2,118 research outputs found

    Imaging multi-age construction settlement behaviour by advanced SAR interferometry

    Get PDF
    This paper focuses on the application of Advanced Satellite Synthetic Aperture Radar Interferometry (A-DInSAR) to subsidence-related issues, with particular reference to ground settlements due to external loads. Beyond the stratigraphic setting and the geotechnical properties of the subsoil, other relevant boundary conditions strongly influence the reliability of remotely sensed data for quantitative analyses and risk mitigation purposes. Because most of the Persistent Scatterer Interferometry (PSI) measurement points (Persistent Scatterers, PSs) lie on structures and infrastructures, the foundation type and the age of a construction are key factors for a proper interpretation of the time series of ground displacements. To exemplify a methodological approach to evaluate these issues, this paper refers to an analysis carried out in the coastal/deltaic plain west of Rome (Rome and Fiumicino municipalities) affected by subsidence and related damages to structures. This region is characterized by a complex geological setting (alternation of recent deposits with low and high compressibilities) and has been subjected to different urbanisation phases starting in the late 1800s, with a strong acceleration in the last few decades. The results of A-DInSAR analyses conducted from 1992 to 2015 have been interpreted in light of high-resolution geological/geotechnical models, the age of the construction, and the types of foundations of the buildings on which the PSs are located. Collection, interpretation, and processing of geo-thematic data were fundamental to obtain high-resolution models; change detection analyses of the land cover allowed us to classify structures/infrastructures in terms of the construction period. Additional information was collected to define the types of foundations, i.e., shallow versus deep foundations. As a result, we found that only by filtering and partitioning the A-DInSAR datasets on the basis of the above-mentioned boundary conditions can the related time series be considered a proxy of the consolidation process governing the subsidence related to external loads as confirmed by a comparison with results from a physically based back analysis based on Terzaghi's theory. Therefore, if properly managed, the A-DInSAR data represents a powerful tool for capturing the evolutionary stage of the process for a single building and has potential for forecasting the behaviour of the terrain-foundation-structure combination

    The worsening impacts of land reclamation assessed with Sentinel-1: The Rize (Turkey) test case

    Get PDF
    Massive amounts of land are being reclaimed to build airports, new cities, ports, and highways. Hundreds of kilometers are added each year, as coastlines are extended further out to the sea. In this paper, this urbanization approach is monitored by Persistent Scatterer Interferometry (PSI) technique with Sentinel-1 SAR data. The study aims to explore this technology in order to support local authorities to detect and evaluate subtle terrain displacements. For this purpose, a large 3-years Sentinel-1 stack composed by 92 images acquired between 07/01/2015 to 27/01/2018 is employed and stacking techniques are chosen to assess ground motion. The test site of this study, Rize, Turkey, has been declared at high risk of collapse and radical solutions such as the relocation of the entire city in another area are been taken into consideration. A media fact-checking approach, i.e. evaluating national and international press releases on the test site, is considered for the paper and this work presents many findings in different areas of the city. For instance, alerts are confirmed by inspecting several buildings reported by the press. Critical infrastructures are monitored as well. Portions of the harbor show high displacement rates, up to 1 cm/year, proving reported warnings. Rural villages belonging to the same municipality are also investigated and a mountainous village affected by landslide is considered in the study. Sentinel-1 is demonstrated to be a suitable system to detect and monitor small changes or buildings and infrastructures for these scenarios. These changes may be highly indicative of imminent damage which can lead to the loss of the structural integrity and subsequent failure of the structure in the long-term. In Rize, only a few known motion-critical structures are monitored daily with in-situ technologies. SAR interferometry can assist to save expensive inspection and monitoring services, especially in highly critical cases such as the one studied in this paper

    Monitoring the response of roads and railways to seasonal soil movement with persistent scatterers interferometry over six UK sites

    Get PDF
    Road and rail networks provide critical support for society, yet they can be degraded by seasonal soil movements. Currently, few transport network operators monitor small-scale soil movement, but understanding the conditions contributing to infrastructure failure can improve network resilience. Persistent Scatterers Interferometry (PSI) is a remote sensing technique offering the potential for near real-time ground movement monitoring over wide areas. This study tests the use of PSI for monitoring the response of major roads, minor roads, and railways to ground movement across six study sites in England, using Sentinel 1 data in VV polarisation in ascending orbit. Some soils are more stable than others—a national soil map was used to quantify the relationships between infrastructure movement and major soil groups. Vertical movement of transport infrastructure is a function of engineering design, soil properties, and traffic loading. Roads and railways built on soil groups prone to seasonal water-logging (Ground-water Gley soils, Surface-water Gley soils, Pelosols, and Brown soils) demonstrated seasonal subsidence and heave, associated with an increased risk of infrastructure degradation. Roads and railways over Podzolic soils demonstrated relative stability. Railways on Peat soils exhibited the most extreme continual subsidence of up to 7.5 mm year−1. Limitations of this study include the short observation period (~13 months, due to satellite data availability) and the regional scale of the soil map—mapping units contain multiple soil types with different ground movement potentials. Future use of a higher resolution soil map over a longer period will advance this research. Nevertheless, this study demonstrates the viability of PSI as a technique for measuring both seasonal soil-related ground movement and the associated impacts on road and rail infrastructure

    ANALYZING THE LIFE-CYCLE OF UNSTABLE SLOPES USING APPLIED REMOTE SENSING WITHIN AN ASSET MANAGEMENT FRAMEWORK

    Get PDF
    An asset management framework provides a methodology for monitoring and maintaining assets, which include anthropogenic infrastructure (e.g., dams, embankments, and retaining structures) and natural geological features (e.g., soil and rock slopes). It is imperative that these assets operate efficiently, effectively, safely, and at a high standard since many assets are located along transportation corridors (highways, railways, and waterways) and can cause severe damage if compromised. Assets built on or around regions prone to natural hazards are at an increased risk of deterioration and failure. The objective of this study is to utilize remote sensing techniques such as InSAR, LiDAR, and optical photogrammetry to identify assets, assess past and current conditions, and perform long-term monitoring in transportation corridors and urbanized areas prone to natural hazards. Provided are examples of remote sensing techniques successfully applied to various asset management procedures: the characterization of rock slopes (Chapter 2), identification of potentially hazardous slopes along a railroad corridor (Chapter 3), monitoring subsidence rates of buildings in San Pedro, California (Chapter 4), and mapping displacement rates on dams in India (Chapter 5) and California (Chapter 6). A demonstration of how InSAR can be used to map slow landslides (those with a displacement rate \u3c 16 mm/year and may be undetectable without sensitive instrumentation) and update the California Landslide Inventory on the Palos Verdes Peninsula is provided in Chapter 7. Long-term landslide monitoring using optical photogrammetry, GPS, and InSAR measurements is also used to map landslide activity at three orders of magnitude (meter to millimeter scales) in Chapter 8. Remote sensing has proven to be an effective tool at measuring ground deformation, which is an implicit indicator of how geotechnical asset condition changes (e.g., deteriorates) over time. Incorporating these techniques into a geotechnical asset management framework will provide greater spatial and temporal data for preventative approaches towards natural hazards

    Sentinel-1A/B imagery for terrain deformation monitoring: a strategy for Atmospheric Phase Screening (APS) estimation

    Get PDF
    This work focus on terrain deformation monitoring by means of C-band Synthetic Aperture Radar (SAR) Sentinel-1A/B imagery exploiting the Persistent Scatterer Interferometry (PSI) technique. The deformation monitoring strategy described in this article is related to a specific monitoring scenario where a relatively small urban area is potentially affected by deformation and its surroundings are stable. In the case study considered in this work, the scenario corresponds to an area of potential subsidence induced by underground water pumping covering an area of interest with a radius of approximately 1 km. The proposed monitoring strategy takes advantage of the specific scenario at hand and, in particular, of the availability of stable areas in the vicinity of the area potentially affected by ground deformation, to estimate the Atmospheric Phase Screen (APS), i.e. signal propagation delay caused by the Earth's atmosphere, in an attempt to minimize the underestimation of the deformation rate

    Mapping interactions between geology, subsurface resource exploitation and urban development in transforming cities using InSAR Persistent Scatterers: two decades of change in Florence, Italy

    Get PDF
    Urban expansion and city transformation are increasing reality across the world. Now more than ever it is essential to understand and map at the appropriate scale the processes happening along the verticality and horizontality of cities, to gather robust evidence underpinning strategies for sustainable management of the built environment. This paper explores how established techniques of Persistent Scatterer Interferometry (PSI) can be shaped into a novel dedicated procedure to detect vertical and horizontal urban dynamics including: use and re-use of urban space (new building construction, intentional demolition, renovation projects); exploitation of groundwater resources (induced land subsidence); interactions between new foundations, superficial deposits and bedrock geology (settlement of recent buildings); ground and slope instability affecting settled buildings; susceptibility of heritage assets to structural damages; baseline characterisation prior to planned major infrastructure construction (tunnelling and transportation networks). Florence, central Italy, is used as a demonstration site. This city includes UNESCO World Heritage List historic centre, 20th-century residential, industrial and peri-urban quarters, and is currently in transition to metropolitan area of over 1 million of inhabitants. Velocity decomposition maps were generated based on millimetre-precise estimates of surface displacements retrieved from PSI processing of the full archives of satellite C-band radar images, including 79 ERS-1/2 descending (1992–2000), 70 ENVISAT ASAR ascending and descending (2003–2010) and 101 RADARSAT-1 ascending and descending (2003–2007). 12 macropatterns and 84 micropatterns in the final map of alert areas highlight a dualism which reflects the physical and urban geography of Florence. North-western and south-western quarters show hot spots of new building construction and regeneration projects for residential, business and tertiary service purposes, alongside issues due to groundwater exploitation and induced land subsidence up to 30–40 mm/yr. Local interactions with underlying geology and natural slope instability processes predominate in the southern and north-eastern sectors. At local scale, stable condition was found for the heritage assets and buildings located along the tracks of the planned subway railway and tramway, with motion rates averagely within ±1.5 mm/yr and localised deformation only up to −3.5 mm/yr. Structural assessment based on future PSI monitoring campaign will benefit of this baseline characterisation

    Satellite Monitoring of Railways using Interferometric Synthetic Aperture Radar (InSAR)

    Get PDF
    There is over 15,600 km of track in the Swedish railroad network. This network is vital for the transportation of people and goods across the country. It is important that this network is monitored and maintained to ensure good function and safety. A tool for monitoring and measuring ground deformation over a large area remotely with high frequency and accuracy was developed in recent decades. This tool is known as Interferometric Synthetic Aperture Radar (InSAR), and is used by researchers, geo-technicians, and engineers. The purpose of this study has been to evaluate the use and feasibility of the InSAR technique for track condition monitoring and compare it to conventional track condition monitoring techniques. Malmbanan, which is primarily used to transport iron-ore from mines in Sweden to the ports of Luleå, Sweden and Narvik, Norway, is used as a case study for this project; specifically, the section between Kiruna and Riksgränsen. Coordinate matching of measurements from the provided Persistent Scatterer Interferometry (PSI) InSAR data and Optram data from survey trains were performed. Then measured changes over different time spans within the two systems were overlapped and classified with different thresholds to see if there is correlation between the two systems. An extensive literature review was also conducted in order to gain an understanding of InSAR technologies and uses.The literature review showed that there is a large potential and a quickly growing number of applications of InSAR to monitor railways and other types of infrastructure, and that the tools and algorithms for this are being improved. The case study, on the other hand, shows that it can be difficult to directly compare measurement series from different tools, each working on different resolutions in terms of both time and space. InSAR is thus not about to replace techniques such as those behind Optram (using measurement trains). Instead, the approaches offer complementary perspectives, each highlighting different types of issues. We find that InSAR offers a good way to identify locations with settlements or other types of ground motions. Especially transition zones between settlements and more stable ground can be challenging from a maintenance point of view and can clearly be identified and monitored using InSAR. With the rollout of national InSAR-data, and the large increase in data accessibility, we see a considerable potential for future studies that apply the technique to the railway area

    National geohazards mapping in Europe: interferometric analysis of the Netherlands

    Get PDF
    The launch of Copernicus, the largest Earth Observation program to date, is significant due to the regular, reliable and freely accessible data to support space-based geodetic monitoring of physical phenomena that can result in natural hazards. In this study, wide area interferometric synthetic aperture radar (InSAR) capability is demonstrated by processing 436 Copernicus Sentinel-1 C-Band SAR images (May 2015–May 2017) using the Intermittent Small Baseline Subset (ISBAS) method to produce a wide-area-map (WAM) covering the Netherlands and extending into neighbouring areas of Belgium and Germany. Ground deformation velocities from six interferometric stacks, containing over 19 million measurements, were mosaicked together to produce a seamless ISBAS-WAM over some 53,000 km2 achieving a ground coverage of 94%. The retrieval of low-resolution measurements over soft surfaces (i.e. agricultural fields, forests, semi-natural areas and wetlands) afforded by the ISBAS technique was crucial due the dominance of non-urban land cover. Across the WAM, the spatial distribution of deformations concurs with independent sources of data, such as previous persistent scatterer interferometry (PSI) deformation maps, models of subsidence and settlement susceptibility, and quantitatively with GPS measurements over the Groningen gas field. A statistical analysis of the velocities reveals that intermittently coherent measurements in rural areas can provide reliable, additional deformation information with a very high degree of confidence (5σ), much of which is spatially correlated to known deformation features associated with compressible soils, infrastructure, peat oxidation, oil and gas production, salt mining and underground and opencast mining.Remotely derived deformation products, with near complete spatial coverage, provide a powerful tool for mitigation and remediation against adverse geological conditions to help in the protection of assets, property and life. The ISBAS-WAM demonstrates that routine generation of such products on a continental scale is now theoretically achievable, given the recent establishment of the Copernicus programme and the development of state-of-the-art InSAR methods such as ISBAS

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel
    • …
    corecore