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Impact from micrometeoroids and orbital debris (MMOD) can cause severe damage to

space vehicles. The crew habitat can begin to leak precious oxygen, critical systems can be

punctured causing fatal failures, and an accumulation of impacts by MMOD can decrease

the lifetime of any and all devices in space. Due to these and other potential dangers,

MMODs have been considered the third largest threat to spacecraft after launch and

re-entry. Many satellites and other spacecraft face this very problem inherent in all space

travel on a daily basis, but often times they can be repaired. A major hurdle is to first be

able to identify the presence of a leak. Many times an impact and subsequent leak is not

discovered until it has caused a problem. A complete system is needed to detect and

localize the impact to improve longevity of the habitat or other pressurized space

structures.

In this work, a system for detection and localization of air leaks using air-borne acoustic

waves is proposed. The system uses microelectromechanical systems (MEMS) microphone

sensors to detect and record high frequency noise in an environment, angle of

arrival (AOA) calculations to estimate possible leak locations, and a Bayesian tree-search

filter to detect and more accurately localize a leak. This work includes proof of concept,



simulations, and physical prototypes as steps to creation of a complete system. Data from

deployed flight test using said prototypes are analyzed. Modeling the effects of

environmental reflections on the accuracy of localization is also studied.
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CHAPTER 1

INTRODUCTION

1.1 Background

The danger of MMOD is very real both in low earth orbit and beyond. Hypervelocity

impacts can very easily damage and penetrate commonly used materials in space vehicles.

This is true even for some of the smallest objects (see Figure 1.1). The sheer number of

cataloged objects in orbit around Earth is almost 20,000 as of January 2020 as seen in

Figure 1.2. Of this large number of objects recorded, over half consist of object 10 cm in

size or larger [2, 5]. There is an even larger quantity of debris that may be smaller but can

still deal a significant amount of damage. A major increase in this number occurred with

two collisions in 2007 and 2009 increasing the fragmentation debris count by 50%. Orbiting

around the earth, the International Space Station (ISS) and other satellites are at risk of

collisions with debris that reach altitudes of low earth orbit (LEO) or geosynchronous

equatorial orbit (GEO). Even when leaving orbit for other space missions, this large

collection of debris must be taken under consideration. On top of the orbital debris,

micrometeoroids entering the vicinity of Earth can be extremely difficult to detect and

avoid especially and are even more so when traveling beyond GEO.

Every impact on a pressurized structure from MMOD has the potential to puncture the

shielding and create a leak. When a leak actually occurs, it can take a significant amount

of time to find it, especially for small leaks due to environmental factors such as noise and

reflections [10]. A leak between modules of the Mir space station was detected in October

of 1999 but was not repaired until April 2000 due largely to the amount of time it took to

find the leak [6]. Air continued to leak throughout the duration of the search and repair.

Another serious matter was the damage to a radiator in the Endeavour shuttle seen in Fig

1.3. The damage to the cooling system would have caused an immediate return if the
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Figure 1.1. Damage to multi-layer insulation of the Zarya module from an MMOD object
in 2007 [7].

Figure 1.2. Chart showing the number of debris particles being catalouged in orbit [5].

impact had been in at a more critical component of the system [1]. Most recently in

August 2018, a small pressure leak was detected and localized to the Soyuz spacecraft
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Figure 1.3. Severe damage to radiator of the Endeavour (STS-118) [3].

attached to the Rassvet Module. While the leak, caused by a hole of about 2 mm in

diameter presented in Figure 1.4, was originally thought to be created by an MMOD

impact, it has since been reported as man-made by means of a drill [8, 9]. Among the

methods used to localize leaks after detection (currently through monitoring pressure) is

listening for audible sound and using handheld ultrasonic detectors such as the ULD kit

developed by CTRL Systems. This device simply serves as a narrowband filter for the 40

KHz region that produces an audible representation of the level of ultrasonic sound [28].

While these methods have worked in the past, there is a clear need for faster, reliable, and

more accurate systems particularly in the case of inflatable structures, where the structural

health is strongly affected by the presence of a leak.
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Figure 1.4. Source of 2018 leak located on the orbital compartment of the Soyuz MS-09 and
created by a drill [8].

1.2 Literature Review

1.2.1 Leak Detection Methods

Most research presented on leak detection makes use of ultrasonic acoustics. The most

pervasive methods for this kind of detection in the past have been acoustic

emmission (AE), active ultrasonics or pulse-echo techniques, and vibro-acoustics. AE based

methods include both surface-borne and air-borne ultrasonic acoustics. Vibro-acoustic leak

detection is comprised of inducing a "swept sine excitation" in the audible acoustic

spectrum and monitoring the ultrasonic response near locations prone to leaks such as

seals. Detection is usually with microphones on or near the surface. Pulse-echo or

pulse-receiver techniques use an active ultrasonic emitter inside of a structure and while a

microphone scans across the exterior, primarily seals. This method may be applicable in

normal conditions such as during manufacturing but can not be deployed in an extreme

environment. Passive ultrasonic methods detect similarly, but as the name suggests does

not generate the signal; rather, microphones listen for the natural noise generated by a
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leak. Most means of detection using this method are hand-held devices that require users

to traverse an area of interest and listen for leaks [11].

Surface borne AE methods use the material perturbation in the form of Lamb waves

caused by leaks to localize leaks. Holland et al. use a set of 64 measurement points on a

single disc of lead zirconate titanate (PZT) attached to a printed circuit board (PCB) for

recording signals of surface vibrations. Cross-correlation and spatial Fourier transforms are

used to determine vectors pointing from the array towards the source which in turn are

used to triangulate the leak [16, 17]. It should be noted that according to Holland et al.,

"For a leak into a vacuum, this sound can propagate neither in the vacuum nor back up the

Mach 1 free jet into the spacecraft, and therefore cannot be detected," [16]. This was later

amended as "downstream leak dissipates into the vacuum of space, leading almost no leak

noise inside the spacecraft pressure vessel" [17]. While leak noise inside the pressurized

vehicle may be significantly lower than if in an atmosphere, the lack of direct contact with

the surface may make installation and mobile use more viable.

More research has been done in other uncommon methods of leak detection and

localization for use on the ISS. These methods include pressure change monitoring, optical

observation, infrared (IR) imaging, and attitude sensing. Pressure change methods tend to

be similar to what is currently implemented, in that drops of pressure measured by gauges

are used as determination that a leak exists. MEMS Sensors used to monitor pressure

change have been created and tested but were not available for the range and sensitivity

desired for space use. While this is one of if not the most common method for detection, it

offers little in the way of localization and not much research is underway. Optical

observations encompasses the use of video or human observation to detect the presence of

leaking fluorescent gases; the source of which can be localized in a straightforward matter.

Though simple and promising environmental factors seemed to make detection impossible

as no in-orbit test has been successful. Infared testing uses IR lasers to scan areas either

illuminating the gas for optical observation or observing the thermal emission. This has
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been shown to be possible on the ground but requires new testing and device to detect the

lost gases from a pressurized space vehicle. As an added detriment, it has not been proven

possible to do so in a vacuum environment with gases coming from atmospheric pressure.

Attitude sensing allows the onboard systems used to detect the minute movement behavior

of the vehicle to also detect possible leaks. This is due to leaks acting like miniature

thrusters and the basic physics principle of Newton’s third law. The difficulty lies in the

need for extremely accurate and detailed knowledge of the vehicles layout and mass

distribution which may be consistently changing [10].

More details on optical means using IR lasers can be seen in [21, 22], ultrasonic waves

via AE in [20, 26, 12, 27], and dynamic pressure in [23, 24, 25]. A more recent attempt at

ultrasonic leak detection can be seen in [13] where 2D localization uses a random array of

ultrasonic microphones but uses a dictionary-like storage system of expected leaks to

generate acoustic images of directional energy concentration. While the approach is of

interest the use of likely leak locations is not applicable to MMOD impacts and other

sources of random leak locations. Another recent work uses received signal strength

(received signal strength (RSS)) and robotics to directional filter and scan a 2D area for

noise generated by air leaks [14]. Both of these works currently assume higher signal to

noise ratio (signal to noise ratio (SNR)) than can be expected in scenarios of small leaks.

This work will focus on the use of air-borne ultrasonic sources using cross-correlation and

angle of arrival (AOA) to generate estimates of source location in a 2D space.

1.2.2 Localization Methods

Leak detection and localization with applications for structural health monitoring in

aerospace and energy industries can be considered a general source detection and

localization problem [20]. The generalized source detection and localization problem

appears in broader engineering fields including wireless communication systems and target

tracking [30, 31, 32]. Space structures and spacecrafts often face impacts from MMOD and
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Figure 1.5. Inflatable lunar habitat model at University of Maine.

require localizing the impacts and checking for possible cracks and leaks. As inflatable

space habitat concepts such as that seen in Figure 1.5 are being further developed, leak

detection and localization become an integrated part of the design process requiring serious

attention. However, low power level leak signals, non-linear relation of the sensor

observation space and the leak state space, and possibly non-Gaussian observation noise

are some of the challenges in source detection and localization problem.

The focus of this work is on automatic leak detection and localization in deployable

pressurized space structures using surface-borne emitted ultrasonic signals in noisy or low

power environments. Sensed ultrasonic signals are generally examined for the RSS and the

AOA at the receivers, sensor arrays being the most common receiver [30]. In detecting

small cracks and leaks [10], however, power of the leak signal is low and may not be

detected for several time instances. Therefore, the receivers are unable to distinguish

between a true leak signal and a false observation due to the relatively high level of

background noise. Ultrasonic signals are also prone to reflections from other surfaces of the

structure causing interference at the receivers. Existing techniques for leak detection and
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localization using surface-borne acoustic signals [27] are based on triangulation techniques

[16, 17, 18]. None of these techniques consider the uncertain origin of the sensed ultrasonic

signals in noisy environments. The approach described in this work is based on the

Bayesian inference model in which the leak localization is performed by searching the

maximum a posteriori distribution function of the leak location (maximum a

posteriori (MAP) criteria) through a tree-search structure. Although MAP algorithms have

been used in other applications, utilizing one in the context of leak detection is novel.

The Bayesian filter in this model provides a general solution based on the MAP criteria

[33]. For a linear-Gaussian state space model, the closed form solution of the Bayesian

filter is found through the Kalman filter [35]. Due to computational efficiency of the

Kalman filter, many algorithms have been developed based on this algorithm for nonlinear

state space models [36, 37, 38, 39, 40]. However, all theses techniques assume that the

posterior density function of the system state vector is Gaussian which in general is not

true. Additionally, these techniques require initial estimation of the leak state vector which

is a challenge for the sensed ultrasonic signals with uncertain origin in noisy environments.

Other existing algorithms for general nonlinear and non-Gaussian system state space

models [41, 42, 43] require high demand of computational complexity which limits the real

time applications of these algorithms. Existing sub-optimum Bayesian techniques such as

the Extended Kalman filter [24] and Particle filter [23] are being used by leak detectors

using information from gas pressure sensors and are suitable for leak detection in pipeline

structures. Recently, particle filtering [44] and partial tree-search [45, 46] have been

developed to approximate the Bayesian filter in a complexity efficient way. Using particle

filtering technique, the posterior probability density function (probability density

function (PDF)) of the leak state vector is approximated using a set of discrete particles

with their associated probabilities or weights. The expected value of the approximated

posterior PDF is used as the leak state estimation. In the tree-search technique, instead of
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approximating the posterior PDF of the leak state, the algorithm searches for the MAP

solution through an efficient tree search structure.

In this work, a tree-search sub-optimum Bayesian technique is developed and evaluated

as a novel solution for automatic leak detection and localization. The proposed technique

implements information of the air-borne emitted ultrasonic signals and addresses the

challenge of signal uncertainty in noisy environments, which extends applications of the

algorithm in leak detection and localization for inflatable space structure. The developed

tree-search technique searches for the MAP solution of the state space model in the areas

of the posterior distribution with significant mass. The algorithm can be interpreted in a

way that approximates the posterior PDF with a set of Gaussian kernels [47, 48] generated

through a tree search structure. The solution to the problem is the Gaussian kernel which

generates the largest associated metric (weight) among the other kernels. To reduce the

computational complexity, the number of Gaussian kernels examined in the proposed

algorithm will be adaptively changed with more kernels being examined in the vicinity of

areas that are more likely to contain the leak.

1.3 Thesis Organization

The remainder of the thesis proposal is organized as follows. In Chapter 2, the

proposed tree-search technique for source localization and detection using beamforming is

explained along with an overview of the testbed, simulation and experimental results. A

deployable system implementing data collection and preliminary leak detection is discussed

in Chapter 3 along with analysis of in situ data from ISS is reviewed. The latest work on

analysis of reflection effects on AOA error is explored in Chapter 4. Finally a review and

discussion of future work is briefly discussed in Chapter 5.
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1.4 Summary of Contributions

A relatively fast tree-search algorithm for leak detection and localization based on

Bayesian inference model and approximated solution through a tree-search structure was

developed. This is done by taking an area of interest and dividing it into large cells. Cells

with high likelihood of containing a source are divided into smaller cells expanding the

tree. This is done until the desired estimation precision is obtained or the leak is classified

as not present. Simulations were verified by an experimental setup.

H. Roufarshbaf, J. Castro and A. Abedi, "Stochastic modeling of leak detection and

localization using ultrasonic sensor array," IEEE International Conference on Wireless for

Space and Extreme Environments, Baltimore, MD, 2013, pp. 1-1.

The developed method was expanded upon to compare with other frequently used

localization methods. Extensive data were collected using microphone sensor arrays

detecting air-borne ultrasonic sources. Source estimates based on cross-correlation methods

from each sensor array are used as observations for the model. The proposed method was

found to be better performing with faster convergence and lower latency than the other

simulated methods.

H. Roufarshbaf, J. Castro, F. Schwaner and A. Abedi, "Sub-optimum fast Bayesian

techniques for joint leak detection and localisation," in IET Wireless Sensor Systems, vol.

3, no. 3, pp. 239-246, September 2013.

A physical prototype of the physical components of a leak detection and localization

system was designed and built for testing on-board the International Space Station. It

would be designed to record ultrasonic noise and calculate source estimates as described in

previous works. These estimates as well as the raw data collected would be transmitted to

ground for post-processing. Data collected would be post-processed for spectrum and

temporal analysis as well as to provide a rudimentary background signature.

C. Clark, L. Labonte, J. Castro, A. Abedi and V. Caccese, "Wireless leak detection

using airborne ultrasonics and a fast-Bayesian tree search algorithm with technology
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demonstration on the ISS," 2015 IEEE International Conference on Wireless for Space and

Extreme Environments (WiSEE), Orlando, FL, 2015, pp. 1-5.

A. Abedi, V. Caccese, J. Castro, C. Clark, L. Labonte, H. Roufarshbaf, "Wireless Leak

Detector for International Space Station (WiLD-ISS)," ISS R&D Conference, Boston, MA,

July 2015.
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CHAPTER 2

LEAK DETECTION USING BAYESIAN INFERENCE

2.1 Background

2.1.1 Problem Definition

The problem of detection and localization of an ultrasonic source using the

observational values from N sensor node locations is considered in this thesis proposal.

The problem is modeled as a state space model where the desired parameters are the

source location coordinates. These parameters are expressed in the form of a vector in

Cartesian (x,y) coordinates. Each sensor node is scanned and observational data is

collected by a central processing unit.

This is essentially a state or parameter estimation problem where observations are used

to estimate the state or parameters of the model with the goal of error less than the

additive noise. Solution methods to this type of problem tend to take a probabilistic, or

more precisely a Bayesian, approach with the assumptions that observations are dependent

on the state/parameters and independent of the noise. This may also requires the

assumption that parameters are constant as in parameter estimation, but the prior PDF of

the state may be assumed depending on the method. Given a sufficiently large number of

observations, the prior PDF will have little effect on the solution. While more observations

yield more accurate results, it is not always possible to wait for this large number of

observations. As new observations are collected for filtering, a need to update the

estimated state leads to using a recursive filter. This requires the state-independent

additive noise to be white or have each noise component of an observation be independent

of noise components of other observations, i.e additive white Guassian noise (AWGN)[29].

For the notation, the subindex k denotes the sensor scan index (time index) and the

superscript n denotes the sensor array index. That is, wk
n would represent the w vector
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from the kth time index of the nth sensor array. The variation of the source parameters

during K scans of the sensor arrays is assumed to be relatively slow since the leak does not

travel. Detection and localization of moving sources through tracking algorithms [33] is a

problem that has been covered as well but is outside the scope of this work.

The source state vector is sensed by sensor array n with probability P n
D according to the

observation model

znk = Hn(x) + wn
k , (2.1)

where znk is the sensed source signal, Hn is the transfer function from the source state space

to the observation space, and wn
k is the observation noise vector with known statistics. P n

D

is the probability of correct detection and is based on the SNR of the source signal and the

detection threshold of the sensor node. With smaller leaks, the SNR will be very low, and

the signal will be hard to distinguish from the noise. If the detection threshold is set to a

lower value to detect these smaller leaks, there will be more false alarms. The method of

detection based on the threshold will be discussed further in section 2.2.2.2.

False observations are assumed to be independent from other observations and are

uniformly distributed in the search area. The number of false measurements are modeled

with a Poisson distributed random variable with parameter NF and probability distribution

function µF () based on the Poisson theorem. Accordingly, the parameter NF = ζV where ζ

is the density of false observations per volume unit and V is the volume of the area of

interest. In this work, the area of interest is considered to be on a 2 dimensional plane

covering the surface area of potential leak locations. Considering the false measurements,

the observation matrix of sensor array n, Znk = [znk,1, · · · , znk,mn
k
], is formed from possibly

sensed true source observation and the false observation. The value mn
k is defined as the

total number of observations from sensor array n in scan index k. Observations from all N

sensor arrays in scan index k are denoted by the observation set Zk = {Z1
k, · · ·ZNk }.
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Figure 2.1. Setup for determining the angle of arrival also known as the bearing angle.

2.1.2 Source Approximation

In order for an algorithm to detect and localize leaks based on data collected using the

setup is mentioned in 2.1.1, an approximation of the source must be made from each of the

sensor arrays. There are several methods of practice for making these approximations as

well as for taking these approximations and further focusing on the correct location.

Detection is another key issue that can be determined from the sensor data before or after

localization.

These are the most common means of approximating a source. The primary methods

are RSS and AOA. The method of time difference of arrival (TDOA) using time of

arrival (TOA) measurements is a common synchronized means of source localization. Each

has benefits and drawbacks, but together are even more effective.

The process of finding the angle of arrival is to find the local TDOA among individual

sensors of a single array. Given the time difference from one node and the known speed of

the wave being detected, the extra distance the wave travels between to the second sensor

node can be calculated. This distance is shown as d2 in Figure 2.1. It should be noted that
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this calculation assumes the receiving sensors are far enough from the source that the

incoming waves can be approximated as a planar wave. The value of d1 is known and

equivalent to the distance between the sensors. The distance d2 is defined as

d2 = va ∗ (∆t), (2.2)

where ∆t is the time delay between signals and va is the velocity of the wave. The general

trigonometric property of cosine used to find the angle is

θ = cos−1(adj/hyp). (2.3)

Combining (2.2), (2.3), and (2.3) and replacing the adj and hyp with d2 and d1,

respectively, yields

θ = cos−1
(
va(∆t)

d1

)
. (2.4)

For this work, the decision to use AOA to localize leaks is a logical one. Using AOA to

generate localization data only requires two sensor arrays to approximate the source

location. This is done in a similar fashion to the RSS method; the point where the

graphical representations overlap is used as the approximation for the source. The

graphical representations for AOA is just a line from the sensor array at the angle of arrival

or bearing angle. Any more nodes provides extra data to better approximate the source

location and improve performance.

The main reason the RSS method is not the primary method of localization is the

unknown leak characteristics. In the event of a small leak, one can assume low RSS values

and vice versa. While closer leaks will yield higher RSS values this does not take into

consideration the leak’s physical properties which may skew RSS when there are relatively

distant arrays or be hard to differentiate with closer sensor arrays. Since, there can be a

wide range of leak sizes and other characteristics, the RSS alone is not reliable enough to

localize. This does not mean this data is unusable. By possibly scaling the values, this
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method of localization can be used to improve the performance of the current algorithm. It

could also be used to determine the size or severity of the leak.

While TDOA/TOA methods are fairly common, they are not used to localize the leak

from the sensor arrays. This is due to the need for synchronization. While not impossible,

this would have added complexity and difficulty to the localization system developed. Since

no synchronization is done, there is less radio communication resulting in lower traffic and

longer battery life for future wireless nodes. While not as significant of a reason, it should

be noted that accurate RSS methods would also require additional communication between

multiple nodes for localization.

2.2 The Proposed Leak Detection Method

In this section, the method used for finding a leak source is presented. This includes the

means of processing ultrasonic signals to a source approximation and an explanation of the

method developed for detecting and locating a leak from these source approximations.

There is a brief introduction to beamforming and how it is used in the context of source

approximation. The discussion of the tree search method for detection and localization will

be a mathematical development of the method starting with localization.

2.2.1 Reverse Beamforming

In order to find the time difference of arrival (TDOA) at an individual sensor array,

reverse beamforming is used. Beamforming is a method of increasing the amplitude of a

combined signal from two or more sources by shifting the phase of the otherwise identical

signals. Without the shift(s), the signals from multiple sources are likely to be out of phase

at arrival. Waves are additive in that the representation for two waves can simply be added

to obtain the total signal. Due to the additive property, the amplitude at the receiving

node is likely to be at a point where the amplitude is lowered. In order to solve this
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problem, a phase shift is implemented to ensure that the signal is in phase and therefore

greater in amplitude than a single signal at the receiver.

In order to utilize beamforming, it is necessary to know where the receiving node is; if

the location is known the proper phase shift can be applied. This work uses the process in

reverse[34]. In order to find the direction of arrival, the phase shift between adjacent

sensors is calculated using cross-correlation and then used to derive the bearing angle as

mentioned in 2.1.2.

2.2.2 Tree Search

Generally, a Bayesian filter is used as an approach for sequentially approximating the

posterior distribution function of the source state vector given the sensor observations. The

goal of the design is to find values of the source state vector which maximizes the posterior

PDF of the state given the observations

x̂ = arg max
x

p(x|Z1, · · · ,Zk). (2.5)

For a general source state space model, where the closed form of the Bayesian filter

does not exist, calculation of the posterior PDF over all possible target states increases the

computational complexity. In this section, a complexity efficient tree search technique is

demonstrated in which the MAP solution is approximated only in the regions of high

likelihood through navigating a tree.

Instead of estimating the posterior function as in a Bayesian filter, the algorithm follows

paths of a tree to search for local maxima of the posterior function. Knowledge of the local

maxima can be used as an approximation of the actual function. To utilize a tree search

structure, the state space must be discretized and an appropriate metric proportional to

the posterior PDF (2.5) must be defined to compare among the solution candidates inside

the tree. The algorithm will navigate the state-space and find these candidates in the form

of a source state vector. The candidate with the largest metric represents the solution to

the MAP estimator and the source state vector equivalent of the leak location.

17



The initial state of the source known as the root of the tree is selected from the

expected value of the assumed prior PDF of the source state (i.e. uniformly distributed in

the area of interest). In other words, the area of interest is initially considered as a large

cell that may contain a source. Each node of the tree denotes a subset of the source state

space (i.e. a partition of the original area). A path is defined as the sequence of the nodes

starting from the root of the tree and ending at a final node. Associated with each path of

the tree is a metric proportional to the posterior probability mass that the source state is

inside the subsets presented by the nodes of the path. A path of the tree is extended only if

the associated metric is greater than a predefined threshold. With each extension of a tree

path, the subset presented by the ending node is spanned into smaller subsets; this narrows

the search boundaries for a local maxima search of the posterior function. This procedure

continues until the desired resolution of the source state estimation is achieved. In this

stage, all paths with the metrics greater than the predefined threshold show existence of a

source.

Figure 2.2 shows an example of a tree-search in the form of a one-dimensional state

space. In each iteration, the area of interest is divided into three sections. Initially, we

assume that the second and the third cells (from left to right) are the highly likely cells.

Then, the algorithm starts dividing these large cells into smaller cells and calculates the

path metric of newly generated cells. In this simple example, we assume that after three

iterations, the desired accuracy is achieved.

2.2.2.1 Path Metric

As mentioned, the search for the source location by path extensions is based on the

state metric. To approximate the MAP solution, the metric of an estimated state should be

proportional to the posterior probability mass of the state. If we denote the estimated

state of path l in the search tree by x(l) and its associated discrete cell by u(l), then the
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Figure 2.2. An example of partial tree-search technique for one dimensional source
localization is presented [49].

state metric b(l) is defined by

b(l) = p(x(l)|Z1, · · · ,ZK ,u(l)) (2.6)

∝ p(Z1, · · · ,ZK |x(l),u(l))

=
K∏
k=1

p(Zk|x(l),u(l)).

where the second line is derived by applying Bayes’ theorem and dropping the common

term p(Z1, · · · ,ZK) from the denominator. For deriving the third line of (2.6), the

observations of each receiver given the source state x(l) are assumed to be independent

across different time scans. The observation set Zk may contain true observation of the

source state vector and false observations.

Given the estimated source state x(l), source generated observations across the

receiving nodes are independent due to the assumed independence of the noise vector wnk

(2.1) across the receiving nodes. False observations among different receivers, on the other

hand, may not be independent since some of the false observations from different receivers

may be generated from some common noise sources. For receiving nodes installed at far

enough distances, it is reasonable to assume that the false observation across the receiving
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nodes are also independent. This allows the following to be true:

p(Zk|x(l),u(l)) =
N∏
n=1

p(Znk |x(l),u(l)). (2.7)

where the observation matrix Znk also contains observations from possible source signals as

well as false observations. Due to uncertainty of the source signal in the observations of

each receiver, calculation of the likelihood function p(Znk |x(l),u(l)) requires data

association.

Similar to probabilistic data association, the data association hypothesis βnk,j is defined

as an event that the jth observation vector in matrix Znk is generated by the source and

other observations are false observations. The special case βnk,0 denotes the case that all

receiver observations are false observations. Using total probability theorem, the likelihood

term p(Znk |x(l),u(l)) is expanded over data association hypotheses as follows

p(Znk |xk(l),u(l)) =

mn
k∑

j=0

p(βnk,j)p(Z
n
k |βnk,j,x(l),u(l)). (2.8)

The probability of each association event is calculated using the statistical properties of

the false observation. When the source signal is detected with probability of PD, mn
k − 1

false alarms have been generated with probability of µF (mn
k − 1). It is assumed that, given

the source is detected by the sensor array (j 6= 0), observations are equi-probable to be

assigned as the source observation. Similarly for the case that the source observation is not

detected (j = 0), the probability of each association event is calculated using

p(βnk,j) =

 (1− PD)µF (mn
k) j = 0

PDµF (mn
k − 1) 1

mn
k

j 6= 0
(2.9)

The likelihood term p(Znk |βnk,j,x(l),u(l)) is the product of the likelihood of the true source

and the false alarms. Since false alarm locations are uniformly distributed in the area of
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interest with the surface of S, the likelihood term is calculated using

p(Znk |βnk,j,x(l),u(l)) =
1

S
mn

k
j = 0

1

S
mn

k
−1p(z

n
k,j|x(l),u(l)) j 6= 0

, (2.10)

Substituting (2.9) and (2.10) into (2.8), the likelihood term is given by

p(Znk |x(l),u(l)) =
(1− PD)µF (mn

k)

Sm
n
k

+
PDµF (mn

k − 1)

mn
kS

mn
k−1

mn
k∑

j=1

p(znk,j|x(l),u(l)). (2.11)

In calculation of the likelihood term p(znk,j|x(l),u(l)), the given condition u(l) means

that the true source state lies inside the cell u(l) which is represented by the state x(l).

More simply, the source is in the area represented by x(l). Since the likelihood term is

dependent on the cell, discretization error must be taken into account when calculating the

likelihood function. In the tree-search structure, the size of the discrete cells u(l) varies

among different paths of the tree. For small cells, discretization error can be ignored in

comparison to the observation noise. However, for large cells, ignoring the discretization

error may drastically reduce the likelihood term in (2.11) for the sources that are not close

to the representative state of the cell.

The discretization error x̃ is modeled as a uniformly distributed random variable to

compensate the difference between the true source state (ẋ) and the cell representative

state vector x(l)

x̃(l) = ẋ− x(l). (2.12)

Considering the discretization error, the likelihood term p(znk,j|x(l),u(l)) is given by

p(znk,j|x(l),u(l)) =

∫
x̃(l)

p(x̃)p(znk,j|x(l), x̃(l),u(l)) (2.13)

=
1

Sl

∫
ẋ∈u(l)

p(znk,j|ẋ),
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where Sl is the surface area of the cell ul. Note that the measure space for the first

Lebesgue integral is over all possible state discretization error in the cell, and the second

Lebesgue integral is over all possible true source states in the cell. Considering the

observation model in (2.1), for a given true source state ẋ, p(znk,j|ẋ) follows the statistics of

the observation noise. However, the integral does not have a closed form for a general

nonlinear function H(). Numerical analysis techniques such as Gauss-Hermite quadrature

rules [37] can be applied for calculating this integral, but they increase the computational

complexity. Our approach for approximating the likelihood integral is based on linearizing

the observation model using Taylor series expansion of the observation function and

approximating the distribution function of the sensor observations given that the source is

uniformly distributed in the cell u(l). Substituting (2.12) in the observation model (2.1),

the sensor observation is given by

znk,j = H(x(l) + x̃(l)) + wn
k

≈ Hx(l) + Hx̃(l) + wn
k (2.14)

where H denotes the linearized matrix of the observation function H() and Hx(l) is a

constant term. The elements of the discretization error state vector x̃(l) are uniformly

distributed and are independent, the distribution of Hx̃ is the linear combinations of the

uniformly distributed independent random variables. Inferring from the Central Limit

Theorem, we approximate this distribution as Gaussian. Based on the distribution of the

observation noise wn
k , the probability distribution function p(znk,j|x(l),u(l)) in (2.11) is

calculated. As an example, assuming Gaussian distributed observation noise with zero

mean and covariance matrix of R denoted by N (0, R), then

p(znk,j|x(l),u(l)) ≈ N (Hx(l),ΣHx̃(l) +R), (2.15)

where ΣHx̃(l) is the covariance matrix of the random term Hx̃(l). The proposed tree search

algorithm, considering approximation of the likelihood function with Gaussian distribution

function, can be justified as a tree search technique for approximating the posterior
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distribution function of the source location using the Gaussian Kernels [47, 48]. Each

discrete cell can be considered as a Gaussian Kernel. The algorithm adaptively changes the

number of Gaussian Kernels used for distribution approximation and uses more Kernels in

the vicinity of the source by selecting smaller cells. To reduce the computational

complexity, the algorithm uses less Kernels (larger cells) in the areas that are unlikely to

contain a source.

2.2.2.2 Detection

The threshold must be varied based on the thresholds is addressed in this section. In

source detection and localization problem, the environmental noise continuously generates

false alarms or false contacts. In addition to reducing the estimation accuracy of the source

localization technique, the noisy contacts may cause the estimation algorithm to declare

the existence of sources that do not really exist. Conventional sequential Bayesian filtering

techniques such as Kalman filtering and particle filtering do not provide a tool for

validating the estimated source location, hence an external algorithm must be applied to

perform this task. However, one advantage of the tree search technique for source

localization is that the validation of the source location is performed in combination with

the localization. This also extends the applications of the algorithm to multiple source

detection and localization.

Looking for local maxima of the posterior function, the tree-search algorithm extends a

path and narrows the search subset whenever the metric of the path is above a predefined

threshold. To calculate the predefined threshold, we consider the conventional statistical

Neyman-Pearson test, and we relate this test to the path metric of the developed

tree-search technique.

Defining H0 and H1 as the source present and the source absent hypotheses,

respectively, the ratio of the observation likelihood functions under source present

hypothesis and source absent hypothesis (Neyman-Pearson test) provides a validation tool
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as follows

λ(l) = log
p(Z1, · · · ,ZK |x(l),H0)

p(Z1, · · · ,ZK |x(l),H1)
(2.16)

=
K∑
k=1

log
p(Zk|x(l),H0)

p(Zk|x(l),H1)

=
K∑
k=1

N∑
n=1

log
p(Znk |x(l),H0)

p(Znk |x(l),H1)
.

Calculation of p(Znk |x(l),H0) is addressed in path metric calculation (2.11), while the

second term p(ZNk |x(l),H1) is derived from the statistics of the false contacts considering

that the false alarms are uniformly distributed and independent of the source state

p(Znk |x(l),H1) =
µF (mn

k)

Sm
n
k

. (2.17)

Denoting

νnk = log
p(Znk |x(l),H0)

p(Znk |x(l),H1)
, (2.18)

and substituting (2.17) and (2.11) in (2.16), then we have

λ(l) =
K∑
k=1

N∑
n=1

νnk , (2.19)

where

νnk = log

1 +
PD

NF (1− PD)

mn
i∑

j=1

p(znk,j|x(l),u(l))

 . (2.20)

Replacing νnk in (2.16), the validation metric for each path is calculated. Note that νnk is

proportional to the likelihood function of the path metric that is calculated in (2.11).

Therefore, the validation metric is calculated from the path metric and does not increase

the computational complexity of the proposed algorithm.

A path is extended in the proposed tree-search algorithm if its validation metric

(proportional to the path metric) is greater than a predefined threshold τ . This threshold

is calculated by approximating the probability distribution function of the likelihood ratio
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function and considering the probability of detecting the source in a cell PSD and

probability of false alarm declaration PFA using

PSD =

∫
λ(l)>τ

dpλ(l)|H0 (2.21)

PFA =

∫
λ(l)>τ

dpλ(l)|H1 , (2.22)

where pλ(l)|H0 is the validation metric probability distribution function when the source

exists in the cell represented by x(l) and pλ(l)|H1 is when the source is not inside the cell.

The probability distribution function of the likelihood ratio values has been well studied in

the literature [50, 51]. Using the extreme value theory (extreme value theory (EVT)), the

local maxima is approximated with Gaussian distribution if the source exists (H0) and

approximated with Gumbel distribution[51] (H1) if the source is not in the area of interest.

Using the same technique as in [50], the threshold for the likelihood ratio test can be

calculated for the simulations in this work.

2.3 Experimental Setup

The first objectives was a proof of concept which required setting up a testbed to

simulate leaks for detection and localization. The setup for the testbed went through a few

iterations with different hardware and methods of data acquisition. The testbed included a

rudimentary sensor system for detection, a method of simulating a leak, a form of data

acquisition, and a manner of computation.

2.3.1 Sensor Array

The MEMS sensors chosen measured 3.76 mm wide, 4.74 mm long, and 1.4 mm tall.

Built by Knowles Acoustic, the SPM0404U5 sensors are surface mount devices meant for

PCBs. This required the design and printing of a simple PCB to allow connections for data

acquisition.

In order to localize leaks, it would still be necessary to have multiple sensors to find the

AOA. The design would have the MEMS sensors arranged in a line. This array would then
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Figure 2.3. The linear array of four MEMS ultrasonic sensors used for leak detection.

be used to determine the AOA based on the TDOA. This array can be seen in Figure 2.3.

For reference, Table 2.1 shows a comparison between these sensors and those used for

simulated leaks.

SPM0404U5 MaxSonar-UT
Operating Frequency 40-50 kHz 38-42 kHz
Device Type MEMS Piezoelectric
Directionality Omnidirectional 3dB drop at 15°from reference
Power Active (1.5-3.6 v) Passive (Drive: 20 v RMS)
Sensitivity -42 dB -60 dB
Max. SPL 115 dB 117dB
Purpose Microphone Transducer

Table 2.1. Comparison of the two ultrasonic components used in experiments.

2.3.2 Simulated Leak Source

In order to test the ability to detect and localize leaks, a source would be needed to

generate the ultrasonic noise. For this purpose, piezoelectric transducers were used for

their ability to take an electrical signal and generate the necessary acoustics. A function

generator is used to create a 40 kHz sine wave - a signal within range of both piezoelectric
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Figure 2.4. Prototype of a circular array of ultrasonic transducers.

and MEMS sensors. The generated signal is sent directly to the transducer producing a 40

kHz acoustic wave in air. It is this signal combined with the ambient environmental noise

that is sampled by the MEMS sensors.

The piezoelectric device of choice was the MaxSonar-UT built by Mabotix. These

sensors were piezoelectric sensors that were capable of detecting ultrasonic acoustic

emissions within a 30°range. They were designed to work in the range of 38-42 kHz with a

sensitivity of -60 dB. Since these were transducers, they were also capable of taking a

signal within range and producing that signal as an acoustic signal up to 117 dB. The

maximum voltage range for these passive sensors was 20 V. They measured 16.4 mm in

diameter and were 12.2 mm tall.

Since the piezoelectric transducers are directional, multiple sensors are necessary to

generate the signal in all directions to replicate a leak. Use of the circular array such as

that seen in Figure 2.4 lead to small dead zones where the signal would not reach the

sensors except by reflection due to the relatively small physical workspace. Another option
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was to have one transducer but rotate it in a circle to cover the same area. Due to this

factor and simplicity of testing, a singe transducer was rotated to simulate an

omnidirectional source. However, due to the manual placement of the source, human error

prevents the source from remaining in the exact location. Such error contributes to the

total error of the system and should be accounted accordingly. As mentioned this would

also reduce the reflection component of the received signal possibly reducing error. The

power range of the transducers allows one to test a wide range of SNR values for the

testing of clear and weak signals.

A concern for practical purposes is the use of a 40 KHz signal rather than noise. Since a

leak can generate noise at a wide range of frequencies, it might seem like realism is lost in

this testbed. While leaks produce much noise, the only range of interest is the 38-42 kHz

region where most devices are made to work. This is also the region where the leak

produces the best ratio of leak noise to ambient noise. The system functions the same

when the entire bandwidth of the sensors (as opposed to a narrower 40 kHz band) is used

by the source.

2.3.3 Data Acquisition

A set of Tektronix MSO2014 digital oscilloscopes such as that in Figure 2.5 were used

to acquire the same data. These oscilloscopes had a sampling rate of 1 GS/s per channel

for 4 channels. Data were saved to a flash drive and later imported by a MATLAB script

for post-processing.

2.4 Laboratory Setup

The final setup used for the complete tests were composed of four parts. The first is the

simulated leak source composed of a MaxSonar-UT sensor connected to a signal generator.

The signal generator creates a 40 kHz sine wave with a peak-to-peak voltage of 1 V. The

output is a 40 kHz acoustic signal that represents the leak. This transducer is placed at a
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Figure 2.5. Tektronix MSO2014 oscilloscope used for more detailed data acquisition.

point in a 62”× 62” square and rotated such that the signal reaches all sensor arrays. The

second part is the collection of sensor arrays. There are three sensor arrays located at

coordinates (0,0), (62,0), and (0,62). Each one of the arrays is connected to the power

supply set at 3VDC. The third part is the means of data acquisition. The individual

sensors are each connected to a channel on an oscilloscope which saves 1 second of data to

a flash drive. Finally, the last part is the MATLAB environment. The data is then

imported into the MATLAB environment where the data is processed to calculate the

approximated source locations from the sensor arrays and run the algorithm. This setup

can be seen in Figure 2.6 and Figure 2.7.

2.4.1 Simulations

The simulation scenario considers the challenge of sensor observations uncertainty in

high levels of the background noise which produces numerous false observations at the

receivers. We assume that each receiver is able to measure the bearing angle of the
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Figure 2.6. Generalized setup for experiments.

Figure 2.7. Completed setup for the data that was acquired

incoming signal using a linear array of the sensors. The range of the detected signal is

assumed to be calculated from time difference of arrival among the receivers.

The simulated scenario considers four sensor arrays (receivers) located at (0, 0), (10, 0),

(0, 10), and (10, 10) in a flat two-dimensional Cartesian coordinate system with each unit

denoting 1 meter (m). One source is randomly generated in the region of interest that is
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surrounded by these four receivers. The source state vector is defined in two dimensional

Cartesian coordinate system [x y]T , and the receiver observation (in Polar coordinate

system) is related to the source state using the following observation model function

H(x) =

 √
x2 + y2

tan−1(y/x)

 . (2.23)

In the simulations, it is assumed that the false alarm rate NF is given for location

estimation. The simulated tree-search algorithm uses observations from 20 independent

scans of each receiver. In path extension of the tree search algorithm, each state (subset of

the source state space) is divided into four smaller states, and the center point of each

small cell is selected as a discrete state. The estimated source location is declared when the

dimension of the subset containing the source is smaller than 1cm× 1cm. The maximum

number of sustained paths in the tree is set to 64, and if the tree gets larger, the paths

with smaller metrics are eliminated from the tree.

Figure 2.8 shows a realization of the simulation scenario in 10 independent scans from

each sensors. The observation contacts for 10 scans of the receivers including source

observations and false alarms are shown with dots. A source generated signal is detected

by a receiver with the probability PD = 0.8 and the average number of false alarms per

receiver is set to NF = 2. The standard deviation (std) for the source range is set to 0.4m

and for the angle of arrival (bearing) is set to 2o.

The performance of the algorithm is measured through root mean square error of the

source location estimation versus number of scans from the receivers. As the number of

scans from the receivers increases, we expect that the algorithm converges to the true

source location. To evaluate the mean square error of the estimated source location, 50

independent realizations of the source and sensor observations were simulated. Figure 2.9

and Figure 2.10 show the root mean square error (RMSE) of the algorithm vs number of

receiver scans for different values of the false alarm rates and the standard

deviation (STDEV) of the observation noise. For these plots, the probability of detecting
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Figure 2.8. A realization of the simulated scenario; the true source location, the estimated
source location using the proposed tree-search, and observations including contacts and false
alarms from four sensor scans.

the true source signal is set to PD = 0.8. In Figure 2.9, the STDEV of the observation

noise is fixed to 2° for the bearing angle and 0.4m for the range, but the false alarm rate

varies from 2− 16 average false alarms per receiver. We see that, increased false alarm rate

up to 16 increases the number of required scans for the source estimation from 2 scans to 5,

but does not effectively change the RMSE of the algorithm. In Figure 2.10, the average

false alarm rate is fixed to 16 but the STDEV of the observation noise is changing from

2° to 6° for the bearing angle and from 0.4m to 1.5m for the range. We can see that the

number of required scans for source localization and the value of the RMSE increases when

the observation noise power increases.

Figure 2.11 shows the performance comparison of the proposed algorithm with that of

the particle filtering technique [23] in terms of mean square error of the source estimation.

The particle filter algorithm is modified to be implemented with ultrasonic signals using

the likelihood function calculated in (2.11). This technique uses 2048 particles, and the
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Figure 2.9. Effect of the false alarm rate on root mean square error (RMSE) of the estimated
source location.

re-sampling step is performed when the effective number of particles are less than 500. The

update of the particle weights is proportional to the path metric 2.6 in the proposed

technique for fair comparisons. Any other assumption for the particle filtering technique

can also be applied in the path metric of the proposed tree-search technique. Two scenarios

have been simulated; in the first scenario, the probability of target detection is set to 0.8

while in the second one, it is set to 0.6. The average number of false alarm detections for

each sensor is 2. Low probability of source signal detection and high false alarm rate is a

challenging condition that the tree-search algorithm converges faster and stays in lower

error surface than the particle filter algorithm. Note that in the proposed tree-search

algorithm, the maximum number of sustained paths is set to 512 and if the algorithm

extends all the paths to all subsequent states, it must calculate the metric for 4× 512 new

states where the 4 denotes the number of subsequent states from each existing state. The

PF algorithm uses 2048 particles and in each iteration, it recalculates 2048 particle weights

33



Figure 2.10. Effect of observation noise on root mean square error (RMSE) of the estimated
source location.

in each iteration. Our simulation shows that in the proposed tree-search technique, usually

less than 25% of the existing paths are extended and the algorithm is roughly four times

faster than the particle filtering technique.

The performance advantage of the tree search algorithm with respect to the particle

filtering is the ability of the tree search tracker to keep looking at areas where the true

source signal may not be observed in first scans. In environments with high false alarm

rate, the particle filtering generates more particles around areas with dense false alarms

which may lead to losing the particles that are representing the source in the re-sampling

procedure. In the proposed algorithm, we only develop few paths around high density false

alarm areas (with higher path metric) and will always look back to the undeveloped paths

of the tree if it can revise the estimation when it finds that the undeveloped paths are more

likely. The other difference that increases the accuracy of the proposed algorithm with

respect to the particle filtering is that the particle filtering estimates the posterior
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Figure 2.11. Performance comparison of the proposed techniques with different probability
of target detection and comparison with the particle filtering technique.

distribution and the source state estimation is the expected value of the estimation. The

proposed algorithm looks for the local maxima of the posterior distribution through the

tree and the estimation is based on the local maxima that has the highest metric among

the others. Therefore, there is no averaging in the estimation as in the particle filtering.

2.5 Experiments

In the experimental scenario, the bearing angle of the incoming signal is the only

measurement, and the challenge is the high level of observation noise and the measurement

bias due to human error in the experimental data acquisition.

Three ultrasonic sensor arrays (receivers) located at (0, 0), (62, 0), and (0, 62) in a

Cartesian coordinate where each unit denotes 1 inch (in) were used to monitor a 62”× 62”

square area in the two-dimensional Cartesian coordinate system. Each array contains three

ultrasonic sensors located in a linear array and the distance between the sensors is 4mm.
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The simple beamforming technique mentioned in 2.2.1 is utilized to estimate the angle of

arrival of the incoming signals which has a nonlinear relation to the source state. One

source is randomly generated in the region of interest. Using the setup summarized from

2.4, we approximate the observation noise variance using 100 independent experiments

resulting in the approximation of 5°. The measured true source bearing angle that is used

to verify the estimated location is assumed to be Gaussian distributed with zero mean and

variance of 5°as well.

The RMSE of the physical experiment can be seen in Figure 2.12 represented by the

blue components. To check the validity of the selected parameters for the experimental

results, we have simulated the leak detector algorithm with three receivers located at the

same locations as in the experiments. The STDEV of the bearing angle is selected as 5°.

The performance results of this simulated scenario is plotted alongside with experimental

results in Figure 2.12. The experimental results show that the root mean square error of

the leak location estimation has a surface error of 4 inches. This is primarily due to the

experimental human error in measuring the true source location in the experiments.

Overall, the close match between simulation and experimental results verifies the

effectiveness of the proposed leak detection and localization method.

2.6 Summary of Contributions

The problem of source detection and localization can be addressed by non-Guassian

systems. However, the current methods for non-Gaussian systems are very complex and

not suitable for real time analysis by small sensor devices. In order to solve the general

detection and localization problem, a low complexity tree-search technique was developed.

This method accomplishes both detection and localization goals using observations

collected from an ultrasonic sensor network. The posterior PDF of the source state is

approximated only in the regions with high likelihood. The algorithm reduces

computational complexity of a general Bayesian filtering solution.
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Figure 2.12. Comparing results from lab experiments with that of the simulated algorithm.

Applying an adopted version of the tree-search algorithm to the ultrasonic leak

detection and localization problem is the novel part of this work. Compared to current

methods using ultrasonic emissions from leaks, this work takes the low sound pressure of

smaller leaks into consideration to address the difficulty in determining the presence of

small leaks in high levels of background noise. The developed Bayesian filter is capable of

handling the non-linear relation between the leak state and observation state spaces using

Gaussian kernels. The use of Gaussian kernels is justified by the Gaussian distribution

function of the likelihood term used to find a path metric. This requires the use of

Gaussian distributed noise which may not always be accurate. The adaptive use of kernels

allows for lower complexity of the algorithm compared to other popular methods such as

the particle filter and maximum likelihood probabilistic data association.

The tree search algorithm managed to localize leaks up to 50% closer to the simulated

leak than the particle filter using the same probability of observation. Extending higher

probable paths translates into fewer numbers of particles to update which in turn leads to
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faster results. As noted in the simulation results, Section (2.4.1), the tree-search algorithm

performed up to 4 times faster than the particle filter with a set number of particles. The

experimental results followed the simulations fairly well even when considering human

error. The experimental results did not exceed 1.5 cm farther from the source than the

simulations with regard to the RMSE floor. These promising performance results from

simulations and laboratory experiments suggest extension of the algorithm to various fields.

38



CHAPTER 3

INTERNATIONAL SPACE STATION PAYLOAD

As a background, the International Space Station is primarily a laboratory in LEO that

serves as an environment to perform experiments in microgravity and vaccuum of space. It

also serves as an orbital observatory for Earth and beyond. Originally started in 1998, the

structure is assembled from individual modules developed by five space agencies and

completed in 2011 with the last flight of the Space Shuttle Program. While technically

completed, the ISS still undergoes occasional module additions. One of the original

purposes of the ISS was to act as a multipurpose station for future exploration and

expedition to our moon and other planets in the solar system. Purposes included serving as

a location to develop, build, and test components, vehicles, and more for transport to the

Moon. While these missions fell to the way side in favor of laboratory duties, there are still

goals of returning to the Moon and eventually manned missions to Mars.

The Space Launch System (SLS) is set to be the most powerful rocket yet with the

express purpose of allowing the largest payload yet - more than double that of the Space

Figure 3.1. An exploded view of the ISS as of 2019 [53].
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Shuttle. It will serve as a means for transporting crew and supplies for larger missions

including lunar, mars, and other deep space locations. These types of missions, especially a

crewed mission to Mars, will require some means of habitation for the crew. With greater

distance from Earth and associated longer travel time, evacuation of a damaged habitat is

not feasible. Therefore protection of said habitat is paramount. While the ISS crew are

capable of evacuating back to ground in a few hours, the need for habitat protection is a

high priority. For this reason and its purpose as a testbed the ISS makes for the best

location to test a leak detection and localization system.

In order to test the leak detection algorithm discussed in Section 2.2, a self contained

system based on the testbed described in Section 2.3 was designed and built for use on the

ISS. The complete operational configuration for the prototype dubbed Wireless Leak

Detector (WLD) system can be examined in Figure 3.2. Sections 3.1-3.6 will discuss the

necessary changes and pre-flight testing that need to be mentioned before discussing

deployment and analysis. More details about the design and testing process can be

gathered from the Master’s thesis of Mr. Clark, the main contributor in the construction of

the prototypes. [58]. If successful, valuable data on ultrasonics in microgravity

environments can be collected and used to further improve the system design. While the

design was based on the previously discussed testbed, much of the design was modified for

use aboard the station. This chapter will primarily discuss those changes and then focus on

analysis of the results.

3.1 Sensor Array

One of the minor changes from testbed is the sensor model. While still employing

MEMS ultrasonic microphones, the new sensors are Knowles SPH0642HT5H-1’s SiSonic

Microphones. These sensors have a wider band of sound ranging from about 100 Hz to 50

kHz with peak at 30 kHz with slightly lower sensitivity of -38 dBV
Pa

. The wider audio range

may allows us to listen to more of the environment than the original sensors that had a
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narrow bandwidth of 4 kHz centered around 40 kHz. Another modification was the use of

only two sensors spaced per array approximately 3.8 mm apart but increasing the numer of

arrays to three on the same plane. This may be due to the ADC used but it also provides

three angle of arrival calculations with more distant starting point which should provide

better accuracy. As a side-note, the delay between any pair of adjacent pair of sensors on

the original 3 sensor arrays would be extremely similar. This would provide no extra data

when used in practical scenarios where resolution may limited. The designed sensor arrays

can be seen in Figure 3.3.

3.2 Data Collection

In order to be a deployable system, it is necessary for data acquisition and analysis or

computation to be accomplished by the same device. While the testbed used a high

sampling rate oscilloscope and PC for acquisition and analysis, respectively, these would be

far too large and power consuming for wireless implementation. To replace the CPU an

Arduino Due microprocessor board is used in conjunction with an external ADC board

with higher sampling rate than the Due.

Figure 3.2. Block diagram of the WLD system.
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Figure 3.3. Deployed setup of ultrasonic sensor arrays.

3.2.1 Analog to Digital Converter

The ADC selected was an Analog Devices AD9201 capable of dual-channel sampling at

20 MSa/s with 10-bit resolution. While the ADC’s sampling rate would allow very clear of

the signal compared to the Due’s on board ADCs, the sampling rate is still limited by the

speed of the CPU. Given the clock settings and max speed of the Arduino Due, the max

sampling rate of the coupled units is approximately 3.842 MSa/s. This reduces the

potential samples per cycle for a 40 kHz signal from 500 to approximately 96 which should

still provide a relatively good representation of the incoming signal range. Between the

sensors and the ADC are two other systems, namely the multiplexer and analog filter.

Neither set of circuitry affects the max sampling rate since the bottleneck is the CPU

board. The multiplexer allows the device to focus on a single array at a time since the

ADC is dual-channel. The filtering originally being done in the software was opted to be

partially replaced with physical filters. This bandpass filter, which can be seen in Figure

3.4 along with amplifier, has cutoff frequencies of 20 and 60 kHz with adjustable gain up to

20 dB to deal with a wide range of leak and noise ratios.

3.2.2 Processing Unit

The Arduino line of microcontrollers is a commonly used platform for prototyping and

experimentation due to relatively low cost and simplified interfacing with hardware via

42



Figure 3.4. Schematic for bandpass filtering and amplification .

extensive libraries from both first and third party. The Due was selected purely for its

speed. Most Arduinos are Atmel ATMega based microcontrollers but the Due is equipped

with an ARM microcontroller. The Cortex M3 ARM expends more energy but for much

more processing power and speed allowing sampling speeds greater than what would be

avaiable on lower level devices. The AT91SAM3X8E ARM microcontroller is a 32 bit chip

operating at 3.3 V and up to 800 mA with a base clock speed of 84 MHz. It also has 512

kB of flash and native USB port that may be used for data transfer in the future.

3.3 Assembly

The senors array, CPU board, and power supply are mounted to a custom designed

enclosure seen in Figure 3.5. Also included in the enclosure design are interfaces for USB

charging, an SD card slot for data storage on SD and SDHC cards, and power swithes for

simple startup and shutdown. The power supply used is a 9000 mAh Jackery GIANT+

rechargeable Lithium Polymer battery module. Given an average current draw of 330 mA
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Figure 3.5. Custom designed and printed enclosure [58].

for the system at a board voltage of 5 V, the estimated lifespan of the device without

charging is almost 28 hours. Recharge time from extremely low charge levels is estimated

to be about 9.5 hours. All data collection hardware and connectors are located on a

custom built PCB seen in Figure 3.6.

3.4 Laboratory Testing

Like in the previous work seen in Chapter 2 the prototype was verified to work as

designed. Rather than the three sensor array setup to cover a square area seen in Section

2.4, the single box with three collinear sensor arrays attempts to localize simulated leaks
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Figure 3.6. Custom designed PCB.

Figure 3.7. Area of interest for testing deployed design [58].

points in an area of interest seen in Figure 3.7. Code on the device was designed to take a

large number of samples and calculate the AOA for each set of samples. This data, both

the time samples and AOA estimates, are saved to SD card for the localization method

analysis on external PC. As before, a transducer powered by a function generator is used to

simulate a source using a 40 kHz signal. Another addition to this setup is the use of a

custom pseudo-anechoic chamber seen in Figure 3.8 in an attempt to reduce noise and

interference for more effective localization tests. Figure 3.9 reveals that while there is some

attenuation in lower frequencies, there is approximately a 1-3 dB gain in the desired band.
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Figure 3.8. Custom pseudo-anechoic chamber used in testing.

Figure 3.9. PSD of 40 kHz signal and ambient noise with and without anechoic chamber
[58].
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Figure 3.10. Lab-test results with leak source at .25 x .25 m.

3.5 Prototype Results

Several hours worth of samples from a set of points were collected and processed on

board to find AOA estimates for each sensor pair. Most tests were done without the

pseudo-anechoic chamber. The location estimates were then calculated and stored with

AOA and raw data to an SD card. The data were then processed on an external computer

to be run through both the tree search method and a Kalman filter. An example of leak

test results can be seen in Figure 3.10 and all set location results can be seen in Table 3.1.

Further an analysis of the relationship between distance from the source to the sensors and

the error distance can be seen in Figure 3.11. As expected, the error increases as the

distance from the sensors increases.

3.6 Field Test at JSC Mock ISS Module

Functional testing of the payload prototype was conducted in April 2016 at Johnson

Space Center’s mockups of US modules Nodes 1 and 2. These mockups are built on a 1:1
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Table 3.1. Measured accuracy of prototype during lab based testing.
Source (m) Sound Chamber? Source Signal Tree-Search Error Kalman Error
.10 x .20 No 40 kHz 3 V .122 m .141 m
.25 x .25 No 40 kHz 3 V .104 m .107 m
.16 x .15 No 40 kHz 5 V .082 m .100 m
.20 x .20 No 40 kHz 5 V .110 m .101 m
.20 x .30 Yes 39 kHz 5 V .100 m .116 m
.30 x .20 Yes 40 kHz 3 V .111 m .69 m
.30 x .40 No 42 kHz 3 V .215 m .132 m
.20 x .20 No 42 kHz 3 V .215 m .108 m

Figure 3.11. Error of Kalman filter and tree-search versus source distance [58].

scale of actual deployed nodes, however, they are a simple structural shape representation.

As such, the materials used for construction are vastly different, and much of the

instrumentation is not present. This lack of an accurate representation is expected to cause

some discrepancies of WLD results in the mockups versus the ISS.

A single WLD unit was temporarily mounted in specific orientations at each of the

three locations using Velcro strips previously decided in a Topology Study. These

orientations and locations would mimic those of deployment for the scheduled ACTs seen

in Section 3.7.1.1. At each of the three locations, the unit collected and stored acoustics

measurements in 10 minute intervals. The first interval included a baseline test with no
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Figure 3.12. Power spectral density of received signal in mockups [58].

simulated source and acts as a background noise measurement. Two more intervals were

recorded with the source generated using the transducers described in Section 2.3.2 at two

separate locations. Post-processing was performed using MATLAB and includes power

spectral density analysis, and comparison of filtered and unfiltered data. It is clearly seen

that the source is observed by the payload in Figure 3.12 with an approximate 15 dB peak

over background. The bandpass filter’s effects can be seen in Figure 3.13.

3.7 ISS Testing and Analysis

On December 9, 2016 three prototypes built for testing on-board the ISS were launched

aboard a HTV-6 that docked with the ISS on December 13. From January 23 to January

26, 2017 the three devices were setup at three different locations for three separate tests.

Data was transmitted to ground for analysis with 48 hours of deployment. This chapter

will cover the locations chosen for testing, the setup of the tests, and the actual analysis of
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Figure 3.13. Comparison of filtered and unfiltered received signals with source present [58].

data. Analysis will include the localization results, general frequency spectrum

observations, and spectrogram observations.

Figure 3.14. HTV-6 a.k.a. Kounotori 6 released from the ISS [54].
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3.7.1 ISS Test Setup

To test the prototype a set of locations were chosen that may allow the detection of

leaks or open events. While deployment on the exterior wall would have been the

preferred location, this was not feasible due to the amount of resources

required to do so. This resulted in a deployed orientation where each box was

"aimed" at a potential source location. The prototypes were setup

independently with one for each location. Each prototype box was oriented

such that the box would be close enough in proximity and the sensors directed

toward their respective location. For a given test, each prototype would be turned on

for a set amount of time. Once the test was over, the prototypes would be removed from

their positions, recharged, and await the next test.

3.7.1.1 Deployment Locations

Three locations were chosen that may best provide leak data for the prototypes. These

locations are all near hatches that may be opened at some point during regular operation

on-board the ISS. Schedules of activity is well documented and mostly planned in advance

so it is possible to associate events related to these hatches with data collected. The three

locations include:

1. US Node 1 Zenith Airlock Footbridge (see Fig. 3.15)

2. US Node 1 Nadir Airlock Footbridge (see Fig. 3.17)

3. US Node 2 Nadir Columbus Footbridge (see Fig. 3.16)

3.7.1.2 Test Setup

Deployment was separated into two tests or ACTs with the prototypes each deployed to

one of the listed locations. After the first ACT the devices were recharged and then

redeployed for the second ACT. An unscheduled third ACT was also conducted in an

attempt to capture the HTV-6 Departure. Table 3.2 is a record of deployment for all ACTs.
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Figure 3.15. Payload deployed on Node 1 Zenith Airlock footbridge.

Figure 3.16. Payload deployed on Node 1 Nadir Airlock footbridge.

Figure 3.17. Payload deployed on Node 2 Nadir Columbus footbridge. (Note the reversed
placement for ACT1.)
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Table 3.2. ACT deployment of Payloads.
Location ACT1 ACT2 ACT3
Node 2 Nadir Columbus Footbridge Box 2 Box 1 N/A
Node 1 Zenith Airlock Footbridge Box 3 Box 3 N/A
Node 1 Nadir Airlock Footbridge Box 1 Box 2 Box 2

3.7.2 Data Analysis

Data in the form of both source estimates and raw samples were retrieved via

down-links after each test. Raw data was run through the same procedure as the device

executes on a PC to confirm proper operation of the prototype. Source estimates were

processed through the tree-search algorithm to narrow in on possible leak locations. Since

there was no readily accessible pool of previous data it is hard to set any kind of threshold

for the algorithm. A general study of the data was also conducted to compare testing done

on the mockup and possibly gain some information on the environmental acoustics.

It should be noted that there was a physical issue with one of three prototypes sent

that was most likely caused by a shorting of the sensors. This lead to no usable data at its

locations during all ACTs including the third ACT of which it was the only device

deployed. The short would most likely have occurred between testing and shipping.

3.7.2.1 Localization Results

The possible leak locations of each test and working box combination can be seen in the

following four figures. Due to the deployment location not being on the surface

and the linear orientation of the sensor arrays, each estimate refers to a line of

possible locations out-of-plane. Since there is no known leaks in the area of interest

and the noise level is unknown, the estimates provided by these analyses can not currently

be confirmed accurate. Without knowledge of existent leaks and a base noise level, a
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threshold for the algorithm can not be set accurately and is left at a very low level. This

data may be used as a noise profile for future deployments.

Figure 3.18. Raw guesses and calculated estimates for Node 1 Nadir location.

There is only one set of estimations that occur in the same location due to the failure of

Box 2. This is for Node 1 Zenith footbridge. Comparing these estimates seen in Figure

3.20 and Figure 3.21, there is consistency in the angular direction within 2°.

Due to a lack of access to an accurate schematic of the nodes used as testing locations,

it is currently not possible to map the calculated leak estimates to actual three dimensional

locations. The use of public mockups and/or designs along with collected photographs will

have to suffice. The fact that the overwhelming majority of localization estimates are in

the first quadrant of the x-y plane is of interest. The directionality of the boxes was

towards areas likely to source leaks which may account for the relatively small deviation

from the y-axis. While overlaying this data on accurate maps has not been done, the

dimensions can be approximated from images of the deployment locations. Based on the
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Figure 3.19. Raw guesses and calculated estimates for Node 2 Nadir location.

relative distance from the senor the approximation, the estimated source location would

exceed the boundaries of the structure. This may be due to a reflection of the detected

leak’s location, or there is no leak and the location is the result of the algorithm’s low

threshold. Overlaying a complete and accurate map with the estimates may yield a

definitive result and is set for future work

3.7.3 Frequency Analysis

For "naked-eye observations" of the data among tests and working boxes, it is difficult

to see any noticeable difference among plots with the exception of some overall amplitudes.

As such, plots will only be shown for one box-test combination to reduce presentation of

unnecessary figures. The power spectral density (PSD) of raw data for Box 1 during ACT

2 over the entire time can be seen in the Figure 3.7.3. Figure 3.23 shows the average of

PSDs over individual runs. The most prominent points are the 550 kHz and harmonic
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Figure 3.20. Raw guesses and calculated estimates for Test 1 at Node 1 Zenith location.

frequencies, though it is currently unknown what the source of this frequency is. Previous

analysis and tests in the mockup have focused on frequencies in the range of 40 kHz using

software filtered data. Figure 3.24 shows a zoom of the entire data focusing on the range of

0 - 60 kHz. A comparison to the mockup test data is shown in Figure 3.25 showing fairly

similar curves after filtering.

Finally, an analysis of the surface-borne acoustics [15] conducted in 2014 was used as a

base for comparison with gathered data. Figure 3.26 and Figure 3.27 show the previous

analysis spectrogram and that of the data obtained during ACT 1 and ACT 2, respectively.

While data from surface-borne and air-borne acoustics can not be compared in an

equivalent manner, some insight into already present noise sources may be gained. For

comparison, surface-borne background noise has already been collected by Madaras in [15].

While access to the raw data could not be obtained, the spectrograms presented there will

serve as a substitute. There is considerable noise present during the surface-borne test in
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Figure 3.21. Raw guesses and calculated estimates for Test 2 at Node 1 Zenith location.

the region of 5-15 kHz, whereas the air-borne shows only a small portion of noise below

5Hz. The cause of this discrepancy has not been verified. There are three significant

factors of which one or any combination of them may be the cause. First, the difference in

acoustic attenuation is most likely a strong contributor dependent of course on the

materials in use. While higher frequencies are expected to attenuate faster than lower ones,

the better propagation in air should allow for the noise observed in the surface-borne run

to also be visible in the air-borne test. It may be that the difference of location in which

the tests were conducted led to source(s) not present during the air-borne test. Lastly,

sensors used may have had significantly different sensitivity-frequency curves. Verifying the

source of this discrepancies is left as future work.
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3.8 Summary of Contribution

A complete flight-ready prototype of leak localization hardware was designed, built, and

tested both in laboratory and on a mock-up. The main hardware included a set of sensor

arrays with a wider frequency range than that of the proof of concept experiments

described in Section 2.3, ADC circuitry for acoustic data collection, and a processing unit

tasked with generating possible source locations based on raw data and managing storage

of guesses and raw data. The prototype has been designed to operate continually for at

least 24 hours enabling the collection of a wide range of expected situational noise

environments. The device was first tested in a laboratory environment to verify proper

function Later testing at the mock-up location showed expected operation in an

environment more representative of the deployment location. This working prototype

served as the next step in implementing a true wireless automated leak detection system.

Two of the three flight-ready prototypes were successfully deployed in their respective

locations on Node 1 and Node 2 of the ISS. Data from the working prototypes were

properly recorded and transmitted back to ground for post-processing. Frequency and

spatial analysis showed consistency among all tests with mock-up preflight tests without a

simulated leak. Results from applying the tree-search algorithm show either the detection

of a reflection of the leak source or the nonexistence of any source. If a leak was not

recorded, the raw data could provide a base for expected background noise and further

help in setting a threshold value for the algorithm in future deployments.
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Figure 3.23. Average PSD across runs using data from Box1 during ACT1.

Figure 3.24. Zoomed 40 kHz focus of filtered data from Box1 during ACT1.
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Figure 3.25. Comparison of filtered PSD between data from Box1 during ACT1 and relative
mockup location.

Figure 3.26. Spectrogram from surface-borne acoustic analysis.
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Figure 3.27. Spectrogram of the air-borne acoustics from ACT 1 and ACT 2.
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CHAPTER 4

REFLECTION SIMULATION

One of the major contributors to location estimation inaccuracy is the presence of

interference, specifically from reflections of source signals on surfaces in proximity to the

leak source and detection system. In order to validate the need for compensation from this

source of error, an analysis of the effects it has on the system is conducted with research

covering the different parameters’ effects.

An example of a possible scenario can be seen in Figure 4.1 where the source and

receiver locations represented by the blue and red circles, respectively, are between two

parallel surfaces. While this scenario would lead to essentially infinite reflections the figure

only shows the first three signal path types. The first is line of sight (LOS) denoted as x0,

the second is the single reflect point denoted by x1 and x2, and the third denoted as x3 is

one of the possible paths that reflects off both surfaces once each.

Figure 4.1. Example reflection scenario.

Due to differences between path distances, the strength of reflected signals received can

be significantly lower due to the inverse square law corresponding to

63



omni-directional/spherical propagation. The type of surface that the signals are reflecting

off of may also attenuate the signal depending on its reflection coefficient. The surface’s

coefficient may also have an imaginary component that introduces phase effects to the

signal.

As a formal definition of the scenario, let S̄(t) be the signal emitted by the source in the

time domain, and let each of the signals received previously mentioned be denoted by xj

where x0 specifically refers to the LOS signal. The received signal will simply be

R̄(t) =
n∑
j=1

xj (4.1)

where xj can further be expressed as

xj = Gj ∗ S̄(t− tj) + wj. (4.2)

Here Gj and tj are the gain or attenuation and the time or phase shift associated with the

jth path. Also,the additive noise is denoted by wj.

Given the total distance the path travels denoted by dj and the attenuation due to the

reflection off the kth surface on the jth path denoted by Aj,k, the gain for path j is defined

as

Gj =
1

4πd2j
α (dj)

(
m∏
k=1

|Aj,k|

)
. (4.3)

Another term included is the acoustic attenuation labeled as α, which is dependent on

more than just the path distance as implied by this equation. This is a simple case of using

the approximate attenuation rate given the source frequency and conditions similar to

those near sea level. In the same manner, the time shift can be expressed as

tj =
dj − d0

c
+ f

m∑
k=1

∠Aj,k (4.4)

where f is the signal frequency, and c is the speed of sound (assumed to be similar to that

near sea level at 1 atm). As a note, the method for finding the delay due to the phase shift
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relies on the frequency of the signal and will have a more complex effect on a real signal

with a range of frequency components. Derivations can be seen in Appendix A.

The specific scenario that will be explored is described as follows. A sensor array will

be simulated using the prototype dimensions aligned on a 2 dimensional space. The source

will be represented as a point-source emitting an omni-directional 40 kHz signal. Since the

largest effects of interference are the focus, simulations will involve only the first reflection

off a single surface interfering with the LOS signal. Points of interest are on the relation

between AOA error and the relative distance of a surface to the receiver and between error

and reflection coefficient.

4.1 Simulation Method

To observe the effects of reflections, a MATLAB script capable of simple two

dimensional simulation was created. Using this simulation of earliest reflections, the

approximate error from largest effects of interference in a simple setup can be studied. This

setup uses a simulated source similar to that used in physical testing of the hardware. The

receivers are equivalent in spacing to the microphone arrays used in the deployed

prototypes.

Two dimensional analysis is comprised of setting the receivers and source at given

locations and then including a surface that can be represented using a simple equation.

Runs of different sensor locations and distances between receivers and surface are done to

cover a wide range of angles. Figure 4.2 shows a small example of what the setup looks like

with the horizontal lines representing the different surfaces, the black x’s showing test

locations for the source, and finally the red x’s to show the receiver locations. Note that

the receiving array’s location does not move and the individual receivers are as close as

they were physically deployed so they appear as a single x.

The received signals are used as input for computations similar to deployed initial

simulations to calculate just the source’s bearing angle and then compared to the true
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Figure 4.2. Sample setup for reflection simulations.

AOA. This will be the measure of accuracy for further analysis. Due to the wide range of

angular error that may occur, a limit or threshold is set such that plots show meaningful

data. The usual threshold is 5° unless otherwise noted. This is to mirror the bearing angle

used in previous localization simulations. The general process of the script can be seen in

Figure 4.3.
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Figure 4.3. Brief overview of the processes used in the simulation method.

For these simulations, the following assumptions are made or enforced. The receivers

are truly omni-directional; the receiver’s angular sensitivity can be set but has not been

fully implemented. All acoustics are traveling though a medium similar to air at sea level.
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There is no frequency shifting of any kind though implementable if desired. Each scenario

will have its own set of parameters in addition to those listed above. For example, in the

spatial analysis, the surfaces are perfect acoustic reflectors to simulate the worst case

scenarios though specific reflection coefficients will be analyzed in a later scenario.

The range of input data used for simulation are as follows. The receivers are centered

on the origin and in a vertical orientation. Source locations are modeled in the first

quadrant and surfaces are effectively in the fourth quadrant. Surfaces are set as horizontal

lines to simplify calculations while representing common real-life obstacles. The area of

interest represented by the source locations is an area of 2 m2 with the center at (1,1). The

horizontal distance from the receivers to the surface ranges from 0.1 m to 3 m.

4.1.1 Path Finding

For these simulations it is necessary to find paths that the source signal will travel to

the receiver. Given the source and receiver locations, it is straight forward to calculate the

direct LOS path. Given a surface, it is possible to use trigonometry to find the reflected

path. The derivation of the algorithm for finding a reflection point on a surface in a single

surface scenario can be seen in Appendix B. This method assumes no scattering or

frequency shifting effects on the part of the reflection surface. Furthermore, the surfaces

are assumed to be completely smooth with a uniform reflection coefficient.

As a general overview for a single surface, the algorithm will use locations of the source,

a receiver, and the surface to calculate additional points on the surface that will create two

tangent triangles. The critical point where the triangles connect defined as the reflection

point for the path is calculated using simple trigonometric properties. Once this point is

calculated it’s straightforward to find the path distance and time delay.
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4.2 Spatial Simulation

For the introductory analysis, the focus is on the surface’s relative distance from the

source. To focus on the distance, SNR is kept relatively high and the reflection coefficient

is maximized. Specifically, the SNR is set to 10 dB and the reflection coefficient is set to a

value of 1 to maximize the reflections’ effect on error. The full analysis will be over the

area of interest described with a resolution of 1 mm2. Surface distances will be over the

given range in increments of 10 cm starting 10 cm from the receivers.

4.2.1 Spatial Simulation Results

Figure 4.4 show the worst simulated scenario, a surface within 10 centimeters of the

receivers. This set of parameters results in the reflected signal attenuating very little and

providing significant power to the received signal. As such the only AOAs detected

accurately within the threshold are those where the surfaces result in reflections relatively

in-phase with the LOS signal akin to being on a Fresnel zone. The simulated points under

threshold make up over 30% of the data for this surface distance. Figure 4.5 is closer to a

realistic scenario with the surface being 1.5 m vertically distanced from the receivers. Error

over the threshold makes up approximately 14% of the area simulated. The error under

threshold seems to tend toward about 12.5% as seen in Figure 4.6. A graph of error over

the threshold across simulated distances can be seen to show the same in Figure 4.7. This

is likely the best scenario that is probably encountered in deployment of hardware.
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Figure 4.4. AOA error in area of interest for surface distance of 0.1 m.

Figure 4.5. AOA error in area of interest for surface distance of 1.5 m.
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Figure 4.6. AOA error in area of interest for surface distance of 3.0 m.

Figure 4.7. AOA error over threshold across surface distances.
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While expected error of 32% of the interest space is already significant, this is only the

effect of earliest reflections. It should also be noted that the area of interest simulated

includes locations beyond the suggested range of the prototype previously discussed and

future prototypes.

4.3 SNR Sensitivity

To determine how sensitive the method is to noise, an analysis across a range of SNR is

performed. For the first scenario, the surface is removed to get the raw effect of SNR on

the AOA error. This analysis has a reduced resolution of 5mm for the area of interest. The

range of SNR values are from 0 - 10 dB to cover poor to extremely good signal strength.

The second scenario show how SNR affects the error when a surface is present. For this

scenario, the same SNR range is used, but the reflection coefficient is left at complete

reflection. The area of interest has the same resolution, and the surface distance has the

same range.

4.3.1 SNR Sensitivity Results

The SNR has a strong effect on the accuracy of the AOA calculation as seen in Figure

4.8. At 10 dB the error over threshold is as high as 13% and up to 28% at 0 dB. Error does

not fall below 5% until over 20 dB which is an unlikely level of scenario. The presence of a

reflecting surface is predicted to only increase the error rate.

The first graph of Figure 4.9 show the combined effect of the SNR and a completely

reflecting surface at varying distances. Each line represents a different SNR value. As the

SNR increases, the error rate falls, but the rate at which it falls is of interest. At every

distance there is some level of diminishing returns when it comes to the decrease in error

compared to the required increase in SNR. This can be seen most clearly in the close

quarter surfaces where the surface affects accuracy to a greater degree. The second graph

makes this a bit clearer to see as several changes in error rate at distance over SNR is
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Figure 4.8. Rate of exceeding threshold relative to SNR without a reflecting surface.

shown. The efficacy of reducing the reflection coefficient decreases as the distance from the

surface decreases. This is likely due to the natural attenuation of longer paths increasingly

lowering the power of the reflected signal. Note that for surface beyond 1m in distance, the

error rate improvement is in a similar range from 1-2% as SNR decreases.

Figure 4.9. Rate of exceeding threshold relative to SNR with a surface reflection coefficient
of 1.
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4.4 Reflection Coefficient

The ability to alter the acoustic reflection coefficient of surfaces leads to an interest in

that coefficient’s effect on the AOA error. A range of coefficients, both real and complex,

are chosen along and within the unit circle to cover most types of surfaces. The SNR was

left at 10 dB to focus more on the reflection interference. The ranges of the surface

distances and the area of interest remain the same but the resolution is smaller to lower

simulation time. For the surface distance, the resolution is 10 cm, and for the area of

interest, it is 10 mm.

4.4.1 Reflection Coefficient Results

Figure 4.10 shows an array of simulated complex coefficients for a single distance of

0.1m from the receiver and with 100 dB SNR. As we can see from this figure, magnitudes

of the reflection coefficient seem to affect the error rate a great deal more than the phases.

Figure 4.10. Rate of exceeding threshold relative to the reflection coefficient.

A snapshot of a single magnitude with multiple phases over the range of distances

shown in Figure 4.11 illustrates this seeming independence from the surface distance as
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well. There is no true independence, but the effect of phase is negligible regardless of the

surface distance or the magnitude of the reflection coefficient as shown in Figure 4.12. This

is to be expected since the phase component will shift all the reflections by the same

amount. Since the simulated signal is a simple sinusoidal wave, the phase shift is simply

cyclic and phase shifts moving points out of the threshold level are counter balanced by an

equivalent or near-equivalent number of points moved under said threshold. A more

complex and realistic signal may yield different results.

Figure 4.11. Error rate for single simulation with equal magnitude and variable phase.
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Figure 4.12. Standard deviation of error rate relative to the phase shift component of

reflection coefficient.

Due to the minuscule effects of the phase component, study was focused on the just the

magnitude of the reflection coefficient. The error rate across phases for a given magnitude

are averaged to produce the magnitude data. These error rate averages can be seen in the

first part of Figure 4.13 where the second part illustrates the change in error rate as the

magnitude is increased at several distances. Like in the SNR analysis, the one meter mark

seems to be an approximate threshold for accuracy. Surface distances greater than 1.1m

yield less than approximately 1% error reduction per coefficient decrease of 0.1 magnitude.

Under this distance, changes in the surface’s reflection coefficient magnitude will result in

greater decreases of the AOA error rate; up to 5-6% change in error rate is possible.

4.5 Reflection Analysis Conclusions

The following three parameters and their effects on AOA error were examined:

reflecting surface distance, SNR, and reflection coefficient. Based on simulated results, the

strongest contributers to error are the SNR and distance from the reflection surface.
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Figure 4.13. Rate of exceeding threshold relative to the reflection coefficient magnitude.

Overall, the distance has a strong correlation to error relative to the reflection coefficient

and the SNR. Recall the characteristics described in Figure 4.9 and Figure 4.13. For the

reflection coefficient, it is easy to confirm that at a certain distance the returns of

decreasing coefficient magnitudes are greatly diminished, especially when the surface is

greater than 1m away. As for the SNR, the error rate does not have a large reduction when

the surface is too close to the sensor array i.e. less than 1m.

When considering the application of this data to the design of a system which the

prototype hardware described in Chapter 3 may serve as a base, there are limitations in

what can be adjusted. Since the strength of a source signal is not know in advance, the

only way to increase SNR is to drop the noise ceiling. This would have to be considered

during the design phase of the pressurized structure rather than after construction and

deployment. While the SNR is not a parameter that can normally be adjusted, the distance

may be increased by proper planning of sensor deployment locations. Manipulation of the

surface reflections may also be implemented during construction or possibly after. Based

on the surface reflection coefficient results, it could be argued that adjusting the coefficient

for surfaces beyond 1-1.5m is not very effective. From the SNR analysis, the larger error

reduction rates are restricted to reflecting surface distances beyond approximately 1m.
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The model described in Chapter 2 is designed to function in higher error scenarios due

to factors such as low SNR and multi-path by reflections. However, there may be scenarios

where such processing is not an option, such as ultra-low power solutions where on-board

processing is not feasible and perhaps few guesses can be generated. This section of early

research can used as the beginning of guidelines for deployment of many ultrasonic

systems. While the plots presented are based on a threshold of 5, the raw data can easily

be filtered to generate different guidelines for other restrictions. In general, the method

developed can easily be applied to similar acoustic scenarios.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusions

A low complexity tree-search technique was developed as a novel solution for both

detection and localization goals using observations collected from an ultrasonic sensor

network. A low complexity tree-search technique was developed as a novel solution for

both detection and localization goals using observations collected from an ultrasonic sensor

network. The posterior PDF of the source state is approximated only in the regions with

high likelihood reducing computational complexity of a general Bayesian filtering solution.

This method takes the low sound pressure of smaller leaks in high levels of background

noise into consideration to address the difficulty in determining the presence such small

leaks. The developed Bayesian filter handles the non-linear relation between the leak and

observation state spaces using Gaussian kernels, which is justified by the Gaussian

distribution function of the likelihood term used to find a path metric. The adaptive use of

kernels allows for a less complex algorithm compared to other popular methods such as the

particle filter and maximum likelihood probabilistic data association.

The tree-search algorithm managed to localize leaks up to 50% closer to simulated leaks

than the particle filter using the same probability of observation. Extending higher

probable paths translates into fewer numbers of particles to update leading to faster

results. The algorithm also performed up to 4 times faster than the particle filter with a

set number of particles. The experimental results compared with the simulations fairly well

and did not exceed 1.5 cm further from the source than simulations.

A prototype of leak localization hardware was designed and built for the express

purpose of testing the novel solution in application aboard the ISS, an appropriate

pressurized space structure. The hardware included a set of new ultrasonic microphone
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arrays that served as the sensing component of a sensor network necessary for the

localization algorithm. The electronics platform chosen and PCB design served to properly

collect acoustic audio in the ultrasonic range The prototype was designed to record source

estimates and raw data to external media for post-processing. It was also designed to

operate continually for at least 24 hours enabling the collection of a wide range of expected

situational noise environments. Testing prior to deployment confirmed the prototype’s

capabilities in both the lab setting and in an environment reflecting that of a node on the

ISS.

From the flight-ready prototypes that were successfully transported to the ISS and

deployed in their respective locations, data were properly recorded and transmitted back to

ground for post-processing. Frequency and spatial analysis showed consistency among all

tests with mock-up preflight tests without a simulated leak. These results show that the

presence of a leak was unlikely based on the estimates, algorithm output, and the potential

corresponding locations in the node. While no leak seems to have been recorded, the raw

data provides a base for expected background noise and may help in setting a threshold

value for the algorithm in future deployments.

A method of simulating leaks in various conditions and calculating AOA error was

developed allowing for exploration on the effects of various physical parameters. For this

work, the focus was on reflecting surfaces. Study of reflection scenarios effects on the AOA

error showed strong contributions from the SNR, reflecting surface location, and reflection

coefficient. All of these parameters can have a strong effect on the error individually, but

when combined they provide insight on possible realistic scenarios. Of these parameters

explored, distance from the surface showed promise for defining regions of effects. Given

the condition parameters for measuring AOA error, results from the simulations show a

boundary near 1m can be declared to differentiate low and high impact of SNR and

reflection coefficient with respect to the surface distance from receivers. While plots,

figures, and this boundary declaration are generated based on the 5°threshold
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implemented, the methodology and simulation software can be applied to other thresholds.

Additional physical parameters can also easily be added to the methods.

5.2 Future Work

A proper mapping of the leak estimates on an accurate model of the nodes is a

necessary step in the localization analysis to verify the source existence and location.

Additionally, verification of the discrepancy between air-borne and surface-borne frequency

responses needs to be completed as well as origination and future elimination of the 550

kHz peaks. While the prototype hardware was verified to be flight-ready, the lack of

certainty in the existence of a leak during deployment warrants another round of in-situ

testing. As a first step, a testbed utilizing more realistic leak signatures from an actual

pressurized structure would be a worthwhile endeavor for confirmation of proper operation.

Further improvements include moving the post-processing for localization to the device,

interconnectivity between the devices as a means of creating a single system, and

implementing a more power efficient unit. Ideally, the tree-search algorithm should be

implemented on the nodes to generate a single output – either the location of a leak or

indicator of no leak. Allowing the communication between devices allows for the presence

of a complete system that could simplify installation or deployment and create a single

stream of output rather than one for each device. This will introduce the possible

limitations of throughput and will require further analysis of the potential impact on the

performance. A more power efficient prototype would allow for longer testing and in the

future limit the amount of maintenance necessary for a full deployment.

For the reflection analysis work, the next steps are to add the effects of additional

surfaces and moving to a 3-dimensional method. This would allow for possible modeling of

a deployment location to predict the expected error and fine-tune the system. This

transition to the third dimension could also be reflected in the prototype with a movement

to a 2-dimensional sensor array allowing 3D localization - perhaps a circular array. While
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the single test signal served as a start, real leak signals are necessary to better simulate the

scenarios leading to more reliable results. Such an improvement to the algorithm would be

the use of radiation patterns expected from a source point on multiple surface topologies.

Also, the pure tone serving as the current test signal should be replaced with signals similar

to those generated by real physical leaks. These may be done concurrently with the realistic

testbed setup previously mentioned. If financially viable and time efficient, the use of finite

element analysis could be a further step toward accuracy in acoustic system modeling.
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APPENDIX A

DERIVATION OF FORMAL DEFINITION

As in the main text, let S̄(t) be the signal emitted by the source in the time domain, and

let each of the signals received be denoted by xj where x0 specifically refers to the LoS

signal. The received signal will simply be

R̄(t) = x0 + x1 + x2 + ...+ xn =
n∑
j=1

xj (A.1)

where xj can further be expressed as

xj = Gj ∗ S̄(t− tj) + wj. (A.2)

Here Gj is the gain or attenuation, tj is the time or phase shift associated with the jth

path, and additive noise is denoted by wj.

Let m represent the number of reflection points that are included on the jth path. Then

let k represent the kth path segment such that dj,k represents the distance from the kth

reflection point tp the (k + 1)th. For the k = m component, the path is from the mth

reflection point to the receiver, and for k = 0, the component is from the source to the first

reflection point. In the special case of the LOS where m = 0, the only component is plainly

from the source to receiver.

Following the path from source to receiver location, the sources of attenuation are

displayed in Equation A.3. Each component but the last is comprised of the acoustic

attenuation in air where the factor is represented by α, the loss due to spherical

propagation expressed as distance ratios, and the magnitude of the reflection coefficient

Aj,k of that surface. Clearly, the last component does not have the reflection coefficient

since the path segment ends at the receiver.

Gj = .e−αdj,0
1

4πd2j,0
|Aj,0| ∗ e−αdj,1

d2j,0
(dj,1 + dj,0)2

|Aj,1| ∗ . . .

∗ e−αdj,m (dj,1 + ...+ dj,m−2)
2

(dj,1 + ...+ dj,m−1)2
|Aj,m−1| ∗ e−αdj,m

(dj,1 + ...+ dj,m−1)
2

(dj,1 + ...+ dj,m)2
(A.3)
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Due to the simple multiplicity for total gain, the products can be grouped into the

components mirroring the three sources of attenuation. For simplification the occurrences

of sums from dj,0. . . dj,m will be replaced with dj which is equivalent to the total distance of

the jth path. This simplification is expressed as

Gj =
1

4πd2j,1

(
m+1∏
k=1

e−αdj,k

)(
m∏
k=1

|Aj,k|

)
d2j,1

(dj,1 + dj,2 + · · ·+ dj,m+1)
(A.4)

where

m+1∏
k=1

e−αdj,k = exp

−α
m+1∑
k=1

dj,k︸ ︷︷ ︸
dj

 . (A.5)

Since only a simple signal is being modeled, the components of temporal shift is

composed of only the phase shifts from reflection coefficients and the delay from the longer

path. The surface coefficient effects are represented by the sum of each phase component.

The delay from the different path length is simply that change in distance divided by the

speed of sound in the medium represented by c.

tj =
dj − d0

c
+

m∑
k=1

∠Aj,k (A.6)

A.1 Attenuation Factor

The attenuation factor defined previously as α is calculated from Stokes’s law of

attenuation [60, 59]. The formula used is

α =
ω2

2ρ0c3

(
4

3
η + ηB

)
. (A.7)

Here ω is the angular frequency of the signal, ρ0 is the media density, and c is the speed of

sound in air. The variables η and ηB refer to the shear and bulk viscosity, respectively. For

simulations done in Chapter 4, values for ρ0 and c were calculated from the conditions

found on the ISS via the Environmental and Thermal Operating Systems [55]. The

viscosity parameters were estimated from air properties found in [61].
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APPENDIX B

PATHFINDING ALGORITHM

Figure B.1 shows an example scenario that references the terms to be used in the

derivation of the pathfinding algorithm for a single surface reflection.

Figure B.1. Example reflection scenario with labels.

Let R and S represent the coordinates of a receiving sensor and the point source,

respectively. These coordinates can be separated into their x and y components in a

fashion such as R being composed of xr and yr.

R = (xr, yr), (B.1a)

S = (xs, ys). (B.1b)

Given a simple, infinitely long surface L that can be expressed by an equation such as

Li = mix+ bi, (B.2)

there are two points on L corresponding to the source and receiver that can be used to

create two lines both perpendicular to the surface and parallel to each other. It is assumed
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that the surface does not act as a barrier between the source and receiver as this would be

a situation where refraction must be taken into account. Given no barrier condition and an

infinite surface, there is only one point that the signal serve as a reflection point, and it is

referred to as

F = (xf , yf ). (B.3)

The reflected path will have the same angle θ on both sides of the reflection point. Let R′

and S ′ be defined as

R′ = (xr′ , yr′), (B.4a)

S ′ = (xs′ , ys′) (B.4b)

and represent points where lines perpendicular to L intersects points R and S, respectively.

This essentially forms two triangles 4SFS ′ and 4RFR′ with the shared angle θ and side

lengths equivalent to ∆(SS ′) and ∆(RR′). To simplify expressions, the short hand form of

the distance between any point A and B will be

∆(AB) =
√

(xA − xB)2 + (yA − yB)2. (B.5)

In addition, the known distances D(RR′) and D(SS ′) will be further simplified to ∆R

and ∆S, respectively.

Due to the similarity of angle θ there is a relation between the triangles with reference

to the reflection point. Expanding the distances forms including F and using the relation

between the xf and yf defined by the surface’s equation allows for the solving of only one

variable. This can be seen in Equations B.6 - B.10 below.

tan(θ) =
∆(RR′)

∆(FR′)
=

∆(SS ′)

∆(FS ′)
(B.6)

∆R ·∆(FS ′) = ∆S ·∆(FR′) (B.7)

∆R2 ·∆(FS ′)2 = ∆S2 ·∆(FR′)2 (B.8)

∆R2[(xf − xs′)2 + (yf − ys′)2] = ∆S2[(xf − xr′)2 + (yf − yr′)2] (B.9)
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∆R2[(xf − xs′)2 + (mxf + b− ys′)2] = ∆S2[(xf − xr′)2 + (mxf + b− yr′)2] (B.10)

Algebraic manipulation leads to a standard form of a quadratic equation as seen in

Equations B.11 and B.12 below.

∆R2[x2f (1 +m2) + xf (2mb− 2mys′ − 2xs′)−2bys′ + b2 + x2s′ + y2s′︸ ︷︷ ︸
C1

] =

∆S2[x2f (1 +m2) + xf (2mb− 2myr′ − 2xr′)−2byr′ + b2 + x2r′ + y2r′︸ ︷︷ ︸
C2

] (B.11)

x2f [(∆R2 −∆S2)(1 +m2)]︸ ︷︷ ︸
a

+

xf 2[∆R2(mb−mys′ − xs′)−∆S2(mb−myr′ − xr′)]︸ ︷︷ ︸
b

+

[C1 − C2]︸ ︷︷ ︸
c

= 0 (B.12)

This can be solved using the standard quadratic formula with bounds defined by source

and receiver locations .

xf =
−b±

√
b2 − 4ac

2a
| R /∈ FS, S /∈ FR (B.13)

Once xf or yf is found, the other component can be calculated using the Equation B.2.

The reflected path distance can then be calculated from the two components from S → F

and F → R.

df = ∆(SF ) + ∆(FR) (B.14)
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