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ABSTRACT

SKELETON STRUCTURES AND ORIGAMI DESIGN

SEPTEMBER 2015

JOHN CHRISTOPHER BOWERS

B.Sc., THE FLORIDA STATE UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Ileana Streinu

In this dissertation we study problems related to polygonal skeleton structures

that have applications to computational origami. The two main structures studied

are the straight skeleton of a simple polygon (and its generalizations to planar straight

line graphs) and the universal molecule of a Lang polygon. This work builds on results

completed jointly with my advisor Ileana Streinu.

Skeleton structures are used in many computational geometry algorithms. Exam-

ples include the medial axis, which has applications including shape analysis, optical

character recognition, and surface reconstruction; and the Voronoi diagram, which

has a wide array of applications including geographic information systems (GIS),

point location data structures, motion planning, etc.

The straight skeleton, studied in this work, has applications in origami design,

polygon interpolation, biomedical imaging, and terrain modeling, to name just a few.

Though the straight skeleton has been well studied in the computational geometry
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literature for over 20 years, there still exists a significant gap between the fastest

algorithms for constructing it and the known lower bounds.

One contribution of this thesis is an efficient algorithm for computing the straight

skeleton of a polygon, polygon with holes, or a planar straight-line graph given a

secondary structure called the induced motorcycle graph.

The universal molecule is a generalization of the straight skeleton to certain con-

vex polygons that have a particular relationship to a metric tree. It is used in

Robert Lang’s seminal TreeMaker method for origami design. Informally, the univer-

sal molecule is a subdivision of a polygon (or polygonal sheet of paper) that allows the

polygon to be “folded” into a particular 3D shape with certain tree-like properties.

One open problem is whether the universal molecule can be rigidly folded: given the

initial flat state and a particular desired final “folded” state, is there a continuous

motion between the two states that maintains the faces of the subdivision as rigid

panels? A partial characterization is known: for a certain measure zero class of uni-

versal molecules there always exists such a folding motion. Another open problem

is to remove the restriction of the universal molecule to convex polygons. This is of

practical importance since the TreeMaker method sometimes fails to produce an out-

put on valid input due the convexity restriction and extending the universal molecule

to non-convex polygons would allow TreeMaker to work on all valid inputs. One

further interesting problem is the development of faster algorithms for computing the

universal molecule.

In this thesis we make the following contributions to the study of the universal

molecule. We first characterize the tree-like family of surfaces that are foldable from

universal molecules. In order to do this we define a new family of surfaces we call

Lang surfaces and prove that a restricted class of these surfaces are equivalent to

the universal molecules. Next, we develop and compare efficient implementations for

computing the universal molecule. Then, by investigating properties of broader classes

ix



of Lang surfaces, we arrive at a generalization of the universal molecule from convex

polygons in the plane to non-convex polygons in arbitrary flat surfaces. This is of both

practical and theoretical interest. The practical interest is that this work removes the

case from Lang’s TreeMaker method that causes TreeMaker to fail to produce output

in the presence of non-convex polygons. The theoretical interest comes from the fact

that our generalization encompasses more than just those surfaces that can be cut

out of a sheet of paper, and pertains to polygons that cannot be lied flat in the plane

without self-intersections. Finally, we identify a large class of universal molecules that

are not foldable by rigid folding motions. This makes progress towards a complete

characterization of the foldability of the universal molecule.
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CHAPTER 1

INTRODUCTION

Skeleton Structures. A skeleton is a structure on the interior of the polygon,

which is typically a (combinatorial) tree. It subdivides the polygon into faces and in

a qualitative sense captures certain properties of a polygon (like its shape) in a way

that is often useful in applications.

Examples of skeletons are the well-known medial axis [10], the linear axis which is

obtained from and approximates the medial axis [56], bisector graphs, and the straight

skeleton [4]. Each of these is a tree-like structure on the interior of a polygon and each

has generalizations to other settings such as polygons with holes, or planar straight

line graphs. The medial axis is composed of both straight edges and curves.

The Straight Skeleton. Arising from the need in applications to deal with straight

edges only, the straight skeleton was introduced to provide a similar structure that

(qualitatively) “looks like” the medial axis, but is composed of straight line segments.

The straight skeleton has found many applications. To name several: roof design

[4]; terrain modeling [3]; polygon interpolation [6]; graph drawing [21]; procedural

modeling of urban environments [57]; biomedical imaging [26]; polygon decomposition

[55]; and computational origami [27]. The straight skeleton of a polygon is illustrated

in Fig. 1.1, left.

For a convex polygon the straight skeleton and the medial axis are identical. How-

ever, in the non-convex case, they differ significantly. The difference arises chiefly from

the property that while the medial axis is stable under small changes in the polygon,

the straight skeleton (in certain situations) is highly unstable, and small changes in
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Figure 1.1: Left: the straight skeleton of a polygon. Middle: the universal molecule of a
polygon. Right: a “folding” of the universal molecule in R3.

the polygon may result in drastic changes in the straight skeleton’s structure. It ap-

pears that this contributes to the current speed gap between the fastest algorithms

for computing the medial axis and straight skeleton: the medial axis of a non-convex

polygon with n vertices can be computed in linear time [25], but currently the fastest

known algorithms for computing the straight skeleton take ω(n polylog(n)) in the

worst case.

Algorithmic complexity of the straight skeleton. Currently, the best lower

bounds known for the straight skeleton problem are Ω(n) in the case of polygons, and

Ω(n log n) in the case of polygons with holes and general planar straight line graphs.

For the past two decades, this gap has lead to much interest in developing faster

algorithms for computing it. A main contribution of this thesis is an O(n log n) time

algorithm for computing the straight skeleton of a polygon from its induced motorcycle

graph and O(n log n logm) time algorithm for computing the straight skeleton of a

planar straight line graph with m-connected components from its induced motorcycle

graph. This work has been submitted and is under review.

Origami Design. One interesting application area of the straight skeleton is that

of computational origami. The origami design problem is a term used to denote

a family of related problems. Generally, the goal is to compute a crease pattern on a

sheet of paper so that when the paper is folded along the creases the result is some

desired 3D shape with certain geometric properties (a description of exactly what

properties are desired is specific to the particular design problem).
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For example, the fold-and-one-cut (origami design) problem is: given a square

sheet of paper and a polygon drawn on the paper, fold the paper into a shape so that

a single cut from a pair of scissors cuts only along the drawn polygon’s boundary,

effectively “cutting out” the polygon from the paper in a single cut. This problem

has been solved using straight skeletons [28]. Other notable design problems include

polyhedron wrapping [29], in which the goal is to “wrap” the surface of a polyhedron

with a sheet of paper; silhouette folding [29], in which the goal is to fold a square

sheet of paper flat so that its silhouette is a desired 2D shape; and polyhedral folding

[52], in which the goal is to cut a polygon out of a sheet of paper and fold it into a

desired triangulated polyhedral surface.

Rigid folding motions. Typically a solution to an origami design problem is an

algorithm that given the paper and desired constraints produces a crease pattern

such that there exists an isometric reconfiguration of the paper into 3D that realizes

the constraints. However the existence of such a reconfiguration does not of itself

guarantee the existence of a folding animation, or rigid folding motion, that begins

with the flat paper and continuously folds the paper only along creases to reach the

final state without stretching or bending any faces. The problem of producing such

a motion is the rigid folding problem.

Lang’s TreeMaker method for origami design and the universal molecule.

One of the first origami design problems studied in the literature is R. Lang’s TreeMaker

problem [44]. The problem is: given a geometrically embedded tree T and a square

sheet of paper, produce a crease pattern on the paper so that it folds into 3D in such

a way that its orthogonal projection into the xy-plane is equivalent to T . Lang’s

solution, the TreeMaker method, works in two phases. The first phase subdivides

the paper into a series of polygons. The second phase “fills in” the interior of each

polygon with a particular crease pattern called the universal molecule. The universal

molecule of a polygon, and a “folding” of it into R3 are depicted in Fig. 1.1 middle
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and right. The universal molecule is a generalization of the straight skeleton and

under certain conditions is identical with it.

Problems related to TreeMaker. One difficulty with TreeMaker is that its first

phase may produce polygons which are non-convex, but the universal molecule is

defined only for convex polygons. In this case TreeMaker simply fails to produce an

output. A main contribution of this thesis is to generalize the universal molecule

to cover all possible polygons produced by the first phase of TreeMaker (see Ch. 7).

This settles an open conjecture of Demaine and O’Rourke (Conjecture 16.8.1 in [31]).

This is joint work with my advisor Ileana Streinu and is under review. Though

the algorithm has been in practical use for some 20 years and has been studied

in various forms in the computational geometry literature, no precise mathematical

characterization of its output independent of the algorithm had appeared. In order to

generalize the the algorithm, we first need such a characterization, which is another

contribution of this thesis, given in Ch. 5. This work has appeared in [15]. Along the

way, we develop and analyze two O(n2 log n) algorithms for computing the universal

molecule (see Ch. 6). This is joint work with Ileana Streinu and appeared in [14].

A remaining problem concerns when a universal molecule has a rigid folding mo-

tion. Prior to the present work, it was known that in the highly specialized case

where the universal molecule is identical to the straight skeleton, there always exists

a rigid folding motion (cf. [27]). Given a particular tree, the subset of compatible

polygons for which the universal molecule is the straight skeleton has measure zero.

In Ch. 8 we characterize a larger class of polygons for which we show that not only

does no rigid folding to the final desired state exist, but no nontrivial rigid folding

from the flat state to any other state exists. This is joint work with Ileana Streinu

and has appeared in [17].
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CHAPTER 2

PRELIMINARIES

In the next section, we provide preliminary definitions of our main objects of interest,

the straight skeleton and the universal molecule, as well as additional terminology

needed throughout this thesis including the straight skeleton roof, motorcycle graphs,

doubling polygons, and Lang polygons. In each chapter, to aid the reader, we review

the relevant concepts and where appropriate give additional details apropos to the

chapter. In Sec. 2.1 we cover some basic definitions. In Sec. 2.2 we define the straight

skeleton and investigate some of its properties. In Sec. 2.3 we define the universal

molecule.

2.1 Basic Definitions

Before defining the straight skeleton and the universal molecule, we establish some

basic definitions.

2.1.1 Polygons

Informally, a polygon is a closed chain of straight-line segments drawn in the plane

laid out end-to-end. The vertices of the polygon are the points joining consecutive

line segments and the edges of the polygon are the straight line segments. This is

a decent first pass at a definition, but it rules out certain situations that we would

like to capture. Specifically, we would like to be able to represent polygons that have

zero-length edges, and polygons that have “straight vertices”, or vertices making an

angle of π in the plane. In order to do this, it is helpful to separate the combinatorics

from the geometry.
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Combinatorial chains. It is thus helpful to start by defining a cycle, which is

a cyclically ordered list of abstract objects called vertices. Thus, the cycle with n

vertices is given by the list 1, . . . , n. The edges of the cycle are given by all consecutive

pairs of vertices (i, i + 1). Since we treat the list as cyclic, the pair (n, 1) is an edge

in the polygon. If instead of treating the list a cyclically ordered, we simply treat it

as an ordered list, we say that we have a chain. As before, each pair (i, i + 1) is

an edge of the chain, but the pair (n, 1) is not. We make a cycle (or chain) metric

by defining a weight function that assigns to each edge (i, i + 1) in the chain a

real number called its weight. We typically denote the weight function by w, so if

e = (i, i+ 1) is an edge of a cycle, its weight is denoted by w(e). We typically denote

a weighted chain as the pair (C,w).

Planar polygons. Let C be a cycle with n vertices. To obtain a polygon realizing

C, we assign a point pi to each vertex i in C. The polygon is defined as the geometric

figure that realizes each vertex i in C as its assigned point pi and each edge (i, i+1) in

C as the straight-line segment pipi+1. (If C is a chain, then we call this a polygonal

chain.) If C is a weighted cycle, then we say that an assignment of points to the

vertices of C realizes C as a polygon only if the length of each line segment pipi+1 is

equal to the weight w((i, i+ 1)). This is, of course, only possible if all of the weights

are non-negative, since a line segment cannot have a negative length (we do, however,

allow “line segments” between a point and itself, thus having vanishing length).

Note that this construction of a polygon explicitly allows the “oddities” we men-

tioned above: if pi = pi+1, then the edge (i, i+ 1) is realized as a “zero-length edge”

in the plane. Additionally, two line segments can be collinear under this construction,

thus having a “straight” vertex between them. Separating the combinatorics from

the realization helps us to track these sorts of features.
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Abuse of terminology. In the remainder, rather than starting with a cycle C and

then defining a polygon by assigning points to each vertex, we will typically define a

polygon P by giving the list of its points (p1, . . . ,pn). When we do this, we assume

the cycle C = (1, . . . , n) is implied. We abuse the terminology slightly and refer to

each point pi as a vertex and each straight-line segment pipi+1 as an edge. The

reader should keep in mind, however, that we always view the polygon as being first

a combinatorial object that is then realized geometrically.

Simple polygons. A polygon self-touches if an edge pipi+1 (geometrically) con-

tains another point pj (where i, i + 1 6= j). A polygon self-crosses if two of the

segments pipi+1 and pjpj+1 intersect on their interior. We say that a polygon is

simple if it neither self-touches nor self-crosses.

Monotone polygons and chains. A polygon P is monotone with respect to a

line l if P is simple and if any line l′ that is orthogonal to l intersects P in at most

two points. A polygonal chain is monotone with respect to a line l if it is simple and

if any line l′ orthogonal to l intersects the chain in at most one point. A monotone

polygon can be divided into exactly two unique monotone chains.

Interior and exterior. A simple polygon divides the plane into a well-defined

interior and exterior. The two edges incident to a vertex make two angles, one on

the interior and one on the exterior of the polygon, which we call the interior and

exterior angles. If the interior angle of a vertex is less than π, we say that that the

vertex is convex; equal to π then we say that the vertex is straight, and if greater

than π we say that the vertex is reflex. A convex polygon is one in which all of

its vertices are convex (or, sometimes, straight). If the polygon contains at least one

reflex vertex, then it is non-convex.
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Orientation. Let P = (p1, . . . ,pn) be a simple polygon. Geometrically, we ob-

tain the same figure in the plane if we reverse the order on the points in P to be

(pn, . . . ,p1). However, these correspond to different orientations of the polygon P .

Suppose we start walking around the polygon from p1 towards p2. Throughout the

walk the interior of the polygon lies to the same side. If the interior is to our left,

then we say the polygon is counter-clockwise (ccw) oriented. Otherwise, we say

that the polygon is clockwise (cw) oriented. The orientation of the polygon also

induces a direction on each edge from a source vertex to a destination. In the re-

mainder we assume, unless otherwise stated, that all polygons are counter-clockwise

oriented.

Supporting lines. Each edge of the polygon is a straight line segment, and thus is

supported by a unique line. Let E = (e1, . . . , en) be the edges of a polygon P then the

list L = (l1, . . . , ln) where each li is the supporting line for ei is the list of supporting

lines for P . The counter-clockwise orientation also induces an orientation of each

supporting line li. We give to each line a well-defined left side and right side by

which side the interior of the polygon lies incident to the edge ei supported by li.

Defining a polygon by its supporting lines. Above we defined a polygon by

starting with a cycle of points, and then derived a list of supporting lines. It is

useful to also have the opposite view–start with a list of lines and then derive a cycle

of points. Let L = (l1, . . . , ln) be a list of lines such that each pair of consecutive

lines (li, li+1) intersect at a single point (rather than are parallel or equal). Then the

polygon induced by L is given by P = (p1, . . . ,pn) where each pi+1 is the intersection

of lines li and li+1. This construction is useful in understanding the following definition

of an offset polygon.

Parallel offset polygons. A parallel offset polygon is a polygon formed by starting

with one polygon P and “moving” each of its edges inward in parallel by a certain
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Figure 2.1: A polygon (left), its supporting lines (center left), and two offset polygons
(center right and right) in blue.

amount. Figure 2.1 illustrates this concept. In this thesis, we will restrict our discus-

sion to parallel offset polygons where each edge is moved by the same amount. We

now make this more precise.

There are several ways to define a parallel offset polygon for a polygon P . We

first use the supporting lines L = (l1, . . . , ln) of P . The parallel offset polygon of

distance d is given by moving each line li to its left orthogonally by d units (recall that

since we assume all polygons are oriented, then the left of li is towards the interior of

P at the supported edge ei).

An equivalent, but less evocative, way to define the parallel offset polygon is to

move each vertex pi+1 of P inwards along its interior angle bisector, the line

through pi+1 which divides its interior angle into two equal angles. Let li and li+1

denote the supporting lines of the two edges of P incident to pi+1. We note that all

points on the interior angle bisector of pi+1 are equidistant from li and li+1. To form

the parallel offset polygon of P of distance d we move pi+1 inwards along its interior

angle bisector to the point p′ that is a distance of d from li and li+1. From elementary

trigonometry it follows that p′ is the point d/ sin(θ/2) units inward along the interior

angle bisector (where θ denotes the interior angle measure).

Offset polygons need not be simple. We note that an offset polygon need not

be simple as is the case in the left of Figure 2.1. In that figure, though the starting

polygon is simple, the offset polygon, shown in blue, has two self-crossings. Another

technical fact (which is not needed in this thesis, but is interesting) if orient the
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polygon in Figure 2.1 ccw, we can obtain a simple cw oriented polygon by choosing

a large enough offset distance.

Parameterizing the offset polygons. We now parametrize the offset polygons

defined above by letting P (t) denote the offset polygon of distance t from P . This

parametrization will be important for defining both the straight skeleton and the

universal molecule. We can view the set of offset polygons P (t) as a motion starting

with the initial polygon at time t = 0. As t increases continuously, the lines supporting

the edges of the sweep polygon move inwards in parallel at constant speed.

Events. For small enough values of t the topology of the offset polygon P (t) is the

same as the initial polygon P–i.e. if the polygon is simple, then for small t so is P (t);

however, the topology changes at certain discrete times, called events.

The first event is an edge collapse, where one of the edges of the polygon shrinks

to zero length. If we continue the offsetting process past this event, then P (t) is no

longer simple. In our supporting lines based definition of the offset polygon, this

means that three (or more) consecutive supporting lines intersect at the same point.

In our vertex-moving based definition, this means that two consecutive vertices have

the same coordinates in P (t).

The second event is a collision event, where a self-touching is introduced in P (t).

In other words, this occurs when a point “hits” an edge elsewhere in the polygon. As

with an edge collapse, if we continue past this event, then the polygon is no longer

simple. If the polygon is simple leading up to such an event, then the colliding vertex

is reflex.
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Figure 2.2: A tree, doubling cycle, and doubling-polygon.

2.1.2 Metric trees, doubling cycles, and doubling polygons

Here we define metric trees, doubling cycles, and doubling polygons. We also define

a splitting operation on each. These are required for the definition of the universal

molecule.

Metric trees. A (positively weighted) metric tree (T,w) is a tree T and a weight

function w that maps each arc1 of T to a positive weight or length. We assume that

a cyclic ordering, or rotation, is given for the incident arcs at each node2. Figure 2.2

(left) depicts an embedding of a weighted, topologically embedded tree with 6 leaf

nodes and 3 internal nodes. The ordering of the arcs at each internal node is given

by the counter-clockwise ordering depicted in the drawing. The weight of each arc is

given by the length of the arc in the drawing.

Doubling cycles. If we start at a1, and begin a walk around the tree in which we

always make the right-most turn each time we reach a node, then the resulting walk

encounters the nodes in the following order (a1,b1,b2, a2, b3, a3, b3, a4, b3, b2, a5, b2,

b1, a6, b1, a1). This list is a cycle on the tree, which we call its doubling cycle CT

1To avoid confusion, we use the terms node and arc to refer to the elements of a tree, and vertex
and edge to refer to the elements of a polygon or embedded straight-line graph.

2Such a tree is sometimes called a ribbon tree, or a topologically embedded tree.
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(cf. the center of Fig. 2.2). The reader should note that the doubling cycle for a tree

T is unique, in the sense that treated as a cyclic list, the result is the same no matter

which leaf node we start from. The doubling cycle CT has the property that each

node of the tree T appears as many times in CT as is equal to its degree in T . We

call each pair of two consecutive nodes in a doubling cycle an edge. Each arc of the

tree appears as exactly two edges in the doubling cycle, once in each direction. If we

further define a weight function w on the edges of CT , that assigns to each edge in

CT the same weight as that of the corresponding arc in T , then we say that (CT , w)

is the weighted doubling cycle for T .

Doubling polygons. Finally, if a weighted doubling cycle (CT , w) is realized as a

polygon PT , such that each edge of the polygon has length equal to the corresponding

weight in (CT , w), then we say that PT is a doubling polygon for T .

Notation. It is convenient to separate the n leaf nodes and m internal nodes of a

tree T into two sets A = (a1, . . . , an) and B = (b1, . . . , bm), respectively. In order

to make clear the correspondences between a tree T and a doubling polygon PT , we

use bold face to denote vertices of the polygon and italics to denote corresponding

nodes in the tree. For instance, the vertex a in PT corresponds to the leaf node a in

T and the edge ab corresponds to the leaf arc ab.

Splitting trees, cycles, and polygons. Given an embedded tree T and two leaf

nodes ai and aj, the splitting operation returns two trees T1 and T2 corresponding

to the part of the tree to the left of (and including) the path from ai to aj in T , and

the part to the right (resp). To split a doubling cycle CT between ai and aj, we first

split CT into two open chains C1 and C2, one from ai to aj and the other from aj

back to ai. We then close each chain using a copy of the path from ai to aj in T . The

chains C1 and C2 are then doubling cycles for T1 and T2 (resp). In a doubling polygon

PT we allow this operation only if the shortest path between ai and aj is a straight-
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Figure 2.3: Splitting a tree and corresponding doubling polygon between ai and aj.

line segment (in which case we call (ai, aj) a visible pair), and the length of the

segment is equal to dT (ai, aj). The split in the polygon is performed by introducing

a splitting edge along the shortest path between ai and aj and subdividing it into

edges so that it is metrically and combinatorially equivalent to the path between ai

and aj in the tree. See Fig. 2.3.

2.1.3 Piecewise linear metric surfaces and terrains

Though both the straight skeleton and the universal molecule live naturally on

the interior of polygons in the plane, it is convenient to work with them instead

as piecewise linear metric surfaces. A piecewise linear metric surface (hence

surface) is obtained by gluing flat, polygonal faces together along whole edges. It

is best to think of these as being constructed by a cookie cutter method. Each face

is “cut out” of some plane and then faces are glued together in order to form more

complex surfaces. Note that we “forget”, as it were, any particular situating of each

face in R3. We remember for each face only its local geometry and how it is glued

together to the other faces to form a surface. A realization of a surface is a map

taking each vertex to a point in R3, each edge to a straight-line segment, and each
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face to a flat (meaning planar) polygon in R3 such that the edges and faces maintain

their size and shape.

Intrinsic vs. extrinsic properties The description of a surface above may seem

mystifying at first. What exactly is the point of forgetting how each face was cut

out? Why not just define a surface as usual as some part of R3? One reason for

doing this is to model what happens as an origami shape is folded. Suppose we fold

an origami shape out of a sheet of paper. Our origami shape in R3 has, in one sense,

a very different geometry than the original flat sheet of paper. However, from the

perspective of a flatlander (someone confined to live on the paper’s surface, say a

bacterium) living on the surface of the origami, nothing has changed. For instance,

suppose we are asked the distance a flatlander would have to travel between two

points p and q. It turns out that the shortest path between p and q on the folded

origami is precisely along the folded version of the straight line segment connecting p

and q on the flat piece of paper. In other words, to tell the distance between p and q

in the folded origami we can simply unfold the paper and measure the distance from

p to q with a straight ruler. So the distance between p and q is somehow intrinsic

to the paper and not a feature that is changed by folding. Given this discussion, it

should be somewhat intuitive that both the flat and the folded paper are really the

same surface even though certain geometrical properties have changed in the ambient

space R3. This is the essential difference between intrinsic and extrinsic geometry,

and the purpose of the definition above is to provide an intrinsic way of defining a

surface.

Properties of a surface that are true in any realization are intrinsic, while those

that depend on a particular realization are extrinsic. This distinction is particularly

important for our purposes, because two different foldings of the same origami crease

pattern are intrinsically the same surface but differ in their extrinsic properties (such

as the dihedral or “folding” angle between faces). Showing that a surface is a folding of
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another amounts to showing that the two surfaces only differ extrinsically. Important

intrinsic properties include the surface’s:

• topology, which in this paper is either a disk (disk-like) or an annulus (ring-

like); since these are the only two topologies we consider, each edge is either

incident to exactly one face (a boundary edge), or to two faces (an interior

edge);

• (intrinsic) curvature of the surface at a vertex (defined in the next paragraph);

and

• the geodesic distance between two points on the surface (defined shortly).

Examples of an extrinsic properties include the dihedral angle between two faces at

an edge, the coordinates of the vertices of the surface in R3, etc.

Curvature. Since our surfaces are piecewise linear, the curvature is concentrated

at the vertices. A vertex has a face angle in each of its incident faces, and its

angle sum is the sum over all its face angles. The (intrinsic Gaussian) curvature

at a vertex is given by 2π minus its angle sum. If every internal vertex of a surface

has zero curvature then the surface is (intrinsically) flat, which does not require

that it be realized in a single plane. A realization of a flat surface in which the

dihedral angles at all interior edges is π is an open, flat realization. In these

terms, both the initial crease pattern drawn on the paper and the final folding of

the origami are (intrinsically) flat, but only the first is in an open, flat realization.

If for a given surface there exists an open, flat realization, then we say that the

surface is flattenable. Flattenability implies that the surface is (intrinsically) flat.

The converse is true for all disk-like surfaces, but not for all ring-like surfaces. For

instance, if one removes the top and bottom face from a cube, the resulting ring-like

surface is flat (its curvature is zero everywhere), but it is not flattenable, since it has

no open, flat realization.
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Geodesic distances and visible pairs Given a surface S, the geodesic distance

between two points p and q, denoted dS(p, q), is the length of the shortest path

between them, called the geodesic path. On a piecewise linear surface, this is a

polygonal chain and if the surface is a disk, is unique. If the geodesic path between

two points p and q is (intrinsically) straight we say that (p, q) is a visible pair. By

this we mean that the angle made by the path in the surface is π at all points. Note

that the geodesic distance dS(p, q) satisfies the usual triangle inequality–for all p, q,

r, dS(p, q) ≤ dS(p, r) + dS(r, q).

2.1.4 Lower envelopes

One geometric tool that is used in certain definitions of the straight skeleton is

the lower envelope. Colloquially, the lower envelope of a set of geometric objects

is the part of each object that is visible to an observer standing infinitely below the

set. Lower envelopes are well studied in the computational geometry literature. We

review here two concrete lower envelopes and the results relevant to our study.

Lower envelope of line segments. Concretely, let S be a set of line segments in

the plane. Let p = (px, py) be a point on a line segment s ∈ S. The point p is on

the lower envelope of S if for all other points q = (qx, qy) on all line segments s′ ∈ S

where px = qx we have that py ≤ qy. In other words, the lower envelope is the set

of points in S such that no other point in S lies below it. Colloquially, this can be

thought of as the parts of each line segment that are visible to an observer infinitely

below S (i.e. at (0,−∞). Given a segment s ∈ S, the set of points of s that lie

on the lower envelope may be disconnected. In fact, the subsets of s that lie on the

lower envelope are themselves line segments. The combinatorial complexity of

the lower envelope is the number of line segments that appear on the lower envelope.

Given n line segments the lower envelope can be found in O(n log n) time [36]

using standard line sweep techniques. Similar techniques exist for computing the
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(a) (b)

Figure 2.4: (a) A polygon and two states of the straight skeleton parallel sweep, or wave-
front process, on its interior. (b) The straight skeleton of a polygon.

lower envelope of a set of lines, and it is easy to extend these techniques to compute

lower envelopes of a collection of both rays and line segments.

Lower envelope of slabs. A more interesting case is that of the lower envelope

of slabs. For our purposes we define a slab as follows. Let Π be a plane in R3, ~v

denote a vector that is parallel to Π, and C be a polygonal chain of line segments in

Π that are monotone with respect to ~v. Then the slab defined by Π, C, and ~v is the

set of points lying “above” C in the direction of ~v. In other words, the slab is the

set of points {p + t~v : t ≥ 0 ∧ p ∈ C}. These are sometimes thought of as polygons

with vertices at infinity. As before, the lower envelope of a set of slabs is the part of

each slab that is visible to an observer sitting infinitely below (meaning at (0, 0,−∞))

the arrangement. Unlike the lower envelope of line segments, where the worst-case

combinatorial complexity is almost linear, in the case of slabs it is super-quadratic

(cf. [32]).

2.2 The straight skeleton

The straight skeleton of a polygon is an embedded straight-line graph on the interior

of the polygon defined by a wavefront or parallel sweep process. Move each edge

of the polygon inwards at unit speed so that it remains parallel to its initial position
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and trace the path of its vertices (as in the parametrized offset process in Sec. 2.1.1.

See Figure 2.4a. As each edge moves, it grows or shrinks to maintain incidence with

its neighbors. We start the offsetting process at time t = 0, and “play” the motion

by allowing t to increase continuously. Recall that during the parametrized offset

process, at certain discrete events, an edge may shrink to zero length (what we called

an edge collapse event), or a reflex vertex may hit another edge of the polygon (what

we called, in that context, a collision event). If the offsetting process is continued

past such an event its topology changes, and the polygon P (t) is no longer simple.

To define the straight skeleton, however, we modify the polygon at each event to

avoid the polygon becoming non-simple. At an edge collapse event, we remove the

zero-length edge in the polygon by replacing it with a single vertex. This operation–

replacing an edge with a single vertex is often referred to as a contraction, and so

we call this event in the context of the straight skeleton a contraction event. We

then continue recursively by offsetting from the contracted polygon. At a collision

event between a vertex and an edge, we split the polygon into two. In the context of

the straight skeleton we call this a splitting event. Once the polygon is split, we

recursively continue in parallel offsetting motions simultaneously in each polygon.

Thus, we get a nested tree of parametrized offset motions. Each one starts at a

simple polygon, continues until it encounters an event, processes the event by con-

tracting or splitting, and then recursively continues on the resulting polygons. At

any given time t, we have a family of polygons which are currently in motion. If one

of the offset polygons contracts to a single point, then we simply remove it. We call

this the a wavefront and the individual polygons wavefront polygons.

Since the wavefront always moves towards the interior of each of the wavefront

polygons, and we always split when a collision is encountered and contract when an

edge collapses (and thus the polygons remain simple), a point on the interior of the

polygon is encountered exactly once.
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Figure 2.5: (a) A polygon. (b) Its straight skeleton. (c) The induced motorcycle graph.
(d) The straight skeleton roof. (e) An edge slab. (f) The motorcycle slab for v with respect
to e. (g) Shows a view of slab(e), which is the union of the edge and motorcycle slabs for e
from z = +∞ (left) and in perspective (right).

The straight skeleton We call the entire wavefront process the straight skeleton

parallel sweep. The trace of the vertices of the of the wavefront is called the straight

skeleton. A straight skeleton is shown in Figure 2.4b.

Properties of the straight skeleton of a polygon. The following properties of

the straight skeleton were derived in [4]:

Lemma 2.2.1 ([4]). Let P be a polygon with n vertices and SS(P ) be its straight

skeleton.

1. SS(P ) is a tree on the interior of P Its leaf nodes are the vertices of P . Its

arcs are straight line segments. Each internal node is either the point of an edge

collapse at a contraction event or a collision at a splitting event.

2. The number of events encountered in the straight skeleton parallel sweep is O(n).

3. The straight skeleton subdivides the interior of P into n faces, one for each edge

of P , which we call its base. Each face is incident to P only along its entire

base edge. Each face is monotone with respect to the line supporting its base

edge.

4. The trace of an edge e of P (which is followed, in the event that the edge splits,

in both split edges) is the face having e as its base edge.
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2.2.1 The Roof Model

A useful alternative characterization of the straight skeleton is the straight skele-

ton roof, which is a terrain given by lifting each vertex of the straight skeleton into

R3. An example is shown in Fig. 1.1(d). To obtain the straight skeleton roof from

the straight skeleton, take each internal node of the straight skeleton and “lift” it

into R3, by augmenting it with a z-coordinate equal to the time at which the parallel

sweep encountered the node. This is equivalent to performing the sweep not in the

xy-plane, but in a plane that sweeps upwards at unit speed simultaneously to the

parallel sweep. In other words, at time t we lift the parallel sweep up onto the z = t

plane. The motion of each edge throughout the sweep is linear, and so again each

edge traces out a planar polygon, this time embedded in a plane making an angle of

π/4 with the face’s base edge (i.e. with slope 1). We call the resulting object the

straight skeleton roof. It is a polyhedral surface, topologically a disk, and the

projection onto the xy-plane of its vertices, edges, and faces gives the vertices, edges,

and faces of the straight skeleton.

Properties of the straight skeleton roof. The straight skeleton roof has several

interesting properties that were investigated in [4]:

Lemma 2.2.2 ([4]). Let P denote a polygon and R(P ) denote the straight skeleton

roof for P . Then,

1. Each edge e traced by a convex vertex of the wavefront in the parallel sweep

forms a ridge in R(P ) (its convex dihedral angle opens downwards).

2. Each edge e traced by a reflex vertex of the wavefront in the parallel sweep forms

a valley in R(P ) (its convex dihedral angle opens upwards).

3. The descent path, or the path of steepest descent from a point p on a face f

of R(P ) is either a line segment joining p to the base edge of f along the slope
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of f ; or, it is a polygonal path which starts by a line segment from p to a valley

of f along the slope of f , which then follows the valley down to the base edge3.

The third property in Lemma 2.2.2 might evocatively be called the rain-water

property, since it implies that rain falling on a particular face of the roof stays on

that face until it leaves the roof at some point along the face’s base edge. For this

reason the straight skeleton has been applied to roof design, since for any polygon it

computes a roof covering the polygon where rain water does not pool (cf. [4]).

Use in computation. As we will see in Chs. 3 & 4, the roof model proves useful

in computing the straight skeleton. In fact, both the prior fastest algorithms and the

algorithms presented in this thesis produce the straight skeleton roof as output. Of

course, the definition of the roof model we gave above cannot be so used, because

the definition assumes prior knowledge of the straight skeleton. Thus, we seek some

alternative definition of the roof that does not require knowing the straight skeleton

or simulating the parallel sweep. Such a definition exists, but before we can present

it, we need one further object, which is called the motorcycle graph, which we now

define.

2.2.2 The motorcycle graph

The main difficulty in computing the straight skeleton arises from detecting when

the wavefront should be split. Such events always occur between a reflex vertex of

the wavefront (a vertex whose interior angle is greater than π) and an edge. Infor-

mally, the difficulty arises from the fact that one moving reflex vertex can “cut off”

another reflex vertex, which effectively separates the second from interacting with

edges on the other side of the polygon. Because of this the order of events is highly

3In degenerate cases this may involve a chain of valley edges incident to f–more on that in Ch. 4
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Figure 2.6: Left: A set of motorcycles with velocity vectors. Right: The motorcycle
graph. One motorcycle escapes, the other two crash (at the star vertices).

susceptible to small changes in the input polygon. An example where a slight change

in the polygon drastically changes the crash events is shown in Figure. 2.7.

The motorcycle graph This difficulty is modeled by an object called the motor-

cycle graph4. Place a number of “motorcycles” at distinct points in the plane, each

with a linear velocity. Each motorcycle moves linearly leaving a track behind it as it

goes. If one motorcycle encounters the track of another then it crashes. A motorcycle

that does not crash (as time goes to infinity) escapes. The motorcycle graph is given

by the tracks of all motorcycles after all motorcycles have either crashed or escaped.

(Note that to make this precise, we either need to add vertices at infinity, or com-

pute a bounding box of all the intersections of the lines supporting each motorcycle’s

trajectory. If a motorcycle encounters the bounding box, then it has escaped, since

no other motorcycles trajectory crosses any point of its future path.)

Motorcycle graph induced by a polygon. The motorcycle graph induced

by a polygon is given by placing a motorcycle at each reflex vertex with a velocity

defined so that it moves at the same speed and direction as the reflex vertex in the

straight skeleton parallel sweep. Figure 2.5c depicts an induced motorcycle graph for

4The term “motorcycle graph” comes from its resemblance to the lightcycles in the Disney movie
Tron.
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(a) (b)

Figure 2.7: An example of a slight change in the polygon affecting a drastic change in
the straight skeleton. The difference between (a) and (b) is simply a slight change in the
sharpness of the reflex vertex along the right side of the polygon. The change is almost
unnoticeable but drastically changes the resulting straight skeleton. Notice that not only
does this significantly change the structure of the straight skeleton, but also has highly non-
local effects, including changes to the combinatorics of faces whose base edges are half-way
around the polygon from the changed vertex.

a polygon. A motorcycle crashes if either (a) it hits the track of another motorcycle,

as before, or (b) hits some edge of the polygon.

Lifted motorcycle graph. Recall that we defined the straight skeleton roof by

lifting the nodes of the straight skeleton into R3. Similarly, we define the lifted

motorcycle graph by lifting each point on the graph so that its z-coordinate is

equal to the time the corresponding motorcycle is at that point.

2.2.3 A non-procedural definition of the straight skeleton

We now give a definition of the straight skeleton roof that does not rely on prior

knowledge of the straight skeleton, or a simulation of the parallel sweep. Instead, it

is defined as the lower envelope of a set of partially infinite strips in R3 called slabs;

however, to define the slab set requires prior knowledge of the motorcycle graph.

A consequence of this definition is to break the straight skeleton problem into two

pieces. First, we need an algorithm for computing the motorcycle graph of a set of

motorcycles. From this, in linear time, we can compute the set of slabs. Then, once

the slabs are known, we need to compute the lower envelope of the slab set. We have

already noted that in general, such lower envelopes may be super-quadratic; however,
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in our particular case, properties of the straight skeleton roof will prove to be useful

in designing sub-quadratic algorithms for computing the lower envelope.

Slabs. For each edge of the polygon we define one edge slab and at most two

motorcycle slabs. A slab for an edge is defined on the plane through the edge

making an angle of π/4 with the xy-plane as the area “above” the edge and its

lifted motorcycle graph edges (resp)5. Edge and motorcycle slabs are illustrated in

Figure 2.5(f, g). The union of an edge’s edge slab and motorcycle slabs is its slab.

We give a more precise definition of this in Sec. 4.2.

Characterizing the straight skeleton roof using slabs. The lower envelope

of a set of slabs is an arrangement formed by retaining only the parts of each slab that

lie below all the other slabs, meaning a point p of a slab s is part of the lower envelope

if and only if for all points q of all slabs s′ such that px = qx and py = qy, we have

that pz ≤ qz (here px, py, and pz denote the x, y, and z-coordinates respectively). It

is helpful to think of the lower envelope as the view from −∞. The following theorem

characterizes the roof R(P ) using the slabs defined above:

Theorem 2.2.1 ([23]). The straight skeleton roof for a polygon is the restriction of

the lower envelope of its slabs to the region above the polygon.

In fact, this theorem is generalized in [23] to polygons with polygonal holes. It

gives a non-procedural definition of the straight-skeleton, and has, as we will see

in Ch. 3, given rise to several methods for computing it which do not require the

wavefront model.

Local lower envelope of a face. Theorem 2.2.1 states that the entire roof is

equal to a lower envelope of slabs in R3. Each face also has a “local” characterization

5Here “above” means upwards along the slope vector of the plane.
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(a) (b)

Figure 2.8: (a) A simple PSLG (thick black lines), its induced motorcycle graph (dotted
lines) and a snapshot of its wavefront (thin gray lines). Note the squared caps in the
wavefront emanating and two motorcycles emanating from each such vertex. (b) Its straight
skeleton.

that is useful in some of the proofs in Ch. 4 . Let se be the slab for an edge e. If

we intersect se with any other slab, the intersection (if it exists) is a straight line

segment contained in se. Do this for all slabs to obtain a set of n − 1 line segments

on se. Now, take the lower envelope of these line segments within se with respect to

the slope of se. In other words, we are taking the usual planar lower envelope of a

set of line segments, but within the slab. The resulting chain of edges is incident to

the base or motorcycle edges of the slab, and the region of the slab below this chain

is equal to the face of the straight skeleton roof supported by se.

2.2.4 Generalizing to planar straight line graphs

Straight skeletons are also defined for the more general planar straight line

graphs (PSLGs). A PSLG is a planar graph embedded in the plane so that it

exhibits no self crossing nor self touching. The main difference between the polygon

case and the case of PSLGs is the presence of degree 1 vertices. The wavefront

definition and roof model are essentially the same as in the polygon case, except

that each edge of a PSLG produces two edges in the wavefront, one on either side.

Additionally, the degree one vertices are modeled by a zero-length edge in the initial
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wavefront which is orthogonal to both its incident wavefront edges. This creates a

squared cap around each degree one vertex in the wavefront. See Figure 2.8a. This is

modeled in the induced motorcycle graph by shooting out two motorcycles from each

degree one vertex, one along each ray making an angle of 3π/4 with adjacent edge.

See Figure 2.8a. Now, in addition to each edge having defined slabs, each degree

one vertex has a defined vertex slab which is the union of two motorcycle slabs.

Theorem 2.2.1 generalizes to:

Theorem 2.2.2 ([40]). The straight skeleton roof for a planar straight line graph is

the lower envelope of its edge, motorcycle, and vertex slabs.

Figure 2.8b shows the straight skeleton of a PSLG.

2.2.5 Degenerate straight skeletons

So far, for both the straight skeleton and the motorcycle graph, we have implicitly

assumed that certain degenerate situations do not arise. For instance, what do you

do if two (or more) motorcycles crash into each other simultaneously? Similarly, what

do you do if multiple reflex vertices collide at the same point? Another degeneracy

that presents problems for some algorithms (for technical reasons) is when four slabs

intersect at the same point. These situations require careful handling, and in Ch. 4

we give them a thorough treatment.

2.3 The universal molecule

Overview. The universal molecule is a particular origami crease pattern,

which is a planar straight line graph drawn on the interior of certain polygons, which

subdivides the polygon into a piecewise linear surface. It is defined for any metric

tree T and compatible convex polygon PT , called a Lang polygon, meeting certain

constraints that come from the tree. For any embedding of the tree into the xy

plane, the induced piecewise linear surface has a particular realization in R3 called
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Figure 2.9: A metric tree and compatible Lang polygon, its universal molecule crease
pattern, a folded realization of the crease pattern projecting onto the tree, and a realization
of the crease pattern in a uniaxial state.

its folded realization which projects onto the tree. The main distinguishing feature

is that it has a family of folded realizations given by embeddings of the tree into the

xy-plane, so that each realization projects onto an embedding of the tree. Figure 2.9

shows an illustration of a metric tree, compatible Lang polygon, universal molecule

crease pattern, and two realizations of the crease pattern in R3. The second is called

uniaxial because all of the arcs of the tree are embedded along a common line, and

the boundary of the polygon is similarly folded so that each boundary edge lies along

a common line in R3.

Let T be a (positively weighted) metric tree (meaning a connected acyclic graph

with a positive real weight w(a) attached to each arc6 a of T ). We assume that each

tree T is topologically embedded, by which we mean that an ordering (or rotation)

of the incident arcs is defined for each internal node. A doubling cycle of T is a

combinatorial polygon which is a circuit on T . It is defined by starting at any leaf

node and walking along a circuit of the tree while respecting the ordering on its arcs.

Such a walk visits each arc exactly twice, and each node a number of times equal to its

degree. Figure 2.10 illustrates these concepts. A doubling polygon is a realization

of a doubling cycle in the plane which maintains the length of each edge.

6Note that in order to differentiate between the elements of a polygon and the elements of a tree,
we will refer to vertices and edges of a polygon and nodes and arcs of a tree.
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Figure 2.10: A tree (left) and a (combina-
torial) doubling cycle (right) for the tree.
Notice that each leaf node appears once in
the doubling cycle, but the interior nodes
of the tree have multiple copies.

Lang polygons A Lang polygon (T, PT ) is a pair of a (positively weighted) metric

tree T and a convex doubling polygon PT for T that satisfies the Lang property:

letting u and v be any two non-consecutive vertices of PT and u and v be their

respective nodes in T , we have d(u,v) ≥ dT (u, v) (where d(·) is the usual euclidean

distance in the plane, and dT (·) denotes the distance metric on T ).

The universal molecule of a Lang polygon. The universal molecule for a Lang

polygon (T, PT ) is defined using a parallel sweep process similar to that of the straight

skeleton. As with the straight skeleton, the universal molecule parallel sweep

employs a recursive set of parametrized offset polygons. Because the polygon is con-

vex, the only possible topological event encountered is an edge collapse. As with the

straight skeleton, this is handled by contracting an edge. Unlike the straight skele-

ton, however, the parallel sweep is mirrored by a simultaneous shrinking process

in the tree. The length of each leaf arc shrinks at the same rate as its corresponding

edges in the wavefront. This maintains the invariant that the wavefront polygon is

a Lang polygon for the shrinking tree except at certain event points. Maintaining

this invariant past these events requires that a splitting operation be applied to both

the tree and the wavefront, which splits the tree into two and splits the wavefront

by introducing a splitting edge. It should be remarked that this split event is not

the same as the split event in the straight skeleton; however, it accomplishes roughly

the same thing, namely to split the sweeping polygon and shrinking tree into two

and recursively continue the sweep simultaneously in each resulting side. As with
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the straight skeleton, each wavefront ends when it contracts to a single point called

a peak.

The universal molecule, like the straight skeleton, is defined by tracing the

vertices of the wavefront during the parallel sweep process (along with certain splitting

edges introduced at splitting events). We give significantly more detail on this process

in Ch. 5.
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CHAPTER 3

PRIOR WORK

3.1 Algorithms for computing the straight skeleton

The straight skeleton, first introduced by Aichholzer et al. in 1995 [4], has gener-

ated many research directions in computational geometry over the last two decades.

Researchers have looked at a wide-array of problems including: Is there a non-

procedural definition for the straight skeleton? If one is given a metric tree T with

positive weights at each edge, under what conditions does there exist a polygon P

whose straight skeleton is T? Can the straight skeleton be generalized to higher di-

mensions? What other straight-line skeletons might exist? Etc. One of the main

questions addressed in this thesis is the computational one–what is the complexity of

computing the straight skeleton? Though work on this problem has spanned twenty

years, there is still a significant gap between the fastest algorithms for computing it

and the only known lower bounds, which are the trivial Ω(n) lower bound for poly-

gons, and a lower bound of Ω(n log n) for planar straight line graphs (by a reduction

to sorting). In this section we survey the growing literature concerning the algorith-

mic complexity of the straight skeleton, and that of the motorcycle graph, a structure

which has been used in the fastest algorithms for computing the straight skeleton for

over a decade.

3.1.1 Parallel sweep based based algorithms

We first survey what are, in some sense the most natural algorithms for comput-

ing the straight skeleton, namely those that simulate the parallel sweep process to
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generate the straight skeleton. One particularly interesting feature of some of these

algorithms is that they seem to “work well in practice” even though their theoretical

runtimes are worse than the algorithms presented in the next section. They also tend

to be the most implementable, in the sense that the algorithms are simpler and rely

on simpler data structures than those we investigate in the next section. In each

of these n denotes the number of vertices in the polygon/PSLG and r denotes the

number of reflex vertices.

3.1.1.1 Aichholzer et al., 1995

In the same paper in which the straight skeleton was first introduced for simple

polygons [4], Aichholzer et al. suggested computing the straight skeleton by simu-

lating the parallel polygonal sweep directly. Simultaneous events are not dealt with

in this work, and thus in the following we assume that no simultaneous events oc-

cur. Simulating the sweep requires detecting two types of events–contraction events,

which occur when an edge of the parallel sweep contracts to a single point; and

splitting events, which occur when a reflex vertex hits some edge elsewhere in the

sweep. Naively, this can be simulated in Θ(n3) time and O(n) space by employing

the following recursive strategy. First compute, for each edge, the time t at which

it would contract, ignoring the possibility of splitting events. These are candidate

contraction events. Then for each vertex v and edge edge e not incident to v, compute

the time at which v hits e if no other events were to occur before the hit. These are

candidate splitting events. Finally, take the minimum candidate event to be the next

event, update the state of the sweeping polygon by advancing each edge to the time

of the event, and recurse. This algorithm takes O(n3) time and O(n) space. It is

mentioned that this might be improved to O(n2 log n) time at the cost of O(n2) space

using a priority queue to store events, though important details, such as how to deal
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with the fact that it is possible that at each splitting event Θ(n2) events currently in

the queue are invalidated, are not mentioned.

3.1.1.2 Aichholzer and Aurenhammer, 1996

In [3], Aichholzer and Aurenhammer generalize the straight skeleton to planar

straight-line graphs (PSLGs) and describe an algorithm for computing it. As before

this algorithm simulates the parallel sweep process propagating from the edges of

the PSLG. The basic idea is to maintain the regions yet to be swept in a kinetic

triangulation. As the sweep progresses, a triangle may collapse when its vertices

become collinear. These events are categorized into three types. The first correspond

to contraction events in the parallel sweep. The second correspond to splitting events

in the parallel sweep. The third are flip events. These occur when one vertex of the

triangle “hits” an edge shared with another triangle. The two triangles are “flipped”

by removing the edge containing the collision vertex and adding an edge from that

point to the vertex opposite the removed edge in the opposite triangle. This removes

the collision and allows the simulation to proceed.

They observe that since all the points move along linear trajectories, the number

of flip events is bounded by the number of times any triplet of the n points become

collinear. For a given triplet of points moving along constant linear trajectories,

this happens at most twice throughout the motion, which leads to an upper bound of

O(n3) on the number of events processed during the sweep. The triangulation contains

O(n) triangles, and the collapse time of each triangle is stored in a priority queue.

Processing flip events requires updating O(1) events in the queue, while processing

contraction or splitting events may require O(n) changes to the queue. However,

since there are O(n) such events in total, this leads to a total of O(n2 log n) time

spent processing just the contraction or splitting events. The best known analysis

for the remaining number of flip events, however, is that there are k = O(n3) flip
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events. Thus the algorithm takes O((n2 + k) log n) = O(n3 log n) time, which is

theoretically worse than the θ(n3) naive algorithm (which follows the same approach

as in the case of simple polygons in the last section); however, no known examples

exist of a family of polygons for which Ω(n2) flip events occur and Aichholzer and

Aurenhammer observe that on “real-world data” their algorithm seemed to behave

more like O(n log n). It remains an open problem whether a better theoretical upper

bound on the number of flip events can be achieved.

3.1.1.3 Huber and Held, 2010

In a series of papers [38, 39, 40] Huber and Held develop and implement a parallel

sweep based algorithm for computing the straight skeleton of PSLGs they call Bone.

Their algorithm is in the same spirit as Aichholzer and Aurenhammer’s, but instead of

using a kinetic triangulation of the yet-to-be-swept free space “outside” the parallel

sweep, they make use of the motorcycle graph (defined in Ch. 2). Unlike the previous

algorithms in this section, they explicitly deal with degenerate cases in which multiple

events occur simultaneously.

They show that the motorcycle graph subdivides the free space into convex poly-

gons. They then simulate the parallel sweep while maintaining the induced subdivi-

sion of the free space induced by the motorcycle graph. Recall that one of the main

difficulties in computing the parallel sweep previously is the fact that a reflex vertex

may hit some edge elsewhere in the polygon. Here, however, because all faces of the

induced subdivision are convex, then events occur only between neighboring vertices.

In other words, all events are local.

The main work now is in tracking the intersection of the parallel sweep with

the motorcycle graph. In order to do this Steiner vertices are added to the parallel

sweep at the points of intersection between the parallel sweep and the edges of the

motorcycle graph. The main work in maintaining the parallel sweep is in maintaining
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these Steiner vertices, since they move, or in the language of Huber and Held “surf”

along the motorcycle graph edges, several additional events must be tracked. A start

event occurs when the parallel sweep encounters a vertex of the motorcycle graph,

which requires tracking a new Steiner vertex. A switch event occurs when the edge

of the parallel sweep intersecting a given edge of the motorcycle graph changes. In

other words, a vertex of the parallel sweep “passes through” an edge of the motorcycle

graph. In this case, the Steiner vertex corresponding to the intersection of the parallel

sweep with the motorcycle edge must be switched from one edge of the parallel sweep

to the other. A third event, in which two Steiner vertices meet represents the parallel

sweep leaving one edge of the motorcycle graph, and the corresponding Steiner vertex

is simply removed. In degenerate cases additional events, multi split events, which

occur when multiple reflex vertices of the sweep simultaneously encounter each other,

and multi start events which are start events that occur at motorcycle graph vertices

representing simultaneous crashes of motorcycles at the same point.

As before, events are stored in a priority queue, and since events only occur

between adjacent vertices in the induced subdivision, there are O(n) events in the

queue at any time. We have already seen that there are O(n) contraction and splitting

events in a parallel sweep of a PSLG, so analyzing the running time requires bounding

the number of the new event types. Since the number of start events is given by

the number of vertices in the motorcycle graph, there are at most O(n) of these

throughout the running of the algorithm. The number of switch events is bounded

by the number of times a given vertex of the sweep can “pass through” an edge of the

motorcycle graph, which is exactly once. Thus there are at most O(n2) such events.

This leads to an O(n2 log n) runtime and there are known examples for which Ω(n2)

switch events occur; however, Huber and Held give experimental results that suggest

that on “real-world data” the number of switch events is often more like O(n) and

the algorithm behaves like O(n log n).
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3.1.2 Roof based algorithms

The parallel sweep based algorithms reviewed in the previous section are concep-

tually simple and have rise to useful implementations, but have not yet proved fruitful

in answering one of our central questions–what is the complexity of the straight skele-

ton problem? Part of the difficulty seems to be the sequential nature of the sweep

and the need to simulate events in the order in which they occur in the parallel sweep.

This difficulty arises from the procedural nature of the parallel sweep definition of the

straight skeleton. Due to this problem, many researchers have sought an alternative

characterization of the straight skeleton, one that is not procedural and where the

objects on which we are computing can be known (or found) at the beginning of the

computation. This search for the golden fleece has proved elusive and challenging.

The best approaches that have been found thus far (and the approach we employ in

Ch. 4) have, in a sense, off-loaded the procedural nature to the motorcycle graph.

Once the motorcycle graph is known, then the slab set (see Ch. 2) can be computed

quickly, and the work of computing the straight skeleton becomes the work of com-

puting a lower envelope for this slab set. This is one of the main approaches of the

algorithms that follow. In these cases we give the time complexity of the algorithm

once the motorcycle graph is known. In other words, if the algorithm runs in O(S(n))

for some function S(n), then computing the straight skeleton require O(M(n)+S(n))

time where M(n) denotes the fastest motorcycle graph algorithm.

3.1.2.1 Eppstein and Erickson, 1998

The straight skeleton algorithms of Eppstein and Erickson [33] bridge the gap

between the parallel sweep algorithms of the previous section and the straight skeleton

roof-based algorithms in the remainder of this section. Their algorithms still simulate

the sweep process, but lift the sweep into R3. Fast data structures for computing

ray-triangle intersections help find the next splitting events in the sweep in sub-linear
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time, leading to our first sub-quadratic algorithms for computing the straight skeleton.

This work is also notable because it is here that Eppstein and Erickson first introduce

the motorcycle graph, though it is not used in the algorithm. Rather, Eppstein and

Erickson use it to distill what appears to be the central difficulty in computing the

straight skeleton–which, as we have seen, is that arbitrarily small perturbations can

lead to arbitrarily large changes in the speed at which a vertex moves in the wavefront,

which in turn may lead to drastically different straight skeletons.

Two algorithms are described in this work for computing the straight skeleton.

The first is slightly slower, but works in the more general case of weighted straight

skeletons in which each edge of the parallel sweep process moves at an arbitrary

constant speed, rather than at unit speed.

The basic idea of the first algorithm is to lift the parallel sweep process into R3

by adding time as the third dimension. In other words, the parallel sweep at time t

is embedded in the z = t plane (as per the roof definition, see Ch. 2). At the start of

the algorithm, we define to sets of objects that are used to compute the time of the

next event. The first is a set of (possibly unbounded) triangles in R3, one for each

edge of the polygon (or PSLG), which is its base. The remaining sides of the triangle

are given by extending rays along the trajectories of the endpoints of e in the lifted

sweep. The triangle is bounded if its two edges intersect at some point above the

xy-plane, call this intersection point the triangle’s upper vertex. This occurs if and

only if the edge e is shrinking in the sweep. Otherwise, the triangle is unbounded.

The second is a set of rays, one for each reflex vertex in the polygon. This ray points

along the trajectory of the vertex in the sweep.

A contraction event in the parallel sweep is equivalent to the sweep plane reaching

the upper vertex of one of the bounded triangles. A splitting event is equivalent to

the sweep reaching the intersection of one of the rays and one of the triangles. The

next event, then, is the lower (in terms of z-coordinate) of the lowest upper vertex

36



among all the bounded triangles and the lowest intersection between a ray and any

triangle. Two separate data structures are used. The first is a priority queue that

stores the bounded triangles by the height of their upper vertex. This handles all of

the contraction events in O(n log n) time. The second is a dynamic range-searching

data structure which maintains the lowest intersection point between a set of triangles

and a set of rays. Insertion, deletion, and lowest intersection queries take O(n3/5+ε)

time in this data structure. Since processing each event requires changing a constant

number of triangles, this leads to an O(n8/5+ε) time and space algorithm.

The second algorithm is a modification of the first and exploits the fact that each

face of the (unweighted) straight skeleton roof has slope 1 to use slightly faster range

searching data structures. They replace the triangles with a set of slabs similar to

those described in Ch. 2 and use slightly better ray-shooting data structures to achieve

an O(n1+ε + n8/11+εr9/11+ε) time and space algorithm (where r denotes the number

of reflex vertices).

3.1.2.2 Cheng and Vigneron, 2002

Cheng and Vigneron [22, 23] were the first to reduce the computation of the

straight skeleton to that of the motorcycle graph by describing an algorithm for com-

puting the straight skeleton of a polygon (with holes) from its induced motorcycle

graph without simulating a parallel sweep. This is also our first example of an algo-

rithm that assumes the motorcycle graph is given as input.

The algorithm computes the straight skeleton by computing the part of the lower

envelop above the motorcycle slab set slabs(P ) (see Ch. 2). The algorithm is divide-

and-conquer and randomized. It runs in expected O(n log2 n) time (though the worst

case is O(n2 log n)) given the motorcycle slab set slabs(P ) as input. The basic idea is

to recursively subdivide the interior of the polygon into polygonal cells using random

internal nodes of the straight skeleton. Once the cells are small enough (in terms of
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the number of edges in each cell), the part of the straight skeleton roof lying above

the cell is computed by brute force. A key component of the algorithm is an operation

for computing the intersection of a plane orthogonal to the x-axis, called a vertical

plane, with the straight skeleton roof. This operation works without computing the

entire straight skeleton in O(n log n) time. First intersect each slab in slabs(P ) with

the vertical plane. The intersection of each slab with the vertical plane is a line

segment or ray. Let S denote this set of line segments. The intersection of the

straight skeleton roof with the vertical plane is given by the lower envelope of these

line segments, which can be computed using standard techniques in O(n log n) time.

In a similar way, a face of the straight skeleton roof can be computed independently

from the rest in O(n log n) time.

The divide step works by first picking a random face of the straight skeleton and

computing its explicit representation. Then the straight skeleton vertex incident to

the face that is closest to the centroid of the straight skeleton is chosen. (The centroid

of a tree is the vertex such that all of its sub-trees have size at most half that of the

straight skeleton.) This can be found in O(n) time once the explicit representation

of the face is known. The basic idea is that in expectation, the chosen vertex will

not be too far from the centroid. Then a vertical plane through the chosen vertex

is intersected with the roof. This intersection is then used to subdivide the tree by

tracing rainwater paths (Sec. 2.2.1) down from the vertices of the intersection. These

subdivide the interior into polygonal cells and the divide step is recursively invoked

on each cell. Once the size of each cell reaches a certain threshold (say fewer than 20

vertices), then the part of the straight skeleton above the cell is found by brute force.

3.1.2.3 Huber and Held, 2010

In the same work in which they introduce Bone [38, 39, 40], Huber and Held also

outline an approximate algorithm for computing the straight skeleton on graphics
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hardware. The algorithm uses the motorcycle graph to construct 3D models of the

slabs within some large enough bounding cube and then uses graphics hardware to

render a view of the scene from below via standard rasterization techniques. This

technique is essentially a grid sampling of the straight skeleton. It is able, for a regular

rectangular grid or lattice, to determine which face of the straight skeleton each lattice

point resides on; however, the algorithm is not correct in the sense that small features

(e.g. those smaller than the grid unit size) cannot in principle be recovered from this

method.

3.1.2.4 Biedl et al., 2014

Beidl et al. [9] describe an algorithm for computing positively weighted straight

skeletons of monotone polygons. A monotone polygon is one in which there exists

some direction in the plane (called the direction of monotonicity) such that

all lines parallel to that direction intersect the polygon in at most two points. A

monotone polygon can always be decomposed into two monotone polygonal chains–a

chain of edges in the plane such that any line parallel to the direction of monotonicity

intersects the chain at most once. They show that (a) the parallel sweep of a monotone

chain exhibits only contraction events and no splitting events, and (b) the straight

skeleton roof of the monotone polygon can be found by the following procedure. First,

construct the straight skeleton terrains for the two monotone chains. The straight

skeleton roof of the polygon is the part of the lower envelope of these two terrains

restricted to the region above the polygon. The intersection of the two terrains

is a connected polygonal chain starting at one end of the two monotone chains and

ending at the other end. Once the terrains are computed, finding this path amounts to

“walking” along the intersection of the two surfaces which is easily done in linear time.

Since computing the parallel sweep in this case only requires processing contraction

39



events, the terrains can be efficiently computed in O(n log n) time using a priority

queue.

3.1.2.5 Cheng et al., 2014

Cheng et al. [24] present an algorithm for computing the straight skeleton of a

polygon (possibly with holes) in O(n log n log r) time (where r is the number of reflex

vertices in the polygon). The basic idea of their algorithm is to subdivide the polygon

into cells so that the part of the straight skeleton roof lying above each cell is convex.

The algorithm requires two passes, a vertical subdivision algorithm which recursively

applies a vertical intersection operation through all vertices of the motorcycle graph

to obtain a first subdivision of the polygon. The cells in this subdivision do not yet

have the desired property, but the motorcycle edges that intersect the cell form a

special outer-planar graph, which means each one passes all the way through the cell

(rather than, say, ending on its interior). A second sub-routine further subdivides

these cells along the motorcycle edges to obtain the desired subdivision. Along the

way the slabs supporting the faces of the straight skeleton that lie above each cell is

maintained. Once the final subdivision is obtained, computing the part of the straight

skeleton over each cell reduces to computing the lower envelope of a set of planes in

R3, which can be computed efficiently using standard techniques. We use a modified

version of the vertical-subdivision step from this paper in Ch. 4.

3.2 Algorithms for computing the motorcycle graph

In the discussion above, we have given an overview of the development of faster

algorithms for computing the straight skeleton. Several of these algorithms require

the induced motorcycle graph as input. Thus to analyze the running times of these

algorithms, we also need the fastest motorcycle graph algorithsm. We give a brief

overview of the history of the theoretically fastest motorcycle graph algorithms here.
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As we have noted, Eppstein and Erickson [33] were the first to introduce the

motorcycle graph as a model of the main difficulty encountered in computing the

straight skeleton. They gave an O(n17/11+ε) time algorithm for computing, which

used essentially the same techniques as their straight skeleton algorithm, but did not

show any formal connection between the straight skeleton and the motorcycle graph.

The first to formally use the motorcycle graph in the computation of the straight

skeleton were Cheng and Vigneron [22, 23]. They give anO(n
√
n log n) time algorithm

for computing it using a concept known as a (1/
√
n)-cutting. Given a set L of n lines,

(1/
√
n)-cutting is a subdivision of the plane into cells such that each cell intersects

at most O(
√
n) lines from L. Such a cutting with O(n) cells can be constructed in

O(n
√
n) time by an algorithm of Chazelle [20]. To compute the motorcycle graph of n

motorcycles, Cheng and Vigneron construct an (1/
√
n)-cutting of the lines supporting

the trajectory of each motorcycle. The part of the motorcycle graph lying on the

interior of each cell can then be simulated only for motorcycles traveling on the lines

intersecting the cell (of which there are at most O(
√
n)).

The fastest motorcycle graph algorithm is that of Vigneron and Yan [58]. There

algorithm computes the motorcycle graph of n motorcycles in O(n4/3+ε) time.

The algorithms of Cheng and Vigneron [22, 23] and Vigneron and Yan [58] only

work in non-degenerate cases. In degenerate cases, Eppstein and Erickson’s algorithm

[33] remains the fastest.

3.3 State of the art for straight skeleton computation

The following table summarizes the state of the art for straight skeleton computa-

tion prior to this thesis. In Ch. 4 we give a new algorithm for computing the straight

skeleton given the induced motorcycle graph which allows is an improvement of each

of these cases. In the first four cases the fastest algorithms first employ a motorcycle
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graph algorithm (column MG) and then a straight skeleton (SS) algorithm. In the

last two cases the fastest algorithm remains Eppstein and Erickson’s original [33].

Running time MG SS

Non-degenerate polygon O(r4/3+ε + n(log r) log n) [58] [24]

Degenerate polygon O(r17/11+ε + n(log r) log n) [33] [24]

Non-degenerate poly. w. holes O(r4/3+ε + n(log r) log n) [58] [24]

Degenerate poly. w. holes O(r17/11+ε + n(log r) log n) [33] [24]

Non-degenerate PSLG O(n8/11+εr9/11+ε + n1+ε) [33]

Degenerate PSLG O(n8/11+εr9/11+ε + n1+ε) [33]

3.4 Origami and the universal molecule

We are primarily interested in Lang’s universal molecule algorithm, a subroutine

of Lang’s TreeMaker method, which first appeared in [44], and has been represented

in several publications [31, 48, 45, 46]. Thought it has appeared in several places, none

of the presentations differ significantly from the original. In [48], Lang and Demaine,

show how to assign “mountain” and “valley” labels to the crease pattern produced

from TreeMaker so that the entire model folds flat in the plane. This is interested,

because in general acquiring such a mountain-valley assignment is NP-hard [8]. We

now give a brief overview of the growing field of computational origami. Though only

twenty years old, the field is growing immensely and is attracting researchers from

computer science, mathematics, engineering, physics, material science, and education.

To give a complete survey of the field, then, is not our purpose. Instead we provide

a brief guided tour. The interested reader is referred to richly illustrated books and

conference proceedings for more information [46, 31, 47, 59].

Origami design. Lang’s TreeMaker method [44] is a seminal work in the field

of computational origami. It is an exemplar of an origami design problem, which

typically asks how to design a crease pattern for a square or polygonal sheet of paper
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so that the paper can be folded along the creases of the pattern to form some desired

shape. Lang’s TreeMaker is implemented in freely available software [45, 1] and has

been used as a tool by origami artists to create many beautiful and complex origami

sculptures (cf. [1]). In addition to Lang’s work, solutions to other design problems

have been studied.

The fold-and-one-cut problem of[28] asks how to fold a sheet of paper with a

polygon (or set of polygons, or general PSLG) drawn on its interior so that a single

cut from a pair of scissors separates the interior of the polygon from its exterior.

The silhouette folding problem, solved by Demaine et al. [29], asks how to fold a

square sheet of paper flat so that its outline is equal to a given simple polygon.

The polyhedron folding problem asks if any polyhedron can be folded out of a

single sheet of paper. Demaine et al. present a method which folds a square sheet

of paper into a long skinny rectangle and then “wrap” the polyhedron with it [29];

however, their method is highly impractical. More recently Tachi [52] gave a heuristic

method called Origamizer that takes as input a desired 3D polyhedral surface and

outputs both a polygon (the initial shape of the paper) and a crease pattern that can

be folded into the surface.

Both Lang’s TreeMaker and Tachi’s Origamizer are practical design methods, but

both rely on heuristics that sometimes fail to produce an output for a given valid

input.

Origami Mathematics. More in the vein of this thesis, other researchers have

focused on addressing precise mathematical issues. Huzita developed an axiom system

for describing certain origami folds [41]. Ida et al. formalized Huzita’s axioms and

designed an automated proof assistant that, given an origami construction (e.g. for

folding an equilateral triangle out of a square sheet of paper), can automatically prove

certain geometrical properties of the construction (e.g. that the folded equilateral

triangle has the maximum area possible) [43, 42].
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Bern and Hayes showed that it is NP-hard, given a general crease pattern, to

decide whether it can be folded flat into the plane [8].

More recently Demaine and Fekete showed that the problem solved by the first

phase of TreeMaker is NP-hard [30], and thus the optimization step employed by

TreeMaker is a heuristic. On the other hand, the the universal molecule, which is the

second phase of TreeMaker and a key ingredient, is computable in polynomial time;

however, to our knowledge, before the present work no analysis of the algorithm has

appeared nor have any implementation details.

TreeMaker and the universal molecule. One practical difficulty with TreeMaker

is that its first phase may result in non-convex polygons, but its second phase, which

uses the universal molecule algorithm to fill in each polygon can only work if all of

the resulting polygons are convex. In this case it simply fails and the user is required

to tweak the input in order to proceed. Because of this, it is of practical importance

to extend the universal molecule algorithm to non-convex polygons. Demaine and

O’Rourke conjectured that this might be possible (Conjecture 16.8.1 of [31]), but no

algorithm proving the conjecture has yet appeared.

A major hindrance in finding such an extension is that although the algorithm

has been known now for almost twenty years and has appeared in several publications

[44, 31, 45, 48], a precise mathematical formulation of its input, its output, and the

connections between the input and output independent of the algorithm had not ever

appeared. In fact, the most comprehensive treatment of the universal molecule is

in Demaine and O’Rourke’s book [31], in which they mention that a full proof of

correctness would require a careful treatment which they do not attempt.

Rigid foldability. One further question arising from computational origami is

whether a particular origami crease pattern can be rigidly folded as a panel-and-

hinge structure to some final state. This is important for certain applications, for
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instance in the development of deployable structures like satellite arrays. The most

general case of rigidly foldable origami which is settled is that of single vertex origami

[50, 49] which can be folded rigidly in a non self-intersecting manner.

Tachi has shown how to produce several specific origami structures that are rigidly

foldable (cf. [54, 53]) and has described an optimization algorithm that modifies an

input origami crease pattern so that it is approximately rigidly foldable, and simulates

the kinematics to produce an approximate folding animation [51].

For the universal molecule crease patterns the story is only partially known. De-

maine and Demaine [27] showed that if the universal molecule crease pattern for a

polygon is precisely its straight skeleton, then the crease pattern is rigidly foldable .

Their proof is constructive and shows how to determine the motion from the starting

flat state to the final folded state. However, if we fix the input metric tree, then the

set of Lang polygons compatible with the tree for which the universal molecule is

the straight skeleton forms a measure zero set in the space of all possible compatible

Lang polygons.

45



CHAPTER 4

COMPUTING THE STRAIGHT SKELETON

In this chapter, we show how to compute the straight skeleton of a polygon with n

vertices from its induced motorcycle graph in O(n log n) time and for a planar straight

line graph with m connected components in O(n(logm) log n) time.

Instead of computing the straight skeleton directly, our algorithm computes the

straight skeleton roof (first defined in Ch. 2) by finding the lower envelope of a set of

partially infinite slabs in R3. The main bulk of the work is to describe the algorithm

for polygons. We then extend our algorithm to planar straight line graphs (PSLGs)

using a modification of the recent cellular subdivision algorithm of Cheng, Mancel,

and Vigneron. We use the subdivision algorithm to divide the plane into regions

which can then be “filled in” by our polygon-based algorithm.

This work is currently under review and a preprint is available on the ArXiV

[12, 11].

4.1 Introduction and Background

Recall from Sec. 2.2 that the straight skeleton is a particular tree drawn on the

interior of a polygon. It is often defined by a wavefront process in which each edge

of the polygon moves inwards in parallel at unit speed (Fig. 4.1). The trace of the

vertices of the wavefront forms the straight skeleton. The wavefront is extended to

planar straight line graphs (PSLGs) [3] by generating a square cap around each degree

1 vertex (Fig. 4.2). The straight skeleton of a PSLG is defined similarly as the trace of

the vertices during the wavefront. Though its cousin the medial axis can be computed
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Previous work This work

Non-degen. polygon O(r4/3+ε + n(log r) log n) O(r4/3+ε + n log n)
Degen. polygon O(r17/11+ε + n(log r) log n) O(r17/11+ε + n log n)

Non-degen. poly. w. holes O(r4/3+ε + n(log r) log n) O(r4/3+ε + n(log h) log n)
Degen. poly. w. holes O(r17/11+ε + n(log r) log n) O(r17/11+ε + n(log h) log n)

Non-degen. PSLG O(n8/11+εr9/11+ε + n1+ε) O(r4/3+ε + n(logm) log n)
Degen. PSLG O(n8/11+εr9/11+ε + n1+ε) O(r17/11+ε + n(logm) log n)

Table 4.1: Comparison of straight skeleton algorithms for the polygon, polygon with h
holes, and PSLG with m connected components. In each case n denote the number of
vertices and r denotes the number of reflex vertices.

Figure 4.1: The wave-
front, straight skeleton,
induced motorcycle
graph, and straight skele-
ton roof for a polygon.
The gray shaded strip is
one of the slabs in the
polygon’s slab set.

efficiently, algorithms for the straight skeleton are still significantly slower than the

known lower bounds. The current state of the art and a comparison with the present

work is summarized in Table 4.1.

We briefly review the relevant literature here. Chapter 3 contains a more detailed

literature review. In the case of a polygon (possibly with holes), the fastest algorithms

work by computing a secondary structure called the induced motorcycle graph

and then use the induced motorcycle graph to compute the straight skeleton. This is

the approach taken in this chapter. We operate in the roof/terrain model, which

defines the straight skeleton as a polyhedral surface in R3. Eppstein and Erickson

showed that this surface is equivalent to the lower envelope of a set of partially infinite

strips in R3 called slabs. Cheng and Vigneron [23] gave a slightly different set of slabs

defined with respect to the motorcycle graph with the same property which was later

extended to degenerate cases by Huber and Held [39]. Our algorithm computes this

lower envelope using divide and conquer on the set of slabs from [23, 39]. One novelty
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of our approach is that while the final straight skeleton roof is indeed a terrain, the

intermediate sub-structures computed by our algorithm, which we call partial roofs,

are neither terrains nor lower envelopes. Our algorithm is deceptively simple to state:

we divide the polygon into two subchains, recursively compute partial roofs for the

subchains, and then merge the two by computing a local walk of the intersection

between the two and cutting away the parts of each face “above” the walk before

gluing the two surfaces together along the path.

Though conceptually simple, tracking the details of why the algorithm works is

involved. We make heavy use of the distinction between the intrinsic properties of

a surface and the extrinsic properties of their realization. Topologically, our partial

roofs are disks but their realizations may not be in much the same way that a Klein

bottle is topologically a manifold but no realization of a Klein bottle in R3 is a

manifold.

The motorcycle graph for r motorcycles can be computed in O(r4/3+ε) time in non-

degenerate cases using the algorithm of Vigneron and Yan [58] or O(r17/11+ε) time in

degenerate cases using the algorithm of Eppstein and Erickson [33] and the extended

definitions from [39]. In addition to this work there are three other known algorithms

that use the motorcycle graph as input to compute the straight skeleton. The first is

the randomized O∗(n
√
h+ 1 log2 n) time algorithm of Cheng and Vigneron [23] which

works for a polygon with h holes. The second is the O(n2 log n) time kinetic simulation

based approach of Huber and Held [39] which works in the general case of PSLGs.

One intriguing aspect of that work is that though the algorithm takes O(n2 log n)

time, it is shown experimentally that on most inputs it behaves more like O(n log n).

The third, which was found simultaneously with the polygon algorithm we present

here, is due to Cheng et. al and takes O(n(log r) log n) time for a polygon (possibly

with holes) with r reflex vertices [24]. We use a modified version of the cellular
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subdivision algorithm from that work–except with a smaller depth of recursion–to

extend our polygon algorithm to PSLGs. The main result of this chapter is:

Theorem 4.1.1. Given the induced motorcycle graph as input, the straight skeleton

of an n-vertex polygon can be computed in O(n log n) time and an n-vertex PSLG

with m connected components can be computed in O(n(logm) log n) time.

We note that in the case of PSLGs, the fastest algorithm for computing the straight

skeleton did not use the motorcycle graph as input, since the only known reduction

from the straight skeleton to the motorcycle graph required O(n2 log n) time. Our

algorithm removes this bottleneck and brings the PSLGs in line with the polygon

cases.

4.2 Preliminaries

We now recall some of the definitions from Ch. 2 that are used in this chapter.

Straight skeleton roof. The following properties of the straight skeleton are needed

in this chapter. The first applies only to the straight skeleton of a polygon and the

second applies to both polygons and PSLGs.

1. The straight skeleton of a polygon is a tree and its leaf nodes are the vertices

of P .

2. The straight skeleton subdivides the polygon (or PSLG) into faces. Each face

is incident along a single base edge of P and is monotone with respect to its

base.

The straight skeleton roof of a polygon P is defined by lifting each vertex into R3

by setting its z-coordinate to the time t at which it appeared in the wavefront (cf.

[4]). Each face lies in the plane Πe through its base (polygon) edge e that makes

an angle of π/4 with the interior of the polygon. Each face is monotone in Πe with
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respect to its base edge. The roof, denoted RP , is a polyhedral terrain in R3 that is

topologically a disk. The definition sketched above refers to the wavefront; however,

we use a different characterization as the lower envelope of a set of partially infinite

strips called slabs in R3 which we define shortly.

Motorcycle Graphs. Before defining the slab set we use, we first review the def-

inition of the motorcycle graph. Recall from Ch. 2 that a motorcycle graph is given

by first placing a number of “motorcycles” m1, . . . ,mn in the plane. Each motorcycle

moves along a linear trajectory at constant speed. As a motorcycle moves it leaves a

track behind it. If one motorcycle encounters the track of another it crashes. Each

motorcycle either crashes or escapes, in the sense that it reaches a point at which it

is moving along its supporting line away from the intersection of its supporting line

with the supporting lines of all other motorcycles. The motorcycle graph is given by

the trace of all motorcycles throughout this process. We say that a motorcycle graph

is generic if no two motorcycles crash into each other simultaneously.

Induced motorcycle graph of a polygon. Given a polygon P , its induced

motorcycle graph MGP is defined by placing a motorcycle at each reflex vertex v

with a velocity of magnitude 1/sin(θv/2) (where θv is the interior angle at v) and

direction pointed inwards along the angle bisector at v. The motorcycles then move

as before while laying down tracks. The only difference is that now both the polygon’s

edges and the tracks are obstacles that the motorcycles crash into. We say that the

induced motorcycle graph is generic if no two motorcycles simultaneously crash into

each other. Our definition thus far suffices only for generic cases.

Extending to non-generic cases. To extend to non-generic cases we use the

construction from [39]. Under certain conditions, when multiple motorcycles simulta-

neously crash into one another, we will remove the crashed motorcycles but “spawn”

a new motorcycle with a prescribed direction. We will call this a multi-crash event
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and a “normal” crash event a solo-crash event. Before defining exactly how this is

done, we need to track a little more information at each motorcycle. Now, for each

motorcycle we define a left arm and a right arm. These are vectors with origin

at the moving motorcycle and direction we will define shortly. We first define the

left and right arms for each initial motorcycle m. Remember that the initial position

of m is at a reflex vertex v of the polygon and thus we have a well-defined left and

right edge (when looking towards the polygon’s interior from the vertex). We define

the direction of the left (resp. right) arm vector to be pointing along the left (resp.

right) edge of v outwards from v. At certain multi-split events we will spawn a new

motorcycle, and will therefore need to define its left and right arms.

Handling multi-crash events. Let m1, . . . ,mk denote all k motorcycles that

crash simultaneously into each other at a multi-crash event. Let p denote the point

at which the event occurs. Without loss of generality, assume that m1 through mk

are indexed by the counter-clockwise order of the tracks left by m1 through mk at

p. The traces of the motorcycles subdivide the plane at p into k “wedges”. Either

all of these wedges are convex, in which case the motorcycles m1 through mk simply

crash and we do not spawn a new motorcycle, or one wedge–without loss of generality

assume the counter-clockwise wedge from the track of mk back to the track of m1–is

non-convex. In this case we spawn a new motorcycle m′ according to the following

rules.

1. Let L denote the left arm of m1 and R denote the right arm of mk. If the counter

clockwise angle from R to L is reflex, then we spawn m′ along the bisector of

this angle. The left arm of m′ is L and the right arm of m′ is R.

2. Otherwise, if the angle is convex, then m′ continues the motion of mk and

inherits its left and right arms from mk.
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Motorcycle arm chains. Further, we define two motorcycle arm chains for

each reflex vertex v in the polygon. One chain is defined for the left edge incident

to v and the other is defined for the right edge, which we call the left and right

motorcycle arm chains for v. Let m be the initial motorcycle spawned at v.

The left motorcycle arm chain. The left arm chain is defined inductively by

first tracing m. If m crashes in a solo-crash event, then we are done, and the left

motorcycle arm chain of v ends at the crash point. If m crashes in a multi-crash event

between motorcycles m1, . . . ,mk, then whether we continue depends on whether m is

m1 or not. If m is in m2, . . . ,mk then the left motorcycle arm chain ends at the crash

site. On the other hand, if m = m1, then it depends on whether we applied rule 1

or rule 2 to spawn the new motorcycle m′. In the case of rule 1, then we continue

adding to the left motorcycle arm chain by tracing m′. If, however, we proceed by

rule 2, then the left motorcycle arm ends at the intersection point.

The right motorcycle arm chain. The right arm chain is defined analogously

with a slight change at multi-crash events. If m crashes at a multi-crash event, and

m is not mk, then it simply crashes. If, however, m = mk, then regardless of whether

we apply rule 1 or rule 2, the trace of the right motorcycle arm chain continues by

tracing the motion of m′.

For a PSLG we launch a motorcycle out from any reflex angle made in the PSLG.

We launch two motorcycles from any 1-degree terminal vertex such that they make

angles of 3π/4 and 5π/4 with the edge incident the terminal vertex. See Fig. 4.2.

Induced motorcycle graph of a PSLG. Huber and Held [39] extended the

induced motorcycle graph to PSLGs. In addition to launching motorcycles from each

reflex vertex, we launch two motorcycles from each vertex v of degree 1, one making

an angle of 3π/4 and the other making an angle of 5π/4 with the edge incident to v.

The properties of the induced motorcycle graph needed for this chapter (which were

proved in [37]) are:
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Figure 4.2: The wavefront and motorcycles
for a PSLG. Terminal vertices generate a
square cap which necessitates sending out
two motorcycles.

1. The motorcycle arm chains of a reflex vertex v are convex. Furthermore, the

left motorcycle arm chain of v is monotone with respect to the left edge of v

and the right motorcycle arm chain is monotone with respect to the right edge

of v.

2. In generic cases each motorcycle arm chain has a single edge, and in non-generic

cases there are a total of O(n) edges over all motorcycle arm chains.

Slabs and the lower envelope. Following Huber and Held [39] we define a

single slab for each edge e of the polygon. The slab lies in the plane Πe through e that

makes an angle of π/4 with the interior of P . For each reflex vertex v of e if e is to

the right (resp. left) of v, lift its right (resp. left) motorcycle arm chain upwards onto

Πe. The slab se for e is defined as the region of Πe above (with respect to the slope

vector of Πe) the edge and (lifted) motorcycle arm chains for e (we call this the lower

convex chain1 of e). See Fig. 4.3. Denote the slab set for P by SP . The following

gives the characterization of the straight skeleton that we use in the remainder of this

chapter. It was proved by Cheng and Vigneron [23] for non-degenerate polygons with

holes and was extended to degenerate cases and PSLGs by Huber and Held [39]:

Theorem 4.2.1 ([23, 39]). The lower envelope of SP (resp. SG) is the straight

skeleton roof of the polygon P (resp. PSLG G).

We also note the following alternative useful characterization of a single face f

with base edge e of the roof RP . Intersect all other slabs in SP with se resulting in a

1By lower convex chain we mean a convex chain where all of the convex angles open upwards.
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∞

Figure 4.3: Left: a slab defined by lifting
the motorcycle arms (red) of its base edge
up onto the plane through the base edge
making an angle of π/4 with the interior of
the polygon. Center: the local view of the
slab. Right: the combinatorial view as a
closed polygon with one vertex at infinity.

set of line segments on se. The lower envelope of the line segments (in the plane Πe)

is equal to f . We call this the local lower envelope.

Properties of the face supported by a slab We now summarize the main

properties of a face f of RP with base edge e:

1. f is monotone w.r.t. e in se.

2. f is bounded below by a subset of the lower convex chain of se that includes all

of the base edge e and a portion of the motorcycle arms of e.

3. f is bounded above by an upper monotone chain of edges, each of which is

interior in RP and lies on the intersection of se with another slab in SP .

Non-generic input. A straight skeleton of a polygon (or PSLG) is generic

if its induced motorcycle graph is generic and if no four slabs intersect at the same

point. Our algorithm works in all cases where the lower envelope definition holds,

including non-generic situations in which more than three slabs intersect at a point.

In a PSLG an edge may be incident to the same face on both sides. We view a PSLG

as a half-edge or dart structure [35], where each edge is split into two twin half-edges

in either direction. We consider the two half-edges to be infinitesimally close but not

touching. At a terminal vertex we add a zero-length dummy edge, which we consider

to make a right angle with both its incident edges, which is the generator of the square

cap in the wavefront around a terminal vertex (See Fig. 4.2).
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Figure 4.4: The intrinsic (left) and extrin-
sic (right) view of a partial roof. The ver-
tices are numbered (including vertices 7
and 11 at infinity) to make plane how faces
are glued together. Note that the intrin-
sic surface has no edge between the left-
most and rightmost faces, but in the ex-
trinsic realization the two intersect (dot-
ted red line). Intrinsically, the surface is
a topological disk, even though if we for-
get the underlying combinatorics and only
look at the extrinsic realization, it has a
self-intersection.

4.3 Partial Roofs

Given a polygon P , we compute its roof RP using divide and conquer. One might

imagine dividing the polygon into two subchains C1 and C2, recursively computing

the lower envelopes of the slab sets SC1 and SC2 , and then merging the result to

obtain RP . Such an approach is correct, but is too slow for our purposes–for one, the

lower envelope of slabs for a chain with n edges may have combinatorial complex-

ity Ω(n2α(n))2 [32]. In the following we use this same basic approach, but instead

of computing the lower envelope of the slab set of a subchain, we compute a new

structure we call a partial roof as the intermediate sub-problem.

A partial roof is a polyhedral surface (henceforward, surface) defined for a sub-

chain C of the polygon that satisfies four properties, to be defined shortly–face con-

struction, face containment, edge existence, and edge containment. Like the straight

skeleton roof, a partial roof has a single face on each slab in SC . Before defining

precisely the object in question, let us highlight two of its novelties:

• Unlike the faces of RP , a partial roof can have unbounded faces; however,

these faces may intersect without there being an edge between them. This

2Where α(n) denotes the inverse Ackermann function.
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underscores an important novelty: we make use of the distinction between a

surface’s underlying intrinsic geometry and the extrinsic geometry of the

realization it happens to be in. The way to think of a partial roof is this–each

face is “cut out” of its slab, completely independently of the others. Faces

are then “glued” together by identifying edges (resulting in internal edges).

Each internal edge must lie on the intersection of the two slabs supporting its

incident faces, but not all intersections of faces will correspond to an edge. An

example is shown in Figure 4.4. The reader may find it helpful to think of the

familiar Klein bottle, which is intrinsically a manifold but any realization of a

Klein bottle into R3 exhibits self-intersections. A flatlander (as it were) walking

along a Klein bottle may pass through a self-intersection point but would have

no way of detecting it (call this a local walk).

• That said, we will ensure that certain edges along the intersections of slabs do

exist in their corresponding faces. Namely, if an edge exists in the final roof RP

between the faces for slabs s1 and s2 and s1, s2 ∈ SC , then there must exist an

edge between the faces of any partial roof for C between s1 and s2. We will call

such an edge a critical edge. See the edge existence property below.

Definition 4.3.1. Let C be a sub-chain of a polygon P and e be an edge in

the final roof RP for P . Let s1 and s2 denote the slabs supporting the two faces

incident on e in RP . We say that e is a critical edge if s1 ∈ SC and s2 ∈ SC.

The purpose of all this is to get around the fact that computing the lower envelope

is too slow. Our merge operation ignores or discards intersections that are provably

not part of the lower envelope, and focuses only on computing intersections that are

or might be.

Definition of a partial roof for a subchain C. A partial roof R for a subchain

C of a polygon P is a (polyhedral) surface, topologically a disk (though its realization
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Figure 4.5: A cataloguing of possible
face types drawn on their respective slabs.
Those with two upper monotone chains
both unbounded and bounded, and those
with one chain that touches both motor-
cycle arms, one that stops on the interior,
and one that stops on the slab boundary.

may not be) with C as a connected subchain along its boundary. The partial roof is

any such surface that satisfies the following properties:

• Face construction. Each slab s ∈ SC supports a single face fs in R. The

face may be either bounded or unbounded, and is defined by a subchain of

the slab’s lower convex chain containing the entire base edge (we abuse the

terminology and call this the lower convex chain of f) and zero, one, or two

upper monotone chains. Each upper monotone chain has one endpoint (its

starting point) along one of the motorcycle arm chains of the lower convex

chain (or the endpoint of the base edge). If there is only one upper monotone

chain, then its other endpoint may either be on the interior of the slab or along

the opposite side of the lower convex chain. If there are two, then the two

chains are co-monotone, meaning that no orthogonal line through the base

edge passes through the interior of both chains. The face fe is defined as the

region above (with respect to the direction of monotonicity) the lower convex

chain and below the upper monotone chain(s). A face may be unbounded,

but combinatorially we connect the two endpoints of its monotone chains by

two unbounded edges incident to a vertex at infinity as we did with the

slabs (See Fig. 4.3). Figure 4.5 shows a zoo of possible faces. Alternatively,

if the endpoint of one monotone chain lies monotonically above the endpoint

of the other, then we “close” the face by adding a monotone edge between

the two which is on the boundary of R (see the second face in Fig. 4.5). Each

monotone chain edge is internal in R and lies on the intersection of the two
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slabs supporting its two incident faces. Motorcycle edges of a face may be

internal or boundary edges in R. The base edges and unbounded edges are

always boundary edges in R.

• Face containment. Let fs denote the face supported by a slab s in the

partial roof and f ′s denote the face of the final straight skeleton roof supported

by s. Then (geometrically) f ′s ⊆ fs. In other words, each face of a partial roof

geometrically contains its corresponding straight skeleton face.

• Edge existence and containment. Suppose the straight skeleton roof has

an edge e′ on the intersection of slabs s1 and s2 such that both base edges of

the slabs are in C. Then there must exist an edge e incident to the faces f1

and f2 supported by s1 and s2 in any partial roof for C (edge existence) and

(geometrically) e′ ⊆ e (edge containment). We call e and e′ corresponding

critical edges. In other words, any intersection between slabs in SC supporting

an edge in the final straight skeleton roof also supports an (equal or larger) edge

in any partial roof.

Implications Let us examine several consequences of this definition. Lemma 4.3.2

shows that the only partial roof for the entire polygon P is the final straight skele-

ton roof itself. Lemma 4.3.4 shows that a partial roof has linear complexity in the

number of edges in its slab set. In the next section we show how to merge partial

roofs for coincident subchains of a polygon to get a partial roof for the entire chain.

Lemma 4.3.5 is a straightforward property of the critical edges incident to a single

face of a partial roof that nevertheless plays an important role in the proofs of the

next section.

Lemma 4.3.2. The straight skeleton roof RP is the partial roof for P .

Proof. We first remark that the straight skeleton roof satisfies all of the properties

of the partial roof, which is verified by straightforward definition checking. We now
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show that it is the only partial roof. Let R be any partial roof for P , s be a slab in SP ,

and fs be the face supported by s in R and let f ′s be the corresponding face supported

by s in the straight skeleton roof RP for P . Since our chain is the entire polygon P ,

all edges of RP are critical edges. By the edge existence and containment properties,

for each edge e′ in f ′s there is a corresponding edge along the same intersection in fs

that geometrically contains it. We next show that each edge e of fs is equal to its

corresponding critical edge e′. Suppose not, then there exists an edge e in fs that is

longer than its corresponding critical edge e′ (and contains it). Thus the boundary of

fs geometrically contains the boundary of f ′s. The part of e not contained in e′, then,

is a segment on the boundary of fs that makes fs either non-simple, or non-monotone,

contradicting the face construction property. A similar contradiction is reached if we

assume any extra edge exists that does not correspond to a critical edge. Thus the

edges of fs are the same as the edges of f ′s.

Observation 4.3.3. Each slab is a partial roof for its base edge.

The next lemma is straightforward due to the fact that the roof is a disk, but we

include a proof in the appendix for completeness:

Lemma 4.3.4. Any partial roof for a subchain C of a polygon such that the slab set

SC has k base and motorcycle edges has O(k) vertices, edges, and faces.

Proof. The only boundary edges are the base edges, possibly some motorcycle arm

edges, and the unbounded edges in unbounded faces. Thus the number of boundary

edges and vertices is O(k). Since there are no internal faces, the internal edges form

a forest with all leaves on the boundary and no internal vertex has degree 2. Thus

each face is incident to at most 4 leaves of the forest, so the total number of leaves is

O(k), and thus the total number of internal vertices and edges is O(k).

Finally, we show that each critical edge incident to a face f of R is part of a path

of critical edges that begins at the base edge. This lemma is important in the proof of
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Figure 4.6: An illustration of Lemma 4.3.5.
The chain of edges (orange) from e back to
the vertex v (blue) must all be critical.

correctness of the merge operation. It follows from the fact that the straight skeleton

is a tree.

Lemma 4.3.5 (The critical edges form a path in a face back to the base edge). Let e

be a critical edge incident to a face f of a partial roof R for a subchain C. Let f2 be

the other face incident to e in R and let v be the vertex of the base edge of f incident

to the subchain of C between the base edges of f and f2. Then there is a chain of

critical edges between e and v (Fig. 4.6).

Proof. There must be a path from e back to v in f of internal edges. Otherwise, f

is incident to the boundary between e and v which implies that R is not a disk. Let

e′ be the critical edge corresponding to e in the final straight skeleton roof RP and

let f ′ be the face corresponding to f in RP . Let e′′ be any edge between e′ and the

vertex v in f ′. We claim e′′ is a critical edge. To see why look at the base edge of the

other face incident to e′′. This base edge necessarily lies on the chain C, and hence

e′′ is an intersection between two of the slabs for C making it a critical edge. Thus

by the edge existence property there is some edge incident to f that corresponds to

e′′. Thus for all the edges on the path from e′ to v in f ′, there exists a corresponding

edge in f . Finally, by edge containment and face construction, these must form a

chain in f (following essentially the same argument as in Lemma 4.3.2).

4.4 Merging partial roofs

Overview Our goal is to merge partial roofs for subchains that are coincident

at a gluing vertex into a partial roof for the combined subchains. To do this we first
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splicing path cut-and-discard

cleanup orphaned edges glue

R2 R1

R2”

R2’ R1’

R

Figure 4.7: The merge operation for partial roofs R1 and R2 for the (bold) purple
and maroon subchains incident at a gluing vertex. After cut-and-discard R′2 has three
orphaned edges (lilac) which are removed by the cleanup operation. In the cleanup
operation we show the realization of R′′2 (left) as well as a combinatorial representation
of it (right) with the black circles with white fill representing infinity. Similarly for R
after the gluing step.

cut each input partial roof along a path called the splicing path. This subdivides

each face traversed by cutting along the path. We discard all faces to the right of

the splicing path in one partial roof and to the left in the other. We show that the

result of this cut-and-discard step is that we are left with exactly two topological disks

(Lemma 4.4.7), one from each partial roof that both contain their entire base chains.

The splicing path is now on the boundary of each, and we glue the two surfaces

together along the splicing path. The purpose of the splicing path is to pick up all

of the critical edges needed to satisfy the edge existence property. These form a path

in the straight skeleton, and we “pick up” the path by computing a local intersection

between the two surfaces. The difficulty is in finding a path that is long enough

to contain all the edges we need but is short enough that we can maintain some

nice properties (like face monotonicity) that allow us to compute the path efficiently.

Before we look at more detail, let us make a few observations and discuss the general

ideas.
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First, each input face by definition satisfies face containment. Our merge opera-

tion essentially cuts and discards parts of faces from each input roof. Our goal then,

is to ensure we do not cut a face down so far that it violates the face containment

property. Second, any edge needed to satisfy edge containment in one of the input

roofs is also needed to satisfy edge containment in the output roof. (Recall that such

an edge is needed between two faces only if there exists an edge between the corre-

sponding two faces in the final straight skeleton roof–this property is not changed by

merging.) Thus our merge operation needs to keep these edges.

In addition to the edges we need to keep, there are also some edges we need to

find–the critical edges. It turns out that these form a path in the straight skeleton

beginning at the gluing vertex (Lem. 4.4.1) and this critical path is the first part of

the local intersection path between the input roofs (Lemma 4.4.2). Instead of using the

entire local intersection path, we point out some simple properties that are true of each

edge of the critical path (Lem. 4.4.1). We use these properties as a set of necessary

conditions for an edge of the local intersection path to be an edge of the critical path.

We then compute what we call the splicing path, which is the longest subchain of the

local intersection path starting at the gluing vertex satisfying the necessary conditions.

The reason for using the splicing path, rather than the entire local intersection path,

is that the splicing path has some nice features, particularly monotonicity, that allow

us to compute it in linear time (see Sec. 4.4.3) and guarantee that each roof is a disk.

Before we describe the operation, we first investigate the properties of the critical

path, the local intersection path, and define the splicing path. In the remainder of

this section let R1 and R2 denote the input roofs for subchains C1 and C2 to the left

and right of a gluing vertex v̂. Let RP denote the final straight skeleton roof for P

and let C = C1 ⊕v̂ C2.
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4.4.1 The critical path, the local intersection path, and the splicing path

The critical path We are interested in the critical edges (Def. 4.3.1), or those

edges that need to exist in any partial roof of C to satisfy the edge existence property.

Recall that the edge existence property applies only to edges e of the RP such that

the two faces f1 and f2 incident to e both have their base edges in C. These can be

categorized into three types based on which subchain, C1 or C2, contains the base

edges of f1 and f2. Either both are in C1, both are in C2, or one is in C1 and one is

in C2. In the first two cases there already exists an edge in R1 (resp. R2) satisfying

edge existence for e (by the edge existence property on R1 resp. R2). The remaining

edges are between a face with base in C1 and a face with base in C2. The following

properties are a direct consequence of the fact that the straight-skeleton is a tree, the

roof RP is a disk, and the straight skeleton subdivides the polygon into monotone

polygons. Without loss of generality assume that C1 is before and C2 is after v̂ in the

ccw ordering on the polygon P .

Lemma 4.4.1. The critical edges having one slab in SC1 and one slab in SC2 form

a path in the straight skeleton roof RP that starts at v̂. This critical path satisfies

the following properties. Let cpf denote the set of edges of the critical path incident

to a particular face f of the straight skeleton roof.

1. cpf is connected. In particular this means that the path visits a face at most

once (where a “visit” may be along a connected chain of edges).

2. cpf can be further decomposed into at most three distinct subchains: a chain of

valley edges on one of the motorcycle arms of f followed by a chain of ridge

edges along the upper monotone chain of f followed by a chain of valley edges

along the other motorcycle arm of f .

3. The path separates the faces with base edges in C1 to its left, and the faces with

base edges in C2 to its right.

63



Proof. We first show that the critical edges having one supporting slab in SC1 and

one in SC2 form a path and then prove properties 1–3.

The critical edges supported by a slab in SC1 and a slab in SC2 form a path.

We first show that the edges are connected. Let e denote a critical edge having one

supporting slab in SC1 and one in SC2 . Let f1 bet the face supported by the slab in

SC1 incident to e and f2 denote the face supported by the slab in SC2 . B definition

the base edge of f1 is in C1 and the base edge of f2 is in C2.

Let C ′ denote the chain of base edges from the base edge of f1 to the base edge

of f2 that contains v̂. By the connectedness of C1 and C2 at v̂, C ′ is given by the

sub-chain of C1 from the base of f1 to v̂ followed by the sub-chain of C2 given from v̂

to the base of f2. Taken together f1, f2, and C ′ bound a disk of faces of the straight

skeleton roof. Denote this disk by D. Each face in the disk has its base edge in C ′.

We now claim that there exists a path of internal edges back from e to v̂. In the

case of polygons, this follows directly from the fact that the straight skeleton is a tree.

Here, however, we give an alternative proof that only assumes the straight skeleton

has no internal faces (but may be a forest). We do this so that the proof immediately

generalizes the straight skeleton of the polygonal cells we use in Sec. 4.5 to compute

the straight skeleton of a PSLG. Assume that no such path exists. Then between e

and v̂ there must be a face f such that its removal subdivides the disk D into two

disks, one containing v̂ and one containing e. But f can have only one base edge and

therefore only one edge in C ′. Thus, C ′ is disconnected, a contradiction. Therefore a

path of internal edges must exist. Now, it follows immediately that all faces to one

side of the path have their base edges in C1 and all faces to the other side of the path

have their base edges in C2 and the claim follows.

Properties 1–3. We now prove the 3 properties in order. These follow almost

trivially from the fact that the straight skeleton edges are a tree.

64



1. Suppose not, then there is some edge e of f from which the critical path leaves

f and some edge e′ at which it re-enters such that the chain of edges between

e and e′ of f are internal. Let e1, . . . , ek denote this chain, and let p denote

the edges of the critical path that connect e to e′. Since all of the edges of

the critical path are internal edges in the straight skeleton, the cycle given by

the edges of p and the edges of e1, . . . , ek necessarily bounds some disk of faces

which are internal to the straight skeleton. But this contradicts that each face

of the straight skeleton is incident to a base edge on the boundary.

2. This property follows from the fact that each face of the straight skeleton is

given by a base edge, two motorcycle arm chains, and a chain of ridge edges.

The property then follows from property 1.

3. Suppose not. The first edge e of the critical path is the one incident to the

gluing vertex v̂ connecting C1 to C2, which has the property by definition. Let

e′ be the first edge where this is not true. In other words, at e′ the face with a

base edge e1 in C1 is to the right and the face with a base edge e2 in C2 is to

the left. Let f ′ be the face incident to both C2 and e′. Let p1 and p2 denote the

two paths of base edges that start from the base of C2 and traverse base edges

back to the gluing vertex v̂. One of these necessarily contains the e1 and the

other necessarily contains the base edge of the face opposite f ′ at e′, which has

its base in C1 (since the straight skeleton is a disk). But this implies that C2 is

disconnected, a contradiction.

The local intersection path. The local intersection path beginning at the

gluing vertex v̂ is defined by walking along the intersection between one face at a

time from R1 and one face at a time from R2 at a time starting at v̂. When the

walk encounters an edge of a face, it traverse across it into the next face in that
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Figure 4.8: An illustration of the inductive proof of Lemma 4.4.2. The left shows
the critical path (dotted) leading up to edges ek−1 and ek. The chains C1 and C2

are drawn as thick (purple and maroon) lines. The right shows a partial roof for C2.
Since f ′2 and f ′3 satisfy face containment and edge existence and containment there
must be an edge e′ between them that contains e and so the local intersection path
between f ′1 and f ′2 will hit e′ at pass in to f ′3.

partial roof. For now we assume that the walk always hits an edge and not a vertex,

though we remove this assumption at the end of this section. Note that if the two

slabs share a common motorcycle edge, then we treat this as an intersection of the

two. It is helpful, however, to distinguish between edges formed along a common

motorcycle edge between two slabs, and edges formed along the normal intersection

between two slabs. We will call the first valley candidates and the second ridge

candidates. The most important feature of the local intersection path is given by

the following lemma which is proved by induction along the path. We illustrate the

induction in Fig. 4.8, but leave the full proof to the appendix. The main idea is that

by face containment an edge of the final straight skeleton roof on the critical path is

necessarily contained in the intersection of the faces of the two partial roofs, and as

we walk along this intersection. If there is a next edge along the critical path then

by the edge existence and containment properties, the local intersection path must

hit this edge. The rest follows by induction along the path. See Fig. 4.8 for a visual

overview.

Lemma 4.4.2. The critical path is a connected subset of the local intersection path

from v̂.
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Proof. Let e be an edge of the critical path. Let s1 be the slab from SC1 and s2 be

the slab from SC2 supporting e. Let f ′1 and f ′2 denote the faces of R1 and R2 (resp.)

supported by s1 and s2 and let f1 and f2 be the corresponding faces in the final roof

RP . ♦: We first argue that e ⊆ f ′1 ∩ f ′2. Assume not. Since f1 ⊆ f ′1 and f2 ⊆ f ′2 (by

face containment on R1 and R2), then e is not a subset of f1 ∩ f2, a contradiction.

We now prove the lemma by induction. Assume the lemma holds for the first k−1

edges of the critical path. Let ek−1 and ek denote the (k − 1)th and kth edges of the

critical path and e′k−1 denote the (k − 1)th edge of the local intersection path. We

first argue that ek−1 = e′k−1. We prove that it holds for the kth edge. Let ek−1 and

ek be the (k − 1)th and kth edges of the critical path. By the inductive hypothesis

the (k − 1)th edge of the local intersection path e′k−1 contains ek−1 and both start at

the same vertex u. Let v be the vertex between ek−1 and ek. Generically, there are

three faces in the final straight skeleton roof RP incident to v, one will be incident

to both ek−1 and ek. Call this f1. The other two, f2 and f3, are incident to ek−1 and

ek (resp.). Wlog assume f1 has its base edge in C1 and f2 and f3 have base edges

in C2. Let f ′1, f
′
2, and f ′3 be the corresponding faces of R1 and R2. See Fig. 4.8.

We first note that the edge e between f2 and f3 incident to v is a critical edge for

R2. Thus f ′2 and f ′3 have an edge between them e′ and e ⊆ e′ (edge existence and

containment on R2). Thus, by definition of the local intersection path, ek−1 “hits” e′

at v. The next edge of the local intersection path is then between f ′3 and f ′1. Call

this edge e′k. It remains to show that ek ⊆ e′k. Assume not. Both e′k and ek start

at v and lie along the intersection of the slabs supporting f ′1 and f ′3, so this implies

that ek 6⊆ f ′1 ∩ f ′3, which contradicts ♦. Below we define the local intersection path

for non-generic cases (see the paragraph titled “Handling Degeneracies”). With our

definition, it is straightforward to extend the argument above to generic cases by

noting that the if you look at the fan of faces around v in RP , all of its incident edges

that are not part of the critical path are critical in R1 or R2.
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The splicing path The significance of Lemma 4.4.2 is that in order to ensure

that we detect all of the edges required to satisfy edge containment, it suffices to use

the local intersection path. The problem with this approach, however, is that if we use

the entire local intersection path in the merge operation detailed in the next section,

we cannot guarantee the maintenance of certain properties of the output (like the fact

that it is topologically a disk). Instead we use a subchain of the local intersection

path that starts at v̂, which we call the splicing path. It is defined as follows.

Definition 4.4.3. The splicing path is the longest subchain of the local intersection

path starting at v̂ satisfying the following properties.

1. The path visits each face of R1 (resp. R2) at most once. This includes disal-

lowing the splicing path to touch the boundary of the face without leaving it.

2. The part of the path lying on the same slab s can be decomposed into at most

three distinct subchains: a chain of valley candidates along one motorcycle

arm chain of s, a chain of ridge candidates that lie on the intersection of

s with other slabs, and a second chain of valley candidates along the other

motorcycle arm chain of s.

3. For each edge e, if it is a ridge candidate then the slab from R1 (resp. R2) con-

taining e slopes downwards to its left (resp. right)3. If it is a valley candidate,

then the slabs slope upwards to the left (resp. right).

These properties constitute a set of necessary conditions for an edge of the local

intersection path to be an edge of the critical path (the reader should compare the

properties in the definition above to those in Lem. 4.4.1), and so we have:

Lemma 4.4.4. The splicing path contains the critical path.

3Right and left for the edge e are defined by directing e away from the gluing vertex v̂ and
projecting e downwards into the xy-plane, giving a well-defined right and left side.
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Handling non-genericity In our definition of the local intersection we assumed

the input was generic, which in our case meant that the local intersection path never

intersects a vertex of either R1 or R2. This ensures that the local intersection path is

well-defined. If the path does hit a vertex v of, say, R1 then it may there may be more

than one possible “next” edge between face of R1 incident at v and the current face

in R2. The problem is compounded if the local intersection path hits an vertex both

in R1 and in R2 simultaneously; however, now it should be clear that the point of

walking along the local intersection path is to ensure that we pick up all of the edges

of the critical path. This allows us to unambiguously define the local intersection

path in non-generic situations–the path we define will contain the critical path. Let

v be a vertex on the critical path in RP incident to more than three faces and e1 and

e2 be the incident critical edges (where e1 comes before e2). Let FL be the fan of

faces on the left side of e1, e2 and FR be the fan on the right side. Necessarily, faces

of FL all have their base edges in C1 and the faces of FR all have their base edges in

C2 (property 2 of the critical path). Furthermore, the edges between faces in FL are

critical for R1 and those in FR are critical for R2. Now, suppose at some point along

the splicing path we walk along an edge e′1 corresponding to e1 and hit a degenerate

vertex v′ (we will assume we simultaneously hit a vertex in both R1 and R2, since

this is the harder case). Following the same argument as in Lemma 4.4.2 we have

that v = v′. Now let F ′L be the faces incident to v′ in R1 ordered clockwise around v′

starting from e′1 and let F ′R be the faces incident to v′ in R2 ordered counter-clockwise

around v′. Let e′l be the first intersection between F ′L and F ′R in clockwise order in F ′L

and e′r be the first intersection between F ′L and F ′R in counterclockwise order around

F ′R. Then we have:

Lemma 4.4.5. e′l = e′r and this intersection contains e2.

Proof. Assume not. By face containment we have that (1) the first faces in the

clockwise ordering of F ′R correspond to the faces of FR (similarly with F ′L and FL in
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the counter-clockwise ordering and (2) there exists an intersection e′ between F ′L and

F ′R that corresponds to e2. Our assumption implies that there must be an intersection

e′′ before that in (wlog) the clockwise ordering of F ′L. This necessarily lies on one of

the faces f ′ of F ′L that corresponds to a face f of FL. The two edges incident to v

in f are critical edges, and thus must exist in f ′. This means e′′ lies between two

critical edges of a face, and so in the local neighborhood of f at v there is some

intersection between f and a slab between its two critical edges. But the existence of

this intersection contradicts that f is part of the lower envelope.

In other words, the first intersection between F ′L and F ′R in their respective order-

ings is between the slabs supporting e2. This is unambiguous and contains the next

critical edge, so we define this to be the next edge of the local intersection.

To compute this intersection, we restrict each fan F ′L and F ′R to the faces making a

total angle sum not greater than 2π (since necessarily, if a critical edge e2 exists past

v, the angle between e1 and e2 in both R1 and R2 must be less than 2π). Think of

intersecting a vertical cylinder with sufficiently small radius centered at v with each

fan. The intersection of each fan with the cylinder is a chain of curved edges along the

surface of the cylinder. If the chains are not monotone, simply discard anything past

the point of monotonicity (these cannot be part of the lower envelope and therefore

cannot contain e2). Now we have two monotone chains described on a cylinder, and

we are simply looking for the first intersection of one with the other, which can easily

be found in time linear in the degree of v.

4.4.2 The merge operation

We now describe how to merge R1 and R2. First walk along the local intersection

of R1 and R2 starting at v̂ while maintaining the properties of Def. 4.4.3 in order to

obtain a splicing path p (as defined in Sec. 4.4.1). Next, cut each face traversed by

the splicing path and discard the part of the face that lies above the splicing path
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Figure 4.9: The cut and discard step. The
splicing path enters the face at the white
circle and we remove the rest of the mono-
tone chain from that point. In this exam-
ple the splicing path stops on the interior
of the face, and so check that the two up-
per monotone chains are co-monotone. If
not, we truncated the other to maintain
co-monotonicity. The final face is shown
on the right.

(some care must be taken with the end of the splicing path, which generically stops

on the interior of a face). The resulting structures still satisfy face containment and

the edge existence and containment properties (Lemma 4.4.6). Both are topological

disks (Lemma 4.4.7) and the splicing path is now part of the boundary chain of each.

Next, perform a cleanup step to remove certain orphaned edges. Finally, glue the two

surfaces together along the splicing path to obtain a partial roof R for C (Cor. 4.4.10).

The cut-and-discard step Let f be a face of R1 and spf be the chain or ridge

candidates of the splicing path across f . By our convention, the downward slope from

each ridge candidate along spf will be to the left (since we are in R1), meaning that

the splicing path moves from right to left (monotonically) across each face. Let p be

the point at which spf enters f . Perform the following

1. If f is unbounded, remove the part of the motorcycle arm chain and upper

monotone chain of f that is connected to p that does not contain the base edge

of f . See Fig. 4.9.

2. Add the edges of spf as part of the upper monotone chain starting at p.

3. If spf hits the motorcycle arm chain or upper monotone chain on the other

side of f at a point q, discard the part of the motorcycle arm chain and upper

monotone chain that is monotonically above spf . Otherwise, if spf ends on

the interior of f , check if it passes monotonically below the upper monotone
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chain on the other side of f . If it does, remove the part of that chain that is

monotonically above spf . See Fig. 4.9.

Let R′1 and R′2 be the disks resulting from this operation. We prove:

Lemma 4.4.6. R′1 and R′2 satisfy the face containment, edge existence and edge

containment properties for their base chains.

Proof. We first argue that if f is unbounded, the chain of edges discarded by step

1 are not critical. Call this the discarded chain. Since spf has an edge on the

interior of f incident to p and each edge of spf lies on the intersection of slabs, then

the part of the discarded chain immediately adjacent to p cannot be on the lower

envelope of slabs, meaning that the part of the discarded chain immediately incident

to p is not critical. If any edge of the discarded chain is critical, then we have a

contradiction of Lemma 4.3.5. The remaining steps essentially discard the parts of

the face that lie monotonically above the spf . Thus, anything discarded cannot be

part of the lower envelope, and therefore is not critical or needed to satisfy face or

edge containment.

We note that topologically, if spf crosses f , then we are essentially cutting f into

two disks and discarded the part on the right side of spf (in R1, or left side in R2).

The splicing path necessarily crosses all but the last face it enters. In the last face,

topologically speaking, we are removing a disk from f that is incident along the entire

right side of spf and the boundary of f at p. We now show that when we discard all

of these disks, the resulting surface R′1 (resp. R′2) is itself a disk.

Lemma 4.4.7. R′1 (resp. R′2) is a topological disk.

Proof. By definition, the splicing path is composed of two types of edges, ridge can-

didates, which lie along the proper intersection of faces, and valley candidates which

necessarily lie along motorcycle edges of slabs, meaning that these edges are along the
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v
C1

D1
D2

D3

not possible

Figure 4.10: Left: an illustration of the
topology of the splicing path–it divides
the surface into several disks, one of
which must contain the entire base chain.
Right: two examples of splicing path
topologies that are not possible–one be-
cause it intersects the base chain leading
to a contradiction, the other because af-
ter touching the boundary, it turns back
onto the side not containing the base
edge, which implies that it must visit the
same face twice.

boundary of R1. Non-generically, the splicing path may also pass through a bound-

ary vertex of R1. Thus the splicing path can be decomposed into connected chains of

edges starting at the gluing vertex v̂ that pass through the interior of R1 (resp. R2)

to another boundary point or boundary edge. Cutting along this path necessarily

results in a series of disks D1, . . . , Dk. See Fig. 4.10. Wlog let D1 be the disk incident

to v̂ that contains the edge of C1 incident to v̂. We are going to show that the discard

step discards all of the faces in D2, . . . , Dk, and that after discarding all faces lying

to the right side of the path in D1, it remains a disk.

We first argue that D1 contains the entire base chain C1. Assume not. Then

the splicing path must cut through the base chain (since we only discard parts of a

face monotonically above the splicing path with respect to its base chain). But each

slab (and therefore each face) is incident to the xy-plane only along its base edge,

so this implies an intersection between base edges, a contradiction. We next argue

that D2, . . . , Dk are all incident along the right side of the splicing path. Assume not.

The disk D1 is immediately incident to the left side of the splicing path at v̂ (since it

contains the base edge in C1 incident to v̂, which by our convention is on the left of

v̂) so for any other disk to be incident to the left side of the splicing path, the splicing

path must cut all the way across R1 to create D1. See Fig. 4.10. By property 1, the

splicing path cannot hit the boundary of a face without exiting it, so this means the
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next edge of the splicing path is in some face not yet traversed by the splicing path.

But this face must contain a base edge, which is not part of D1, a contradiction.

Therefore, D2, . . . , Dk are all to the right of the splicing path. We now argue that

all faces in D2 through Dk are incident to the splicing path and are hence discarded

by the discard step. Assume not. Then there is some face f in, say, D2 such that it

is not incident to the splicing path. But this face is then left intact by the cut step,

meaning it is not traversed by the splicing path. Therefore it must then contain a

base edge, a contradiction. Therefore the cut-and-discard step removes D2, . . . , Dk.

Now we have that D2, . . . , Dk are discarded, but the splicing path may not cut

all the way through R1, which in particular means it ends somewhere on the interior

of D1. In general, if D1 was any disk and we took a path from its boundary that

stopped on its interior and discarded the faces to the same side of the path, we might

disconnected D1 into multiple disks. We show that this does not happen in our case.

Suppose it does. Then there is some face f that is disconnected from the rest of D1

by removing the faces along the right side of the splicing path in R1. Because f is not

discarded it is not traversed by the splicing path and therefore must contain a base

chain. Thus the base chain is disconnected. But, as we saw before, we only discard

the parts of faces above the splicing path, so this implies the splicing path intersects

the base chain, a contradiction.

Cleaning up When we discarded edges in the previous step, we did so in a

single face, but each edge “discarded” is really an internal edge between two faces.

Discarding only removes the edge from one of the faces, thus making it a boundary

edge in the other. For example, if e is an monotone chain edge between faces f1

and f2 and the splicing path passes beneath e in f1, then e is “discarded” from f1

but remains in f2, thus becoming a boundary edge in R′1. See Fig. 4.7. The face

construction property, however, does not allow for such edges. Call these orphaned
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edges. The following lemma implies that if we simply remove these edges we maintain

the face containment property. We leave the proof to the appendix.

Lemma 4.4.8. The orphaned edges of a face f of R′1 (resp. R′2) are connected on

the boundary of f , and if f is unbounded are at the end of a monotone chain (i.e.

end at its free point).

Proof. Assume not. First assume f is bounded. Then there is some non-orphaned

edge e of the monotone chain between two orphaned edges. Recall that the orphaned

edges are boundary edges. There must be a second face f ′ incident to e (otherwise it

would be orphaned). But then any path along the boundary from the base chain of

f ′ to the base chain of f must pass through an orphaned edge of f , contradicting that

C1 is connected along the boundary of R′1 (resp. R′2). Now assume f is unbounded.

Recall that the unbounded portion of the face is formed by two edges along f incident

to a vertex at infinity that are part of the boundary of R1. We first argue that all

orphaned edges are incident to the same monotone chain. Assume not, then there is

an orphaned edge in each monotone chain of f . Let e1 be an orphaned edge on one

and e2 be an orphaned edge on the other and let f1 and f2 be the faces that were

cut by the splicing path to orphan e1 and e2. By the definition of cut-and-discard,

we have that the splicing path cannot pass beneath the unbounded part of f . But

if we remove f from R1, it necessarily disconnects f1 from f2, which means that the

splicing path is disconnected, a contradiction.

We now cleanup by removing all orphaned edges from a face. We have already

seen that none of these edges are needed by the edge existence property (otherwise

they would not have been orphaned). Removing them from a bounded face simply

cuts its monotone chain into two, and removing them from an unbounded face simply

truncates a single monotone chain (by Lemma 4.4.8). Therefore this step does not
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discard anything we need, and only increases the size of each face. Let R′′1 and R′′2 be

the resulting surfaces. We have:

Corollary 4.4.9. R′′1 and R′′2 are topological disks and satisfy the face containment,

edge containment, and edge existence properties for their base chains.

Gluing R′′1 to R′′2 Finally, we glue R′′1 to R′′2 along the splicing edge, which is

now a boundary path in each to obtain R. R′′1 and R′′2 are topological disks that

satisfy all the partial roof properties on their respective chains C1 and C2 except for

face construction, since the splicing path edges are boundary edges (and thus not

internal edges). The splicing path necessarily contains the critical path. Thus, if we

glue R′′1 to R′′2 by identifying corresponding edges along the splicing path to obtain

R, then the splicing path edges become internal edges in R. Since the splicing path

necessarily contains the remaining critical edges between faces in R1 and faces in R2,

the cleanup step got rid of any orphaned edges that violated face containment, and

gluing along the boundary maintains the geometry of each face and edge in R′′1 and

R′′2, we have:

Corollary 4.4.10. R is a partial roof for C1 ⊕ C2.

Putting everything together, we arrive at the main result of this section:

Lemma 4.4.11. Given valid partial roofs R1 and R2 for subchains C1 and C2 as

input, there is an algorithm for computing a partial roof R for C1 ⊕ C2.

4.4.3 Complexity

We represent a partial roof by storing, for each of its slabs s, the lower convex

chain and left and right upper monotone chains as doubly-linked lists of half-edges

(in a similar vein to the DCEL data structure [35]). Each half-edge on the upper

monotone chain(s) stores a pointer to its corresponding edge in the other face that it

is incident to. Most of the operations are straightforward in this representation. The
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main difficulty is computing the splicing path, which involves repeatedly computing

the intersection of two faces. We first decompose each face into trapezoids by adding

edges from each vertex along the direction of monotonicity. Since each face is mono-

tone, decomposing a face takes linear time. Instead of intersecting faces, we intersect

trapezoids, which is a constant time operation. A face is given by one or two sets of

trapezoids and an unbounded trapezoid if the face is unbounded. We walk across the

intersection of two faces by walking across the intersection of the corresponding trape-

zoids. Because the splicing path is monotone across each face, we visit each trapezoid

at most once. Thus, the number of edges in our trapezoid splicing path is linear in the

number of trapezoids. To show that the operation takes linear time in the complexity

of the partial roof, we bound the number of trapezoids created. Each vertex of a face

is incident to at most two trapezoids in that face. Thus the total number of trape-

zoids created is twice the sum of the degrees over all vertices. In generic cases each

time we compute an intersection between trapezoids it takes O(1) time to traverse to

the next trapezoid, however, in non-generic cases where the intersection path hits a

vertex we use the method from Sec. 4.4.1. Since this method is linear in the degree of

hte vertex, then the worst case running time over all edges is the sum of the degrees.

By a trivial application of the handshaking lemma and by Lemma 4.3.4, we have:

Lemma 4.4.12. Let R1 and R2 be partial roofs for subchains C1 and C2 such that

SC1 and SC2 have k1 and k2 base and motorcycle edges. Then the merge operation

takes O(k1 + k2) time.

Our divide and conquer algorithm is this: subdivide the polygon into equal length

chains C1 and C2, recursively compute a partial roof for each and merge the result.

Thus we have:

Theorem 4.4.1. The straight skeleton of a polygon P with n edges can be computed

from its motorcycle graph in O(n log n) time.
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Proof. Correctness of the algorithm follows from Lemma 4.4.11. In non-degenerate

cases the number of motorcycle edges in a slab is O(1), Lemma 4.4.12, so the length

of the subchain C1⊕C2 is O(k1 +k2) and the analysis is the same as merge sort. The

running time of each merge step is linear in the number of trapezoids generated, and

the endpoint of each edge of a face accounts for two trapezoids in the decomposition

of the face. Thus each motorcycle edge of a slab “contributes” O(1) trapezoids to

each merge step in which the slab appears. Each slab appears in only O(log n) merge

operations and in degenerate cases there are a total of O(n) motorcycle edges. Thus,

by amortized analysis in the degenerate case the operation takes O(n log n) time.

4.5 Generalizing to PSLGs

Our algorithm depends on the fact that the new edges we need to pick up at

each merge step correspond to a path in the final straight skeleton which in turn are

contained in the local intersection path of the two input partial roofs. This is due,

mainly, to the fact that the straight skeleton of a polygon contains no interior faces

and the base chains of the two input roofs are connected at the gluing vertex.

In the general case of a PSLG or a polygon with holes, the “boundary” is now

the set of connected components. In particular, this means that the base chains are

no longer connected. In order to extend the algorithm we compute a subdivision of

the plane in the case of a PSLG G or the interior of the polygon P (in the case of

a polygon with holes) into polygonal cells such that each polygonal cell contains no

entire face of the straight skeleton on its interior. The boundary of each cell is treated

at a set of base edges, which allows us to employ our polygon algorithm (with slight

modifications).

We employ the subdivision algorithm of Cheng et al. [24] to compute the subdivi-

sion. We note that they only define the subdivision for polygons with holes, but their

method (and proofs) extends naturally to the outer face of a PSLG. The algorithm
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is a recursive one. It maintains a subdivision of the interior of the polygon into cells

and each recursive invocation takes one of the cells and further subdivides it. The

subdivision is performed on the set of vertices in the induced motorcycle graph which

has O(r) complexity and leads to a recursion depth of O(log r). This is necessary

for [24], because they require a stricter set of properties of the final subdivision than

we do. Namely, they require that the part of the straight skeleton above each cell

be convex. In our case, we relax this requirement. We require only that no face

of the straight skeleton is interior to a cell. Instead of subdividing on all O(r) ver-

tices in the induced motorcycle graph, we instead subdivide on one reflex vertex per

connected component (or hole), leading to a recursion depth of O(logm), where m

denotes the number of connected components in the PSLG (or holes in the polygon).

Since m = O(r) but it is not necessarily the case that r = O(m), this improves on

the algorithm.

4.5.1 Subdivision Algorithm

To create the subdivision we use the cellular subdivision algorithm of Cheng et al.

[24]. Before we review their algorithm, we need two subroutines, one computing the

intersection of the straight skeleton roof with a vertical-plane and one for computing

descent paths. We then give a brief overview of the algorithm and define its main

data structure.

Vertical-plane intersection subroutine. We call a plane Π that is parallel to

the yz-plane a vertical plane. The vertical-plane intersection procedure computes

the intersection of Π with the straight skeleton roof RP of a polygon P (or, similarly,

the straight skeleton terrain RG of a PSLG G) without first computing the entire roof.

First, intersect each slab in slabs(P ) with the plane Π. The intersection of each slab

is a line segment in Π. Denote the resulting set of line segments by S. Since RP is the

lower envelope of slabs, it follows that the lower envelope of the set of line segments S
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is equivalent to the intersection of Π with RP . This can be computed using standard

sweep techniques in O(n log n) time where n denotes the number of segments4 [36].

Descent path subroutine. Recall that given a point p on the roof, a descent

path is the path of steepest descent downwards from p. If p is on the interior of a

face, then the descent path starts with a segment downwards along the slope of the

face. This segment either hits the base edge of the face and thus the descent path

is just the one segment, or hits a motorcycle edge of the face. Since the motorcycle

edges are valleys in the terrain, the descent path then follows the motorcycle edge

back down to the base. In particular, this means that to compute the descent path

for a point p on a face f , we do not need to have an explicit representation of f .

Rather, we need only the representation of the slab s supporting f . If a slab has m

motorcycle edges incident to it, then computing a descent path for a point p on the

face supported by f requires O(m) time. In particular, in generic cases, this means

that computing a descent path takes O(1) time. Note that if p lies on an edge of the

straight skeleton, then it has two decent paths, one in each face incident the edge. If

p lies on a vertex of the straight skeleton, then there is a descent path for each face

incident the vertex, which is 3 in generic cases.

Overview of the subdivision procedure. We now review the subdivision proce-

dure. We first describe it for a polygon with holes, and then describe how to modify

it for a PSLG. Let P be a polygon with holes. The subdivision algorithm computes

a subdivision of P into cells C1, . . . , Cl.

4In the case of a PSLG, the intersection of a slab with Π may be either a line segment or a ray.
The problem of computing the lower envelope of a set of rays and segments is easily reducible to
that of just segments. First, in O(n log n) time compute a bounding box of the intersections of the
supporting lines of the rays and segments (this is possible since an extreme point of the arrangement
of n lines always lies on the intersection of lines with consecutive slope, cf. [58]). Then clip each ray
to the boundary of the bounding box to form a set of segments. Next, compute the lower envelope of
the resulting segments. Outside the bounding box no rays can cross, and computing the remaining
parts of the lower envelope is trivial.

80



The cell data structure. Each cell Ci is a polygon drawn on P . Its edges may

lie along the boundary of P or may be on its interior. The algorithm maintains a

lifting of Ci onto the straight skeleton roof RP , denoted Ĉi. Each edge of a cell lies

on only one face of RP , meaning in particular that each edge e has a lifting ê onto

a line segment drawn on a single face of RP . For each edge e we store a pointer to

the slab s which supports ê in RP . A cell also contains a slab list slabs(Ci) which is

equivalent to the slabs defined for each of its edges along with the slabs for any edge

of a hole contained on the interior of slabs(Ci). The subdivision procedure maintains

the invariant that the part of the roof RCi
above Ci is the lower envelope of slabs(Ci)

(cf. [24]).

To handle PSLGs, we need to store unbounded cells. An unbounded cell is

bounded by two rays in the plane connected by a polygonal chain. We handle this

by adding a single vertex at infinity between the two rays (making each unbounded

cell a cycle combinatorially) and storing a direction at the two rays.

Vertex conflict list. Each cell Ci additionally maintains a certain set of vertices

from the polygon P that lie on its interior, which we call its vertex conflict list

and denote by Vi. We will see later how to initialize and maintain this list.

Vertical partitioning of a cell. The main subdivision procedure takes as input

a cell Ci and a vertex v of the vertex conflict list Vi and vertically partitions Ci via

the following procedure. Let v ∈ Vi. Let Π be the vertical plane through v. First,

compute the vertical plane intersection (using the subroutine defined above) between

Π and RCi
. Let p denote the polygonal path along the intersection of Π with RCi

.

Each edge of p is labeled with the slab of slabs(Ci) supporting it. Each internal vertex

along p is either on some part of the boundary of P that is on the interior of Ci or

lies on a straight skeleton edge of RCi
. In the latter case, we trace descent paths

downwards from the vertex. The projection of the descent paths and p down onto the

xy-plane further subdivides Ci into at least two cells (on either side of the vertical
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plane). The conflict list Vi is then split between these cells–each vertex in Vi is placed

in the conflict list of the sub-cell that it is contained in. If a conflict vertex is now on

the boundary of a cell, we discard it.

One important property of this procedure is that because the conflict vertex v

lies on the boundary of P but not on the cell boundary, it means that each time we

apply the algorithm, a hole of the polygon becomes part of a cell boundary. With

the appropriate initial conflict list, this property allows us to guarantee that no hole

of P lies on the interior of any cell in the subdivision procedure.

Subdivision procedure. Let V denote a set of vertices, one from each hole in

P (or connected component in the case of a PSLG), such that each vertex is reflex.

We apply the vertical partitioning procedure above recursively. Initially we have one

cell C0 = P with V as its vertex conflict list. Our choice of V is a strict subset of the

set Cheng et al. use in their subdivision algorithm, which allows the relevant proofs to

carry through without modification. At each step we take a cell Ci such that its slab

set has at least three slabs and it has at least one vertex in its conflict list. We then

select the vertex from the vertex conflict list having the median x-coordinate, and

apply the vertical partitioning procedure on it. This results in a further subdivision

of the cell Ci which we recursively subdivide further, so long as the subdivided cell

has at least three slabs and one conflict vertex.

Properties of cells. The subdivision algorithm guarantees several important prop-

erties for the final subdivision C1, . . . , Cl:

1. Either slabs(Ci) is empty, meaning that the cell Ci lies entirely in one face of the

straight skeleton; or slabs(Ci) contains exactly two slabs (Cheng et al. call this

a wedge); or slabs(Ci) is non-trivial but contains no connected component of

P (i.e. no hole) on its interior. [24, Lemma 14].

2. The lower envelope of slabs(Ci) is RCi
.
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3. No face of the final straight skeleton roof lies entirely on the interior of a cell

([24, Lemma 14]).

4. Each slab appears in the slab set ofO(logm) cells and
∑

i | slabs(Ci)| = O(n logm)

([24, Lemmas 8 & 13]).

5. Let Ci be a non-trivial cell and f be a face of RCi
. The edges of Ci incident

to f form a (connected) lower convex chain in the slab supporting f . The

endpoints of this chain are either on ridge edges of RCi
in which case the face

f lies monotonically above the chain. Or the endpoints lie on a motorcycle

edge of RCi
in which case f lies monotonically above the chain and its incident

motorcycle edges.

Furthermore, since we perform exactly the same recursion, but on an O(m) sized

subset of the O(r) vertices used in [24] (where m denote the number of holes in P ), the

same analysis as in [24, Lemma 14] shows that the subdivision runs inO(n log n logm).

Property 5 allows us to define a subdivided slab for each chain of edges in Ci

with the same supporting slab s–simply restrict s to the region above the chain. This

is a generalization of the slabs we use to compute the polygon straight skeleton. Now

a slab may be incident to a connected chain of edges in Ci rather than a single base

edge. Because of 5, the lower envelope of the subdivided slabs for Ci is RCi
. We

now run our algorithm for computing the straight skeleton of Ci with the following

modification. Instead of splitting Ci into sub-chains, we only split between edges that

are supported by different slabs of Ci. When we split, we never split a subdivision

boundary chain. The subdivision boundary chains now play the role of the base

edge in the original algorithm. The direction of monotonicity for the splicing path is

checked against the original base edge’s monotone direction and not the subdivision

boundary chain. Since our algorithm fills in a cell Ci in O(| slabs(Ci)| log | slabs(Ci)|)

time (amortized in degenerate cases) and
∑

i | slabs(Ci)| = O(n logm) and the cellular
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subdivision can be computed in O(n(logm) log n) time, then the entire algorithm

takes O(n(logm) log n) time, and we have:

Theorem 4.5.1. The straight skeleton of a PSLG with n edges and m connected

components can be computed from its motorcycle graph in O(n(logm) log n) time.

.

4.6 Conclusion

We have presented an algorithm for computing the straight skeleton given its

motorcycle graph as input that speeds up the computation of the straight skeleton

in all cases. One of the main novelties is relaxing the requirement that intermediate

structures computed by the algorithm be either terrains or lower envelopes. Instead,

our lower envelopes are neither, even though they are topologically disks. It remains

open, however, how fast the straight skeleton can be computed, and more work is

needed to either improve the algorithm or the known lower bounds.

4.7 Future work

The algorithm we present speeds up the computation of the straight skeleton

in all cases. One particularly useful result of this is that computing the straight

skeleton of PSLGs now follows the same scheme as that of polygons and polygons with

holes; namely, we first compute the motorcycle graph and then compute the straight

skeleton. Thus, given our algorithm, the bottleneck in all cases now becomes the

motorcycle graph (recall that before, in the PLSG case the bottleneck for algorithms

that computed the straight skeleton from the motorcycle graph was the second part

of the computation). Thus, it remains an interesting open problem what is the fastest

possible algorithm for computing the motorcycle graph.

84



CHAPTER 5

THE UNIVERSAL MOLECULE

We now investigate the properties of the universal molecule, which is (in some

sense) a generalization of the straight skeleton for convex polygons. Prior to the

present work, the universal molecule was a heuristic, in that a clear proof of correct-

ness had not yet appeared. This was in part due to the lack of a characterization (in-

dependent of the algorithm itself) of precisely what objects the algorithm computes.

A main contribution of this chapter is that we develop a family of piecewise-linear

surfaces we call Lang surfaces (surfaces formed by gluing polygonal faces together

along whole edges) constructed on top of trees using two simple operations. We show

when we restrict this family of surfaces to have zero-curvature and convex bound-

ary, the surfaces are exactly the set of surfaces that are (intrinsically) computed by

the universal molecule algorithm. Once we have established this characterization,

we prove the correctness of Lang’s universal molecule algorithm as it was originally

formulated. This work has appeared as [15]. Having this characterization opened up

new insights to the universal molecule algorithm. For instance, it enables us to gener-

alize the algorithm in Ch. 7. There, we use Lang surfaces to generalize the universal

molecule algorithm to non-convex polygons. This characterization also allows us to

analyze the rigidity properties of the universal molecules in Ch. 8.

5.1 Introduction

We now briefly review Lang’s origami design problem, TreeMaker, and the uni-

versal molecule algorithm which was presented in Ch. 2.
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Figure 5.1: The structures involved in the universal molecule algorithm.

Lang’s Origami Design Problem. The universal molecule algorithm is a compo-

nent of the TreeMaker method for origami design proposed by Robert Lang in 1996

[44] and implemented in his freely available software [45]. Starting with a piece of

paper and a tree-like sketch of what the final folded shape should look like (as in

Fig. 5.1(left)), TreeMaker tries to produce a crease pattern with a guaranteed folded

3D shape resembling the given tree. This shape can be flattened into a single plane

so that its boundary edges all lie along a single line or axis; Lang refers to this as a

uniaxial base. This informal definition for uniaxial is quite broad and encompasses

many different 3D shapes, not all of which are produced by the TreeMaker algorithm.

TreeMaker works in two phases, both of which raise interesting, yet insufficiently

investigated theoretical questions. The first phase is an optimization procedure which

subdivides the paper into polygons while minimizing a rescaling factor. If some face

in the subdivision is non-convex, TreeMaker stops with an error message. Under-

standing what conditions result in non-convex faces and modifying the optimization

step to guarantee convexity remain open questions which we do not address. If all

the resulting faces are convex, then the second phase fills them in with creases using

the universal molecule (UM) algorithm. The interior of each polygon folds along the

creases in such a way that it projects to some portion of the tree. Lang describes

the crease pattern and folded shape resulting from applying the UM algorithm on

a convex polygon, but, due to the lack of precision in some of his definitions, it is

difficult to assess the overall correctness of the method. In particular, it is not clear
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a priori what the precise relationship is between the input to the algorithm (the tree

and polygon) and the final 3D folded shape.

In this chapter we focus on the universal molecule (UM) algorithm as it is applied

in Lang’s original context–namely, to convex polygons. Our first contribution is to

unambiguously state the problem, and to clarify the specific relationship that must

exist between the tree and the convex piece of paper on which the crease pattern will

be designed. Precise definitions are reviewed in Section 5.2, but here is a preview:

the input is a pair consisting in a metric tree T and a doubling polygon PT for T

(See Ch. 2). If the Euclidean distance between any pair of polygon vertices is at

least as large as the tree distance between the corresponding tree leaves, the doubling

polygon is called a Lang polygon. The output is referred to as a zero-curvature

Lang surface constructed on T with convex boundary. It has a 3D realization

which projects onto the input metric tree T . Fig. 5.1 illustrates the concepts. The

main contribution of this chapter is to prove:

Main Theorem. Let T be a metric tree and PT be a convex doubling-polygon asso-

ciated to it. Then a Lang surface S constructed on T and isometric to PT exists (and

is unique) if and only if PT is a Lang polygon for T .

The necessity of Lang’s property, already implicit in [44], is not hard to prove.

The proof of sufficiency, which proceeds via Lang’s Universal Molecule algorithm,

occupies most of the chapter.

Divide-and-conquer Parallel Sweep. Lang’s algorithm resembles the parallel

sweep of the straight skeleton (See Ch. 2), in that it works by moving the sides

of the polygon inwards in a parallel fashion at unit speed. The universal molecule

crease pattern is obtained by tracing the vertices of the sweeping polygon. Novel to

the universal molecule algorithm is a simultaneous shrinking process in the metric

tree. Specific invariants maintain relationships between the sweeping polygon and
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the shrinking tree. Events occur when the invariants are violated, and are of two

types: contraction events, in which edges of the polygon and arcs of the tree shrink

to zero length, and splitting events, in which the polygon (and tree) is split into two

and the sweep continues, recursively, on each side of the split. A contraction event

leads to a polygon with a smaller number of vertices, and a splitting event leads to

two smaller polygons, on which the algorithm proceeds recursively. Lang’s algorithm

is thus a mixture of parallel sweep and divide-and-conquer paradigms, in that there

is a time parameter for the sweep and discrete events where the calculation branches

into separate sweeps on two smaller inputs, which may proceed independently.

A note to the reader. To illuminate the correspondences between different struc-

tures that appear as origami shapes we introduce some new terminology and give

names to certain properties needed to track the algorithm invariants that have to be

proven. In some cases we have replaced terms used in [44]. For instance, Lang uses

“active reduced paths” and “active polygon” to denote features identified in the first

phase of the TreeMaker algorithm. We study here the universal molecule algorithm

independently of the first phase, and we want to make clear the association between

the tree and the convex region that represents the “paper” to be folded. Hence we

introduced the new term “Lang polygon” (instead of “active polygon”) to denote both

a convex polygon and its corresponding tree that together form a valid input for the

universal molecule algorithm. Similarly, we use the more descriptive term “splitting

segment” rather than “reduced active path” to denote the line segment added to

the crease pattern to split the polygon at certain events during the sweep. In those

instances where we have given a new name to a concept which either appears or is

similar to a concept which appears in Lang’s work, we have noted the name used

by Lang in a footnote. We have also named certain structures after Lang, notably

Lang polygons and Lang surfaces, in recognition of the fact that these concepts come

primarily from his work.
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Chapter outline. We start in Section 5.2 by recalling the precise definitions for

all the concepts used in the chapter: metric trees, doubling polygons and surfaces,

and their splitting operations. Next we introduce the specialized versions related to

Lang’s property, Lang polygons and Lang surfaces, and prove basic properties and

relationships between them. The proof of the Main Theorem is split into three parts:

necessity, shown in Section 5.3; the Universal Molecule algorithm and the proof of

sufficiency, presented in Section 5.4, and uniqueness, shown in Section 5.5.

5.2 Lang polygons and Lang surfaces

In this section we recall from Ch. 2 the main concepts needed throughout this

chapter. A Lang polygon1 is an abstraction of the “piece of paper” on which an

origami crease pattern will be placed, and which must satisfy certain properties, if

the pattern is to be foldable into a shape resembling a tree. A piece of paper together

with a crease pattern is viewed as an intrinsic surface with piecewise linear faces and

zero Gaussian curvature at all interior points. A Lang surface is defined extrinsically,

via a special placement in 3D. This is the formal concept which allows us to define,

independently of any algorithm that would compute it, the special folded origami

shape with a tree-like structure that Lang calls a uniaxial base. Both a Lang polygon

and a Lang surface are derived from a metric tree T . These concepts are needed

to formulate and prove the Main Theorem, and thus to fully characterize what the

Universal Molecule algorithm computes.

1In [44] this is called an active polygon.
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Figure 5.2: A tree (left), its doubling-cycle (center), and its leaf-cycle (right). The doubling-
cycle vertices are labeled with their corresponding nodes in the tree.

5.2.1 Trees and doubling polygons

Metric trees. A metric tree (T,w) is a tree T together with a set of positive

weights w defined on each arc2 of the tree; each weight designates the length of the

arc. For convenience we separate the set of nodes of T into two sets A and B, with

A = {a1, . . . , an} the leaf nodes and B = {b1, . . . , bm} the internal nodes of T . We

assume that a cyclic ordering (rotation) of the incident arcs has been given for each

internal node. We embed a metric tree in the xy-plane by mapping each of its nodes

to a point in the xy-plane, and each arc to the line segment joining its endpoints such

that the length of the line segment is equal to the length of the arc and the edges do

not cross. To keep the notation simple, we drop the weights w and assume that a

metric tree T has arc lengths defined from a plane embedding.

We make the tree kinetic by assigning a “speed” s(ab) to each leaf arc ab. This

induces a family of metric trees T (t) parametrized by time t. Each T (t) is combina-

torially equivalent to T , but the length of each leaf arc ab is obtained by subtracting

t s(ab) from its original length in T . In other words, each leaf arc “shrinks” at a linear

rate given by its defined speed. We call this a sweep of the kinetic tree. If we fix an

embedding of T , then we give a parametrized embedding for T (t) by moving each leaf

2To avoid possible confusions, we use vertex and edge when refering to the graph or subgraph of
the UM crease pattern and node and arc for a tree.
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node inwards along its incident arc at the defined speed. Fig. 5.14(left) illustrates a

kinetic tree.

Doubling cycles and polygons. Given an embedded tree T , we construct its

doubling-cycle by walking around T , respecting the cyclic ordering at each node

and listing (with repetition) each node as it is encountered. The metric version of this

concept also retains the edge lengths. The vertices of the cycle are labeled with the

nodes of the tree. A doubling-polygon is an embedding of a metric doubling-cycle

as a planar polygon with the given edge lengths. The leaf-cycle for a tree T is the

same as the doubling-cycle except that only the leaf nodes of T are listed. See Fig. 5.2.

Given a kinetic tree T , we make its doubling-cycle CT kinetic by assigning each edge

of the doubling-cycle the same shrinking speed as that of the tree. As with the tree,

this gives rise to a family of doubling-cycles CT (t) parametrized by t maintaining the

invariant that each CT (t) is a doubling-cycle for the tree T (t). This correspondence

will be used in the parallel sweep of the UM algorithm, and is illustrated in Fig. 5.14.

Notation and terminology. A vertex of a doubling-cycle or polygon corresponds

to a node of a tree. Bold face is used to denote elements of a doubling-polygon

and italics to denote the corresponding elements in the tree3. Given a tree T and a

doubling-polygon PT , dT (u, v) denotes the distance between nodes u and v in the tree

and d(u,v) denotes the distance in the plane between u and v. We work with convex

(but not necessarily strictly convex) polygons: some vertices may have interior angle

equal to π. Those less than π are termed corners and those equal to π are markers.

The chain of edges between two consecutive corners is a side of the polygon.

3As an example, if u is a vertex of a doubling-polygon, then u is its corresponding node in the
tree.
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Figure 5.3: The splitting operation for a tree and its doubling-cycle. The split occurs for
the pair (a1, a3).

Splitting. We define a splitting operation on trees and doubling-cycles. A path

between two leaf nodes on the tree gives a well defined left and right side of the path.

The split operation takes a tree T and two leaf nodes ai and aj and returns the left

and right trees TL and TR formed by splitting T along the path ai ∼ aj. See Fig. 5.3.

This operation can be extended to a doubling-cycle for the tree: split the doubling

cycle into two sub-chains between ai and aj; then close each chain by gluing in a

copy of the path ai ∼ aj to obtain a doubling-cycle for TL and a doubling-cycle for

TR. We also extend this operation to doubling-polygons if the distance between ai

and aj is equal to the length of the path ai ∼ aj in the tree. We split the polygon by

adding the line segment (ai, aj) to its interior and subdivide the segment so that it

is metrically equivalent to the path from ai to aj. Figure 5.15(b) shows an example.

5.2.2 Piecewise linear surfaces

A piecewise linear metric surface is obtained by gluing together (flat and rigid)

polygonal faces, along entire edges. Each edge is incident to one or two faces; in the

first case it is a boundary edge, otherwise it is an interior edge. A vertex incident

to a boundary edge is a boundary vertex, otherwise an interior vertex. The

dihedral angle for an interior edge is the angle between the supporting planes of
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its two incident faces. We assume that dihedrals are measured between 0 (inclusive)

and 2π (exclusive). In this chapter we will only work with piecewise linear metric

surfaces and hence refer to them simply as surfaces.

Realizations and intrinsic vs. extrinsic properties. A realization (or iso-

metric placement) of a surface is given by attaching coordinates in R3 to each vertex

of the surface such that the edges and faces maintain their size and shape; in other

words, the faces behave like rigid panels. Properties of a surface which are preserved

in every realization are called intrinsic properties, while those which depend on

the chosen realization are extrinsic. For instance, the length of an edge or of a path

on the surface is an intrinsic property, but the dihedral angle between two faces is

extrinsic. A realization of a surface is (extrinsically) flat if all the vertices lie in one

plane.

Flat surfaces. A vertex of a surface is incident to several faces, and has an angle

measure on each face. Its angle sum is obtained by summing these angle measures

on all incident faces. The (intrinsic, Gaussian) curvature of a piecewise linear surface

at an interior vertex is defined as 2π minus the vertex angle sum. If the curvature

is zero at every interior vertex, then we say that the surface is (intrinsically) flat.

This is “intrinsic”, because a surface in R3 may have zero curvature everywhere, but

may not be embedded in a plane. If the surface is then realized in R3 such that the

dihedral angle of each internal edge is π, then we say that the surface is in an open,

flat realization. An origami crease pattern drawn on the paper but not yet folded

is a surface in an open, flat realization. Once the paper is folded, the surface is still

intrinsically flat, but the realization may not be extrinsically flat.

Topological disks and rings. In this chapter, we encounter only two topological

classes of piecewise linear surfaces: disk-like surfaces, topologically equivalent to

a disk, which have a single simply connected boundary component, and ring-like
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surfaces, topologically equivalent to an annulus; these have two simply connected

boundary components. A disk-like surface is intrinsically flat if and only if there exists

an open, extrinsically flat realization of it. A ring, however, may be intrinsically flat

but have no open, flat realization. An example of this is the cube with its top and

bottom faces removed. Any realization of the resulting surface in the plane will have

at least two edges which are “folded”, i.e. have zero dihedral angle.

The boundary polygon of a disk. If we have a piecewise linear surface which is

topologically a disk, and the angle sum of each of its boundary vertices is not greater

than π, then we say the surface has an (intrinsically) convex boundary polygon.

If the surface is also intrinsically flat, then it has a realization in the xy-plane such

that none of its faces overlap. We call this the open, flat realization of the disk-like

surface.

5.2.3 Lang’s property and Lang polygons

Definition 5.2.1. Given a doubling-polygon PT for a metric tree T , we say that PT

satisfies Lang’s property if for all pairs of vertices u,v with corresponding tree nodes

u, v their Euclidean distance is larger than their tree distance: dT (u, v) ≤ d(u,v).

Definition 5.2.2. Given a metric tree T with strictly positive length edges (no de-

generacies), the pair (T, PT ) is said to be a Lang polygon for T if PT is a convex

doubling cycle for T which satisfies Lang’s property.

Fig. 5.1 illustrates these concepts. To avoid ambiguities, we also require that each

vertex corresponding to a leaf node in a Lang polygon should have an interior angle

strictly less than π. Using the triangle inequality we can immediately derive the

following properties of Lang polygons:

Lemma 5.2.3. Let PT be a doubling-polygon for the tree T .
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(1) If (T, PT ) is a Lang polygon, then any vertex corresponding to an internal node

is “straight” (has an interior angle of π) and thus is a “marker”. Furthermore, Lang’s

property holds with equality for all pairs of vertices corresponding to consecutive leaf

nodes.

(2) If Lang’s property holds for all pairs of corners, then (T, PT ) is a Lang polygon

and Lang’s property holds for any pairs of vertices with at least one marker. Further,

if we require that any vertex corresponding to a leaf node be a corner, then Lang’s

property holds with inequality for any pair of vertices where at least one is a marker.

Proof. (1) Suppose not. Let b be a vertex corresponding to an internal node which

is not a marker. By definition of a doubling-polygon, the vertex is on a chain of

edges which correspond to a path between two leaf nodes in the tree. Since the

distance between the leaf nodes is equal to the length of this path and the chain

of edges contains an interior vertex, namely b, of angle not equal to π, then the

endpoints in the chain are closer than the length of the path, a contradiction. The

second part follows immediately. We prove (2) for a corner a and a marker b. The

proof is easily extended to two markers. Let a′ and a′′ be the corners of the side

containing b. Denote the corresponding tree nodes by a, b, a′, and a′′. One of the

paths a ∼ a′ or a ∼ a′′ must contain b, say a ∼ a′. Now assume for contradiction

that dT (a, b) ≥ d(a,b). As a consequence of property (1), dT (b, a′) = d(b, a′). By the

triangle inequality we have that dT (a, a′) ≥ d(a, a′). Equality cannot hold here, since

the angle ∠aa′b is (by the convexity of PT and the fact that we disallow the vertices

corresponding to leaf nodes, namely a′, to have angle π) less than π. Thus we have

dT (a, a′) > d(a, a′), a contradiction.

Lemma 5.2.3(2) implies that if Lang’s property holds for pairs of polygon corners

then it holds for all pairs of vertices along the polygonal boundary.
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5.2.4 Lang surfaces: overview

Our next goal is to define Lang surfaces. This family of surfaces in R3 is defined

inductively from elementary “building blocks”, combined using two construction op-

erations (Sec. 5.2.6). Each surface has an associated metric tree. The preconditions

for the construction operations enforce certain tree-related constraints. We also define

a surface construction tree, which is an auxiliary structure serving as a record of the

building blocks and operations used to form any particular surface. The construction

tree is used to facilitate the proofs in Sec. 5.5.

Building blocks. We define two types of building block surfaces. Each one is

created by embedding in the plane a kinetic tree and its kinetic doubling-cycle and

extruding the kinetic doubling-cycle while the tree shrinks. The trace of the edges

of the doubling-cycle during the shrinking process gives us a surface. See Fig. 5.4.

Using this extrusion process we define two classes of surfaces: extrusion disks and

extrusion rings. Extrusion disks are created for kinetic trees with a single internal

node (“star-shaped”) where the speeds are defined so that all arcs of the tree shrink

to zero-length simultaneously. The extrusion is carried out until all of the tree arcs

shrink and the resulting surface is topologically a disk. See Fig. 5.4(right). Extrusion

rings are created for more general kinetic trees with no restriction on the speed of

each arc. The extrusion process is stopped on or before any arc of the tree reaches

zero-length. The resulting surfaces are topological rings. See Fig. 5.7. We fully

describe the building block surfaces in Sec. 5.2.5.

Operations. We give two operations to combine surfaces. They are illustrated in

Fig. 5.5. The first takes two disks and combines them by gluing along a boundary

interval. The second takes a disk and a ring and extends the disk by gluing the entire

boundary of the disk to one of the boundary polygons of the ring. The operations

are described in detail in Sec. 5.2.6.
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Figure 5.4: Extruding a disk. (a) The start of the extrusion process is a kinetic tree is
embedded in a plane. (b) The state of the doubling-cycle at the beginning, middle, and
end of the extrusion. Note that the four vertices of the doubling-cycle corresponding to the
internal node of the tree overlap, but we draw them separated for visualization purposes. (c)
Half-way through the extrusion process the surface is a ring. The current extrusion plane
and doubling-cycle are shown in gray. (d) The final extrusion disk. The faces corresponding
to the same arc of the tree overlap, but for visualization purposes we draw them slightly
apart.
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Figure 5.5: Constructing Lang surfaces. The building blocks (extrusion disks and extrusion
rings) are joined using extension and combination operations.

Construction tree. Finally, in order to describe how a Lang surface is put together,

we define in Sec. 5.2.7 an auxiliary structure called a surface construction tree. The

leaves of the tree correspond to extrusion disk building blocks. Each internal node of

the tree represents either a combination or an extension operation applied to its child

nodes. The Lang surfaces are those surface which are constructed by this process.

5.2.5 Lang surface building blocks

There are two classes of building blocks: the first are topological disks and the

second are topological rings. Both have an associated kinetic metric tree and a

positive height value. Each surface is constructed by first placing the kinetic tree

and its associated doubling-cycle in a plane. The extrusion process moves the plane

upwards while moving the leaf nodes of the kinetic tree (and doubling-cycle) inwards.
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Figure 5.6: The two types of disk building blocks, corresponding to: (a) a tree with one
internal node and (b) a degenerate case of a tree with two internal nodes incident to leaf
arcs.

Extrusion surfaces. To form an extrusion surface for a kinetic tree we first fix an

embedding of the tree in the xy-plane. We embed its doubling-cycle in the xy-plane

by placing each vertex of the doubling-cycle at the same point as its corresponding

tree node. We then perform the sweep of the tree and its doubling-cycle while si-

multaneously moving the plane containing the doubling-cycle upwards in the positive

z-direction at unit speed. Note that this places all vertices corresponding to the same

node of the tree vertically “on top” of one another. We parametrize the process by

the extrusion height of the plane. The trace of the vertices and edges of the doubling-

cycle form the edges and faces of a surface in R3 called an extrusion surface. We

now define two particular types of extrusion surfaces: disks and rings.

Extrusion disks. Extrusion disks (Fig. 5.4) are defined with respect to a metric

tree T with a single internal node and at least three leaf nodes, and a sweep height h.

We make the tree kinetic by assigning a speed of h/dT (a, b) to each arc ab. This speed

has been chosen so that all arcs shrink to zero length simultaneously at t = h. We

then perform the extrusion process detailed above until the height of the extrusion

plane is h. Since the extruding doubling-polygon contracts to a single point, the

resulting surface is topologically a disk. We also include in the base building blocks a

degenerate situation of a tree T with two internal nodes that are incident to leaf arcs;

the degeneracy arises when all leaf arcs shrink to zero at the same height h (Fig. 5.6).
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Figure 5.7: The ring building block for a tree at a height h. The faces of the surface
corresponding to the same arc of the tree overlap in 3D, but, for visualization purposes, we
draw them slightly apart.

To keep the presentation from becoming too technical, we handle explicitly only the

first type of extrusion disk; the second, special case is a straightforward extension.

Extrusion rings. Extrusion rings are defined with respect to a kinetic metric tree

T and a sweep height h. We require two preconditions: (1) no arc of the kinetic tree

reaches zero length at a time t < h and (2) after removing any zero-length arcs from

the tree at time t = h, the resulting tree has at least three leaf nodes. The extrusion

ring is then given by performing the extrusion process to height h. See Fig. 5.7. The

resulting surface is a ring. It has two boundary components: one lies in the xy-plane

and is a doubling-cycle for the initial tree T ; the other lies in the z = h plane and is

a doubling cycle for the tree shrunken tree T (h).

5.2.6 Constructing Lang surfaces

By starting with the building blocks from Sec. 5.2.5 and combining them using

two operations, combination and extension, we obtain Lang surfaces.

Lang surfaces. A Lang surface S constructed on the tree T is a disk-like piecewise

linear surface in R3 associated to a metric tree T whose boundary is a metric doubling-

cycle for T . Lang surfaces are defined inductively. The disk building block surfaces

from Sec. 5.2.5 are Lang surfaces. The ring building blocks are not Lang surfaces.

Rather, they are used in conjunction with a Lang surface to form a new Lang surface.

New Lang surfaces are obtained by applying the following two operations.
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Figure 5.8: The two gluing operations for Lang surfaces. Left: the extension operation
in which a surface is extended by gluing on a ring building block. Right: the combination
operation in which two surfaces are glued along a border chain that corresponds to a path
between consecutive leaves of the tree associated to the boundary.

The extension operation. This operation takes a Lang surface and a ring building

block of height h (Sec. 5.2.5) and produces a new Lang surface S by gluing the upper

boundary of the ring to the boundary of the Lang surface. We say that the input Lang

surface is extended by the ring. The precondition for this operation is that the upper

boundary of the ring and the boundary of the Lang surface be metric doubling-cycles

for the same embedded metric tree. The gluing is performed by moving a Lang surface

in the z-direction by h and identifying corresponding edges along the boundary. See

Fig. 5.8(left). The lower boundary of the ring becomes the boundary of the surface.

The tree T used to construct the ring becomes the associated tree for S. Note that

when we apply the extension operation, the dihedral angle of each edge along the

gluing path is π. In other words, the two faces are not “folded” along the gluing

path. We could simply erase the gluing path edges and merge the two faces into a

single face, but we retain the edges to aid with the proofs in Secs. 5.4 and 5.5.

The combination operation. This operation takes two Lang surfaces S1 and S2

and produces a new Lang surface S by gluing an interval of the boundary of S1 to

an equal length interval of the boundary of S2. We say S is formed by combining S1

and S2. The precondition on this operation is that the corresponding trees T1 and

T2 be related as follows. There must exist a tree T with non-consecutive leaf nodes

ai and aj such that when T is split between ai and aj, T1 and T2 are the resulting
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trees. In this case, both the boundary of S1 and the boundary of S2 contain a single

chain of edges corresponding to the path ai ∼ aj. We glue S1 to S2 along these

chains by identifying corresponding edges. The boundary of the resulting surface S

is a doubling-cycle for T . See Fig. 5.8(right).

The following definition summarizes this section:

Definition 5.2.4. A Lang surface is any surface formed by starting with a collection

of extrusion disks and applying extension and combination operations until a single

surface results.

5.2.7 The surface construction tree

Each Lang surface is obtained by starting with a collection of disk building blocks.

The building blocks are then combined and extended using the operations from

Sec. 5.2.6 until we eventually arrive at a single Lang surface. To visualize this process

we associate an auxiliary surface construction tree to each Lang surface. The

surface construction tree serves as a record of the building blocks and operations

applied to create each surface. Each non-root node corresponds to an intermediate

Lang surface from the build process and the root node corresponds to the final Lang

surface. The leaves of the tree contain the disk building blocks. Each internal node

represents either a combination or an extension operation applied to its child node(s).

An extension operation node is labeled with input ring building block. It has a single

child node representing the input Lang surface. A combination operation node is

labeled with the tree T and pair (ai, aj) used in the combination operation applied

to the Lang surfaces represented by its two child nodes. See Fig. 5.9.

Simplifying the tree. The construction tree as described above has nodes of degree

1 and 2 only. Since the combination operation always occurs along boundary chains

corresponding to paths between consecutive leaf nodes, the order in which successive

combination operations is applied does not matter–the end result is the same. Thus
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Figure 5.9: A Lang surface (left) and its construction tree (right).

we simplify the construction tree by replacing any such structure with a single parent

node representing a maximal list of successive combination operations.

It is also possible to chain together multiple extension operations that can be

replaced by a single extension operation. For instance suppose we have a kinetic tree

T and a Lang surface S. We can create a single ring R for T of height h and then

extend S using it to obtain a new surface. Or, we can create two rings R1 and R2,

one using T of height h/2, and a second using T (h/2) also of height h/2. In other

words, the two rings R1 and R2 are equivalent to the portion of R below and above

the z = (h/2) plane (resp.). If we first extend S by R2 and then extend the resulting

Lang surface by R1 we obtain exactly the same surface as before. The first method

requires two nodes in the construction tree, one for S and one for the extension by

R. The second requires three: one for S, one for its extension by R2, and a third for

its extension by R1. In such cases we simplify the construction tree to use the fewest

nodes possible: whenever multiple successive extension operations can be replaced by

a single operation, we do so.

The extrusion for a Lang surface. Our presentation of the Lang surface con-

struction tree proceeded in a “top-down” fashion. It begins at the building blocks, and

applies operations downwards towards the root to produce the final surface. This view

is useful for the proof in Sec. 5.5. However, a visually appealing view is a “bottom-

up” view. We start at the root node. If the root node is an extension operation, we

perform the extrusion process for its ring. If the root node is a combination operation,
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then we “split” the extrusion process into separate extrusion processes for each child

node. We then recursively continue, each time sweeping the extrusion plane upwards

until we have covered the whole surface.

Software implementation and visualization. We refer the reader to our video

[13], dedicated website (http://linkage.cs.umass.edu/origamiLang/), and online soft-

ware demo for a visualization of this extrusion process. The extrusion process as

defined above mirrors the sweep process in the Lang tiling: the sweeping polygons in

the xy-plane and the shrinking doubling-cycles in the extrusion plane are embeddings

of the same doubling-cycle. Contraction events occur between consecutive extension

operations and splitting events occur at combination operations.

5.2.8 Realizations of Lang surfaces

The definition of the extrusion rings and disks given in Sec. 5.2.5 is extrinsic. We

first fix an embedding of a kinetic tree in the xy-plane, and then extrude to obtain

a surface in R3. This approach is visually appealing, but different embeddings of

the tree lead to different surfaces in R3, while the underlying intrinsic surface may

remain the same. It is useful to have an intrinsic description of Lang surfaces. This

allows us to better analyze when changing the embedding results in the same or in

different realizations, and helps with the proofs in Sec. 5.4. Towards this purpose, we

give intrinsic definitions of the faces of an extrusion surface, and label their vertices

with points on the metric tree.

Faces. In Sec. 5.2.5 we defined extrusion surfaces by tracing an edge of the doubling-

cycle as it both moves upwards and shrinks. In the kinetic tree only the leaf nodes are

moving, and thus the xy-coordinates for a vertex change only if the vertex corresponds

to a leaf node. There are four types of edges for a face f(e) traced by a doubling-cycle

edge e: ridge, perpendicular, base, and top. The base edge is the initial position of e
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Figure 5.10: Kinetic tree (left) and its extrusion ring of height h (center). The three possible
types of faces are shown (right). A face for an edge of the doubling cycle corresponding
to an internal arc of the tree (b1, b2) extrudes to a rectangle with perpendiculars of length
h. An edge corresponding to a leaf arc traces out either a right-trapezoid or right-triangle
depending on if the edge shrinks to zero-length in the kinetic tree at height h.

and the top is the final position of e in the extrusion process. A perpendicular is the

trace of an internal vertex and is perpendicular to the xy-plane. A ridge is the trace

of a leaf vertex; it makes an acute angle with the base. Each face f(e) is bounded

by a base, two trace edges (either both perpendicular or one perpendicular and one

ridge), and possibly a top edge, depending on whether e shrinks to zero-length at

height h. If both endpoints of e are internal, then the traces of both endpoints are

perpendiculars and the face f(e) is a rectangle where both the base and top edges

have length equal to that of e and the two perpendicular edges have length h. If one

is a leaf node, then either e shrinks to zero-length at height h in the extrusion process

or shrinks to an edge of length ||e|| − hs where ||e|| denotes the length of e and s

denotes the speed of the leaf node corresponding to the endpoint of e. In the first

case, the traces of both endpoints meet, and so f(e) is a right-triangle with e as its

base edge, a perpendicular edge of length h, and a trace edge which is the hypotenuse.

In the second case f(e) is a right-trapezoid with base edge e, and a top edge equal

to the shrunken version of e. The perpendicular between the base and the top edge

has length h and the length of the ridge edge is given by elementary geometry. See

Fig. 5.10. The definition above extends readily to Lang surfaces, since each face of a

Lang surface is a face of one of its building block extrusion surfaces.
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Figure 5.11: Different embeddings for the tree result in different realizations of the surface.
In the bottom figure all of the tree arcs are embedded onto a common line L. The resulting
realization is uniaxial.

Tree and height labels. We now assign two additional pieces of information (“la-

bels”) to each vertex of a Lang surface. We start with a realization of the surface

with respect to a particular embedding of the tree. However, once we have defined

the labels, we can forget the embedding. The first label is given by projecting the

vertex orthogonally onto the xy-plane. By definition the projection of the vertex is a

point on the embedded tree. We carry this back to a point on the metric tree through

the inverse of the embedding–in other words, we forget the xy-coordinates of this

projection point and only remember the point on the tree which is embedded there.

This is the tree label for the vertex. The second is the height label which is given by

the z-coordinate of the extrusion plane containing the vertex. Given this labeling the

realization for some fixed embedding of the tree is given by placing each vertex at

(x, y, h) where (x, y) are the coordinates of its tree label in the given embedding and

h is the height label. See Fig. 5.11.

Tree projectable and uniaxial realizations. Each realization is tree projectable:

the projection of the surface onto the xy-plane is (geometrically) equal to the embed-

ding of T . The boundary of the surface is mapped directly onto the embedding of the

doubling cycle for T in the xy-plane, and each face is perpendicular to the xy-plane

and lies in the upper half space. In a tree projectable realization, the faces which
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correspond to the same arc of the tree overlap in R3. We can produce an “animation”

of a realization by rotating the arcs of its tree around internal nodes and using the

tree and height labels to lift this animation onto the surface realization. All of the

faces corresponding to the same arc of the tree move as one unit around perpendicular

edges4. Any tree T can be embedded so that all of its nodes and arcs lie on the same

line. If we use such an embedding to realize a Lang surface, then all of its faces lie in

a common plane and all of its boundary edges lie along a single line, or axis. Such a

realization is called uniaxial. See Fig. 5.11.

5.2.9 Intrinsic curvature of Lang surfaces

The Lang surfaces constructed using the surface construction tree may have ver-

tices of non-zero curvature. These may come from either the interior vertex of an

extrusion disk building block, or from the extension and combination operations. We

now investigate under what conditions the resulting surfaces are flat.

Flat building blocks. The curvature of an extrusion disk is concentrated at its

one internal vertex. The curvature at that vertex is given by 2π minus its interior

angle sum: 2
∑

ab∈T arctan dT (a,b)
h

. Given a tree, different extrusion heights result in

different curvatures. However, there is always a unique positive real height for which

the angle sum is 2π. Such an (intrinsically) flat extrusion disk has an open, flat

realization as a convex region of the plane. An extrusion ring has no interior vertices,

and so has zero-curvature trivially. As a direct consequence of the Gauss-Bonnet

theorem, it can be shown that an extrusion ring has an open, flat realization if and

only if its lower boundary component can be realized as a polygon in the plane such

that the interior angle measure of each vertex of the planar realization is equal to the

angle sum of the vertex in the surface.

4In origami terms, this set of faces is called a flap and the set of perpendiculars around which a
flap rotates is sometimes referred to as a hinge.
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Flat Lang surfaces. The combination and extension operations result in flat sur-

faces under two conditions: (1) the input surfaces (either a ring and a Lang surface

for an extension operation, or two Lang surfaces for a combination operation) are

both flat and (2) the sum of the two internal angle sums (in the two surfaces that are

glued) at each vertex along the gluing path5 is 2π.

5.3 Zero curvature Lang surfaces

We now have all the prerequisites to prove one direction of the Main Theorem:

the necessity of Lang’s property. Sufficiency is proven next in the Section 5.4, af-

ter describing Lang’s universal molecule algorithm. Finally, we prove uniqueness in

Section 5.5.

Lemma 5.3.1 (Necessity of Lang’s property [44]). Let ST be a flat Lang surface

constructed on a tree T and which has an intrinsically convex boundary polygon (i.e.

the angle sum at each boundary vertex is less than or equal to π). Let PST
be its open,

flat realization. Then PST
is a Lang polygon for T .

Proof. Since ST is topologically a disk, has zero curvature and has an intrinsically

convex boundary, then it can be unfolded flat into the plane as a convex polygon

PST
. Given two corner nodes of PST

, draw the line segment between them on the 3D

surface ST . This describes a polygonal path p where each edge traverses some face

of the surface. Now fix an embedding of T and lift the surface to its corresponding

tree-projectable realization in R3. The path p is now a path in 3-space. If we project

the path down, then the projection lies on the embedding of T and covers the path

in T between the leaf nodes corresponding to the corners. Thus the length of p is

5For the combination operation, the second requirement is always true, since the gluing path
vertices that are not endpoints correspond to internal nodes of the tree, and thus are incident to
perpendiculars which have angle sums of π.
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not shorter than the corresponding path in the tree. This proves that PST
is a Lang

polygon for T .

Zero-curvature for Lang surfaces. The goal of origami design is to find ways

of folding a flat sheet of paper into 3D shapes. In our case, the problem is to fold

a convex polygonal flat sheet of paper into a Lang surface. Since the paper itself is

flat and folding (in the ideal) does not introduce intrinsic curvature to the surface,

whatever Lang surface we fold the paper into must be (intrinsically) flat. We now

investigate some properties of such flat Lang surfaces. Our goal in the remainder of

this section is to gain some intuition about what an algorithm might look like for

computing a flat Lang surface from a Lang polygon by examining these properties.

Crease patterns of flat Lang surfaces. When we “unfold” a flat Lang surface

S in the plane, its boundary is a Lang polygon in the plane (by Lemma 5.3.1) and

the edges and faces of the Lang surface become a planar subdivision of the polygon.

This subdivision is the origami crease pattern. Let us now look at some properties of

the planar subdivisions produced by unfolding various Lang surfaces.

Unfolded extrusion disks and rings. Suppose we flatten out an intrinsically flat

Lang surface and isolate one of the extrusion disks or rings used to construct the

surface. Let P denote the boundary (resp. outer-boundary) of the flat realization, S

denote the isolated disk (resp. ring), and h denote its extrusion height. Each ridge

and perpendicular edge lie along the interior angle bisector line of the vertex of P

incident to the edge (this is a trivial property of the extrusion process). Since the

perpendiculars make an angle of π/2 in each of their incident faces, each vertex of P

incident to a perpendicular is a marker. Similarly, since the ridges make an angle of

less than π/2, each ridge is incident to a corner of P .

In an extrusion disk, we have the following trivial property which is needed for

the base case of the uniqueness proof in Sec. 5.5:

108



t { t

{

Thursday, May 15, 14

Figure 5.12: An illustration of the correspondence between the extrusion process for a flat
extrusion disk (left) and a parallel sweep in its flattened out boundary polygon (right). The
intersection of the z = t plane with the extrusion disk (left) and the corresponding parallel
offset polygon at time t (right) are shown as thick gray lines.

Lemma 5.3.2. Let S be a flat extrusion disk and PT be the Lang polygon that is the

boundary of its open, flat realization. Then in the open, flat realization the interior

vertex of S lies on the intersection of the angle bisectors of all vertices of PT .

We note the following elementary correspondence between the extrusion process

used to create S and a family of parallel offset polygons for P . Intersect S with the

z = t plane for some 0 ≤ t ≤ h. The result is a polygon which lies on S. Each edge of

this polygon is parallel to the boundary edge of the face it lies on and is at a distance

t from that edge. When we flatten out S, then the boundary polygon becomes a

parallel offset polygon6 defined by moving each edge of P inwards in parallel by a

distance t. We can “replay” the extrusion process by the parallel offset polygons of

P parametrized by t. As we increase t from 0 the sides of the polygon move inwards.

We call this a parallel sweep of the polygon. Each vertex of the sweep traces along

a ridge or perpendicular edge of S. We note the following properties. First, the

parallel polygon P (t) at time t is (intrinsically) equal to the the doubling-polygon in

the extrusion for S at height t (see Fig. 5.12). Furthermore, since the Lang property

holds when we flatten out the larger surface which contains S, it must hold for S.

6In [44] this is referred to as a “reduced polygon”.
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From this it follows that the parallel polygon P (t) is a Lang polygon for the tree T (t).

We summarize this in the following:

Lemma 5.3.3. Let S be an extrusion disk or extrusion ring of height h used in the

construction of a flat Lang surface. Let P denote its boundary polygon in the open,

flat state. Then the extrusion process constructing S of height h corresponds to a

parallel sweep of P to time t = h and the parallel polygon P (t) at any time 0 ≤ t ≤ h

is a Lang polygon for the tree T (t) at height t in the extrusion process for S.

+ =

Thursday, May 15, 14

(a)

+ =

Thursday, May 15, 14

(b)

Figure 5.13: The correspondence between the 3D (top) and 2D crease pattern (bottom)
for an extension operation (a) and combination operation (b) each resulting in a flat Lang
surface.

Unfolding the extension operation. Suppose a flat Lang surface S is formed by

extending a surface S ′ by a ring R. Since S has zero curvature, it follows that when

we flatten out S the inner boundary of the flattened out R is the same polygon as

boundary of the flattened out S ′. If we independently have a flattened out crease

pattern for S ′ and a flattened out crease pattern for R, we can produce the crease

pattern for S by “pasting in” the crease pattern of S ′ into the inner boundary polygon

of the crease pattern for R. See Fig. 5.13(a).

Unfolding the splitting operation. Suppose a flat Lang surface ST constructed

on a metric tree T is formed by a combination on two surfaces S1 and S2 constructed

on trees T1 and T2 which are obtained by splitting T between leaf nodes ai and aj.

Let p denote the gluing path in ST . All the vertices incident to p in S1 (resp. S2) have
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interior angle sum π, since they are incident to perpendiculars. Thus p flattens out

to a straight line in the open, flat realization of ST . See Fig. 5.13(b). Furthermore,

because the boundary of S1 is a doubling-polygon and p is a path along this boundary

between consecutive leaf nodes, it follows that the length of p is equal to the distance

between ai and aj in T . We thus have the following:

Lemma 5.3.4. Suppose a flat Lang surface ST is formed by a combination on two

surfaces S1 and S2 between leaf nodes ai and aj. Let PT denote the Lang polygon

which is the boundary of the open, flat realization of S. Then the Lang property holds

with equality for ai and aj in PT , and the boundary polygons of S1 and S2 are given

by splitting PT between ai and aj.

In particular this means that if we have crease patterns for the flattened out

versions of S1 and S2, we can construct the crease pattern for S simply by gluing the

two crease patterns together along the side of each corresponding to the path between

ai and aj.

In the next section we use these observations to describe the Universal Molecule

algorithm and to prove the sufficiency of Lang’s property in the Main Theorem. We

also use these lemmas in the proof of uniqueness in Sec. 5.5.

5.4 Universal molecules

The proof of sufficiency for Lang’s property in the Main Theorem is constructive.

We start by describing Lang’s universal molecule algorithm, which solves the following

probch:theuniversalmolecule:lem:

Universal molecule design problem: Given a Lang polygon (T, PT ), compute a

flat Lang surface constructed on T such that its open, flat realization is PT .

Input and output. The input to the algorithm is a metric tree T and a Lang

polygon PT . The output is a planar graph G embedded in the plane which is the
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open, flat realization of a Lang surface ST constructed on T whose outer boundary

polygon is PT .

5.4.1 The universal molecule algorithm

We now present the universal molecule algorithm. Its pseudo-code is given below

as Algorithm 1. The input (T, PT ) is a Lang polygon and the output G is a crease

pattern on the interior of PT , which is a subdivision of PT into vertices, edges, and

faces which is equivalent to the open, flat realization of a Lang surface ST constructed

on T .

Algorithm 1 UMAlgorithm(T, PT )

if IsBaseCase(T, PT ) then
return UMBaseCase(T, PT )

end if

nextEvent←− FindNextEvent(T, PT )
(T ′, P ′T ′), R←− AdvanceSweepAndTileRing((T, PT ), nextEvent)

if nextEvent is a contraction event then
(T ′, P ′T ′)←− Contract(T ′, P ′T ′)
G′ ←− UMAlgorithm(T ′, P ′T ′)

else
(TL, PL), (TR, PR)←− Split((T ′, P ′T ′), nextEvent.(ai,aj))

GL ←− UMAlgorithm(TL, PL)
GR ←− UMAlgorithm(TR, PR)

G′ ←−MergeCreasePatterns(GL, GR)
end if
G←−MergeCreasePatternWithRing(G′, R)
return G

Recursive procedure: the sweep. To compute the crease pattern the algorithm

first performs a sweep in the tree (in which its leaf arcs shrink) and in the polygon

(in which its sides move inwards and the vertices move along their respective angle

bisectors) for some time interval [0, t]. See Fig. 5.14. We think of each recursive call

as “resetting the clock” for this sweep: the input (T, PT ) represents the state of its

own “local” sweep starting at time 0. The sweep is then performed to an event time
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Figure 5.14: The sweeping process in a tree and the parallel sweep in its corresponding
Lang polygon.

t satisfying certain properties defined shortly. Throughout the sweep we maintain

the invariant that the polygon remains a Lang polygon for the shrinking tree such

that the Lang property holds with strict inequality for any pair of non-consecutive

corners. The event time t is the smallest time that this property is violated. Let T ′

and P ′T ′ be the sweeping tree and polygon at time t. The trace of the vertices and

edges of the sweeping polygon defines a tiling of an annular region, called a ring tiling,

with outer boundary PT and inner boundary P ′T ′ . The trace of each edge defines a

face and the trace of each vertex defines an edge of this region. In the pseudo-code,

the FindNextEvent subroutine computes the time t at which the sweep stops and

returns a structure nextEvent which stores t, the event’s type, and any additional

information required to process the event. The AdvanceSweepAndTileRing sub-

routine returns the tree T ′ and polygon P ′T at time t in the sweep and an embedded

planar map R which is the ring tiling between PT and P ′T . Note that it is possible that

the event time t = 0. In this case AdvanceSweepAndTileRing simply returns T

and PT and the ring tiling R is just the polygon PT .

Events. As we perform the sweep of the tree and polygon in each recursive call, we

maintain the properties that the polygon remains a Lang polygon for the tree and

the Lang property holds with strict inequality for all pairs of non-consecutive corners.

The event time t is the smallest time at which this property is violated. One of three
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(a) A contraction event.
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(b) A splitting event.

Figure 5.15: The two event types encountered by the sweep. At the contraction event
in (a) a leaf arc of the tree (denoted by the dark gray arrow) and its corresponding edges
in the Lang polygon contract in the sweeping tree and polygon. At a splitting event (b),
the distance between two non-consecutive corners ai and aj in the polygon is equal to
the distance in the tree between ai and aj . The tree is split along the path between the
two nodes and the polygon is split by introducing a segment between the two corners and
subdividing it so that it is equivalent to the splitting path in the tree. The sweep continues
in the pair (T1, P1) and the pair (T2, P2).
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things may occur: either a base case occurs, in which the entire polygon and tree

shrink to a single vertex; or some edges of the polygon and arcs of the tree shrink to

zero length, leading to a contraction event; or the Lang property fails to hold with

strict inequality. In the third case, at the time t of failure, the length of the path

for some pair of non-consecutive leaf vertices (ai, aj) is equal to the distance between

the corresponding corners (ai, aj). We call this last event a splitting event and the

pair a splitting pair7, because the algorithm restores Lang’s property on the tree T ′

and doubling-polygon P ′T ′ by splitting them in two along a segment, resp. a path

corresponding to the pair of leaf nodes (ai, aj). See Fig. 5.15.

Detecting events. In order to properly discuss the events described above, we need

to define the shrinking speed for each leaf arc in the tree. Given an arc a, its speed is

defined with respect to the angle θa of its corresponding corner in the polygon. We

shrink the leaf arc incident a at a rate of 1/ tan(θa/2). The length of any internal

arc is held constant. This maintains the property that each arc shrinks at exactly

the same rate as its corresponding edges in the polygon (see Fig. 5.16). Thus if an

arc of the tree shrinks to zero-length, both of its corresponding edges in the polygon

shrink to zero-length, and vice versa. To detect events, we need to check two things.

First we need to find the smallest time t at which some leaf arc and its corresponding

edges shrink to zero-length. This is done by solving for all leaf nodes a the time t at

which t/ tan(θa/2) is equal to the length of its incident arc. Second, we find the time

of the next splitting event by finding the pair of non-consecutive leaf nodes (ai, aj)

that minimize t in the following equation:

||(aj + t ~bis(aj))− (ai + t ~bis(ai))|| = dT (ai, aj)− t(1/ tan (θai
/2) + 1/ tan (θaj

/2))

7In [44] this is referred to as an “active reduced path”.
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Figure 5.16: The sweep for an edge of the polygon (right) and its corresponding arc of the
tree (left). The sweep maintains the property that the length of an edge of the polygon is
the same as the length of its corresponding arc in the tree.

(where θai
denotes the interior angle and ~bis(ai) denote the interior angle bisector

scaled to length 1/ sin (θai
/2) for the corner ai). The left side of the equation is the

distance between corners ai and aj in the sweeping polygon PT (t) at time t, and the

right side is the distance in the tree between nodes ai and aj in the shrinking tree

T (t). In the pseudo-code this step is handled by the FindNextEvent procedure.

The nextEvent data structure stores the time t of the next event, and if the next

event is a splitting event it also stores the splitting pair (ai, aj).

Processing events. At a contraction event, a leaf arc of the tree and its two corre-

sponding edges in the polygon have shrunk to zero length. To process this we remove

the arc from T ′ and contract the two edges of P ′T ′ (replacing them with a single ver-

tex). In the pseudo-code this is handled by the Contract procedure which returns

the resulting pair (T ′, P ′T ). We then recursively invoke the algorithm on (T ′, P ′T ) to

obtain a crease pattern G′ for the interior of P ′T . Finally, we invoke the subroutine

MergeCreasePatternWithRing to merge the resulting crease pattern G′ with

the ring tiling R by replacing the inner boundary polygon of R with G′ and returns

the resulting crease pattern G.

At a splitting event for a splitting pair (ai, aj), we split the tree between ai and

aj, and split the polygon between ai and aj using the splitting operations described

in Sec. 5.2. This results in two pairs: (TL, PL) and (TR, PR) (the left and right trees

paired with the left and right polygons resulting from the splitting operations on trees
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and doubling-polygons). In the pseudo-code this is handled by the Split operation.

We then recursively invoke the algorithm on both split polygons to obtain crease

patterns on the interiors of PL and PR. We next invoke the subroutine MergeS-

plitCreasePatterns to merge these into a crease pattern G′ for the polygon P ′T .

Finally we merge G′ with R using MergeCreasePatternWithRing as with the

contraction events and return the resulting crease pattern G.

We note here that if we assume the correctness of the algorithm for the recur-

sive calls, then the MergeCreasePatternWithRing subroutine is the open, flat

version of the extension operation for Lang surfaces (Fig. 5.13(a)). Similarly, the

MergeSplitCreasePatterns subroutine is the open, flat version of the combina-

tion operation for Lang surfaces (Fig. 5.13(b)).

Simulatenous events. It is possible for multiple events to occur simultaneously.

In that case we first process all contraction events in arbitrary order, and then process

any one of the splitting events. For the proof of sufficiency of the Main Theorem which

we give in the next section, we do not need to worry about whether this arbitrary

order may result in different crease patterns. However, in order to prove uniqueness

we show in Sec. 5.5 that the order in which we process such simultaneous events does

not matter and regardless of order we obtain the same final output crease pattern.

Base cases. A Lang polygon (T, PT ) is a base case if its next event t is a contraction

event where all of the edges/arcs shrink to zero-length simultaneously. The trace of

the parallel sweep from PT to P ′T ′ traces out a disk with PT as its outer-boundary. It

is necessarily the case that the point p at which all edges of P ′T ′ contract lies on the

interior of PT and on the angle bisector lines for each vertex of PT (including the mark-

ers). In the pseudocode this property is checked by the IsBaseCase subroutine call.

If it returns true, then the algorithm invokes the UMBaseCase subroutine which

returns a crease pattern for PT . The subroutine works by finding the point p at the
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(a) (b)

Figure 5.17: The base cases, in which the sweeping polygon contracts to: (a) a single point
and (b) (the degenerate case) a segment.

intersection of all of the bisectors and subdividing the interior of PT by adding edges

from each vertex of PT to p. It is also possible to have a degenerate case (Fig. 5.17),

when the contracted polygon P ′T ′ has only two sides (i.e. the polygon is a double

covered line segment). The treatment of this case is a straightforward extension of

the generic situation; to keep the presentation uncluttered8, we omit the details.

Complexity. Each time the algorithm is recursively invoked, it is passed an in-

put tree with strictly fewer leaves than the parent invocation (but at least three).

Eventually we reach a base case, the simplest of which being when the input tree T

has exactly one internal node. In this case it can be shown by elementary geome-

try that the angle bisectors of all corners and markers in the polygon PT intersect

at a common point. Thus the total number of events processed by the algorithm is

O(n). The direct implementation runs in O(n3): at each recursive call the algorithm

finds the next event by first checking (in O(n) time) when each edge contracts and

then it checks when a splitting event will occur, for each of the O(n2) pairs of non-

consecutive corners. This has recently been improved to O(n2 log n) by using better

data structures [14]. Consequently we have:

8This degenerate base case corresponds to the degenerate extrusion disks discussed in Sec. 5.2.5.
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Corollary 5.4.1. The universal molecule algorithm always terminates.

5.4.2 Proof of Main Theorem: Sufficiency

We now prove the sufficiency claim of the Main Theorem by showing that the

algorithm described in Sec. 5.4.1 is correct: for a Lang polygon (T, PT ) as input, the

planar subdivision returned by the algorithm is the open, flat realization of some

Lang surface ST constructed on T which is isometric to PT . The proof is divided into

two parts. The first part proves the invariant property of the input: that each time

we invoke the algorithm on a tree T and polygon PT , the input is valid, i.e. (T, PT ) is

a Lang polygon. The second part proves the invariant property of the output: given

a Lang polygon (T, PT ), the algorithm returns a crease pattern G which “fills in” the

interior of PT and which is the open, flat realization of a Lang surface ST constructed

on T with boundary PT . In both cases the proof is inductive.

Lemma 5.4.2. If the UMAlgorithm is invoked on a Lang polygon (T, PT ) then,

when it makes a recursive call it passes as input a valid Lang polygon.

Proof. The algorithm first finds the time t of the next event (which may be equal to

0) and computes a tree T ′ and polygon P ′T ′ by advancing the sweep in T and PT .

We first show that T ′ is a doubling-polygon for P ′T ′ . At this point the algorithm has

not yet performed any contraction operations on the tree and polygon, so T ′ and T ,

resp. P ′T ′ and PT are combinatorially identical. The claim then follows directly from

the fact that we defined the speed at which each leaf arc shrinks to match the exact

speed at which its corresponding edge in the sweeping polygon shrinks.

We next prove, by contradiction, that for any pair of corners (ai, aj) the Lang

property holds (possibly with equality). Assume not, and let ai and aj be a pair for

which the Lang property does not hold at time t. But Lang’s property does hold for

the pair of vertices (ai, aj) in the input (T, PT ). Since the distances between vertices

in P ′T ′ and leaf nodes in T ′ change continuously over the sweep interval, this implies
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that at some time 0 ≤ t′ < t, the Lang property must hold with equality for (ai, aj).

But this contradicts the fact that t is the time of the first event in the sweep.

Next the algorithm contracts any zero-length arcs from the tree T ′ and the cor-

responding edges from P ′T ′ . This operation restores the property that P ′T ′ is non-

degenerate and trivially maintains convexity. It also does not change any distances

in the tree or the polygon, and so by continuity, the Lang property holds (possibly

with equality).

Finally, if we are at a splitting event, the algorithm splits the tree T ′ and poly-

gon P ′T ′ using the splitting operation defined in Sec. 5.2. Since this operation does

not change distances, the resulting pairs (TL, PL) and (TR, PR) are trivially Lang

polygons.

The next two lemmas prove, by induction, the invariant properties of the output.

Together they imply the correctness of the Universal Molecule algorithm. The first

lemma handles the inductive step and the second the base case.

Lemma 5.4.3. Given a Lang polygon (T, PT ), if each recursive call correctly com-

putes a Lang surface for its input polygon, then the algorithm correctly computes a

crease pattern which is the open, flat realization of a Lang surface constructed on T

with boundary PT .

Proof. Let G be the crease pattern computed by the algorithm. We are going to

show that G is the open, flat realization of a Lang surface ST constructed on T . Let

(T ′, P ′T ′) be the Lang polygon at the next event and t be the time of the next event.

The algorithm first computes the ring tilingR between PT and P ′T ′ . It is trivial to show

that R is equivalent to an extrusion ring RT for T of height t (where the speed for each

leaf node in T is defined to be the same as in the sweep used to create R), see Sec. 5.3.

To complete the proof, we first show that after processing either type of event

we are left with a crease pattern G′ whose boundary is P ′T ′ and G′ is the open, flat
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realization of a Lang surface S ′T ′ constructed on T ′. The result then follows by the

fact that when G′ is merged with R the resulting crease pattern G is trivially the

open, flat realization of the Lang surface created by extending S ′T ′ by the ring RT .

It remains to show that such an S ′T ′ exists. If we are not at a splitting event, then

this follows directly from the inductive hypothesis. If we are at a splitting event, then

the algorithm splits (T ′, P ′T ′) using some splitting pair (ai, aj) producing two Lang

polygons (TL, PL) and (TR, PR). The two polygons are incident along the added split-

ting segment between ai and aj. By inductive hypothesis there exists a Lang surface

SL (resp. a SR) constructed on TL (resp. TR) such that the open, flat realization of SL

(resp. SR) is GL (resp. SL). SL and SR meet the preconditions for the combination

operation along the chain of boundary edges which “flatten out” to the splitting edge

between ai and aj. Let S ′T ′ be the resulting surface. The open, flat realization of S ′T ′

is equivalent to the crease pattern G′ produced by merging GL and GR.

Lemma 5.4.4. Let (T, PT ) be a base case for the universal molecule algorithm and

G be the returned crease pattern. Then there exists a Lang surface ST constructed on

T for which G is an open, flat realization.

Proof. By definition in the sweep of PT , all edges contract simultaneously at some

time t. Each face of the resulting crease pattern G is a right triangle with one leg

equal to an edge of PT , one leg equal to the trace of the incident marker with length

t and a hypotenuse equal to the trace of the incident corner. Let ST be the extru-

sion disk of height t for T . It can be verified mechanically from the definition of the

extrusion disk that G is the open, flat realization of ST .

We summarize as:

Corollary 5.4.5 (Correctness of the Universal Molecule algorithm). Given

a Lang polygon (T, PT ) the universal molecule algorithm computes a crease pattern G

on PT which is the open, flat realization of a Lang surface ST constructed on T .
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possible not possible

splitting pairs cross

Monday, December 9, 13

Figure 5.18: The dotted lines denote pairs of corners satisfying Lang’s property with
equality. (Left) None of the pairs cross. (Right) Two crossing pairs: an impossibility in a
Lang polygon, due to Lemma 5.5.1.

This completes the proof of the sufficiency of the Lang property in the statement

of the Main Theorem.

Corollary 5.4.6 (Main Theorem: Sufficiency). If (T, PT ) is a Lang polygon then

there exists a Lang surface ST constructed on T for which the boundary of the open,

flat realization of ST is PT .

We now turn to proving the uniqueness claim in the Main Theorem.

5.5 Uniqueness

We complete the proof of the Main Theorem by showing the uniqueness of Lang’s

surface constructed on T and isometric to PT . We first prove that the output of the

Universal Molecule algorithm is unique: no matter what order we process simultane-

ous events in, the resulting crease pattern is the same. We then use this fact to prove

the uniqueness claim of the Main Theorem by showing that if ST is a zero-curvature

Lang surface constructed on T which flattens out to a Lang polygon PT for T , then

the crease pattern returned by the Universal Molecule algorithm for (T, PT ) coincides

with the open, flat realization of ST .

Uniqueness of universal molecules. We show that the order in which we remove

zero-length arcs/edges from the tree and polygon at a contraction event in the Uni-

versal Molecule algorithm does not effect the final outcome. We first show that it is
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Figure 5.19: The contradiction for Lemma 5.5.1. (Top) Two crossing pairs. (Bottom) The
part of the tree corresponding to the crossing pairs. Illustrated are the cases where the
crossing point is on the path from ai to b2 in the tree. The cases where it lies on aj to b2
are symmetric. The dotted line depicts the contradiction where Lang’s property does not
hold.

not possible to have two simultaneous and distinct splitting events. We say that two

pairs of vertices (ai, aj) and (ak, al) cross (Fig. 5.18) if, in a counter-clockwise walk

of the polygon, the vertices are encountered in the order ai, ak, aj, al. If two crossing

pairs give rise to two simultaneous splitting events, then we may obtain distinct Lang

surfaces, by splitting the polygon along the two separate pairs. In the case when we

split along the (ai, aj) pair, the other vertices ak and al would lie, after the split, in

different polygons. Thus they won’t lead to any further splitting event. Similarly for

the (ak, al) pair.

The following lemma shows that this situation cannot occur. For completeness,

we include its proof, which appeared previously in [31].

Lemma 5.5.1 ([31, Lemma 16.4.2]). Let (ai, aj) and (ak, al) be two pairs of vertices

of a Lang polygon (PT , T ) such that Lang’s property holds with equality for each pair.

Then (ai, aj) and (ak, al) do not cross.

Proof. For a contradiction, we assume that there exist such pairs (ai, aj) and (ak, al)

which cross at a point c. The possible cases are illustrated in Fig. 5.19.
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We look at the tree formed by the union of the two paths ai ∼ aj, ak ∼ al. Either the

two paths cross at a node b, or they overlap over some sub-path b1 ∼ b2. In either

case we will arrive at a contradiction.

In the plane, the crossing point c is at a distance d1 from pi and d2 from pk. In the

tree, let cij be the point along the path ai ∼ aj which is d1 away from ai. Similarly,

let ckl be the point along the path ak ∼ al which is d2 away from ai. There are several

ways cij and ckl can be placed. The three leftmost illustrations of Fig. 5.19 show the

three possibilities where cij lies on the ai ∼ b1. The fourth shows the case when both

cij and ckl lie on b1 ∼ b2. All other configurations are symmetric to these.

We now analyze the “quadrants” of the tree given by consecutive pairs of leaves:

(i, k), (j, k), (j, l), (i, l). Each “quadrant” (m,n) (where m ∈ {i, j} and n ∈ {k, l})

corresponds to the path am ∼ an in the tree, and to the triangle pmpnc in the plane.

In any placement of cij and ckl, one of the quadrants (m,n) is such that the path

am ∼ an contains cij and ckl in that order (i.e. am ∼ an = am ∼ cij ∼ ckl ∼ an).

By triangle inequality we have d(pm, pn) < d(pm, c) + d(pn, c), with the righthand

term equal to dT (am, cij) + dT (an, chk). This contradicts Lang’s property. Fig. 5.19

illustrates the contradiction in each case.

The previous lemma allows us to safely split a Lang polygon, at simultaneous split-

ting events, in an arbitrary order. After applying a split, all of the remaining splitting

pairs are still intact, in the sense that both vertices of a remaining splitting pair be-

long to the same split polygon. The recursive call on the split polygons will find that

the next event is at time t = 0 and will arbitrarily select one of the remaining splitting

pairs to split on; the end result is the same. Given k+1 splitting pairs, we obtain the

same k polygons after recursively applying the split operation in any arbitrary order.

Next, we need to show that when Lang’s property holds with equality, we have to

stop the sweep. If we could continue past that point (where Lang’s property held with

equality), then we could potentially use this fact to generate different Lang surfaces,
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depending on whether we decided to split at this point or continue the sweep. We

prove that the sweep must stop by showing that if we were to continue the sweep

past a splitting event, the polygon would no longer be a Lang polygon, and thus no

Lang surface could include the ring traced out by the sweep. This follows from:

Lemma 5.5.2. Let (T, PT ) be a Lang polygon, on which we perform a universal

molecule sweep up to the first contraction event and ignoring the possible splitting

events. Then, for any pair of non-consecutive corner nodes, their distance in the

plane decreases at a strictly faster rate than the corresponding distances in the tree.

Proof. Let ai and aj be two non-consecutive corners of PT . Let ~bis(ai) and ~bis(aj)

be the velocity vectors of ai and aj in the sweep. Recall that the magnitudes of these

vectors are 1/ sin (θai
/2) and 1/ sin (θaj

/2) resp. The instantaneous rate of change be-

tween ai and aj can be found by the following construction: project ai and aj down

onto the line L containing ai and aj. The lengths of the projected vectors are (by

elementary trigonometry) cos(αi)/ sin(θai
/2) and cos(αj)/ sin(θaj

/2) where αi and αj

denote the angles between L and ~bis(ai) and ~bis(aj) resp. By convexity αi < θai
/2 <

π/2 and αj < θaj
/2 < π/2. Therefore cos(αi)/ sin(θai

/2) + cos(αj)/ sin(θaj
/2) >

cos(θai
/2)/ sin(θai

/2) + cos(θaj
/2)/ sin(θaj

/2) = 1/ tan(θai
/2) + 1/ tan(θaj

/2) which

is the rate at which the distances between the leaf nodes decreases, proving the

lemma.

Corollary 5.5.3. Let (T, PT ) be a Lang polygon on which the first event in the Uni-

versal Molecule algorithm is a splitting event at time t. Then, if we continue the

sweep (without splitting) by any sufficiently small ∆t past the event, then the sweep-

ing polygon stops being a Lang polygon for the shrinking tree.

Proof. Since the distances in both the shrinking tree and sweeping polygon are equal

at the event, and the distances in the polygon are decreasing at a faster rate than the
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distances in the tree (by Lemma 5.5.2), then the corollary follows by the fact that

pairwise distances change continuously in both the tree and polygon.

We obtain:

Corollary 5.5.4. The output G of the Universal Molecule algorithm on a Lang poly-

gon (T, PT ) is well defined and unique.

Uniqueness of the Lang surface ST . We prove:

Lemma 5.5.5 (Uniqueness). For any Lang polygon (T, PT ), there exists a unique

Lang surface ST constructed on T and isometric to PT .

Shortly, we say that ST flattens out to (T, PT ). To prove this we show that if we

are given a flat Lang surface ST that flattens out to a Lang polygon (T, PT ), then if

we run the Universal Molecule algorithm on (T, PT ) the returned crease pattern G is

the open, flat realization of ST . The uniqueness then follows from the uniqueness of

the output of the algorithm (Cor. 5.5.4). In particular this proves that all flat Lang

surfaces are producible by the Universal Molecule algorithm.

Lemma 5.5.6. Let T be a metric tree and PT be a Lang polygon for T . Let S be a

(zero curvature) Lang surface constructed on T and isometric to PT . Then the output

G of the Universal Molecule algorithm on (T, PT ) is the open, flat realization of S.

Proof. The proof is by induction on the construction tree.

Base case. The construction tree for S is, in this case, a single node and S is an

extrusion disk. By Lemma 5.3.2 its single internal vertex v lies on the (intrinsic)

angle bisectors of each boundary vertex. We now show that PT has to be a base case

for the Universal Molecule algorithm, hence the result of algorithm is S.

Since all angle bisectors of PT intersect at a common point p, it follows that the

next possible contraction event is a contraction of all edges/arcs simultaneously. How-

ever, we still need to show that no splitting event can occur in the sweep before we
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reach this point. Indeed, if we assume that a splitting event occurs, then Lemma 5.5.2

can be applied. Since the distances satisfy Lang’s property initially, they change con-

tinuously over the course of the sweep, and trivially become equal at the contraction

event, then it is not possible that they become equal at any other time during the

sweep. Thus a contradiction.

For the inductive step, we assume that the lemma is true for the Lang surfaces

corresponding to the subtrees for the children of the root node of the construction

tree for S. Then we show the lemma is true for S. There are two cases, depending

on whether the root node of the construction tree for S corresponds to an extension

or to a combination operation.

Case 1 (Extension): S is formed by an extension operation on an extrusion ring

R of height h and a Lang surface S ′. The faces from R lie between the z = 0 and

z = h planes and the faces of S ′ all lie above the z = h plane. Suppose we run the

algorithm on (T, PT ) and the first event is at time t. We need to show that the time

of the event in the parallel sweep is equal to the extrusion height for the ring (i.e.

t = h). By Lemma 5.3.3 it follows that for any t′ ≤ min{t, h}, the sweep polygon at

t′ is equivalent to the intersection of R with the z = t′ plane.

We next claim that t ≥ h. Assume not. If t is a contraction event, then some

edge of PT shrinks to zero length at time t. Then the same edge shrinks at height

t < h in the extrusion process for R contradicting the fact that the extrusion process

stops if such an event occurs. If t is a splitting event for some pair of non-consecutive

corner nodes (ai, aj), then Lang’s property holds with equality: the length of the

line segment s between ai and aj equals the tree distance. Both vertices lift onto R

into the z = t plane. Then s lifts onto S to some polygonal path in 3D. Since the

intersection of R with the z = t plane is geometrically equivalent to the tree at time

t′, the length of the projection of this path onto the z = t′ plane must be greater than

or equal to the length of the corresponding distance in the tree at time t′. But this
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means that the entire path must lie in the z = t′ plane and thus along the border of

the sweep polygon at time t′, a contradiction.

We now show that t = h. The surface S ′ was either formed by an extension or

a combination operation. If an extension, then it must be the case that the tree

associated to S ′ has fewer arcs than T . Otherwise it violates the simplicity require-

ment that no consecutive extension operations can be replaced by a single operation

(Sec. 5.2.7). Therefore at height h an edge in the extrusion process shrinks to zero-

length. By Lemma 5.3.3 a contraction event occurs in the algorithm at time t = h.

Now suppose S ′ is formed by a combination operation. Then by Lemma 5.3.4, a

splitting event occurs at time t = h.

We now have that the trace of the parallel sweep to the first event is equivalent

to R and thus the polygon P ′T ′ at time t is equivalent to the boundary of S ′. By in-

ductive hypothesis when we recursively run the algorithm T ′, P ′T ′ it returns S ′. Thus

the output of the algorithm on (T, PT ) is S.

Case 2 (Combination): Let S1 and S2 be the surfaces combined to form S by

gluing along a path between boundary vertices ai and aj. We showed above, when

analyzing Case 1, that the combination operation implies that Lang’s property holds

with equality for the pair (ai, aj) in PT . If we run the Universal Molecule algorithm on

(T, PT ), then the first event is a splitting event at time t = 0 between (ai, aj) produc-

ing (T1, P1) and (T2, P2). It follows from the definition of the splitting and combination

operations that the associated tree and boundary polygon for S1 is (T1, P1) (similarly

for S2). By the inductive hypothesis, when the algorithm recurses on (T1, P1) and

(T2, P2) then it returns S1 and S2. Therefore, the output of the algorithm on (T, PT )

coincides with S.

This concludes the proof of the Main Theorem.
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5.6 Conclusion

The Universal Molecule algorithm first appeared in Robert Lang’s paper presented

at the Symposium on Computational Geometry in 1996, as part of his TreeMaker

method for origami design [44]. Since then, various descriptions have been available

[45, 46, 31], but they all stopped short of giving complete details and proofs connect-

ing the input and output of the algorithm with the desired 3D shape. Even in the

most expanded account [31] it is stated that correctness “requires a careful analysis of

the details, which we do not attempt here.” To date no such analysis has been given,

leaving a general impression that the details are too formidable. In this chapter, using

proper concepts and formalization, we have streamlined the details and presented a

complete proof of correctness for Lang’s algorithm, which has appeared in [].

To this end, we formulated the algorithm in a manner that differs from previously

published descriptions. Rather than sweeping out certain edges of the crease pattern

and adding the rest (the perpendiculars) as a post-processing step, we handled all

edges in a unified manner and augmented the crease pattern with its event polygons.

This is a conceptual device to make it easier to put the computed crease patterns into

correspondence with the final 3D shapes and prove the invariants of the algorithm.

We also defined and gave a classification of the final 3D shapes, called here Lang

surfaces, in a manner that is independent of the algorithm. Then we showed that

these flat Lang surfaces with convex boundary are precisely the subset of uniaxial

origami bases that are produced by the Universal Molecule algorithm.

Open questions. Several interesting problems remain open, however. One ques-

tion is whether the optimization phase of Lang’s TreeMaker can be modified in order

to guarantee the convexity of the resulting polygons. Alternatively, can the universal

molecule algorithm itself can be modified to handle non-convex polygons? We answer

this in Ch. 7 by showing that indeed it can. One goal of the present work was to

clarify the properties of the algorithm so that this question can be properly tackled.
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Additionally, the optimization phase of TreeMaker (the step preceding the Universal

Molecule algorithm step) is known to be NP-hard [30], and the existing solutions do

not always converge to a subdivision of the paper into Lang polygons. It remains

open whether some other suitable method for this initial subdivision might be found

which can be computed in polynomial time and which never fails.
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CHAPTER 6

IMPLEMENTING
THE UNIVERSAL MOLECULE ALGORITHM

In this chapter we describe and compare two efficient implementations of the uni-

versal molecule algorithm. The straightforward implementation, first given in Lang’s

original paper [44] and subsequent treatments computes the universal molecule in

O(n3) time. The two refined implementations presented here improve the running

time to O(n2 log n): a conceptually simpler one, relying on priority queues, and a

second, different approach based on a data structure called a cyclic tournament for-

est. This extends kinetic tournament trees to allow for cycle splitting operations. We

compare the three implementations theoretically and in practice.

This work has appeared in [14]. We also produced a video [13] and educational

website http://linkage.cs.umass.edu/origamiLang using our implementation.

6.1 Introduction

In the Ch. 5, we described the universal molecule algorithm and proved that the

universal molecule crease patterns it produces are in one-to-one correspondence with

the zero-curvature Lang surfaces with convex boundary. We left open, however, the

running time of the algorithm.

The UM-skeleton. In this chapter we present and compare, theoretically and in

practice, three implementations of the universal molecule algorithm. Instead of com-

puting the universal molecule by tracing both the corners and the markers of the

parallel sweep (as we did in Ch. 5), it is convenient to first ignore the trace of the

131



markers, and then add them in a post-processing step. We call the resulting structure

the universal molecule (UM-)skeleton. Figure 6.1 illustrates a UM-skeleton.

Note that in [14] we referred to this structure as a tree constrained skeleton, but since

it is only used in the context of the universal molecule, we find it more evocative to

use the term UM-skeleton.

Contribution. We first analyze the combinatorial complexity, or number of ver-

tices, edges, and faces, in the UM-skeleton and the universal molecule. We show that

for a Lang polygon (T, PT ) where T has n nodes, the combinatorial complexity of the

universal molecule is O(n2) and there exist examples with Ω(n2) faces. This implies

a trivial lower bound on the algorithm of Ω(n2) time and space.

We then describe two improvements over the naive O(n3) time implementation.

We compare, theoretically and experimentally, two implementations running inO(n2 log n)

time, without increasing the space complexity. Both make use of a data structure

for storing shrinking trees which supports constant time queries and linear time split

operations. The first implementation also uses a data structure based on kinetic tour-

nament trees [] which is reminiscent of a KDS; it allows us to find the next splitting

event in constant rather than quadratic time and requires sub-quadratic time to main-

tain at each event. While tournament trees have been used in the KDS literature,

none of the applications we are aware of requires the new cyclical splitting operation

introduced here. The second implementation uses a global priority queue to store all

events and continually processes the top event in the queue.

Parallel sweep. Recall that the universal molecule is given by tracing the vertices

of a parallel sweep polygon while a simultaneous sweep occurs in the tree (Ch. 5). The

main computational difficulty arises from what might be called the “non-locality” of

a splitting event. Unlike the contraction events which only happen between neighbor-

ing vertices, any given pair of vertices can, in principle, be part of a splitting event.
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Figure 6.1: (a, b) A Lang polygon. (c) Its UM-skeleton. (d) Its universal molecule. (e)
The corresponding Lang surface. The edges of the UM-skeleton form the ridge edges.

Given a pair of vertices, the time at which the Euclidean distance becomes equal to

the tree distance depends a lot on the overall global geometry of the polygon, which

seems to make it difficult to compute the time of the next candidate splitting event

without computing over all pairs.

A further problem is that when the sweep is actually split at a splitting event,

a large number of the potential splitting events that were previously computed may

be invalidated. This is fairly easy to see. Suppose we have a large polygon with

n nodes and a splitting event occurs between the 1st and (n/2)th nodes. Then all

candidate events where one vertex is between the first and (n/2)th nodes and the

other is between the (n/2)th and last vertex are no longer valid, thus leading to a

quadratic number of invalid nodes.

Kinetic data structures. The dependence on precise metric information in a ki-

netic (moving) setting imposes on the UM-skeleton-algorithm the need to use sub-

stantially more (albeit still polynomial) resources over the simpler straight skeleton

parallel sweep. Kinetic data structures (KDSs) were introduced in [7] for maintaining

discrete properties (e.g. the convex hull) over continuously moving points. Closest

to our problem of detecting and efficiently processing splitting events is the kinetic

closest pair problem where the goal is to maintain the closest pair for a set of moving

points. A KDS for maintaining the closest pair for points moving along semi-algebraic
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curves is given in [7]. A fully dynamic KDS appears in [2] and allows for insertions

and deletions of points during the simulation.

Of the KDSs we found in the literature, none appear to be readily applicable to our

problem, for two reasons. First, at a splitting event, the polygon is cyclically split

into two, and the sweep continues independently in each. This cyclical splitting oper-

ation is special to the UM-skeleton-algorithm and to our knowledge has not appeared

in any existing KDS. Second, and more importantly, most related KDSs use special

properties of the Euclidean plane and distance metrics. In the UM-skeleton case,

events occur when a relationship holds between two different metrics: the Euclidean

distance and a metric tree distance. This relationship is non-linear and does not in-

duce a metric (it does not satisfy the triangle inequality). This makes it difficult to

adapt existing KDSs to the problem. Neither the origami, straight-skeleton, nor KDS

literature contain any solution which is readily applicable to improving the running

time of constructing the UM-skeleton.

Main result. The main result of this chapter is to prove the following:

Theorem 6.1.1 (Main result). The universal molecule for a Lang polygon (T, PT )

with n nodes can be computed in O(n2 log n) time and O(n2) space.

Notation. As in Ch. 5, we use bold face to denote a vertex v of a polygon PT and

italics to denote is corresponding node v in T . We use pv to denote its 2D coordinates

and θv to denote the interior angle of v in PT . We denote the Euclidean distance

between two vertices of PT by d(u,v) and the tree distance by dT (u, v).

6.2 Concepts

In this section we recall a few of the concepts needed from Ch. 5 and define the

UM-skeleton.
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The UM-skeleton. Recall from Ch. 5 that the universal molecule of a Lang poly-

gon (T, PT ) is defined by the trace of the vertices during a parallel sweep of PT (and

corresponding shrinking of T ) together with the splitting edges introduced at a split-

ting event. The parallel sweep experiences two types of events, contraction events, in

which an edge of the sweep contracts to a single point, and splitting events, in which

a diagonal of the sweep polygon, called a splitting edge, splits the sweep into two

pieces and the sweep is continued independently in each.

As we have seen, the universal molecule is the subdivision of PT induced by the

traces of the vertices of the parallel sweep along with any splitting edges introduced

at splitting events. Each vertex of the sweep, then, traces out an edge in the subdi-

vision. Each edge of the sweep traces out a face. Recall, however, that the internal

nodes of the tree T are straight in PT , meaning that they have interior angle π. In the

terminology introduced in Ch. 5, we call these markers, since they are, in a sense,

points “marked” on sides of the geometric polygon PT , and are not in the strict sense

vertices of PT .

Because each edge moves in a parallel fashion throughout the sweep, it follows that

the edge traced out by a marker on the sweep is always perpendicular to the sweep.

Hence, we call these edges perpendiculars. The remaining edges of the universal

molecule are divided into two types: ridge edges, which are the traces of the corners

of the sweep, and the splitting edges introduced at a splitting event. We now have:

Definition 6.2.1. The UM-skeleton of a Lang polygon (T, PT ) is the sub-graph of

the universal molecule composed of only the ridge and splitting edges.

The UM-skeleton sweep. We further define a new sweep based on the parallel

sweep which defines the universal molecule. In this new sweep we ignore the marker

vertices, and instead track contraction events only for entire sides of the polygon PT

instead of each edge of the sweep polygon. (Recall that in our terminology a side
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of the polygon is the straight line segment connecting two corners which is further

subdivided by the markers into edges). We call this the UM-skeleton sweep.

Because splitting events only occur between corners, the universal molecule paral-

lel sweep and the UM-skeleton sweep differ only in the contraction events. It is easy

to see that a contraction event in the UM-skeleton sweep is a contraction event in the

parallel sweep–if an entire side of the polygon contracts, then necessarily all of the

edges comprising that side contract. Thus, the events in the UM-skeleton sweep are

a strict subset of the events of the parallel sweep defining a universal molecule.

We note that the UM-skeleton sweep has the same relationship to the UM-skeleton

as the parallel sweep does to the universal molecule. Namely, the trace of each vertex

of the UM-skeleton sweep together with the splitting edges form the edges of the UM-

skeleton and the trace of each edge in the sweep form the faces of the UM-skeleton.

This fact is useful in the next section in establishing the combinatorial complexity of

both the UM-skeleton and the universal molecule.

Purpose of the UM-skeleton. We are primarily interested in the UM-skeleton

for two reasons. The first is that as we have seen the number of contraction events

that occur in the UM-skeleton sweep is less than or equal to the number of contrac-

tion events that occur in the parallel sweep of a Lang polygon. In fact, we will see in

the next section that for a Lang polygon (T, PT ) where T has n nodes, the number of

events that occur in the UM-skeleton sweep is O(n), whereas the number that occur

in the parallel sweep of the universal molecule is O(n2), and there exist examples re-

quiring Ω(n2) contractions. The second reason we are interested in the UM-skeleton

is that it simplifies the complexity analysis given in the next section.

6.3 Combinatorial Complexity

We now initiate a study of the combinatorial complexity of the UM-skeleton of

a Lang polygon (T, PT ) and then use this to analyze the complexity of the univer-
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sal molecule. This analysis establishes lower bounds for the running time of any

algorithm computing the universal molecule.

Complexity of the UM-skeleton. Recall from the previous section that the faces

of the UM-skeleton are given by the traces of the edges of the sweep. Let l denote

the number of leaf nodes in T . Then PT has l corners and l sides. Initially, then,

the sweep is tracing out l faces. Only two types of changes occur in the sweep. At

a contraction event, one side of the sweep contracts to a single point, and thus that

face is “completed”, in the sense that the sweep leaves the face (and does not return).

The second is a splitting event which splits the sweeping polygon into two along a

diagonal. This “splitting edge” diagonal is really two new sides to the sweep–one in

each of the split polygons. Thus, a splitting event introduces two new sides to the

sweep, which trace out two new faces. We now prove:

Lemma 6.3.1. Let (T, PT ) be a Lang polygon and let l denote the number of leaves

in T . The UM-skeleton sweep encounters O(l) events.

Proof. Specifically, we prove that The UM-skeleton (T, PT ) has l+ 5m+ k edges and

l + 2m faces where m = O(l) is the number of splitting events and k = O(l) is the

number of side contraction events.

Each face is “completed” by a polygon side or splitting segment contracting in

the parallel sweep and each side eventually contracts. There are l sides in PT and

each splitting event adds two new splitting segments to trace (one in each of the

left and right split polygons). Thus there are l + 2m faces. To count the edges in

the UM-skeleton observe that initially the sweep traces l corner vertices. At each of

the k contraction events the trace of two (or more) corners meets at a point which

becomes a new corner in the sweeping polygon. The trace of this corner is a new

ridge edge. At a splitting event one splitting segment is added to the UM-skeleton

between the splitting pair. Both corners of the splitting event have copies in each
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of the split polygons. Thus a splitting event introduces one split edge and four new

ridge edges. Therefore there are l+5m+k edges in the UM-skeleton. That m = O(l)

is simply the fact that a polygon with l sides can be recursively divided by dividing

along non-crossing diagonals at most O(l) times.

As a direct corollary of Lemma 6.3.1, we have:

Corollary 6.3.2. Let (T, PT ) be a Lang polygon and let l denote the number of leaves

in T . The UM-skeleton has O(l) vertices, edges, and faces.

This bound is obviously tight, since we must at least have l faces, one for each of

the initial sides of PT .

Complexity of the universal molecule. We now look at “adding” the perpendic-

ulars back to the UM-skeleton to obtain the universal molecule. Each perpendicular

is the trace of one of the markers on a side of the sweep. By definition, a side of

PT corresponds to a path in T between leaf nodes. Thus a marker corresponding to

a given internal node in T appears at most once on any given side of the sweep. It

follows, then, that each internal node of T gives rise to at most one extra marker edge

on the interior of each face of the UM-skeleton. Thus we have:

Corollary 6.3.3. Let (T, PT ) be a Lang polygon and let n denote the number of nodes

in T . The universal molecule has O(n2) vertices, edges, and faces.

Constructing a worst-case. We now show that this bound is tight by construct-

ing a family of examples using the Lang surfaces defined in Ch. 5. We note that

the family we construct is highly degenerate, in that multiple splitting events occur

simultaneously in the resulting sweeps and the tree has degree 2 nodes; however, even

if we disallow such degeneracies it is possible (with a little care) to obtain examples

that are essentially the same as this one. We present this one because of its simplicity

and leave the construction of other examples as an exercise to the reader.

138



a1

a2 a3

b1
b2
b3

bn

a2 a3

a1

b2 b2
b1 b1

b3 b3

bn bn

a1

a2 a4

b1
b2
b3

bn

a3

a1

a2 a3

a4

b1 b1

b2
b2

b3
b3

bn
bn

a1

a2
an

b1
b2
b3

bn

a3

a1

a2 a3

a4

b1

b1

b2

b2

b3

b3

bn

bn an

…

…

Figure 6.2: A UM-skeleton (a) and partial UM-skeleton (b) The blue are ridge edges and
black are splitting edges. Gray faces in (b) represent the parts of the polygon not yet
encountered by the sweep.
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The basic construction is illustrated in Fig. 6.2. We start with a tree T that has

three leaf nodes a1, a2, a3 and n internal nodes b1, . . . , bn. The leaf arc incident to a1

is also incident to b1 and the two leaf arcs incident to a2 and a3 are incident to bn.

All arcs have the same length. Since T has only three leaf arcs, then it has a unique

polygon PT with which it forms a Lang polygon. PT is a base case of the universal

molecule algorithm (since it is a triangle) and the universal molecule for PT has 2n+4

faces. We now use the gluing operations on Lang surfaces from Ch. 5 to form a Lang

polygon with 4 leaves and n internal nodes. Simply glue a copy of T to itself by

gluing the first copy along the path from a1 to a3 in the tree to the second copy along

path from a1 to a2. From this we obtain a tree with n internal nodes and 4 leaf nodes

(see Fig. 6.2 top left). Similarly, to form the polygon, we take PT and copy it. Then

rotate the copy around a1 to align the a1a2 side of the copy with the a1a3 side of the

origina (again see Fig. 6.2 top left). We then relabel as in Fig. 6.2 top left. Note that

because the distance from a1 to a3 is preserved, and was originally a side of PT , the

first operation performed by the universal molecule is to split PT into two copies of

the original triangle. The resulting crease pattern is then the same as the original,

except copied once. Thus we have added exactly one node to the tree, a4, but have

added 2n+ 4 faces to the universal molecule. If we continue applying this operation

another n − 2 times, the result is a tree with n leaf nodes and n internal nodes, a

polygon with 4n+ 2 edges, and a universal molecule with 2n2 + 4n faces.

As a corollary of the discussion above we have:

Corollary 6.3.4. Any algorithm computing the universal molecule of a Lang polygon

(T, PT ) requires Ω(n2) time and space (where n denotes the number of nodes in T ).

6.4 Algorithm and data structure preliminaries

Recall that in Ch. 5 we simulated the sweep via a recursive algorithm. Finding

the next contraction event amounts to checking, for each edge in the sweep, the time
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(a) (b)
Figure 6.3: A UM-skeleton (a) and partial UM-skeleton (b) The blue are ridge edges and
black are splitting edges. Gray faces in (b) represent the parts of the polygon not yet
encountered by the sweep.

at which it contracts and taking the minimum. Finding the next splitting event re-

quires checking all pairs of non-consecutive vertices (u,v) for the time at which it

first becomes true that d(u,v) = dT (u, v).

Partial UM-skeleton and contours. If we stop the UM-skeleton sweep early,

we have a planar graph made up of four types of edges: the original polygon edges,

splitting edges already encountered by the sweep, the traces of the sweep vertices

traced so far, and current sides of the sweeping polygons. We call this planar graph

a partial UM-skeleton and note that it is equivalent to the final UM-skeleton with

some number of polygonal “holes” cut out of it where each hole has empty interior

and corresponds to one of the current contours. See Fig. 6.3(b). We call the faces of

a partial UM-skeleton that represent the current sweeping polygons contours.

Storing the planar graph. As in Ch. 5, we simulate the sweep recursively. This

requires two data structures: one for storing a partial UM-skeleton (a planar graph),

and another for storing the shrinking trees obtained after several splits. On the pla-

nar graph we require an operation to advance the sweep in a contour to time t and

compute the trace of its vertices, and an operation for splitting a face by adding a

splitting edge. We use the doubly-connected edge list (DCEL) [35] which supports

the sweep advance in linear time and the contour splitting in constant time. We

store additional information at the vertices (and refer to this as a “label”); for each
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polygon vertex v, the label contains its coordinates pv; and we keep a tree label v for

the corresponding leaf node in the shrinking tree. The content of v depends on the

tree implementation (we will see several below). If v is incident to a sweep polygon,

we also label it with its interior angle θv and its motion vector bv.

Given the labels at a vertex, an appropriate representation of the tree, and a pair

of vertices (u,v) the time at which the Lang property holds with equality for the pair

is given by solving for t in:

||(pv + tbv)− (pu + tbu)|| = dT (u, v)− t(cot(θu/2) + cot(θv/2)) (6.4.1)

Storing a shrinking tree. For the tree we need a data structure which allows us

to query, in constant time, the distance in the tree for pairs of leaves, and supports

the following operations. Split(i, j), which splits the tree between leaves i and j, and

Update(t), which updates (shrinks) the tree to time t with the pre-condition that t

is less than or equal to the next contraction time. At the end of Sec. 6.4.1 we briefly

discuss a straightforward implementation which supports each of these operations in

O(n2)-time. We improve this in Sec. 6.5 by providing a data structure which supports

each operation in O(n)-time.

6.4.1 Algorithm Overview

We now briefly review the UM-skeleton-algorithm. What follows is essentially a

representation of the algorithm from Ch. 5, but with slight modifications to com-

pute the UM-skeleton. The input is a Lang polygon (T, PT ) and the output is the

UM-skeleton G for PT . The polygon PT is given as a (ccw) list of 2D points labeled

with the corresponding nodes in T . The tree T is given as a list of nodes, a list

of edges (each labeled with its weight), and an ordered adjacency list at each node.

An example run of the algorithm is illustrated in Fig. 6.4. The algorithm works by
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Figure 6.4: An example run of the algorithm. The shaded faces denote the contours in the
partial UM-skeleton G as it is built. The first event is a splitting event which splits T and
PT into T1, T2, and P1, P2. The second event is a splitting event of T1 and P1 into T3, T4 and
P3, P4. Next is a complete contraction (base case) in T4, P4. Then a complete contraction
of P3. Then a complete contraction of P2. The bottom right figure is the universal molecule
given by the UM-skeleton with perpendiculars (in red) added by the post-processing step
of Lang’s universal molecule algorithm.

simulating the sweep in PT and recursively building a partial UM-skeleton G. Each

contour in G represents an as yet unprocessed event. The algorithm recursively takes

as input a contour in G and its corresponding shrunken tree and recursively simulates

the sweep process on the contour’s interior. To initialize the algorithm we initialize

G with PT as its only face and call UM-Skeleton(T, PT , G). The algorithm follows

two basic steps: first, it detects the next event; and second, it acts on the next event

by advancing the sweep in the input contour and if the event is a splitting event,

splitting the contour and tree. It then recurses on the new contour(s).

Main operations. FindNextEvent returns the time of the next event, and, if it

is a splitting event, the splitting pair (u, v). AdvanceSweep advances the sweep in

the tree and contour to the next event and computes the trace of the corners between

the current and next contour. This returns a new shrunken tree and contour T ′ and

P ′T representing the advanced sweep. Finally, if at a splitting event SplitSweep

splits the new tree T ′ and contour P ′T by the splitting pair. The algorithm is then

recursively applied to the new contour(s). As in Ch. 5 base case occurs when the
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Algorithm 2 UM-Skeleton(T , PT , G)

if BaseCase(PT ) then
return HandleBaseCase(PT , G)

end if
E, (u, v)←− FindNextEvent(T , PT )
(T ′, P ′T )←− AdvanceSweep(T, PT , G,H)
if event E is a splitting event then
PL, TL, PR, TR ←SplitSweep(T ′,P ′T ,(u,v),G)
UM-Skeleton(TL, PL, G)
UM-Skeleton(TR, PR, G)

else
UM-Skeleton(T ′, P ′T , G)

end if

contour contracts to a degenerate polygon: a single vertex or a two-sided polygon.

We now prove the following useful lemma, which we use to analyze the complexity:

Lemma 6.4.2. If the initial metric tree has n nodes then, at any point in the algo-

rithm, the partial UM-skeleton has O(n) vertices incident to any contour.

Proof. We prove this by induction on the number of events encountered at any point in

the algorithm. Let m be the number of splitting events encountered at some point in

the algorithm and k be the number of vertices inG which are incident to a contour. We

show that k ≤ n+2m where n is the number of leaf nodes in the input tree. Initially no

events have been encountered (so m = 0) and k = n which establishes the base case for

induction. Now assume, for inductive hypothesis, that we have encountered i events,

m of which are splitting events and k ≤ n+2m. We will show that after encountering

event i+ 1, the number of vertices k′ incident to a contour in G is ≤ n+ 2m′ where

m′ is the number of splitting events encountered at event i+ 1. Event i+ 1 is either

a contraction event or a splitting event. In the first case m′ = m and since we have a

contraction of at least one side to a vertex k′ < k. Thus k′ < k ≤ n+2m = n+2m′ by

inductive hypothesis. In the second case m′ = m+ 1 and two new vertices are added.
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Thus k′ = k+ 2. So k′ = k+ 2 ≤ n+ 2m+ 2 = n+ 2(m+ 1) = n+ 2m′ (by inductive

hypothesis). Since m = O(n) (as discussed in Sec. 6.3) this proves the lemma.

Operation details. FindNextEvent(T, PT ) find the next candidate contraction

and splitting events. The next candidate contraction event can be found naively in

O(n) time by checking the time at which each edge contracts along its current tra-

jectory. As before the next candidate splitting event is the minimum time t solving

Eq. 6.4.1 over all O(n2) pairs of non-consecutive vertices in PT . From the DCEL

we obtain the list of vertices in O(n)-time. Each time Eq. 6.4.1 is solved, it re-

quires a single call to Query in the tree. AdvanceSweep(T, PT , G,H) moves the

sides of PT inwards and contracts any zero-length edges which result. The DCEL

handles this in O(n)-time. The tree is then shrunk by a call to Update. The

SplitSweep(T ′, P ′T , (u, v), G) operation splits the tree T ′ and contour P ′T between

(u, v) and (tu, tv) (resp.). Splitting P ′T is handled in O(1)-time in the DCEL, and split-

ting the tree is handled by calling Split on T ′. To complete the complexity analysis,

we need to provide an implementation of the tree data structure. The straightforward

implementation and analysis follows.

Straightforward tree structure. We now briefly discuss a straightforward ap-

proach to storing the tree which leads to O(n2)-time operations and analyze the

complexity of the algorithm using this data structure. In Sec. 6.5 we replace this

with a data structure supporting O(n)-time operations. Store the tree T for each

contour PT as a 2D array D, where each entry Dij is the distance between leaves i

and j in T . Query(i, j) returns the value Dij. The Update and Split operations

are basic matrix operations and each require O(n2)-time.

Update(h) ranges over all pairs of non-consecutive leaves (i, j) and updates Dij

to Dij −h(si + sj). Note that this allows arcs to collapse to zero-length, but does not

remove them.
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Split(i, j) takes two non-consecutive leaf nodes i and j and returns arrays DL

and DR representing the left and right trees obtained by splitting between i and j.

DL (resp. DR) is filled with the entries of D corresponding to all pairs of leaf nodes

(k, l) such that (cyclically) j <= k, l <= i (resp. i and j).

Initialization and complexity. The DCEL G is initialized with a single face PT .

The initial entries of D are found by breadth-first search (BFS) from each leaf of T .

The analysis is given in Lem. 6.4.3.

Lemma 6.4.3. Given the straightforward tree representation UM-Skeleton takes

O(n3)-time and O(n2)-space.

Proof. The time complexity follows directly from the operation and data structure

details above. Each edge or vertex of the DCEL G is either a vertex or (possibly part

of) an edge in the final output or is incident to a contour. By Lemmas 6.3.1 and 6.4.2,

G has O(n) vertices, edges, and faces each requiring constant storage. We also need

to store the distance matrices for each contour. By Lemma 6.4.2 we have O(n) nodes

incident to any sweep face and thus O(n2) entries in total over all matrices.

Bottlenecks. There are two bottlenecks in the straightforward implementation:

(1) FindNextEvent’s checking of all non-consecutive pairs of vertices and (2) the

O(n2)-time tree operations, Update and Split, which maintain the tree data struc-

ture. The rest of this chapter is concerned with removing these bottlenecks to improve

the running time of the algorithm to O(n2 log n)-time.

6.5 Representing Shrinking Trees Implicitly

The first improvement comes by replacing each shrinking tree’s distance matrix

with an implicit representation and a single global distance matrix. This improves

the main operations on the tree data structure from quadratic to linear time while
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keeping the same constant-time query operation and quadratic-space requirement.

We use a single immutable distance matrix which stores the initial distances between

all leaf of nodes in the tree and a set of labels corresponding to leaves of the subtree.

We maintain a single array D where each Dij is the distance in the initial tree T

between nodes i and j. We assume each leaf i has a known speed si.

Representing sub-trees implicitly. To represent a sub-tree we use a list of leaf-

markers L = (l1, . . . , lk). A leaf-marker l = (N, d) is given by a leaf node N of the

initial tree T and the distance d the leaf has moved from T ′. The shrunken tree is

given by the union of the paths in T between the leaf nodes of all pairs of leaf-markers

in L, which the metric on each leaf arc decreased by the appropriate distance d.

An example. As an example, suppose we have a tree T with four leaf nodes all

connected to a single internal node by length 1 arcs. Denote the leaf nodes by

(a1, a2, a3, a4) and the internal node by b. Now suppose we want to represent the

sub-tree of T given by the union of paths between all pairs of the leaf nodes (a1, a2, a3)

where the length of the arc incident to a1 has shrunk to 0.8, the length of the arc

incident to a2 is 0.4, and the length of the arc incident to a3 is 0.1. Then our implicit

representation L = ((a1, 0.2), (a2, 0.6), (a3, 0.9)). We could, in principle, recover the

tree from this representation, but we will see shortly that we do not need to in order

to support the desired operations.

The operations. The distance between two leaf nodes i and j in T ′ is given by the

distance between the leaf nodes in T minus the distances each have moved from T

to T ′. For two leaf nodes i and j with leaf-markers (Ni, di) and (Nj, dj), Query(i, j)

returns DNi,Nj
− (di + dj). Update(t) simply adds tsi (where si denotes the speed

assigned to leaf i) to di. Split(i, j) splits the list L into Lleft and Lright. Each leaf-

marker lk is placed in Lleft (resp. Lright) if (cyclically) j ≤ k ≤ i (resp. i ≤ k ≤ j).

This takes O(n)-time.
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Initialization. The distance matrix D is initialized by BFSs from each node of T

in O(n2)-time. The initial set of leaf-markers L is given by creating a marker (i, 0)

for each leaf i in T which takes O(n)-time.

Complexity. This representation removes one bottleneck (see the end of Sec. 6.4.1)

related to the tree representation: AdvanceSweep and SplitSweep are improved

from O(n2) to O(n) time. The space requirement remains O(n2)-space. We now turn

to the remaining bottleneck: the quadratic-time search for the next splitting event.

6.6 Cyclic Tournament Bushes

The remaining bottleneck is the quadratic-time search for the next splitting event.

For the first implementation we adapt a tool commonly used in the construction of

KDSs called a kinetic tournament tree first used in [7] for maintaining the minimum

of a list of changing values over time. In our setting the data set is a cyclical list

of items which needs to be split into two at each splitting event. This cyclicity is

a specialized property which comes from the fact that our “item lists” are the ccw

vertices incident to a face. We exploit an ordering property of the tournament tree to

add an O(log n)-time cyclical splitting operation. In the next section we show how

to use these trees to find splitting events in O(n log n)-time.

Note that this splitting operation differs from the usual splitting operation on

trees. Typically split operations on binary search trees split the trees by value. In

other words, a tree T is split into two trees T1 and T2 such that all of the values of T1

are less than any value in T2. Our split operation, however, operates on the original

indices of the values in the list used to build the tree. It specifically does not split

by value–both trees T1 and T2 may contain values which are less than some values in

the other.
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Tournament trees. A tournament tree is a heap-like full binary tree for finding

the minimum value of a set of items 1, . . . , n with values v1, . . . , vn. Conceptually, a

tournament tree is a tournament between “competitors” representing the items. Each

level of the tree is a round, the leaves are competitors, and the internal nodes are

bouts. The smaller valued competitor wins each bout and progresses upwards through

the tree to play at the next level. Each internal node represents the winner of all leaves

in its sub-tree. See Fig. 6.5(a). The tree has 2n− 1 nodes and is initialized from the

leaves up in O(n)-time. We observe that a tournament tree also maintains an ordering

property: the left-to-right order of the leaves corresponds to the order on the items.

The kinetic version of a tournament tree also has an Update operation, which up-

dates the tree when the value at a leaf node changes. When any node’s value changes

its parent node may become invalid, and thus the parent’s value must change. The

operation updates the leaf node and then recursively propagates the change upwards

through all ancestors to the root. In [2] the kinetic tournament tree was extended

to the dynamic setting with insert and delete operations. They relax the require-

ment that the tree remain full, and add additional InsertLeaf and DeleteLeaf

operations to the tree. Supporting the InsertLeaf operation requires rebalancing

the tree. In our setting only DeleteLeaf is required, and we are able to avoid

rebalancing the tree1.

Cyclic tournament bushes. In addition to the DeleteLeaf operation, we de-

fine an O(log n)-time Split(i, j) operation which splits the tree into a tree for items

(cyclically) j to i, and a tree for items i to j. We call the resulting tree data structure

along with the Update, DeleteLeaf, and Split operations a cyclic tournament

bush (CTB). Conceptually, a CTB is a tournament where some competitors do not

1In principal our method can be extended to use rebalancing, but doing so unnecessarily compli-
cates the exposition and does not effect the overall running-time of the UM-skeleton algorithm.
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Figure 6.5: (a) A tournament tree. (b) A CTB for the same competition where 3, 4, and
5 do not show up. (c) The result of the Split(2, 6) operation on the tree in (a).

show up; we call it a bush instead of tree to indicate this feature. If only one com-

petitor shows up to a particular bout, it is declared the winner. See Fig. 6.5(b). The

CTB maintains the heap and ordering properties. Additionally, we store the index

of the leftmost and rightmost descendant leaves at each internal node so that the leaf

for a particular item can be found by an O(log n)-time search.

Splitting a CTB. The Split operation on a CTB B for an ordered list of items

1, . . . , n takes as input two items i and j and produces two CTBs B1 and B2 such that

the items for B1 are (in order) 1, . . . , i, j, . . . , n, the items for B2 are i, . . . , j, and the

depth of B1 and B2 is equal to the depth of B. In order to make the operation fast,

we make it destructive. Obviously, if we kept the initial input B intact and returned

the two entirely new CTBs B1 and B2, the operation would have a trivial Ω(n) lower

bound. To reduce the time required by the operation to O(log n), we destroy the

input B by reassigning parent pointers for nodes along the paths from the root of B

to i and j and make copies only of the nodes along this path.

Split operation details. The operation performs the following steps:

1. Create empty trees B1 and B2 and copy the path from i to j (through the root)

into each.
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2. For each node N on the path from i to root(B), either the left child NL or the

right child NR is on the path. If NL is, reset the parent of NR to the copy of

N in B2, otherwise reset the parent of NL to the copy of N in B1. Similarly,

for each node N on the path from j to root(B) if NL is on the path, reset NR’s

parent to B1, otherwise reset NL’s parent to B2.

3. Check each node in B1 and B2 along the copies of the paths from i and j to

root(B) to check whether its winner is still correct. If not, update its winner.

At the end of this operation, B1 and B2 are CTBs for the list of items 1, . . . , i, j, . . . , n

and i, . . . , j resp. See Fig. 6.5(c). An illustration of each step of this operation is pro-

vided in Fig. 6.6.

Correctness and analysis. Correctness follows from the ordering property on the

tree, and the observation that the only nodes in B1 and B2 which have a different

sub-tree than their copies in B are those nodes along the copied path from i to j.

The time complexity of the operation is O(d)-time where d is the depth of the tree.

However, we note that if we begin with a full CTB, since each operation preserves its

depth, the splitting operation takes O(log n)-time where n is the size of the initial list.

Summary. In this section we presented a tree data structure for maintaining the

minimum value of a set of items with O(log n)-time Update, DeleteLeaf, and

(cyclical) Split operations. In the next section we show how to use this data struc-

ture to improve the quadratic-time search for splitting events in the UM-algorithm

to O(1) time with O(n log n) time maintenance.

6.7 The Cyclic Tournament Forest Implementation

We now show how to improve the quadratic-time search for splitting events to

O(1) time using a data structure built from the CTBs of the last section. We use
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Figure 6.6: The Split(2, 6) operation on the CTB B in (a). (b) The splitting path is
copied into B1 and B2. (c) The sub-trees are moved to B1 and B2 by changing the parents
of the green shaded nodes. (d) The winner of each bout on the splitting path is updated.
The green shaded nodes are the nodes which have different values than their copies in B.

the following abstraction of the search. Let I = (1, ..., n) be a list of items and vij be

values defined for each (unordered) pair of items (i, j).

In this section we give a data structure which supports the following operations.

• FindMin, which returns the smallest value vij.

• UpdateVal(i, j, val) which sets vij to val.

• DeleteItem(i) which deletes item i.

• SplitList(i, j) which splits the data structure into structures for maintaining

the minimum values v∗ over I1 = (1, ..., i, j, ..., n) and I2 = (i, ..., j).

We call our structure a cyclic tournament forest (CTF). We call our structure a

forest because it is constructed by creating a cyclic tournament bush for each item in i.

Cyclic tournament forests. For each item i in I, we store a CTB Bi on the list

of values (vi1, ..., vin). In other words, the CTB for each item stores the values defined
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between item i and every other item j. We then store the list (B1, ..., Bn) of the CTBs

for all the items itself in a CTB F , where the “value” of each Bi is given by the value

of its root.

Operations. The operations are implemented as follows.

• FindMin simply returns the value of the root node of the CTB Bi returned by

Query on F .

• UpdateVal(i, j, val) performs the following:

1. Call Update(vij, val) on Bi and Bj.

2. If the root node of either, say Bi, changes its value as a result of the

Update, call Update(Bi, val) on F (resp. Update(Bj, val)).

• DeleteItem(i) first calls DeleteLeaf(vik) on all Bk where k 6= i and then

calls DeleteLeaf(Bi) on F .

• The SplitList(i, j) operation builds two lists of CTBs, L1 and L2 by the follow-

ing procedure. For each item k (in order) let B′ and B′′ be the CTBs obtained

by splitting Bk between i and j. If k ∈ I1, add B′ to L1. If k ∈ I2, add B′′

to L2. To save space, we modify the split operation on Bk so that if k 6= i, j,

only one of B′ and B′′ is built depending on whether k ∈ I1 or k ∈ I2. The

operation then builds two full CTBs, F1 on L1 and F2 on L2 and returns them.

The original F is deleted.

Correctness. The correctness of FindMin, UpdateVal, and DeleteLeaf is ap-

parent. SplitList works because each tree Bk is built on the list of items (vk1, ..., vkn).

The Split operation on Bk produces the CTBs B′ and B′′ built on the lists (vk1, ...,

vki, vkj, ..., vkn) and (vki, ..., vkj), resp. Thus if k ∈ I1, B′ contains exactly the values
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between k and any other item in I1 (similarly for k ∈ I2 and B′′). The correctness

follows.

Complexity analysis. FindMin checks the value of the root of F in constant

time. UpdateVal makes a constant number of calls to Update, and thus takes

O(log n)-time. Each of the remaining two operations make O(n) calls to O(log n)-

time CTB operations; additionally, the SplitList operation initializes two new CTBs

in O(n) time. Thus both operations take O(n log n)-time. In terms of space, only the

SplitList operation creates any nodes: a copy of the O(log n)-size splitting paths

are made for Bi and Bj, and the new trees F1 and F2 are initialized. Let m be the

number of items in F1, then n−m+ 2 is the number of items in F2. Since F1 and F2

are full CTBs, the total number of nodes in F1 and F2 is 2m+2(n−m+2)−2 = 2n+2,

which is only 3 more nodes than F . F itself is deleted. Thus, each Split operation

adds a total O(log n) nodes.

Finding splitting events with cyclic tournament forests. We now use the

cyclic tournament forest F defined above to accelerate the process of finding splitting

events. We maintain a forest F for each contour PT . The list of items of F is the list

of vertices of PT given in ccw order. Each value vij for non-consecutive pairs (i, j) is

equal to the time t solving Eq. 6.4.1 for vertices i and j. We denote this by tij for a

pair (i, j). For (i, j) consecutive we set vij = ∞. The next splitting event for PT is

found by FindMin on F .

Maintaining the cyclic tournament forests. When we process a splitting event

(i, j) of PT into P1 and P2, we also split F into F1 and F2 by the following procedure.

1. Call SplitItems(i, j) on F to obtain F1 and F2.

2. Call UpdateVal(i, k, tik) and UpdateVal(j, k, tjk) on F1 and F2 for each k

in P1 and P2 resp.
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The correctness of the maintenance procedure follows from the observation that when

we split PT , the angle bisector for any k 6= i, j in P1 or P2 does not change. Given

two such vertices k1, k2 of P1 (resp. P2), the value tk1k2 is the same after the split as

before it. However, for i and j, the bisectors do change, and thus for any k, tik and

tjk have changed. The call to SplitItems guarantees that P1 and P2 have the ap-

propriate structures, but the observation above shows that because i and j have new

angle bisectors in P1 and P2, the values vik and vjk need updating. This is handled in

step 2 by the UpdateVal procedure. Since this requires O(n) calls to UpdateVal

and a single call to SplitItems, maintenance of the cyclic tournament forest requires

O(n log n) time and creates O(log n) nodes per split event. Given this we prove:

Theorem 6.1.1.The UM-skeleton of a Lang polygon w.r.t. a metric tree with n nodes

can be computed in O(n2 log n)-time and O(n2)-space.

Proof. Time: Initialization requires O(n)-time for the DCEL and implicit tree

and O(n2)-time for the CTF. By the discussion above and the operation details in

Sec. 6.4.1 we have the following. FindNextEvent finds contractions in O(n)-time

and splitting events in O(1)-time. The running time per event is dominated by the

O(n log n)-time maintenance of the CTF. By Lemma 6.3.1, there are O(n) events,

and thus the algorithm takes O(n2 log n)-time. Space: The DCEL requires O(n)-

space (see proof of Lem. 6.4.3). For the implicit trees we store the n × n matrix D

and a constant size leaf-marker at each vertex of G. We store a CTF for each contour,

starting with one O(n2)-space CTF. Each splitting event results in the creation of

O(log n) new nodes. For O(n) events, the entire running of the algorithm creates

O(n log n) nodes. Total space is thus O(n2).

6.8 The Priority Queue Implementation

We now briefly describe a priority queue implementation. We use the same im-

plicit tree representation described in Sec. 6.5. We maintain a priority queue Q of

155



potential events. Each event stores a type, either splitting, contraction, or base and

the time t at which the potential event occurs. We store each sweep polygon as a

(cyclic) list of vertices.

The basic idea is to query the priority queue to obtain the next event. A techni-

cality to this approach, however, is how to deal with the fact that after a split, the

priority queue may contain many potential splitting events that are no longer valid

(i.e. one vertex of the potential event is on one side of the split, the other vertex is on

the other side). Recall from the discussion in Sec. 6.1 that the number of invalidated

potential events may be quadratic. Rebuilding the priority queue or removing these

invalid events would require O(n2 log n) queue initialization or maintenance proce-

dures at each splitting event. Thus, to gain efficiency, we need a way of avoiding

deleting invalid events.

Ignoring events. Our approach to dealing with the invalid splitting events is sim-

ply ignore them–just leave them in the queue. We will see that this does not add too

much extra processing. In order to deal with these events we change the structure of

the algorithm slightly. We maintain a list of active contours which are the contours

we described in Sec. 6.4.1. The idea is that we “move” vertices in the sweep. For

each vertex, we store a pointer to the contour it is currently active in and a boolean

flag active which signals whether the vertex is still part of an active sweep polygon.

In the queue, for a contraction event we store a pointer to an edge (u, v) of a

sweep polygon. For a splitting event we store pointers to the splitting pair (u, v). A

base event stores a pointer to the sweep polygon P which is a base case.

Modifications to the algorithm. We modify the algorithm to use the queue in-

stead of proceeding recursively. At each iteration until Q is empty, we remove the

next event from Q for processing. If the event is a base case, we simply process it

using HandleBaseCase and continue. Otherwise, we first check that u and v are
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still active and that they point to the same sweep polygon. If not, then the event is

invalid, and we throw out the event and continue. This occurs because at some point

u and v were separated by a splitting event, and thus their active contour pointers

point to different contours.

If we have a valid event, then we advance the sweep P by moving its vertices

inwards along the angle bisectors to the time of the event. If the event is a contraction

event, this will result in a zero length edge between u and v. We set the active flags of

u and v to false, and replace them with a new vertex u′. If the resulting sweep polygon

is a base case, then we add a base case event to the queue. Otherwise, we calculate

splitting events between u′ and all other vertices of the sweep and insert these into the

queue. We then generate contraction events for the two edges incident u′. If the event

is a splitting event, we split the sweep polygon into two sweep polygons P1 and P2. u

and v are replaced with new vertices u1, v1 in P1 and u2, v2 in P2. If either P1 or P2

we generate a base case event for it and add it to Q. Otherwise, the active flags for u

and v are set to false, and new splitting events are generated and added to Q between

u1, v1, u2, and v2 and the rest of the vertices in their respective split sweep polygons

P1 and P2. New contraction events are added to the queue for the edges incident u1,

u2, v1, and v2. Checking the valid flags on u and v, and that u and v still lie in the

same sweep polygon ensures that we only process events which are currently valid, i.e.

they lie in sweep polygons which have not yet been processed. Correctness follows.

Analysis. Given the implementation details above, we prove:

Theorem 6.8.1. Let (T, PT ) be a Lang polygon and n be the number of nodes in T .

The the priority queue based implementation of the UM-skeleton algorithm computes

the UM-skeleton of (T, PT ) in O(n2 log n) time and O(n2) space.

Proof. The running time of the algorithm is O(n2 log n). When a contraction event is

processed, less than n−3 new splitting events are added to the queue (since we gener-
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ate events between u′ and the other vertices not consecutive with it) and exactly two

contraction events. When a splitting event is processed, the number of splitting events

added to the queue is upper bounded by 4n. The number of new contraction events

is constant. Since there are a total of O(n) events processed (Lem. 6.3.1), this means

that the number of events added to the queue during the run of the algorithm is O(n2).

The algorithm is initialized with O(n2) splitting events and O(n) contraction events,

so the total size of the queue is O(n2). Therefore, query and insertion operations on

Q require O(log n) time and processing each event requires O(n log n) time. Addi-

tionally, it takes a constant time check to see if an event is valid, and thus O(n2 log n)

time to throw out all invalid events. The running time of the algorithm follows.

6.9 Experimental Results

We implemented the naive, cyclic tournament forest (CTF), and priority queue

(PQ) versions of the algorithm in Java and tested them on a MacBook Pro with a

2.9 GHz Intel Core i7 processor and 8 GB of memory. We tested each algorithm on

282 randomly generated convex polygons. Each polygon P was created by sampling

the unit disk uniformly at random and computing the convex hull of the resulting

point set. We then computed the straight skeleton of the convex hull. From this we

extracted a tree T for which P is a Lang polygon as follows. Let (u, v) be an edge of

the straight skeleton and f be one of the faces of the subdivision of the interior of P

containing (u, v). Each such face f is incident to exactly one edge e of the polygon

(see [4]). Project (u, v) orthogonally onto the line supporting e and take the length

of the projected line segment to be the length of (u, v) in the metric tree T . It can

be shown that the TSkel for (T, P ) is exactly the straight skeleton of P . Finally, we

randomly perturbed each leaf arc of T by adding a small uniformly chosen ∆ to its

length and moved the corresponding vertex of P by scaling its adjacent sides by ∆.
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To run the experiment, we initialized and ran each algorithm five times on each

polygon P . We measured the total time in milliseconds it took to initialize and run

each algorithm and averaged the result. The results are shown in Fig. 6.7. Both the

CTF and PQ based implementations perform on the same order as expected, with

the PQ based implementation consistently running faster by a small factor. We be-

lieve that this performs better for two reasons: (1) the split operation on the CTF

requires using the node-pointer tree representation vs. the PQ’s more memory local

array based representation; and (2) the current implementation does not aggressively

shorten paths in the CTBs which leads to large numbers of degree 2 nodes. Better

handling of these nodes should lead to a more efficient implementation.
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Figure 6.7: Speed comparison between the naive (red), CTF (green), and priority queue
(blue) implementations. (a) shows all three while (b) shows only the CTF and priority
queue based implementations. In both the x-axis is the number of points in the polygon
and the y-axis is the average time in milliseconds the algorithm took to complete.

Final remark. Of the two competing implementations presented in this chapter,

the one that is simpler to implement has a better behavior in practice by a constant

(but not huge) factor. However, this method is (so far) oblivious of any structural

properties of the universal molecule. Our second, more sophisticated approach, may

perform better when combined with such structural insights. We implemented and

compared these two distinct methods in the hope that the ultimate complexity of

the tree-skeleton may result as a combination of ideas from both of them. A simple

lower bound on computing the UM-skeleton is given by the Ω(n) size of the output.
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The best-case performance of the algorithm (in the case when there are no splitting

events) is also linear. However, we are ultimately interested in the universal molecule

and not just the UM-skeleton. To compute the UM-skeleton, we must first add back

the perpendiculars leading to a universal molecule algorithm which takes O(n2 log n)

time and O(n2) space. This is optimal in terms of space and is only a logarithmic

factor from optimal in terms of time.
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CHAPTER 7

EXTENDING THE
UNIVERSAL MOLECULE TO NON-CONVEX CASES

Recall from Ch. 2 that Lang’s TreeMaker method employs the universal molecule

algorithm in its second phase to “fill in” each polygon produced by the first phase with

a crease pattern. Since the universal molecule is only defined for convex polygons,

this fails when the first phase of TreeMaker results in non-convex polygons. In this

chapter, we remove this restriction by extending the universal molecule algorithm to

all non-convex polygons produced by TreeMaker. In fact, our algorithm covers not

only all possible polygons produced by TreeMaker, but also more exotic cases, like

non-convex flat polygonal disks that cannot be realized in the plane without self-

intersections. A key ingredient used in this section is the family of Lang surfaces we

defined in Ch. 5. Recall that we put the universal molecule crease patterns into cor-

respondence with a very restricted class of Lang surfaces. We now greatly relax these

restrictions, and show how to the compute what we call the geodesic universal

molecules. This work is joint work with Ileana Streinu and is under review [16].

7.1 Introduction

Recall that the crease pattern computed by the universal molecule algorithm for a

Lang polygon (T, PT ) has the property that it can be folded into a 3D shape which

projects to 2D onto the tree T . This shape is (as we saw in Ch. 5) a flat Lang sur-

face with convex boundary. Recall also that a Lang surface is formed using glueing

operations on recursively defined intrinsic piecewise linear surfaces.
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Figure 7.1: An intrinsically flat
polygon that self-overlaps when
(extrinsically) flattened out in the
plane (left). It is intrinsically a
disk, obtained by glueing two sim-
ple planar polygons along an edge
(right).

The generalization we give in this chapter extends Lang’s universal molecule algo-

rithm to work with geodesic Lang polygons and to produce, algorithmically, a geodesic

universal molecule crease pattern which folds into a (flat) Lang surface (which may

not have convex boundary). A key difference between the Lang polygons define in

Ch. 5 and the geodesic Lang polygons we define in this chapter is that the geodesic dis-

tance inside the (non-convex) input polygon, rather than Euclidean distance, enforces

the relationship with the metric tree.

As in Ch. 5, we aim at obtaining a full characterization of the shapes (Lang sur-

faces) produced by this generalized algorithm, as well as of the inputs (geodesic Lang

polygons) on which it works. Surprisingly, perhaps, we show that the input can be

any polygon bounding a piecewise linear surface that is topologically a disk, has zero

curvature, and meets certain constraints on the geodesic distance between pairs of

points of the polygon that come from the tree. Such a geodesic Lang polygon should

not be thought of as lying in the plane, but rather on an intrinsic surface. It is intrin-

sically simple, but an open, flat placement of a geodesic Lang polygon in the plane

may self-overlap, as illustrated in Fig. 7.1.

Basic Concepts. Let T be a metric, topologically embedded tree: it has positive

weights attached to each arc, and has a defined ordering or rotation of the incident

arcs at each internal node. A polygon PT is said to be a doubling polygon for T if it

is metrically and combinatorially equivalent to a right-hand-turn walk around that

arcs of T starting from some leaf node. We say that PT satisfies the geodesic Lang
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property if the geodesic distance (inside the polygon) between any two vertices of PT

is greater than or equal to the corresponding tree distance in T .

The input to the geodesic universal molecule algorithm described in this chapter is

a tree T and geodesic Lang polygon PT compatible with it. The output of the algorithm

is a subdivision of the polygon into vertices, edges, and faces (its crease pattern) that

is intrinsically equivalent to a geodesic Lang surface ST constructed on T .

A (geodesic) Lang surface captures formally what it means, in Lang’s approach,

for a 3D folded origami shape to be compatible with and project onto a given metric

tree. It is defined inductively from two types of building block surfaces: extrusion

disks and extrusion rings. These are defined with respect to an extrusion process

that embeds a kinetic polygon which is a doubling polygon of a kinetic tree (a tree in

which the leaves are moving at given speeds) into a plane that sweeps upwards. The

trace of the edges of the kinetic polygon define a surface which is topologically either

a disk or a ring (annulus). We then define two gluing operations: one for extending

a Lang surface by gluing it to a ring, and another for combining two Lang surfaces

by gluing them along their boundary edges. Finally, we focus on Lang surfaces with

zero-curvature at internal vertices. For the surfaces constructed in this chapter we

allow the leaf nodes in a kinetic tree to move both inwards and outwards, and obtain

non-convex, intrinsically simple Lang surfaces. By contrast, in Ch. 5 the leaves moved

only inwards and the resulting surface was intrinsically convex.

Our main result can now be stated.

Theorem 7.1.1 (Main Theorem). Let PT be a doubling-polygon for a tree T on a

flat, disk-like piecewise-linear surface D. Then a Lang surface S constructed on T and

isometric to PT exists (and is unique) if and only if PT is a geodesic doubling-polygon

for T on D.
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Figure 7.2: A tree
(left), geodesic Lang
polygon subdivided
by its geodesic uni-
versal molecule (mid-
dle), and an intrinsi-
cally equivalent Lang
surface (right).

Overview. The proof of the theorem is broken into three parts. In Sec. 7.5 we prove

the necessity of the geodesic Lang property on the Lang surface. The second part

is the sufficiency of the property, which is proven by describing an algorithm that

takes as input a geodesic Lang polygon and produces as output a universal molecule

(Sec. 7.6). See Fig. 7.2. The third is the uniqueness claim, proven in Sec. 7.7.2.

Precise definitions are given in Sec. 7.2, and a few useful properties of geodesic Lang

polygons are investigated in Sec. 7.3.

7.2 Concepts

We recall some of the basic concepts from Ch. 2 needed for this chapter.

7.2.1 Piecewise linear metric surfaces

Our primary objects of interest, both Lang polygons and Lang surfaces, are piece-

wise linear metric surfaces (hence surfaces) obtained by gluing flat, polygonal

faces together along whole edges.

Realizations of piecewise linear surfaces. A realization of a surface is a map

taking each vertex to a point in R3, each edge to a straight-line segment, and each

face to a flat polygon in R3 such that the edges and faces maintain their size and

shape. We say two surfaces are equivalent if one is a realization of other. Notice

that this is a slightly stronger version of equivalency than simply isometry, since an

isometry between surfaces does not require that the surfaces have the same subdivi-
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sion into vertices, edges, and faces. Here, however, we do not consider two different

subdivisions of the same surface to be equivalent.

Intrinsic vs. extrinsic properties Properties of a surface that are true in any

realization are intrinsic, while those that depend on a particular realization are

extrinsic. This distinction is particularly important for our purposes, because two

different foldings of the same origami crease pattern are intrinsically the same surface

but differ in their extrinsic properties (such as the dihedral or “folding” angle between

faces). Showing that a surface is a folding of another amounts to showing that the two

surfaces only differ extrinsically. Important intrinsic properties include the surface’s:

• topology, which in this chapter is either a disk (disk-like) or an annulus (ring-

like); since these are the only two topologies we consider, each edge is either

incident to exactly one face (a boundary edge), or to two faces (an interior

edge);

• (intrinsic) curvature of the surface at a vertex (defined in the next paragraph);

and

• the geodesic distance between two points on the surface (defined shortly).

An example of an extrinsic property is the dihedral angle between two faces at an edge.

Curvature. Since our surfaces are piecewise linear, the curvature is concentrated

at the vertices. A vertex has a face angle in each of its incident faces, and its angle

sum is the sum over all its face angles. The (intrinsic Gaussian) curvature at a

vertex is given by 2π minus its angle sum. If every internal vertex of a surface has

zero curvature then the surface is (intrinsically) flat, which does not require that it

be realized in a single plane. A realization of a flat surface in which the dihedral

angles at all interior edges is π is an open, flat realization. In these terms, both

the initial crease pattern drawn on the paper and the final folding of the origami are
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(intrinsically) flat, but only the first is in an open, flat realization. If for a given surface

there exists an open, flat realization, then we say that the surface is flattenable.

Flattenability implies that the surface is (intrinsically) flat. The converse is true for

all disk-like surfaces, but not for all ring-like surfaces. For instance, if one removes the

top and bottom face from a cube, the resulting ring-like surface is flat (its curvature

is zero everywhere), but it is not flattenable, since it has no open, flat realization.

Geodesic distances and visible pairs Given a surface S, the geodesic dis-

tance between two points p and q, denoted dS(p, q), is the length of the shortest

path between them, called the geodesic path. On a piecewise linear surface, this is

a polygonal chain and if the surface is a disk, is unique. If the geodesic path between

two points p and q is (intrinsically) straight we say that (p, q) is a visible pair. Note

that the geodesic distance dS(p, q) satisfies the usual triangle inequality–for all p, q,

r, dS(p, q) ≤ dS(p, r) + dS(r, q).

Polygons. Thus far in this dissertation, we have used the term “polygon” in what

might be called its common usage–to refer to polygons drawn in the plane. These are

typically defined by giving an ordered cycle of points, and the polygon is the point

set together with the straight line segments between consecutive points.

Alternatively, such a polygon can be defined as an ordered cycle of line segments

drawn in the plane end-to-end. This second definition generalizes well to piecewise-

linear surfaces. Let S be a piecewise-linear surface. We call an intrinsically straight

path between two points p and q of S a geodesic segment, denoted pq. Note here

that a geodesic path of a surface may not be straight (for instance on the interior of

a planar non-convex polygon, a geodesic path may bend around a reflex vertex), but

we require that a geodesic segment be straight. A (geodesic) polygon on S is a cycle

of geodesic segments on S that are connected end-to-end (to make this precise, we

order each segment pq by giving it a source vertex p and a destination vertex q; by
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Figure 7.3: A tree, doubling cycle, and doubling-polygon.

“end-to-end” we mean that for two consecutive, the destination point of the first is

the source point of the second).

When a polygon is simple, i.e. it does not self-touch or self-cross on the intrinsic

surface, then we view it together with the piece of the surface that it bounds; in

other words, a simple polygon on S is itself a disk-like surface. We remark that if we

flatten out S into the plane, the polygon may self-overlap even though it is simple on

S (Fig. 7.1). A vertex of a polygon with angle sum less than π is said to be convex,

equal to π a marker, and greater than π reflex.

7.2.2 Metric trees, metric doubling cycles, and doubling polygons

A metric tree (T,w) is a tree T and a weight function w that maps each arc1 of

T to a positive weight or length. We assume that a cyclic ordering, or rotation, is

given for the incident arcs at each node2. The metric doubling cycle for T is the

pair (CT , w) where CT is the cycle given by starting at any leaf node and listing the

nodes encountered by walking around T while respecting the ordering of incident arcs

and w maps each edge of CT to the length of its corresponding tree arc. See Fig. 7.1.

In such a walk, each edge is traversed once in each direction, and each vertex is visited

1To avoid confusion, we use the terms node and arc to refer to the elements of a tree, and vertex
and edge to refer to the elements of a polygon or embedded straight-line graph.

2Such a tree is sometimes called a ribbon tree, or a topologically embedded tree.
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Figure 7.4: Splitting a tree and corresponding doubling polygon between ai and aj.

the number of times equal to its degree. A doubling polygon PT is a polygon that

is combinatorially and metrically a doubling cycle for T .

Notation. It is convenient to separate the n leaf nodes and m internal nodes of

a tree T into two sets A = (a1, . . . , an) and B = (b1, . . . , bm), respectively. In order

to make clear the correspondences between a tree T and a doubling polygon PT , we

use bold face to denote vertices of the polygon and italics to denote corresponding

nodes in the tree. For instance, the vertex a in PT corresponds to the leaf node a in

T and the edge ab corresponds to the leaf arc ab.

Splitting trees, cycles, and polygons Given a tree T and two leaf nodes ai and

aj, the splitting operation returns two trees T1 and T2 corresponding to the part

of the tree to the left of (and including) the path from ai to aj in T , and the part

to the right (resp). To split a doubling cycle CT between ai and aj, we first split CT

into two open chains C1 and C2, one from ai to aj and the other from aj back to ai.

We then close each chain using a copy of the path from ai to aj in T . The chains C1

and C2 are then doubling cycles for T1 and T2 (resp). In a doubling polygon PT we

allow this operation only if (ai, aj) is a visible pair, and the geodesic distance from

ai to aj is equal to dT (ai, aj). The split in the polygon is performed by introducing
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a splitting edge along the shortest path between ai and aj and subdividing it into

edges so that it is metrically and combinatorially equivalent to the path between ai

and aj in the tree. See Fig. 7.4.

7.3 Geodesic Lang polygons

The first object of interest is the geodesic Lang polygon. This is a generalization

of the Lang polygons we defined in Ch. 5. Let S be a piecewise linear zero-curvature

disk-like surface and let T be a metric tree with strictly positive edge weights (no

degeneracies). We consider a doubling polygon PT for T on a surface S which may be

self-touching but not self-crossing, and thus has a well-defined interior on the surface.

If the polygon is not self-touching, the interior is itself a disk-like surface; otherwise,

it may have several disk-like components. A geodesic is the shortest path between

two points on the polygonal boundary, lying entirely in the closure of the interior of

the polygon.

We say that a doubling polygon TT satisfies the geodesic Lang property on S if

for all pairs of points (u,v) on the boundary of PT , their geodesic distance is greater

than the corresponding tree distance, i.e. dS(u,v) ≥ dT (u, v). If further, each vertex

of PT corresponding to an internal node of T is a marker (interior angle is π), then

it is a geodesic Lang polygon.

Negative boundary curvature. In general we require that the interior angle mea-

sure at each vertex of PT be less than 2π; however, we allow higher angle measures

by the following construction. Suppose that we two pairs (T, PT ) and (T ′, P ′T ′) of

trees and doubling polygons such that there is a side aiaj (in ccw order) in PT that

is equivalent to a side a′ja
′
i in P ′T ′ . By ‘equivalent’ we mean that the path from ai to

aj in T has the same number of arcs (with the same lengths) as the path from a′i to

a′j in T ′. We then construct a new doubling polygon (T ′′, P ′′T ) by gluing T to T ′ the

equivalent paths in the tree, and by gluing PT to P ′T by identifying the sides aiaj and
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a′ia
′
j. This is the inverse operation to the splitting of a tree and polygon depicted in

Fig. 7.4. The interior angle at the vertex a′′i in P ′′T ′′ is the sum of the interior angles

of ai and a′i in PT and P ′T ′ . This allows us to arbitrarily increase the interior angle

sum at a vertex so long as the property above is satisfies. We call such a doubling

polygon well-constructed and allow that a geodesic Lang polygon have negative on

its boundary only in the case that it is well-constructed. Let us now investigate two

important properties of geodesic Lang polygons.

The geodesic Lang property on visible pairs implies the geodesic Lang

property on all pairs. We now derive a key property of geodesic Lang polygons.

We show that for a well-constructed doubling polygon to be a Lang polygon, it is suf-

ficient that it satisfies the Lang property for all visible pairs. This is used in Sec. 7.6

where we describe an algorithm for computing crease patterns on a geodesic Lang

polygon that relies on this property.

Lemma 7.3.1. Let PT be a well-constructed doubling polygon for T on S such that

each vertex b of PT corresponding to an internal node b of T is a marker. If the

geodesic Lang property holds for all pairs of visible corners on PT , then (T, PT ) is a

Lang polygon.

Proof. We prove the contrapositive–that a violation of the geodesic Lang property for

a non-visible pair implies a violation for a visible pair. Let (ai, aj) be a non-visible

pair for which the geodesic Lang property does not hold. Assume for contradiction,

that the geodesic Lang property holds for all visible pairs. Let p denote the geodesic

path from ai to aj in PT . The path p is a polygonal path and each of its interior

vertices is a corner of the boundary of PT . Denote the vertices along p in order by

A0 = ai,A1, . . . ,Ak = aj. Each consecutive pair (Am,Am+1) is a visible pair and

since each Am is a corner in PT , it corresponds to a leaf node Ai in T . Then by

hypothesis, for each m from 1 to k−1 we have dPT
(Am,Am+1) ≥ dT (Am, Am+1). The
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length of p is given by
∑k−1

m=0 dPT
(Am,Am+1). Thus we have

∑k−1
m=0 dPT

(Am,Am+1) ≥∑k−1
m=0 dT (Am, Am+1) > dT (A1, Ak) (the last inequality follows from the triangle in-

equality on T ). Therefore the pair (ai, aj) satisfies the geodesic Lang property, a

contradiction.

TreeMaker always produces geodesic Lang polygons. We now observe that

the polygons in any solution to the optimization problem solved in the first phase of

TreeMaker are geodesic Lang polygons. This guarantees that when the first phase

of TreeMaker produces an output, the polygons that it produces, when not convex,

satisfy the preconditions required by the geodesic universal molecule algorithm of

Section 7.6 to work.

Lemma 7.3.2. Let PT be a simple, possibly non-convex planar doubling polygon for

a metric tree T , satisfying the Lang property that the Euclidean distance between

vertices exceeds the tree distance. Then PT is a geodesic Lang polygon for T .

7.4 Generalized sweep of a geodesic Lang polygon

We now define a process on a Lang polygon called a generalized sweep. This con-

cept is used in several places in the remainder of the chapter. In Sec. 7.5, we show

how to construct a particular family of surfaces we call Lang surfaces by an extrusion

process. The boundary of each Lang surface is shown to be a geodesic Lang polygon

and we end the section by showing that the extrusion process is equivalent to a gener-

alized sweep starting from its boundary. Next, in Sec. 7.6, we give our generalization of

the universal molecule algorithm to geodesic Lang polygons, which uses a generalized

sweep on the interior of its input Lang polygon to generate a crease pattern. These

crease patterns are shown (in Sec. 7.7.1) to be equivalent to Lang surfaces. Finally, in

Sec. 7.7.2 we use the concept of a generalized sweep to prove the uniqueness claim of
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Theorem 7.1.1 by showing, essentially, that any Lang polygon gives rise to exactly one

generalized sweep. (How this implies the uniqueness claim is detailed in Sec. 7.7.2.)

We now turn to the definition of the generalized sweep of a geodesic Lang poly-

gon. Recall that a Lang polygon is a pair (T, PT ) of a tree T and a polygon PT which

is drawn on some underlying surface (we restrict ourselves here to surfaces of zero-

curvature). To define a generalized sweep we need two additional processes–a kinetic

stretching process defined on the tree in which the leaves shrink and a parallel sweep

process in the polygon by which its edges are moved inwards in parallel at unit speed.

We define these in Sec. 7.4.1 and end by defining the generalized sweep in Sec. 7.4.2.

7.4.1 Kinetic trees and parallel sweeps

Kinetic trees. We make a metric tree (T,w) kinetic by attaching a stretching

speed s(ab) to each leaf arc ab. The length of an arc ab at time t ≥ 0 is given by

w(ab) + t s(ab). This gives rise to a family of trees T (t) parametrized by t. When the

tree is embedded, we extend this motion to the embedded tree by moving leaf nodes in-

wards or outwards along the supporting line of the leaf arc. If s(ab) is positive, then we

say the arc is growing, otherwise shrinking3. This is naturally extended to any dou-

bling cycle CT for T to form a family of doubling cycles CT (t)–simply grow/shrink each

edge of CT at the same speed as its corresponding arc in T . This trivially maintains

the property that at each time t, the cycle CT (t) is a metric doubling cycle for T (t).

Parallel sweep of a polygon. A parallel sweep of a polygon is given by moving

the edges of the polygon inwards at unit speed in such a way that each edge remains

parallel to its initial position. Each edge grows or shrinks to maintain incidence with

its adjacent edges.

3Note that in Ch. 5, we only allowed a leaf arc to shrink. Here we must allow both shrinking and
growing to maintain certain correspondences with parallel sweeps of non-convex polygons.
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7.4.2 The generalized sweep

Overview. Our goal in this section is to define a generalized sweep for a Lang

polygon (T, PT ). The basic idea is that we make the tree kinetic and grow/shrink its

leaf arcs while simultaneously performing a parallel sweep of the polygon. At certain

points we may split the tree and polygon (according to the splitting operation defined

in Sec. 7.2). Thus, at any given point we may have multiple shrinking polygon and

tree pairs (hence the term “generalized”). Ultimately, we define this process so that

the pair of the kinetic tree (with leaf arcs that are growing or shrinking) and the

parallel polygon (with edges that are growing or shrinking) maintain the geodesic

Lang property–throughout this process the pair forms a Lang polygon (meaning that

the sweeping polygon is a doubling polygon for the growing/shrinking tree and the

geodesic Lang property is satisfied). Maintaining this invariant requires that we pro-

cess two types of events that occur in the sweep: contraction events and splitting

events.

Contraction events. The first event type occurs when an arc of the tree and its

corresponding edges in the polygon shrink to zero-length. Combinatorially, the zero-

length arc in the tree is removed and the zero-length edges in the sweeping polygon

are replaced with a single vertex.

Splitting events. The second event type occurs when the geodesic Lang property is

satisfied with equality for some non-consecutive visible pair of corner vertices (ai, aj)

in PT . We call this a potential splitting event because at this point the splitting

operation may be applied to the tree and polygon. A potential splitting event oc-

curs because the rate at which the distance is changing for some pair (ai, aj) in the

sweeping polygon is not necessarily the same as the rate at which the corresponding

distance between ai and aj is changing in the tree. Thus, a pair that satisfies the

geodesic Lang property initially with inequality may satisfy the geodesic Lang prop-
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erty with equality at some future time. In this case we allow that a splitting operation

be applied to the polygon for (ai, aj) and to the tree for (ai, aj) to obtain geodesic

Lang polygons (TL, PL) and (TR, PR). We then continue the sweep independently in

each. Note that it is not obviously the case that we must split at such an event in or-

der to maintain the geodesic Lang property. For instance, it may be that immediately

after such an event the distance between the two vertices in the sweeping polygon

increases more quickly than the distance between the corresponding tree nodes. In

such a case, even though the geodesic Lang property holds with equality, we do not

need to split in order to maintain the geodesic Lang property and thus we can choose

either to split or not. On the other hand, if immediately after such an event the

geodesic Lang property is violated, then we are forced to split in order to maintain

the geodesic Lang property. We call a potential splitting event at which the splitting

operation is actually applied simply a splitting event. In the special case of negative

boundary curvature (see Sec. 7.3) we require that the sweep be split immediately so

that each resulting sweep polygon does not have negative boundary curvature. This

requirement comes from the fact that a parallel offset polygon is only well-defined for

polygons without negative boundary curvature.

A generalized sweep. Let (T, PT ) be a Lang polygon. Make T kinetic by as-

signing to each leaf arc ab of T a speed of −1/ tan(θa) where θa is half the interior

angle measure at a. This speed is not arbitrary, but is chosen so that the speed at

which leaf arc shrinks is the same as the speed at which its corresponding edges in

the polygon shrink (this follows from elementary trigonometry). Given these speeds,

then, sweeping the polygon and shrinking the tree as described above maintains that

the polygon is a doubling cycle for the tree throughout the process. Now suppose

we perform a sweep of the polygon and stretching of the tree as described above in

which we process all contraction events, and optionally split the polygon and tree at

some of the splitting events. If, throughout the process, we maintain the geodesic
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Lang property, then we call this process a generalized sweep. Note here that this

definition allows that there may be multiple possible generalized sweeps for the same

polygon and tree depending on which whether we actually split at potential splitting

events. Recall that this occurs because we allow that the sweep not be split at a

potential splitting event so long as not doing so does not violate the geodesic Lang

property; however, we will see in Sec. 7.7.2 that in order to maintain the geodesic

Lang property we must always split at potential splitting events. In other words,

any time the sweep arrives at a potential splitting event, to continue past the event

without actually splitting causes the sweeping polygon and tree to violate the Lang

property, and thus the geodesic Lang property fails to hold. Ultimately, we will see

that this implies that there is exactly one sweep for a given geodesic Lang polygon.

This is used in Sec. 7.7.2 to prove the uniqueness claim from Theorem 7.1.1.

Can a generalized sweep self-touch? One important property of a generalized

sweep is that the sweeping polygon never self touches. This is not the case in the

related parallel sweep used in the definition of the straight skeleton of a non-convex

polygon [4]. Were such an event to occur, we would need one entirely different type

of “splitting event” in which the sweeping polygon is split at the point at which the

polygon self-touched, as is the case for the straight skeleton of a non-convex polygon.

We now show that in a generalized sweep it is not possible to reach such an event.

To prove this we show that if such an event occurs at some point during the sweep,

then the sweep violates the geodesic Lang property, and thus is not a generalized

sweep. Recall that initially we have one sweeping polygon and stretching tree, but

the polygon and tree may split at splitting events so that at any given time during a

generalized sweep, we have a collection of sweeping Lang polygons. Observe that one

of the sweeping polygons cannot touch another sweeping polygon since each sweeping

polygon always moves its edges towards its interior. Thus, as soon as a polygon is split,

the resulting two sweep polygons diverge. What we are interested, then, is whether
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one of these parallel sweep polygons can self-touch, meaning that either a vertex of

the polygon “hits” some edge elsewhere in the polygon or two (or more) vertices “hit”

each other. We now show that in a generalized sweep, this is not the case:

Lemma 7.4.1. At no point during a generalized sweep does a parallel sweep polygon

self-touch.

Proof. Assume not. Suppose for contradiction that at some time t, a parallel sweep

polygon self touches. Take the minimum time t at which this occurs. Denote the

polygon by PT and its corresponding tree by T . There are two cases. In the first

case, some vertex of the polygon touches an edge elsewhere in the polygon. In this

case, the collision vertex must be reflex. Otherwise, the polygon would already not

be a simple, but this implies that t is not the minimum time at which such an event

occurs since we start with a simple polygon, and splitting events always produce sim-

ple polygons. In the second case, two vertices touch each other simultaneously but

are not part of the same contraction event. Again this implies that at least one of

the vertices is reflex. Otherwise, since the sweep always moves towards the interior

of the polygon the edges incident to the two vertices will have crossed immediately

prior to the event, again contradicting that t is the minimum time of such an event.

We now prove that in each of the two cases we arrive at a contradiction:

Case 1: Suppose vertex aj hits edge aiai+1 in the polygon. That aj hits some edge

in the sweep implies that aj is reflex in PT , and thus the corresponding leaf arc is grow-

ing. By definition, aiai+1 corresponds to a path in T between leaf nodes ai and ai+1

and aj corresponds to the leaf node aj in T . Since aj is a leaf node and the correspond-

ing leaf arc is growing, aj does not lie on the path between ai and ai+1 in T . There-

fore we have that dT (ai, ai+1) < dT (ai, aj) + dT (aj, ai+1). Since (ai, ai+1) is an edge,

then dPT
(ai, ai+1) = dT (ai, ai+1), and thus we have that dPT

(ai, aj) + dPT
(aj, ai+1) <

dT (ai, aj)+dT (aj, ai+1), which entails that either dPT
(ai, aj) < dT (ai, aj) or dPT

(aj, ai+1)

contradicting the geodesic Lang property on PT .
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Case 2: Let ai and aj be the touching vertices that are not part of the same con-

traction event and without loss of generality suppose ai is reflex in PT . Then the leaf

arc incident to ai has positive, non-zero length (since it is growing), and so ai is at least

some positive distance from any other node in T . Since ai and aj are not part of the

same contraction event, then ai and aj are distinct in T and thus dT (ai, aj) > 0. But

the distance from ai to aj is zero, hence the geodesic Lang property is violated.

As a consequence we have:

Lemma 7.4.2. There exists a generalized sweep for any given geodesic Lang polygon

(T, PT ) (drawn on some flat surface D).

Proof. Make T kinetic as in the definition of a generalized sweep and perform a par-

allel sweep of PT and simultaneous stretching of T . We will show that the following

generalized sweep exists–whenever we encounter a potential splitting event we split.

If multiple potential splitting events occur simultaneously, then we take one after

another, splitting until no potential splitting events remain, and then continue. Note

here that we leave open the possibility that “processing” one potential splitting event

removes another by separating its two vertices on opposite sides of the split (although

we will see in Sec. 7.7.2 that this is not possible).

The sweep moves the sides of PT inwards towards its interior, and so as the sweep

progresses, we must either encounter (1) a contraction event, (2) a potential splitting

event, or (3) an event in which the sweeping polygon self-touches. By definition, the

sweep maintains that for consecutive pairs ai and ai+1 the distance in the tree and

the distance in the sweeping polygon is equal (i.e. dT (ai, ai+1) = d(ai, ai+1)). From

this we can rule out case (3). Assume we get to a point at which PT self touches.

Then by Lemma 7.4.1 (T, PT ) is no longer a geodesic Lang polygon. But this means

that at some earlier time, there must have been a potential splitting event at which

we did not split, a contradiction.
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Thus, as long as we take as our rule that we always split at potential splitting

events, then we will encounter events of type (1) and (2) only. But each contraction

event removes at least one vertex from the sweeping polygon (and one leaf from the

tree), and each splitting event splits the polygon and tree into two polygons and two

trees each with strictly fewer vertices/leaf nodes and at least three vertices/leaf nodes

(since splitting events always occur for non-consecutive vertices).

The result then follows by induction on the number of events encountered in the

sweep.

7.5 Lang Surfaces

We now review the Lang surfaces, which were defined in Ch. 5. We now investigate

the set of zero-curvature Lang surfaces in full generality. Recall that Lang surfaces

are built with respect to a tree T and are formed by combining a small set of basic

building block elements, according to certain gluing rules, to form disk-like surfaces.

As before, to define the building blocks, we first make the tree T kinetic by al-

lowing its leaf arcs to grow or shrink. The building blocks are then formed via an

extrusion process. We first define kinetic trees and their counterparts kinetic dou-

bling cycles and kinetic doubling polygons in Sec. 7.4.1. We then briefly review our

construction of Lang surfaces in Sec. 7.5.1. We define two families of building block

surfaces and two operations, extension and combination, for gluing them together to

form Lang surfaces. This is the same construction as in Ch. 5, except that we allow

tree edges to both grow and shrink, and we remove the restriction that a Lang surface

have a convex boundary. In 7.5.2, we investigate the properties of Lang surfaces with

zero curvature and show that the boundary polygon PT of a zero-curvature Lang

surface S constructed on a tree T is a geodesic Lang polygon, proving the necessity

of the geodesic Lang property in Theorem 7.1.1.
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We end this section by observing that the extrusion processes for creating the

building blocks of a Lang surface can be chained together to form an intrinsic par-

allel sweep of the surface with splitting events. A parallel sweep of the surface

sweeps the boundary of the surface inward towards in such a way that each edge of

the sweep remains (intrinsically) parallel to its original position and all edges move

at unit speed. A splitting event splits the sweeping polygon into two polygons and

the sweep continues recursively in each. We used this fact in Ch. 5 to put the univer-

sal molecules into correspondence with the zero-curvature Lang surfaces with convex

boundary. We observe that concepts from the convex case transfer to the general

case studied in this chapter because the parallel sweep of a Lang surface (convex or

otherwise) locally proceeds in the same way as in the convex case in the plane. As

in the convex case, in general a Lang surface may have non-zero curvature at its

interior vertices, but in the end we will impose zero-curvature on all interior vertices.

This, however, explicitly allows for high curvature (angle sum > 2π) on the boundary,

which presents a potential problem–what does the sweep look like locally at such a

vertex? In our construction, however, these high curvature vertices only occur at

combination operations, which correspond to a splitting of the sweep polygon. After

the split each vertex of the sweeping polygon has angle less than 2π, and so the sweep

looks locally like a sweep of a polygon in the plane.

7.5.1 Constructing Lang surfaces

To define Lang surfaces, we first define two types of building blocks, extrusion

disks and extrusion rings. Each is built with respect to a kinetic tree via an extrusion

process. The boundary polygon(s) for an extrusion disk or ring are doubling cycles.

We then give two gluing operations, extension and combination, for joining them.

The gluing operations can be applied only if the two input surfaces meet certain con-

ditions coming from the tree. In Ch. 5, we restricted all leaf arcs to shrink and the
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kinetic tree plane sweep extrusion ring extrusion disk

Figure 7.5: A kinetic tree, the kinetic tree embedded in a sweeping plane, an extrusion
ring of height h and an extrusion disk of height h. Note that we “open up” the ring
and disk slightly for illustration purposes.

combination operation to produce only surfaces with convex boundary. This ensures

that the resulting Lang surfaces are convex. In this chapter, however, we fully gen-

eralize to Lang surfaces with non-convex boundary by allowing leaf arcs to grow as

well as shrink and by allowing the combination operation to result in surfaces with

(intrinsically) non-convex boundary polygons. That said, many of the properties of

Lang surfaces studied in Ch. 5 are preserved; we point them out along the way.

Extrusion surfaces. Recall that the two types of building block surfaces are de-

fined with respect to a kinetic tree (T,w, s) and a positive extrusion height h. The

extrusion process is given by the following construction. First, we fix an embedding

of the tree in the xy-plane. Next, we shrink or grow each leaf arc (according to its

speed s(ab)) while simultaneously moving the plane containing the tree upwards in

the positive z-direction at unit speed. We simulate both of these motions for t from

0 to h. At time t we have T (t) embedded in the z = t plane. Next, we obtain a

doubling polygon PT (t) for T (t) by embedding the doubling cycle CT (t) directly “on

top of” T (t) in the sweeping plane, meaning each vertex v of PT (t) is placed directly

on top of its corresponding node v in the tree T (t) in the z = t plane. We call this

polygon PT (t) (embedded in the z = t plane) the extrusion polygon at height t.

The extrusion surface of height h for (T,w, s) is the trace of the edges of PT in

this sweep. See Fig. 7.5. We restrict h to be not greater than the first time t at which

an arc shrinks to zero length in T (t).
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Extrusion disks. If we assign each arc ab of T a stretching speed s(ab) equal to

−h/dT (a, b) and T has a single internal node, then all of the edges of the extrusion

polygon shrink to a single point p at t = h. The resulting extrusion surface is topologi-

cally a disk, which we call it an extrusion disk. The point p is the single interior ver-

tex for the disk. Its curvature is 2π−2
∑

ab∈T arctan(dT (a, b)/h), and there is a unique

height h for each tree T resulting in an extrusion disk of zero curvature. Each face is a

right triangle with one edge equal to the initial doubling polygon edge in the xy-plane,

one edge equal to an edge of length h lying perpendicularly above the xy-plane, and

the remaining edge a hypotenuse traced by a vertex of the extrusion polygon corre-

sponding to a leaf node. There is a degenerate situation that results in a disk. If a tree

has all of its leaf arcs incident to only two different internal nodes, then the tree T (h) is

a path (has exactly two leaf nodes), and we make the surface a disk by identifying the

edges of the corresponding edges of the extrusion polygon at height h. Handling this

second case is a straightforward extension of the first, and so we focus only on the first.

Extrusion rings. The second type of extrusion surface is defined for a kinetic tree

such that no leaf arc shrinks to zero-length at a time t < h and the tree T (h) has

at least three leaf nodes. The resulting extrusion ring of height h is a ring-like

surface with lower and upper boundary polygons that are doubling polygons of T

and T (h). See Fig. 7.5. We note that because each vertex of an extrusion ring is on

the boundary, all extrusion rings are flat, though a given extrusion ring may not have

an open, flat realization (see Sec. 7.2.1).

Boundary curvature and face geometry of extrusion surfaces. Recall that

the boundary polygon of an extrusion surface is a doubling polygon for the tree T .

Each vertex v of the boundary is incident to exactly two faces in the surface. If the

vertex corresponds to an internal node of T , then its (x, y)-coordinates do not change

throughout the extrusion process. This implies that the two face angles incident to v
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are each π/2 and the angle sum is π. This also implies that an edge in the extruding

polygon corresponding to an internal arc in T traces out a rectangular face. On the

other hand, a leaf node moves so that its incident leaf arc grows or shrinks according

to the speed s(ab). An edge of the extruding doubling polygon corresponding to a

leaf arc in T traces out a right triangle if the arc shrinks to zero at t = h, or a right

trapezoid otherwise. An edge corresponding to an internal arc of the tree traces out

a rectangular face. In particular, this means that the vertices of the boundary of an

extrusion disk or lower boundary of an extrusion ring have angle sum less than 2π,

or rather the curvature at these vertices is non-negative.

Operations for constructing Lang surfaces. Lang surfaces are obtained by

starting with extrusion disks and rings and combining them using the following two

operations, combination and extension. A Lang surface constructed on an embedded

kinetic metric tree (T,w, s) is a disk-like piecewise linear surface in R3 whose bound-

ary is a doubling polygon T . Lang surfaces are defined inductively. All extrusion disks

are Lang surfaces. New Lang surfaces are formed by either applying the extension

operation to a Lang surface and an extrusion ring, or by applying the combination

operation to two Lang surfaces (in each case meeting certain preconditions).

The extension operation. This operations takes as input an extrusion ring R of

height h and a Lang surface S with the precondition that the upper boundary poly-

gon of R and the boundary polygon of S are the same doubling polygon for the same

tree (except that the upper boundary polygon of R is in the z = h plane and the

boundary of S is in the xy-plane). We extend S with R by translating S upwards

in the positive z-direction by h, bringing its boundary polygon into the z = h plane.

We then identify the corresponding edges of the upper boundary polygon of R and

the boundary polygon of S to form the output Lang surface. See Fig. 7.6.
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Figure 7.6: The extension (left) and combination (right) operations depicted extrin-
sically (top) and intrinsically (bottom).

The combination operation. This operation takes as input two Lang surfaces S1

and S2 constructed on trees T1 and T2 (resp.). The precondition for this operation is

that there exists a tree T and a pair of leaf nodes (ai, aj) in T , such that when T is split

between ai and aj, the result is T1 and T2. In particular, this means that ai and aj are

consecutive leaf nodes in T1 and T2 and thus appear as consecutive corner vertices ai

and aj in the boundary polygons of both S1 and S2. The paths between ai and aj in

both S1 and S2 correspond to the path in T between ai and aj. We combine S1 to S2

along this gluing path by identifying the corresponding edges along the path. Note

that because ai and aj are consecutive in S1 and S2, then this gluing path is intrinsi-

cally straight. The output surface S is a Lang surface constructed on T . See Fig. 7.6.

Definition 7.5.1. A Lang surface is a surface formed by joining a collection of

extrusion disks and rings using the combination and extension operations.

The boundary polygon for a Lang surface S is, by definition, a doubling polygon

for a tree T , which we call its boundary tree. We say that S is constructed on T .

Note that each Lang surface is tree projectible, meaning that its projection onto

the xy-plane is a tree T ′, which is combinatorially equivalent to its boundary tree and

geometrically contains it. It should also be noted that different embeddings of the

boundary tree give rise to the same intrinsic surface. This entails, in particular, that

a continuous motion of the boundary tree in the plane corresponds to a continuous
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motion of the Lang surface that maintains the shape of each of its faces. We can then

align all of the arcs of the tree along a single line, which “lines up” the boundary

edges along a single axis. For this reason, a Lang surface is called uniaxial, a term

used by origamists to describe structures of this type.

7.5.2 Properties of zero-curvature Lang surfaces

We are primarily interested in conditions under which the operations described

above produce flat Lang surfaces, since these serve as a generalization of flat, polygo-

nal sheets of paper. For the combination operation, it is neccessary and sufficient that

both input surfaces be flat. For the extension operation, it is necessary and sufficient

that (1) the input Lang surface is flat (as we have seen, all extrusion rings are flat

by definition), and (2) the sum of the two angle sums at each vertex along the gluing

path is 2π.

s1 s2 s1s2

Figure 7.7: Constructing a Lang surface with a boundary vertex v of high curvature
using successive combination operations. (a) A single “unit” Lang surface, shown
intrinsically. (b) The boundary chains s1 and s2 match metrically and combinatorially
and we can glue a copy of the surface to itself. (c) Iteratively, we arbitrarily increase
the angle sum at v.

Negative boundary curvature. Having removed the restriction on convex bound-

ary polygons, we may now obtain flat Lang surfaces with non-convex boundary. These

may even with negative curvature along the boundary. This never occurs as the result

of an extension operation, because, as we have seen, the lower boundary of an extru-
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sion ring always has non-negative curvature; however, we can perform an arbitrary

number of consecutive combination operations, which allows us to make the angle sum

at a boundary vertex as large as we want. An example is shown in Fig. 7.7. In this

example we took a Lang surface S that flattens out to a convex polygon. The polygon

has two sides s1 and s2 that are combinatorially and geometrically equivalent, and so

we can make arbitrary copies of S and glue them together via the combination opera-

tion by gluing s1 in one copy to s2 in the first. This arbitrarily increases the curvature

at the vertex between s1 and s2. We depict these in the flat open state, rather than

in the realization as a Lang surface because it is easier to visualize what is going on.

We note two properties of flat Lang surfaces with negative curvature on the bound-

ary. First, as soon as we have introduced negative curvature to the boundary, we can

no longer apply extension operations, since to do so would necessarily involve creating

an interior vertex of negative curvature, and thus the resulting surface would not be

flat. Second, the boundary polygon of this surface is, by construction, a well-formed

doubling polygon (in the sense of Sec. 7.3).

Necessity of the geodesic Lang property. The main result of this section can

now be described: the boundary polygon PT of a Lang surface S for a tree T is

a geodesic Lang polygon for T . The proof is the same as in Lang’s original paper

[44], the main difference being that we use geodesic paths rather than straight line

segments. We reproduce it here for completeness:

Lemma 7.5.2 ([44]). Let S be a Lang surface for a tree T and PT be its boundary

polygon. Then (T, PT ) is a geodesic Lang polygon on S.

Proof. Let p denote the geodesic path between any two vertices u and v of PT . In the

realization of S, p is a polygonal path in R3. Recall that the projection of S onto the

xy-plane is an embedding of T , thus the projection of p onto the xy-plane contains

the path from u to v in T . The projection of p has length less than or equal to the
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length of p, which proves that the distance between u and v in T is less than or equal

to the distance in S between u and v.

7.5.3 The extrusion process as a generalized sweep

We have seen how each extrusion surface (the building blocks of a Lang surface)

is generated by tracing a polygon as its edges grow or shrink. Let us take an extru-

sion surface, say an extrusion ring R, that is used as a building block for a flat Lang

surface and “replay” the motion of the extrusion disk across the surface. We do this

from the bottom up. We observe that each edge of the extruding polygon, across the

face of R it generates, moves in such a way that it remains (intrinsically) parallel to

its original position. See Fig. 7.8 (left). We call this the extrusion sweep.

We now define an extrusion sweep of an entire Lang surface S recursively as

follows. In all cases the extrusion sweep starts as the boundary polygon of S. If S is

formed by an extension operation on a Lang surface S ′ and a ring R, then we first per-

form the extrusion sweep of R, and then recursively continue the extrusion sweep of S ′.

If S is formed by a combination operation on Lang surfaces S1 and S2, then the sweep

is defined by first splitting the sweep polygon along the gluing edge between S1 and

S2, and then continuing the sweep independently in each. In the base case that S is an

extrusion surface, we simply perform the extrusion sweep of S and stop. Note that by

construction the state of the extrusion sweep at time t is equivalent to the intersection

of the z = t plane with S. The edges of S are given by the trace of the vertices of the

sweep together with the splitting edges introduced for combination operations. The

faces of S are the traces of the edges of the sweep. We illustrate this in Fig. 7.8. In the

figure we show a Lang surface that is formed by combining two extrusion disks using a

combination operation and then by extending the resulting surface with an extrusion

ring. When we replay the extrusion surface “from the bottom up” we first (intrinsi-
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cally) perform a parallel sweep of of the ring, then split the sweep into two, and then

simultaneously perform parallel sweeps of the the two extrusion disks. We now show:

Lemma 7.5.3. The extrusion sweep of a Lang surface is a generalized sweep of its

boundary polygon and tree.

Proof. Suppose we perform an extrusion sweep of a Lang surface S constructed on

T as defined above. By construction, this sweep is a parallel sweep (as defined in

Sec. 7.4) of the boundary polygon PT of S with splitting events that occur at discrete

events (namely when the sweep hits the base of a part of S formed by the combination

operation). To prove the result we need to show that when we attach the appropriate

speeds to T making it kinetic and perform the extrusion sweep while shrinking the

tree that (1) it maintains the Lang property throughout the sweep and (2) a polygon

in the extrusion sweep is split only when the Lang property holds with equality.

To prove claim (1) we first note that the speed assigned to each leaf arc in T in

a generalized sweep of (T, PT ) across S is the same speed at which the same leaf arc

shrinks during the extrusion process. The claim then follows by the same argument

that geodesic Lang property holds on S.

Claim (2) then follows the definition of the extrusion sweep, and the definition of

the combination operation. The definition of the combination operation guarantees

that the gluing path is straight, and the length of the path is equal to the correspond-

ing distance in the tree. This gluing path is, by definition, what is used to split the

extrusion sweep polygon. From this and claim (1) we have that the geodesic Lang

property holds with equality for the the pair of vertices on which we split and thus

the extrusion sweep is a generalized sweep.

Having shown that the extrusion sweep of a Lang surface is a generalized sweep,

we now argue that every generalized sweep corresponds to the extrusion sweep of

some Lang surface.
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Lemma 7.5.4. Let (T, PT ) be a Lang polygon. Then there exists a Lang surface

ST constructed on T such that the extrusion sweep of ST is the generalized sweep of

(T, PT ).

Proof. To prove this we first associate an event tree with the generalized sweep of

(T, PT ) (this is, in a sense, the inverse of the construction tree from Sec. 5.2.7). Each

event is represented by a node in the tree and the sweep between events is repre-

sented by a directed arc in the tree pointing from the later event to the earlier (in

other words, arcs represent a parent relationship among events). A splitting event

results in multiple incoming edges, one for each of the split polygons in the sweep,

whereas a contraction event (that is not also a splitting event) results in one single

incoming edge. The root node of the tree is a special starting event denoting the

initial boundary polygon, and each leaf is an event at which the one of the sweeping

polygons shrinks to a single point as is stopped. Note that in the event tree we only

represent splitting events when the polygon and tree are actually split.

We now prove the lemma by induction on the depth of the event tree. Essentially

we show that each edge of the tree corresponds to an extrusion surface and each node

of the tree corresponds operations on Lang surfaces.

The base case is when the event tree has one edge. This means that only one event

occurs in the generalized sweep, namely a contraction of all edges simultaneously to

a single point. Let t be the time at which this event occurs. Now, let ST be the

extrusion disk of height t constructed on T . Let f be the face traced by an edge e

of the generalized sweep in (T, PT ). It follows from the definitions of the generalized

sweep and the extrusion disk that face traced by the corresponding edge in ST is

congruent. It follows from this that ST is the same intrinsic surface as PT and that

the generalized sweep of (T, PT ) is equal to the extrusion sweep of ST .

Now assume that the lemma is true for all generalized sweeps with event trees of

depth d, we show that it is true for those of depth d + 1. Let (T, PT ) be a geodesic
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Lang polygon for which the depth of the tree is d + 1. There are two cases we need

to handle, the first is when we split at time t = 0 in the generalized sweep of (T, PT )

and the second is when the first event occurs at some time t > 0. In the first case, the

polygon PT is split into polygons P1, . . . , Pk at time t = 0. Each of these correspond

to a sub-tree of the event tree. Thus by inductive hypothesis, there are Lang surfaces

S1, . . . , Sk corresponding to P1, . . . , Pk. The result then follows by observing that in-

verse of the splitting process on PT is the combination operation on S1, . . . , Sk. In the

second case, the root node of the event tree has in-degree one. That edge corresponds

to a sweep from PT to PT (t). By the same argument as in the base case above, the

surface traced by the sweep between PT and PT (t) is equivalent to the extrusion ring

R constructed on T where the speeds assigned to T for the extrusion process are the

same as for the generalized sweep. Then by inductive hypothesis, we have a Lang

surface S ′ constructed on T (t) and observe that applying the combination operation

to S ′ and R gives us a Lang surface ST constructed on T for which the extrusion

sweep is equivalent to the generalized sweep of (T, PT ).

Figure 7.8: The extrusion sweep of a ring (left) and of an entire Lang surface (right).

Summary. We have defined a family of surfaces, called Lang surfaces, that are

built on top of a tree. A Lang surface is formed by gluing together extrusion disks

and rings using the extension and combination operations. The boundary of a Lang

surface is a geodesic Lang polygon. We then put the family of zero-curvature Lang

surfaces into correspondence with the generalized sweeps of a Lang polygon by show-
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ing that the extrusion process that generates a given Lang surface corresponds to

a generalized sweep of its boundary polygon (Lemma 7.5.3), and that a generalized

sweep of a Lang polygon always corresponds to the extrusion process for some Lang

surface (Lemma 7.5.4). In the next section we describe an algorithm for simulating

the sweep. Finally, we show that for any given Lang polygon there is a unique gener-

alized sweep, which puts the Lang polygons into one-to-one correspondence with the

zero-curvature Lang surfaces.

7.6 Computing the Geodesic Universal Molecule

In the previous section we defined Lang surfaces, showed that the boundary of a

Lang surface is a geodesic Lang polygon, and showed that the extrusion processes is

equivalent to a generalized sweep. We now go in the opposite direction. We start with

a geodesic Lang polygon (T, PT ) and perform a particular generalized sweep of the

polygon maintaining that the sweeping polygon is a geodesic Lang polygon. So far we

have not shown that there is a unique generalized sweep for a Lang polygon; instead

we have stated that it is possible that at a potential splitting event, we may be able to

choose whether to actually split or not and in either case maintain the geodesic Lang

property. Regardless of the choice we make, we get a generalized sweep. The algo-

rithm described below simulates one particular generalized sweep–namely the one in

which we always split at a potential splitting event, even if doing so is not necessary

for maintaining the geodesic Lang property. We showed in Lemma 7.4.2 that this

sweep must exist. We use it to compute a subdivision of a geodesic Lang polygon

into vertices, edges, and faces. We call this subdivision the geodesic universal

molecule of (T, PT ). The edges of the subdivision are given by tracing the vertices

of the sweeping polygon (along with the edges introduced at a splitting event).

In this section we describe an algorithm for simulating the sweep and computing

the geodesic universal molecule. Then in Sec. 7.7.1 we prove that there exists a Lang
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surface with the same boundary Lang polygon and generalized sweep (using the con-

nection between generalized sweeps and extrusion sweeps given in Lemmas 7.5.3 &

7.5.4). Finally, in Sec. 7.7.2 we show that there is exactly one generalized sweep for

any given Lang polygon (T, PT ). This implies a one-to-one correspondence between

Lang surfaces and geodesic universal molecules.

Let us note again that the sweep in the convex case is a generalization of the

straight skeleton sweep [4]. For non-convex polygons, the straight skeleton sweep may

encounter an event in which a reflex vertex “hits” another edge of the sweep necessi-

tating a split (not to be confused with our splitting events). We emphasize that such

an event cannot occur in our case, because our sweep maintains the invariant that the

sweeping polygon is a geodesic Lang polygon, and therefore by Lemma 7.4.1 remains

simple. This implies that before such an event occurs a splitting event must precede it.

The reader should keep in mind that this sweep is performed intrinsically on the

surface of PT ; however, in the case that PT flattens out onto a simple polygon in the

plane (convex or non-convex), then we can perform the sweep explicitly in the plane.

The algorithm we describe solves the following:

Geodesic Universal Molecule Problem: Given a geodesic Lang polygon (T, PT )

compute a flat Lang surface constructed on T that is intrinsically equivalent to PT .

The algorithm. The input is a geodesic Lang polygon (T, PT ) and the output is a

planar graph G embedded on the surface of PT such that the subdivision of PT in-

duced by G is (intrinsically) equivalent to a Lang surface S. We call G the geodesic

universal molecule for (T, PT ). We assume the existence of primitive operations

for computing (intrinsic) parallel offset polygons at a given height h and a predicate

for determining whether two vertices of a polygon are a visible pair.

The algorithm follows the basic procedure similar to the case of convex, planar

Lang polygons. We make the tree T kinetic by attaching a stretching speed s(ab) to
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Figure 7.9: A visualization of the sweep of an input geodesic Lang polygon (T, PT )
including a splitting event.

each leaf arc ab. The stretching speed is determined with respect to interior angle

of a in PT , so that the arc ab maintains the same length in T (as it grows/shrinks)

as the length of the corresponding edge in the sweeping polygon. By elementary

trigonometry, we have that s(ab) must be −1/ tan(θa) where θa is the interior angle

measure of a in the sweeping polygon. We refer to the kinetic process in the tree and

parallel sweep in the polygon collectively as the sweep.

Recall that for the sweep to be a generalized sweep it maintains the invariant

that the kinetic tree and sweeping polygon form a geodesic Lang polygon (Sec. 7.4).

Maintaining this invariant requires processing two types of events. A contraction

event occurs when an arc of T and its corresponding edges in PT shrink to zero

length. In this case we remove (or contract) the zero length arcs/edges. A splitting

event occurs when for two non-consecutive corners in PT , say ai and aj, the geodesic

Lang property holds with equality (dPT
(ai, aj) = dT (ai, aj)). As a consequence of

Lemma 7.3.1, this pair (ai, aj) is a visible pair. We then split the tree between ai and

aj and split the polygon between ai and aj to obtain a left tree and polygon (TL, PL)

and right tree and polygon (TR, PR) both of which form geodesic Lang polygons with

the visible pair now on the boundary. Finally, we continue the sweep independently

in each. The output crease pattern is the union of the trace of the vertices throughout

the sweep and the splitting edges introduced at a splitting event. See Fig. 7.9 for a
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visual overview of the algorithm. The sweep process is simulated by the following

recursive procedure:

Listing 7.1: GeodesicUMAlgorithm(T, PT )

function GeodesicUMAlgorithm(T, P_T):
if (T, P_T) is a base case:

return handleBaseCase(T, P_T)

nextEvent := findNextEvent(T, P_T)

(T’, P_T’), R := AdvanceSweepAndTileRing(T, P_T, nextEvent)

if nextEvent is a contraction event:
(T’, P_T’) := Contract(T’, P_T’)
G’ := GeodesicUMAlgorithm(T’, P_T’)

else:
(T_L, P_L), (T_R, P_R) := Split(T’, P_T’, nextEvent)
G_L := GeodesicUMAlgorithm(T_L, P_L)
G_R := GeodesicUMAlgorithm(T_R, P_R)
G’ := MergeCreasePatterns(G_L, G_R)

endif

G := MergeCreasePatternWithRing(G’, R)
return G

Simulating the sweep. Each call to the recursive procedure in Listing 7.1 takes

as input a Lang polygon (T, PT ) and returns a crease pattern “filling in” PT . The

algorithm first computes the height of the next event by calling the findNextEvent

subroutine. AdvanceSweepAndTileRing advances the sweep to the time of the

next event in both the tree and in the polygon to obtain the tree T ′ and sweep polygon

P ′T . This subroutine also produces the tiling R of the annular region between PT and

P ′T given by tracing the vertices of the sweep. If the next event is a contraction event,

then the zero-length arcs and edges are contracted in T ′ and P ′T , and the algorithm is

recursively invoked to simulate the sweep in (T ′, P ′T ) and returns a crease pattern G′

on the interior of P ′T . Otherwise, the next event is a splitting event for a pair of corners

ai and aj. We note that by Lemma 7.3.1, (ai, aj) must be a visible pair. The algorithm

then splits T ′ and P ′T between ai and aj (in the tree) and ai and aj (in the polygon) to

form tree-polygon pairs (TL, PL) and (TR, PR) (for the left and right sides of the split).
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Figure 7.10: An illustration of the recursive procedure in Listing 7.1. We first compute
the ring R. Then contract or split (in this case split), fill in each side of the split
recursively, and merge this with R to produce an output.

The algorithm is recurisvely invoked on each pair to simulate the sweep in each and

obtain crease patterns GL and GR for the interiors of PL and PR (resp.). These are

then merged along the splitting edge between ai and aj to form a crease pattern G′ for

the interior of P ′T . Finally, in either case we have a crease pattern G′ for the interior of

P ′T , and the tiled ring R between PT and P ′T . We merge R with G′ to obtain a crease

pattern G on the interior of the input polygon PT and return the result. See Fig. 7.10.

Computing the events Since corresponding leaf arcs and polygon edges shrink/-

grow at the same rate, to find the next candidate contraction event it suffices to

check each leaf arc ab for the smallest value of t for which dT (a, b)− 1/ tan(θa/2) = 0

over all leaf arcs ab.

Finding the next splitting event is a bit trickier. We first note that since we

maintain that the sweeping polygon and tree form a geodesic Lang polygon, by

Lemma 7.4.1 we never get to a point where a reflex vertex “hits” another edge of the

polygon as occurs in the case of the related straight skeletons of a non-convex polygon.

By Lemma 7.3.1, the next splitting event must occur for a visible pair; however, as the

sweep progresses the set of visible pairs changes, and there is no guarantee that the

current visible pairs will be visible at the next splitting event. Let P̄T denote the open,

flat realization of PT , āi be the position of ai in P̄T , and V̄ai
denote the velocity of āi in
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the sweep of P̄T . For each pair of corners (ai, aj) find the smallest value of t satisfying

||(āi + tV̄ai
)− (āj + tV̄aj

)|| = dT (ai, aj)− t(1/ tan(θai
/2) + 1/ tan(θaj

/2)). (7.6.1)

The left side of Equation 7.6.1 is the Euclidean distance between the two vertices in the

flattened sweep at time t and the right side is the corresponding tree distance in the

shrinking tree. Solving for t gives the time at which the Euclidean distance becomes

equal to the shrinking tree distance. For a visible pair the geodesic distance in PT

and the Euclidean distance in P̄T are identical. Thus Eq. 7.6.1 is valid for checking

the geodesic Lang property for any visible pair. We still do not know which pair will

be visible. We check this naively by sorting the times t satisfying Equation 7.6.1 over

all pairs of non-consecutive corners in PT . Then, in increasing order over the times ti

of these candidate events, advance the sweep to each time ti, and check whether the

corresponding pair of corners (ai, aj) is visible in the sweep polygon at ti. The first pair

we find (smallest value ti) is the pair for the candidate splitting event. The next

event is whichever candidate event (contraction or splitting) occurs at a smaller time t.

Base cases. The base case is when the next event is a contraction of all leaf arcs

simultaneously to a single node. (And the degenerate case where all leaf arcs contract

simultaneously leaving a path, rather than a single node, in the tree.) This can only

occur if all arcs are shrinking, and thus the sweeping polygon is convex. This is the

same as in the planar, convex case and occurs if and only if all the angle bisectors

intersect at a single point.

Analysis. The recursive algorithm we describe above does not simulate all parts

of the sweep simultaneously. When the sweep is split into two it first recursively

simulates the sweep on the interior of one side of the split, and then simulates the

sweep on the interior of the other side of the sweep. We store the output universal
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molecule G, and the tiled ring R as a doubly-connected edge list (DCEL) [5]. Using

this structure, computing the ring R, splitting a polygon, and merging crease patterns

trivially requires O(n) time. Contracting an edge requires O(1) time. Thus, the main

work of each recursive invocation is computing the time of the next event.

We analyze here the naive method. Let n denote the number of nodes in the input

tree. To find the next event, we first compute the time at which each edge would

contract (assuming no other event occurred first) in constant time per edge. The

minimum is the candidate next contraction event. This takes O(n) time. Then, for

each pair of non-adjacent vertices, we compute the time at which Eq. 7.6.1 is satisfied

to obtain a list E of candidate splitting events. We then sort the list, which takes

O(n2 log n) time (since there are O(n2) candidate splitting events). We then look at

the first candidate splitting event, compute a representation of the polygon at that

event, and check whether the candidate splitting pair of vertices is still visible when

the sweep reaches that point. This takes O(n) time using standard techniques. If the

candidate splitting pair is visible, then we have found the candidate next splitting

event. Otherwise, we check the second candidate event in E, and so on. We continue

until we have either found a candidate splitting event for which the pair is visible, or

the event time of the candidate splitting event we are considering is greater than the

event time of the next candidate contraction event. In the worst case, then, finding

the time of the next event requires O(n3) time, since there are O(n2) candidate split-

ting events, and testing the visibility pair in each requires an additional O(n) time.

Thus one invocation of the algorithm takes O(n3) time total and O(n2) space.

To bound the running time of the algorithm, then, we need to bound the number

of events that occur during the sweep. In order to reduce the number of events that

occur, it is convenient to compute only the traces of the corner vertices. In other

words, we compute the UM-backbone for the geodesic universal molecule as we did

in Ch. 6. The traces of the markers can then be computed in a post-processing step.
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By the same reasoning as in the convex case, the number of actual contraction and

splitting events is O(n) leading to an O(n4) time algorithm. We note, however, that

the naive method described above recomputes almost all of the same candidate split-

ting events on each recursive call. Using the same techniques as in Ch. 6 this can be

improved to O(n3 log n) time.

7.7 Proof of main theorem

We now prove the main theorem:

Theorem 7.1.1. Let PT be a doubling-polygon for a tree T on a flat, disk-like

piecewise-linear surface D. Then a Lang surface S constructed on T and isomet-

ric to PT exists (and is unique) if and only if (T, PT ) is a geodesic Lang polygon.

Proof Outline. Let (T, PT ) be a geodesic Lang polygon. We show in Lemma 7.7.2 in

the next section that the subdivision G returned by Alg. 7.1 is equivalent to a Lang

surface ST constructed on T with boundary polygon PT . In particular this proves

that for any geodesic Lang polygon there exists a Lang surface constructed on T

which has PT as its boundary polygon, namely the Lang surface that is equivalent to

the geodesic universal molecule of (T, PT ).

We have already established a correspondence in the other direction via Lemma 7.5.2,

which shows that the boundary of each Lang surface is a geodesic Lang polygon.

It remains to establish a one-to-one correspondence, which we do by showing that

there exists exactly one generalized sweep for any given Lang polygon, which implies

that for a given Lang polygon (T, PT ), there exists a unique Lang surface ST con-

structed on T that has PT as its boundary. We prove this in Lemma 7.7.3 in Sec. 7.7.2.

Thus, by the one-to-one correspondence established above, if we are given a

geodesic Lang polygon (T, PT ), then there exists a Lang surface ST constructed on

T that is isometric to PT , and by Lemma 7.5.2, if we start with a Lang surface ST

constructed on T and isometric to PT , then (T, PT ) is a geodesic Lang polygon.
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7.7.1 Proof of Algorithm Correctness: Geodesic Universal Molecule Crease

Patterns are Lang surfaces

We now prove that the algorithm in Listing 7.1 correctly simulates a generalized

sweep of the input (T, PT ) and that the resulting subdivision G returned by the algo-

rithm is equivalent to a Lang surface ST constructed on T with boundary polygon PT .

Lemma 7.7.1. Algorithm 7.1 simulates a generalized sweep.

Proof. By definition the algorithm computes advances a parallel sweep in PT and

grows/shrinks the leaf arcs of T with the same speed assigned to each leaf arc as in the

definition of a generalized sweep. Thus what we need to show is that the sweep main-

tains the geodesic Lang property throughout this sweep (i.e. is a Lang sweep). Assume

not. Then at some intermediate point in the simulated sweep between two consecutive

events processed by the algorithm the Lang property is violated. But the algorithm

always processes contraction events it encounters, and any splitting events for visible

pairs (since Eq. 7.6.1 gives the time of a splitting event). Therefore, the Lang property

was violated for a non-visible pair but not for a visible pair contradicting Lemma 7.3.1.

Therefore the sweep simulated by the algorithm is a generalized sweep.

Lemma 7.7.2. The subdivision G returned by Alg. 7.1 on a geodesic Lang polygon

(T, PT ) is the same subdivision of PT into vertices, edges, and faces as a Lang surface

ST constructed on T with PT as its boundary polygon.

Proof. By Lemma 7.7.1 the algorithm simulates a generalized sweep of (T, PT ). The

trace of the vertices of the sweep together with the splitting edges introduced at

splitting events induce the subdivision G. By Lemma 7.5.4, this generalized sweep

is equivalent to an extrusion sweep of a Lang surface ST constructed on T with PT

as its boundary polygon. By definition all the edges of ST are given by the traces of

the vertices of the extrusion sweep and the splitting segments introduced at splitting
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events. Thus G induces the same subdivision of PT into vertices, edges, and faces as

those given by the construction of ST .

7.7.2 Uniqueness

Thus far, we have seen that the vertices, edges, and faces of each flat Lang surface

are defined by an extrusion sweep, which, as we saw in Lemma 7.5.3, is a generalized

sweep of the surface’s boundary polygon and tree. We have also seen that any general-

ized sweep of a flat geodesic Lang polygon is equivalent to an extrusion sweep of some

Lang surface. In Sec. 7.6, we gave an algorithm for producing at least some of the

flat Lang surfaces, by simulating one particular generalized sweep of a Lang polygon,

namely the one in which we always process splitting events, regardless of whether or

not it is necessary to do so to maintain the geodesic Lang property on the sweep.

We now show that this is the only possible generalized sweep of a flat geodesic Lang

polygon. In other words, there is no “choice” to make. If we fail to split the polygon

and tree at a potential splitting event, then whatever the resulting sweep is it is not a

generalized sweep, since it fails to maintain the geodesic Lang property. Summarizing,

Theorem 7.7.1. Let (T, PT ) be a flat geodesic Lang polygon. Then there exists a

unique generalized sweep of (T, PT ).

We prove this presently but first note that as a direct consequence we have the

following, which is the final step in the proof of the Main Theorem:

Lemma 7.7.3. Let (T, PT ) be a flat geodesic Lang polygon. Then there exists a unique

Lang surface ST constructed on T that is isometric to PT .

Proof. Assume not. Then there are at least two different Lang surfaces with PT as its

boundary, and thus two different extrusion sweeps. But by Lemma 7.5.3, these con-

stitute two different generalized sweeps of (T, PT ), contradicting Theorem 7.7.1.
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The remainder of this section concerns proving Theorem 7.7.1. Our main work

is to show that when a generalized sweep encounters a potential splitting event, it

must actually split in order to maintain the geodesic Lang property. We note that

this proof is significantly more involved than in the convex case. The proof is based

on elementary geometry and vector calculus and requires a careful case analysis of 36

possible cases, only one of which is the convex case. We first outline of the proof of

Theorem 7.7.1 and then fill in the details in the theorems and lemmas that follow.

Proof Outline of Theorem 7.7.1. The possibility of the existence of multiple general-

ized sweeps for the same geodesic Lang polygon (T, PT ) comes from our distinction

between potential and actual splitting events. We have thus far allowed that so long

as the geodesic Lang property is maintained we do not care if the sweep is actually

split at each potential splitting event. There are two possibilities we need to consider

regarding potential splitting events that may give rise to multiple generalized sweeps

for the same geodesic Lang polygon.

First, it may be the case that if multiple potential splitting events occur simul-

taneously, then actually splitting across one event removes one of the others as a

potential splitting event. Theorem 7.7.2 shows that this does not occur. Thus, when

we arrive at simultaneous potential splitting events (u,v) and (w,x), splitting at one,

say (u,v) leaves the other as a potential splitting event. In other words both w and

x are in the same split polygon/tree after splitting at (u,v) which entails that we still

have a potential splitting event, since splitting does not effect the distances between

w and x in the either the polygon or tree.

Second, it may be the case that we can simply ignore some potential splitting

events. This would mean that there is a potential splitting event for a pair (u,v) at

some time t such that immediately before the event and immediately after the event

the geodesic Lang property is satisfied if we do not split. Thus we can choose to

either actually split or not to obtain different generalized splitting events. We show
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in Theorem 7.7.3 that this is not the case–that whenever we encounter a potential

splitting event we must split in order to maintain the geodesic Lang property.

Thus, together with Theorems 7.7.2 & 7.7.3, we have that the generalized sweep

of a geodesic Lang polygon on a flat surface is unique.

Event order does not matter. We now show that when simultaneous potential

splitting events occur, choosing to split across one of the events does not invalidate

any of the others as potential splitting events. This completes the first part of the

proof of Theorem 7.7.1 above.

Theorem 7.7.2. Let (u,v) and (w,x) be simultaneous potential splitting events en-

countered at some time in a generalized sweep of a Lang polygon. Then after actually

splitting for one, say (u,v), the other (w,x) remains a potential splitting event.

Proof. Let T and PT denote the tree and sweeping polygon at the time of the event.

Let (TL, PL) and (TR, PR) denote the split polygons obtained by splitting (T, PT ) at

(u,v). Then without loss of generality, either both w and x are in PL or w is in PL

and x is in PR. In the first case, the distances dPT
(w,x) and dT (w, x) are not changed

by the split and thus (w,x) remains a potential splitting event. In the second case,

we note that the cyclic ordering of u,v,w,x along the boundary of PT is (without

loss of generality) u,w,v,x. In other words, the pairs (u,v) and (w,x) cross, which

contradicts Lemma 7.7.4 below.

The main work of the proof above is Lemma 7.7.4 below, which shows that poten-

tial splitting events do not cross. We note that the proof is the same as Lemma 5.5.1

since it relies only on properties of the tree and the triangle inequality. Thus we have:

Lemma 7.7.4. Potential splitting pairs do not cross in a geodesic Lang polygon.

The sweep must split at all potential splitting events. We now show that

when a generalized sweep encounters a potential splitting event, it necessarily actually
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splits at the event. Otherwise, we will show, the sweep fails to maintain the geodesic

Lang property and thus is not a generalized sweep of a geodesic Lang polygon. This

completes the remainder of the proof of Theorem 7.7.1. The proof is significantly

more involved than in the convex case. This is because in the convex case, it is fairly

straightforward to show that the distances in the plane between vertices of the sweep-

ing polygon always decreases at a rate faster than the corresponding distances in the

tree. In the present case, however, distances between points in the sweeping polygon

and in the tree may be either increasing or decreasing (depending on the geometry),

and it is not necessarily the case that tree distances decrease slower than distances

in the sweeping polygon. For this reason, a more careful case analysis is needed. We

now prove:

Theorem 7.7.3. A generalized sweep of a Lang polygon always splits at each potential

splitting event.

Proof. Suppose that we reach a potential splitting event (ai, aj). We prove the the-

orem by comparing the rates at which the distances are changing in the sweeping

polygon and tree. Let dS(t) denote the distance at time t between ai and aj in the

sweep and dT (t) denote the distance between the corresponding leaf nodes ai and aj in

the kinetic tree. Let d(t) denote the difference between them, i.e. d(t) = dS(t)−dT (t).

For simplicity, we will shift the event times so that the event occurs at time t = 0,

and thus dS(0) = dT (0), or equivalently d(0) = 0. Let ∆t > 0 be a small value near

0. Just before the event (i.e. at time −∆t), the geodesic Lang property holds, and so

dS(−∆t) > dT (−∆t), and thus d(−∆t) > 0. We want to show that just after the event

the geodesic Lang property is violated, i.e. d(∆t) < 0 for all small enough ∆t. To do

this, we need to show that d(t) is not at a local minimum at t = 0. It suffices to show

that it is not at a critical point, meaning that its derivative d′(0) = d′S(0)−d′T (0) 6= 0,

or equivalently d′S(0) 6= d′T (0). We prove this in Lemma 7.7.5 below.
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Now assume that a generalized sweep encounters a potential splitting event but

does not split. By Theorem 7.7.2, we have that the potential event cannot be re-

moved by actually splitting for some other simultaneously occurring potential splitting

event. But then, by the discussion above we have that immediately after the event,

the geodesic Lang property is violated, contradicting that our sweep is a generalized

sweep.

Lemma 7.7.5. The instantaneous rate of change in the geodesic distance between

two non-consecutive visible corners ai and aj in the parallel sweep is not equal to the

instantaneous rate of change in the corresponding distance in the kinetic tree.

Proof Set-up and Outline. Here we only outline the proof of Lemma 7.7.5 and

give the geometric set-up. The details of the proof are then organized into the lemmas

and theorems below. We then give the full proof at the end this section starting from

the paragraph titled “Proof of Lemma 7.7.5”.

Initial set-up. As in Theorem 7.7.3, we denote the distance function between ai

and aj in the sweep by dS(t) and the distance function in the tree between ai and aj

by dT (t). To prove the theorem, we show that the instantaneous rate of change in

the geodesic distance, d′S(0) is not equal to the instantaneous rate of change, d′T (0)

in the tree. In principle our argument holds for all values of t so long as (ai, aj) is a

visible pair.

Overview. Instead of deriving a closed form for d′S(t) and d′T (t), we show in Lem-

mas 7.7.6 & 7.7.8 how to determine the value of d′S(0) and d′T (0) at t = 0 geometrically.

We show that the values of d′S(0) and d′T (0) are determined by two vectors defined at

each vertex, which we label Vi and Wi at ai and Vj and Wj at aj. Then, by analyzing

the relative magnitudes of Vi and Wi and the relative magnitudes of Vj and Wj we

prove that d′S(0) 6= d′T (0). To do this we first initiate a study of the relative magni-
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tudes of Vi and Wi at ai, from which we derive 6 distinct cases, labelled A–F. These

depend on whether ai is convex or not in the polygon and the angle made between

the edges incident to ai and the visibility segment aiaj. We then complete the proof

of the lemma by showing in all 36 possible cases (where both vertex ai and vertex aj

may be any of the cases A–F), d′S(0) 6= d′T (0).

Notation. In the remainder of this section we use upper cased non-bold type with

subscripted i or j to denote vectors, such as Ui or Uj, defined at ai and aj resp. We

denote the magnitude of a vector Ui by its lower-case ui = ||Ui||.

Flattened ε-patch. In order to simplify the discussion that follows we “flatten out”

the polygon and sweep in the plane. This flat realization, as we have seen, may have

self-intersections; however, if we restrict ourselves to a small enough patch, say all

points within some small ε distance of the visibility segment between ai and aj, then

the patch is realized in the plane as a small planar region without self intersections.

See Fig. 7.11. In the remainder we use this “local” view of the flat realization in the

plane, which allows us to use elementary plane geometry to analyze the geometry

near the visibility segment.

ai
aj

ai

Ui
aj

Vi
Wi ai

aj
Ui

Vi
Wi

{
ϵ

ai

aj

Ui

Vi
Wi

Figure 7.11: An illustration of the
flattening out of a small ε band
around the visibility segment be-
tween ai and aj. The dashed line
denotes the visibility segment, the
dotted line denotes the sweep, and
the two arrows denote the motion
vectors of ai and aj in the unit-
speed parallel sweep.

Deriving the vectors Ui, Vi and Wi. Let Ui denote the instantaneous velocity

vector of ai. By definition, Ui points along the interior angle bisector at ai. We

now use Ui to define two vectors, Vi and Wi at ai. Project Ui onto the visibility
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Figure 7.12: An illustration of the vectors defined in the proof of Lemma 7.7.5 for the
vertex ai in three different situations. The left shows the convex case. The middle
shows a reflex case in which ai is moving towards aj. The right shows a reflex case
in which ai is moving away from aj. Ui denotes the motion vector of ai along the
interior angle bisector in the sweep. Vi is the projection of Ui onto the line between
ai and aj, and Wi is the projection of Ui onto the line supporting one of its edges.

segment aiaj. Let L denote the supporting line through one of the edges incident

to ai. Project Ui onto L to obtain Wi. Note that because Ui points along an angle

bisector, and because we are really only interested in the magnitude wi and not the

direction, it does not matter which edge incident to ai is chosen to construct L (the

magnitude wi is the same regardless of the choice). Examples are shown in Fig. 7.12.

We define vectors Uj, Vj, and Wj at aj similarly.

What remains. In Lemma 7.7.6 we show how d′S(0) relates to the magnitudes vi

and vj. In Lemma 7.7.8 we show how d′T (0) relates to the magnitudes of wi and wj.

We end with the proof of Lemma 7.7.5. We now summarize a basic property from

elementary vector calculus:

Lemma 7.7.6. The instantaneous rate of change in the distance between ai and aj

in the polygon is given by

d′S(0) = ±vi ± vj (7.7.7)

where the sign in front of vi (resp. vj) is ‘+’ if Vi points towards aj (resp. Vj points

towards ai), otherwise the sign is ‘-’.
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We now derive d′T (0):

Lemma 7.7.8. The instantaneous rate of change in the distance between ai and aj

in the tree is given by

d′T (0) = ±wi ± wj (7.7.9)

where the sign in front of wi (resp. wi) is ‘-’ if vertexai (resp. aj) is convex in the

polygon, ‘+’ otherwise.

Proof. The vector Wi is the orthogonal component of ai’s instantaneous motion to-

wards the other endpoint of one of the edges incident to ai. The proof then follows

from the fact that we defined the speeds at the leaf arcs so as to maintain the length in

the tree between edges in the sweeping polygon and their corresponding leaf arcs.

Characterizing the relative magnitudes of vi and wi. We now characterize the

relative magnitudes of Vi and Wi, and the signs in front of each in Eqs. 7.7.7 & 7.7.9.

There are six possible cases, which we label A–F, which depend on whether ai is con-

vex or not, and the angle made by the visibility segment aiaj with the edges incident

to ai. The construction of cases A–F, detailed shortly, is illustrated in Fig. 7.13 and

the relative magnitudes of vi and wi in each case is summarized in Table 7.1 below.

Those for aj are similar. Using the table together with Eqs. 7.7.7 & 7.7.9 allows us to

determine the values of d′S(0) and d′T (0) based on which cases A–F are ai and aj. For

instance, if ai is case B and aj is case D, then using the table and the two equations

we see that d′S(0) = vi − vj and d′T (0) = wi + wj.

vi?wi sign(vi) in d′S(0) sign(wi) in d′T (0)
A vi > wi - -
B vi < wi + +
C vi < wi vi = 0 +
D vi < wi - +
E vi = wi - +
F vi > wi - +

Table 7.1: A summary of the
relationship between the magni-
tudes vi and wi of the vectors Vi
and Wi from Fig. 7.12 organized
by cases A–F (A is the convex
case, cases B–F are illustrated in
Fig. 7.13) and the sign in front
of each in d′S(0) and d′T (0) for all
possible cases of the vertex ai.
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C

EF

R1

R2
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ai

aj

Ui

Wi

Vi

Ui

ai

Figure 7.13: Constructing the five non-convex cases B–F used to define the cases
in the case analysis in the proof of Lemma 7.7.5. From left to right, First: Extend
the lines supporting the two edges incident to a vertex (dashed). Second: The line
(dashed) orthogonal to the interior angle bisector (gray vector). Third: The wedge
regions R1 through R3 defined by the lines extending the edges and the line orthogonal
to the interior angle bisector (the wedges to the left of the bisector are symmetric
to those on the right). Fourth: The labelling of the cases to the right of the interior
angle bisector (the left is symmetric). Fifth: An example where the position of aj
follows in region R2, making ai case D. In this case the length of Wi is greater than
the length of Vi.

Constructing cases A–F. Case A is when ai is convex, cases B–F are when aj is

non-convex. To construct cases B–F, first extend lines through the edges incident to

ai. Next construct the line through ai perpendicular to the interior angle bisector of

ai. See the first two parts of Fig. 7.13. These three lines together with the interior

angle bisector divide the wedge around ai into six wedge “slices”. Those on the left

side of the angle bisector are symmetric to those to the right, so we label them R1,

R2, and R3 symmetrically and in the remainder concentrate on the right side–see the

center of Fig. 7.13. Case B is when aj falls in the wedge R1. Case C is when it falls

on the line between R1 and R2. Case C is when it falls in R2. Case E is when it falls

on the line between R2 and R3. Case F is when it falls in R3. We now have:

Lemma 7.7.10. Table 7.1 summarizes the relationship between vi and wi and the

signs in front of each in Eqs. 7.7.7 & 7.7.9.

Proof. The lines extended in the construction of regions R1, R2, and R3 are precisely

those where relative magnitudes and the signs in Eq. 7.7.7 change. Extending the lines

through the edges in the construction of R1 through R2 divides the plane into four

regions (see the left-most illustration in Fig. 7.13). One is outside the the polygon.
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The next two are incident to the two edges incident to ai. In these, by elementary

geometry it follows that vi < wi. In the remaining, vi > wi, and if aj lies on the

line through one of the edges then vi = wi. The line through ai perpendicular to the

interior angle bisector is the dividing line such that if aj is below it (i.e. in R1), then

ai is moving away from aj (and hence vi has a ‘+’ in Eq. 7.7.7). If aj is on the line,

then ai is moving perpendicularly relative to ai and aj and so vi = 0. Otherwise aj

is moving towards it. The table simply summarizes these facts.

Proof of Lemma 7.7.5. We now complete the proof of Lemma 7.7.5 by showing that

for all possible cases A–F of ai and all possible cases A–F of aj, the instantaneous

rate of change in the geodesic distance d′S(0) is not equal to the instantaneous rate

of change in the tree.

Proof. We have 36 cases to consider, depending on which cases A–F are the two ver-

tices ai and aj. Each case is labelled with the two case letters for ai and aj. For

instance, if vertex ai is B and aj is D, then we label it BD. Note that symmetric

cases use the same proof, so we only list cases in lexicographical order (BD and DB

are the same so we use BD). In each case we start by using Table 7.1 to derive d′S(0).

We then use the relationship between vi and wi and the relationship between vj and

wj to show that d′S(0) 6= d′T (0) (which is found by plugging in the appropriate values

from Table 7.1 into Eq. 7.7.9).

Below we prove each case on a single line, however, to give the reader a full sense

of the line of proof we do one expanded case here, the case where ai is B and aj is E

(i.e. case BE). Looking up B for ai and E aj in Table 7.1 and pluggin the appropriate

values into Eqs 7.7.7 & 7.7.9 we have that d′S(0) = vi − vj and d′T (0) = wi + wj. We

now start with d′S(0) and show that it is not equal to d′T (0). d′S(0) = vi− vj < wi− vj

since by Table 7.1 vi < wi for case B. wi − vj < wi + wj since all magnitudes are

positive, and thus subtracting vi from wi is less than adding any positive value to wi.
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But wi + wj = d′T (0), and thus d′S(0) < d′T (0). We now show the full case by case

analysis. All inferences are either derived from Table 7.1 as above, or follow from the

fact that all magnitudes are positive.

• AA: d′S(0) = −vi − vj < −wi − vj < −wi − wj = d′T (0).

• AB, AC: d′S(0) = −vi + vj < −wi + vj < −wi + wj = d′T (0).

• AD, AE, and AF: d′S(0) = −vi − vj < −wi − vj < −wi + wj = d′T (0).

• BB, BC: d′S(0) = vi + vj < wi + vj < wi + wj = d′T (0).

• BD: d′S(0) = vi − vj < vi + wj < wi + wj = d′T (0).

• BE, BF: d′S(0) = vi − vj < wi − vj < wi + wj = d′T (0).

• CC: d′S(0) = 0. d′T (0) = wi + wj > 0.

• CD, CE, CF: d′S(0) = −vj < wj < wi + wj = d′T (0).

• DD, DE, DF, EE, EF, FF: d′S(0) = −vi − vj < 0 < wi + wj = d′T (0).

The remaining cases are symmetric. In all cases we have shown that d′S(0) 6= d′T (0),

which proves that d(t) = dS(t) − dT (t) is not at a local minimum at t = 0 and thus

to proceed in the sweep constitutes a violation of the geodesic Lang property.

Summary. We have shown that the instantaneous rate of change in the geodesic

distance between ai and aj is not equal to the instantaneous rate of change in

the tree distance between ai and aj. In particular, this shows that the derivative

d′(0) = d′S(0) − d′T (0) does not vanish, meaning that d(0) is not a critical point.

Since d(0) is not a critical point, then to continue the sweep past a splitting event

without splitting results in a violation of the geodesic Lang property. This completes

the proofs of Theorems 7.7.3 & 7.7.1. Thus for any given flat geodesic Lang polygon,

there exists a unique generalized sweep fro the polygon. This sweep is precisely the
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sweep simulated by the geodesic universal molecule algorithm. Furthermore, together

with Lemmas 7.7.1 and 7.5.4 this entails that there is a unique geodesic Lang surface

constructed on T having PT as its boundary and the subdivision of PT into vertices,

edges, and faces given by ST is the geodesic universal molecule of PT . This in turn

is the final ingredient in the proof of the main theorem, Theorem 7.1.1.

7.8 Conclusion

In this chapter we generalized the universal molecule algorithm to geodesic Lang

polygons which form the boundary of piecewise-linear disk-like surfaces in R3 with

zero-curvature. Restricted to simple, non-convex polygons in the plane our algorithm

extends the TreeMaker algorithm to cases where before it could not produce an out-

put. A further open problem is an extension of the algorithm to surfaces of non-zero

curvature. Our Lang surfaces are more general and can be used to construct surfaces

with non-zero curvature. Can the algorithm be extended to compute these from the

boundary polygon? If we are given a geodesic Lang polygon drawn on a surface with

singular points of non-zero curvature, can we always compute a geodesic universal

molecule on the polygon that is equivalent to some Lang surface?
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CHAPTER 8

RIGIDITY OF UNIVERSAL MOLECULES

In the previous chapters we have developed algorithms for the straight skeleton

(Ch. 4 and the universal molecule (Chs. 5 & 6) and generalized the universal molecule

to non-convex polygons (Ch. 7). Our motivation for studying these structures comes

primarily from computational origami. In addition to the algorithmic questions we

have investigated thus far, a further important question in computational origami is

the rigid folding question. Given two realizations of the same origami crease pat-

tern, for instance the universal molecule in its flat planar state and in its folded Lang

surface state, does there exist a motion between the two that preserves the surface

without cutting it while maintaining the geometry on each face? Possible answers to

this question are: there never exists such a motion, there always exists such a motion,

or there sometimes exists such a motion, if certain conditions are met.

Prior to this work it was known that in the special case that the universal molecule

only encounters contraction events (i.e. it is equivalent to the straight skeleton with

added perpendiculars), then there always exists a motion between the initial open,

flat state and the “folded” Lang surface state [27]. Such cases, however, are extremely

rare. In this chapter we show that for a larger class of polygons the initial open, flat

state is completely rigid–there does not exist a motion between it and any other non-

trivial realization; and the Lang surface state is stable, in the sense that all of the

motions it gives rise to correspond motions of the underlying tree, but it can never

“open up” in the sense that it always projects onto the tree.

The work in this chapter has previously appeared in [17].
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8.1 Introduction

Paneled origami. In this chapter we work with the universal molecule as a flat-

faced origami1. The creased “paper” behaves like a mechanical panel-and-hinge struc-

ture, and for this reason we refer to it as paneled origami. The central question

we are concerned with for a paneled origami is what motions exist that allow panels

to rotate around their edges while maintaining their shape.

Deployable structures. Paneled origami models one of origamis main application

areas–so called deployable structures. Deployable structures are structures built for

real world uses that fold up for various purposes. For instance, one problem is to

design an array of solar panels that are connected together along hinges that can be

folded up into a small container. This allows the solar array to be more easily be

packed into a space ship and launched into orbit. Once in orbit it can be unfolded

into its deployed state. In this (and related) applications, each panel is inflexible

(rigid)–it always maintains its shape as a flat polygon. Motion is allowed only at the

hinges connecting panels. This is in opposition to paper origami, since paper can not

only fold along the “hinges”, or creases, but can bend, warp, and stretch throughout

a folding process. Understanding the rigid foldability of an origami design tool is

important to understanding the possible scope of its applications.

Our goal. Our goal in this chapter is to address a major question in the foldability

of the universal molecule: when is the universal molecule, when viewed as such a

paneled origami, “foldable”? Neither an efficient algorithm nor a good characteriza-

tion are known for this decision problem, with the exception of single-vertex origami

[50, 49] and some disparate cases, including the “extreme bases” of [27] in which the

universal molecule is identical to the straight skeleton.

1Sometimes called rigid origami in the literature. We avoid this terminology because of its
potential for ambiguity in the context of this paper.
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Our results. We show that only certain special crease patterns have a chance to be

foldable and identify a combinatorial pattern of a universal molecule (captured in an

associated outerplanar graph) that forces it to be rigid in the open state and stable

(not unfoldable) in the folded Lang surface state. This unexpected behavior of the

algorithm puts in perspective some of the most relevant properties of the computed

output, and opens the way to design methods that may overcome these limitations.

Our proof technique, called rigidity transport, is algorithmic in nature and, to the

best of our knowledge, new. As is the case with similar questions in combinatorial

rigidity theory, a complete characterization of rigid, resp. stable patterns appears to

be substantially more difficult; we leave it as an open question.

Non-degeneracy. In this chapter we deal only with universal molecules that are

not degenerate. By non-degenerate, we mean a universal molecule which has no

contraction events (other than the base case contraction events) and in which no

events occur simultaneously during the parallel sweep process (see Ch. 5). Such uni-

versal molecules have nice properties which we detail in the next section. Further,

any small perturbation of the coordinates of a degenerate polygon results in a non-

degenerate one.

8.2 Preliminaries

Outerplanar graphs. An outer planar graph is a planar graph which can be drawn

in the plane such that all vertices are incident to the outer face and no two edges

cross. An outer planar graph is made up of a cycle and edges between vertices of the

cycle which do not cross. Label the vertices around the cycle in counter-clockwise

order by 1, ..., n, then two edges (a, b) and (c, d) cross if c is (cyclically) between

a and b and d is (cyclically) between b and a (or vice versa). Such a graph has a

canonical face set which is given by any embedding of the graph in which all vertices

are incident to the outer face. We will refer to this simply as the face set for the outer
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planar graph (without referring to any specific embedding). We call a face which is

not incident to the outer face in such an embedding internal.

Splitting graph. We now associate a particular outer planar graph with a non-

degenerate universal molecule, which we call the splitting graph. The initial graph

is the polygon itself. Each time a splitting event occurs between two vertices in the

sweep we add an edge between the corresponding nodes in the splitting graph. See

Fig. 8.2. The splitting graph is outerplanar because splitting pairs do not cross at

any point in the sweep (Lemma 5.5.1).

Configuration space, flexibility, and rigidity. Given a realization of an origami

pattern, new “trivial” realizations may be obtained by applying euclidean translations

and rotations to the entire realization, but the overall “shape” of the realization re-

mains unchanged. Factoring out translations and rotations gives us the configuration

or state of the origami. The space of all possible states is the configuration space,

which is, more formally, the space of all realizations modulo euclidean translations

and rotations. Paths in the configuration space correspond to continuous motions

of the origami pattern which keep the faces as rigid panels which rotate around the

edges acting as hinges. A path in the configuration space is called a flex. An origami

pattern in a given state is flexible if there exists a flex of the pattern, otherwise it

is rigid. Rigid states are isolated points in the configuration space–given any other

state, no path exists between that state and any rigid state. We use configuration

states to define the following concepts which will be used throughout the paper.

Flat and open-flat states. If all faces of a state of the origami are coplanar, then

we say that the origami is in a flat state. If an origami is flat the dihedral angle of

each internal edge of the origami pattern is either 0 or π. The converse is also true.

If further, the dihedral angle at each internal edge is π, we say that the base is in the

open, flat state.
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Figure 8.1: Rigid crease pattern. The mountain (blue dot-dash)/valley (red dot) assign-
ment indicates the pattern of the flat-folded Lang base configuration.

8.3 Overview of the Main Results

We have seen that Lang’s algorithm produces origami patterns that have a folding

as Lang surfaces (Ch. 5). We first show that many of these patterns in the open, flat

state are in fact rigid: they are isolated points in the origami’s configuration space,

and therefore do not fold to anything else. The “folded” Lang surface lies in a different

component of the configuration space, and, due to its intrinsic tree-like structure, it

is obviously flexible. However, we show that it too is isolated, but in a different way,

which we call stable. Such distinguishing properties, although possibly experienced

“intuitively” by origamists, have been neither previously identified nor proven in the

literature.

Our main result in this chapter is:

Theorem 8.3.1. (Rigid Universal Molecules) There exist universal molecules

which are rigid in the open-flat state.

The existence of rigid universal molecules is based on the universal molecule in

Fig. 8.1. The coordinates are generic, i.e. the pattern does not change under small

perturbations. The proof, given in the next section, is also indicative of the fact that

its rigidity is not a simple artifact of some rare occurrence or numerical imprecision.

We generalize this example in two ways, first by turning it into a sufficient cri-

terion for detecting the rigidity of the crease pattern, then by extending it to the
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Figure 8.2: A metric tree (left) with two compatible Lang polygons, each one with its
universal molecule pattern and associated splitting graph. In the first case, all the faces
of the splitting graph are exposed. In the second case, one triangular face is isolated from
the polygon boundary. Tiling colors indicate edge types (splitting edges (black), bisectors
(green), perpendiculars(red)).

corresponding Lang surface state. This generalization leads to a family of universal

molecules distinguished by the existence of a special degree-6 vertex which we call an

isolated peak (defined in Sec. 8.5). Informally, an isolated peak is a degree-6 vertex

of the crease pattern which is “isolated” from the boundary in the manner of the

basic example from Fig. 8.1: none of the creases emanating from the vertex reach the

boundary of the crease pattern.

Theorem 8.3.2. (Universal Molecules with isolated peaks are rigid) If a

universal molecule has an isolated peak, then it is rigid in the open-flat state.

Lang surfaces, however, are always flexible in their folded state, inheriting the

same degrees of freedom as the trees they are constructed on. A foldable state should

be reached through a continuous deformation path from the initial open, flat state.

But by Theorem 8.3.2, we know that the universal molecules with isolated peaks lead

to Lang bases that cannot be reached from the open state. The question then is can

they be reached from some other interesting intermediate configuration? We prove

that this is not the case.

Theorem 8.3.3. (Stability of Lang Lang Bases with isolated peaks) All rigid

folding motions of a Lang surface correspond to motions of the underlying tree. In
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other words, the Lang surface cannot be “unfolded” all of its faces remain perpendic-

ular to a common plane throughout any rigid folding motion.

8.4 Rigid Universal Molecules

In this section we prove Theorem 8.3.1 by showing that the universal molecule

pattern from Fig. 8.1 is rigid. The main challenge is to prove rigidity in the absence

of infinitesimal rigidity. Indeed, infinitesimal rigidity would have implied rigidity, but

this is not the case here: an infinitesimal motion, with vertex velocities perpendicular

to the plane of the “paper”, always exists. For the proof, we introduce a different tech-

nique, called rigidity transport. It is algorithmic, and can be applied on any graph as

long as it has vertices with 4 “unvisited” edges that act as “transmitters” (cf. defini-

tion given below) and which are reachable from a starting point via “transport” edges.

Single-vertex origami with 4 creases. The faces surrounding a vertex incident

to 4 edges (creases), isolated from the rest of the origami pattern, is called a 4-edged

single-vertex origami. A generic realization, is flexible, with a one-dimensional config-

uration space, meaning that when one of the dihedral angles is changed continuously,

all the other dihedrals are determined: the origami has a one-dimensional flex. The

flat open configuration is however not generic, it is singular, and thus may allow flexes

to proceed along different branches of the one-dimensional configuration space. We

rely on the tabulation of all the types of configuration spaces for planar 4-gons, which

can be found for instance in [34], and on the relationship between the Euclidean,

spherical and single-vertex origamis, as discussed at large in [50, 49]. We start by

identifying in Fig. 8.3 the types of single-vertex origamis with 4-creases (called, for

simplicity,“4-edged gadgets”) that appear in a Universal Molecule crease pattern.

Rigidity transport. Assume that a dihedral (input) edge of one such 4-edge gad-

get is kept, rigidly, in the flat open position (of 180o) or flexed by a small angle: can
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Figure 8.3: Left: Rigidity transport of flat 4-edge single-vertex origamis appearing in a
universal molecule. Arrows represent “input” and “output” edges. A cross on an arrow’s
tail indicates the edge remains open-flat, while a small crescent indicates a flex. An edge
for which the behavior is not forced by the input edge is dotted. Right: The four bar
mechanism abcd formed by a 4-edge single-vertex origami.

the behavior of the other (output) edges be predicted? For 4-edge gadgets created

by the universal molecule algorithm and needed in the main proof of this section,

Fig. 8.3 tabulates all the possibilities. The patterns are grouped into three cate-

gories: black, white, and gray. In each category opposite angles are supplementary

(i.e. α + γ = β + δ = 180o). In Fig. 8.3 the category of each gadget is indicated by

the shading of the center vertex. An arrow pointing towards the center indicates the

“input” to the gadget. For easy reading we denote the “signals” by a marker on the

tail of the arrow: a cross indicates that the dihedral edge is kept at 180o, and a small

crescent indicates a slight perturbation (flex). An arrow pointing outwards indicates

a forced behavior on another edge. A dotted edge signifies that its behavior is not

determined by the input, and that it can either stay flat of have a small flex.

In white, one pair of opposite edges are aligned and the other two make equal an-

gles (different from 90o) with them. In gray, both pairs of opposite edges are aligned,

and one is perpendicular to the other (i.e. all face angles are 90o). In black, oppo-

site angles are supplementary. We analyze these patterns with respect to an “input”

crease, i.e. the mechanical action of keeping the dihedral angle as it is or perturbing
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it slightly. In each case if an edge is flexed resp. remains rigid, then its opposite edge

is flexed resp. remains rigid; in addition, in black, all edges either flex or remain rigid

collectively (Fig. 8.3, c, d); in white if an aligned edge remains rigid (Fig. 8.3,e) or

an unaligned edge flexes (Fig. 8.3,g), then all edges remain rigid or flex (resp.); and

in gray if an edge flexes, then the opposite pair of edges remain rigid (Fig. 8.3,b).

These categories will be used as follows: (a) the black gadgets will appear at the

endpoints of a splitting edge, (b) the white gadgets to a contraction event and (c)

the gray edges will apply along a splitting edge, at the marker vertices present along

it. Here keeping one edge rigid, resp. deforming it slightly, forces its aligned pair to

have the same behavior; moreover, the deformation of the dihedral angle of an edge

forces the flatness (and hence, rigidity) of the perpendicular pair. This process (of

inferring rigidity/flatness of an edge from what happens with another edge incident

to the same vertex) will be called rigidity transport. We summarize these very simple

facts in the following Lemma.

Lemma 8.4.1. The rigidity/flexibility dependency patterns from Fig. 8.3 correctly

depict 4-vertex origami configurations in the vicinity of the flat, open state.

Proof. The proof relies on a calculation made by Bricard in his famous memoir

([18]) on flexible octohedra; see [19] for a modern English translation. What in [19]

is termed a tetrahedral angle is, in our terms, a 4-edged single-vertex origami, and

can further be viewed as a spherical four-bar mechanism. A face angle is the interior

angle of the central vertex, and a dihedral angle is the angle between the planes sup-

porting two adjacent faces. Bricard’s memoir has two parts. The first analyzes the

relationship between adjacent dihedral angles of a spherical four-bar mechanism. The

second is his analysis of flexible octohedra, which we do not use. Bricard categorizes

the spherical four-bar mechanisms into three types based on relationships between

the face angles. All of our gadgets are of Bricard Type 3b, which comprises those

4-edged single-vertex origami in which opposite angles are supplementary.
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Given a gadget from Fig. 8.3, let face angles α, β, γ = π − α, δ = π − γ be given

in (cw or ccw) order and let φ and ψ be the dihedral angles between the two faces

spanning the (α, β), resp. (β, γ) pairs of angles. The angle labels are illustrated

in Fig. 8.3(b, c, e, f). The dihedral angle values are taken between 0 and π. Let

t = tan(φ/2) and u = tan(ψ/2). Bricard showed that for Type 3b structures:

(1) opposite dihedrals have equal angle measure, and

(2) the parameters t and u satisfy the quadratic equation:

sin(α + β)t2 + 2 sin βtu− sin(α− β)u2 = 0

Equation (2) is valid unless φ or ψ are π. In that case we need a different derivation.

If instead we define t and u by t = cot(φ/2) and u = tan(ψ/2) and following Bricard’s

derivation we obtain:

(2’) the parameters t′ and u′ satisfy the quadratic equation:

sin(α− β)t2 + 2 sin βtu− sin(α + β)u2 = 0

In Bricard’s derivation there appear tan β and tan δ terms, which mean for cases

(a) and (b), the derivation does not work since the tangent is undefined for β = δ =

π/2. To prove cases (a) and (b) we use elementary spherical geometry. To prove

(c)-(h) we use (1) and (2’) above. The rigidity implications of (f) and (h) follow

immediately from property (1). We next prove cases (c-e) and (g) using (2’). We

then prove cases (a) and (b) with elementary spherical geometry.

In the black and white cases (c-e) and (g), we have the sum of the opposite

angles α + γ = β + δ = π. Assume without loss of generality that 0 < β ≤ α < π

and α + β 6= π. In this case the coefficients in equations (2’) are not zero. A simple

analysis of these two equations shows that t = 0 if and only if u = 0. This completes

the proof of all four cases.
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We prove the gray cases (a) and (b) using the corresponding spherical four-bar

linkage abcd on the unit sphere where a corresponds to the “input” crease (See

Fig. 8.3(right)). The length of each bar is π/2 and the interior angle of each cor-

ner is equal to the dihedral of the corresponding crease. In case (a), ∠a is π and so

b and d are antipodal. By elementary spherical trigonometry, ∠c must be π as well.

In (b) we assume that ∠a is between 0 and π. We add a bar bd to form spherical

triangles abd and cbd. By elementary spherical trigonometry it follows that ∠b and

∠d in abd and cbd must be π/2 completing the proof.

We are now ready to prove Theorem 8.3.1.

Theorem 8.3.1. (Rigid Universal Molecules) There exist universal molecules

which are rigid in the open-flat state.

Proof. Overview: We prove existence by showing that the universal molecule crease

pattern in Fig. 8.1 is rigid. The proof is by contradiction: we assume that the crease

pattern is flexible and derive a contradiction by analyzing a potential nearby realiza-

tion, in which the dihedral angle of at least one edge must be (slightly) smaller than

180o. We use the types of folds that may occur at vertices of degree 4, as classified in

Lemma 8.4.1. We will start at the central vertex and “propagate” flat (rigid) edges

and flexed edges by sequentially applying one of the inferences (input-implies-output)

proven in Lemma 1 and illustrated in Fig. 8.3. If an edge incident to a vertex is rigid,

the degree of the vertex is reduced by one, when its flexibility is analyzed. A step in

such a sequence of inferences is illustrated in Fig. 8.4.

The analysis of flexibility of our example reduces to just two cases. First, we assume

that at the most central vertex of the crease pattern, all edges remain flat. Using

Lemma 8.4.1, we then iteratively propagate the “flatness” and infer that all edges

must remain flat. Otherwise, one of the edges incident to the central vertex is not

flat, i.e. either a valley or a mountain. Following again the simple rules of local
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Figure 8.4: An example of the logical inference used to prove rigidity (Case 1). The red
vertex at the center is assumed to be rigid. We analyze the blue highlighted vertex in
each figure and conclude, from its type and rigidity of one incident edge, the rigidity of its
neighbors. We continue this process for all vertices and conclude that the entire origami
must be flat.

foldability at neighboring vertices, we arrive at a contradiction where one edge will

need to be both flat, and not flat, simultaneously. From this we conclude that the

crease pattern in Fig. 8.1 should be rigid.

We analyze now in detail each case, using the guidelines from Fig. 8.5: (left) vertex

labels, (center) vertex types (black, gray and white, as classified in Lemma 8.4.1 and

illustrated in Fig. 8.3) and (right) an oriented inference “path” leading to a contra-

diction, in Case 2 below.

Case 1: all edges incident to 1 are flat. The following inference (see Fig. 8.4)

show that, in this case, all edges of the crease pattern have to be flat: the vertices 2,

6, 10, incident to 1, are white, have a rigid input edge (the one coming from 1), hence

the other edges (to 5, 7, 18 etc.) are implied to be rigid; 13, 18, 22 are black each

with a flat incident edge, and thus all edges incident to them are flat. Therefore, 17,

23, 28 (also black) are flat. Then the gray 3, 5, 7, 9, 12, and 24 are incident to two

flat edges incident to the same face and are thus flat. By the same reasoning, 4, 8

and 11 are flat; 16, 21, and 27 are white, with one flat edge, hence all are flat; 15, 20,

26 are flat by the same reasoning; 14, 19, 25 now have all but 3 edges proved to be
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flat by the statements above; since none of these are collinear, they must be all flat.

Thus all edges are flat: contradiction.
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Figure 8.5: Illustration of the methodology for deriving a contradiction from the
assumption that this crease pattern flexes.

Case 2: some edge incident to vertex 1 is not flat. In this case, at least 4 of

them must be non flat, and hence in one of the 6 pairs of consecutive edges, neither

edge is flat. A contradiction will be derived in each case, and all cases are similar,

so we present the argument only for the pair of edges (1,4) and (1,6), assumed to be

displaced (not flat), as in Fig. 8.5(right). Since (1, 4) is not flat and vertex 4 is gray,

edge (4, 5) is flat; since (4, 5) is flat, and 5 is gray, then (5, 17) is flat; (5, 17) flat

and 17 black, implied that (17, 18) is flat; (17, 18) being flat implies that (18, 6) is

flat. Finally, (18, 6) being flat implies by (b) that (6, 1) is flat. This contradicts the

assumption that (1, 6) is deformed away from flatness. What completes the proof is

the observation that the same sequence of inferences applies to all possible subsets of

edges incident to 1.

8.5 Crease Patterns with Isolated Peaks

We extract now the characteristic features of the generic rigid example from the

previous section to obtain the following generalization. The distinguishing feature of

the degree-6 vertex in the example used to prove Thm. 8.3.1 is that each edge incident

to it is also incident to a splitting edge and not a boundary edge. We call such a vertex
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Figure 8.6: The crease pattern induced by an isolated peak in the splitting graph.

an isolated peak of the crease pattern. A degree-6 isolated peak occurs if and only if

the splitting graph has an internal triangular face. We now extend the result of the

previous section to all generic universal molecule crease patterns with an isolated peak.

Theorem 8.3.2. (Universal Molecules with isolated peaks are rigid) If a

generic universal molecule crease pattern has an isolated peak, then it is rigid in the

open-flat state.

Proof. The intuition behind the proof comes from the following observation: the

example shown to be rigid by Theorem 8.3.1 contains a special vertex “surrounded”

by three split edges. On the other hand, the leftmost molecule from Fig. 8.2 doesn’t

have such a vertex. We use now the splitting graph, defined previously as an outer-

planar graph whose outer cycle corresponds to the given polygon and the diagonals

correspond to the splitting events. Then we apply the argument used in the proof

of Theorem 8.3.1 to obtain a sufficient condition for the universal molecule crease

pattern to be rigid.

The proof requires an understanding of Lang’s algorithm and of its properties from

Ch. 5. We follow the algorithm as it identifies the three splitting edges making an

isolated face in the splitting graph. These edges e1, e2, e3 are added to the Universal

Molecule crease pattern at events happening at different heights h1 < h2 < h3 (by
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the assumption of genericity). Then, the splitting edge e1 is on the h1-contour, and

includes edge e2 and its h2-contour, which in turn includes edge e3 and its h3-contour.

Extending the crease pattern with bisector and perpendiculars around these three

splitting edges, we obtain a pattern illustrated in Fig. 8.6. On the left, we see the

three splitting edges (black) and their endpoints (of “black”-type, according to the

classification from Lemma 8.4.1). There is a unique center vertex (the “peak”) of

degree 6, with three green bisectors and three red perpendiculars emanating from it.

The other endpoints of the green bisectors are exactly as they are depicted in the

picture: two go to edge e3, the latest to be added as a split edge, and one goes to e2.

The endpoints of the splitting edges are connected by a path of bisector edges, and

additional vertices of the crease pattern may be present along all these segments, as

illustrated in Fig. 8.6(right).

With this pattern in place, one recognizes immediately the applicability of the

proof of Theorem 8.3.1 to derive that all the edges that are part of this figure (of three

splitting segments and all of their incident edges) must be rigid. To complete the proof

for the entire crease pattern, we proceed by induction. First, we identify a few proper-

ties of the Universal Molecule crease pattern (which follow from the invariants of the

algorithm). The base case of a generic recursive call to Lang’s algorithm is when the

contour polygon is a triangle. The bisectors of the triangle meet in one vertex, which

we’ll call a peak; indeed, in the Lang base state, these will be points of local maximum

height for the folded paper. Generically, these are the only vertices of degree larger

than 4 (namely, 6) that appear in the crease pattern. Next, we remark that each split-

ting segment has exactly one peak vertex on each side, and each peak is connected by

two paths of bisector segments, to the endpoints of each split segment in its vicinity

and by a path of perpendicular edges to some point on such a splitting edge. There-

fore, if a splitting edge is proven to be “rigid” because of what happens on one of its

sides, then all the edges incident to it are so, and the rigidity is transported to the peak
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on the other side. To complete the proof, we show inductively (proceeding outwards

from an inner triangle towards the polygon sides) that all the split edges become rigid,

once those of an isolated triangle (in the split graph) have been proven to be so.

8.6 Stable Lang Bases

We now extend the previous arguments to prove that not only is the flat state

inflexible, but the folded Lang base state produced by Lang’s algorithm is stable and

cannot be unfolded. This requires first some conceptual clarifications.

The Lang base state. In this state, the perpendicular creases of the universal

molecule are grouped together, overlapping in groups that project to internal nodes

of the input metric tree. They act as hinges about which flaps can be rotated. The

remaining creases are folded completely as either mountain or valley folds.

The Lang base state is therefore flexible, suggesting that it may be able to reach

other interesting configurations through appropriate deformations. Two faces sharing

creases that are bisectors or splitting edges are folded flat, one on top of the other,

while the flaps made of faces sharing a perpendicular edge will have a rotation mo-

tion. Fig. 8.7, showing from below a slight perturbation of a Lang base (just enough

to see which faces overlap and which not) may help with visualizing these properties.

A state which is obtained from the flat Lang base simply by rotating the flaps about

their incident hinges is said to be tree-reachable.

We prove now that the Lang base state may sometimes be stable, or not unfold-

able, meaning that there is no nearby configuration which is not tree-reachable. To

be unfoldable, i.e. to unfold, requires the bisector and splitting edges to open slightly.

Our goal is to show that no such crease is opening, i.e. it cannot have a non-zero

dihedral angle (while maintaining rigidly the faces) in a small neighborhood of some

tree-reachable configuration.
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Figure 8.7: A Lang base (view from below), visualized by slightly perturbing the metric
while maintaining the combinatorial structure of the realization, so that its folding pattern
can be seen.

Theorem 8.3.3. (Stability of Lang Bases with isolated peaks) All rigid fold-

ing motions of a Lang surface correspond to motions of the underlying tree. In other

words, the Lang surface cannot be “unfolded” all of its faces remain perpendicular to

a common plane throughout any rigid folding motion.

Proof. We follow a similar plan as for Theorem 8.3.2. The critical step is the base

case, i.e. the counterpart of Theorem 8.3.1, which relies on a slightly different set

of gadgets. These, and the chain of implications leading to a contradiction to the

assumption that the base is not stable in one of two cases, are depicted in Fig. 8.8.

The generalization to those cases where the splitting graph has internal triangles is

the same as in Theorem 8.3.2, therefore we focus now on the base case.

Rigidity Transport. In this case we assume that a nearby state exists where some

non-perpendicular crease is opening and analyze the rigidity transport on the graph.

Instead of transporting “flatness” of an edge, we transport the property of being

“closed” or “slightly open”. The gadgets for this transport are shown in Fig. 8.8 (left).

The analysis of these gadgets (a)-(f) of Fig. 8.8 essentially follows the same rea-

soning as the proof of Lemma 8.4.1. We use the same results of Bricard listed there.

The transport cases illustrated in Figure 8.8 (c), and (d) follow directly from (1).

The proof of (a) follows from the observation that if ∠a = 0 in the spherical four-bar
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Figure 8.8: The gadgets used in the proof of Theorem 8.3.3, and the chain of implications
in one of two cases needed to contradict the hypothesis that an unfolding of the Lang base
exists. Arrows indicate input and output edge behavior. One with two bars indicates a
“folded” (i.e. dihedral angle zero) edge. One with a crescent indicates an “opened” (i.e.
dihedral angle slightly larger than zero) edge. Dotted edges are undetermined and gray
edges are a special type in which the dihedral may be only either 0 or 180o.

linkage abcd induced by the origami, then b = d and the spherical triangle bcd has a

zero-length edge bd. The proof of the transport of (b) is the same as the proof of the

transport of (b) in Fig. 8.3. The proof of the transport of (e) and (f) is exactly the

same as for (c) and (d) of Fig. 8.3 except using equation (2) rather than (2’).

We now complete the proof of Theorem 8.3.3. To obtain a contradiction, we as-

sume that a nearby state exists and proceed in two cases: 1. all non-perpendiculars

incident to 1 are closed, and 2. one of the non-perpendiculars is opening. In each

case we derive a contradiction. We analyze in detail each case, using the vertex labels

(left) and vertex types (center) from Fig. 8.5, and the oriented inference “path” from

Fig. 8.8 (right) leading to a contradiction in Case 2 below.

Since (1, 6) is opening and 6 is white, (6, 18) is opening. Since (6, 18) is opening,

and 18 is black, (18, 17) is opening. Similarly, (17, 5) is opening. (17, 5) is opening,

and 5 is gray, so (5, 4) is opening. (5, 4) is opening, and 4 is gray so (4, 3) is opening,

and (4, 1) is either 0 or 180o. (4, 3) is opening, and 3 is gray, so (3, 13) is opening. (3,

13) is opening, and 13 is black, so (13, 2) is opening. (13, 2) is opening, and 2 is white
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so (2, 1) is opening. To complete the proof, we observe that an analogous sequence

beginning with (1, 2) shows that (1, 11) is 0 or 180o and (1, 10) is opening. Then the

same sequence beginning at (1, 10) shows (1, 8) is 0 or 180o. This does not depend on

which non-perpendicular of 1 we begin with and no such state exists for vertex 1.

8.7 Conclusion

For the family of crease patterns generated by Lang’s Universal Molecule algo-

rithm, in which the outerplanar splitting graph has an isolated peak, we have proven

that the final Lang base state may be reachable by continuous flat-faced folding from

the initial flat state. Even stronger, we showed that the initial, creased paper does

not move at all if the faces are to remain rigid. We also proved that for the same

crease patterns, the folded Lang base state cannot be unfolded.

Fig. 8.2 shows an example of a metric tree and two possible Lang molecules for it,

whose splitting graphs indicate that one is rigid. The flat-face flexibility of the other,

if true, will have to be established by other means. Thus, a full characterization of

the flexible origami patterns produced by Lang’s algorithm remains an open question,

and Lang’s algorithm requires further investigation as to which crease patterns yield

continuously foldable origamis.
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CHAPTER 9

CONCLUSION

In this dissertation we have investigated mathematical and algorithmic properties

related to two skeleton structures that have applications to computational origami,

the straight skeleton and the universal molecule. We have given faster algorithms for

computing both the straight skeleton (Ch. 4) and the universal molecule (Ch. 6). We

gave the first proof of correctness for the universal molecule algorithm and the first

full characterization of the family of surfaces that are folded from universal molecules

(Ch. 5). Using this characterization, we then generalized the universal molecule to

non-convex polygons, removing a main failure mode of Lang’s TreeMaker method for

origami design (Ch. 7) and proving a conjecture of Demaine and O’Rourke. Finally, we

showed that though the universal molecules are rigidly foldable in the rare event that

the universal molecule backbone is precisely the straight skeleton, there exists a large

family of universal molecules which are not foldable, and indeed are completely rigid

in the open, flat state (Ch. 8). Much of this work has previously appeared in [13, 17,

14, 15]. The results of Chs. 4 & 7 have been submitted and are under review [12, 16].

Future work. Before the work in this thesis, the fastest algorithms for computing

the straight skeleton of a PSLG did not use the motorcycle graph as input. Our

algorithm brings the computation of the straight skeleton of a PSLG in line with that

of a polygon, namely that the computational bottleneck shifts to the computation of

the motorcycle graph. Any improvement in the running time of the motorcycle graph

computation, then, improves the running time of our straight skeleton algorithm.

Thus a major open question is how fast can the motorcycle graph be computed.
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In regards to the universal molecule, this work removes one of the main failure

modes of TreeMaker–when TreeMaker produces non-convex polygons, it can use our

generalization of the universal molecule to produce a crease pattern. This is an im-

provement, but it remains the case that the first phase of TreeMaker is necessarily

a heuristic, since it is solving an NP-hard problem. Thus, an interesting avenue

of future work is to replace the first phase of TreeMaker with some other method,

preferably something that can be solved in polynomial time. Another interesting open

problem is further generalizations of the universal molecule to more exotic forms. For

instance, though store-bought paper is flat, many origamists make their own paper,

and it is possible to produce paper with varying curvature. An interesting question,

then, is how to generalize the universal molecule to non-flat papers, and what sort of

additional surfaces can be folded once this is removed.

Finally, we have only partially solved the foldability problem. We have shown that

any generic universal molecule crease pattern with an isolated peak is not-foldable and

it was previously known that universal molecules that are equivalent to the straight

skeleton are foldable; however, there remain universal molecule crease patterns that

do not fit in either of these categories. We leave it as an open problem the question

of a full categorization the universal molecules.
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