] Chazal, F., and Soufflet, R. Stability and finiteness properties of medial axis
and skeleton. Journal of Dynamical and Control Systems 10 (2004), 149–170.

[64] Cheng, S.-W., and Vigneron, A. Motorcycle graphs and straight skeletons.
Algorithmica 47 (2007), 159–182.

[65] Cheong, J.-S., and van der Stappen, A. Computing all independent form-
closure grasp regions of a rectilinear polyhedron. In IEEE International Conference
on Automation Science and Engineering (2007), pp. 288 –294.

173

[66] Chin, F., Snoeyink, J., and Wang, C. A. Finding the medial axis of a simple
polygon in linear time. In Proceedings of the 6th International Symposium on
Algorithms and Computation (1995), pp. 382–391.

[67] Choi, H. I., Choi, S. W., and Moon, H. P. Mathematical theory of medial
axis transform. Pacific Journal of Mathematics 181 (1997), 57–88.

[68] Christ, T., and Hoffmann, M. Wireless localization within orthogonal polyhe-
dra. In Proceedings of the 23rd Canadian Conference on Computational Geometry
(2011).

[69] Chuang, J.-H., Tsai, C.-H., and Ko, M.-C. Skeletonization of three-
dimensional object using generalized potential field. IEEE Transactions on Pattern
Analysis and Machine Intelligence 22 (2000), 1241–1251.

[70] Cline, H. E., Lorensen, W. E., Herfkens, R. J., Johnson, G. A., and
Glover, G. H. Vascular morphology by three dimensional magnetic resonance.
Magnetic Resonance Imaging 7 (1989), 45–54.

[71] Cormen, T., Leiserson, C., Rivest, R., and Stein, C. Introduction to
algorithms. MIT Press, 2001.

[72] Cornea, N., Silver, D., Yuan, X., and Balasubramanian, R. Computing
hierarchical curve-skeletons of 3D objects. The Visual Computer 21 (2005), 945–955.

[73] Cornea, N. D., and Silver, D. Curve-skeleton properties, applications, and
algorithms. IEEE Transactions on Visualization and Computer Graphics 13 (2007),
530–548.

[74] Couprie, M., and Bertrand, G. New characterizations of simple points in 2D,
3D, and 4D discrete spaces. IEEE Transactions on Pattern Analysis and Machine
Intelligence 31 (2009), 637 –648.

[75] Culver, T., Keyser, J., and Manocha, D. Exact computation of the medial
axis of a polyhedron. Computer Aided Geometric Design 21 (2004), 65–98.

[76] Damiand, G. Topological model for 3D image representation: Definition and
incremental extraction algorithm. Computer Vision and Image Understanding 109
(2008), 260–289.

[77] Danielsson, P.-E. Euclidean distance mapping. Computer Graphics and Image
Processing 14 (1980), 227–248.

[78] Das, G. K., Mukhopadhyay, A., Nandy, S. C., Patil, S., and Rao, S. V.
Computing the straight skeleton of a monotone polygon in O (n log n) time. In
Canadian Conference on Computational Geometry (2010), pp. 207–210.

[79] Davies, E., and Plummer, A. Thinning algorithms: A critique and a new
methodology. Pattern Recognition 14 (1981), 53 – 63.

174

[80] de Berg, M., Cheong, O., van Kreveld, M., and Overmars, M. Compu-
tational Geometry: Algorithms and Applications. Springer, 2008.

[81] Demaine, E., Demaine, M., Lindy, J., and Souvaine, D. Hinged dissection
of polypolyhedra. Lecture Notes in Computer Science 3608 (2005), 205–217.

[82] Demaine, E., Demaine, M., and Lubiw, A. Folding and cutting paper. Discrete
and Computational Geometry 1763 (2004), 104–118.

[83] Desbrun, M., Meyer, M., Schröder, P., and Barr, A. H. Implicit fairing of
irregular meshes using diffusion and curvature flow. In Proceedings of the 26th annual
conference on Computer graphics and interactive techniques (1999), pp. 317–324.

[84] Dey, T., and Sun, J. Defining and computing curve-skeletons with medial
geodesic function. In Proceedings of the fourth Eurographics symposium on Geometry
processing (2006), pp. 143–152.

[85] Dey, T. K., Woo, H., and Zhao, W. Approximate medial axis for CAD models.
In Proceedings of the eighth ACM symposium on Solid modeling and applications
(2003), pp. 280–285.

[86] Dey, T. K., and Zhao, W. Approximate medial axis as a Voronoi subcomplex.
In Proceedings of the seventh ACM symposium on Solid modeling and applications
(2002), pp. 356–366.

[87] Dietrich, C. A., Scheidegger, C. E., Schreiner, J., Comba, J., Nedel,
L., and Silva, C. T. Edge transformations for improving mesh quality of marching
cubes. IEEE Transactions on Visualization and Computer Graphics 15, 1 (2009),
150–159.

[88] Dijkstra, E. W. A note on two problems in connexion with graphs. Numerische
Mathematik 1 (1959), 269–271.

[89] Edelsbrunner, H., and Mücke, E. P. Simulation of simplicity: a technique to
cope with degenerate cases in geometric algorithms. ACM Transactions on Graphics
9 (1990), 66–104.

[90] Elber, G., and Kim, M.-S. Bisector curves of planar rational curves. Computer-
Aided Design 30, 14 (1998), 1089–1096.

[91] Eppstein, D. Fast hiearchical clustering and other applications of dynamic closest
pairs. In Proceedings of the ninth annual ACM-SIAM symposium on Discrete
algorithms (1998), pp. 619–628.

[92] Eppstein, D., and Erickson, J. Raising roofs, crashing cycles, and playing pool:
Applications of a data structure for finding pairwise interactions. In Proceedings of
the 14th annual ACM symposium on Computational Geometry (1999), pp. 58–67.

175

[93] Esperança, C., and Samet, H. Representing orthogonal multidimensional
objects by vertex lists. In Proceedings of the 2nd International Workshop on Visual
Form (1994), pp. 209–220.

[94] Esperança, C., and Samet, H. Orthogonal polygons as bounding structures in
filter-refine query processing strategies. Lecture Notes in Computer Science 1262
(1997), 197–220.

[95] Esperança, C., and Samet, H. Vertex representations and their applications in
computer graphics. The Visual Computer 14 (1998), 240–256.

[96] Etzion, M., and Rappoport, A. Computing the Voronoi diagram of a 3D
polyhedron by separate computation of its symbolic and geometric parts. In
Proceedings of the fifth ACM symposium on Solid modeling and applications (1999),
pp. 167–178.

[97] Fabbri, R., Costa, L. D. F., Torelli, J. C., and Bruno, O. M. 2D Euclidean
distance transform algorithms: A comparative survey. ACM Computing Surveys 40,
1 (2008), 2:1–2:44.

[98] Felkel, P., and Obdrzalek, S. Straight skeleton implementation. In Proceedings
of Spring Conference on Computer Graphics (1998), pp. 210–218.

[99] Foskey, M., Lin, M. C., and Manocha, D. Efficient computation of a simplified
medial axis. In Proceedings of the eighth ACM symposium on Solid modeling and
applications (2003), pp. 96–107.

[100] Fulton, W. Algebraic Topology, A First Course. Springer-Verlag, 1995.

[101] Gagvani, N., and Silver, D. Parameter-controlled volume thinning. Graphical
Models and Image Processing 61 (1999), 149–164.

[102] Gargantini, I., Schrack, G., and Kwok, A. Reconstructing multishell solids
from voxel-based contours. Computer-Aided Design 26 (1994), 293–301.

[103] Ghosh, S. K. Approximation algorithms for art gallery problems in polygons.
Discrete Applied Mathematics 158, 6 (2010), 718–722.

[104] Giblin, P., and Kimia, B. Transitions of the 3D medial axis under a one-
parameter family of deformations. European Conference on Computer Vision 2351
(2002), 718–734.

[105] Giblin, P., and Kimia, B. A formal classification of 3D medial axis points
and their local geometry. IEEE Transactions on Pattern Analysis and Machine
Intelligence 26 (2004), 238 –251.

[106] Giesen, J., and John, M. Surface reconstruction based on a dynamical system.
Computer Graphics Forum 21, 3 (2002), 363–371.

176

[107] Giesen, J., Miklos, B., Pauly, M., and Wormser, C. The scale axis transform.
In Proceedings of the 25th annual symposium on Computational geometry (2009),
pp. 106–115.

[108] Giesen, J., Ramos, E. A., and Sadri, B. Medial axis approximation and
unstable flow complex. International Journal of Computational Geometry and
Applications 18 (2008), 533–565.

[109] Goldreich, O., and Ron, D. Property testing in bounded degree graphs. In
Proceedings of the twenty-ninth annual ACM symposium on Theory of computing
(1997), pp. 406–415.

[110] Gong, W., and Bertrand, G. A simple parallel 3D thinning algorithm. In
International Conference on Pattern Recognition (1990), vol. 1, pp. 188–190.

[111] Google. Operations research tools. http://code.google.com/p/or-tools/.

[112] Goswami, S., Dey, T. K., and Bajaj, C. L. Identifying flat and tubular regions
of a shape by unstable manifolds. In Proceedings of the 2006 ACM symposium on
Solid and physical modeling (2006), pp. 27–37.

[113] Greβ, A., and Klein, R. Efficient representation and extraction of 2-manifold
isosurfaces using kd-trees. Graphical Models 66 (2004), 370–397.

[114] Grevera, G. J., Udupa, J. K., and Odhner, D. An order of magnitude faster
isosurface rendering in software on a PC than using dedicated, general purpose
rendering hardware. IEEE Transactions on Visualization and Computer Graphics 6
(2000), 335–345.

[115] Guibas, L., Ramshaw, L., and Stolfi, J. A kinetic framework for computational
geometry. In IEEE Annual Symposium on Foundations of Computer Science (1983),
pp. 100–111.

[116] Haciomeroglu, M., Laycock, R., and Day, A. Automatic spatial analysis
and pedestrian flow control for real-time crowd simulation in an urban environment.
The Visual Computer 24 (2008), 889–899.

[117] Heijmans, H. J. A. M. Connected morphological operators for binary images.
Computer Vision and Image Understanding 73 (1999), 99–120.

[118] Held, M. On computing Voronoi diagrams of convex polyhedra by means of
wavefront propagation. In Canadian Conference on Computational Geometry (1994),
pp. 128–133.

[119] Held, M. VRONI: An engineering approach to the reliable and efficient computation
of Voronoi diagrams of points and line segments. Computational Geometry 18, 2
(2001), 95–123.

177

http://code.google.com/p/or-tools/

[120] Hesselink, W., Visser, M., and Roerdink, J. Euclidean skeletons of 3D data
sets in linear time by the integer medial axis transform. Computational Imaging
and Vision 30 (2005), 259–268.

[121] Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunii, T. Topology matching
for fully automatic similarity estimation of 3D shapes. In Proceedings of the 28th
annual conference on Computer graphics and interactive techniques (2001), pp. 203–
212.

[122] Hisada, M., Belyaev, A. G., and Kunii, T. L. A skeleton-based approach for
detection of perceptually salient features on polygonal surfaces. Computer Graphics
Forum 21, 4 (2002), 689–700.

[123] Hoff, K. E., Keyser, J., Lin, M., Manocha, D., and Culver, T. Fast
computation of generalized Voronoi diagrams using graphics hardware. In Proceed-
ings of the 26th annual conference on Computer graphics and interactive techniques
(1999), pp. 277–286.

[124] Hoffmann, C. The problems of accuracy and robustness in geometric computation.
Computer 22, 3 (1989), 31–39.

[125] Hoffmann, C. How to construct the skeleton of CSG objects. In Proceedings of
the fourth IMA Conference (1994), pp. 421–438.

[126] Huang, H., Wu, S., Cohen-Or, D., Gong, M., Zhang, H., Li, G., and
Chen, B. L1-medial skeleton of point cloud. ACM Transactions on Graphics 32, 4
(2013), 65:1–65:8.

[127] Hubbard, P. Approximating polyhedra with spheres for time-critical collision
detection. ACM Transactions on Graphics 15, 3 (1996), 179–210.

[128] Huber, S., and Held, M. Theoretical and practical results on straight skeletons
of planar straight-line graphs. In Proceedings of the 27th annual ACM symposium
on Computational Geometry (2011), pp. 171–178.

[129] Jones, M., Baerentzen, J., and Sramek, M. 3D distance fields: a survey of
techniques and applications. IEEE Transactions on Visualization and Computer
Graphics 12 (2006), 581 –599.

[130] Jr., W. L., and Preparata, F. P. Finding the contour of a union of iso-oriented
rectangies. Journal of Algorithms 1, 3 (1980), 235 – 246.

[131] Ju, T., Baker, M. L., and Chiu, W. Computing a family of skeletons of
volumetric models for shape description. Computer-Aided Design 39, 5 (2007),
352–360.

[132] Karunakaran, K., and Shringi, R. Octree-to-brep conversion for volumetric
nc simulation. The International Journal of Advanced Manufacturing Technology
32 (2007), 116–131.

178

[133] Katz, S., and Tal, A. Hierarchical mesh decomposition using fuzzy clustering
and cuts. ACM Transactions on Graphics 22 (2003), 954–961.

[134] Kimia, B. On the role of medial geometry in human vision. Journal of Physiology-
Paris 97, 2-3 (2003), 155–190.

[135] Kimmel, R., Shaked, D., Kiryati, N., and Bruckstein, A. Skeletonization
via distance maps and level sets. Computer Vision and Image Understanding 62, 3
(1995), 382–391.

[136] Kirkpatrick, D. G. Efficient computation of continuous skeletons. In Proceedings
of the 20th annual Symposium on Foundations of Computer Science (1979), pp. 18–
27.

[137] Kirkpatrick, D. G. Optimal search in planar subdivisions. SIAM Journal on
Computing 12 (1983), 28–35.

[138] Klein, R., and Wood, D. Voronoi diagrams based on general metrics in the
plane. In 5th Annual Symposium on Theoretical Aspects of Computer Science (1988),
pp. 281–291.

[139] Knuth, D. The art of computer programming. Addison-Wesley, 2006.

[140] Koltun, V., and Sharir, M. Polyhedral Voronoi diagrams of polyhedra in three
dimensions. In Proceedings of the eighteenth annual symposium on Computational
geometry (2002), pp. 227–236.

[141] Kong, T., and Rosenfeld, A. Digital topology: Introduction and survey.
Computer Vision, Graphics and Image Processing 48 (1989), 357–393.

[142] K.Suresh. Dimensional reduction process. In Proceedings of the Eighth ACM
Symposium on Solid Modeling and Applications (2003), pp. 76–85.

[143] Lam, L., Lee, S.-W., and Suen, C. Thinning methodologies-a comprehensive
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (1992),
869–885.

[144] Lazarus, F., and Verroust, A. Level set diagrams of polyhedral objects. In
Proceedings of the fifth ACM symposium on Solid modeling and applications (1999),
pp. 130–140.

[145] Lee, D. T. Medial axis transformation of a planar shape. IEEE Transactions on
Pattern Analysis and Machine Intelligence 4 (1982), 363 –369.

[146] Lee, Y.-H., and Horng, S.-J. The chessboard distance transform and the medial
axis transform are interchangeable. In Proceedings of the 10th International Parallel
Processing Symposium (1996), pp. 424–428.

179

[147] Lescroart, M. D., and Biederman, I. Cortical representation of medial axis
structure. Cerebral Cortex 23 (2013), 629–637.

[148] Leymarie, F., and Levine, M. Simulating the grassfire transform using an active
contour model. IEEE Transactions on Pattern Analysis and Machine Intelligence
14 (1992), 56–75.

[149] Leymarie, F. F., and Kimia, B. B. From the infinitely large to the infinitely
small. In Medial Representations, vol. 37. Springer Netherlands, 2008, pp. 327–351.

[150] Lieutier, A. Any open bounded subset of Rn has the same homotopy type than
its medial axis. In Proceedings of the eighth ACM symposium on Solid modeling and
applications (2003), pp. 65–75.

[151] Liu, L., Chambers, E. W., Letscher, D., and Ju, T. A simple and robust
thinning algorithm on cell complexes. Computer Graphics Forum 29, 7 (2010),
2253–2260.

[152] Livnat, Y., and Tricoche, X. Interactive point-based isosurface extraction. In
IEEE Visualization (2004), pp. 457–464.

[153] Ma, C. M., and Sonka, M. A fully parallel 3D thinning algorithm and its
applications. Computer Vision and Image Understanding 64 (1996), 420 – 433.

[154] Ma, J., Bae, S., and Choi, S. 3D medial axis point approximation using nearest
neighbors and the normal field. The Visual Computer 28 (2012), 7–19.

[155] Malandain, G., and Fernández-Vidal, S. Euclidean skeletons. Image and
Vision Computing 16 (1998), 317 – 327.

[156] Mangin, J.-F., Riviere, D., Cachia, A., Duchesnay, E., Cointepas, Y.,
Papadopoulos-Orfanos, D., Collins, D., Evans, A., and Regis, J. Object-
based morphometry of the cerebral cortex. IEEE Transactions on Medical Imaging
23 (2004), 968–982.

[157] Martin, T., Chen, G., Musuvathy, S., Cohen, E., and Hansen, C. Gener-
alized swept mid-structure for polygonal models. Computer Graphics Forum 31, 2
(2012), 805–814.

[158] Martinez, J., Pla-Garcia, N., and Vigo, M. Skeletal representations of
orthogonal shapes. Graphical Models 75 (2013), 189–207.

[159] Martinez, J., Vigo, M., and Pla-Garcia, N. Skeleton computation of
orthogonal polyhedra. Computer Graphics Forum 30, 5 (2011), 1573–1582.

[160] Martinez, J., Vigo, M., Pla-Garcia, N., and Ayala, D. Skeleton computa-
tion of an image using a geometric approach. In Proceedings of Eurographics (2010),
pp. 13–16.

180

[161] Massey, W. S. Algebraic topology, an introduction. Springer-Verlag, 1967.

[162] Matheron, G. Examples of topological properties of skeletons. Image Analysis
and Mathematical Morphology 2 (1988), 217–238.

[163] McAllister, M., Kirkpatrick, D., and Snoeyink, J. A compact piecewise-
linear Voronoi diagram for convex sites in the plane. Discrete and Computational
Geometry 15, 1 (1996), 73–105.

[164] Miklos, B., Giesen, J., and Pauly, M. Discrete scale axis representations for
3D geometry. ACM Transactions on Graphics 29 (2010), 101:1–101:10.

[165] Milenkovic, V. Robust construction of the Voronoi diagram of a polyhedron. In
Canadian Conference on Computational Geometry (1993), pp. 473–478.

[166] Milnor, J. W. Morse theory. Princeton University Press, 1963.

[167] Montani, C., and Scopigno, R. Quadtree/octree to boundary conversion. In
Graphics Gems II. Academic Press Professional, Boston, MA, 1991, pp. 202–218.

[168] Morgenthaler, D. Three-dimensional simple points: serial erosion, parallel
thinning, and skeletonization. University of Maryland, 1981.

[169] Müller, P., Wonka, P., Haegler, S., Ulmer, A., and Van Gool, L.
Procedural modeling of buildings. ACM Transactions on Graphics 25, 3 (2006),
614–623.

[170] Musuvathy, S., Cohen, E., and Damon, J. Computing medial axes of generic
3D regions bounded by B-spline surfaces. Computer-Aided Design 43, 11 (2011),
1485 – 1495.

[171] Ogniewicz, R. L., and Kübler, O. Hierarchic Voronoi skeletons. Pattern
Recognition 28 (1995), 343 – 359.

[172] O’Rourke, J. Uniqueness of orthogonal connect-the-dots. In Computational
Morphology. North-Holland, 1988, pp. 97–104.

[173] O’Rourke, J. Unfolding orthogonal polyhedra. In Surveys on discrete and
computational geometry (2008), vol. 453, p. 307.

[174] Palfrader, P., Held, M., and Huber, S. On computing straight skeletons by
means of kinetic triangulations. Lecture Notes in Computer Science 7501 (2012),
766–777.

[175] Papadopoulou, E., and Lee, D. T. The L∞ Voronoi diagram of segments
and VLSI applications. International Journal of Computational Geometry and
Applications 11 (2001), 503 – 508.

181

[176] Park, S. C., and Choi, B. K. Boundary extraction algorithm for cutting area
detection. Computer-Aided Design 33 (2001), 571–579.

[177] Peschka, G. Kotirte Ebenen un deren anwedung. Verlag Buschak & Irrgang, 1877.

[178] Pizer, S., Fletcher, P., Joshi, S., Thall, A., Chen, J., Fridman, Y.,
Fritsch, D., Gash, A., Glotzer, J., Jiroutek, M., et al. Deformable
m-reps for 3D medical image segmentation. International Journal of Computer
Vision 55 (2003), 85–106.

[179] Pizer, S. M., Siddiqi, K., Székely, G., Damon, J. N., and Zucker, S. W.
Multiscale medial loci and their properties. International Journal of Computer
Vision 55 (2003), 155–179.

[180] Postolski, M., Couprie, M., and Janaszewski, M. Scale filtered euclidean
medial axis. Lecture Notes in Computer Science 7749 (2013), 360–371.

[181] Reddy, J. M., and Turkiyyah, G. M. Computation of 3D skeletons using a
generalized Delaunay triangulation technique. Computer-Aided Design 27 (1995),
677 – 694.

[182] Rosenfeld, A., Kong, T., and Wu, A. Digital surfaces. CVGIP: Graphical
Models and Image Processing 53 (1991), 305–312.

[183] Samet, H. A quadtree medial axis transform. Communications of the ACM 26
(1983), 680–693.

[184] Sampl, P. Medial axis construction in three dimensions and its application to
mesh generation. Engineering with Computers 17 (2001), 234–248.

[185] Sanniti di Baja, G. On medial representations. Lecture Notes in Computer
Science 5197 (2008), 1–13.

[186] Schaefer, S., Ju, T., and Warren, J. Manifold dual contouring. IEEE
Transactions on Visualization and Computer Graphics 13, 3 (2007), 610–619.

[187] Schwarz, M., and Seidel, H.-P. Fast parallel surface and solid voxelization on
GPUs. ACM Transactions on Graphics 29, 6 (2010), 179:1–179:10.

[188] Sebastian, T., Klein, P., and Kimia, B. Recognition of shapes by editing their
shock graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence 26,
5 (2004), 550–571.

[189] Shaked, D., and Bruckstein, A. Pruning medial axes. Computer Vision and
Image Understanding 69 (1998), 156–169.

[190] Shamir, A., and Shaham, A. Skeleton based solid representation with topology
preservation. Graphical Models 68, 3 (2006), 307 – 321.

182

[191] Sharf, A., Lewiner, T., Shamir, A., and Kobbelt, L. On-the-fly curve-
skeleton computation for 3D shapes. Computer Graphics Forum 26, 3 (2007),
323–328.

[192] Sharir, M., and Agarwal, P. Davenport-Schinzel sequences and their geometric
applications. Cambridge University Press, 1995.

[193] Sheehy, D. J., Armstrong, C. G., and Robinson, D. J. Computing the
medial surface of a solid from a domain Delaunay triangulation. In Proceedings of
the third ACM symposium on Solid modeling and applications (1995), pp. 201–212.

[194] Sherbrooke, E. C., Patrikalakis, N. M., and Brisson, E. An algorithm
for the medial axis transform of 3D polyhedral solids. IEEE Transactions on
Visualization and Computer Graphics 2 (1996), 44 – 61.

[195] Sherbrooke, E. C., Patrikalakis, N. M., and Wolter, F.-E. Differential
and topological properties of medial axis transforms. Graphical Models and Image
Processing 58, 6 (1996), 574–592.

[196] Shinagawa, Y., and Kunii, T. Constructing a reeb graph automatically from
cross sections. IEEE Computer Graphics and Applications 11 (1991), 44–51.

[197] Shinagawa, Y., Kunii, T., and Kergosien, Y. Surface coding based on morse
theory. IEEE Computer Graphics and Applications 11 (1991), 66–78.

[198] Siddiqi, K., and Pizer, S. Medial Representations: Mathematics, Algorithms
and Applications. Springer, 2008.

[199] Sobiecki, A., Yasan, H., Jalba, A., and Telea, A. Qualitative comparison
of contraction-based curve skeletonization methods. In Proceedings of International
Symposium on Mathematical Morphology (2013), Springer.

[200] Soĺıs Montero, A., and Lang, J. Skeleton pruning by contour approximation
and the integer medial axis transform. Computers & Graphics 36, 5 (2012), 477–487.

[201] Srinivasan, V., and Nackman, L. Voronoi diagram for multiply-connected
polygonal domains. IBM Journal of Research and Development 31, 3 (1987), 361–372.

[202] Stolpner, S., and Whitesides, S. Medial axis approximation with bounded error.
In Proceedings of the 2009 Sixth International Symposium on Voronoi Diagrams
(2009), pp. 171–180.

[203] Storti, D. W., Turkiyyah, G. M., Ganter, M. A., Lim, C. T., and Stal,
D. M. Skeleton-based modeling operations on solids. In Proceedings of the fourth
ACM symposium on Solid modeling and applications (1997), pp. 141–154.

[204] Stroud, I., Renner, G., and Xirouchakis, P. A divide and conquer algorithm
for medial surface calculation of planar polyhedra. Computer-Aided Design 39
(2007), 794–817.

183

[205] Sud, A. Efficient computation of discrete Voronoi diagram and homotopy-preserving
simplified medial axis of a 3D polyhedron. PhD thesis, University of North Carolina
at Chapel Hill, 2006.

[206] Sud, A., Foskey, M., and Manocha, D. Homotopy-preserving medial axis
simplification. In Proceedings of the 2005 ACM symposium on Solid and physical
modeling (2005), pp. 39–50.

[207] Sudhalkar, A., Gürsöz, L., and Prinz, F. Continuous skeletons of discrete
objects. In Proceedings on the second ACM symposium on Solid modeling and
applications (1993), pp. 85–94.

[208] Sudhalkar, A., Gürsöz, L., and Prinz, F. Box-skeletons of discrete solids.
Computer-Aided Design 28, 6–7 (1996), 507 – 517.

[209] Sugihara, K., and Hayashi, Y. Automatic generation of 3D building models
with multiple roofs. Tsinghua Science & Technology 13 (2008), 368 – 374.

[210] Tagliasacchi, A. Skeletal representations and applications. Tech. rep., Simon
Fraser University, 2013.

[211] Tagliasacchi, A., Alhashim, I., Olson, M., and Zhang, H. Mean curvature
skeletons. Computer Graphics Forum 31, 5 (2012), 1735–1744.

[212] Tagliasacchi, A., Zhang, H., and Cohen-Or, D. Curve skeleton extraction
from incomplete point cloud. ACM Transactions on Graphics 28, 3 (2009), 71:1–71:9.

[213] Tam, R., and Heidrich, W. Shape simplification based on the medial axis
transform. In IEEE Visualization (2003), pp. 481–488.

[214] Tamassia, R. A dynamic data structure for planar graph embedding. Lecture
Notes in Computer Science 317 (1988), 576–590.

[215] Tanase, M., and Veltkamp, R. C. A straight skeleton approximating the
medial axis. Lecture Notes in Computer Science 3221 (2004), 809–821.

[216] Vergés, E., Ayala, D., Grau, S., and Tost, D. Virtual porosimeter.
Computer-Aided Design and Applications 5 (2008), 557–564.

[217] Vigo, M., Pla, N., Ayala, D., and Martinez, J. Efficient algorithms for
boundary extraction of 2D and 3D orthogonal pseudomanifolds. Graphical Models
74, 3 (2012), 61 – 74.

[218] Vyatkina, K. On the structure of straight skeletons. In Proceedings of the
International Conference on Computational Sciences and Its Applications (2008),
pp. 452–460.

[219] Vyatkina, K. Linear axis for planar straight line graphs. In Proceedings of the
fifteenth Australasian Symposium on Computing (2009), pp. 139–152.

184

[220] Wan, M., Dachille, F., and Kaufman, A. Distance-field based skeletons
for virtual navigation. In Proceedings of the conference on Visualization (2001),
pp. 239–246.

[221] Wang, S., Wu, J., Wei, M., and Ma, X. Robust curve skeleton extraction for
vascular structures. Graphical Models 74, 4 (2012), 109–120.

[222] Wang, Y.-S., and Lee, T.-Y. Curve-skeleton extraction using iterative least
squares optimization. IEEE Transactions on Visualization and Computer Graphics
14 (2008), 926 –936.

[223] Ward, A. D., and Hamarneh, G. The groupwise medial axis transform for
fuzzy skeletonization and pruning. IEEE Transactions on Pattern Analysis and
Machine Intelligence 32 (2010), 1084–1096.

[224] Whitehead, J. Simplicial spaces, nuclei and m-groups. Proceedings of the London
mathematical society 2, 1 (1939), 243–327.

[225] Wolter, F. Cut locus and medial axis in global shape interrogation and represen-
tation. In MIT Design Laboratory Memorandum 92-2 (1992).

[226] Wong, W.-T., Shih, F. Y., and Su, T.-F. Thinning algorithms based on
quadtree and octree representations. Information Sciences 176, 10 (2006), 1379 –
1394.

[227] Wood, D. The contour problem for rectilinear polygons. Information Processing
Letters 19, 5 (1984), 229–236.

[228] Xie, W., Thompson, R., and Perucchio, R. A topology-preserving parallel
3D thinning algorithm for extracting the curve skeleton. Pattern Recognition 36
(2003), 1529–1544.

[229] Yang, Y., Brock, O., and Moll, R. N. Efficient and robust computation of
an approximated medial axis. In Proceedings of the ninth ACM symposium on Solid
modeling and applications (2004), pp. 15–24.

[230] Yap, C. An O (n log n) algorithm for the Voronoi diagram of a set of simple curve
segments. Discrete and Computational Geometry 2, 1 (1987), 365–393.

[231] Zhang, T. Y., and Suen, C. Y. A fast parallel algorithm for thinning digital
patterns. Communications of the ACM 27 (1984), 236–239.

[232] Zhou, Y., Kaufman, A., and Toga, A. W. Three-dimensional skeleton and
centerline generation based on an approximate minimum distance field. The Visual
Computer 14 (1998), 303–314.

[233] Zhou, Y., and Toga, A. Efficient skeletonization of volumetric objects. IEEE
Transactions on Visualization and Computer Graphics 5 (1999), 196–209.

185

	Introduction
	Objectives
	Document outline
	Machine specifications

	Notation and previous definitions
	Related work
	Skeletal representations
	Properties
	Medial axis
	The λ medial axis
	The scale axis transform
	Straight skeleton
	Other skeletal representations

	Skeleton algorithms
	Properties
	Methods to compute the medial axis
	Methods to compute the straight skeleton
	Methods to compute the curve skeleton

	Skeleton applications
	Conclusions

	Preprocess: B-Rep extraction of orthogonal shapes
	Introduction
	Related work
	B-Rep extraction of orthogonal polygons
	Algorithm design
	Managing orthogonal pseudomanifold polygons
	Algorithm complexity

	B-Rep extraction of orthogonal polyhedra
	Algorithm design
	Managing orthogonal pseudomanifold polyhedra
	Algorithm complexity

	B-Rep extraction from other representation schemes
	Experimental results
	Conclusions

	Preprocess: trihedralization of orthogonal polyhedra
	Introduction
	Existence and uniqueness of trihedralization
	Computing the trihedralization
	Experimental results
	Conclusions

	L∞ Voronoi diagram of orthogonal polygons
	Introduction
	Previous definitions and properties
	Edge-based algorithm
	Edge event
	Ray-ray junction event
	Algorithm complexity

	Vertex-based algorithm
	Vertex event
	Ray-edge junction event
	Algorithm complexity

	Treatment of degenerate cases
	Non-manifold polygon vertices
	Degeneracy by collinearity
	Degeneracy by coincidence

	Straight skeleton equivalence
	Experimental results
	Conclusions

	L∞ Voronoi diagram of orthogonal polyhedra
	Introduction
	Previous definitions and properties
	Algorithm overview
	Vertex event
	Junction event
	Ray-ray junction event
	Ray-face junction event

	Nearest junction event computation
	Algorithm complexity
	Treatment of degenerate cases
	Degeneracy by coplanarity
	Degeneracy by coincidence

	Straight skeleton equivalence
	Experimental results
	Conclusions

	The cube skeleton
	Introduction
	Cube skeleton definition
	Cube skeleton properties
	Homotopy equivalence
	Dimension reduction
	Shape representation

	The interior cube skeleton of orthogonal polygons
	Computing the cube skeleton of orthogonal shapes
	Computing the cube skeleton of orthogonal polygons
	Computing the cube skeleton of orthogonal polyhedra

	Experimental results
	Conclusions

	The scale cube skeleton
	Introduction
	Scale cube skeleton definition
	Scale cube skeleton properties
	Computing the scale cube skeleton of orthogonal polygons
	Experimental results
	Conclusions

	Conclusions and future work
	List of publications
	Glossary
	Bibliography

