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EFFICIENT TIME OF ARRIVAL CALCULATION FOR
ACOUSTIC SOURCE LOCALIZATION USING

WIRELESS SENSOR NETWORKS

PRASHANTH G. REDDY

ABSTRACT

Acoustic source localization is a very useful tool in surveillance and tracking

applications. Potential exists for ubiquitous presence of acoustic source localization

systems. However, due to several significant challenges they are currently limited in

their applications. Wireless Sensor Networks (WSN) offer a feasible solution that

can allow for large, ever present acoustic localization systems. Some fundamental

challenges remain.

This thesis presents some ideas for helping solve the challenging problems faced

by networked acoustic localization systems. We make use of a low-power WSN de-

signed specifically for distributed acoustic source localization. Our ideas are based

on three important observations. First, sounds emanating from a source will be free

of reflections at the beginning of the sound. We make use of this observation by

selectively processing only the initial parts of a sound to be localized. Second, the

significant features of a sound are more robust to various interference sources. We

perform key feature recognition such as the locations of significant zero crossings

and local peaks. Third, these features which are compressed descriptors, can also

be used for distributed pattern matching. For this we perform basic pattern anal-

ysis by comparing sampled signals from various nodes in order to determine better

Time Of Arrivals (TOA). Our implementation tests these ideas in a predictable test

environment. A complete system for general sounds is left for future work.
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CHAPTER I

Introduction

Acoustic source localization is a potentially very useful technique for surveil-

lance. It is also a challenging task even for a resource rich system due to its heavy

reliance on signal processing. Acoustic Source Localization (ASL) is the act of lo-

calizing an acoustic source in space with respect to a known coordinate system [6].

ASL is traditionally performed on a resource rich system due to the complexity of

processing multiple acoustic signals simultaneously. Due to ASL’s requirement of

distributed sensing, it is not hard to envision an acoustic Wireless Sensor Network

(WSN). The challenges however are daunting especially if any significant accuracy is

to be maintained [10]. In this thesis we present methods to perform acoustic source

localization in an efficient manner using a wireless sensor network.

Localization has become an ubiquitous accessory today with the advent of

Global Positioning System (GPS). Though GPS involves the act of localizing oneself

with respect to fixed satellites, the underlying principle is similar to other forms of

source localization [25]. Most accurate localization systems rely on electromagnetic

signals due to their narrow band nature. Narrow band signals are simpler to localize

because only a single or a select group of frequencies need to be used [19]. Acoustic

phenomena however are inherently wide band signals and as such are much more

complex to deal with.
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Acoustic localization has long been of interest to biologists studying how ani-

mals acoustically perceive their environment at least since the 1940’s [15]. Acoustic

localization for surveillance has been of research interest for several decades. More

recently numerous acoustic localization systems have been developed for the purpose

of gunshot localization [5]. It would be of great importance if gunshots alone could

be localized in an environment for military and law enforcement needs. Systems have

even been developed for biologists studying animal behaviors based on their vocal-

izations in the wild [32]. Biologists often seek to monitor animal vocalizations and

in particular their migratory behavior. All these however fall in the large category of

surveillance be it for the purpose of finding an infraction of peace or tracking animals

in the wild.

It makes sense to have a large distributed sensing system for large area cover-

age. With this in mind most recent acoustic localization and surveillance systems are

wirelessly networked acoustic sensors. It is possible to envision a very large city instru-

mented with acoustic sensors to localize and track various phenomena encountered.

Recently mobile phones have been used to track the sources of noise pollution in an

urban environment [26]. Wireless acoustic sensor networks can be a powerful tool for

the greater good of civilized societies primarily in the areas of law enforcement, so-

ciological and environmental surveillance. Such a task would have tremendous social

and technical complications. Dealing with a small part of the technical complexities

will be the concern of this thesis.

1.1 Problem

The biggest challenge for acoustic source localization in wireless sensor net-

works (WSN) is the computational and energy constraints characteristic of WSNs.

Desktop computers, for example, have powerful multi-core processors capable of com-

plex signal processing tasks and gigabytes of RAM. Such a network node, should one

be used, would have minimal resource constraints for performing networked ASL.

Wireless sensor network nodes, on the other hand, are designed to be cheap, hardly
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noticeable, hardly significant sensing devices. The expression ”strength in numbers”

readily comes to mind when describing wireless sensor networks. This paradigm

places computation and energy constraints that desktop class systems do not face, on

each node of a WSN. Large wireless sensor networks typically consist of nodes with

highly limited resources in the range of 10 Kilobytes of RAM and 1 - 10 MHz range

fixed point processors [21]. For the purpose of signal-processing-intensive tasks such

as ASL it is often the case that customized nodes are developed which are much less

restrictive specifically for ASL. This application specific customization however comes

at the cost of greater resource usage and more significant node cost. This inevitably

places a greater restriction on the scale of deployments.

Acoustic signals are almost always wide band signals composed of ranges of

frequencies. This is significantly different from the narrow band signals commonly

used in electromagnetic-based localization systems such as GPS and RADAR. This

makes acoustic signals computationally complicated to deal with as signals from var-

ious source nodes need to be compared with each other. The standard approach for

this comparison is by using cross-correlation on two separate signals. This is how-

ever problematic for several reasons. First, large sections of audio signals need to

be transmitted to a location where they will be correlated. Data transfer in large

quantities is perhaps the Achilles heel to WSN energy consumption minimization.

Radio transmissions are usually the most energy consuming tasks and as such are

avoided whenever possible. Second, cross-correlation is a computationally intensive

process for a resource constrained system such as the typical low power wireless sen-

sor nodes. This problem can rival the energy costs of radio transmissions in WSNs.

Thirdly, cross-correlation relies on a large section of acquired signal. This is fine

in large open environments with no possibilities of reflections. However, reflections

in the form of echoes and reverberations make cross-correlation methods somewhat

inaccurate. This, in spite of the development of Generalized Cross Correlation with

Phase Transform (GCC-PHAT) [3] method that is much better at handling reverber-

ations. These reasons make the use of cross-correlation techniques infeasible in large

scale WSN deployments for ASL.
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Unlike cross-correlation based techniques, Time Of Arrival (TOA) based meth-

ods are much more efficient especially for WSNs. Most gunshot localization systems

based on WSNs rely on time of arrival using significant changes in signal amplitudes.

While time of arrival methods in gunshot localization is highly predictable, it is sel-

dom used for localizing general sounds. Threshold based methods, have seen great

use in WSN based ASL for highly impulsive sounds. However the problem here is

that impulsive sounds only comprise a small portion of sounds naturally occurring in

the environment.

A large problem with signal threshold based methods is the wide variations of

sounds encountered by various nodes in the network. Acoustic signals being wide-

band in nature are prone to large variations in the sampled signal from node to node.

What one node hears, while being similar to what its neighboring node hears, is

different enough that when threshold detection is used, large variations in time of

arrival are detected, making localization less accurate. Therefore methods are re-

quired to consistently match the signals across nodes with accurate time differences

maintained, all while keeping computation and communication to a minimum. This

thesis primarily aims to improve upon time of arrival based methods such as signal

thresholding such that it is applicable to a wider variety of sounds.

1.2 The Thesis

Acoustic source localization despite its demanding requirements can be simpli-

fied to be performed in an efficient manner. In addition, unlike most current research

work for localizing general sound sources, energy and cost-efficient devices can be

used. This thesis describes some techniques that could be used to allow low cost

sound source localization to be to performed, possibly even in real-time.
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1.3 Solution Approach

Signal parameters that uniquely represent a short time signal provides a snap-

shot of the signal for comparison between nodes. While correlation methods can

provide accurate time differences necessary for localization, they are too inefficient.

In addition they fail when too many reflective paths are present. This thesis aims to

solve these problems in three significant steps.

• Minimize interference from reflection by considering initial parts of a signal

based on node distances.

• Use signal zero-crossing and peak detection instead of impulsive changes in

amplitude, along with signal tracking.

• Networked pattern matching from tracked signals to allow for more reliable time

differences.

To begin with, even though each node is collecting data continuously, only the initial

part of a given sound occurrence is taken into consideration. The length of the con-

sidered part is dependent on the particular pair of nodes in consideration. Therefore

the length of interest is dynamic. By choosing only the initial part of the sound,

interference caused by reflection can be greatly reduced if not avoided altogether.

Reflections occur when energy in the form of sound pressure waves bounces off of

surfaces and follows a path different from that of the sound’s source. These reflec-

tions when captured by a node in addition to the true source’s sound already being

experienced by that node, will cause significant distortions in the final captured sig-

nal. By dynamically changing the length of capture for a given two nodes, this data

corrupted by reflections can be avoided in the next stages of localization.

Next, by looking at only the most significant part of the signal, the first few in-

stants of the event, transmission of the complete signal between nodes can be avoided.

Thresholding by itself is highly efficient because of its very minimal signal processing

requirement. However, thresholding alone is prone to error between nodes due to

the significant changes present from node to node. This thesis aims to minimize this
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problem by using peak and zero-crossing detection instead. This alone is however

not sufficient. Because the signal strength of sound reduces as distance from source

increases, two different nodes with different distances from the source will pick up

different amplitudes. However, the signal pattern would be similar assuming other

interferences such as secondary sources or reflections are not significant. By employ-

ing peak detection and signal pattern tracking much more accurate TOA information

can be acquired.

The signal is then tracked individually on each node. Tracking the signal in-

volves making note of parameters of the signal segment such as locations of maxima

and minima along with their amplitude ratios. Change in frequencies by using zero-

crossing rates are also possible features. Essentially, each node creates a pattern with

a predictable path that represents that section of signal on each node. This is essen-

tially a feature descriptor of that signal which greatly compresses the information for

efficient transfer between nodes.

The final stage that this thesis introduces is the networked pattern matching

stage. Here the feature set of the signal of interest provided by each node is trans-

ferred between node pairs for comparison. The node pairs are selected according to

the standard requirements placed by localization techniques. In this pattern matching

stage, the feature sets are to be compared by pattern matching techniques. Because

the feature sets are highly compressed descriptors of the original signal, the process-

ing required for this correlation is minimal. In addition, because of the distributed

nature of node pair selection, the transmission of those feature sets and processing

are also distributed. The resulting output is the times of arrival information of each

node which is used in the localization stages. Localization will be discussed as a

final part of the theory as this thesis does not contribute to the established meth-

ods of localization, rather only to the efficient determination of the TOAs vital to

localization.
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1.4 Contributions

• This thesis makes the following contributions: Presents novel techniques for

efficient wireless sensor network based acoustic source localization.

• Efficient mechanisms of signal processing and matching necessary for such lo-

calization.

• Implement and evaluate our theory by testing core methodologies.

1.5 Organization of Thesis

This thesis is organized as follows. Chapter 2 provides necessary background in-

formation on wireless sensor networks relavent to acoustic source localization. Chap-

ter 3 provides details on our architecture for an efficient networked acoustic local-

ization system. Chapter 4 describes in detail the implemented theory along with

the necessary work used to test validate our idea. Chapter 5 details the evaluation

methodology along with results and problems encountered. Chapter 6 provides a

review of similar work. And finally Chapter 7 concludes this thesis along with future

work.



CHAPTER II

Background

2.1 Wireless Sensor Networks

The field of Wireless sensor networks (WSN) is relatively new. Traditionally,

problems that required sensing of a system were limited to wired sensors connected

to a central computer. This model is widespread and has been critical to the elec-

tronic age. Examples of this are, sensors in an automobile monitoring and controlling

the engine, security systems relaying video and audio data to a monitoring station,

among numerous others. However these applications though relying on sensors, and

typically are not considered as sensor networks. Sensor networks differ in that they

are networked computers with each computer having its own set of sensors accessi-

ble directly only by its computer. Examples of wired sensor networks include some

area surveillance networks, computer networks in general communicating with users

among others. These networks however are largely wired and far too general in their

use. The new field of wireless sensor networks deals largely with gathering data about

an environment and relaying this information to a central location for further analy-

sis. Adding wireless communication capabilities to small embedded computers with

sensors allow them to be deployed in places that larger systems cannot be placed. The

variety and range of applications that embedded system based networked wireless and

8
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wired systems are being applied to is vast and growing [7].

2.2 Wireless Sensor Network Hardware

Sensor networks gain a great degree of freedom when they become wireless

allowing them to be deployed in places previously infeasible. However this added

freedom also places a serious restriction because these wireless devices need to be

powered by a portable energy source, usually a battery. WSNs are often designed to

last for extended periods which places further restriction on the energy source. Due

to these severe restrictions, WSN hardware is designed to be be very efficient and as

a result limited in capabilities. Some of the hardware that make up WSN hardware

are the radio for wireless communication, sensors for sensing the environment and an

embedded processor for collecting data, performing basic processing and using the

radio module to transmit the data [20].

2.2.1 Node Processors

Each node that collectively make up the network has one or more low power

embedded processor for performing various operations relevant to the networks func-

tion. The most popular of the embedded processor have been limited to 8-bit or

16-bit processing, although some of the newer processors have 32-bit processing capa-

bilities [14]. The processors are usually limited to fixed point processing and limited

RAM sizes due to the severe energy restriction. One popular processor is the Texas

Instruments MSP 430 microcontroller. The MSP 430 is a 16-bit processor that is very

energy efficient for performing mixed tasks such as managing various sensors and per-

forming basic processing on the sensed data when needed. Because of the popularity

of this processor our thesis makes use of a network of nodes employing the MSP 430

microcontroller. There have been applications that require a low power processor for

efficient resource management and one or more powerful processor for serious com-

putations of the sensed data [24]. Many applications are relying on signal processing

capabilities, for example, to perform data compression. These networks employ more
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energy expensive digital signal processors (DSP) such as the Intel PXA271. For our

thesis we limit our usage to the popular TI MSP 430.

2.2.2 WSN Radio Modules

Wireless sensor networks require a wireless communication medium for all their

communication needs. Most WSN communicate by the use of radio due to their

feasibility in most applications. However usage of the radio is minimized due to

their high energy usage. So far two major WSN radio frequencies have been used,

900 MHz and 2.4 GHz in WSNs. The current most popular radio the TI ChipCon

CC2400 series of radio chips use a 2.4 GHz communication frequency. One of the

main goals of our thesis is to minimize the radio usage and thus greatly extending

network life.

2.3 Sensor Network Software

2.3.1 TinyOS

Because of the complexities involved data collection in WSNs, software systems

specific to sensor networks are often used. One of the most popular operating system

is TinyOS [30]. TinyOS has many software components that are important to accom-

plish various critical functions that make a WSN. One important function of software

systems like TinyOS is to allow convenient access to the underlying hardware includ-

ing ADCs, radio modules, storage and the processing mechanisms. Another critical

component in WSN operating systems is the need for MAC protocols which will be

discussed in Section 2.3.2. There are several other operating systems that are used

primarily for wireless sensor network research work and applications.

2.3.2 MAC Protocols

The communication medium by radio is the electromagnetic medium where all

nodes use a highly limited range of frequencies to communicate. Most communica-
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tion hardware in WSN allow only one device to transmit at a time in the medium.

However more than one node can listen to the medium at a given time as the lis-

tening process does not interfere with any other transmission process in the medium.

Because of these restrictions a software communication protocol is needed to allows

for reliable transmission and reception of data between nodes in the network. This is

the job of the Media Access Controller (MAC).

There are several basic types of MAC protocols. Time Division Multiple Access

(TDMA) is one type that requires various devices in the network to take turns trans-

mitting data. TDMA is often used in WSN although not the most popular due to

their high energy consumption which in turn is because of the requirement of precise

time synchronization between nodes. Frequency Division Multiple Access (FDMA)

and Code Division Multiple Access (CDMA) are other communication protocols that

are seldom used in WSN due to their higher hardware and resource requirements.

Carrier Sense Multiple Access (CSMA) protocols that allow for unrestricted usage of

the communication medium as needed by a device in the network. CSMA protocols

are such that a node first samples the communication medium before transmission. A

node transmits only if the medium is unused. When not transmitting the nodes can be

listening to the medium for other transmission if necessary. Because of CSMA’s free-

dom of communication at the time of need, it is generally very efficient for networks

that require communication at unpredictable times. Because of the unpredictable

nature of the environment being sensed by the WSN, data transmission can occur at

any time. These characteristics of WSNs and the simplicity of the CSMA protocols

make them the most popular type of MAC protocols in WSNs. However WSN have

many variations of CSMA MAC protocols depending on the application. Currently

TinyOS 2.x makes use of the BMAC protocol by default. BMAC is designed to be an

energy efficient protocol by allowing a flexible interface and adaptive parameters [9].

In this thesis work we use this default protocol adequately although collisions are a

problem at certain instances.
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2.3.3 Time Synchronization

Time synchronization is the act of synchronizing various nodes in the network

relative to a reference clock common to all nodes. Time synchronization is often used

in WSN depending on the application. TDMA protocols for example require rela-

tively precise time synchronization. Many application require time synchronization

not just for the MAC protocols but also for properly sensing the environment. In gen-

eral the more precise the time synchronization requirement the greater the demand on

the network hardware and resources, especially energy. Tight time synchronization is

therefore avoided if possible. The need for time synchronization arises from a few ba-

sic facts. First, any two given nodes have oscillators that differ slightly for each other.

Though the more precise oscillators based on mechanical oscillations such as MEMs,

tuning fork or crystal oscillators offer relatively small difference on a large time scale,

when small differences in timing matter, they fail. This is due to slight variations in

the manufacturing process and material imperfections that cause two oscillators to

be slightly different from each other. Second significant cause for further variations

in oscillator frequency differences is due to variations in temperature at each node.

Two nodes placed in an environment where even slight differences in temperatures

can cause sufficient variation in oscillator frequencies. For example, even if two par-

ticular nodes are located in an outdoor setting such as a park, one node might be

exposed to sunlight more than the other therefore resulting in a slight temperature

difference. WSNs nodes placed in an indoor setting will likely see even greater tem-

perature variations. Most sensor networks are placed in environments that will result

in some clock drifts between nodes even if oscillators were finely tuned and selected

before installation.

Besides TDMA communication protocols, WSN applications that perform acous-

tic event localization are some of the most demanding application in terms of the

accuracy of time synchronization. Several types of time synchronization protocols

have been developed for applications that require tight synchronization. Reference

Broadcasting Schemes (RBS), for example rely on reference nodes that broadcast a
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beacon signal which each node in the network referee to [8]. This timing beacon

does not contain any time stamp. The nodes use the time of arrival with respect

to its own clock and make phase difference measurements relative to other nodes for

synchronization. RBS is therefore a receiver-receiver synchronization protocol. Time

Synchronization Protocol for Sensors Networked (TPSN) is a synchronization proto-

col based on sender-receiver synchronization unlike RBS [27]. TPSN has two steps

where the first stage is the level discovery phase where a tree structure is create such

that root nodes transmit a timing beacon to be received by its child nodes. The

next step is the synchronization stage where each root node starting with the root

node at level zero transmit a timing beacon used only for synchronizing its immediate

children nodes. This process continues until all nodes are synchronized. The inherent

tree structure allowed by TPSN allows for scalable multi-hop networks unlike RBS.

Flooding Time Synchronization Protocol (FTSP) is another synchronization protocol

popular in WSN requiring accurate synchronization. FTSP is very similar to TPSN

in that it is also designed for multi-hop networks, uses a hierarchy although not a tree

topology, and synchronization is performed sender to receiver [17]. FTSP however

uses linear regressing for clock drift compensation and allows for dynamic shifting

of the root node. These allow for better synchronization accuracy with FTSP than

TPSN’s. The high time synchronization accuracy requirement placed by acoustic

localization WSNs require the use of a protocol such as FTSP. FTSP is also used

in Vanderbilt’s sniper localization systems. In this thesis work we make use of a

wired synchronization for synchronization with accuracy well beyond that provided

by wireless synchronization protocols. We make use of this wired protocol to reduce

contribution of error due to a time-synchronization protocol to the system. Section

4.3 provides details of our wired time-synchronization protocol.

2.4 Wireless Sensor Network Applications

Over the past decade wireless sensor networks have started to see tremendous

growth in the variety of applications they are used in. Though largely in the research
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stage, WSNs have seen uses in applications ranging from surveillance to human body

sensor networks. As discussed before WSN allow for cheaply monitoring a large area

unlike a wired system. Vanderbilt university has bone significant work in gunshot and

sniper localization [4]. UC Berkeley has used sensor networks for tracking animals

based on their calls [13]. In our previous work, we performed efficient signal processing

for speaker recognition in a sensor network with our LAKON sensor node architecture

[24]. Researchers at UT Dallas have done much work on body motion recognition

which is one of the fast growing areas in WSNs relating to monitoring wearer’s health.

Even smart phones used for collecting and enhancing environmental data has gathered

large interest for surveillance and user experience enhancement [16]. WSNs are bound

to become a ubiquitous part of our daily life in our near future.



CHAPTER III

Theory

3.1 Theory Of Operation

3.1.1 Acoustic Signal Aquisiton

The Analog to Digital Converter (ADC) present on each sensor node’s pro-

cessor is responsible for sampling the incoming microphone signal. One of the most

important parameter of concern to acoustic signal processing and in particular, to

acoustic source localization is that of sampling rate. The sampling rate is the num-

ber of times the ADC reads the value of a signal in a period of time. Typically,

acoustic sources of concern closely match that of the human hearing ranges of 20 Hz

to about 15 KHz. Despite the average human’s frequency response range being so

large, the majority of sound energy is concentrated in a very short range, well below

5 KHz. Figure 1 - Figure 4 show some common sounds sampled at 44 KHz, and the

same sound, frequency limited to 2 Khz. In most commonly occurring sounds it can

be seen that there is minimal loss in the sound’s major features. The presence of

higher frequencies often provide fine details about a particular sound, especially hu-

man speech, which we recognize and distinguish readily. These show that despite the

loss of a significant portion of higher frequencies, the acoustic signals are still unique

15
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and readily distinguishable from each other, at least with respect to the envelope of

the sound. For the purpose of ASL, we are concerned more with the ample presence

of the envelope of the sound, that is, the general outline of the sound.
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(a) Speech sampled at 44 KHz

500 1000 1500 2000 2500 3000 3500 4000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 A
m

pl
itu

de

Sample

(b) Speech sampled at 4 KHz

Figure 1: Human speech sampled at 44Khz and 4Khz
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(a) ”Thud” sampled at 44 KHz
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(b) ”Thud” sampled at 4 KHz

Figure 2: Desk ”thud” sound sampled at 44Khz and 4Khz

Figure 5 - Figure 6 show the frequency range vs energy information of the

four sounds from Figures 1 - Figure 4 that were sampled at 44 KHz. The frequency

spectrum information shows that the largest energy is present below 2 KHz frequency.

This can be seen as peaks above a -20 dB magnitude as a rough estimate, which almost

entirely occur frequencies below 2 KHz. These examples show that high frequency
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(a) Fan sound sampled at 44 KHz
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(b) Fan sound sampled at 4 KHz

Figure 3: Table fan sound sampled at 44Khz and 4Khz

500 1000 1500 2000 2500 3000 3500 4000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 A
m

pl
itu

de

Sample

(a) Water flow sampled at 44 KHz
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(b) Water flow sampled at 4 KHz

Figure 4: Flowing water sound sampled at 44Khz and 4Khz

sampling is not necessary to obtain important features in a signal. One of the primary

challenges faced by WSNs is the limited energy and processing capabilities available.

Therefore, it is important to select an optimal ADC sampling rate such that only

the significant information is retained. For most acoustic signals for the purpose of

source localization, frequencies below 5 KHz should provide most of the information.

For a given desired sound to be acquired, Nyquist criteria says that the sampling

rate required must be at least twice that of the maximum frequency to be captured.

Therefore for a maximum frequency bandwidth of 2 KHz, a 4 KHz sampling rate by

the ADC would be minimum. Because of aliasing effects however, a slightly higher
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sampling rate is required assuming there is negligible energy at frequencies higher

than the desired maximum. Ideally for a real-time ASL sensor network, continuous

sampling and processing would also be required. A circular buffer containing the data

that is constantly updated would be one approach. The length of stored acoustic

samples would depend on the buffer size, which in turn is dependent on the available

free RAM on the microcontroller.
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(a) Frequency spectrum of speech
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(b) Frequency spectrum of ”thud”

Figure 5: Frequency spectrum of speech and impulse sounds
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(a) Frequency spectrum of fan
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(b) Frequency spectrum of water flow

Figure 6: Frequency spectrum of fan and water sounds
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3.1.2 Change Detection Processor

The sampled acoustic data must be processed in order to recognize an event of

interest that occurred. This is the job of the change detection processor. Operating

on a highly limited microcontroller restricts access to sophisticated signal processing

algorithms such as those relating to frequency domain analysis in real-time. There-

fore much simpler algorithms such as threshold crossing detection is often used for

detecting if and when a significant change occurred. The idea behind threshold based

detection is simple. The signal is checked sequentially and when the signal passes a

certain threshold value, an event is said to have occurred at the time when the signal

surpassed the threshold value. In reality however, thresholding methods are often

more sophisticated in order to avoid false triggers [11]. Even with added complexity,

thresholding methods are among the simplest and most efficient change detection

methods applicable to signals.

In much of the existing research, the time of the significant amplitude change

is often used as the Time Of Arrival (TOA) necessary for localization. This method

however is prone to significant errors in TOA. Primarily, there are two large sources

of error when using thresholding methods to derive TOA. First, due to the physi-

cal separation of any two nodes, the time the same signal reaches the two nodes in

most cases will be different. This in addition to low signal sampling rates will cause

the threshold to be triggered slightly out of phase with respect to the correct phase.

This is essentially phase error where increasing the sampling rate will reduce this

error. The second significant problem with threshold detection methods is caused

by the varying signal strength between two nodes. Assuming there is sufficient sig-

nal strength to trigger the threshold on both nodes, due to the difference in signal

strength between the two nodes, one node will trigger with a greater phase difference

then expected due to a faster rise in signal amplitude required to meet the threshold

limit. This effect is however independent of sampling rate.

In less resource limited systems, signal cross-correlation is another frequently

used technique for determining time differences in signal propagation between sen-
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sors. Cross-correlation is a method used to determine the phase difference between

two identical signals separated by some phase shift in time domain between the two

signals. Cross-correlation methods however have significant limitations in its sim-

plest form. In an environment where reflections are present, significant distortions

will occur for the signal of interest. To help mitigate this problem to a degree Gen-

eralized Cross Correlation with Phase transform (GCC-PHAT) is used [3]. GCC is

a fairly accurate way to determine time differences assuming there is sufficient signal

length. GCC requires a sufficiently long signal before it can be processed and also

relies on Fast Fourier Transform (FFT) which is a compute intensive process best left

for Digital Signal Processors (DSP). Therefore, in resource limited sensor networks

cross-correlation methods are best avoided because of their significant computational

requirement.

Our signal processing therefore relies on modified thresholding methods due to

their compute friendly requirements. However, unlike traditional methods, we per-

form significant further analysis before deriving the TOAs. This analysis allows for

much more precise computation of TOA. Another significant reason to use a thresh-

old value as the trigger for change detection is so that it ensures sufficient signal

strength is available to many nodes. Having a high signal-to-noise ratio is critical

for performing accurate processing especially signal matching. The first stage of the

change detection processor is on an individual node level which looks for significant

changes in signal strength. This significant change would be indicative of a signifi-

cant acoustic event. Once the change is the detected, the node records the time with

respect to its local clock and proceeds to the next stage for signal analysis. Figure 7

shows the flow chart of our theory.

3.1.3 Primary Node and Arbitrator Node

Now that at least a few nodes have been triggered by an acoustic event near the

nodes, it is time to determine the primary node. The primary node is of importance

because it is the one node that contains the greatest information on the particular

acoustic event. The important signal characteristic information provided by the pri-
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mary node will be used by other nodes for comparison. Sound is a mechanical wave

that propagates in all directions in 3-Dimensional space given that it is unrestricted.

Because of this, the sound wave reduces in intensity as radius r increases according

to:

Intensity : I ∼ 1

r2
(3.1)

In addition, sound travels at a velocity of 343 meters per second at standard temper-

ature and pressure. As a result for any two nodes with different distances from the

acoustic source, the node closest to the source would measure greater values in its

signal along with arriving earlier. Accordingly its signal-to-noise ratio would also be

the lowest assuming the magnitude and characteristics of the noise is similar in all

nodes. Because of this, the primary node will be the node with the greatest informa-

tion of the properties of the acoustic event and source. Therefore, the primary node

is the node closest to the acoustic source.

Deciding which node is the primary node is the job of the arbitrator node. The

arbitrator node is simply a dedicated node whose purpose is to make decisions for

the sensing nodes and also acts as a gateway to the localization computer. Once the

sensing nodes are triggered by an acoustic event, they immediately send the arbitrary

node information of the triggered event. Particularly, the time the triggering occurred

on a global time scale, and the peak amplitudes of the signal near the triggered event.

Because the closest node to the source should see the greatest magnitude and earliest

time of event, the amplitude of the signal along with the trigger time can be used

to determine the closest node to the source, that is the primary node. The sensing

nodes that were triggered in the meantime wait for the arbitrator node to respond

with the primary node information. Once the sensing nodes, including the primary

node receive the primary node information from the arbitrator node they determine

an appropriate subset of the total sampled signal appropriate for further processing.

This is because only a small portion of the acoustic event is of interest to us.
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3.1.4 Signal Windowing

So far the sampled signal is continuous and unrestricted in size with exception

to the buffer size limit. Processing the entire samples buffer is wasteful except if

frequency-domain based methods like GCC are used. For thresholding methods, only

a small subset of total buffer is sufficient assuming the start of the acoustic event is

contained in the window. Because of the time delay in the acoustic signal reaching

different nodes that vary in distance from the source, the time of trigger, which is

the start of the event will also vary accordingly on a global time scale. Therefore,

the window of samples selected must contain sufficient signal length surrounding the

time of trigger. The size of window is of importance as unneeded processing can be

avoided by having a sufficiently small window without discarding useful information.

The window size is primarily determined by the distance between the primary node

and the corresponding node. This inter-node distances are constant in most sensor

networks and therefore the coordinates of each node can be programmed into the

memory of each node beforehand or determined once after node installation. Dis-

tances from any two nodes can be calculated simply by Euclidean distance formula.

Based on the distance and propagation of sound, a safe window size is calculated by

empirical methods.

Another significant reason for an appropriate window size is to help avoid re-

peating patterns in the sampled signal. Many naturally occurring acoustic events

exhibit stationary behavior at least to a few periods beyond the initial peak of the

signal. Figure 1 which shows speech patterns clearly showing this stationary behav-

ior. To a certain extent other naturally occurring sounds also exhibit this stationary

behavior. The most interesting part of the signal is obviously in the initial few periods

after the acoustic event peak. Therefore the ideal window size would save the need to

process repeating patterns. In a sensor network where the inter-nodes distances are

constant however, this window size will also remain constant and therefore this step

can be eliminated. Once the window size is known either beforehand or by calcula-

tion, the placement of the window is such that it contains some insignificant signal
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before the trigger point and the most significant portion of the signal after the point

of triggering. The node can therefore have a predetermined window offset determined

adequate by empirical methods beforehand. Next the windowed signal is processed

by the node using pattern recognition.

3.1.5 Signal Analysis

The windowing process ensures that signals similar enough will be compared

by pattern matching techniques. Ideally the acoustic signal captured by all nodes

would be identical copies, different in no way other than in amplitudes and time

differences due to the basic properties of wave propagation. If the variations were

only that of magnitude and phase difference, the pattern matching would be a simple

process. However, in reality the signal will vary noticeably sometimes significantly

in their pattern depending on the locations of each node for a given environmental

setting. Many factors influence the captured signal’s pattern. Among the most sig-

nificant factors are those of sample timing, noise profiles, and reflections which are

different at each node. Sample timing, which is a combination of time synchroniza-

tion between nodes and distance of nodes from the source will almost always result in

phase mismatches such that a captured local wave would be slightly different. Over-

sampling the signal can ensure the signal’s fidelity, which is however not feasible for

a low power WSN. The noise profiles are dependent on the physical location along

with hardware dependent noise unique to each node. Different noise sources in the

environment can effect the nodes in unpredictable ways due to reflections. Hardware

unique to each node especially the analog components such as the microphone, ampli-

fiers and ADC can cause noticeably different noise profiles in each node. Reflections,

besides contributing to the noise profile acting as unwanted sources, if large enough

can cause significant distortions at each node. Reflections, especially in an closed

environment with highly reflective surfaces such as concrete office walls can create

significant distortions in sounds based on the location. These factors combined, make

analyzing the pattern for comparison a challenging task for low power WSNs.

There are two possible approaches that could be taken for the purpose of
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signal analysis. First, the windowed signal could be transmitted to a significantly

more powerful base station node so that it could perform cross-correlation. Though

this is much more efficient than transmitting the entire signal and cross-correlating

amongst various pair combinations, it would be much less distributed and inefficient

when compared to a more distributed approach. More distributed approaches involve

performing local processing such that only key features of the windowed signal are

identified and sent to the arbitrator node for comparison. This process of recognizing

features would have to ensure those features are common among the captured signals

in nodes being compared. In the case of no signal degradation besides amplitude, the

features of interest will be identical on all nodes making the comparison trivial. But

due to various factors described, the identification process will require pre-comparison

communication to identify key features. The process can be approached by various

pattern matching techniques. The most basic of which are the cross-correlation meth-

ods which we want to avoid due to their high resource requirements. Pattern recog-

nition based on state analysis is a possible method that requires minimal resources

compared with frequency domain based correlation [4]. State machine analysis such

as string matching is one such technique. Fuzzy matching of patterns is important

due to the variable nature of sampled signal. Among the pattern recognition methods,

unsupervised recognition would be required as the patterns to be analyzed can follow

a widely varying pattern and supervised matching would require a large training set.

3.1.6 Key Feature Selection

Selecting key features is critical for proper comparison of varying patterns on

the nodes. Key features are assumed to be features significant enough to be well

preserved across nodes. Two broad areas of analysis that should be analyzed for

significant features are those of time and frequency domain. In time-domain analysis

for example, we can look for the envelope of a signal measured by its amplitude.

Patterns in the envelope of a signal tend to be more preserved across nodes in com-

parison to individual peaks or troughs. A derivative of the envelope measurement

method is the basic threshold analysis. Threshold analysis made for a significantly
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longer time can be seen as envelope analysis. Signal magnitudes alone can vary sig-

nificantly across nodes especially due to reflections. Frequency-domain analysis on

the other hand when seeking frequency changes is significantly less affected by re-

flections, though the amplitudes of the signal can vary depending on the frequencies.

The most common frequency domain analysis technique is the Fourier Transform.

In practice Fourier Transform is performed using the Fast Fourier Transform (FFT).

The forward version of FFT would take a signal in its time domain and output its

frequency-domain spectrum. FFT however requires a significant calculation time on

a microcontroller without DSP capabilities.

Zero-crossing rate is another frequency measurement technique suitable for

highly repeating signals such as those seen in acoustics [2]. Zero-crossing rate also

requires significantly less computational resources along with it not being restricted

to DSPs for efficiency. FFTs require ”O(n*log(n))” operations whereas zero-crossing

rate analysis would require ”O(n)” operations where n is the number of samples in

the signal. For the purpose of finding significant changes in a signal’s frequency

changes in a highly limited system, especially when time information is important,

zero-crossing rate filter would be of more use. Once the signal is traversed using am-

plitude analysis along with zero-crossing rates, possible key features can be identified

for pattern recognition between nodes. Key features are only considered important

once the pattern recognizer determines common features between signals in different

nodes that could be matched together. Therefore the pattern recognizer is really a

networked pattern analysis algorithm working with all relevant nodes simultaneously.

3.1.7 Signal Matching and TOA Calculation

Once the networked pattern matcher finds significant features in common with

the nodes of interest, TOAs need to be calculated for each node. Each feature in

the signal is separated in time relative to a global time scale. Assuming the nodes

are synchronized, the matched features should be separated uniformly depending on

a node’s distance from the source. If we make the assumption that the features

do not have any distortions which result in skewing the TOAs, we would only need
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one common feature for comparison. In reality however these features even though

significant in the nodes, will see at least some distortions in their TOAs. Most real

world noisy measurement are processes that have a zero mean distribution. Regardless

of the distribution the mean error with significant number of measurement should

reduce to a system’s minimum. By using this fact we can take the TOAs of as many

features as possible to reduce the error in TDOAs which is needed for localization.

In addition, this process of feature comparison and TDOAs extraction can be done

simultaneously. Only two nodes with common features can be compared. It is very

possible in the features found on nodes, nodes would have some features not present

in other nodes, therefore the pattern matching and TOA calculation must be robust

enough to not consider features unique to a node. Once all features are exhausted

across nodes of interest the TDOA error between pairs is considered to be minimized

and therefore sent to the base station for localization.

3.2 Acoustic Source Localization

Source localization is the process of using time differences of signal received at

various receivers to determine the position of the source relative to the positions of the

receivers. There are several methods of localization available, the most common being

TOA based and TDOA based. TOA method is used in GPS where the time of arrivals

are known from all transmitters. GPS localization is the inverse form of localizing a

source, such that the receiver is localized with respect to a global coordinate system.

In GPS localization the receiver, such as a hand held GPS unit receives signals from

various geo-synchronous satellites with a globally synchronized time stamp. In effect,

the GPS unit knows the TOA of the signal from each satellite. These TOA are input

into an algorithm which represent the intersection of three or more spheres. The

intersections represent the possible location of the receiver. Usually more than one

intersection is present but because of improbable locations of the other intersections

only one location is chosen, the real location of the hand-held GPS receiver. Time

difference of arrival, TDOA methods on the other hand do not require the TOA of
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the sources signal to the receivers in a global time frame. While similar to TOA

based localization TDOA method are used when the the actual time of the signal’s

transmission is not known. The is the case in acoustic source localization where the

acoustic signal information contains no information on the time it was sent by the

source. However, the TOA of the signal at each nodes is know because the receivers

are time synchronized. This is the case with our work.

The received TOAs are relative to a synchronized time frame between nodes

starting from the first sample of the signal in each node. The TOAs represent the

separation of the number of samples between pairs of nodes. TOAs are easier to

compute directly in our research as direct TDOAs computation is done by cross-

correlation methods. Whereas TDOAs can also be computed indirectly by taking the

differences of TOAs. Specifically if ti, tj, tk represent the TOA of a common feature

in three different nodes based on a synchronized time scale then the TDOA can be

calculated as:

tij = tj − ti (3.2)

tik = tk − ti (3.3)

tjk = tk − tj (3.4)

In theory tjk contains no relevant information that tij and tik does not already carry.

In practice however, due to various sources of error tjk can be used as a basic test of

the validity of tji and tik using the triangle inequality rule.

tjk ≤ tij + tik (3.5)

This is a commonly used method in both TOA and TDOA localization techniques

as a basic validity test. Once tji and tki are deemed valid by the triangle inequality

test they are sent to a 2D localizer. For 2D localization based on two TDOA, two

non-linear equations can be generated.

tij =
1

c
× (

√
(x− xj)2 + (y − yj)2 −

√
(x2 + y2)) (3.6)

tik =
1

c
× (

√
(x− xk)2 + (y − yk)2 −

√
(x2 + y2)) (3.7)
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Where [xj, yj], [xk, yk] and [0, 0] are the locations of nodes at know location

in the global coordinate system and c is the propagation velocity of sound, which

in our case is 343 m/s at STP. The equations generated represent a system of two

non-linear equations with two unknowns [x, y] which is the location of the sound

source. While in theory the system always converges to a valid point, in reality due

to numerous sources of errors they are often multiple solutions and sometimes no

valid solutions exist. This then becomes an optimization problem. Further, most

localization systems rely on more than three sensors in order to over-determined the

system for optimization. Once overdetermined, optimization techniques such as least-

square method could be used to find the most likely solution. This is the case with

our work as well and will be discussed further in Section 4.5.



CHAPTER IV

Implementation

4.1 Core Components

While it would be of the greatest benefit to have the whole system built equiv-

alent to that described in the theory section, due to the scale of the problem we limit

our implementation to the core ideas proposed for low power acoustic source localiza-

tion. A real-time low power WSN for acoustic TOA calculation proposed by us would

require substantial work possibly beyond the scope of one masters thesis. Instead in

the theory section we describe the full possible idea behind such a system once fully

realized. However, what has been implemented is the most critical component of the

whole system in order to evaluate the core ideas presented in Chapter 3. First, in

order to test even these core ideas behind our work, many components commonly

present in other related previous works needed to be implemented. Figure 8 shows

the important components of the overall theory that was implemented and tested.

4.1.1 Acoustic Event Detection

Similar to what was described in Section 3.1.2 for acoustic event detection, we

implemented a basic triggering mechanism to look for interesting events worth local-
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izing. However, several key changes have been made, which while still allowing for the

demonstration of the principle, simplify the implementation. The trigger processor

module is where the nodes continuously monitor the acoustic medium and triggers the

localization process when sufficient activity is detected. Unlike in Section 3.1.3, where

all sensing nodes perform this trigger processing on the signal they sample, in order

to reduce complexity we only require one node to perform this processing. While in a

real implementation acoustic events can occur at any location, for testing purposes we

ensured the acoustic events occurred closer to the primary node. One of the problems

we encountered with allowing all nodes to perform trigger processing is that when

a significant acoustic event occurs, all nodes that triggered were required to notify

others or just the base station of this event. However because acoustic events require

a short time to travel between nodes, the notification sent by each triggered node

cause radio message contention frequently resulting in dropped messages, or worse,

no messages being sent properly. This was the primary reason for only allowing one

node to trigger and notify. However by using one pre-determined node to trigger, we

simply make that node the primary node for all testing.

A key requirement for a real-time system is continuous sampling so that no

events are lost. Due to the significant challenge in building a real-time system with

low-power motes we opted to sample selectively. We currently sample continuously

for up to one thousand samples and then immediately process them. During the

event detection processing of the sampled data or if an event is detected, we do not

perform any sampling. Only after the sampled data is fully processed and evaluated

the sampling on the nodes is resumed. This is done from the base station which sends

a resume sampling signal to all sampling nodes. This simplification though removing

the real-time criteria, does not interfere with the evaluation of the underlying princi-

ples behind our idea. Because the real-time criteria is removed we can no longer be

concerned with missed event. However, we ensure that at least some event exists for

processing by continuously playing significant acoustic events from a speaker. This

way we can test the core idea while maintaining consistency.

One of the problems we encountered while sampling between nodes is that of
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clock drift, which will be explained in Section 5.2.1. Due to clock drift, only about

the first 10 ms of collected data is properly synchronized. Because of this we largely

limit our processing to this first 10 ms of collected data. The frequency of sampling

however changes the collection time. Therefore to further simplify this we simply

look for triggers only in the first 100 samples as long as the sampling rate is below

15 Khz, which we found empirically. This number is varied as required for the cases

where sampling rate is high. Once a trigger occurs in this restricted sampling window,

samples that occur at a time higher than the end of the window are used sparingly

in order to alleviate the effect of phase shifting cause by different clock drifts of the

nodes. However this is true only for lower sampling frequencies. We made use of as

many as 500 samples when sampling at 15 KHz. We however also employ a clock

drift compensation mechanism to help alleviate some of the negative effects due to

this.

4.1.2 Sense Nodes and Base-Station

The sense nodes perform the basic operation of sampling the acoustic signal.

The ADC unit on each sensor nodes use Direct Memory Access (DMA) in order

to achieve low power sampling. The sampling rates are varied for various testing

purposes from a minimum of 5 KHz to up to 15 KHz. One of the sense nodes is

assigned as the primary node. The primary node is responsible for performing trigger

processing on the initial 25 - 100 samples of the sampled signal and sending a message

to the base-station should a significant event occur. The sense nodes also send raw

data to the base-station when requested by the base-station. Currently, no processing

is performed on the sense nodes as our current implementation is not appropriate for

real-time processing, which is one of our main purpose for making use of distributed

computing. While we could easily perform the basic calculation on the sense nodes,

our current implementation is designed more for testing the underlying theory than

to build a fully operational system. For the sake of simplicity we therefore download

all sampled data from the sense nodes to the base-station. Just before sampling,

the sense nodes also perform General Purpose Input Output (GPIO) based wired
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time-synchronization which is a critical component in distributed sampling required

by our system. Using GPIO-based time-synchronization we are able to achieve sub

µS synchronization. GPIO-based time-synchronization will be described in Section

4.3. The base-station is responsible for downloading the sampled data from the

sense nodes. Once downloaded, the base-station analyzes the signals from the sense

nodes and determines the TOAs. The processing done by the base station currently

implemented perform zero-crossing and minima and maximua calculations. These are

key features we use as comparison points between the sense node signals. These are

explained in detain the following section. Once the TOAs are calculated, they are

sent to the connected computer for localization.

4.1.3 Base-Station Processing and TOA Calculation

The base-station performs two different signal analysis for extracting features.

Zero-crossings are one of the most easily detected features of a sinusoidal signal,

therefore our TOA calculations relies heavily upon them. Another features are local

peaks between zeros including local maximums and local minimums. Zero-crossing

detection is in general a simple process requiring ”O(n)” steps. We take this one

step further and determine the precise location of the zero-crossing by interpolation.

Like standard zero-crossing detectors we travel each signal until there is a change in

sign indicating a zero. The zeros location however is not precise enough as it lies

between two samples, one taking a positive value and the other taking a negative

value. We convert the locations to floating point values and calculate the slope from

this. Using the slope, and y-intercept we generate a line function between these two

points. Finally we solve for Y=0 in order to get the x-intercept which is the zero-

crossing with sub-sample accuracy. Depending on the sampling rate, all zero-crossing

up to about 500 samples from the start are recorded for averaging later on. Only

zeros that are sufficiently spaced apart are valuable as they represent a significant

change. We ensure that this is the case by testing with a sound source such that the

ADC sampling rate even at 5 KHz oversamples the signal for consistent data.

Once the zeros have been determined we proceed to get the local minima or
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maxima between the zeros. Only the minimum or maximum is recorded between

two consecutive zeros. This is because the largest absolute value represents the most

significant part of the sampled signal between the zeros. This point is most likely

to be captured across the sensed signals between nodes. Small local peaks are often

lost or combined into larger peaks, so we avoid them. Again, we step through the

signal between zeros and keep track of the location of the maxima and minima along

with their amplitudes. Interpolating maxima and minima values for better accuracy

will require substantially more processing than interpolating values between zeros.

Therefore we keep the location of the local peaks as they are for crude correlation

purpose only. Finally, with the collected locations of zeros, local peaks are also

averaged together however separate from the zeros. That is, one average indicates the

TOAs of the zeros and another for the TOAs of the peaks. These average values are

the TOAs for that signal relative to the start of the signal sampling which is common

to all sampling nodes due to time-synchronization. The purpose of averaging the

features is that though each feature can contain significant error for various reasons,

by averaging many features the result will converge to the most likely TOA. We

assume the errors in sampling is a zero-mean process.

4.2 Hardware

Acquiring acoustic data in precise metrics for localization purposes is a chal-

lenging task for several reasons. Limited available memory for sample data, low-power

high-noise ADC modules and networked synchronization are some other big chal-

lenges encountered. Given the limited resources available in a sensor network node,

not much room is available for sophisticated acquisition qualities like those available

on a desktop computer or other floating-point digital signal processors. In our hard-

ware design we start with the basic Tmote Sky sensor mote designed for low power

WSNs [18]. The Tmote Sky has an ultra-low-power consuming Texas Instruments

MSP430 micro-controller along with several onboard peripherals. Some of the key

features of the MSP430 are that of ultra low-power consumption [29], wide voltage
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range of operation and sufficient resources for many WSN applications, making it

one of the most popular microcontrollers for WSNs. The MSP430 is equipped with

a 12-bit ADC which can sample at a theoretical maximum of 430 KSPS. While this

number is significantly higher than what is used in this work, having that available

headroom means a lower sampling rate can be achieved with minimal resource us-

age. The MSP430 ADC is wired externally to several expansion pins available on

the Tmote. In particular we use the U2-10 pin expansion port which has at least

one available ADC input, at least one General Purpose Input-Output pins (GPIO)

necessary for time-synchronization used in this work and power supply connections

(+3V and GND). For our work, these are the only connections needed to be accessed

and using port U2 is sufficient for all our needs.

In order to access and use the T-motes resources through the U2 port, we built

a custom circuit board with necessary analog electronic components along with a mi-

crophone. There are several kinds of low power and small microphones available on

the market. The most popular are electret microphones which have excellent qualities

ideal for low power acoustic applications. They have been used in most acoustic sen-

sor network research before. However for our research we opted to use the relatively

new MEMS based microphones. MEMS microphones provide several key advantages

over the common electret microphones. First they often have precise built-in circuitry

to significantly reduce the number of on-board components which might also require

fine-tuning. Second, MEMS microphones are more tolerant to variations in temper-

ature while soldering them by hand, something we found to be a problem in electret

microphones [1]. Otherwise, most other qualities we seek from MEMS microphones

are comparable to that of electret microphones. The MEMS microphone we use in

particular is the Knowles acoustic SPM0408HE5H. This microphone has a relatively

flat frequency response between 20 Hz and 10 KHz in addition to built-in amplifica-

tion and lower consumption [12]. In our testing we found however that the 20 dB

maximum amplification provided by the SPM0408HE5H is insufficient for capturing

sound near the sensor nodes as the SPM0408HE5H was designed primarily for cell-

phones with human speakers right next to the microphones. To solve this problem,



37

we added further amplification using a LMV324 op-amp [28] and necessary analog

components for an additional 20 dB gain. In total, the weak signal from the internal

microphone is amplified by 40 dB which we found to be sufficient. Figure 9 shows the

picture of our add-on board attached to a Tmote Sky Mote along with an example

of node placement in the testing environment.

(a) Tmote Sky with microphone add-on board (b) Two microphone nodes placed 1 meter apart
on wall

Figure 9: Hardware setup

4.3 Wired Time-Synchronization Protocol

Time-synchronization as discussed before is a critical piece for distributed

acoustic sensor networks relying on TOA methods. There are several available soft-

ware based time-synchronization protocols available for WSNs that provide sufficient

accuracy for acoustic WSNs. RBS and Vanderbilt’s FTSP are two protocols that

can provide micro-second level time synchronization suitable for such applications.

We however choose not to use any software based protocol for two reasons. First,

wired synchronization can provide significantly more accurate, sub-microsecond time

synchronization good for testing purposes. Secondly, wired time-synchronization was

easier to implement and quantify even though necessary code is available for the

mentioned software protocols. However, in a real wireless sensor network, wired syn-

chronization would defeat the purpose.
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Figure 10: GPIO synchronization hardware setup

Wired time-synchronization though simple to implement, requires careful de-

sign in order to have both accuracy and precision. We use one of the available GPIOs

on-board the Tmote, wired in common to each node on the network. Also connected

to the GPIO is a resistor which on the other end is connected to the VCC (+3V)

side of the power supply on board. The resistor acts like a pull-up resistor and causes

the GPIO to remains high by default unless forced down by one or more nodes. In

software all nodes first pull down the GPIO (logic 0). As each node is finished with

some task ready for the next cycle of sampling the node makes its GPIO as a input,

which causes that particular node to release its hold on the GPIOs low state. How-

ever the GPIO does not see a high (logic 1) state unless all nodes have released their

hold on the GPIO. Once a node releases its hold on the GPIO it continuously reads

the pin to see if it is high. The moment the high state is activated, all nodes resume

sampling almost simultaneously. This method is extremely simple and provides a

consistent accuracy under 1 uS when evaluated empirically. Ensuring such accuracy

will eliminate considerations of time-synchronization error from our TOA calculations
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and thus simplifying them. To the best of our knowledge this is the first time this

method is used for wired time-synchronization. Figure 10 shows a diagram of the

time-synchronization hardware setup.

4.4 Software

Significant software services are needed for a real-time acoustic sensor network.

A large part of this software directly deals with controlling the hardware. In order

for us to program the nodes we make use of TinyOS [30], a nesC based software

framework designed for sensor networks. TinyOS is an event driven operating system

framework developed for managing embedded sensor networks [22]. TinyOS event

driven framework makes it suitable for real-time sensor networks where actions and

outcomes are asynchronous. TinyOS remains the most popular choice among sensor

network researchers for a wide array of applications. In addition, TinyOS is per-

fectly suited for the Tmote sky due to extensive software implementation for Tmotes

hardware. Over the course of software development we have made use of several key

software components provided by TinyOS. We have two separate programs in our

implementation one for the sensing nodes and another for the base-station.

The Sense Node program is identical across all sensing nodes. The sense node

program is responsible for acquiring audio data, then sending the acquired data

by radio to the base-station. Sense nodes also receive instructions from the base-

station regarding sampling metrics and communicate with the base-station when

samples are ready for transfer. Sensing on the sense nodes is done using Direct

Memory Access (DMA) for accurate sampling and minimizing resource usage. The

Msp430Adc12ClientAutoDMA RVGC() component in TinyOS provides access to the

ADC and DMA module in one convenient package. Using this component, contin-

uous sampling can be performed with minimal CPU interference although we are

currently sampling sequentially, that is, we sample first then transmit while sam-

pling is suspended. This is not sufficient for a real-time acoustic sensor network,

however it is sufficient to test our methodology. Radio communication is performed
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using the ActiveMessageC component while making use of the AMSenderC() and

AMReceiverC() components. These provide access to the message t buffer neces-

sary for all radio communication. Time-synchronization by GPIO is performed by

accessing the HplMsp430GeneralIOC component. These components make up the

critical modules necessary for testing. There are several other components used as

standard requirements and debugging such as the MainC and LedsC components.

The LedsC component which provides control to three LEDs on the Tmote Skys,

is used extensively for visual debugging and verification. A different GPIO via the

HplMsp430GeneralIOC were used extensively for debugging the sampling and time-

synchronization between nodes using an oscilloscope.

The Base-station node does not need to perform any sampling and therefore the

ADC/DMA components are not used. Similarly, the GPIO interface is also not used

as no timing or time-synchronization is necessary with the sensing nodes. Standard

components such as MainC and LedsC, for debugging purposes, are used similar to the

sense nodes. The most used component for the base-station is the ActiveMessageC

component again along with AMSenderC() and AMReceiverC(). These form the ra-

dio communication module which is a prime function of the base-station. Once a

message has been received by the base-station due to successful event detection, the

base-station sequentially requests data and reads until completion before moving on

the next node. Once the base-station receives sampled data from the nodes, the base-

station performs signal processing on the acquired signals. Although our final aim is

to move most of the processing to the sensing nodes themselves, for simplicity and

ease of testing we are currently performing all feature matching and TOA caluclations

on the base-station. Currently we process the signal to acquire the zero-crossing with

sub-sample accuracy and local minimas and maximas between zeros. These values

are averaged and sent to screen via the printf() library provided by TinyOS. The

printf() library internally uses the UART serial communication port through the

Tmote’s USB port to send the results to the computer.
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4.5 Localization

Once TOA data is sent to the computer, it is used to perform two-dimensional

localization. Performing localization is in general a compute heavy task that is almost

always performed on desktop class computers. One of the more expensive tasks in

general for acoustic localization systems is the cross-correlation methods which we

avoid. Most existing systems send their TOA or TDOA information to the base com-

puter for localization. We have employed MATLAB to perform the final localization

step, though the TOAs which have been determined by the base-station is entered

manually into MATLAB. MATLAB is a convenient and powerful tool to perform

complex calculations. The ability to visualize data conveniently is one of MATLABs

strengths and has been made use of throughout this work.

The localization technique we implemented in MATLAB is hyperbolic posi-

tioning. As described in the Section 3.2, hyperbolic positioning is the placement of

hyperboloids on a 3-Dimentional region representing the localization environment.

Intersection of three or more hyperboloids at a point represents the acoustic source.

We are limiting our localization to two dimensions only. Therefore we need only a

minimum of three nodes or two time differences. However we make use of six nodes

which greatly increases accuracy while allowing for optimizations to be made. The

reason we cannot use spherical positioning such as that of GPS is that the global time

is not know which includes the acoustic source. We only have a common time frame

amongst the nodes.

We calculate two TDOAs from three TOAs as follows: tij = tj−ti, tik = tk−ti;

where ti, tj and tk are TOAs and tij, tik are TDOAs. In addition to this we also rely

on the basic triangle inequality principle for the first level of error rejection. Triangle

inequality says that two sides of a triangle must add to be greater than the remaining

side. In our case along with tij and tik, tjk = tk − tj is also calculated. While in ideal

measurements tjk contains no new information, in practice tjk can be used to verify

the quality of tij along with tik as follows: tjk <= tij + tik must be valid in order to

proceed with tij and tik. Next tij and tik are used to construct two hyperbolas on a
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2D surface using the 2D hyperbolic equations.

Two hyperbolas are drawn on the surface with their intersection being the

acoustic source. However in many cases even though the TOAs seem reasonably

good, no intersection points exist due to small variations at certain configurations.

In order to solve this we simply discard measurements that don’t approach a proper

intersection at the least. If we use four or more sensors for 2D localization, we could

apply an optimization method such as least-square method [31] or gradient-descent

in the event of no intersection points or multiple intersections. We currently use six

sensing nodes. Therefore we make use of least-square method in MATLAB. In total,

we have a system of five non-linear equations while only solving for two variables, X

and Y, the location of the sound source.



CHAPTER V

Results

5.1 Test methodology

In order to test the implemented theory we perform the testing in predictable

setting to minimize errors and to avoid any unusual behavior. We choose a sensor

array of six nodes placed on the walls of a small room. The room is 10 feet in width

and 13 feet in length. However only a portion of this room was used as our testing

environment due to computer equipment in the room. Figure 11 shows a top view

diagram of the room with the locations of the nodes. Six nodes are placed 1 meter

apart from each other in the formation shown. While the location of the nodes are

normally very important before installation, because we only consider the initial parts

of an acoustic event sound, we are able to place nodes by convenience without being

odd.

Node 1, which we pre-define as the primary node is positioned with a global

coordinate as X,Y = [0,0]. Node 2 - node 6 are also sensing nodes but do not search

for acoustic events unless instructed to do so by the base-station or primary node.

The base-station is another node that is connected to a desktop computer and sends

commands to the sense nodes and receives data from the sense nodes. The data

is then processed at the base-station and displayed on the computer screen which

43
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Figure 11: Top view of experiment setup. Nodes are placed 1 meter apart.

is finally saved to a file. The acoustic source we use is a speaker connected to the

computer continuously playing a 1 KHz sine wave in pulses. Each pulse is composed

of ten waves and there is a two second silence after each pulse. The silence ensures

that the room is free of reflection effects before a new pulse starts. While this is not

a realistic test environment, this is adequate to test the core ideas of the theory. We

leave the testing in realistic setting with more natural sounds for future work.

Our test methodology involves localizing the source using a sampling rate of 5

KHz, 10 KHz, and 15 KHz. While we wanted to test higher sampling rates such as

40 KHz, we were unable to do so due to software limitations on our nodes. While the

node hardware is in theory capable of much higher sampling rates, possibly because of

software limitations imposed by TinyOS and/or our own software implementation, we

limited our testing to a maximum of 15 KHz. As we play the sinusoidal wave pulses

from our source, the primary node triggers, assuming the pulse begins in the node’s

first 100 samples. This is to reduce the effect of clock drift. Immediately the primary

node halts further synchronization and sampling requests until the sampled event is

localized. Once the capturing is finished, the data is uploaded to the base-station.
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The base-station computes the features from each of the sampled node data and sends

the first ten matched feature location to file on the desktop computer, which are the

TOAs. On our computer we use a MATLAB script to perform the localization based

on the extracted TOAs.

5.1.1 Localization with Independent TOA, Zero-Crossing In-

terpolation Disabled

The results of our testing are as follows. Figure 12 - Figure 14 shows the local-

ization error at 5 KHZ, 10 KHz and 15 KHz at each matched TOA. Here localization

at each matched TOA feature are evaluate independently, that is irrespective of the

features before or after the particular TOA in question.
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Figure 12: Localization error evaluated independently at each feature, Zero-Crossing
interpolation disabled (5 KHz sampling rate)

The results show somewhat unpredictable localization error at any given fea-

ture. Each individual line represents a separate event caused by the sound source. It

is clear that not all events have predictable behaviors. This is likely due to various
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Figure 13: Localization error evaluated independently at each feature, Zero-Crossing
interpolation disabled (10 KHz sampling rate)
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Figure 14: Localization error evaluated independently at each feature, Zero-Crossing
interpolation disabled (15 KHz sampling rate)
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noise sources especially if the environment is not sufficiently quiet before each event,

a requirement for our current implementation. Fortunately only a few events exhibit

this behavior. The majority of events remain predictable. The error rates also re-

mained relatively unaffected with different source locations. This was true as long

as the sound source was not too close to a wall or corners and within clear audible

range of all nodes. Because of this we limited our testing to one source location as

this allowed use to perform large number of tests repeatedly. The variations in error

are less noticeable with increasing sampling rates. This we believe is due to reducing

phase error with increasing sampling rate. The expected result in this is that increas-

ing sampling rates increases stability due to increasing TOA precision. The accuracy

however, is likely system limited, therefore no significant changes are visible.

5.1.2 Localization with Independent TOA, Zero-Crossing In-

terpolation Enabled
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Figure 15: Localization error evaluated independently at each feature, Zero-Crossing
interpolation enabled (5 KHz sampling rate)
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Figure 16: Localization error evaluated independently at each feature, Zero-Crossing
interpolation enabled (10 KHz sampling rate)
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Figure 17: Localization error evaluated independently at each feature, Zero-Crossing
interpolation enabled (15 KHz sampling rate)
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Similarly, Figure 15 - Figure 17 shows the localization error at 5 KHZ, 10 KHz

and 15 KHz at each matched TOA, this time with zero-crossing interpolation enabled.

It is clearly visible here that events at all sampling rates now exhibit higher precision

similar to the 15 KHz case without zero-crossing interpolation. The greatest difference

can be seen with the 5 KHz case as it had the lowest precision when not using zero-

crossing interpolation. The accuracy however does not improve noticeably in all three

cases. This again leads us to believe that the accuracy is limited by the overall system.

One of the simplicity offer by zero-crossing interpolation is that sub-sample accuracy

can be obtained with minimal resource. To the best of our knowledge, ours is the

first work to make use of zero-crossing interpolation for acoustic source localization.

5.1.3 Localization with Cumulatively Averaged TOAs, Zero-

Crossing Interpolation Disabled
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Figure 18: Localization error cumulatively averaged at each feature, Zero-Crossing
interpolation disabled (5 KHz sampling rate)

Figure 18 - Figure 20 shows the localization error at 5 KHZ, 10 KHz and
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Figure 19: Localization error cumulatively averaged at each feature, Zero-Crossing
interpolation disabled (10 KHz sampling rate)
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Figure 20: Localization error cumulatively averaged at each feature, Zero-Crossing
interpolation disabled (15 KHz sampling rate)
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15 KHz at each matched TOA, this time with zero-crossing interpolation disabled.

However this time, we perform a cumulative average of the TOA with each additional

feature known at that point. That is, for example, feature two is now an average

of feature one and two. Here we can see an increase in stability after the fist few

TOAs are averaged. The final TOA obtained although there is no significant change

in accuracy, has a highly predictable error in most cases.

5.1.4 Localization with Cumulatively Averaged TOA, Zero-

Crossing Interpolation Enabled
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Figure 21: Localization error at each feature independently, Zero-Crossing interpola-
tion enabled (5 KHz sampling rate)

Finally we combine cumulative averaging of TOA and zero-crossing interpola-

tion for the best possible results. Figure 21 - Figure 23 shows the localization error at

5 KHZ, 10 KHz and 15 KHz. Here we see significant smoothing in all cases indicative

of stability. The error rates are slightly higher for the case of 10 KHz and 15 KHz

compared to the 5 KHz case. This is counterintuitive. However, we believe this is
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Figure 22: Localization error at each feature independently, Zero-Crossing interpola-
tion enabled (10 KHz sampling rate)
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Figure 23: Localization error at each feature independently, Zero-Crossing interpola-
tion enabled (15 KHz sampling rate)
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due to increasing noise at higher frequencies which are see only at higher sampling

rates. There are many sources of noise, more specifically the analog hardware and

persistent sounds in the environment.

5.2 Problems Encountered

5.2.1 Clock drift

One of the large problems in wireless sensor networks is performing time-

synchronization efficiently. Clock drifts at each node will occur and re-synchronization

must be performed on a regular basis. Because of our use of wired synchronization, at

least at the beginning of time-synchronization, we were able to alleviate the problem.

However because we are sampling the acoustic signal for a significant length of time

in the order of 100s of milliseconds, we face clock drifts. Even though the sampling

process is started almost simultaneously as it should be on all nodes, the phase shifts

are significant at the end of the sampling cycle. This problem is illustrated in Figure

24.
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(a) Phase shift at start of sampling cycle
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(b) Phase shift at end of sampling cycle

Figure 24: Clock drift resulting in sampling phase shift between nodes

In order to solve this problem we count the number of synchronization wait

cycles just after sampling ends. This is done by restarting the time synchronization
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process for a second time, this time to get the time each node had to wait after

sampling. This wait cycle count is used by the nodes for clock drift calculation.

5.2.2 Reflections

Perhaps the greatest challenges faced by acoustic localization systems is due

to reflections. Reflections manifest in the form of reverberations and echoes. The

reflection problems are largely minimized in a large outdoor setting where the source

and receivers are in direct line of sight with not reflective object present. However this

is not true in most cases and definitely not in indoor environments. Indoor settings

or enclosed areas are particularly problematic for acoustic localization systems due

to reflections. Some solutions exist such as the generalized cross-correlation using

phase transformation (GCC-PHAT) for handling sounds in indoor settings. However

this process as described before in section 3.1.2, is prohibitive for low power, large

WSNs. Besides, GCC-PHAT is useful only for non-stationary sounds such as human

speech. Our solution is to look for significant changes in amplitudes and frequencies

as they represent new acoustic events. These new events at least at the beginning of

the process, would be free of reflections. Figure 25 gives an example of our ten wave

pulse where only the first 10 waves are new and rest being mostly due to reflections.
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Figure 25: A sound pulse of 10 wave-lengths, beyond which reflections are significant.



CHAPTER VI

Related Work

Because of the severe restrictions placed by acoustic localization systems on

wireless sensor network, there are only a limited number of ways the problem has

been approached in. Acoustic localization as discussed before requires accurate time

synchronization and can be computation and communication intensive. Most current

acoustic localization systems based on WSNs can be separated based on four com-

mon approaches. Localization by time of arrival(TOA) of an impulsive signal and

then taking the time differences, another way is to take the time differences of ar-

rival (TDOA) directly, with the latter being much more resource intensive, by fusing

multiple Direction Of Arrivals (DOA) and finally by signal strength. Signal strength

methods will not be discussed as their limitation are greater than the other methods,

in general.

6.1 Computing TDOA From Impulsive TOA

There are several works that have performed localization by using impulsive

sound sources and then generating TOAs and TDOA from them. Vanderbilt’s sniper

localization systems are some such examples.

Simon et al. developed PinPtr which is a sniper localization system using

55
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a specialized acoustic WSN [4]. Unlike previous sniper localization systems which

were centralized, PinPtr is a distributed system by relying on relatively inexpensive

wireless sensor nodes that greatly increase robustness localization system. PinPtr

was designed on a Mica2 sensor node platform which has an Atmel Atmega 128L

microcontroller. The microcontroller onboard the Mica2 though a very efficient pro-

cessor for basic processing in sensor network applications, it is nowhere near capable

enough for PinPtr’s acoustic localization processing. Therefore for PinPtr the team

developed an FPGA based add-on board to perform the signal processing. A Xilinx

Sparta II was used with three 1 MHz ADCs to sample the acoustic medium, although

only one was used. Although most audible sounds that travel significant distances

occur at frequencies well within the human audible range, PinPtr samples the sig-

nal at 1 MHz. Significantly oversampling the signal results in highly accurate phase

differences which directly translates to better localization accuracy. PinPtr localizes

gunshots by using time of arrivals of the gunshot along with the bullet’s shockwave if

available and sends the time information to the base-station. The base-station then

fuses the TOAs to perform the localization.

Volgyesi et al. similar to PinPtr developed a gunshot localization and classifi-

cation system using a combination of soldier mounted sensors and networked fusion

of sensor data [23]. This system begins with soldier mounted sensor nodes contain-

ing a Xilinx FPGA with four acoustic channels. Four microphones placed at specific

locations on a soldier’s helmet are connected to four 1 MHz ADCs which provide the

data to the FPGA. Each soldier mounted node is capable of determining TOA and

possibly angle of arrival(AOA) of the bullet. This data is then sent to the base-station

for fusion. Since the nodes are mobile, they have an onboard 3-axis magnetometer

which is used as a compass for orientation. The base-station combines the TOAs or

if available AOA from multiple nodes to compute the shooter’s location. However,

what is more relevant to our work is that this mobile sniper localization system makes

use of on-board pattern matching to determine the TOA of the bullet’s shockwave.

Both this work and PinPtr continuously perform state machine analysis to look for a

”N-wave” which is characteristic of the acoustic signal caused by a bullet’s shockwave
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as it passes by. This pattern matching although efficient, works only for a highly pre-

dictable pattern, in this case a bullet’s shockwave. In our thesis we propose methods

to take this further by dynamically recognizing and matching patterns for sounds in

general making it much less application specific.

Because of the simplicity in computing TOAs by monitoring significant and

rapid changes in signal, most low power acoustic WSNs rely on thresholding methods

for TOA determination. Na et al. developed a parking lot surveillance system mak-

ing use of low power WSN motes unlike Vanderbilt’s sniper localization systems [11]

which demands a more capable network. TelosB motes were used as the node in the

WSN and for acquiring acoustic data. In order for such a low power microcontroller

such as the onboard MSP430 microcontroller to acquire acoustic signals and process

them simple time domain based thresholding methods are preferred due to their sim-

plicity. The work makes use of a dynamic thresholding algorithm for acquiring the

TOA of car alarms in a parking lot. These TOAs are sent to the base-station where

the localization is performed using the TOAs.

Guo et al. also make use of dynamic thresholding to perform indoor sound

localization although other algorithms are also used in their work [33]. The largest

limitation posed by thresholding algorithms is that a significant change in the sig-

nal magnitude is required. In addition, only a few sounds or acoustic events are

highly impulsive. These limitations mean impulse based TOA localization systems

are limited in their application.

6.2 TDOA By Cross-Correlation

Only a few works in WSNs resort to cross-correlation methods. This is primar-

ily because of the expensive nature of cross-correlation methods. First, a significant

portion of a signal needs to be captured and transmitted by radio. In a large multi-hop

network this can be prohibitive in both network lifetimes and radio communication

restrictions. In addition a powerful base-station is needed just to extract the TDOAs

from the signals before localization is performed. While this is insignificant for desk-
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top class computers, in large sensor networks, base-stations or stargate nodes are just

more powerful embedded computers. Despite this, some applications that involve

localizing non-stationary sounds such as human speech are difficult to performed ad-

equately by impulse seeking methods.

Guo et al. as mentioned before make use of dynamic thresholding for impul-

sive sounds [33]. In addition they also use generalized cross correlation when less

impulsive sounds are detected. Their implementation consists of an additional classi-

fication state unlike most other works. In this classification stage a significant sound

is classified by using various metrics to determine whether the sound is impulsive or

repetitive. If the sound is more repetitive such as human speech, the sound is trans-

mitted in whole to all nodes for TDOA computation. These TDOAs are transmitted

to the base-station for localization. Should the sound be impulsive, the TOA is com-

puted immediately on the node and then the resulting time transmitted. In this work

they make use of six Intel Imote2 WSN motes which perform the classification on

each node. Although their approach is applicable to a very broad class of sounds, the

computation and communication expensive nature of their algorithm which directly

resulting in more expensive nodes can restrict large deployments.

6.3 Other methods

While TOA methods are generally considered efficient, there are localization

systems based on much more expensive techniques such as beam forming and spectral

estimation. Beamforming for example can be used to determine the direction of arrival

of on or more source simultaneously. One such work is the acoustic ENSBox.

Girod et al. developed the acoustic ENSBox which was designed for rapid de-

ployment of acoustic sensing nodes for localizing various acoustic events [13]. ENSbox

relies on beamforming for determining direction of arrivals (DOA) of the the acoustic

source. Multiple DOAs from distinctly placed nodes when intersected, represent a

source. Beamforming however is an expensive operation and as a result each ENSBox

is a relatively expensive piece of hardware for a WSN node. The ENSBox has a 400
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MHz Intel PXA255 processor for performing the beamforming to determine the DOA

of the source. The hardware and power requirements of the ENSBox makes this type

of WSN very costly to deploy on a large scale. Also the latest work making use of

the ENSBox has an additional useful feature, self localization service for determining

each node’s location which interestingly is performed by TDOA.

6.4 Similarities to our Method

Simply put our work does not introduce any grandly new theory that exist-

ing work already does not. However to the best of our knowledge no work exists

that make use of the simplifications we make for the purpose of localization. So far

none of the current work for acoustic sensor networks exclusively seek the beginning

of significant acoustic source signal events in addition to pattern matching for the

purpose of avoiding reflections. We later discovered that animal hearing including

human hearing is also based on the same principle of seeking sudden changes in the

sound either in intensity of frequency of a new acoustic event. Vanderbilt’s sniper

localization systems introduced us to the possibility of using pattern matching and

recognition of the acoustic signal in time domain. In this our work only adds to the

idea by making the pattern recognition generalized unlike the work being specifically

for gunshot localization. In this we are invariably trying to emulate biological hear-

ing. Unlike biological hearing however which are limited to two detectors and as a

result can only determine directions of sounds by time differences, we can make use

of multiple detectors for localization.



CHAPTER VII

Conclusion

We present our work only as a extension to current work for acoustic source

localization in wireless sensor networks. By combining several ideas for existing re-

search work and biological systems we explore the possibility of deploying large scale

surveillance networks that are both energy efficient and inexpensive to construct.

While we only tested the core parts of our overall idea, from the data we acquired we

believe such large scale acoustic wireless sensor networks are feasible.

Our results support two important ideas we developed in this work. First, mul-

tiple features for an acoustic event could be separated and used for localization with

minimal resources, in addition to improving the precision and possibly accuracy when

features are combined. Second, we demonstrate the applicability of zero-crossing in-

terpolation for increased localization precision and principle of selectively avoiding

reflections, something our ears perform on a daily basis. In particular, the stability

of localization in all cases shows us that reflections can be avoided.

7.1 Future Work

Deploying a real-time generic-sound low-power wireless acoustic localization

network would be the ultimate goal of this work. Despite the work presented in this
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thesis, a few additional components need to be in place before such a system can exists.

A proper pattern identification and matching technique has to be implemented and

tested. Our next step would be to expand the network to allow larger deployments.

This would also mean the network should be able to localize a source with only a

small group of nodes that detect a sound. Additional requirements that we place

include real-time conformance and enabling a truly wireless sensor network. For this

we would have to employ one of the existing time-synchronization protocols such

as FTSP. Luckily, code for such existing algorithms are already present and freely

available. Having these components in place would allow this network to be highly

distributed and inexpensive for a large deployment.

7.2 Scale Of Applications

Our purpose for the work we presented is so far limited to testing important

ideas for feasibility. In the future we could also build applications more specific to

a particular class of applications. For example, gunshots could possibly be localized

using our algorithm even though present WSNs for gunshot localizations make use of

powerful hardware and extremely high sampling rates. By using feature recognition/-

matching and zero crossing interpolation we can achieve to a certain extent similar

benefits as high sampling rates provide without expensive hardware. In addition due

to the basic requirements of our algorithm, miniature nodes can be deployed in large

scales, opening the possibility for long term surveillance networks. Shopping com-

plexes, cities, even battlefields could be monitored with a large network that perform

most of the processing locally. Such networks would also be robust to failure of nodes

in the network in addition to increased accuracy provided. Systems great scale are

only possible if efficiency is a core ideal. The greater good that distributed, long

lasting, surveillance networks for the propagation and maintenance of peace would

be of great benefit to humanity.
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