470 research outputs found

    High precision hybrid RF and ultrasonic chirp-based ranging for low-power IoT nodes

    Get PDF
    Hybrid acoustic-RF systems offer excellent ranging accuracy, yet they typically come at a power consumption that is too high to meet the energy constraints of mobile IoT nodes. We combine pulse compression and synchronized wake-ups to achieve a ranging solution that limits the active time of the nodes to 1 ms. Hence, an ultra low-power consumption of 9.015 µW for a single measurement is achieved. The operation time is estimated on 8.5 years on a CR2032 coin cell battery at a 1 Hz update rate, which is over 250 times larger than state-of-the-art RF-based positioning systems. Measurements based on a proof-of-concept hardware platform show median distance error values below 10 cm. Both simulations and measurements demonstrate that the accuracy is reduced at low signal-to-noise ratios and when reflections occur. We introduce three methods that enhance the distance measurements at a low extra processing power cost. Hence, we validate in realistic environments that the centimeter accuracy can be obtained within the energy budget of mobile devices and IoT nodes. The proposed hybrid signal ranging system can be extended to perform accurate, low-power indoor positioning

    Leak Detection and Location Technology Assessment for Aerospace Applications

    Get PDF
    Micro Meteoroid and Orbital Debris (MMOD) and other impacts can cause leaks in the International Space Station and other aerospace vehicles. The early detection and location of leaks is paramount to astronaut safety. Therefore this document surveys the state of the art in leak detection and location technology for aerospace vehicles

    Effect of Head Movement on Sound Localization in Real and Simulated Cochlear Implant Users

    Get PDF
    Cochlear implant (CI) users’ limited ability to use acoustical cues for sound localization causes left/right confusions and front/back reversals. Head movement is beneficial in reducing these errors in acoustically hearing listeners. This study investigated the effect of head movement on localization throughout 360o of azimuth for both real and simulated CI users. Listeners in a bilateral electro-acoustic (CI with ipsilateral hearing aid) simulation derived the greatest head movement benefit in reducing front/back reversals. Left/right confusions were reduced in simulations with matched bilateral stimulation. Sensitivity to both timing and level cues for sound localization was correlated with sound localization performance without head movement for simulated device users. Sensitivity to timing cues was correlated with sound localization performance with head movement cues for simulated device users. Simulations of bilateral CI and bimodal users (CI with contralateral hearing aid) listening predicted real users’ sound localization performance, binaural sensitivity and head movement patterns

    PREDICTION OF NOISE EMISSIONS USING PANEL CONTRIBUTION ANALYSIS SUPPLEMENTED WITH SCALE MODELING

    Get PDF
    Panel contribution analysis (PCA) can be used to predict machinery noise emissions, component contributions, and to assess the impact of sound reduction treatments. PCA is a measurement approach that is advantageous for complex machinery that is not easily modeled using conventional numerical analysis approaches. In this research, PCA is combined with scale modeling in order to speed up the necessary measurement work. Moreover, the method can be applied to much larger machinery and noise emissions can be assessed prior to locating and installing the equipment. This eliminates the necessity to use voluminous anechoic chambers. The machinery is first discretized into a collection of panels or patches. Volume velocities are measured for each patch with the machinery operating, and transfer functions are measured between panels and receiver locations with the machinery turned off. It is shown that transfer functions may be measured using a scale model. Then, the sound pressure level produced by the machinery is predicted. The method is first applied to a generator set and a 1/2 scale model is used to measure the acoustic transfer functions. It is demonstrated that PCA can be used to predict sound pressure levels in the far-field of a source even using a relatively small hemi-anechoic chamber. PCA was then used to assess the efficacy of barrier treatments. The PCA and scale modeling combination were then applied to an interior acoustics scenario. The acoustic emissions from three similar air handlers positioned throughout a bakery were predicted at two locations. Transfer functions were measured between the panels and three different customer locations using a 1/10th scale model. Transfer functions were corrected to account for air attenuation and predicted sound pressure levels compare well with measurement. The described approach may be used to determine the sound pressure levels in large interior spaces before they are constructed so long as volume velocities on the source can be measured a priori. In addition, strategies, such as barriers and sound absorption, to reduce the noise by modifications to the acoustic path were accurately assessed prior to equipment installation. PCA was then applied to a small unmanned aerial vehicle (UAV) and the sound pressure level was predicted 5.5 m away. In this case, both the panel volume velocities and sound pressures must be measured because the boundary encompassing the source is no longer semi-rigid. Measurements were performed on six measurement surfaces forming an imaginary box encompassing the UAV. A P-U Probe was utilized to measure both sound pressure and particle velocity on the imaginary surfaces. Acoustic transfer functions between the source and a receiver point were measured reciprocally. The noise level was predicted from measurements close to the UAV assuming both correlated and uncorrelated sources at the receiver point. The sound pressure level calculated by the correlated model compared well with direct measurement

    Efficient Time of Arrival Calculation for Acoustic Source Localization Using Wireless Sensor Networks

    Get PDF
    Acoustic source localization is a very useful tool in surveillance and tracking applications. Potential exists for ubiquitous presence of acoustic source localization systems. However, due to several significant challenges they are currently limited in their applications. Wireless Sensor Networks (WSN) offer a feasible solution that can allow for large, ever present acoustic localization systems. Some fundamental challenges remain. This thesis presents some ideas for helping solve the challenging problems faced by networked acoustic localization systems. We make use of a low-power WSN designed specifically for distributed acoustic source localization. Our ideas are based on three important observations. First, sounds emanating from a source will be free of reflections at the beginning of the sound. We make use of this observation by selectively processing only the initial parts of a sound to be localized. Second, the significant features of a sound are more robust to various interference sources. We perform key feature recognition such as the locations of significant zero crossings and local peaks. Third, these features which are compressed descriptors, can also be used for distributed pattern matching. For this we perform basic pattern analysis by comparing sampled signals from various nodes in order to determine better Time Of Arrivals (TOA). Our implementation tests these ideas in a predictable test environment. A complete system for general sounds is left for future wor

    Efficient Time of Arrival Calculation for Acoustic Source Localization Using Wireless Sensor Networks

    Get PDF
    Acoustic source localization is a very useful tool in surveillance and tracking applications. Potential exists for ubiquitous presence of acoustic source localization systems. However, due to several significant challenges they are currently limited in their applications. Wireless Sensor Networks (WSN) offer a feasible solution that can allow for large, ever present acoustic localization systems. Some fundamental challenges remain. This thesis presents some ideas for helping solve the challenging problems faced by networked acoustic localization systems. We make use of a low-power WSN designed specifically for distributed acoustic source localization. Our ideas are based on three important observations. First, sounds emanating from a source will be free of reflections at the beginning of the sound. We make use of this observation by selectively processing only the initial parts of a sound to be localized. Second, the significant features of a sound are more robust to various interference sources. We perform key feature recognition such as the locations of significant zero crossings and local peaks. Third, these features which are compressed descriptors, can also be used for distributed pattern matching. For this we perform basic pattern analysis by comparing sampled signals from various nodes in order to determine better Time Of Arrivals (TOA). Our implementation tests these ideas in a predictable test environment. A complete system for general sounds is left for future wor

    Mathematical modelling ano optimization strategies for acoustic source localization in reverberant environments

    Get PDF
    La presente Tesis se centra en el uso de técnicas modernas de optimización y de procesamiento de audio para la localización precisa y robusta de personas dentro de un entorno reverberante dotado con agrupaciones (arrays) de micrófonos. En esta tesis se han estudiado diversos aspectos de la localización sonora, incluyendo el modelado, la algoritmia, así como el calibrado previo que permite usar los algoritmos de localización incluso cuando la geometría de los sensores (micrófonos) es desconocida a priori. Las técnicas existentes hasta ahora requerían de un número elevado de micrófonos para obtener una alta precisión en la localización. Sin embargo, durante esta tesis se ha desarrollado un nuevo método que permite una mejora de más del 30\% en la precisión de la localización con un número reducido de micrófonos. La reducción en el número de micrófonos es importante ya que se traduce directamente en una disminución drástica del coste y en un aumento de la versatilidad del sistema final. Adicionalmente, se ha realizado un estudio exhaustivo de los fenómenos que afectan al sistema de adquisición y procesado de la señal, con el objetivo de mejorar el modelo propuesto anteriormente. Dicho estudio profundiza en el conocimiento y modelado del filtrado PHAT (ampliamente utilizado en localización acústica) y de los aspectos que lo hacen especialmente adecuado para localización. Fruto del anterior estudio, y en colaboración con investigadores del instituto IDIAP (Suiza), se ha desarrollado un sistema de auto-calibración de las posiciones de los micrófonos a partir del ruido difuso presente en una sala en silencio. Esta aportación relacionada con los métodos previos basados en la coherencia. Sin embargo es capaz de reducir el ruido atendiendo a parámetros físicos previamente conocidos (distancia máxima entre los micrófonos). Gracias a ello se consigue una mejor precisión utilizando un menor tiempo de cómputo. El conocimiento de los efectos del filtro PHAT ha permitido crear un nuevo modelo que permite la representación 'sparse' del típico escenario de localización. Este tipo de representación se ha demostrado ser muy conveniente para localización, permitiendo un enfoque sencillo del caso en el que existen múltiples fuentes simultáneas. La última aportación de esta tesis, es el de la caracterización de las Matrices TDOA (Time difference of arrival -Diferencia de tiempos de llegada, en castellano-). Este tipo de matrices son especialmente útiles en audio pero no están limitadas a él. Además, este estudio transciende a la localización con sonido ya que propone métodos de reducción de ruido de las medias TDOA basados en una representación matricial 'low-rank', siendo útil, además de en localización, en técnicas tales como el beamforming o el autocalibrado

    Leak Detection and Localization in Pressurized Space Structures Using Bayesian Inference: Theory and Practice

    Get PDF
    Impact from micrometeoroids and orbital debris (MMOD) can cause severe damage to space vehicles. The crew habitat can begin to leak precious oxygen, critical systems can be punctured causing fatal failures, and an accumulation of impacts by MMOD can decrease the lifetime of any and all devices in space. Due to these and other potential dangers, MMODs have been considered the third largest threat to spacecraft after launch and re-entry. Many satellites and other spacecraft face this very problem inherent in all space travel on a daily basis, but often times they can be repaired. A major hurdle is to first be able to identify the presence of a leak. Many times an impact and subsequent leak is not discovered until it has caused a problem. A complete system is needed to detect and localize the impact to improve longevity of the habitat or other pressurized space structures. In this work, a system for detection and localization of air leaks using air-borne acoustic waves is proposed. The system uses microelectromechanical systems (MEMS) microphone sensors to detect and record high frequency noise in an environment, angle of arrival (AOA) calculations to estimate possible leak locations, and a Bayesian tree-search filter to detect and more accurately localize a leak. This work includes proof of concept, simulations, and physical prototypes as steps to creation of a complete system. Data from deployed flight test using said prototypes are analyzed. Modeling the effects of environmental reflections on the accuracy of localization is also studied

    Quantifying the Effects of Knee Joint Biomechanics on Acoustical Emissions

    Get PDF
    The knee is one of the most injured body parts, causing 18 million patients to be seen in clinics every year. Because the knee is a weight-bearing joint, it is prone to pathologies such as osteoarthritis and ligamentous injuries. Existing technologies for monitoring knee health can provide accurate assessment and diagnosis for acute injuries. However, they are mainly confined to clinical or laboratory settings only, time-consuming, expensive, and not well-suited for longitudinal monitoring. Developing a novel technology for joint health assessment beyond the clinic can further provide insights on the rehabilitation process and quantitative usage of the knee joint. To better understand the underlying properties and fundamentals of joint sounds, this research will investigate the relationship between the changes in the knee joint structure (i.e. structural damage and joint contact force) and the JAEs while developing novel techniques for analyzing these sounds. We envision that the possibility of quantifying joint structure and joint load usage from these acoustic sensors would advance the potential of JAE as the next biomarker of joint health that can be captured with wearable technology. First, we developed a novel processing technique for JAEs that quantify on the structural change of the knee from injured athletes and human lower-limb cadaver models. Second, we quantified whether JAEs can detect the increase in the mechanical stress on the knee joint using an unsupervised graph mining algorithm. Lastly, we quantified the directional bias of the load distribution between medial and lateral compartment using JAEs. Understanding and monitoring the quantitative usage of knee loads in daily activities can broaden the implications for longitudinal joint health monitoring.Ph.D
    • …
    corecore