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ABSTRACT 
 

 An asset management framework provides a methodology for monitoring and 

maintaining assets, which include anthropogenic infrastructure (e.g., dams, embankments, 

and retaining structures) and natural geological features (e.g., soil and rock slopes). It is 

imperative that these assets operate efficiently, effectively, safely, and at a high standard 

since many assets are located along transportation corridors (highways, railways, and 

waterways) and can cause severe damage if compromised. Assets built on or around 

regions prone to natural hazards are at an increased risk of deterioration and failure. The 

objective of this study is to utilize remote sensing techniques such as InSAR, LiDAR, and 

optical photogrammetry to identify assets, assess past and current conditions, and perform 

long-term monitoring in transportation corridors and urbanized areas prone to natural 

hazards. Provided are examples of remote sensing techniques successfully applied to 

various asset management procedures: the characterization of rock slopes (Chapter 2), 

identification of potentially hazardous slopes along a railroad corridor (Chapter 3), 

monitoring subsidence rates of buildings in San Pedro, California (Chapter 4), and mapping 

displacement rates on dams in India (Chapter 5) and California (Chapter 6). A 

demonstration of how InSAR can be used to map slow landslides (those with a 

displacement rate < 16 mm/year and may be undetectable without sensitive 

instrumentation) and update the California Landslide Inventory on the Palos Verdes 

Peninsula is provided in Chapter 7. Long-term landslide monitoring using optical 

photogrammetry, GPS, and InSAR measurements is also used to map landslide activity at 

three orders of magnitude (meter to millimeter scales) in Chapter 8. Remote sensing has 

proven to be an effective tool at measuring ground deformation, which is an implicit 

indicator of how geotechnical asset condition changes (e.g., deteriorates) over time. 

Incorporating these techniques into a geotechnical asset management framework will 

provide greater spatial and temporal data for preventative approaches towards natural 

hazards.  
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Chapter 1: Introduction 
 
1.1 Asset Management 

The term asset management is defined differently by everyone, yet essentially 

means the same thing. In general, any actions implemented to maintain, preserve, or to 

perpetuate an asset’s optimal performance level throughout its lifespan fall under the asset 

management umbrella. Transportation agencies each have their own official term. In a 

report entitled Strategy for improving asset management practices, the Australian road 

transport and traffic agencies association (Austroads) defined asset management as “…a 

comprehensive and structured approach to the long-term management of assets as tools for 

the efficient and effective delivery of community benefits.” (Austroads 1997). The Federal 

Highway Administration (FHWA) expanded on this definition two years later: 

“[Asset management is] a systematic approach of maintaining, upgrading, 

and operating physical assets cost effectively. It combines engineering 

principles with sound business practices and economic theory, and it 

provides tools to facilitate a more organized, logical approach to decision-

making. Thus, asset management provides a framework for handling both 

short- and long-range planning.” (p8, FHWA 1999) 

Iterations of the asset management definition have been produced since and include 

portions of the FHWA definition. For example, the Michigan Department of Transportation 

(MDOT) defines asset management as “…a process to strategically manage our 

transportation system in a cost-effective and efficient manner” (MDOT 2015); Flintsch & 

Bryant, Jr. (2006) define it as “…a strategic approach to the optimal allocation of resources 

for the management, operation, maintenance, and preservation of transportation 

infrastructure”; the National Cooperative Highway Research Program (NCHRP) describe 

a portion of it as “…a strategic and systematic process of operating, maintaining, 

upgrading, and expanding physical assets effectively throughout their life cycle…” 

(Cambridge Systematics, Inc. et al. 2009). Regardless of the myriad of definitions and 
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repetitive verbiage, everyone seems to agree that basic asset management requires the 

maintenance, management, and preservation of all assets along the transportation corridor. 

 Although many goals of asset management are included in the definition, the 

American Association of State Highway and Transportation (AASHTO) summarized the 

goals into three general statements (pS-1, Cambridge Systematics et al. 2002). The first 

goal is to “build, preserve, and operate facilities” in a manner that is more “cost-effective” 

and with an improvement in “asset performance.” The second goal is to give consumers 

the “best value for the public tax dollar spent.” The third goal, which is more political, is 

to “enhance the credibility and accountability of the transportation agency to its governing 

executive and legislative bodies.” Of these three goals, methodologies towards 

accomplishing the first two goals have been studied in detail, as the third goal is a by-

product of the first two. 

 The United States was relatively late to the asset management game. Asset 

management programs were implemented in other countries (Canada, Australia, New 

Zealand, and across Europe) in the 1980s and 1990s. The first US-based seminar was held 

in the Washington, D.C., in 1996 with AASHTO and FHWA as hosts. The overwhelming 

positivity felt from this seminar lead to successive annual meetings, beginning in 1998 with 

the Asset Management National Conference in Scottsdale, Arizona. Then in 2000, the 

Transportation Research Board (TRB) joined AASHTO and FHWA to create an “AM 

[Asset Management] Task Force” (p8 Hawkins & Smadi, 2013). Since then an increase in 

research and funding has gone towards many forms of asset management (e.g., pavement, 

transportation, bridge, geotechnical, tunnel, etc.) with the US Department of 

Transportation (USDOT) and many state DOTs including some sort of asset management 

protocol in their annual infrastructure budget. Then on July 6, 2012, law P.L. 112-141 – 

the Moving Ahead for Progress in the 21st Century Act (MAP-21) was signed into law 

(USDOT 2015). MAP-21 requires the development of “a risk-based asset management 

plan for the National Highway System (NHS) to improve and preserve the condition of the 

assets and the performance of the system” (p1660, Stanley & Pierson 2013). Transportation 

asset management (TAM) is the most widespread asset management plan, with at least 16 

states having some sort of TAM plan currently in place (e.g., California, Colorado, 
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Connecticut, Florida, Georgia, Indiana, Michigan, Minnesota, Missouri, Montana, New 

Jersey, North Carolina, Oregon, Pennsylvania, Utah, Virginia, and Washington – Lindquist 

& Wendt 2012). These TAM plans include some, but not all, of other various asset types 

(e.g., pavement, bridges, geotechnical, tunnels), as other asset types are usually separated 

into other management plans. For example, DOTs in Washington, Oregon, California, and 

many other western states have a separate rock fall/landslide hazard program. So, basically, 

for state DOTs with no existing asset management plan, the most difficult decision is how 

to start one; while for those states with existing TAM plans, the biggest problem is 

integrating all asset management plans into one system or network. 

 

1.2 Current Practices in Asset Management 
 Current practices in asset management vary greatly by transportation agency and 

again by asset type. The initial asset management approach was to divide focus by asset 

type and then create individual asset management programs. This resulted in the generation 

of TAM, pavement asset management (PAM), bridge asset management (BAM), 

geotechnical asset management (GAM), slope asset management (SAM), embankment 

asset management (EAM), and so on and so forth. The obvious problem with this divide-

and-conquer approach is that separate management plans do not share data or information. 

This can pose a problem since a variety of assets share the same transportation corridor. 

For example, one slope failure could potentially affect assets categorized in all 

management programs listed above. Even worse, some types of asset management systems 

do not have standard procedure between states DOTs or transportation agencies. Vessely 

(2013) laments that “…there does not appear to be a standard of practice for geotechnical 

asset management [GAM] within state and federal transportation agencies in the United 

States” (p35). Therefore, the need for an integrated asset management approach is apparent 

and, according to Anderson & Rivers (2013), recent recommendations have been made to 

change the focus from an “asset-by-asset approach to one that examines the entire 

corridor.” 

 Differences by transportation agency and asset type notwithstanding, many DOTs 

and agencies have adopted a common asset management approach, which has been dubbed 
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the worst-first approach. The approach is quite simple: assets that have failed or have 

degraded to the point of disrepair are either repaired or entirely replaced (FHWA 1999). 

There may be two reasons why a worst-first approach is more common than a preventative 

approach: (1) tight budgets and limited funding require addressing the most critical assets, 

a reactive approach due to safety concerns, as opposed to spending the money on proactive 

measures; (2) justification to the consumers for a proactive and preventative approach is 

difficult because the tax-payers essentially expect the assets in the worst condition are 

addressed first and that, essentially, preservation is interpreted as “fixing something that 

isn’t broken” (p21, FHWA 1999). 

 In lieu of these reasons, the worst-first approach has been deemed unsustainable. 

The FHWA admits that “most states limit application of their management systems to 

monitoring conditions and then plan and program their projects on a worst-first basis” and 

that this approach is “tactical rather than strategic” (p16, FHWA 1999). Stanley & Pierson 

(2013) go one step further and claim the worst-first approach “results in overall system 

degradation as no assets receive preventative maintenance in time to keep the investment 

optimized” (p1660). So, although a short-term fix of one failed asset may be cheaper, may 

receive more publicity, and is much easier to explain to the public (“It was fixed because 

it failed!”), it is more dangerous, and, on a longer timeframe, the worst-first approach is 

more time-consuming and costly than a preventative approach. 

 This understanding has led to the creation of many asset management procedures 

and workflows. The following sections describe two general asset management workflows 

(FHWA and AASHTO) and a risk-based approach framework (Mian et al. 2011) along 

with a handful of specific management systems, including: the Bridge Management 

System, the Long-Term Bridge Performance Program (FHWA), the Maintenance Rating 

Program, the Pavement Management Guide (AASHTO 2001), a few statewide DOT-based 

Unstable Slope Management Programs, and an Asset Management of Embankments 

program used in the United Kingdom (Glendinning et al. 2009). 
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1.2.1 FHWA Generic Asset Management Framework 

 The FHWA created a generic asset management framework (Figure 1.1) to 

illustrate that all asset management plans should focus on strategy, a preventative approach, 

as opposed to tactics, a reactive approach. This flowchart aims to provide the foundation 

for an asset management procedure and can be applied on any scale: asset-by-asset, 

transportation corridor, or entire network. 

 

 
Figure 1.1: The seven steps, along with budget allocation, that comprise the generic asset 

management framework created by FHWA (recreated from FHWA 1999). 

 

Step 1: Goals and Objectives. Goals and objectives, which may take the form of 

policies and laws, must first be addressed prior to any actions taken. These goals should 

align with realistic expectations for what the asset management program can accomplish. 

Factors such as available budget, resources, workforce, and logistics should be examined 

as potential limitations and considered. The result of Step 1 should include a full 

understanding of management goals and objectives, which should in some way reflect the 

constituents’ needs, and intended targets should be set for the rest of the generic asset 

management framework. 

Step 2: Asset Inventory. The construction of the asset inventory is a difficult and 

time-consuming step. Important questions must be answered before beginning the 

inventory, such as: (1) which assets should be included in, and excluded from, the 

inventory? (2) What information should be recorded for each asset (e.g., location, value, 

functions, services, condition, etc.)? (3) How will the asset information be recorded (e.g., 
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spreadsheet, GIS geodatabase, etc.)? (4) How will field crews be trained to record 

subjective information in a consistent manner? The scope of constructing an asset 

inventory can be daunting, especially when considering scales of entire transportation 

networks on the state or federal level. Although initially time-consuming, the creation of 

an asset inventory would only need to be completed once and then updated as new assets 

are constructed or destroyed, and existing assets receive maintenance or upgrades. 

Step 3: Condition Assessment. This step aims to identify the condition of each 

asset and apply forward modeling to predict asset condition change over time. An initial 

condition assessment may have been included in the asset inventory (Step 2). The type of 

assessment would vary drastically by asset type – it would not make sense to have the same 

criteria for tunnels as for bridges. The current asset condition as well as historical asset 

condition and performance assessments are recommended for adequate performance 

modeling. The goal of this step is to utilize “analytical tools and reproducible procedures 

[to] produce viable cost-effective strategies for allocating budgets to satisfy agency needs 

and user requirements, using performance expectations as critical inputs” (p18, FHWA 

1999). 

Step 4: Alternative Evaluation. Alternate choices and budget allocations are then 

reevaluated if necessary. Any ways to optimize the asset management program should also 

be considered. This step is a quality control measure. 

Step 5: Maintenance with Short- and Long-Term Plans. Building on what was 

accomplished through Steps 2-4, short- and long-term maintenance plans are prepared 

based on the information gained. Short-term plans would include reactive measures such 

as repairing critically deteriorated assets, replacing assets that have failed, and addressing 

threats to public safety or substantial damage to assets in the transportation environment. 

Long-term plans would incorporate preventative measures using asset condition 

assessment criteria (e.g., risk-based or hazard-based) that identify assets in need of care via 

life-cycle monitoring. 

Step 6: Program Implementation. This step is basic: the asset management 

program now begins. The importance of this step is that, depending on the asset 
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management program performance, it can either lead back to Step 4, if the program requires 

additional optimization, or lead forward to Step 7. 

Step 7: Performance Monitoring. The final step of the generic asset management 

framework is to assess the performance of the framework which, according to the FHWA, 

should be conducted annually. The framework becomes more flexible and dynamic with a 

repetitive self-evaluation mindset because external changes, such as varying budget and 

funding amounts, can be addressed in a timely fashion – or as stated by the FHWA: “…any 

Asset Management system should be flexible enough to respond to changes in any of these 

variables or factors [policies, goals, asset types and characteristics, budgets, State operating 

procedures, and business practices]” (p18, FHWA 1999). 

 

1.2.2 AASHTO Asset Management Plan 

 AASHTO has also provided a list of eight components an asset management plan 

should include: 

1. Data Management. As defined by the Data Management Association (DAMA), 

data management is “…the development, execution and supervision of plans, 

policies, programs and practices that control, protect, deliver and enhance the value 

of data and information assets” (p4, DAMA 2009). Management of data within an 

asset management plan would include the organization of data obtained from 

various technologies (e.g., handwritten field notes or data collected from the field 

in differing formats, asset pictures, computer spreadsheets, GPS data, etc.) as well 

as big data storage, access, and visualization (Vessely 2013), which may include 

compiling all data into a geodatabase. 

2. Inventory and Condition Surveys. This component is identical to Steps 2 and 3 of 

the generic asset management framework (FHWA 1999). AASHTO (2013) does 

provide a list of specific information that should be provided for each asset: 

a. Performance Measures 

i. Current asset performance rating 

ii. Current asset performance with respect to the entire network 

iii. Trend analysis (historic asset performance) 
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iv. Predictive analysis (potential future performance) 

b. Geographic Location 

c. Jurisdiction Data 

d. Functional and Utilization Data 

e. Performance Characteristics 

f. Construction History and Historical Significance 

g. Archive of Valuable Documents 

3. Levels of Service: which are defined as “…classifications or standards that describe 

the quality of service offered to road users, usually by specific facilities or services 

against which service performance can be measured” (p21, AASHTO 2013). 

Levels of service are then divided into two groups: (1) customer, how the public 

interacts with the service, and (2) technical, what is required by the transportation 

agency or service provider. 

4. Service Life. This is an understanding of how an asset’s performance changes from 

deterioration over time. Service life is usually shown in plot-format, with a 

performance metric decreasing over time and a comparison between asset 

preservation and total asset deterioration (e.g., Figure 1.2). 
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Figure 1.2: Hypothetical pavement deterioration curve plotting time the pavement 

condition index (PCI – y-axis) over time (x-axis). The saw-tooth curve displays the benefits 

of a preservation approach compared to the more common worst-first approach, which 

may lead to significant deterioration (main curve). Plot was taken from Galehouse et al. 

(2006).  

 

5. Performance Measures (Outcome Measures) and Condition Indices. Performances 

measures quantify the successfulness of the asset management plan; these variables 

can also be used as a form of performance quality control. AASHTO’s 

transportation asset management plan includes eight performance measure areas: 

(1) condition, (2) life-cycle cost, (3) safety, (4) mobility, (5) reliability, (6) customer 

measures, (7) externalities, and (8) risk (p16, AASHTO 2013). Seven performance 

measures included as goals in MAP-21 are: (1) safety, (2) infrastructure condition, 

(3) congestion reduction, (4) system reliability, (5) freight movement and economic 
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vitality, (6) environmental sustainability, and (7) reduced project delivery delays 

(USDOT 2013). 

6. Risk Management. Risk is defined as any threat to transportation infrastructure and 

operations regardless of cause (AASHTO 2013). Therefore, risk management is the 

practice of identifying, analyzing, and mitigating sources of risk. The generation of 

a risk-based approach framework (e.g., see Section 1.2.4 – Mian et al. 2011) where 

the frequency, likelihood, and/or probability of a risk occurrence is estimated, is the 

general goal. 

7. Life Cycle and Cost-Benefit Analyses. A life cycle analysis examines the change 

in asset performance, cost, deterioration, and potential risk over an asset’s lifespan. 

A cost-benefit analysis is a method of calculating the financial pros (benefits) and 

cons (costs) of an activity or function. In terms of asset management, benefits may 

include the savings acquired due to an asset’s performance or the projected savings 

of asset preservation instead of total asset failure, while costs may include the actual 

expense of asset preservation. The value of an asset is determined by the cost of the 

asset subtracted from the benefit of the asset; an asset has positive value if the 

benefits are greater than the costs. 

8. Decision Support System (DSS). A DSS addresses the following: (1) the needs of 

an asset management plan and potential solutions, (2) evaluation of options, and (3) 

an analysis of asset performance with respect to investment (AASHTO 2013).  
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1.2.3 Risk-based Approach Framework 

 The framework for the risk-based approach presented by Mian et al. (2011) could 

be incorporated into the Condition Assessment (Step 3) and/or Alternative Evaluation (Step 

4) of the FHWA generic asset management framework (FHWA 1999) or the Risk 

Management step of the AASHTO Asset Management Plan (AASHTO 2013). For the 

purposes of this framework, the definition of ‘risk’ provided by the Office of Government 

Commerce (OGC) of the United Kingdom is used, which states: 

“Risk is an uncertain event or set of events that, should it occur, will 

influence the achievement of objectives. A risk is measured by a 

combination of the probability and the magnitude of its impact on 

objectives.” (OGC 2007) 

 

 The framework consists of five steps (labeled Step 0-4 by Mian et al. 2011) which 

work to combine asset management with risk management. 

• Step 0: Decision Scope – the scope is clearly defined and should include the 

following information: 

o Identification of “service aspect and level” (p2, Mian et al. 2011), 

o Duration of time the framework will be implemented, and 

o Geographic location(s) of assets, transportation corridor, and/or network. 

A determination between a proactive approach and a reactive approach must be 

decided upon as well. A proactive approach is one where incremental maintenance 

reduces the probability of unexpected repairs; a reactive approach, which may be 

less expensive on the short-term (and funding can be easier to justify to the public), 

increases the probability of incidental repairs and may conflict with performance 

measures (e.g., life-cycle cost, mobility, and safety - AASHTO, 2013; almost all 

listed in the MAP-21 guidelines – USDOT 2013). Basically, all asset management 

plans strive for a proactive approach. 

• Step 1: Hazard Identification – a hazard is any “uncertain event or set of events” 

that lead to risk within the transportation environment. Hazards must be identified 

by: 
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o Type, 

o Magnitude, 

o Cause, and 

o Impact on service, goals, objectives, and performance measures. 

• Step 2: Risk Estimation – the calculation of the “likelihood” and “consequence” of 

the risk event occurring, which yields a quantifiable output (Mien et al. 2011). 

Likelihood is defined as the probability that an event, that has already occurred, 

would result in a defined outcome. The consequence is the resultant negative 

impact, or severity (in magnitude), from a certain risk. Therefore: 

𝑅𝑅 = 𝐿𝐿 ∙ 𝐶𝐶 

defines the relationship between risk (R), likelihood (L), and consequence (C) over 

a period (Woodruff 2005). An output could be in the form of a risk matrix (Figure 

1.3). A risk matrix compares the likelihood (rows) and consequence/impact 

(columns) to calculate the risk event level. Risk matrices can be either qualitative 

or quantitative, with the latter being the preferred choice but also requires more 

data. 

 

 
Figure 1.3: Example of a qualitative risk matrix (image taken from Lee Merkhofer 

Consulting 2014).  
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• Step 3: Risk Evaluation – a two-fold step that defines the maximum risk threshold 

and mitigation. The maximum risk threshold is the greatest risk allowable for an 

asset to be considered ‘safe’ or not require mitigation. For example, if the maximum 

risk threshold were set to ‘Low’ in the risk matrix in Figure 3, then all assets with 

a ‘Moderate,’ ‘High,’ or ‘Extreme’ risk would require mitigation actions to be 

performed. According to Mien et al. (2011), mitigation may take three forms: 

“… (1) essential intervention for critical risks, (2) intervention 

desirable but not essential, for moderate risks or (3) no intervention 

necessary for low risks. The middle category associated with 

‘moderate risks’ is the one that requires the most detailed evaluation 

and where ‘risk tolerance’ [or maximum risk threshold] becomes an 

essential part of the decision making” (p4, italics in original text). 

• Step 4: Risk-based Decision Making – finally a decision should be made on what 

kind of mitigating action (if any) is required based on many factors, including the 

risk level, the assets at risk, the impact on performance measures, etc. The goal of 

this framework is to determine an acceptable risk tolerance at a given scale (asset, 

corridor, and network) and identify those assets that require further action. Since 

event risk changes through time, this framework should be repeated at an interval 

deemed sufficient for proper asset and risk management. 

 

1.2.4 Bridge Management System 

 The Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 required 

every State DOT to adopt a Bridge Management System (BMS), which would incorporate 

(and replace) the National Bridge Inventory System (NBIS). Included in the NBIS were 

bridges or culverts greater than 20 feet in length and carried vehicular traffic. Additionally, 

each bridge was given an initial condition rating ranging from 0 – failed/closed – to 9 – 

excellent condition (USDOT 1995). The FHWA sponsored the software PONTIS BMS in 

1991 and was included in the AASHTOWare software suite in 1995 (FHWA 1999). 

PONTIS BMS allowed for the compilation of a detailed bridge asset inventory, the ability 
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to model various maintenance/repair/mitigation strategies, and rank assets based on 

economic criteria (Gutkowski & Arenella 1998; FHWA 1999). 

 The BMS and NBIS were good starting points for the further development of bridge 

and culvert management. The data collected from these programs would inspire the FHWA 

to develop the Long-Term Bridge Performance program, which was launched as a 20-year 

research program aimed to “collect, document, maintain, and study high-quality, 

quantitative performance data on a representative sample of bridges nationwide” (USDOT 

2012). 

 

1.2.5 Long-Term Bridge Performance Program 

 The Long-Term Bridge Performance (LTBP) program was created in 2008 after the 

FHWA created the NBIS and found that of the more than 600,000 bridges, tunnels, and 

culverts inventoried, approximately 151,497 were considered “structurally deficient or 

functionally obsolete” (FHWA 2014). The entire purpose of the LTBP program is to create 

an inventory comprised of numerical/quantitative data of bridges across the US; this 

purpose aligns with the Asset Inventory (Step 2) and Condition Assessment (Step 3) of the 

generic asset management framework (FHWA 1999) and the Inventory and Condition 

Surveys step of the Asset Management Plan (AASHTO 2013). 

 The LTBP asset inventory will be compiled through two data collection phases:  

(1) the developmental phase and (2) the long-term data collection phase. The 

developmental phase was a pilot study conducted on bridges in California, Florida, 

Minnesota, New Jersey, New York, Utah, and Virginia. The objective was three-fold: (1) 

to verify and substantiate the bridge management data collection procedures, (2) to solidify 

interests and bonds with state DOTs, and (3) to make sure enough information is gained to 

successfully complete the long-term data collection phase of the project. The long-term 

data collection phase – which began in March 2013 – is currently ongoing. As of March 

2015, two announcements have been released by the FHWA to update the public on the 

progress of the second phase. The first announcement, published June 2013, identified 24 

bridges in the Mid-Atlantic region of the US (New Jersey, Pennsylvania, Delaware, 

Maryland, and Virginia) that have been selected to be included in initial field 
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investigations. The second announcement, also published in June 2013, was entitled 

Selection Procedure for Reference and Cluster Bridges and includes eight general steps for 

bridge selection. The eight steps are as follows (produced here verbatim from FHWA 

2013): 

1. Filter all bridges in the selected region using high level criteria. 

2. Obtain State prioritization for remaining population. 

3. Sort all remaining bridges into “Design of Experiments” subpopulations based on 

span length, age and Average Daily Truck Traffic (ADTT). 

4. Compute the normalized distance measure for each bridge, which defines its 

experimental “power.” 

5. Rank the bridges within each subpopulation based on the distance measure. 

6. Select bridges from each subpopulation based on the distance measure and a set of 

supplemental criteria. 

7. Examine the distribution of secondary variables. 

8. Iterate until a balance distance measure, supplemental criteria, and subpopulation 

variability is achieved. 

See FHWA (2013) for a complete description of each step. Of particular interest is step 2, 

which requires input from the State DOT to prioritize bridges at low, medium, or high 

status, with high statuses assigned to the most critical bridges. State DOTs would ideally 

have an asset management plan in place (e.g., FHWA, AASHTO, etc.) to quantifiably 

identify bridges of highest priority. 

 

1.2.6 Maintenance Rating Program 

 The Maintenance Rating Program (MRP), developed in 1985 by the Florida DOT 

(FDOT), is a highway asset condition assessment plan on the state level. At least once per 

year, State DOTs are tasked with assigning condition ratings to assets along state highway 

transportation corridors. Rated corridor elements include (USDOT 2007): 

1. Roadway, 

2. Roadside, 

3. Vegetation and aesthetics, 
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4. Traffic signs, and 

5. Drainage. 

The maximum rating for each category is 20 and, therefore, a perfect total rating of 100 is 

possible. An 80 was originally set as a passable grade by the FDOT, but since then other 

states have had the option to alter their target rating. For example, the North Carolina 

Turnpike Authority aims for an overall rating of 90/100 for the Triangle Expressway 

system (NCTA 2014). 

 Workers must undergo state-run MRP computer-based training and pass the MRP 

Handbook Exam (FDOT 2013). The goal is to develop a uniform asset rating style from 

State DOT employees so that all state’s MRP ratings are consistent, while also dividing up 

the inventory rating work into smaller geographic regions. 

 Unfortunately, to date only six US states (Florida, Kentucky, North Carolina, 

Tennessee, Texas, and Virginia) and Taiwan (Chou et al. 2006) have (at least partially) 

adopted the MRP. Seven other US states (Illinois, Indiana, Michigan, Minnesota, Ohio, 

South Carolina, and Wisconsin) have published reports on the potential benefits of MRP 

or have expressed interest in developing a system but have not executed the program or 

have instead constructed a different plan.  Although the MRP may work well at the state-

level, the immediate limitation is the lack of MRP acceptance among many states and, 

consequentially, little consistency for how assets are rated. 

 

1.2.7 Pavement Management Guide 

 AASHTO released an official definition for Pavement Management System (PMS) 

in 1993: 

“A pavement management system (PMS) is a set of tools or methods that 

assist decision-makers in finding optimum strategies for providing, 

evaluating, and maintaining pavements in a serviceable condition over a 

period of time.” (AASHTO 1993) 

In 2001, AASHTO released the Pavement Management Guide, which lists and describes 

the six elements required for pavement management (AASHTO 2001). The six elements 

are: 
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1. Asset Inventory. The inventory “…includes information that defines the 

management sections and information about the location, limits, size, connectivity 

to other sections, number of traffic lanes, route designations, and functional 

classification for each management section” (p16, AASHTO 2001). 

2. Condition Assessment. The condition of pavement assets is measured using the 

following variables: surface distress, structural capacity, roughness, surface 

friction, and skid resistance (Peterson 1987; AASHTO 2001). 

3. Determination of Needs. Once the basic information has been compiled, a decision 

must be made on what work needs to be done (if any) for each pavement asset. 

Some sort of hazard rating scale is generally used, such as pavement condition 

index (PCI), which assigns a PCI value ranging from 0 to 100 (Figure 1.2 – FHWA 

1991). ‘Trigger values’ are set to identify the level of maintenance (LOM) required. 

Default trigger values and LOM are as follows: 

a. 0 ≤ PCI < 25  Heavy Rehabilitation/Reconstruction 

b. 25 ≤ PCI < 50   Moderate Rehabilitation 

c. 50 ≤ PCI < 75   Light Rehabilitation 

d. 75 ≤ PCI ≤ 100 Preventative Maintenance 

4. Prioritization of Projects Needing Maintenance and Rehabilitation. Prioritization of 

projects to complete is usually based on condition assessment, determination of 

needs, available funding, and logistics. 

5. A Method to Determine the Impact of Funding Decisions. The goal here is to 

develop a methodology of determining the most economically efficient 

implementation of the program. Every funding agency wants optimal spending of 

their money. 

6. A Feedback Process. Quality measures or a self-assessment rubric to grade the 

program’s effectiveness and impact would help in making the pavement 

management plan more robust and sustainable. 
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This pavement management procedure is basically the FHWA’s generic asset 

management framework applied to a specific asset type and could be linked to other asset 

management procedures to create a corridor- or network-wide asset management plan. 

 

1.2.8 Unstable Slope Management Programs 

 Unstable Slope Management (USM) programs have been developed by many State 

DOTs and aim to identify unstable slopes along transportation corridors before failures 

occur. These types of programs incorporate two general asset management steps: asset 

(slope) inventory and condition assessment. 

 The first USM program, implemented by the Oregon DOT (ODOT) and referred to 

as Oregon DOT-I or the Rockfall Hazard Rating System (RHRS), will be described in 

detail. Other state DOTs have created their version of the rating system, but since these 

were based on the original Oregon DOT-I they are compared in Table 1.1. 

 

Table 1.1: Complete list of input parameters used in nine RHRSs: (1) ODOT-I, (2) ODOT-

II, an updated version by ODOT, (3) OHDOT – Ohio DOT, (4) NYSDOT – New York 

State DOT, (5) UDOT – Utah DOT, (6) WSDOT – Washington State DOT, (7) TDOT – 

Tennessee DOT, (8) MODOT – Montana DOT, and (9) BCMoT – British Columbia 

Ministry of Transportation. This table is recreated from Huang et al. (2009). 

Parameters ODOT-I ODOT-
II OHDOT NYSDOT UDOT WSDOT TDOT MODOT BCMoT 

Annual 
Average Daily 

Traffic 
X X X X X X X X X 

Accident 
History  X X   X    
Annual 

Maintenance 
Frequency 

 X        
Average 

Vehicle Risk X  X X X X X X X 
Annual 

Maintenance 
Cost 

 X X       
Backslope 
Above Cut    X X   X  

Benefit-Cost 
Ratio  X X   X   X 

Block Size 
Volume X   X X  X X X 
Detour 

Distance/Time   X   X    
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Differential 
Erosion X   X X  X  X 

Discontinuity 
Length X        X 

Discontinuity 
Orientation X      X X X 

Discontinuity 
Roughness X   X X  X X X 

Discontinuity 
Weathering        X  

Ditch 
Dimensions X   X X  X X X 

Expected 
Damages or 

Fatalities 
  X   X    

Failure Zone 
Length X  X X X X X X  

Freezing Period 
or Freeze-Thaw 

Cycle 
X        X 

Future Impact   X   X    
Highway 

Classification  X    X    
Impact to Road 

Structure  X X   X    
Instability 

Related to Rock X X  X X X  X X 
Instability 

Related to Soil  X    X    
Instability 

Related to Fill  X        
Percent 

Decision Sight 
Distance 

X  X X X X X X X 
Rate of 

Movement  X X       
Roadway 

Width X      X  X 
Rockfall/Slide 

Frequency  X X       
Rockfall/Slide 

History X      X  X 
Slope Height X      X X X 
Slope Angle   X X X X  X  
Traffic Speed X  X   X   X 
Vertical and 
Horizontal 

Displacement 
  X       

Water on 
Surface X   X X X X X X 

 

1.2.8.1 Oregon DOT-I: RHRS 

The Rockfall Hazard Rating System was created by the ODOT in the 1980s. This 

system contains six main features (Pierson 1991): 

1. A uniform method for slope inventory. 
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2. A preliminary rating of all slopes. Slopes were initially rated based on the estimated 

potential for rock on the roadway and historical rock fall activity. In both categories, 

the slope would receive an “A” rating if high, “B” rating if moderate, and “C” rating 

if low. “A” rated slopes then proceed to the detailed rating, while “B” rated slopes 

will be addressed if time permits and “C” rated slopes discarded. 

3. A detailed rating of all hazardous slopes. The detailed rating would assign a 

numerical value, from 1 to 100, to each slope based on the following criteria: 

a. Slope height – the vertical height of the slope from which a rock fall is 

expected. 

b. Ditch effectiveness – the ability of roadside ditches to restrict falling rocks 

from reaching the roadway. 

c. Average vehicle risk – the percentage of time that a vehicle will be present 

in the rock fall hazard zone. 

d. Percent of decision sight distance – an estimation of the length of roadway, 

in feet, a driver must have to make a complex decision, based on vehicle 

speed, with respect to the actual length of roadway a driver would have to 

make the maneuver. 

e. Roadway width – distance from edge of pavement on one side of the road 

to the edge of pavement on the opposite side. 

f. Geologic character – attempts to describe slope characteristics based on 

geology. 

g. Block size or quantity of rock fall per event – a representative estimation of 

size and amount of rock fall content per event. 

h. Climate and presence of water on the slope. 

i. Rockfall history – chosen from the following options: few falls, occasional 

falls, many falls, and constant falls. 

A score is assigned to each of the variables listed above. The RHRS uses only four 

score options – 3, 9, 27, 81, with greater values indicating more hazardous slopes 

– although Pierson claims “…[these score values] are representative scores of a 

continuum of points from 1 to 100” (p3, Pierson 1991). 
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4. A preliminary design and cost estimate for more serious sections. 

5. Project identification and development. Pierson (1991) identifies four ways the 

results from the Rockfall Hazard Rating System may be used to determine projects 

for construction. 

a. Slopes are chosen based on the rating score. 

b. Slopes are chosen based on the rating score relative to the construction cost. 

c. Adjacent slopes that require similar mitigation procedures are grouped 

together and chosen based on areal extent. 

d. Slopes are chosen based on the rating score and proximity to important 

transportation infrastructure. 

6. Annual review and update. 

 

Eight other USM plans were constructed based on the Rockfall Hazard Rating System of 

Pierson (1991) and ODOT described above. Table 1.1 compares the input parameters used 

in each USM system, illustrating that not one system incorporates all possible input 

parameters and that there are pros and cons to using any USM program. 

 

1.2.9 Asset Management of Embankments: United Kingdom 

 The embankment management framework described by Glendinning et al. (2009) 

and Perry et al. (2003) begin with a risk assessment flowchart and includes a strategic level 

and a tactical level. The strategic level examines all the slopes in the transportation network 

and includes steps like the construction of an asset inventory, slope prioritization based on 

risk analysis, maintenance, and asset monitoring. The tactical level focuses on individual 

slopes and includes steps such as condition assessment, potential mitigating actions needed, 

risk analysis, cost-benefit analysis, and short- and long-term planning. 

 Some specifications to the framework were given in Glendinning et al. (2009). 

Regular inspections of the assets are performed to assess the current condition of the asset 

and placed in an inventory (asset register). Risk analysis is performed by combining the 

current condition assessment information with “…historical information in some sort of 

database… [t]he history plus the current condition provides information on the possible 
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potential for failure” (p111, Glendinning et al. 2009) and coupling that information with a 

risk matrix approach (Figure 1.3) where “…the consequences of failure including safety 

and commercial risks… [such as] volume of traffic, value of the route, diversionary route 

availability and its strategic importance to the movement of freight” (p111). Funding and 

resources are directed where they are most required and, therefore, maintenance, 

monitoring, and remediation are performed if and where necessary. 

 

1.3 Limitations of Current Asset Management Plans 
 Many limitations exist with either (1) the current asset management plans, or (2) 

implementation shortcomings of current asset management plans by state or federal DOTs. 

Below are listed eleven limitations, challenges, or areas within the asset management field 

that require more research concentration. 

1. State-wide inventories are massive. Steps to collect inventory information on new 

asset classes, assess the existing condition, and rate new assets is “…such a large 

undertaking that… some states (e.g., Colorado and Washington) recently cut back 

on plans to inventory and assess retaining walls because of the cost of 

implementation and uncertainty in the payoff from the investment” (p11, Anderson 

& Rivers 2013). 

2. Incomplete inventories. No state has completed an inventory and initial condition 

rating for these assets: pavement, bridges, walls, culverts, slopes, embankments, 

and drainages (Anderson & Rivers 2013). State DOTs have focused on specific 

asset types based on hazard. For example, states in the western US (Washington, 

Oregon, California, and Colorado) focus on rock and soil slope management due to 

landslide risks, while states in the Midwest (Michigan, Wisconsin, Ohio, and 

Pennsylvania) focus on pavement and bridge management due to deterioration from 

freeze/thaw cycles and heavy salt use. 

3. Different asset types require different methods for measuring condition. “The 

expectation of the frequency of [a] rock fall from a rock cut, the long-term 

settlement of a bridge approach, movement of an anchored wall, or corrosion of 

steel reinforcements in mechanically stabilized earth are all areas in which the 
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profession has not established or has not developed means for measuring or 

recording in consistent ways” (p13, Anderson & Rivers 2013). 

4. Condition variation in time is difficult to predict. The challenge that has had the 

least attention “is the need for predicting how performance changes through time 

and identification of the most advantageous times for investment for long-term 

level or service optimization” (p14, Anderson & Rivers 2013). 

5. There exists no good method for predicting large failures from observed 

deterioration. “Someday it will be possible, for example, to identify the 

deterioration of the [150-ft high side-hill] embankment on I-75 in Tennessee [which 

failed in May 2012] and take timely steps to improve drainage, and thereby the 

level of service, without such a large negative impact on performance” (p14, 

Anderson & Rivers 2013). 

6. Geotechnical asset management programs are minimal in scope. “Many agencies 

have rock fall management programs that could be classified as geotechnical asset 

management efforts; however, the number of programs for other geotechnical 

features… is limited” (p24, Vessely 2013). The author provides a list of possible 

geotechnical assets that could be monitored with a comprehensive asset 

management program: tunnels; retaining walls; earth retaining structures; 

embankments; modified native slopes or cut slopes; slopes, both stable and those 

displaying deformation, such as rock fall, rockslides, landslides, and even 

avalanche sites; road subgrade, rail subgrade, and transportation ground 

improvements; culverts; quarry and other material excavation sites. 

7. Geotechnical asset life-cycle is poorly understood. Since geotechnical asset 

management is relatively new compared to other asset management programs (e.g., 

pavement, bridges, and highways), the complete life cycle of many geotechnical 

assets is not well understood. “There is a general lack of understanding and 

published data about the life cycles of most geotechnical assets” (p1659, Stanley & 

Pierson 2013). 

8. Future spending estimates are based on present asset deterioration models – actual 

spending varies greatly when assets do not deteriorate as projected (asset life-cycle 
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is poorly understood). “Current approaches are based on maintaining a balance 

between the cost of spending now and spending in the future, versus consequences 

of failure… In this case [of an embankment failure that destroyed a rail subgrade], 

failure to recognize the transient nature of the embankment behavior has led to 

increased costs of having to mobilize twice to instigate repair. Historically, 

however, there has been very limited information about the future performance of 

the asset” (p117, Glendinning et al. 2009). 

9. The sundry of asset management programs implemented on many levels, by many 

agencies/organizations with individual performance measures, results in 

incompatible datasets. “Data integration and sharing for asset management involve 

bringing in data from various sources. Most transportation agencies have large 

quantities of variable, heterogeneous data. Data heterogeneity usually results from 

the presence of internal legacy systems that have diverse structures and formats. 

The challenge is to create a framework that incorporates all of the data items needed 

to perform the desired asset management business functions, addresses the 

disparities in data sources and formats, and responds flexibly to changing data 

requirements when new business functions are introduced or when existing 

processes are modified” (p9, USDOT 2007). 

10. There are problems experienced by local governments that need to be addressed. 

According to the Asset Management Overview released by the USDOT (2007), 

local governments described nine problems they encountered during the 

implementation of asset management programs. The general themes of these 

problems are listed below: 

a. Commitment by management and staff is important. 

b. Building and maintaining an asset inventory must be accomplished first but 

may also be performed progressively from many sources. 

c. Asset condition assessment need not always be performed at the highest 

sophistication level to be a valuable decision-making tool. 

d. Data formats may range from field notes to spreadsheets to geodatabases. 
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e. Monitoring of the asset inventory and asset condition assessment is vital in 

keeping the asset management program relevant. 

f. Decision-making based on the comparison of different asset types can be 

accomplished with an asset management program. 

g. Asset condition standards are subjective and may vary between local 

governments, transportation agencies, and federal agencies and may vary 

by asset type. 

h. Interdepartmental data sharing saves time and money. 

i. The simpler the asset management tools, the more likely they will be 

accepted and widely used – “the tools need to be easily understandable, 

adaptable to the user’s specific interests, and easy to operate without 

entailing lengthy, tedious activities for data entry, formatting, and other 

routine operations” (p19, USDOT 2007). 

11. There are areas that need additional research. In 2005, a panel discussion focused 

on research needs and strategies for meeting them. The panel identified the 

following research needs (p24, USDOT 2007): 

a. Data collection and integration 

i. Maintaining databases of condition data 

ii. Metadata standards 

iii. Improving data quality 

iv. Automated data collection 

b. Condition assessment 

i. Condition assessment processes for hidden infrastructure 

ii. Using remote sensing capabilities 

iii. Better warning systems 

iv. Linking condition assessment with decision-making processes 

c. Performance modeling 

i. Capturing the effect of routine maintenance in life-value 

ii. Modeling preventative maintenance 

iii. Enhanced modeling techniques 
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iv. Defining performance measures 

d. Analysis 

i. Tradeoffs in the decision-making process 

ii. Asset valuation methodologies 

iii. Risk analysis and cost of failure 

iv. Treatment selection methods 

e. Big picture issues 

i. Documenting the benefits of asset management 

ii. Infrastructure security 

iii. Applications of emerging technologies 

iv. Sustainable development 

f. Teaching infrastructure management 

i. Clearinghouse for infrastructure management course materials 

ii. Translating research into course materials 

 

1.4 Purpose of this Study 
 The work in this dissertation builds upon the geotechnical asset management 

framework to demonstrate the capabilities of applied remote sensing for unstable slope life-

cycle analyses. Remote sensing techniques utilize optical, LiDAR, and radar sensors from 

various platforms (e.g., terrestrial, aerial, and satellite). The purpose of this study is to show 

how these techniques can be applied to asset management steps – specifically asset 

inventory (Step 2), condition assessment (Step 3), and performance monitoring (Step 5) 

from Figure 1.1 – on unstable slopes, which include rock slopes, soil/sediment slopes, and 

embankments (e.g., roadcuts and dams). The following chapters are placed in order by 

asset type and management steps; Table 1.2 shows the contents of each chapter based on 

asset, geotechnical asset management steps, and remote sensing technique used.  
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Table 1.2: Focus of each chapter based on asset type, management steps, and remote 

sensing techniques. 

Chapter Asset Type(s) Geotechnical Asset Management 
Step(s) and/or Other System(s) 

Remote Sensing 
Technique(s) 

2 
Rock Slope; 

Railroad 
Assets 

Asset Inventory; 
Condition Assessment; 

Performance Monitoring; 
Rockfall Hazard Rating System 

Optical 
Photographs; 

LiDAR 

3 
Rock Slope; 

Railroad 
Assets 

Asset Inventory; 
Condition Assessment; 

Performance Monitoring 
InSAR 

4 Building 
Asset Inventory;  

Condition Assessment; 
Geographic Information Systems 

InSAR 

5 Dam Condition Assessment InSAR 

6 Dam Condition Assessment; 
Performance Monitoring InSAR 

7 Rock and Soil 
Slopes Asset Inventory InSAR; 

GPS 

8 Rock and Soil 
Slopes 

Condition Assessment; 
Performance Monitoring 

Optical Correlation; 
InSAR; 

GPS 
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Chapter 2: Rockfall Hazard Rating System: 
Benefits of Utilizing Remote Sensing1 

 
El Hachemi Bouali2; Thomas Oommen, Ph.D.3; Stanley Vitton, Ph.D.4; 

Rüdiger Escobar-Wolf, Ph.D.5; and Colin Brooks6 
 

2.1 Abstract 
Transportation corridor slopes have the potential to be hazardous to adjacent assets. 

Rockfall Hazard Rating System (RHRS) is a stepwise process designed to identify 

potentially hazardous slopes by assigning a hazard rating that determines the order to 

mitigate and remediate slopes. A traditional RHRS approach is field-based: observations 

are made by a field crew who convert observations into slope ratings (preliminary and 

detailed). The purpose of this study is to examine the benefits of utilizing remote sensing 

techniques on 14 slopes within a 24-km railroad corridor in southeastern Nevada. Remote 

sensing allows for data acquisition in difficult-to-reach locations from various view angles. 

Images and data from three remote sensing technique-platform combinations are 

examined: optical imagery acquired via satellite, optical imagery acquired via unmanned 

aerial vehicle (UAV), and light detection and ranging (LiDAR) data acquired from a 

stationary sensor. Detailed RHRS slope ratings from both sets of optical images are 

                                                            
1 The material contained in this chapter was previously published in Environmental and 
Engineering Geoscience. 
2 Department of Geological and Mining Engineering and Sciences, Michigan 
Technological Univ., 1400 Townsend Dr., Houghton, MI 49931 (corresponding author). 
E-mail: eybouali@mtu.edu  
3 Department of Geological and Mining Engineering and Sciences, Michigan 
Technological Univ., 1400 Townsend Dr., Houghton, MI 49931. E-mail: 
toommen@mtu.edu  
4  Department of Civil and Environmental Engineering, Michigan Technological Univ., 
1400 Townsend Dr., Houghton, MI 49931. E-mail: vitton@mtu.edu  
5 Department of Geological and Mining Engineering and Sciences, Michigan 
Technological Univ., 1400 Townsend Dr., Houghton, MI 49931. E-mail: 
rpescoba@mtu.edu  
6   Michigan Tech Research Institute, 3600 Green Court, Suite 100, Ann Arbor, MI 48105. 
Email: cnbrooks@mtu.edu  
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compared to two types of field-based ratings: (1) initial field observations performed using 

a traditional RHRS approach, and (2) average detailed rating scores from six participants 

(geologists and geotechnical engineers) who were given field notes of the ten rating criteria 

for the 14 slopes. Terrestrial LiDAR is capable of monitoring slow slope deformation, with 

an accuracy of approximately 1-2 cm/year, and identifying areas of rapid deformation. 

Remote sensing techniques should not replace traditional field methods entirely. Instead, 

developing an approach that combines the advantages of field- and remote sensing-based 

methodologies will enable transportation agencies to ensure a more robust, efficient, and 

time-effective RHRS approach. 

 

2.2 Introduction 
 Rockfall Hazard Rating System (RHRS) is a procedure used to analyze and 

prioritize slopes along transportation corridors (roadways and railways) based on the 

potential hazard of rockfall occurrence. A train derailment in British Columbia, Canada in 

the early 1970s was the impetus for the development of RHRS, which is commonly used 

today (Brawner and Wyllie 1975). Rating criteria based on geometric and geologic 

conditions of the railroad-slope environment were created to determine future rockfall 

mitigation and remediation efforts. Slopes were categorized by greatest potential hazard 

(A) to least hazardous (E). This novel approach was expanded (Wyllie et al. 1979; Wyllie 

1980; Wyllie 1987) with development of an exponential scoring system to better categorize 

slopes from A to E. The practicality of this proactive approach was realized and adopted 

by many transportation agencies in the early 1990s when state agencies collaborated to 

develop initial RHRS instructions (Pierson 1991; Pierson 1992; Pierson and Van Vickle 

1993; Brawner 1994). Since then some transportation agencies have further refined slope 

hazard rating criteria (Huang 2009). RHRS procedures described by Pierson and Van 

Vickle (1993) will be used in this paper, since this version is incorporated in most recent 

RHRS approaches.  

 The full RHRS procedure requires completion of six steps: (1) slope inventory, (2) 

preliminary slope rating, (3) detailed slope rating, (4) project design and cost estimation, 

(5) project identification and development, and (6) yearly reviews and updates. Data 
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collected in these six steps are then inputted into a geodatabase that incorporates locations 

of slopes adjacent to relevant transportation corridors (Step 1). The preliminary slope rating 

(Step 2) classifies slopes into three hazard categories—A (high), B (moderate), and C 

(low)—based on past rockfall activity and potential for future rockfall activity. A detailed 

slope rating (Step 3) further classifies high-risk slopes (from the preliminary slope rating) 

by assigning a score based on ten rating criteria that include (1) slope height, (2) ditch 

effectiveness, (3) average vehicle risk, (4) decision sight distance, (5) roadway width,  

(6) structural condition, (7) rock friction (hard rock) or differential erosion rates (soft rock), 

(8) block size/volume, (9) climate and water presence, and (10) rockfall history. Scores 

range from one (lowest hazard) to 100 (highest hazard) per rating criteria. The detailed 

rating for each slope is the summation of all ten rating criteria scores. Project design and 

cost estimation (Step 4) is considered prior to project implementation. Pierson and Van 

Vickle (1993) offer a variety of methods for project identification and development based 

on the RHRS procedure. The purpose of Step 5 is to formulate the best approach for 

rockfall mitigation and remediation construction, while Step 6 recommends rated slopes 

be reviewed on an annual basis. Therefore, depending on the outcome of Step 6, changes 

to information recorded in Steps 1-5 may be required for relevant slopes.  

 Implementation of the RHRS procedure can be time-consuming and expensive due 

to the amount of data acquisition and analysis (preliminary and detailed slope ratings) 

required, which increases drastically with scale (e.g., state-wide transportation networks), 

and need for annual reviews and updates. Transportation agencies have tried using different 

types of non-traditional data acquisition techniques to minimize these difficulties. 

Traditional data acquisitions are in situ measurements and/or field observations; the 

instrument and the user need to be on site. Non-traditional data acquisitions are remote 

sensing-based; active or passive sensors mounted upon moving or stationary platforms 

receive information in the form of electromagnetic waves (e.g., aerial photography). The 

use of remote sensing data acquisition for RHRS purposes—such as slope characterization, 

feature identification, and surficial change and displacement measurements—has evolved 

over the last 15 years. Data sources include state highway video logs (Maerz et al. 2005; 

Youssef et al. 2007; Youssef and Maerz 2012), optical photography and photogrammetry 
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(Di Crescenzo and Santo 2007; Lucieer et al. 2014), terrestrial laser scanning (Bauer et al. 

2005; Abellán et al. 2009; Abellán et al. 2010), and light detection and ranging (LiDAR) 

technologies (Strouth and Eberhardt 2007; Lato et al. 2009; Lan et al. 2010; Lato et al. 

2012). Terrestrial remote sensing techniques allow for detailed observations and accurate 

surficial measurements of slopes. Platforms in motion, such as satellites, airplanes, 

terrestrial vehicles, and unmanned aerial vehicles (UAVs), allow for data acquisition that 

covers relatively large areas (potentially multiple slopes at once) at various vantage points 

in repeatable fashion. 

 A 24-km section of railroad corridor in southeastern Nevada (Figure 2.1) was 

chosen to test the efficacy of applying two remote sensing methods—optical 

photogrammetry and LiDAR, with instruments located on different platforms and viewing 

angles (Table 2.1)—to develop an RHRS rating for slopes within the corridor. The railroad 

corridor follows the valley floor of a canyon system that cuts through volcanic rock 

consisting of rhyolite, tuff, and welded breccia, with approximately 33% of railroad tracks 

within 30 m of a slope with height > 50 m. Approximately 2.5% of the 24-km track passes 

through five tunnels. 

 The railroad corridor was studied by Justice (2015), who utilized a multi-level 

approach through the application of the RHRS procedure. The multi-level approach, which 

used local- and regional-scale hazard assessments, was performed using satellite ortho-

photography and point-cloud images generated from a terrestrial LiDAR survey on three 

slopes within the railroad corridor. Bouali et al. (2016a) used a satellite-based remote 

sensing technique, interferometric synthetic aperture radar (InSAR), to measure surficial 

displacement rates across the railroad corridor between 1992 and 2010; this study included 

all three slopes from the Justice (2015) study. One slope exhibited downslope displacement 

rates > 10 mm/year and five additional slopes were identified as potentially hazardous 

based on slope distance from railroad track, slope height, slope angle, downslope 

displacement rate (velocity), and total displacement. 
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Figure 2.1: 24-km segment of railroad corridor located in southeastern Nevada (inset). 14 

slopes (green circles) are identified by number (Slope 1, Slope 2, etc.). Background 

imagery was generated in ArcGIS software by Esri. 
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Table 2.1: Types of remote sensing platforms, sensors, and output data used for this study. 

Platform Sensors Sensor 
Type Motion Output Data 

Satellite Landsat 7, 
WorldView 1 & 2 Optical Polar Orbit Photographic 

Images 

UAV 
Nikon D800 (50 mm) 
mounted on Bergen 

Hexacopter 
Optical Remote Controlled 

by Operator 

Photographic 
Images, 3-D 
Point Clouds 

Terrestrial RIEGL LMS-Z210ii LiDAR Stationary 3-D Point 
Clouds 

 

 This study will focus on 14 slopes (named Slope 1, Slope 2, …, Slope 14) that meet 

three geometric criteria: (1) slope toe is located within 15 m of the railroad track, (2) slope 

is at least 15 m tall, and (3) a dip greater than 25º towards the railroad tracks is measured 

on the slope face. The purpose of this study is to investigate the effectiveness of using 

remote sensing techniques to assess RHRS values compared to a traditional field-based 

method. Although some state transportation agencies continuously monitor and rate their 

highest priority slopes (e.g., through video logs), a synergistic field- and remote sensing-

based approach will allow for measurements undetectable or not within view from 

transportation corridor heights, such as identification of rockfall source areas and unstable 

blocks, small-scale rock displacement detection (mm-scale), and identification of potential 

future hazardous slopes. Specifically, additional advancements in the usage of remote 

sensing techniques for preliminary slope ratings, detailed slope ratings, and annual rating 

reviews and updates would supplement repetitive site visits yet complement the traditional 

RHRS field-based approach. A long-term monitoring approach that updates slope ratings 

in near real-time would be beneficial and incorporating remote sensing techniques into 

RHRS procedures can accomplish this goal.  

 

2.3 Methodology 
 The application of remote sensing techniques in acquiring information for Step 2 

(preliminary slope rating), Step 3 (detailed slope rating), and Step 6 (yearly reviews and 

updates) can aid in the efficacy of the RHRS procedure discussed in Pierson and Van 
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Vickle (1993). Preliminary slope ratings can be assigned to slopes based on relatively low 

resolution, vertical photography acquired from optical sensors on satellites, airplanes, and 

UAVs. The process of assigning detailed slope ratings to “A” level slopes, traditionally 

conducted by an on-site field crew, can be improved by data obtained from terrestrial 

LiDAR (at ground-level) and oblique-angle, high resolution photographs from UAVs. The 

yearly RHRS review and update can further use remote sensing datasets to reduce review 

time and cost. A description of an approach using traditional field methods and remote 

sensing techniques to provide a synergistic RHRS approach is discussed below.  

 

2.3.1 Preliminary Slope Rating (RHRS Step 2) 

 The preliminary slope rating classifies a slope based on the “estimated potential for 

rockfall on roadway” and “historical rockfall activity” using a three-tiered class system: 

“A” for high, “B” for moderate, and “C” for low (p18, Pierson and Van Vickle 1993). Eight 

factors are considered when performing the preliminary rating. Of these eight factors, four 

potential rockfall factors can be estimated using remote sensing. These are (1) size of 

rockfall material, (2) quantity of material, (3) amount available, and (4) ditch effectiveness. 

The four historical rockfall activity factors can also be estimated using remote sensing data 

if these data were acquired after the rockfall event and prior to remediation. This study will 

examine the four potential rockfall factors; a similar approach can be applied to historical 

rockfall activity factors if relevant data were acquired. 

 Optical photography, acquired by satellite, airplane, or UAV fly-overs, can directly 

aid in quantification of factors that indicate a potential for future rockfall events that impact 

the adjacent transportation corridor. All four factors are area measurements (rock size, 

material quantity, material amount, and ditch coverage) and, therefore, can be estimated 

using optical photographs in a GIS database. Two acquisition variables that dictate the 

effectiveness of using optical photographs are image resolution and view angle. Coarse 

resolution (m-scale) images are widely available and sufficient for identifying large 

unstable blocks, but there are likely to be sub m-scale rocks that can cause damage and will 

be undetectable at such coarse resolutions. It is therefore important to obtain optical 

photographs at a resolution greater than (lower in magnitude) the smallest sized rock 
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deemed dangerous to traffic within the transportation corridor, most likely from images 

with cm-scale resolution. The view angle from which images are acquired is also important, 

as a different vantage point gives more information on the slope. For situations where the 

top of the slope is not viewable from transportation corridor (ground) level, a vertical view 

angle allows for better estimations of material quantity and amount of material available, 

as well as identification of potential large unstable blocks previously unobservable.  

 

2.3.2 Detailed Slope Rating (RHRS Step 3) 

 Slopes with a preliminary “A” rating are of highest priority, requiring detailed slope 

ratings be conducted on these slopes first (Pierson and Van Vickle 1993). The detailed 

slope rating assigns a numerical value between one (lowest hazard) and 100 (highest 

hazard) for the ten rating criteria previously discussed. Five rating criteria are quantitative, 

with the function y = 3x used as the basis of the scoring system, with discrete formulae for 

the exponent (x) provided for slope height, average vehicle risk, sight distance, roadway 

width, and block size/volume (p29, Pierson and Van Vickle 1993). The other five rating 

criteria (ditch effectiveness, structural condition, rock friction or differential erosion, 

climate and presence of water, and rockfall history) are more qualitative; scores are 

assigned based on observations rather than numerical measurements. The sum of scores 

for the ten rating criteria equal the total hazard score for a slope, ranging from ten (no 

hazard) to 1,000 (immediate hazard). Since total hazard scores are subjective and relative, 

it is important to maintain consistency when assigning detailed slope ratings along 

transportation corridors. Further, transportation agencies use the total hazard score as an 

input variable when assigning priority for mitigation and remediation strategies (Step 5). 

 To assess the subjectivity of the detailed slope rating RHRS step, field notes of the 

ten rating criteria for each of the 14 slopes were given to six participants (geologists and 

geotechnical engineering faculty and graduate students at Michigan Technological 

University). Participants, who were not given any additional information of the railroad 

corridor, were asked to convert the field notes (text and numeric data) into detailed slope 

ratings for all 14 slopes. The purpose of this exercise is to quantify, albeit simplistically, 

variance of field-based detailed rating scores and, under the assumption that field-based 
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RHRS procedure is the baseline, to determine the accuracy of different remote sensing 

techniques.  

 Remote sensing can only be beneficial if acquired images capture enough detail to 

identify slope features and characteristics. Image resolution must be on par with what can 

be observed in the field. Additionally, remote sensing techniques can supplement field-

based observations by acquiring images from various view angles in hard-to-reach 

locations on a slope (e.g., top of slope, tall vertical cliff faces, areas considered dangerous 

due to rockfall or unstable materials, etc.). High resolution (cm-scale) UAV images, 

acquired at oblique angles, allow for additional observations at higher elevations along the 

slope. The combination of multiple remote sensing techniques, especially with data 

acquired from several types of sensors and locations, provides the ability to quantify rating 

criteria from the detailed slope rating procedure.  

 

2.3.3 Yearly Reviews and Updates (RHRS Step 6) 

 Transportation agencies are required to maintain optimum safety throughout the 

transportation network. One way of doing this, in terms of hazards posed by unstable 

slopes, is to perform an annual review of every “A”-rated slope (RHRS Step 3). This 

provides a long-term monitoring procedure that is focused on the most hazardous slopes. 

Furthermore, any preliminarily-rated slope (regardless of tiered rating: A, B, or C) that has 

undergone any changes (construction, maintenance, displacement, etc.) should be 

reassessed and the slope rating reassigned. 

 A major benefit of utilizing remote sensing techniques in assessing RHRS 

parameters is the capability of monitoring slope changes over prolonged periods. Multiple 

acquisitions of LiDAR and optical photogrammetry can qualitatively monitor changes as 

well as quantitatively measure deformation rates on and around each slope. Annual-scale 

qualitative observations may include noting (1) change of talus sizes at the bottom of 

slopes, (2) weathering condition and erosion locations on the slope face, and (3) presence 

of water in planes of weakness (faults, joints, and bedding planes), among others. 

Quantitatively, LiDAR and optical photogrammetric techniques such as Structure from 

Motion (SfM) and three-dimensional point cloud change detection allow for the calculation 
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of surficial deformation between image pairs by measuring the change in slope surface 

location, between two different acquisition dates, in three-dimensional space.  
 

2.4 Results and Discussion 
 Examples of remote sensing data analyses applied to the RHRS procedure are 

organized by RHRS step. The effectiveness of optical satellite and UAV photography are 

examined in Section 2.4.1 Preliminary Slope Rating (RHRS Step 2). Those two techniques 

are compared to two field-based approaches—an initial field examination and a participant 

survey—in Section 2.4.2 Detailed Slope Rating (RHRS Step 3). Long-term remote sensing-

based slope monitoring approach are discussed in Section 2.4.3 Yearly Review and Update 

(RHRS Step 6), with a LiDAR change detection example given of Slope 1.  

 

2.4.1 Preliminary Slope Rating (RHRS Step 2)  

 Preliminary slope ratings were assigned to all 14 slopes via both traditional field-

based observations and using optical satellite images (Table 2.2). The field approach 

identified three “A”-rated slopes, nine “B”-rated slopes, and two “C”-rated slopes. The 

satellite imagery approach identified one “A”-rated slope, seven “B”-rated slopes, and six 

“C”-rated slopes. An underestimation of preliminary slope ratings using optical satellite 

imagery is probably due to the use of coarse resolution imagery (m-scale). Sub m-scale 

details are unobservable and blurry at coarse resolutions, resulting in hazardous features 

(e.g., moderate-sized loose rocks, adverse joint orientations, and other evidence of 

displacement) going undetected. This underestimation issue is addressed more fully in 

Section 2.4.2 Detailed Slope Rating (RHRS Step 3). Although small-scale details may be 

unobservable with coarse resolution imagery, other steps within the RHRS procedure can 

be made easier when supplemented with optical satellite imagery. Coarse satellite imagery 

can be obtained free of charge and in near real-time, which can aid in large-scale rockfall 

detection and monitoring. 
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Table 2.2: Preliminary slope ratings for each slope using field-based observations and 

optical satellite imagery. 

Slope # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Field A B B C C B A B B B B A B B 
Satellite A B B C C B B C B C C B B C 

 

 Vertical optical imagery can greatly assist in the preliminary slope rating RHRS 

step. Figure 2.2 shows Slope 1—the only slope where historic rockfalls have blocked and 

disrupted rail traffic—from three vantage points: (A) ground-level near the railroad tracks, 

(B) near-vertical optical image acquired via satellite, and (C) vertical optical image 

acquired via UAV. Many slope features were identified with satellite and UAV imagery 

that were undetected from ground-level. Features identified using satellite imagery include 

at least three large blocks at the top of the slope and the presence of the main scarp (Figure 

2.2B: red dashed oval; Figure 2.2C), although an accurate measurement as to the size of 

the main scarp was difficult to obtain. Aperture of the main scarp was estimated using UAV 

images (and confirmed by field work) to be about 8 m wide. Additional features detected 

with UAV imagery include presence of a secondary scarp, located downslope from the 

main scarp, and large blocks and piles of loose rock (also downslope from the main scarp).  
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Figure 2.2: Slope 1. (A) Photo taken from ground-level near the railroad tracks. (B) Near-

vertical optical satellite image. Peak 1 from (A) is shown in white circle. Slope features 

that aid in preliminary slope rating include three large blocks and the main scarp (red 

dashed oval). (C) Vertical UAV image that details the main scarp (up to 8 meters wide) 

and a previously-undetected secondary scarp, a large block also identified in (B), and piles 

of loose rock. 

 

2.4.2 Detailed Slope Rating (RHRS Step 3)  

 A detailed slope rating is normally performed on slopes that receive an “A” rating 

in the preliminary slope rating step. This is usually due to the sheer quantity of slopes that 

may be classified as “A” level, especially when dealing with statewide transportation 

networks (Pierson and Van Vickle 1993). However, since the areal extent of this project is 

relatively small, all slopes were given a detailed slope rating regardless of preliminary 

slope rating. This allows for a direct comparison of how preliminary slope ratings translate 

into detailed slope rating hazard scores and how remote sensing datasets can assist in slope 

prioritization and future decision-making. Table 2.3 shows preliminary and detailed 

ratings, as well as values for rating criteria, for each slope. Slope 1 received a preliminary 

slope rating (field/satellite) of A/A and a detailed slope rating of 506, making it the most 

hazardous slope in the railroad corridor. Slopes that received an A/B preliminary slope 
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rating corresponded to a 427-467 detailed slope rating, B/B corresponded to 325-334, B/C 

corresponded to 308-350, and C/C corresponded to 250-269. There is a clear distinction 

between slopes with an A/A or A/B rating (≥ 427), slopes with a B/B or B/C rating  

(308-350), and slopes with a C/C rating (≤ 269). 

 Table 2.4 displays information for all field-based detailed rating scores. The initial 

score is the detailed rating score obtained by the original field crew. The minimum and 

maximum participant scores illustrate the range in detailed rating scores assigned based 

on the same set of textual and numerical field notes. Initial score and participants scores 

were generally in agreement: the initial score fell into the participant scores range for nine 

slopes (Slopes 2, 4, 5, 7, 8, 9, 11, 12, and 14); initial score was greater than the participant 

scores range for Slopes 1 and 3; initial score was less than the participant scores range for 

Slopes 6, 10, and 13. Participant scores ranges were within 72 for every slope except Slope 

14. Discrepancies in detailed rating scores were usually due to interpretation of subjective, 

textual rating criteria, especially when complex slope characteristics do not neatly 

compartmentalize into pre-assigned rating criteria scores. For example, structural condition 

of a rock slope is assigned a rating criterion score of three if there are “discontinuous joints, 

favorable orientation,” nine if “discontinuous joints, random orientation,” 27 if 

“discontinuous joints, adverse orientation,” and 81 if “continuous joints, adverse 

orientation” (p26, Pierson and Van Vickle 1993). Subjectivity occurred when slopes were 

described as having “continuous joints, random orientation,” which is not a predetermined 

category and, therefore, the value of structural condition rating criteria is left for the 

participant to decide. This type of subjective score assignment was required at multiple 

slopes because complex geology sometimes required uncategorized descriptions. 

 

  



57 
 

Table 2.3: Preliminary slope ratings based on field observations and satellite imagery (also 

shown in Table 2.2). Detailed slope ratings based on initial field observations. Rating 

criteria listed by number: #1 slope height, #2 ditch effectiveness, #3 average vehicle risk, 

#4 decision sight distance, #5 roadway width, #6 structural condition, #7 rock friction,  

#8 block size/volume, #9 climate and presence of water, and #10 rockfall history. Shaded 

rating criteria were calculated using exponent formulae from Pierson and Van Vickle 

(1993). 

Slope # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Preliminary 

Slope 
Ratings 
(Field/ 

Satellite) 

A/ 
A 

B/ 
B 

B/ 
B 

C/ 
C 

C/ 
C 

B/ 
B 

A/ 
B 

B/ 
C 

B/ 
B 

B/ 
C 

B/ 
C 

A/ 
B 

B/ 
B 

B/ 
C 

D
et

ai
le

d 
Sl

op
e 

R
at

in
g:

 
R

at
in

g 
C

ri
te

ri
a 

(#
1-

#1
0)

 #1 100 100 100 16 10 76 100 71 15 100 62 81 100 13 
#2 27 3 9 81 81 81 70 70 81 70 27 27 81 81 
#3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
#4 0 1 0 0 13 24 8 8 1 1 0 27 1 0 
#5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
#6 81 72 81 58 36 69 81 81 81 63 81 81 70 63 
#7 81 62 3 8 3 21 22 3 27 27 27 27 21 81 
#8 47 2 9 9 5 9 100 0 9 47 27 16 9 2 
#9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
#10 62 9 3 3 3 5 3 3 3 3 27 66 3 14 

Field-Based 
Detailed 

Slope 
Rating 
Scores 

506 334 332 269 250 327 467 329 325 350 359 427 328 308 

 

 Detailed slope ratings were also assigned using optical photography obtained from 

two platforms: satellite and UAV. The remote sensing-based RHRS detailed slope rating 

approach was conducted by downloading data (in the case of satellite images) or acquiring 

data (UAV images) and then identifying rating criteria from the images obtained of each 

slope within the study site. Measurements were made after importing images into a 

geographic information systems (GIS) geodatabase for analysis. 
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Table 2.4: Detailed slope ratings. Initial score is identical to initial field-based 

observations found in Table 2.3. Statistics of participant scores (mean, standard deviation, 

minimum, and maximum) from the survey illustrate subjectivity of the RHRS procedure. 

Slope # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Initial 
Score 506 334 332 269 250 327 467 329 325 350 359 427 328 308 

Pa
rt

ic
ip

an
t S

ur
ve

y Mean 452 357 313 283 259 402 492 344 325 419 359 433 393 362 

SD 15 24 0 22 22 23 20 15 0 32 0 16 20 51 

Min. 437 331 313 253 250 361 463 321 325 376 359 414 361 294 

Max. 471 385 313 303 304 426 508 355 325 448 359 448 409 447 

 

 Optical UAV photography were acquired using a Nikon D800 camera, with a  

50-mm prime lens (collecting 35 MP imagery at 2 frames/s at a speed of approximately 2 

m/s) onboard a Bergen Hexacopter, for Slope 1 and Slope 2. Detailed rating scores are 

shown in Table 2.5. High resolution imagery (cm-scale), obtained from multiple UAV fly-

overs at different view angles (vertical and oblique), results in an overestimation of detailed 

rating scores when compared to both field-based methods and optical satellite photography 

usage. For example, vertical (Figure 2.3B) and oblique (Figure 2.3C) view angles of Slope 

2 present a more complete picture of current slope conditions. A vertical view angle allows 

for the identification of source material for potential instabilities on top the slope, 

vegetation distribution (a vegetated region has not experienced a rockfall recently), and 

structural conditions such as weathering distribution and strike of joints/faults. An oblique 

view angle reveals more of the upper slope face, which is difficult to see from ground-

level. An overestimation of detailed rating scores was the result of more robust data. Table 

2.6 shows the increase in UAV-based detailed rating scores compared to satellite-based 

detailed rating scores. Regarding Slope 2 (Figure 2.3), an increase in three rating criteria 

changed the detailed rating score from 331 (satellite) to 396 (UAV). An increase in the 

three rating criteria values—structural condition, rock friction, and block size/volume—

was a direct result of better estimations due to higher resolution imagery. The use of sub-
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meter UAV imagery makes unstable rocks, ranging in size from tens of inches to 3 ft (about 

1 m), visible; rocks of these sizes appear blurry in coarse resolution imagery. Details of 

structural condition and rock friction are also made clearer using high resolution UAV 

imagery, especially at an oblique view angle that reveals the slope face from the shadow 

zone sometimes observed from the vertical view angle (Figure 2.3).  

 

Table 2.5: Detailed slope ratings based on field observations (initial scores and participant 

scores, also shown in Table 2.4), optical satellite imagery, and optical UAV imagery. 
Slope # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Initial Field-
Based Scores 506 334 332 269 250 327 467 329 325 350 359 427 328 308 

Mean Field-
Based 

Participant 
Scores 

452 357 313 283 259 402 492 344 325 419 359 433 393 362 

Optical 
Satellite 487 331 304 244 208 369 352 293 350 265 294 357 318 282 

Optical UAV 528 396 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

 

2.4.3 Yearly Reviews and Updates (RHRS Step 6) 

 Repeat remote sensing acquisitions allow for the ability to calculate and monitor 

changes in slope geometry and displacement rates. A previous assessment of overall slope 

displacements across the railroad corridor was performed using Persistent Scatterer 

Interferometry (PSI) and Distributed Scatterer Interferometry (DSI), InSAR stacking 

techniques using radar images acquired via satellites, by Bouali et al. (2016a). In the case 

of a rural setting such as this railroad corridor, InSAR is capable of measuring displacement 

rates for a larger area, such as the general trend of slope movements over extended periods 

of time (which may aid in potential landslide detection), compared to smaller areas because 

output data can be spatially limited and detailed measurements may be lacking. Therefore, 

remote sensing techniques that provide high spatial data densities, such as LiDAR and 

optical photogrammetry, are preferred for monitoring complex and detailed changes within 

a slope. 
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Figure 2.3: Images of Slope 2 taken from three view angles: (A) optical satellite image, (B) 

vertical optical UAV image, and (C) oblique optical UAV image. A yellow triangle is 

placed in each image for geographic reference. 

 

 Since Slope 1 was considered the most hazardous slope based on preliminary and 

detailed slope ratings (Tables 2.2-2.6), LiDAR point cloud data were acquired during each 

summer from 2011 to 2014 using a RIEGL LMS-Z210ii instrument, acquiring data at an 

angular resolution of 0.005º and an accuracy of around 3 cm. A detailed quantification of 

slope deformation was performed using a technique called ‘change detection,’ where three-

dimensional point clouds from two acquisitions are geometrically compared; a change, or 

difference, in point cloud location indicates the occurrence of measurable displacement. 

Figure 2.4 shows the surficial changes, occurring between 2011 and 2014, mapped on a 

three-dimensional digital elevation model (DEM) of Slope 1. Blue regions (negative 

change) show material loss and red regions (positive change) show material accumulation. 
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Six individual rockfalls occurred on the Slope 1 face between 2011 and 2014 (numbered 

values in Figure 2.4), with substantial accumulation of material occurring at the central toe 

region. 

 Detailed change detection measurements, along with similar techniques called 

SfM, which utilizes optical photogrammetry to create three-dimensional point clouds 

(Westoby et al. 2012), and InSAR can assist in the yearly review process. By capitalizing 

on advancements in remote sensing technologies—such as increased spatial and temporal 

resolution, wider variety of view angles, more accurate sensors, and a growing variety of 

clever data processing techniques—transportation agencies can monitor potentially 

hazardous slopes with a more robust, efficient, and time-effective RHRS approach. 

 

Table 2.6: Comparison of satellite- and UAV-derived values for rating criteria and detailed 

slope rating score. 

Rating 
Criteria 

Slope 1 Slope 2 
Satellite UAV Satellite UAV 

#1 100 100 100 100 
#2 9 27 3 3 
#3 1 1 1 1 
#4 0 0 0 0 
#5 100 100 100 100 
#6 81 81 27 50 
#7 27 50 3 27 
#8 81 81 9 27 
#9 7 7 7 7 
#10 81 81 81 81 

Detailed Slope 
Rating Score 487 528 331 396 
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Figure 2.4: Change detection map of Slope 1 between 2011 and 2014. Negative change 

(blue) indicates material loss and positive change (red) indicates material accumulation. 

Six rockfall events, numbered by location, are detectable and occurred in the three-year 

span. Slope 1 3D DEM was generated from the 2014 three-dimensional point cloud. 

 

2.4.4 Additional Discussion 

 The three RHRS steps discussed in detail were Preliminary Slope Rating (Step 2), 

Detailed Slope Rating (Step 3), and Yearly Review and Update (Step 6). Remote sensing 

techniques can also play a secondary role in information collection and analyses in the 

other three RHRS steps. Step 1, Slope Inventory, can be aided by analyzing DEMs 

generated from satellite/aerial optical or radar images (e.g., NASA’s Shuttle Radar 

Topography Mission, German Aerospace Center’s TerraSAR-X and TanDEM-X, etc.). 

DEMs can assist in cataloging and digitizing the spatial extent of slopes adjacent to the 

transportation corridor. Step 4, Project Design and Cost Estimate, may benefit from 

detailed models derived from three-dimensional point clouds obtained from optical 

photogrammetry or LiDAR techniques. These models can help determine remediation 

designs and techniques that need to be constructed. Step 5, Project Identification and 

Development, is a management step that utilizes information gained from Steps 1-4 to 
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determine necessary remediation projects for choice slopes. Pierson and Van Vickle (1993) 

provide four project identification methods: (1) score – priority given to slopes with highest 

detailed slope rating; (2) ratio – priority given to slopes with greatest score-to-cost ratio; 

(3) remedial – slopes with similar designs can be placed in a single project, which will alter 

slope prioritization; (4) proximity – slopes closest to rockfall sites are given highest 

priority. Each of these project identification methods can use remote sensing data, directly 

or indirectly. Thus, remote sensing techniques are practical supplementary tools to the 

traditional field-based approach for RHRS.  

 Using remote sensing has its advantages and limitations. Advantages include: 

1. Acquires data over hard-to-reach or inaccessible terrain. 

2. Spatial coverage over geographic scales spanning several orders of magnitude, 

ranging from local-scale (one geotechnical asset like an unstable slope) to regional-

scale (segment of a transportation network like the railroad corridor). 

3. Multiple acquisitions over the same area allow for the measurement of surficial 

changes over long periods of time. 

4. Field-based techniques can be supplemented or eliminated and replaced with 

remote sensing data. 

5. An offering of a wide array of sensors acquiring data over different swaths of the 

electromagnetic spectrum at different spatial resolutions from various view angles. 

6. The ability to create a large library of historical, archival datasets that can be used 

with future data products.  

7. Sensors can acquire one image that can be processed in a variety of ways. 

8. Provides a noninvasive approach that does not disturb targets within a study area. 

 Limitations include: 

1. Shadow zones caused by mountainous topography, complex surficial geometry, or 

clouds (for optical images) result in a loss of data that cannot be recovered. 

2. May not be cost-effective if used improperly. For example, acquiring high 

resolution data (e.g., cm-scale LiDAR point clouds) for preliminary slope ratings 

over a statewide transportation network would not be economical. 
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3. Data acquired from remote sensing techniques contain factors that affect the 

receiving sensors such as noise introduced by interfering phenomena (e.g., water 

vapor affects two-way travel time of radar waves). Further, non-uniqueness, the 

idea that an outcome can be achieved through many different combinations of input 

factors, is a significant issue that must be considered when modeling remote sensing 

data. 

4. Some acquisition and data processing techniques require training and may include 

a steep learning curve. 

 The traditional field-based RHRS approach is a more robust method, compared to 

remote sensing techniques. The field-based RHRS method allows field crews to interact 

and observe slopes in person; if only a few slopes are of interest then the field-based 

approach is much simpler. If, however, a transportation agency is tasked with monitoring 

a transportation corridor or an entire transportation network (e.g., local, regional, 

statewide), then a remote sensing-based RHRS approach, using high resolution optical 

imagery, may be preferable. For the remote sensing-based RHRS estimation, high 

resolution imagery acquired from different view angles is critical. The spatial resolution 

and view angles obtained from satellite imagery are coarser, more limited, and often result 

in significant underestimation of preliminary and detailed slope rating scores. However, an 

approach integrating rapidly-deployable UAV platforms with high resolution terrestrial 

LiDAR provides a readily-available toolset for collecting imagery that can be used for 

RHRS interpretation. UAV- and LiDAR-based data collections provide much higher 

spatial resolution and can easily obtain multiple view angles compared to satellite-based 

data. Detailed slope rating scores from UAV data shows promise to be used as an alternate 

approach for field-based RHRS measurements when monitoring transportation corridors. 

In addition, imagery collected using UAVs will provide a more methodical documentation 

of the site condition for the transportation agency compared to field-based data collection. 

Coupled with other remote sensing techniques (e.g., InSAR and optical photogrammetry), 

transportation agencies would benefit from a supplementary and complimentary remote 

sensing RHRS approach. 
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2.5 Conclusion 
 RHRS is a procedure developed by Brawner and Wyllie (1975), and further 

expanded by geological engineers and transportation agencies (Wyllie et al. 1979; Wyllie 

1980; Wyllie 1987; Pierson 1991; Pierson 1992; Pierson and Van Vickle 1993; Brawner 

1994), to analyze slopes adjacent to transportation corridors and prioritize those most likely 

to experience damaging rockfalls. The traditional RHRS approach is to use personnel to 

acquire field-based measurements, especially for Step 1, Step 2, and Step 3. Video logs are 

also commonly used for data analysis for Step 3 and slope monitoring in Step 6. The 

purpose of this study, however, is to show the benefits of remote sensing data acquisition 

(optical satellite imagery, optical UAV imagery, and terrestrial LiDAR) and analyses for a 

more robust, efficient, and time-effective RHRS approach. Other remote sensing 

techniques, such as optical photogrammetry and InSAR, are also discussed and referenced. 

These remote sensing methods have a place as a supplemental data acquisition approach 

alongside the traditional field-based approach. 

 Observations from remote sensing imagery were compared to field-based 

observations (used as the baseline) for the preliminary and detailed slope rating steps. 

Fourteen slopes along a railroad corridor in southeastern Nevada were studied. In general, 

observations using optical satellite imagery provided an underestimation of preliminary 

and detailed slope ratings. This is most likely due to the coarse resolution imagery used 

(m-scale). It was therefore concluded that high resolution imagery is a requirement because 

consistent rating score underestimations may potentially lead to undetected future rockfall 

events, which is unacceptable. When using higher resolution imagery acquired from the 

UAV (cm-scale), an overestimation of preliminary and detailed slope rating scores 

occurred (when compared to satellite- and field-based approaches). This result is probably 

due to the combination of high resolution—small slope features and characteristics that can 

be observed—and various view angles—more information about the top of the slope is 

available (when compared to field-based approaches limited to ground-level). 

 Terrestrial LiDAR change detection successfully monitored rockfall events on 

Slope 1. Two three-dimensional point clouds, which map the location of the slope face 

surface, were geometrically differenced to calculate the amount of surface change (slope 
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deformation) that occurred between the summers of 2011 and 2014. Evidence of surficial 

displacement include six locations of rock mass loss and an overall accumulation of 

material at the slope toe. Displacements up to 2-3 m in both directions (towards and away 

from the LiDAR sensor) were measured over the three-year span. Change detection, and 

other similar techniques (e.g., SfM and InSAR stacking), enable measurements of dynamic 

events that occur rapidly (e.g., rockfalls) or very slowly (e.g., landslide creep) over any 

length of time (e.g., daily, monthly, annually, etc.). 

 Every slope within or adjacent to a transportation corridor has the potential to pose 

hazards that may affect the performance and quality of transportation assets and the safety 

of its users. The traditional RHRS procedure attempts to identify and prioritize the most 

hazardous slopes through a robust field-based rating system. The use of remote sensing 

techniques has proved beneficial by providing more information, expanding the observable 

study area, archiving historical datasets, and allowing for detailed analysis otherwise 

unavailable to field crews. By combining remote sensing techniques to traditional field-

based approaches, transportation agencies can build a more robust, efficient, and time-

effective RHRS procedure that can assist in the achievement of slope life-cycle 

performance goals along an entire transportation network. 
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Chapter 3: Interferometric Stacking toward 
Geohazard Identification and Geotechnical 

Asset Monitoring7 
 

El Hachemi Bouali8; Thomas Oommen, Ph.D., A.M.ASCE9;  
and Rüdiger Escobar-Wolf, Ph.D.10 

 
3.1 Abstract 

Geotechnical assets are those found along transportation environments and are 

made up of or supported by earth materials. A geotechnical asset management program 

aims to achieve life-cycle performance goals by maintaining the geotechnical assets in a 

safe, cost-effective, and timely manner. Interferometric synthetic aperture radar, a remote 

sensing technique that derives ground deformation information from satellite-based radar 

data, is proposed as a monitoring method in the context of geotechnical asset management. 

A total of 90 ERS-1, ERS-2, and ENVISAT radar images, acquired from 1992 through 

2010, are processed using two interferometric stacking techniques to measure ground 

deformation along a railroad corridor. A local-scale study was first conducted over a known 

slide (S-1) where total displacements up to 6 cm were measured. Then a regional-scale 

study was performed to locate hazard zones. Six potential geohazard zones were identified 

along the railroad corridor based on five criteria: slope distance, slope height, slope angle, 

average downslope velocity, and total downslope displacement. Interferometric stacking is 

                                                            
7 The material contained in this chapter was previously published in the Journal of 
Infrastructure Systems. 
8 Department of Geological and Mining Engineering and Sciences, Michigan 
Technological Univ., 1400 Townsend Dr., Houghton, MI 49931 (corresponding author). 
E-mail: eybouali@mtu.edu  
9 Department of Geological and Mining Engineering and Sciences, Michigan 
Technological Univ., 1400 Townsend Dr., Houghton, MI 49931. E-mail: 
toommen@mtu.edu  
10 Department of Geological and Mining Engineering and Sciences, Michigan 
Technological Univ., 1400 Townsend Dr., Houghton, MI 49931. E-mail: 
rpescoba@mtu.edu  



69 
 

shown to be quite useful for geotechnical asset management, as this remote sensing 

technique allows for an indirect method of quantifying asset condition and allows for long-

term monitoring of geotechnical assets that a management program aims to achieve. 

 

3.2 Introduction 
 The purpose of asset management is to achieve and maintain performance goals 

over the lifespan of assets within the transportation environment. Measurable performance 

goals may include safety, mobility, preservation, environmental impacts, and economic 

aspects, among other variables (AASHTO 2011; Cambridge Systematics et al. 2002). 

Geotechnical assets, which are assets made up of or greatly supported by earth materials 

(soil, sediment, and rock), have normally not received much attention within the 

transportation environment setting (Sanford Bernhardt et al. 2003; Stanley and Pierson 

2013). Current geotechnical asset management (GAM) practices target asset repairs based 

on priority levels: first rebuild all assets that have failed, then repair assets in dire condition, 

and finally perform upkeep and preventative care (budget-permitting). This practice is 

known as the worst-first approach, where assets in the worst condition are given first 

attention (highest priority). Although this approach is politically understandable—it is 

difficult to convince the general public because the taxpayer expects the assets in the worst 

condition are addressed first and that preservation is “fixing something that isn’t broken” 

(FHWA 1999)—it has been shown to be costly, time-consuming, quite dangerous (Jonsson 

2010; Sanford Bernhardt et al. 2003), and it “…results in overall system degradation as no 

assets receive preventative maintenance in time to keep the investment optimized” (Stanley 

and Pierson 2013). 

 In 1999, the Federal Highway Administration (FHWA) created a geotechnical asset 

management framework (GAMF, Figure 3.1) as their response to the need for a 

preventative asset management procedure. This GAMF can be used as a template for any 

kind of asset management, including transportation asset management (TAM), pavement 

asset management (PAM), and GAM, with the latter two being specific applications of the 

general TAM framework. According to the American Association of State Highway 

Transportation Officials (AASHTO), TAM is defined as “…a strategic and systematic 
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process of operating, maintaining, upgrading and expanding physical assets effectively 

throughout their lifecycle” (AASHTO 2013). The overall purpose of any asset management 

system is to generate a cost-effective, intelligent, and efficient system that can manage 

assets at all life-cycle points (from newly constructed to deteriorated/failed), within any 

transportation environment with, preferably, as minimal impact to the public as possible. 

 

 
Figure 3.1: The FHWA GAMF framework: Steps 1-7 and the budget allocation (modified 

from FHWA 1999) as well as the proposed Step 8: Long-Term Performance Monitoring 

 

 The FHWA GAMF is composed of seven steps (Figure 3.1). The first three steps 

are initial assessment and budgetary-planning steps, where clearly-defined goals and 

objectives are created (Step 1), all assets within the relevant transportation environment(s) 

are identified and documented (Step 2), and initial conditions of each asset is somehow 

quantified, usually subjectively (Step 3). Alternative evaluation procedures are examined 

(Step 4) based on these first three steps. The last three steps are for project implementation, 

where short-term and long-term plans are decided (Step 5), the program is then 

implemented in the field (Step 6), and performance of the asset management program is 

monitored (Step 7). The authors suggest the addition of an eighth step, performance 

monitoring of the assets themselves, to the GAMF as this will aid in future condition 

assessment and maintenance plans. The framework allows for program revisions as asset 

management is performed, with Step 6 looping back to Step 4 for minor revisions made in 
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evaluation, maintenance, and planning stages, and Step 7 looping back to Step 1 for major 

revisions in the general asset management approach. 

 State Departments of Transportation (DOTs) and other transportation agencies are 

currently struggling with the geotechnical asset inventory and condition assessment steps 

(Anderson and Rivers 2013; Stanley and Pierson 2013; Vessely 2013). Most problems stem 

from the vastness of transportation networks on the state level: the amount of time and 

money required to transport field crews to every asset, and then create an inventory and 

perform an initial condition survey, is intimidating. Additionally, criteria for assessing 

asset condition must vary for each asset type (e.g., a set of criteria for rock slopes would 

not apply for soil slopes, retaining walls, or bridge abutments). The asset inventory and 

condition assessment steps are vitally important to the GAMF as they lay the foundation 

for all future decisions. Therefore, developing a methodology to work around the vastness 

of state transportation networks is key to the successful implementation of an asset 

management program. 

 The authors propose the use of satellite-based interferometric synthetic aperture 

radar (InSAR) techniques as a remote sensing tool that may be used for asset condition 

assessment (Step 3) as well as long-term performance monitoring (Step 8). A remote 

sensing approach would bypass the spatial difficulties of extensive transportation networks 

that need to be covered by field crews; instead, large swaths of transportation networks, 

viewable from the satellite line-of-sight (LOS), could be monitored. Small ground 

deformations may be observed, down to 1 mm/year using interferometric stacking 

techniques, and may assist with performance monitoring as small, cumulative 

displacements along assets can be observed over extended periods of time. 

 Of course, InSAR cannot directly measure asset condition. Instead, the authors 

propose a method of using velocity and cumulative displacement measurements obtained 

from InSAR stacking products to aid in the condition assessment and long-term 

performance monitoring steps of the GAMF. The overall goal of this research project is (1) 

to examine how well InSAR velocity/displacement measurements align with field 

observations on a failed rock slope within a railroad corridor at the local scale, and (2) to 

use generic slope hazard criteria combined with InSAR-derived measurements to identify 
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additional locations of potential future hazard within the railroad corridor at the regional 

(or network) scale. 

 

3.3 Study Site 
 The area of interest covers a 29-km stretch of railway that runs through a canyon 

system in southeastern Nevada (Figure 3.2). The study area will be examined on two scales: 

local and regional. The local scale focuses on one slope, S-1, which is an unstable slope 

located within the railroad corridor. The regional study area covers an area of 

approximately 194 km2, which includes the 29-km railway segment. The railroad corridor 

was constructed upon volcanic rock of Tertiary age (Figure 3.2). Most of the slopes are 

composed of steeply dipping (50º-70º) pyroclastic deposits and volcanic flows composed 

of rhyolite tuff, welded tuff breccias, or welded tuff; the plateaus at higher elevations are 

basalt-capped, with an angular unconformity separating the younger basalt from the older, 

steeply dipping volcanic flows.  

 S-1 can be divided into two structural zones: the unstable block and the more 

(relatively) stable block (Figures 3.3 and 3.4). As the name implies, a majority of the 

displacement observed on S-1 occurred in the unstable block and is defined as everything 

downslope from the main scarp (Figure 3.5). The unstable block has potentially undergone 

three types of slope movement: (1) rotational slide, (2) rock topple, and (3) rock fall. The 

slope face on the unstable block is dipping approximately 65º from horizontal, reaching a 

height of 36.5 m above the railroad tracks; the slope toe is located 21 m from the tracks. 

Slope inclination decreases to approximately 20º-30º at the 36.5-m height mark and 

remains at this inclination upslope. The main scarp is located approximately 6 m upslope 

from the point of change in slope inclination. The stable block is the mass upslope from 

the main scarp. Relatively small amounts of movement have been observed on the stable 

block—as there is evidence for a minor scarp upslope from the main scarp—but most of 

the observable movement has been shallow surficial erosion and runoff. 
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Figure 3.2: Full extent of the study area: the location of the S-1 slope (black polygon) and 

the 29-km railroad track segment (dashed line). Basic geology of the study area is shown 

(from Crafford 2007). Geologic units abbreviated as follows (youngest to oldest): Qya – 

alluvium; QTg – gravels; Ts3 – tuffaceous sedimentary rocks; Tb3 – basalt; Ta3 – andesite 

and intermediate flows and breccias; Tt3 – silicic ash flow tuffs; Tr3 – rhyolitic flows and 

shallow intrusive rocks; Ta2 – intermediate andesite and flows and breccias; Tt2 – 

intermediate silicic ash flow tuff; Tmi – mafic phaneritic intrusive rocks (Crafford 2007).  
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Figure 3.3: Location of select geotechnical and transportation assets around S-1. The solid 

line traces the main scarp and dashed lines trace locations of shear zones that define the 

active S-1 slope borders. Background imagery was generated in ArcGIS® software by 

Esri. 
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Figure 3.4: Simplified profile through the middle of the S-1 slope. The height of the model 

is 365 feet; the width of the model is 455 feet.  

 

 S-1 is composed of three volcanic rock units (youngest to oldest): rhyolitic welded 

tuff and breccias (Tvtw), tuff and tuffaceous sediments (Tvt), and undivided volcanic rocks 

(Tvy) — (Figure 3.4). Tvtw is reddish-gray, porphyritic, mostly welded (high strength), 

and with brecciated areas (low strength) where rock fragments are subangular and less than 

2.5 cm in diameter. Tvt is a pinkish-white, aphanitic, crystalline tuff; the sequence is 

approximately 30 m thick. Tvy is a grouping of undifferentiated volcanic rocks that make 

up most of the base of S-1 and the eastern canyon wall. 
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Figure 3.5: (A) Photo of the main scarp on S-1. Scarp width varies from ~1.5 m, as shown 

here, to about 4 m, as shown in (B) 
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 The S-1 main scarp, where most displacement had been observed, is located at the 

Tvtw-Tvt unconformity boundary, which exhibits a dip of 70º southwest (downslope 

direction—solid line in Figure 3.3). A minor scarp is located at the Tvt-Tvy unconformity, 

which outcrops upslope from the main scarp, with a dip of 65º southwest. S-1 is bounded 

by two fault zones: (1) a sinistral, nearly vertical fault on the north side of the slope where 

recent rock fall activity has occurred, and (2) a shear zone on the south side of the slope 

(approximated by the dashed lines in Figure 3.3). Shear zones and faults have been 

identified within these lateral boundaries as well. The locations of some discontinuities are 

also cause for concern, especially within the heavily jointed Tvtw layer, where joint dip is 

parallel to the formation boundary (70º downslope) and joints are quite frequent, with 1 m 

average spacing; Tvt also shows jointing, but it is much more minor and closely spaced, 

less than 15 cm in most places. 

 

3.4 Radar Imagery Data Set and Methodology 
 A total of 90 radar images between August 20, 1992, and August 15, 2010, were 

processed over the study area. Fifty images were acquired from the ERS-1 and ERS-2 

satellites and 40 images from ENVISAT, which were equipped with C-Band synthetic 

aperture radar (SAR) antennae operating at 5.331 GHz with approximately 20-m resolution 

and horizontal-horizontal polarization. All images came from the same descending track, 

which had an LOS in the N86ºW azimuth direction and an incidence angle centered at 23º 

from nadir. 

 These data were processed using two different interferometric stacking techniques: 

Persistent Scatterer Interferometry (PSI) and SqueeSAR. Both techniques require a stack 

of single look complex (SLC) SAR images, as well as a digital elevation model (DEM), as 

inputs. PSI searches the image stack for pixels with consistently high coherence values and 

calculates ground deformation based on measured phase shifts between the reference image 

and all other images within the stack (Ferretti et al. 2000; Ferretti et al. 2001). SqueeSAR 

combines PSI with Distributed Scatterer Interferometry (DSI). DSI searches the image 

stack for adjacent pixels that are statistically homogeneous (based on coherence) and 

calculates ground deformation in a comparable manner as PSI (Ferretti et al. 2011). The 
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output products for both PSI and SqueeSAR are persistent scatterer (PS) and/or distributed 

scatterer (DS) points—spatially assigned at the radar image pixel-scale—where each 

PS/DS point contains a wealth of information (e.g., average ground velocity, displacement 

at each image acquisition with respect to the reference image, x/y/z information, coherence, 

and exact LOS angle/direction).  

 All 90 radar images were processed over the local scale using both PSI and 

SqueeSAR techniques. Only the 40 ENVISAT images were processed using PSI on the 

regional scale. A 10-m DEM from the United States Geological Survey (USGS) National 

Elevation Dataset (NED) was used as well (USGS 1999).  

 Ground deformation values may be positive of negative. Positive values indicate a 

shortening of the distance between the satellite and the ground, indicating ground 

deformation toward the satellite (TS). This may be due to uplift, accumulation of 

sediments/soils, or a lateral eastward movement. Negative values indicate an increase of 

satellite-to-ground distance, indicating ground deformation away from the satellite (AFS). 

This may be due to ground subsidence, downslope movement, erosion, or a lateral 

westward movement. Reminder: all measurements are made in the LOS direction (azimuth 

direction: N86ºW, dip: 23º).  

 

3.5 Results 

 

3.5.1 Local-Scale: Spatial and Temporal Geohazard Monitoring 

 A local-scale InSAR study was conducted because the S-1 slope had been originally 

identified as a landslide hazard by the railroad company. In 2011, stationary ground-based 

LiDAR surveys began and have been conducted approximately twice per year since. All of 

these data sets, along with a geologic mapping and structural geology analysis performed 

in 2011, have allowed us to clearly define the portions of S-1 that are moving (Figure 3.3) 

as described previously. This allowed for general ground-truthing of InSAR results.  

 PSI results are shown in Figure 3.6. PSI yields few PS points on S-1, probably due 

to the strict high coherence criteria, vegetation, and slope geometry. The available PS 
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points do show a similar trend to the field data: the unstable block exhibits the most average 

movement (-2.6 mm/year), minimal movement is measurable upslope from the main scarp 

along the more stable block (-1.0 mm/year), and the adjacent slopes are basically stable 

(north adjacent: -0.4 mm/year; south adjacent: -0.2 mm/year) with the only exception being 

from locations of observable surface runoff areas (Figure 3.6). The bridge is the only 

anthropogenic geotechnical asset with PS points; some movement is measurable across the 

bridge. Figure 3.7 displays the results from the specialized InSAR stacking algorithm 

SqueeSAR, which combines PSI with DSI and yields a result containing both PS and DS 

points (Ferretti et al. 2011). A decrease in point density is apparent across the local study 

area, but more importantly, this technique can resolve more points along S-1, including on 

the geometrically complex slope face where there are three DS points and no PS points (the 

three DS points circled in Figure 3.7). SqueeSAR results show the same general trend, 

where the greatest slope displacement occur downslope from the main scarp, and the 

adjacent slopes are more stable. An unexpected result is the fact that zero PS and DS points 

were obtained along the bridge or any other anthropogenic geotechnical asset, except for 

one relatively stable DS point near the tunnel entrance (-0.8 mm/year). 
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Figure 3.6: PSI average velocity (mm/year) along S-1 (polygon) and adjacent geotechnical 

and transportation assets. Background imagery was generated in ArcGIS® software by 

Esri. 
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Figure 3.7: SqueeSAR™ average velocity (mm/year) over same area as Figure 3.6. Three 

DS points (within circle) are measurable on the steep slope face; see Figure 3.8 for 

displacement time-series plot. Background imagery was generated in ArcGIS® software 

by Esri. 

 

 A closer examination of the three DS points on the S-1 slope yields additional 

supporting evidence of slope movement beginning in 2005. A displacement time-series 

plot of the three DS points is shown in Figure 3.8. All three time-series indicate S-1 was 

stable from 1992 to approximately January 2005, which coincides with reports from 

railroad personnel. In January 2005, after a devastating flood through the canyon, S-1 

became unstable and has consequently been moving. 

 Since results from InSAR stacking procedures can replicate field observations—at 

the very least to the extent of where ground displacement is occurring—the PSI technique 

was applied as a reconnaissance method at the regional-scale. 
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Figure 3.8: Displacement time-series for the 3 DS points on the slope face of S-1 (Figure 

3.7, within circle). Each data point indicates the total displacement from first acquisition 

(August 20, 1992). 

 

3.5.2 Regional-Scale: Identification of Geohazard Locations 

 Only the 40 ENVISAT radar images, spanning from July 13, 2003, to August 15, 

2010, (identical ENVISAT images used in the local-scale study), were processed using PSI 

over an area of approximately 194 km2. The regional-scale study site includes 29 km of 

railway track, 28 railroad bridges, five tunnels, and one small town. PSI results are shown 

in Figure 3.9. 

 The regional-scale PSI analysis was performed to establish the potential for InSAR 

to be used as a monitoring tool for geohazard identification using remote sensing data 

sets—the ENVISAT radar images described above and a 10-m USGS NED DEM—based 

on the following five criteria: 

1. Slope distance (railroad buffer area). A buffer zone of 100 m around the railroad 

track and adjacent access road was created to identify slopes with potential 

geohazards. This criterion essentially sets the window in which slopes with the 

remaining four characteristics must be located. 858 of the 13,446 PS points (6.4%) 

met this criterion and are in the railroad corridor. 

2. Slope height. The slope height is a geometric factor that measures the vertical 

distance between the railroad track elevation and the highest point on the slope 
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within the buffer zone. A slope height of 15.25 m was used as the minimum 

threshold. 

3. Slope angle. Slopes with an angle greater than 25º were included. This value was 

chosen for two reasons. The first reason is that almost all slopes in the regional area 

of interest are composed of rhyolite tuff, which has an internal friction angle of 

approximately 30º. The second reason for this conservative value is due to DEM 

resolution: a relatively coarse resolution (10 m) measures all surface elevations 

within each pixel and assigns the average elevation as a value. Pixels that contain 

high-angled slopes also contain a greater variation of elevation values and, 

essentially, the measured (apparent) steepness of a slope will be less than the real 

steepness (observed in the field); apparent steepness is basically inversely 

proportional to DEM resolution.  

4. Average velocity (displacement rate). Derived from PSI, the average velocity at 

each PS point measures the slope of the linear trend of the PS displacement over 

time. Figure 3.10 shows the average velocity distribution and classification 

statistics of the 13,446 PS points measured across the regional area of interest. 

Slopes with PS points exhibiting average velocities greater than (in the downslope 

direction) -2.6 mm/year (equal to two standard deviations) were identified. A total 

of 486 PS points (3.6%) showed measurable downslope (AFS) displacement rates 

greater than this threshold value. 

5. Total displacement. Also derived from PSI, the total displacement measures the 

displacement at each PS point between the reference image (May 4, 2003) and the 

final image (July 11, 2010). Total displacement is important because if a PS point 

underwent nonlinear displacement, the total displacement value would differ 

significantly from the displacement calculated from the average velocity value. 

Figure 3.11 shows the total displacement classification statistics of the 13,446 PS 

points. Slopes with PS points exhibiting total displacements greater than -18.6 mm 

(two standard deviations derived from the linear average velocity) were identified. 

A total of 1,207 PS points (9.0%) showed total downslope (AFS) displacements 

greater than this threshold value. 
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Figure 3.9: Regional-scale PSI average velocity (mm/year) results across the railroad 

corridor using 40 ENVISAT images (2003-2010). Background imagery was generated in 

ArcGIS® software by Esri. 
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Figure 3.10: Distribution and classification statistics of average velocity measurements 

(rounded to the nearest 1.0 mm/year) for regional-scale PS points. Y-axis (PS Point Count) 

is shown in logarithmic scale. 

 

 
Figure 3.11: Distribution and classification statistics of total displacement measurements 

(rounded to the nearest 1.0 cm) for the regional-scale PS points. 

 

Only 292 PS points (2.2%) met Criteria 4 and 5, which may indicate locations of 

geohazards of other sorts, such as subsidence or erosional features. Of these 292, a mere 

eight also met the remaining criteria, which means each of these PS points were located 

within 100 m of the railroad track, were located on slopes greater than 15.25 m in height 



86 
 

at a slope angle greater than 25º, and exhibited the necessary minimum downslope 

displacement and velocity, indicating potential rock fall or landslide geohazard locations. 

This translates into six individual slopes (including S-1) that can be classified as potential 

geohazard locations based on these five criteria (Table 3.1 and Figure 3.12).  

 

Table 3.1: Statistics for the 6 slopes that met the geo-hazard criteria. 

Slope # Avg. Vel. 
(mm/year) 

Max. Vel. 
(mm/year) 

Avg. Tot. 
Disp. 
(mm) 

Max. Tot. 
Disp. 
(mm) 

Max. 
Slope 
Angle 
(deg) 

Max. 
Slope 
Height 

(m) 
1 0.0 -14.9 -4.3 -111.9 59.3 23.8 
2 0.2 -2.7 -1.3 -32.5 60.9 51.5 
3 0.1 -9.3 -3.3 -58.3 48.3 61.6 
4 -0.6 -5.9 -10.2 -49.8 46.2 78.9 
5 -0.4 -3.2 -7.4 -31.3 50.3 40.8 
6 -1.7 -3.7 -18.2 -32.9 28.3 16.5 
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Figure 3.12: Locations of the 6 slopes deemed a potential geo-hazard based on the 5 

criteria: slope distance, slope height, slope angle, average PS velocity, and total PS 

displacement. Geologic map reproduced from Crafford (2007) – see Figure 3.2 for 

geologic unit names.  

 

3.6 Discussion 
The local-scale results exhibit the capabilities of interferometric stacking 

techniques to monitor individual assets—in this case rock slopes—and to also differentiate 

between various displacement regimes. For example, greater downslope displacements and 

rates were observed on the unstable block (-2.6 mm/year) while the adjacent slopes were 

much more stable. Geotechnical assets may be monitored both spatially and temporally 

using PSI and/or SqueeSAR. An integrated analysis of the spatial distribution of PS/DS 

points as well as temporal analysis (e.g., displacement time-series plots) reveals much more 

information about the geotechnical asset, including its historical displacement and its 
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current deformation condition. The next step would be to develop further methods of 

analyzing the displacement throughout time and examine whether a displacement time-

series plot can indicate anything about an asset’s present condition. Or, at the very least, 

temporal analyses may be developed to monitor an asset in real time and identify when the 

asset may be at risk of failure (e.g., exceeds a predefined deformation threshold). This may 

ameliorate the problem Anderson and Rivers (2013) have noticed: They hope that 

“[s]omeday it will be possible, for example, to identify the deterioration of the embankment 

on I-75 in Tennessee and take timely steps to improve drainage, and thereby the level of 

service, without such a large negative impact on performance” (p14). Spatial and temporal 

analyses of PS/DS points may address their goals.  

The regional-scale application of PSI results illustrates how potential geohazards 

(e.g., rock falls or landslides) may be identified using a set of remote sensing-based criteria. 

Six slopes were identified as potential geohazard zones within the railroad corridor (Figure 

3.12). The five criteria used in this regional application were a remote sensing version and 

loosely based on the RHRS used by Pierson et al. (1990) and the Oregon DOT. The aim 

was to show how a few simple remote sensing products—PSI results and a 10-m DEM—

could be used to monitor viewable slopes within the satellite’s LOS.  

 The criteria used in this paper were chosen to replicate moderately hazardous rock 

slope criteria from the RHRS. The original RHRS did not include ground deformation 

information as inputs (although subsequent versions have); minimum thresholds for 

average velocity and total displacement may be decided upon by the transportation agency 

or DOT, but the number of eligible PS points varies drastically based on the minimum 

thresholds set (Table 3.2; Figure 3.13).  

As alluded to already, satellite-based InSAR has its advantages and limitations. 

Advantages of this remote sensing technique include: (1) the ability to cover a wide area 

within each interferometric stack (e.g., interferograms may be easily generated over areas 

as large as 10,000 km2); (2) the ability to accurately measure displacement rates to  

1.0 mm/year, allowing for the monitoring of slower hazards that may not be easily 

perceptible; (3) a large archive of radar images allows for long-term monitoring of 

geotechnical assets. Some limitations include: (1) older satellites (launched pre-2010) 
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acquired radar images with relatively coarse resolution (>10 m), so distinguishing smaller 

assets or individual elements of an asset may be difficult or impossible; (2) all 

measurements are made in the LOS direction; (3) only the assets within the satellite’s LOS, 

and not within shadow or layover zones, may potentially be monitored; (4) the location of 

PS/DS points is unknown prior to processing; and (5) interferometric stacking techniques 

cannot measure relatively large movements occurring in short periods of time (Crosetto et 

al. 2010).  

 

Table 3.2: Number of PS points that meet criteria 1-3 and various values for  

criteria 4 and 5. 

Total 
Displacement 
(mm)    
(Criteria 5) 

Average Velocity (mm/year) (Criteria 4) 
0 -1 -2 -3 -4 

0 109 41 20 4 1 
-4 97 35 20 2 1 
-8 82 32 17 2 1 
-12 54 27 17 2 1 
-16 35 26 16 2 1 
-20 22 21 15 2 1 
-24 10 10 9 2 1 
-28 7 7 7 2 1 
-32 2 2 2 1 1 

 

 

InSAR is a remote sensing technique that has an enormous potential in assisting in 

GAM. Satellites with modest ground resolution (20 m) and wavelength (C-Band: 5.6 cm) 

were used for this study, although radar image data from other satellites perform better 

under various situations. For example, TerraSAR-X allows for approximately 1 m 

resolution at λ = 33 mm and works well over urban areas, while ALOS PALSAR uses L-

Band radar waves (λ = 23.6 cm) and can penetrate vegetation and yield ground information. 

InSAR stacking techniques—PSI and SqueeSAR, among others—have been shown 

to be effective in asset condition assessment remotely, reducing the cost of expensive and 

time-consuming fieldwork. Total ground displacement and average velocity measurements 
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for relatively large geotechnical assets, such as those that are many pixels in area, can be 

acquired using InSAR. With many more satellite missions scheduled, users will have their 

choice of radar specifications, which can be chosen based on the application. There exists 

short wavelength (e.g., X-Band) data sets, which are good for high resolution ground 

monitoring in urban settings. Longer wavelength data sets (e.g., L-Band or longer) can be 

used to penetrate vegetation and allows for greater displacement rate measurements. The 

many InSAR techniques—e.g., 2-4 pass interferometry for short-duration events, such as 

earthquakes, to stacking interferometry techniques for long-term events, such as 

subsidence and landslide creep—lends itself to be a useful tool that has been successfully 

applied toward GAM. 
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Figure 3.13: The arrow points to the location of the only PS point with an average velocity 

(mm/year) and total displacement (mm) substantially greater in the AFS direction than all 

other PS points within the railroad corridor. The PS point is located on a ~26° slope 

(dipping towards the corridor) with an average velocity of -14.9 mm/year and a total 

displacement of 112 mm. Shaded areas along the railroad corridor indicate slopes at or 

greater than an inclination of 25°. Background imagery was generated in ArcGIS® 

software by Esri. 
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3.7 Conclusion 
 Satellite-based InSAR analysis is a practical approach toward measuring ground 

deformation of geotechnical assets. InSAR can be a valuable tool for asset condition 

assessment (Step 3). InSAR-derived results can also be used in short-term and long-term 

planning (Step 5) and asset performance monitoring (Steps 7 and 8). This approach is much 

more cost-effective and efficient than current GAM procedures, which require repeat field 

visits for updated site characterization and condition assessment.  

 Detailed displacement monitoring and interpretation was performed on the local 

scale. A detailed geologic investigation of the S-1 slope and an asset inventory covering 

1.85 km of the railroad corridor were accomplished in one field visit. PSI and SqueeSAR 

processing yielded detailed information about the S-1 slope that allowed for the accurate 

division of the slope based on displacement rates and for the creation of displacement-time 

series plots. The displacement trend of the unstable block of S-1 shown in the time series 

parallels the records of the railroad company. 

 Further PSI processing was conducted on a regional scale, encompassing an area 

of approximately 194 km2 and including 29 km of railroad corridor. A total of 13,446 PS 

points was identified (~60 PS points/km2) and a clear majority of them were located in and 

around the railroad corridor. A preliminary condition assessment was conducted by 

locating six potential landslide hazard zones based on five criteria (slope height, slope 

distance, slope angle, average downslope velocity, and total downslope displacement). 

 As stated previously, the purpose of any asset management program is to achieve 

and maintain performance goals over the lifespan of all assets within the transportation 

environment. InSAR is a remote sensing technique capable of monitoring individual assets 

(local scale) as well as asset networks (regional scale). Archival SAR data, as well as data 

available from present missions, allow for a robust data library for long-term deformation 

monitoring. These measurements can be used as input information for preliminary asset 

condition assessment. At the very least, ground deformation derived from InSAR 

techniques may target potential hazard zones, which may then be examined by field crews. 

The wide variety of planned upcoming missions adds to the future potential and promise 

of InSAR toward long-term geotechnical asset monitoring and, hopefully, condition 
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assessment analyses that can be used for targeted preventative maintenance of vital 

geotechnical assets along transportation corridors.  
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and Rüdiger Escobar-Wolf, Ph.D.14 

 
4.1 Abstract 
 Many engineering professions have adopted asset management procedures to 

properly construct, monitor, maintain, and support physical assets through the full-service 

life-cycle of all assets within a network. All asset management programs, whether 

structural, geotechnical, or transportation, have one common goal: to achieve life-cycle 

performance goals (e.g., safety, preservation, economic and environmental sustainability, 

etc.) by cost-effectively managing physical structures. Monitoring deformation rates across 

an asset can be used as an indirect method of obtaining initial condition assessment 

information, which is vital for understanding an asset’s current life-cycle stage. Persistent 

Scatterer Interferometry (PSI), an interferometric synthetic aperture radar (InSAR) remote 

sensing stacking technique, is capable of measuring displacement rates at 1 mm/year 

accuracy on anthropogenic infrastructure not undergoing immediate, catastrophic failure. 

                                                            
11 The material contained in this chapter was previously published as a conference 
proceeding for Geotechnical Frontiers 2017. 
12 Department of Geological and Mining Engineering and Sciences, Michigan 
Technological Univ., 1400 Townsend Dr., Houghton, MI 49931 (corresponding author). 
E-mail: eybouali@mtu.edu  
13 Department of Geological and Mining Engineering and Sciences, Michigan 
Technological Univ., 1400 Townsend Dr., Houghton, MI 49931. E-mail: 
toommen@mtu.edu  
14 Department of Geological and Mining Engineering and Sciences, Michigan 
Technological Univ., 1400 Townsend Dr., Houghton, MI 49931. E-mail: 
rpescoba@mtu.edu  
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A Geographic Information System (GIS) allows storing, processing, analyzing, and 

displaying geographic data. By combining PSI and GIS capabilities, this paper will 

illustrate how these techniques can be utilized to spatially and temporally map deformation 

rates on a variety of assets, and how an initial condition assessment can be made on each 

asset. Structure mapping can be conducted in four steps: (1) digitization of geographic 

location for all structures; (2) processing of radar imagery, which results in displacement 

rate data for all viewable structures; (3) spatially analyzing displacement rates and 

assigning PS points to individual structures; (4) producing maps, including both spatial and 

temporal information (e.g., displacement-time series analyses). This procedure will be 

demonstrated using 40 COSMO-SkyMed satellite radar data, 3 m resolution images 

acquired between July 2012 and September 2014, over urban infrastructure in San Pedro, 

California. 

 

4.2 Introduction 
 Asset management—broadly defined as a thorough approach to strategically 

construct, monitor, maintain, and support infrastructure at any level (e.g., a single asset, 

transportation corridor, entire network, etc.) throughout the full-service life-cycle in a 

timely and cost-effective manner—has been a goal for many agencies with large asset 

inventories. Transportation agencies strive to manage assets within the transportation 

corridor (Sanford Bernhardt et al. 2003; FHWA 2007), whether the focus is on earth 

retaining walls/structures (Anderson et al. 2009; Brutus et al. 2009; Vessely et al. 2015), 

unstable slopes (Huang et al. 2009; Stanley and Pierson 2013; Bouali et al. 2016a), or 

embankments (Glendinning et al. 2009). There are also asset management plans developed 

for bridges (TranSystems Co. 2011), pavement (Haas and Hudson 2015), utilities and 

vegetation (UAM 2013; Emmett et al. 2015), and buildings and structures (SSWD 2011; 

Mosman Council 2013), among many others. The purpose of this paper is to apply a 

technique called structure mapping to fulfill goals established by many asset management 

programs, specifically to inventory and monitor buildings and structures in an efficient and 

cost-effective manner. For the sake of simplicity, all building and structural assets will 
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henceforth be referred to as structures; all methodologies, analyses, and discussions may 

be applied to other types of assets.  

 Structure mapping consists of four steps. The first step is to create a Digital 

Structure Inventory (DSInv). The second step is to acquire and import all necessary 

datasets into the GIS that will be mapped onto the spatial DSInv. The third step is to join 

the DSInv with the other datasets. The fourth step is to create a finalized map within the 

GIS. Structure mapping displays external data in a simplified form using a DSInv as a 

spatial template. This mapping approach can be useful for asset management purposes 

because it allows for spatial and temporal analysis of datasets: spatially with the DSInv and 

temporally with protracted external data acquisition, the latter of which is required for 

proper monitoring and maintenance of structures using an asset management program.  

 Calculating structural ground deformation can be an indirect condition assessment 

method and may aid in the understanding of a structure’s present life-cycle stage. Ground 

deformation is measurable using a remote sensing technique called interferometric 

synthetic aperture radar (InSAR), which measures changes in the distance between the 

satellite sensor and the ground over time. Persistent Scatterer Interferometry (PSI), a 

specific InSAR image stacking technique developed in the late 1990s and made popular in 

the mid-2000s (Ferretti et al. 2000; Ferretti et al. 2001), optimizes InSAR over relatively-

stable anthropogenic structures by increasing measurement accuracy of deformation rates 

to 1 mm/year (Ferretti et al. 2001; Crosetto et al. 2009). PSI requires at least 20 radar 

images for acceptable results (stacking increases the signal-to-noise ratio). This capability 

is an advantage for asset management and structure mapping as it allows for long-term 

monitoring of structures in an urban setting. 

 San Pedro, California is a neighborhood-city located in southwestern Los Angeles 

(Figure 4.1). Considered a moderately-sized city, with a population of approximately 

86,000 people, San Pedro includes many residential, commercial, and industrial 

neighborhoods, as well as a portion of the 17,000-km2 Port of Los Angeles (POLA 2012), 

offering a variety of urban structures to manage. This study site was chosen because of the 

long history of subsidence affecting local structures. The first anthropogenic-induced 

subsidence recorded in San Pedro began between 1940 and 1941 when a portion of 
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Terminal Island (Figure 1), composed of artificial fill within the Port of Los Angeles, 

subsided by 40 cm due to oil extraction in the Los Angeles Basin (Mayuga and Allen 1970). 

Maximum subsidence due to oil extraction occurred in 1951 at around 71 cm and 

remediation programs reduced subsidence rates by 1968 (Mayuga and Allen 1970). Since 

then there have been some indications of potential subsidence due to groundwater 

extraction (CDWR 2014). The combination of complex ground deformation and 

widespread urban structures makes San Pedro a prime study site.  

 

 
Figure 4.1: The study site of San Pedro, California is located on the Palos Verdes 

Peninsula, southwest of Los Angeles and within Los Angeles County. 

 

4.3 Data 
 Structure mapping of San Pedro, California requires the use of optical and radar 

imagery. A combination of satellite and aerial optical imagery were used for the 

digitization of structures into a spatial DSInv. Satellite radar imagery were processed using 
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PSI, which calculates LOS (near-vertical) ground deformation rates and were used for 

spatial and temporal deformation monitoring of structures. The optical imagery used in this 

study is the ‘World Imagery’ basemap, a preloaded option available in ArcMap 10.3.1 (an 

ArcGIS® software), provided by Esri et al. 2016a. ‘World Imagery’ is a global dataset, 

combining satellite and aerial imagery from many sources. The optical images used over 

San Pedro are aerial images acquired between 2009 and 2012 at 30-cm resolution, which 

cover the contiguous United States; they are provided by Digital Globe (Esri et al. 2016b). 

The radar imagery used in this study are 40 COSMO-SkyMed single look complex (SLC) 

synthetic aperture radar (SAR) images. The images were acquired between July 19, 2012 

and September 27, 2014 in the Stripmap Himage mode, which transmits radar waves at a 

central frequency of 9.6 GHz (λ = 3.1 cm) covering an aerial extent of 1,600 km2  

(40 x 40 km) with a resolution of 3 m. The COSMO-SkyMed satellite is operated by the 

Italian Space Agency (ASI) and the single look complex SLC SAR images were provided 

by the European Space Agency (ESA).  

 

4.4 Methodology 
 The workflow of all necessary procedures required to create a structure map of a 

study area is described in the paragraphs below. 

 Step 1: Structure Digitization. A DSInv may take two forms: non-spatial and 

spatial. Examples of non-spatial DSInvs include tables, charts, graphs, and work logs or 

workbooks. Examples of spatial DSInvs include geodatabases or collections of shapefiles 

within a GIS, which usually incorporates non-spatial data in the form of attributes and/or 

symbology. The Los Angeles Countywide Building Outlines (LA CBO) dataset, which 

contains over three million structures in Los Angeles County mapped from stereo imagery 

acquired in 2008, was used as the spatial DSInv (LAR-IAC 2008). The value of GIS spatial 

data is becoming more apparent; datasets like the LA CBO are available for free in the 

public domain.  

 Step 2: Data Processing. The purpose of this step is to acquire and import all 

necessary datasets into the GIS that will be mapped onto the spatial DSInv. These datasets 

are dependent on the purpose of spatial mapping. For example, the purpose of this paper is 
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to monitor ground deformation, both spatially and temporally, across thousands of 

structures and, therefore, third-party datasets, such as the 40 COSMO-SkyMed SLC SAR 

images, were processed outside the GIS before the results were imported into the GIS. 

Processing of the 40 COSMO-SkyMed images, to yield ground deformation measurements 

across San Pedro between July 2012 and September 2014, was accomplished using the PSI 

technique (Ferretti et al. 2000; Ferretti et al. 2001) within the SARscape® software 

(Sarmap 2009). PSI outputs take the form of persistent scatterer (PS) points (Figure 4.2), 

where each PS point contains data assigned to a geographic location in space from a pixel 

in the original, slant-range radar image acquired by COSMO-SkyMed. All PSI average 

velocity, defined as the cumulative displacement rate in any direction over a period, results 

are shown using negative values to indicate subsidence, or overall downward motion, and 

positive results to indicate uplift, or overall upward motion. These data are imported into 

the GIS to be analyzed with the spatial DSInv.  
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Figure 4.2: Average ground surface velocity results of 215,961 PS points in San Pedro, 

California by processing 40 COSMO-SkyMed SAR images (July 2012-September 2014) 

using the PSI technique. Negative average velocity values (red-orange-yellow) indicate 

subsidence (downward motion); positive values (green) indicate uplift (upward motion). 

The large red region in north-central San Pedro maps a measured subsidence ‘bowl’ and 

is the focus of spatial and temporal structure mapping in Figures 4.3 and 4.4, respectively. 

 

 Step 3: Spatial Analyzation. The third step is to join the DSInv with the other 

datasets, i.e. the other datasets will be mapped onto the spatial shapefiles that represent 

each structure. This step can accomplish several useful tasks, such as combining or 

averaging attributes from large datasets into a smaller dataset, which could reduce the 

number of attributes by orders of magnitude; spatially masking out, or excluding, 

extraneous data; creating an aesthetic map by reducing clutter caused by large datasets. 

The structures in San Pedro were joined with the PS points resulting from PSI processing. 

Variables contained within PS points, measuring ground deformation (displacement and 
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velocity) and data quality (coherence), were joined with the DSInv. Spatial analyzation of 

ground deformation across San Pedro structures first requires the application of a spatial 

buffer (a fixed area surrounding each structure) and then the joining of PS points with the 

newly buffered polygons (map representations of structures). A spatial buffer of 3 m was 

deemed necessary because PS points that represent ground deformation on a structure may 

sometimes be assigned to a geographic location outside a structure’s polygon due to either 

radar image resolution (which is 3 m for these COSMO-SkyMed imagery) or multiple radar 

bounces. Radar waves can sometimes reflect off multiple nearby targets in addition to the 

structure being mapped (trees, other structures, the ground, etc.). Multiple radar reflections 

(bounces) may result in PS points being mapped outside, but very near, a structure’s spatial 

extent and, hence, the creation of buffered polygons representing the structures. The DSInv 

and PS point data were joined using the Join Data tool in ArcMap 10.3.1. This tool allows 

the user to join data based on spatial location. The displacement, velocity, and coherence 

data from each PS point was spatially joined with each buffered polygon. If a buffered 

polygon contained more than one PS point, all numerical PS point attributes will be 

summarized. For the purposes of this paper the displacement, velocity, and coherence 

attributes were averaged. Attributes may be displayed as count (or frequency), minimum, 

maximum, sum, standard deviation, and/or variance. The output of the Join Data tool is a 

new shapefile to be used in the map.  

 Step 4: Map Creation. The last step is the creation of a map that displays external 

data in a more simplified form. The map allows interested parties (e.g., transportation 

agencies, insurance companies, etc.) the ability to quickly and easily assimilate data about 

relevant structures and to make informed decisions for asset management procedures.  

 

4.5 Results 
 A variety of data can be analyzed and displayed using structure mapping. This 

technique is beneficial because large or complicated datasets, which otherwise appear 

cluttered or messy in map format, can be observed on a structure-by-structure basis. Data 

derived from satellite radar imagery (40 COSMO-SkyMed images acquired between July 
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2012 and September 2014) were combined with the structure mapping technique to create 

maps that illustrate the ground deformation history of San Pedro, California. 

 Spatial structure mapping results for the north-central region of San Pedro are 

shown in Figure 4.3. 2,570 structures were mapped for this example; only structures that 

spatially overlap measured PS points are used. As shown on the right of Figure 4.3, each 

structure is assigned an average value for all measurable PSI-related attributes. Other 

measurable attributes include total displacement, incremental displacement (displacement 

between first acquisition and all others), coherence (a data quality measure), the number of 

PS points per structure, geographic location for the structure, and radar LOS information. 

The example structure in Figure 4.3 is located at 33.754622ºN, 118.308548ºW at 94.62 m 

(310.42 ft) above sea level with a total height of 8.11 m, was experiencing downward 

displacement (subsidence) at an average rate of approximately 3.6 mm/year between July 

2012 and September 2014, and 274 PS points were measured on a structure with an area 

of 36,271 m2 (blue circle in Figure 4.3). 

 Temporal analysis of structure mapping results yields more complete information. 

Figure 4.4 displays the average velocity of structures in a neighborhood of San Pedro, as 

well as the displacement-time series (Figure 4.4 inset)—a graphical representation of 

incremental displacement at every image acquisition date with respect to the first 

acquisition date—for the structure (circled in red) that experienced relatively high 

subsidence rates compared to its neighbors. The exact cause of this subsidence is unknown, 

but the cyclical nature of the displacement-time series may indicate shrinking/swelling of 

clay-rich soils due to changes in water content (e.g., precipitation, sprinkler systems, 

absorption by vegetation, etc.). The displacement-time series illustrates that the average 

velocity measurement of this structure (at around -8 mm/year) does not reveal all necessary 

information: this structure did not subside vertically at -8 mm/year between July 2012 and 

September 2014. Instead, this structure experienced oscillatory (up and down) motion that 

resulted in a net displacement of approximately -8 mm. Additionally, a majority of the net 

displacement occurred between July 2012 and June 2013; the structure became relatively 

stable from June 2013 to September 2014, apart from 1 to 2 mm oscillations. These data 

can be manipulated and represented in GIS map format as well. Instead of spatially 
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displaying average velocity values, for instance, the user can calculate displacement rates 

between selected dates—e.g., the user may be interested in ground displacement rates 

during a wet season (November 2013 to March 2014)—to show information in a manner 

relevant to the user. These types of detailed temporal measurements are applicable for 

every structure with available PS point data.  

 

 
Figure 4.3: Spatial structure mapping in north-central region of San Pedro, California. 

The Identify inset shows an example of the amount of data contained within each structure 

polygon assigned to individual buildings (example structure shown in the blue circle). 
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Figure 4.4: Average velocity map of a San Pedro neighborhood and displacement-time 

series (inset) of a structure (red circle) surrounded by structures that experienced less 

displacement. Average velocity magnitude is calculated by dividing all measured motion 

(upward and downward) by acquisition time. Average velocity direction is calculated by 

overall displacement trend (positive or negative). The displacement-time series shows the 

incremental displacement (points) at every image acquisition date with respect to the first 

acquisition date, as well as a three-image moving average (blue curve).  

 

4.6 Discussion 
 Once the methodology has been completed and results are obtained, choosing how 

to display the data can be a difficult decision. As shown in the examples of Figures 4.3 and 

4.4, conclusions drawn upon spatial and temporal ground deformation data may differ 

depending on the level of detail used for interpretation. Fortunately, the numerous ways to 

look at the data can aid in the understanding of structure movement; it is up to the user to 

decide the purpose of the structure mapping exercise. City-scale spatial information is 
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beneficial when identifying regional trends, such as locating structures that may be at risk 

from variable ground deformation within a subsidence bowl (Figure 4.3). Neighborhood-

scale spatial mapping can be useful when attempting to pinpoint local problem areas, like 

determining whether property damage from natural hazards is likely to occur based on 

surface deformation measurements (Figure 4.4). If deformation has occurred, investigating 

when (Figure 4.4 inset) and why deformation took place can aid in mitigation efforts and, 

hopefully, reduce or minimize future problems.  

 The structure mapping methodology map easily be applied to other assets, 

depending on the asset management approach of choice (e.g., geotechnical, transportation, 

etc.). In this case, building monitoring in San Pedro, California was chosen for multiple 

reasons: (1) a detailed, historic record of resource extraction exists for this area and using 

PSI to monitor recent subsidence rates is of great interest not just in San Pedro, but 

statewide, especially when coupled with the current drought; (2) PSI works well over urban 

areas where ground motion is measurable but not catastrophic (large ground motion results 

in de-correlation, or a drastic loss of coherence between radar images, making the 

technique unreliable, at best, or unusable, at worst); (3) a robust spatial DSInv of building 

locations in 2008 throughout Los Angeles County was created and made available by the 

Los Angeles Region Image Acquisition Consortium (LAR-IAC, with an updated 2014 

version currently unavailable in the public domain). The results shown in Figures 4.2 

through 4.4 can be directly used for asset management purposes. Ground deformation maps 

(Figures 4.2 and 4.3) can provide indirect measurements for initial asset condition 

assessment. For example, an asset experiencing high differential displacement (PS points 

indicate portions of the asset moving in different directions, possibly causing internal stress 

within the asset) may require further condition assessment by field crews. In the case of 

the San Pedro subsidence bowl (Figure 4.2), assets located along the perimeter of the bowl, 

where differential average velocity is present, may require long-term life-cycle monitoring, 

which may be accomplished through displacement-time series analyses (Figure 4.4). The 

PSI technique is a valuable tool for long-term ground deformation monitoring to indirectly 

assess anthropogenic assets.  
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 Structure mapping also aids in the creation and/or conversion of asset inventories 

into a spatial DSInv format, which can then be used for further processing. An advantage 

of structure mapping and additional GIS data analysis is the ability to perform bulk 

processing (e.g., multiple datasets may be spatially analyzed to an entire DSInv, which may 

include thousands of structure polygons) in a relatively quick manner (e.g., the spatial 

joining of 2,570 structure polygons to 215,961 PS points, each with about 60 attributes, 

took on the order of minutes to perform on a basic desktop computer). Limitations of 

structure mapping mirror the limitations inherent in the datasets used during Step 3: Spatial 

Analyzation. For example, processing 20-m resolution radar images (in Step 2: Data 

Processing) with the expectation of monitoring small-scale structures (such as fire 

hydrants) is not a promising endeavor. Therefore, limitations include spatial resolution of 

images, temporal resolution of the data (i.e., how often the data are acquired), spatial extent 

and density of the data, signal-to-noise ratio, and other general issues inherent in data 

acquisition. The limitations of structure mapping can be overcome through advancements 

of data gathering techniques. The capabilities of structure mapping will improve as 

technology improves, allowing for further synergy of data from many acquisition modes 

(subsurface-, terrestrial-, aerial-, and satellite-based) with GIS applications that will result 

in more robust data fusion. 

 

4.7 Conclusion 
 Asset management programs are created in order to monitor, maintain, and achieve 

life-cycle performance goals, such as safety to the public and economic sustainability, for 

all assets within a network by managing physical structures. It was shown that the PSI 

technique is capable of monitoring ground deformation rates across the urban study site of 

San Pedro, California (Figure 4.2). Deformation rates were measured across individual 

structures by spatially joining a DSInv—polygons outlining the spatial extent of all 

buildings located within Los Angeles County (LAR-IAC 2008)—with the PSI results 

(Figure 4.3). Temporal monitoring was conducted at the individual structure level using a 

displacement-time series graph (Figure 4.4). Deformation rates on structures were 

successfully measured and monitored using spatial and temporal analyses of 40 radar 
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images from the COSMO-SkyMed satellite (July 2012 through September 2014) with a 

combination of PSI data and GIS application through structure mapping. The methodology 

used to obtain these results were discussed in a step-by-step fashion, with the hopes that 

those interested in the asset management approach may utilize the multi-dimensional 

process of structure mapping to analyze their relevant datasets. 
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Chapter 5: Monitoring India’s Dams from 
Space: A Cost-Effective Approach using 

Sentinel-1 Radar Images15 
 

El Hachemi Bouali16; Thomas Oommen, Ph.D., A.M.ASCE17;  
and KS SajinKumar, Ph.D.18 

 
5.1 Abstract 
 Interferometric synthetic aperture radar (InSAR) provides a cost-effective approach 

for long-term deformation monitoring of dams against the routine pre- and post-monsoon 

inspections for dam safety in India. This state-of-the-art technique can be used to 

supplement repeated field inspections and target structures at risk. Here we show three case 

studies from southern India – Idamalayar Dam, Malankara Dam, and Upper Sholayar Dam 

– and this study demonstrates the capabilities of InSAR to indirectly monitor dam health. 

23 Sentinel-1 radar images during 2016-2017 were processed using Persistent Scatterer 

Interferometry (PSI). Idamlayar Dam is found to be relatively stable (possible point-source 

deterioration), while Malankara Dam and Upper Sholayar Dam are experiencing various 

amounts of subsidence. 

 

                                                            
15 The material contained in this chapter was previously published in the International Dam 
Safety Conference 2018 Proceedings. 
16 Department of Geological and Mining Engineering and Sciences, Michigan 
Technological Univ., 1400 Townsend Dr., Houghton, MI 49931 (corresponding author). 
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17 Department of Geological and Mining Engineering and Sciences, Michigan 
Technological Univ., 1400 Townsend Dr., Houghton, MI 49931. E-mail: 
toommen@mtu.edu  
18 Department of Geology, University of Kerala, Thiruvananthapuram, India, 
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5.2 Dam Safety Procedures in India 
 Ministry of Water Resources and Central Water Commission Dam Safety 

Organisation, Government of India, released a Report on Dam Safety Procedures (CWC 

1986) that, based on several meetings of the International Congress on Large Dams, 

suggest recommendations for safe dam procedures from the pre-construction planning 

through post-construction monitoring and maintenance stages. The report specifically 

notes that instruments (e.g., strain transmitters, thermometers, stress meters, uplift 

pressure, and inclination transmitters) are to be installed on “concrete and masonry dams 

more than 30 metres in height” (p. 15). Safety inspections by experienced engineers are to 

be performed twice each year (pre- and post-monsoon) to assess dam health and a 

comprehensive, holistic dam examination should be conducted once per decade (Kumar 

2007). The Dam Rehabilitation and Improvement Project (DRIP) in India was established 

to enhanced performance and increase safety of chosen dams. DRIP will cost $437.50 

million USD through 2020. The purpose of this study is to show that InSAR techniques 

can provide a cost-effective approach and supplement repeated safety inspections. The 

result will be a reduction of overall costs of dam maintenance and a more objective 

evaluation of the dam using accessible remote sensing data (Escobar-Wolf et al. 2015; 

Mazzanti 2017). 

 

5.3 Satellite InSAR and SAR Data 
 Interferometric synthetic aperture radar (InSAR) is a remote sensing technique that 

utilizes the phase component of multiple synthetic aperture radar (SAR) images for 

obtaining information about how coherent targets change. InSAR enables the user to 

monitor ground deformation on or near assets, and across km2-scale areas over many years 

(Bouali et al. 2016a; Bouali et al. 2017a). Based on InSAR results, assets can be organized 

by hazard (e.g., assets undergoing greatest ground deformation exhibit highest hazard) and 

engineers can be dispatched for traditional field investigations. 

 Sentinel-1 is a dual satellite constellation launched by the European Space Agency 

(ESA) on 3 April 2014 (Sentinel-1A) and 25 April 2016 (Sentinel-1B). Sentinel-1 operates 
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in the C-band (5.331 GHz; 5.6 cm wavelength). Twenty-three Sentinel-1 radar images – 

acquired in Stripmap mode between 21 February 2016 and 3 June 2017 at a spatial 

resolution of 22 m – were processed using Persistent Scatterer Interferometry (PSI) using 

ENVI SARscape™ software. PSI is an InSAR stacking technique with many benefits: it 

reduces atmospheric noise, allows for displacement monitoring, and can measure ground 

velocity at an accuracy of 1 mm/year (Ferretti et al. 2000). PSI measures ground 

deformation in the line-of-sight (LOS) direction (N85°W, ~23° from nadir) at every image 

pixel (Ferretti et al. 2001). PSI excels in urbanized areas, which makes this technique a 

promising cost-effective approach for dam monitoring. 

 

5.4 Case Studies: Three Dams in Southern India 
 Three dams in southern India are investigated: Idamalayar Dam, Malankara Dam, 

and Upper Sholayar Dam (Figure 5.1). The sub-sections below include the following 

information for each dam: brief history and description, PSI results, and discussion. PSI 

results are shown as velocity measurements: negative values indicate deformation away 

from the satellite while positive values indicate deformation towards the satellite. 

 

 
Figure 5.1: Idamalayar Dam, Malankara Dam, and Upper Sholayar Dam are in southern 

India. 
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5.4.1 Idamalayar Dam 

 Idamalayar Dam is a multipurpose concrete gravity dam located in the Ernakulam 

District in Kerala, India (Figure 5.2). The structure was completed in 1985 and has a length 

of 373 m and height of 102.8 m. The dam creates the 28.3 km2 Idamalayar reservoir used 

for power generation and a proposed irrigation program. 

 

 
Figure 5.2: Idamalayar Dam. (A) Results from PSI technique. Persistent scatterers (PS) 

are individual points measuring velocity (mm/year) ranging from -25 mm/year (red) to 25 

mm/year (blue). (B) Close-up of PS points on Idamalayar Dam. (C) Kriging interpolation 

of PSI results (contour interval = 1 mm/year). Interpolation velocity ranges from -13 

mm/year (red) to 12 mm/year (blue). (D) Displacement-time series of PS point in red circle 

from (B). (E) Google Earth view of the Idamalayar Dam. 

 

 One hundred twelve PS points are identified on the Idamalayar Dam, of which 103 

are located within the middle, tallest portion of the dam (Figure 5.2A-B). Deformation rates 
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across the concrete structure range from 7 mm/year to -10 mm/year (Figure 5.2D shows -

10 mm/year persistent scatterer, PS, point), with the greatest velocities measured along the 

dam flanks. A Kriging interpolation of the PS velocity (Figure 5.2C) demarks the reservoir 

side of Idamalayar Dam as undergoing slight subsidence (-2 mm/year contour located north 

of the east flank) and south side as relatively stable (0 mm/year contour located south of 

the structure). Although three PS points along the dam flanks measure cm-scale 

movements, most of the data show the dam is relatively stable. 109 PS points measure 

velocities at < 5 mm/year in either direction. The Kriging interpolation also indicates the 

dam is moving at an average velocity of -1 mm/year (the -1 mm/year contour line is parallel 

to the length of the dam). PS points such as that shown in Figure 5.2(D) should not be 

dismissed, however, as this displacement-time series implies there may be a localized 

structural health issue (e.g., Kang et al. 2017). 

 

5.4.2 Malankara Dam 

 Malankara Dam is a gravity dam built in 1994 across the Thodupuzha River with a 

height of 42 m and length of 460 m in Thodupuzha, Kerala, India (Figure 5.3). The dam 

was built to provide irrigation to the region but is also a tourist destination because it is 

open year-round and the 153.5 km2 artificial lake supports boating and fishing activities. 

 One hundred eleven PS points are obtained within the Malankara Dam region 

(Figure 5.3A): 77 PS points on the gravity dam itself and 34 PS points within the building 

complex on the property to the northwest. One hundred seven PS points exhibit downward 

deformation; the remaining four PS points measure ground movements between 0 mm/year 

and 2 mm/year. The Malankara Dam is experiencing variable rates of subsidence. The 53 

PS points located on the middle crest and berm portion of the dam indicate an average 

velocity of -3 mm/year. The southwest embankment is moving at a velocity as high as -16 

mm/year (red circle in Figure 5.3B; Figure 5.3D) and the north embankment is moving 

between -5 m/year and -9 mm/year. Figure 5.3C provides the Kriging interpolation of the 

PS velocity, which shows the entire Malankara Dam lies between the -2 mm/year and -7 

mm/year contours, with subsidence rates increasing towards the northwest. Presence of 

regional subsidence – and not exclusively on Malankara Dam – may mean the structure is 
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not failing. Instead there may be geological factors (e.g., sediment compaction or tectonic 

activity) or other anthropogenic factors (e.g., subsurface groundwater extraction) causing 

apparent subsidence near Malankara Dam. 

 

 
Figure 5.3: Malankara Dam. (A) Results from PSI technique. PS are individual points 

measuring velocity (mm/year) ranging from -25 mm/year (red) to 25 mm/year (blue). (B) 

Close-up or PS points on Malankara Dam. (C) Kriging interpolation of PSI results 

(contour interval = 1 mm/year). Interpolation velocity ranges from -21 mm/year (red) to 

22 mm/year (blue). (D) Displacement-time series of PS point in red circle from (B). (E) 

Google Earth view of the Malankara Dam. 

 

5.4.3 Upper Sholayar Dam 

 Upper Sholayar Dam is a concrete masonry dam built in 1965 to aid in the 

generation of hydroelectric power (Figure 5.4). The dam has a height of 66 m, a length of 

430.6 m, and creates a 71.3 km2 reservoir. 
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 Since reservoir levels were relatively low in 2016 and 2017, ~918 PS points were 

identified on the Upper Sholayar Dam, mostly on the two large embankments flanking the 

concrete dam (Figure 5.4A). The entire structure is experiencing subsidence. Velocity 

values on both the north and south embankments range between 5 mm/year and  

-10 mm/year (Figures 5.4A-C), and deformation on the concrete structure is as high as  

-7 mm/year (Figures 5.4A-D). Kriging interpolation shows small subsidence bowls on each 

embankment and due west of the concrete dam. The most dramatic subsidence bowl 

(northwest corner of Figure 5.4C) covers a small neighborhood in Sholayar Dam City. 

Presence of these subsidence bowls—indicating no background deformation in the 

surrounding area, unlike around Malankara Dam—also implies the occurrence of 

subsidence on the Upper Sholayar Dam. 
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Figure 5.4: Upper Sholayar Dam. (A) Results from PSI technique. PS are individual points 

measuring velocity (mm/year) ranging from -25 mm/year (red) to 25 mm/year (blue).  

(B) Close-up of PS points on Upper Sholayar Dam. (C) Kriging interpolation of PS results 

(contour interval = 1 mm/year). Interpolation velocity ranges from -7 mm/year (red) to  

10 mm/year (blue). (D) Displacement-time series of two PS points in red circle from (B).  

(E) Google Earth view of Upper Sholayar Dam. 

 

5.5 Conclusions 
 InSAR is a remote sensing technique that presents opportunities to measure 

regional-scale ground deformation on critical assets. Idamalayar Dam, Malankara Dam, 

and Upper Sholayar Dam (Figure 5.1) are monitored using 23 Sentinel-1 radar images 

during 2016-2017. Results reveal a relatively stable Idamalayar Dam that may have 

localized deterioration (Figure 5.2), regional instability around Malankara Dam  

(Figure 5.3), and subsidence of Upper Sholayar Dam embankments (Figure 5.4). A high 

density of PS points proximal to assets allow agencies to utilize this technology for 
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supplementation of in situ instruments. Therefore, InSAR can be used as a cost-effective 

method for long-term dam monitoring together with in situ instrumentation to understand 

structural and regional stability.  
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Chapter 6: Monitoring the Casitas Dam in 
Ventura County, California with Satellite 

InSAR19 
 
 
6.1 History of the Casitas Dam 
 Casitas Dam is an embankment dam in Ventura County, California, about 100 miles 

northwest of Los Angeles and is operated by the United States Bureau of Reclamation 

(USBR 2018). The Ventura River Project authorization bill was proposed to the United 

States Congress in 1955 and included construction of the Casitas Dam to create a reservoir, 

Lake Casitas, which would distribute water for agricultural, municipal, and industrial use 

through 33 mi (53 km) of pipeline (Figure 6.1). The bill was approved. Construction of 

Casitas Dam began in July 1956 and concluded in March 1959.  

 In the late 1990s, the USBR recommended reinforcement construction take place 

because Casitas Dam was vulnerable to liquefaction if a major earthquake (magnitude  

> 6.5) occurred in the area (Green 1998). The agreed upon solution was to widen the dam 

crest and construct a 130-ft berm at the base of the Casitas Dam, as seen in the schematic 

in Figure 6.2 and the aerial photograph in Figure 6.3. The project ended up costing ~$42 

million and was completed in 2000 (Surman 2000). Specifications of the Casitas Dam and 

Lake Casitas are provided in Figure 6.3.  

  

 

                                                            
19 The material contained in this chapter is in preparation for future publication. 
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Figure 6.1: Google Earth image of the Casitas Dam placement at the southern end of Lake 

Casitas.  

 

 
Figure 6.2: Construction plan schematic of Casitas Dam bolstering project in 1999 and 

2000. The Casitas Dam crest was widened, and a stability berm was added at the base. 

Image taken from USBR (2015). 
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Figure 6.3: Casitas Dam and Reservoir Specifications. Crest length = 2,000 ft (610 m). 

Crest height = 335 ft (102 m). Crest elevation = 585 ft (178 m) above sea level. Spillway 

Crest elevation = 567 ft (173 m) above sea level. Berm height = 130 ft (40 m) and was 

constructed in 1999 and 2000. Lake Casitas is 254,000 acre-ft (313,000,000 m3) in area 

and was created from the damming of Coyote Creek and diverted water from Ventura 

River. 

 
6.2 Dam Monitoring Recommendations 
 The Division of Dam Safety and Inspections (DDSI) established a list of minimum 

recommended factors to observe at dams that may pose a significant or high hazard (DSSI 

2006). Based on these recommendations, embankment dams that pose such a hazard should 

include long-term monitoring of reservoir level, tailwater level, drain 

flow/seepage/leakage, pore and uplift pressure, seismic loads, surface settlement, surface 

alignment, and foundation movement. DSSI (2006) provide examples of deformation that 

may indicate a “developing problem,” including “settlement of the crest …bulging of the 
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slopes, and …horizontal and vertical surface movement” (p29 and p34). Recommended 

embankment dam monitoring strategies include measuring deformation along the length of 

the crest, with the “measurement points… spaced sufficiently close to allow measurement 

of all significant deformation” (p29, DSSI 2006).  

 

6.3 Data 
 Persistent Scatterer Interferometry (PSI) is a remote sensing approach that can 

measure ground deformation across embankment dams at the DSSI (2006) recommended 

resolution. The merit of PSI for use in deformation monitoring across anthropogenic 

structures has been established in Chapters 3, 4, 5, 7, and 8, and in the myriad of references 

therein. Twenty-three descending ENVISAT Advanced Synthetic Aperture Radar (ASAR) 

images, acquired at a wavelength of 5.6 cm (C-Band) between September 4, 2005 and 

January 23, 2010 by the European Space Agency (ESA), were used in this study. 

ENVISAT ASAR images have a spatial resolution of 20 m. The images were provided by 

the ESA from a written proposal (ID 82169). PSI measures average velocity in mm/year 

(or displacement in mm) in the line-of-sight direction (~23° from nadir, N85°W). These 

measurements are shown as persistent scatterer (PS) points. Negative values indicate 

ground movement away from the satellite (subsidence or westward movement); positive 

values indicate ground movement towards the satellite (uplift or eastward movement). 

 

6.4 Long-Term Monitoring Results and Discussion 
 PSI results are shown in Figures 6.4. Over 100 PS points were obtained on the crest 

and berm, especially on the southern-facing slopes of the structure. In general, the Casitas 

Dam was moving in a downward direction (yellow, orange, and red PS) while the dam 

facilities were moving in an upward direction (blue PS). Since each PS point contains 

temporal deformation information (e.g., average velocity, displacement at each acquisition 

date, etc.) and the relatively high-density spatial distribution of PS across the dam allows 

for multiple deformation measurements, PSI are sufficiently spaced to monitor all 

significant deformation (Ferretti et al. 2000; Ferretti et al. 2001).  
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Figure 6.4: PS points on the Casitas Dam measured between September 4, 2005 and 

January 23, 2010. 

 

 Between 2005 and 2010, the Casitas Dam crest experienced differential 

deformation. A displacement-time series at four locations (numbered Series1, Series2, 

Series3, and Series4 on the plot) along the length of the crest is shown in Figure 6.5. The 

displacement-time series shows that, in general, the crest underwent downward 

deformation of varying degrees: -42 mm at location 2, -16 mm at location 3, -12 mm at 

location 1, and -5 mm at location 4. There is evidence for two potential causes of dam 

deformation. The first is the Casitas Dam underwent a general tilting of the dam crest is 

observed – the north side is relatively stable (location 4) and the south side settled at a rate 

up to ~10 mm/year (at location 2). Tilting is based entirely on PSI results. The second 

potential cause incorporates surficial erosion and slumping viewable from aerial 

photographs (Figure 6.6). Slumping on the crest appears shallow but extends to ~336 ft 

(~102 m) in two areas, which is measurable using PSI. It is possible the Casitas Dam crest 

may have undergone both slumping and settlement. Slumping may account for relatively 

high deformation at location 2 (-42 mm) and settlement may be attributable to deformation 
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at locations 1, 3, and 4, with more slumping in the middle of the crest (-16 mm) and less 

near the edges (-12 mm on south side; -5 mm on north side near spillway). 

 

 
Figure 6.5: Displacement-time series at four locations across the Casitas Dam crest. 

Series# at bottom of plot corresponds to location, e.g., Series1 (blue dots on plot) shows 

displacement-time series of location 1 (blue box). 
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Figure 6.6: Close-up view of surface erosion and slumping on the crest. 

 

 Geospatial Kriging interpolation of PSI results is shown in Figure 6.6. The 

interpolation underestimates total displacement (mm), but aids in visualization of the 

spatial distribution of significant deformation. Two areas of significant deformation are 

enhanced in the interpolation map: (1) linear deformation along length of crest, as 

discussed with displacement-time series analysis (Figure 6.5), and (2) deformation on the 

south side of the berm, which was not easily identifiable with PS points in Figure 6.4. The 

berm experienced greater downward deformation – as much as -32 mm in the Kriging 

interpolation (as compared to -22 mm on the crest). In addition, the berm shows no surficial 

evidence of deformation (Figure 6.7). This may be evidence of internal deformation, such 

as natural surface or foundational settlement, at a scale that is not visible to the human eye 

and may be below the measurement threshold of in situ instrumentation (e.g., mm-scale).  
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Figure 6.7: Kriging interpolation and contours of total displacement (mm) between 

September 4, 2005 and January 23, 2010. Contour intervals = 2 mm. 
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Figure 6.8: Close-up view of berm. There is no surface expression or indication of 

observed deformation. 

 

6.5 Future Work 
 Embankment and berm settlement is a natural process that occurs over a dam’s 

lifespan, as the fill material consolidates with time. Settlement may also be a portent 

indicating leakage or seepage (Sherard & Dunnigan 1985). Dam settlement is heavily 

monitored and modeled during construction and shortly thereafter (Zhu et al. 2009; Wei & 

Sun 2010). Dams should also be monitored throughout their life-cycle. The Federal Energy 

Regulatory Commission (FERC) Division of Dam Safety and Inspections recommend 

long-term embankment dam monitoring includes, among others, measurements on surface 

settlement, surface alignment, and foundation movement, which are all deformation 

variables (FERC 2006). Applications in remote sensing provide a perfect opportunity for 

long-term, post-construction dam monitoring. Interferometric Synthetic Aperture Radar 

(InSAR) has been successfully used to monitor deformation across many dam structures 

around the world (Grenerczy & Wegmüller 2011; Chen et al. 2013; Tomás et al. 2013; Di 

Martire et al. 2014; Emadali et al. 2017). Therefore, the next step is to determine whether 

the deformation (measured using InSAR) at the Casitas Dam in California is attributable 

to material consolidation or if there is potential risk for future failure. 
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 Future research will focus on assessing the potential for using satellite-based radar 

imagery toward overall embankment and berm life-cycle monitoring. This includes inverse 

modeling and numerical analysis of InSAR measurements to help determine whether 

deformation observed on the Casitas Dam is due to natural settlement or other causes  

(e.g., foundation movement or internal erosion from piping). Different modeling 

approaches will be used to investigate potential causes of deformation and are listed as 

research objectives below: 

 Objective 1. Model three-dimensional embankment and berm consolidation using 

Rocscience RS3 and Settle3D software. 

 Objective 2. Model dam stability using three-dimensional finite element analysis 

(Rocscience RS3 and Slide software). 

 Objective 3. Model influences of Casitas Reservoir using transient state 

groundwater models (Rocscience RS3 software). 

 Objective 4. Combine the results from Objectives 1-3 and compare with InSAR 

deformation measurements. This will allow for the source of embankment and berm 

displacement to be isolated between natural settlement/consolidation, slope instability, and 

groundwater seepage. 

 

6.6 Conclusion 
 PSI is a remote sensing technique that may supplement in situ measurements for 

long-term ground monitoring across embankment dams. There are many sensors currently 

available with better capabilities than presented in this chapter. High-resolution satellite 

imagery with a spatial resolution at 3 m (or better) is available from COSMO-SkyMed (see 

Chapters 7 and 8) and TerraSAR-X. High-resolution ground-based interferometry is a 

viable option as well (Monserrat et al. 2014) but requires base station installation. Current 

satellites also offer sub-weekly revisit periods and ground-based set-ups can yield hourly 

data measurements. Combined with traditional field methods, remote sensing offers a 

wonderful opportunity for long-term dam monitoring and the development of a 

deformation early warning system, e.g., deformation greater than a predetermined 

threshold will warrant additional, detailed field investigations. 
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Chapter 7: Mapping of Slow Landslides on 

the Palos Verdes Peninsula using the 
California Landslide Inventory and 
Persistent Scatterer Interferometry20 

 
El Hachemi Bouali21; Thomas Oommen, Ph.D., A.M.ASCE22;  

and Rüdiger Escobar-Wolf, Ph.D.23 
 

7.1 Abstract 
 Extremely slow landslides, those with a displacement rate < 16 mm/year, may be 

imperceptible without proper instrumentation. These landslides can cause infrastructure 

damage on a long-term timescale. The objective is to identify these landslides through the 

combination of information from the California Landslide Inventory (CLI) and ground 

displacement rates using results from Persistent Scatterer Interferometry (PSI), an 

interferometric synthetic aperture radar (InSAR) stacking technique, across the Palos 

Verdes Peninsula in California. A total of 34 ENVISAT radar images (acquired between 

2005 and 2010) and 40 COSMO-SkyMed radar images (acquired between 2012 and 2014) 

were processed. An InSAR Landslide Inventory (ILI) is created using four criteria: 

minimum persistent scatterer (PS) count, average measured ground velocity, slope angle, 

and slope aspect. The ILI is divided into four categories: long term slides (LTSs), 

                                                            
20 The material contained in this chapter was previously published in Landslides. 
21 Department of Geological and Mining Engineering and Sciences, Michigan 
Technological Univ., 1400 Townsend Dr., Houghton, MI 49931 (corresponding author). 
E-mail: eybouali@mtu.edu  
22 Department of Geological and Mining Engineering and Sciences, Michigan 
Technological Univ., 1400 Townsend Dr., Houghton, MI 49931. E-mail: 
toommen@mtu.edu  
23 Department of Geological and Mining Engineering and Sciences, Michigan 
Technological Univ., 1400 Townsend Dr., Houghton, MI 49931. E-mail: 
rpescoba@mtu.edu  
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potentially active slides (PASs), relatively stable slides (RSSs), and unmapped extremely 

slow slides (UESSs). These categories are based on whether landslides were previously 

mapped on that slope (in the CLI), if PSs are present, and whether PSs are unstable or 

stable. The final inventory includes 263 mapped landslides across the peninsula, of them 

67 landslides were identified as UESS. Although UESS exhibit low velocity and are 

relatively small (average area of 8,865 m2 per slide), their presence in a highly populated 

area such as the Palos Verdes Peninsula could lead to destruction of infrastructure and 

property over the long term.  

 

7.2 Introduction 
 Each landslide event has the potential to affect human lives in significant ways. The 

United States Geological Survey (USGS) estimates that landslides annually cause 25-50 

deaths, $3.5 billion in damages, reduced property values, loss of productivity, and 

destruction to natural environments in the United States alone (USGS 2005). The power 

release of a landslide is proportional to the product of its areal extent and velocity (Cruden 

and Varnes 1996). Many of these catastrophic landslides are large, exhibit rapid 

deformation, or both (Parise 2001; Hungr 2007; Lu et al. 2011). Slow landslides can also 

cause concern and raise long-term issues for residents and those who own property on the 

affected area. Terzaghi (1950) used the term “creep” to define landslides with a velocity  

< 30 mm/year. Cruden and Varnes (1996) developed a velocity scale, with “extremely 

slow” describing a velocity < 16 mm/year. These landslides are imperceptible without 

accurate instrumentation, and some structural damage may occur over a relatively 

prolonged period (e.g., longer than 10 years). Terminology from the Cruden and Varnes 

(1996) velocity scale is preferred for two reasons: (1) the term creep more recently took on 

a meaning that implies a variety of trigger mechanisms (e.g., USGS 2005) and (2) the 

velocity scale differentiates between extremely slow and “very slow” landslides, at a 

velocity of 16 mm/year, which is comparable to the velocity of slides investigated in this 

study. Extensive field research has laid the foundation for detailed landslide life-cycle 

management, which incorporates topics such as landslide characterization (Cruden 1991; 

Cruden and Varnes 1996; Leroueil et al. 1996), hazard/risk evaluation and mapping 
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(Carrara et al. 1991; Fell 1994; Finlay 1996; Fell and Hartford 1997; Morgenstern 1997; 

Parise 2001; Dai et al. 2002; Bouali et al. 2016b), long-term monitoring (Kousteni et al. 

1999; Parise 2003), and failure prediction and modeling (Scheideggar 1973; van Westen 

et al. 1997; Chung and Fabbri 1999). 

 Remote sensing—specifically interferometric synthetic aperture radar (InSAR) 

techniques such as Persistent Scatterer Interferometry (PSI)—have become more 

widespread, especially in the last 15 years, in approaches for landslide life-cycle 

management (Catani et al. 2005; Colestanti and Wasowski 2006; Mazzanti et al. 2012; 

Bianchini et al. 2013; Tofani et al. 2013) with some studies emphasizing slow-moving 

landslide management (Cascini et al. 2013; Lu et al. 2014). Recent InSAR applications 

include the quantification of landslide activity (Cigna et al. 2013; Calvello et al. 2017), 

characterization of landslides in urbanized areas (Gullà et al. 2017), landslides along 

volcanic margins (Schaefer et al. 2015; Schaefer et al. 2016; Schaefer et al. 2017), 

identification of landslides with small areal extent (Zhao et al. 2016), and the creation of 

landslide inventory (Casagli et al. 2017; Novellino et al. 2017). The purpose of this paper 

is to demonstrate an approach to update a preexisting landslide inventory of extremely slow 

landslides by incorporating PSI results obtained from recent InSAR data acquired from 

satellites between 2005 and 2014. The final output is an updated landslide inventory that 

includes these previously unmapped landslides which can be verified through targeted field 

inspections as part of a recurring landslide life-cycle management procedure. 

 

7.3 Study Site 
 The Palos Verdes Peninsula is in the southwestern corner of Los Angeles County, 

California, west of the Port of Los Angeles (Figure 7.1). Geology of the peninsula can be 

divided into five general rock types: Franciscan Complex metamorphic rocks (KJf), 

intrusive igneous rocks (Ti5), marine sedimentary rocks (MI), alluvium (Q), and landslide 

deposits (Qls). These rock types are shown in Figure 7.1 and described in further detail in 

Table 7.1 using information originally from the Geologic Map of California (Jennings et 

al. 1977).  
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 A variety of tectonic and natural hazard activities have been documented on the 

Palos Verdes Peninsula (geological features discussed are shown in Figure 7.1). The 

basement rock of the peninsula is composed of schist and volcanic rock that has undergone 

various degrees of metamorphism (Merriam 1960). Regional uplift of this basement rock 

is evidenced by 13 wave-cut marine terraces located on the peninsula above sea level 

(Kayen et al. 2002). Two major faults, striking northwest-southeast, cross the peninsula: 

the Cabrillo Fault and Palos Verdes Fault. The Wilmington Anticline axis trends northwest-

southeast and, along with the major faults, creates the southwest boundary of the Los 

Angeles Basin (Woodring et al. 1946; Wright 1991; Fisher et al. 2004). Surface lineaments 

throughout the peninsula correspond with subsurface faulting (Stephenson et al. 1995). The 

Monterey Formation overlies the basement rock, and the lowest member is the Altamira 

Shale which is several hundred feet thick (Merriam 1960; Vonder Linden and Lindvall 

1982). Many landslides occur within this member. These slides generally exhibit 

translational movement when strata, composed of Altamira Shale and younger material on 

top, slide along seaward dipping bedding planes that are surrounded by bentonite clay 

(Merriam 1960; Vonder Linden and Lindvall 1982; CRPV 2012). Secondary slumping is 

propagating upslope behind these slides (CRPV 2012). Although several landslides have 

been individually identified across the Palos Verdes Peninsula, all landslides on the 

peninsula will be collectively referred to as the Palos Verdes Hills Landslide Complex, or 

PVHLC, for simplicity. 
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Figure 7.1: Geologic (Jennings et al. 1977) and hillshade map (USGS 2017) of the Palos 

Verdes Peninsula in California. The hillshade map is derived from a 10-m NED DEM with 

illumination azimuth of 315° and altitude of 45°. 
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Table 7.1: Descriptions of geological units on the Palos Verdes Peninsula. 

Map 
Symbol Unit Name Unit Age 

(Epoch) Unit Description Number of 
Formations 

Qls Landslide 
Deposits 

Holocene to 
Pleistocene Select large landslides --- 

Q Alluvium Holocene to 
Pliocene 

Alluvium, lake, playa, and 
terrace deposits; unconsolidated 
and semi-consolidated. Mostly 
non-marine, but includes marine 
deposits near coast 

34 

MI 
Marine 
Sedimentary 
Rocks 

Pliocene to 
Oligocene 

Sandstone, shale, siltstone, 
conglomerate, and breccia that 
underwent blueschist-grade 
metamorphism 

21 

Ti5 Intrusive Igneous 
Rocks 

Miocene(?) 
to Late 
Cretaceous 

Intrusive rocks, mostly shallow, 
hypabyssal plugs and dikes --- 

KJf 

Franciscan 
Complex 
Metamorphic 
Rocks 

Early to 
Late 
Cretaceous 

Sandstone with some shale, 
chert, limestone, and 
conglomerate 

1 

 

 Geomorphological evidence of ancient landslides abounds the Palos Verdes 

Peninsula (Merriam 1960). Recently, portions of the PVHLC were reactivated due to 

infrastructure construction in 1956 (Ehlig 1982) and shortly thereafter began moving 

centimeters per day (Vonder Linden 1989). Landslide movement accelerated due to heavy 

rainfall in 1978 (Ehlig and Bean 1982) and lead to the installation of pumping wells, which 

were turned on to reduce groundwater levels in specified areas of the PVHLC (Kayen et 

al. 2002). Calabro et al. (2010) measured seasonal displacement rates across the PVHLC 

from 1995 through 2000 using InSAR and Global Positioning System (GPS) techniques, 

calculating an average summer displacement rate of ~1 m/year using InSAR and  

1.17 m/year using GPS. The average winter deformation rate was above 2.6 m/year 

(measured using InSAR). The increase in PVHLC movements correlates with the timing 

of the wet season. In 2011, the cities of Rancho Palos Verdes and Los Angeles required 

roads by the sea to be repaired, replaced, or rerouted due to landslide activity (CRPV 2012; 

CLA 2016).  

  



133 
 

7.4 Data 
  

7.4.1 California Landslide Inventory 

 The California Geological Survey (CGS) is compiling and digitizing landslide 

maps to form a statewide database called the California Landslide Inventory (CLI). The 

CLI includes many landslides mapped by the CGS and other sources since the 1960s. The 

objective is to make California landslide data available to the public. The CLI database 

displays the spatial extent and individual records for each landslide, including landslide 

type, known event date(s) and current activity status, direction of movement, confidence 

level of landslide interpretations, and citations to the original source material. Figure 7.2 

shows landslide locations mapped on the Palos Verdes Peninsula. The beta version of the 

CLI is available on a web-based GIS and is continuously updated (CGS 2017, see citation 

for URL).  

 

7.4.2 Satellite Radar Imagery 

 PSI is an InSAR stacking technique where at least 20 single look complex (SLC) 

synthetic aperture radar (SAR) images are processed to measure ground deformation on 

relatively stable scatterers (Ferretti et al. 2000; Ferretti et al. 2001; Constantini et al. 2008; 

Crosetto et al. 2008). Extremely slow landslides, those moving less than 16 mm/year 

(Cruden and Varnes 1996), are detectable using PSI because their extremely slow nature 

allows the algorithm to identify individual persistent scatterers (PSs). PS may include 

anthropogenic structures (e.g., buildings, transportation infrastructure, pipelines) and 

natural features (e.g., rock outcrops with no or light vegetation). PSI can measure ground 

deformation at an accuracy of 1 mm/year (Ferretti et al. 2000; Ferretti et al. 2001; Crosetto 

et al. 2016). SLC SAR image stacks acquired from two satellites, ENVISAT and COSMO-

SkyMed, are processed separately through identical PSI steps using ENVI SARscape™ 

software (Sarmap 2009). Two satellites are chosen to increase landslide observation time 

(Table 7.2). PSI works well over urban areas, which aids in the identification of extremely 
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slow landslides in regions of heavy infrastructure where they may be difficult to detect 

(Bouali et al. 2016a). 

 ENVISAT, operated by the European Space Agency (ESA), was launched on 

March 1, 2002 and was active until May 9, 2012. It followed a Sun-synchronous polar orbit 

and had a revisit time of 35 days. The ASAR instrument operated at a frequency of  

5.331 GHz (5.6 cm wavelength in C-band). 34 SLC SAR images, acquired in descending 

direction between November 11, 2005 and October 14, 2010 (Table 7.2) in image mode at 

a resolution of ~20 m, were obtained from the ESA. 

 COSMO-SkyMed, the Constellation of small Satellites for the Mediterranean basin 

Observation, is a group of four identical satellites, COSMO-1, -2, -3, and -4, launched on 

June 8, 2007, December 9, 2007, October 25, 2008, and November 5, 2010, respectively. 

Operated by the Italian Space Agency (ASI), all satellites are currently active and follow a 

Sun-synchronous polar orbit with individual revisit times of 16 days and a collective revisit 

time of less than 15 days. The SAR antennas operate at a frequency of 9.6 GHz (3.1 cm 

wavelength in X-band). 40 SLC SAR images, acquired in the descending direction between 

July 19, 2012 and September 27, 2014 (Table 7.2) in STRIPMAP HIMAGE mode at a 

resolution of 3 m, were obtained from the ESA.  
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Figure 7.2: Dormant (yellow) and active (red) landslides mapped in the CLI across the 

Palos Verdes Peninsula (same areal extent as Figure 7.1). The landslides on the Palos 

Verdes Peninsula are all categorized as ‘rock slides’ in the CLI (CGS 2017). 
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Table 7.2: A complete list of acquisition dates for the 34 ENVISAT (descending) and 40 

COSMO-SkyMed (descending) SLC images used in this study. 

ENVISAT 
Acquisition Dates 

COSMO-SkyMed 
Acquisition Dates 

Nov 24, 2005 Jul 19, 2012 
Mar 09, 2006 Aug 04, 2012 
May 18, 2006 Aug 20, 2012 
Jun 22, 2006 Sep 04, 2012 
Oct 05, 2006 Oct 07, 2012 
Nov 09, 2006 Oct 23, 2012 
Jul 12, 2007 Nov 08, 2012 
Aug 16, 2007 Nov 24, 2012 
Sep 20, 2007 Dec 10, 2012 
Nov 29, 2007 Dec 26, 2012 
Feb 07, 2008 Jan 01, 2013 
Mar 13, 2008 Jan 27, 2013 
Apr 17, 2008 Feb 12, 2013 
May 22, 2008 Feb 28, 2013 
Jun 26, 2008 Mar 16, 2013 
Jul 31, 2008 Apr 17, 2013 
Sep 04, 2008 May 03, 2013 
Dec 18, 2008 May 19, 2013 
Jan 22, 2009 Jun 20, 2013 
Apr 02, 2009 Jul 06, 2013 
May 07, 2009 Jul 22, 2013 
Jun 11, 2009 Aug 27, 2013 
Aug 20, 2009 Sep 24, 2013 
Sep 24, 2009 Oct 10, 2013 
Oct 29, 2009 Nov 11, 2013 
Dec 03, 2009 Nov 27, 2013 
Jan 07, 2010 Dec 13, 2013 
Feb 11, 2010 Dec 29, 2013 
Apr 22, 2010 Jan 30, 2014 
May 27, 2010 Feb 15, 2014 
Jul 01, 2010 Mar 19, 2014 
Aug 05, 2010 Apr 04, 2014 
Sep 09, 2010 Apr 20, 2014 
Oct 14, 2010 May 06, 2014 
 May 22, 2014 
 Jun 07, 2014 
 Jul 25, 2014 
 Aug 10, 2014 
 Sep 11, 2014 
 Sep 27, 2014 
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7.4.3 Direction and Magnitude of Deformation Rate 

 Deformation rate, a velocity vector, is defined by direction and magnitude 

components. Velocity can only be measured in the line-of-sight (LOS) direction (Ferretti 

et al. 2000), which is described by two variables: (1) incidence angle—the angle between 

vertical (normal) and the transmitted radar beam (0° = vertical; 90° = horizontal), and  

(2) azimuth angle—the compass direction the radar beam is transmitted from the satellite. 

Local LOS for ENVISAT is ~21° incidence at N85°W and for COSMO-SkyMed is ~27° 

incidence at N85°W. Positive average velocity (𝑉𝑉�  > 0) indicates ground movement in a 

direction toward the satellite, such as uplift (vertical component) or relatively large 

eastward direction (horizontal component); negative average velocity (𝑉𝑉�  < 0) indicates 

ground movement in a direction away from the satellite, such as a landslide/subsidence 

(vertical component) or relatively large westward deformation (horizontal component).  

 One-dimensional LOS measurement is a limiting factor when the goal is to 

create/update a landslide inventory along slopes of variable orientations and geometries. It 

is important to acknowledge that not all landslides may be identified using a stack of 

satellite imagery from one LOS direction—for example, west facing slopes on steep 

topography may not be viewable using ENVISAT and COSMO-SkyMed incidence and 

azimuth angles—and thus, field investigations may be necessary to create a more complete 

inventory (e.g., CLI). Many recent studies have demonstrated various methodologies used 

to overcome the LOS limitation for various steps in the landslide life-cycle management 

procedure (Notti et al. 2010; Bianchini et al. 2013; Cascini et al. 2013; Cigna et al. 2013; 

Herrara et al. 2013; Tofani et al. 2013; Lu et al. 2014; Zhao et al. 2016; Calvello et al. 

2017; Casagli et al. 2017; Gullà et al. 2017; Schulz et al. 2017).  

 

7.5 Methodology 
 The methodology follows the workflow provided in Figure 7.3. ENVISAT and 

COSMO-SkyMed radar images are acquired and processed. The processing results are then 

combined to generate the InSAR Landslide Inventory (ILI). Four criteria are used to 

identify slopes prone to landslides: PS number, average velocity, slope angle, and slope 

aspect. The methodology workflow is described in greater detail below. 
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Figure 7.3: Workflow of methodological approach (see text for description of each step). 

Data and deliverables are shown in rectangles, processing steps in diamonds, and filtering 

criteria – which include coherence (γ), PS number (PS #), average velocity (|𝑉𝑉� |, in 

mm/year), slope angle (S∠), and slope azimuth (SA) – are displayed in ovals.  

 

 The level 1 SLC radar images acquired from ENVISAT and COSMO-SkyMed are 

processed in separate stacks using the interferometric stacking PSI workflow in ENVI 

SARscape™ (Sarmap 2009). The ENVI SARscape™ workflow is built to process radar 

images with algorithms created by previous studies (Gatelli et al. 1994; Göblirsch and 

Pasquali 1996; Holecz et al. 1997; Reigber and Moreira 1997; Constantini 1998; Goldstein 

and Werner 1998; Ferretti et al. 2000; Ferretti et al. 2001; Berardino et al. 2002; Baran et 

al. 2003; Guarnieri et al. 2003; Hooper et al. 2004; Ghulam et al. 2010). PSI results are 

filtered to only include PS with a coherence (γ) ≥ 0.75. γ, the value of which is assigned to 

each PS and ranges between 0 (high noise or decorrelation) and 1 (no noise), quantifies the 

quality of the displacement measurement and is indirectly proportional to “systemic spatial 
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decorrelation, additive noise, and the scene decorrelation that takes place between the 

acquisitions” (Sarpmap 2009, p. 163). Other studies considered coherence values reliable 

at γ > 0.50 (Zhao et al. 2016), γ ≥ 0.60 (Bianchini et al. 2013; Jones et al. 2016), and  

γ ≥ 0.65 (Novellino et al. 2017); thus, the threshold of γ ≥ 0.75 used in this study can be 

considered relatively strict.  

 The PSI results from both stacks (ENVISAT and COSMO-SkyMed) are combined, 

and potential landslides—to be included in the ILI—are identified based on four criteria: 

PS number, average velocity, slope angle, and slope aspect. 

 

• Criterion 1. There must be more than four PS on a slope to be considered for further 

analysis (PS # > 4; Figure 7.3). Bianchini et al. (2013) compared the number of 

landslides with PS # ≥ 1 and PS # > 4 and noticed a decrease of ½ in the number of 

landslides identified when using the increased PS number requirement. 

• Criterion 2. The PS identified from criterion 1 must exhibit an average velocity  

≥ 4 mm/year—the minimum velocity required for the extremely slow landslide 

classification by Cruden and Varnes (1996)—with sign (𝑉𝑉�  ≥ 4 mm/year, Figure 7.3) 

depending on the slope aspect (see criterion 4).  

• Criterion 3. The PS identified from criterion 1 must also be located on a slope with 

a surface angle greater than 5° from horizontal (S ∠ ≥ 5°; Figure 7.3). Both the 

NED DEM and the ASTER global DEM were used to calculate surface angles of 

the topography across the Palos Verdes Peninsula. A slope angle of 5° was chosen 

as the threshold for two reasons: (1) there exist many portions of the active PVHLC 

with a 6.3° slope angle and a material friction angle of 6° (Calabro et al. 2010) and 

(2) the dip of PVHLC rupture surfaces range from 5° to 10° toward the ocean 

(McNulty 2010).  

• Criterion 4. Slopes that pass the previous three criteria are considered landslides if 

the slope aspect (SA), defined as the azimuth direction the slope dips, matches the 

sign of PS average velocity (SA: ±𝑉𝑉� ; Figure 7.3). PS on west facing slopes must 

have a negative average velocity, which indicates ground movement away from the 
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satellite. PS on east facing slopes must have a positive average velocity, which 

indicates ground movement toward the satellite. 

 

 The spatial extent of potential landslides from the ILI is then compared to the 

mapped landslides from the CLI. A final landslide inventory is created by merging the CLI 

and ILI. Landslide regions are then separated into four categories. (1) Long term slides 

(LTS) are those identified in both CLI and ILI. (2) Potentially active slides (PAS) are those 

identified only in CLI and no PSs were measured in the area, indicating decorrelation due 

to rapid ground movement or radiometric characteristics of the ground (Simons and Rosen 

2007). (3) Relatively stable slopes (RSS) are those identified only in CLI and the presence 

of stable PS (|𝑉𝑉� | < 4 mm/year) indicate a relatively stable slope. (4) Unmapped extremely 

slow slides (UESS) are those identified only in the ILI. 

 

7.6 Results and Discussion 
 PSI results from ENVISAT and COSMO-SkyMed SLC SAR image stacks are 

shown in Figures 7.4 and 7.5, respectively. Of the PSs, 82,085 were located using the 

ENVISAT stack, and 808,010 PSs were located using the COSMO-SkyMed stack. The 

order of magnitude difference is likely due to spatial resolution (3 m for COSMO-SkyMed 

and 20 m for ENVISAT) and temporal image density (1 image every ~20 days for 

COSMO-SkyMed and ~53 days for ENVISAT). More PSs were found in vegetated regions 

using the ENVISAT stack compared to the COSMO-SkyMed stack, which is a function of 

wavelength since decorrelation is more common in vegetation for short-wavelength 

sensors. For example, no PSs were found in the north-central section of the study area 

(region of decorrelation in Figure 7.5). The PSI technique underperformed in this region 

due to temporal decorrelation from dense vegetation and short X-band wavelength, as 

described by Wei and Sandwell (2010). In contrast, the COSMO-SkyMed stack obtained 

very high PS density (> 500 PS/km2) in urban areas (both east and west portions of Figure 

7.5). The ENVISAT stack obtained an average PS density (~100-200 PS/km2) in urban 

areas. 
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Figure 7.4: PSI results across the Palos Verdes Peninsula from 34 ENVISAT SLC SAR 

images (same areal extent as Figure 7.1). Average velocity values range from -22 mm/year 

(away from the satellite; red) to 22 mm/year (toward the satellite; blue), with yellow-green 

indicating stable PS. 
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Figure 7.5: PSI results across the Palos Verdes Peninsula from 40 COSMO-SkyMed SLC 

SAR images (same areal extent as Fig 7.1). Average velocity values range from 

-22 mm/year (away from the satellite; red) to 22 mm/year (toward the satellite; blue), with 

yellow-green indicating stable PS. No PS are measurable in the ‘Region of Decorrelation’ 

because of PSI limitations using a short X-band wavelength in a vegetated region. 

 

 Displacement time series from four continuous GPS stations on the Palos Verdes 

Peninsula—PVRS, PVHS, PVE3, and VTIS—were used to validate PSI results. GPS data 

were downloaded from UNAVCO’s Digital Archive Interface (version 2). Each GPS time 

series is compared to the times series of the nearest PS from each satellite (Figure 7.6). 

GPS and PS locations are provided in Table 7.3. Three-component GPS measurements 

(vertical, north, and east) are converted to satellite LOS (~23° from vertical in the N85°W 

azimuth direction). Tectonic trends were subtracted from the north and east GPS 

components. Displacement time series from COSMO-SkyMed PS fall within GPS time-

series range at all four stations, while there is less correlation between ENVISAT PS and 
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GPS (Table 7.4). If the GPS time series is considered the baseline, PSI results from 

COSMO-SkyMed are more accurate than ENVISAT. This could be caused by two factors. 

First, more COSMO-SkyMed SLC SAR images were acquired over a shorter period 

(greater temporal image density), which increases the coherence and signal-to-noise ration 

of the processing stack. Second, COSMO-SkyMed PSs tend to be more proximal to 

respective GPS stations; the average distance between COSMO-SkyMed PS and GPS 

stations is 36.25 m, while the average distance between ENVISAT PS and GPS stations is 

86.25 m (values averaged from Table 7.3). There is a possibility that PS and GPS measure 

dissimilar sources of displacement if they are too far apart.  

 

 
Figure 7.6: Displacement-time series of four GPS stations (continuous gray lines) 

projected in the satellite LOS (~23° from vertical at N85°W azimuth) with the nearest 

detectable ENVISAT PS (blue points) and COSMO-SkyMed PS (red points). Locations of 

GPS stations are denoted with red triangles (same areal extent as Figure 7.1) and the 

distances from the GPS stations to each respective nearest PS are provided in Table 7.3. 
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Table 7.3: Locations of GPS and nearest PS used in displacement comparison (Figure 7.6). 

GPS 
Station 

GPS Coordinates Distance to 
ENVISAT PS 

Distance to  
COSMO-SkyMed PS Latitude Longitude 

PVRS 33.7739º -118.3206º ~82 m ~44 m 
PVHS 33.7795º -118.3722º ~13 m ~12 m 
PVE3 33.7433º -118.4043º ~200 m ~82 m 
VTIS 33.7260º -118.2938º ~50 m ~7 m 

 

Table 7.4: Comparison of average displacement readings between LOS GPS and 

ENVISAT PS (11/24/2005 – 10/14/2010) and between LOS GPS and COSMO-SkyMed 

PS (7/19/2012 – 9/27/2014). 

GPS 
Station 

Average Displacement Reading 
11/24/2005 – 10/14/2010 

Average Displacement Reading* 
7/19/2012 – 9/27/2014 

GPS PS GPS PS 
PVRS -0.74 mm -1.16 mm 4.43 mm -1.48 mm 
PVHS -10.15 mm -16.80 mm -10.95 mm -13.42 mm 
PVE3 -2.56 mm -1.41 mm -4.13 mm -4.30 mm 
VTIS 3.76 mm -17.35 mm 3.06 mm 1.96 mm 

*Period of average displacement reading for GPS Station PVHS is 7/19/2012 – 12/18/2013. 

 

 The final landslide inventory is provided in Figure 7.7. All landslides mapped in 

the CLI and ILI are merged. Landslides are classified into four categories (Figure 7.7): 

RSS (brown), PAS (yellow), LTS (green), and UESS (red).  

 RSS are considered historic or dormant slides. Stable PSs were identified within 

the boundaries of these slides that are mapped in the CLI. The adjective “relatively” is used 

because some RSS may exhibit |𝑉𝑉� | < 4 mm/year but are considered stable since this rate is 

below the extremely slow landslide threshold. A total of 68 RSS with an average area of 

112,873 m3 are identified.  

 PAS are mapped in the CLI, but no PS data are available within the slide 

boundaries. A stable slope experiences decorrelation if the geometry of objects on the 

slope’s surface change (e.g., dense vegetation) or if material properties change  

(e.g., dielectric constant or moisture content) drastically between images. A moving slope 

experiences temporal decorrelation if movements exceed PSI measurement capabilities, 
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which are ~14.7 and ~25.7 cm/year in optimal conditions for ENVISAT and COSMO-

SkyMed, respectively (Crosetto et al. 2016). These slopes are labeled as potential slides 

due to the inherent uncertainty of the cause of decorrelation. More information is needed 

to accurately define whether these slopes are in motion; this issue can be resolved with 

field investigations. Of the PAS with an average area of 10,142 m2, 114 are identified. 

 

 
Figure 7.7: Final landslide inventory created from CLI and ILI (Figure 7.3). Landslide 

types include RSS (brown), PAS (yellow), LTS (green), and UESS (red). Outlines of the 

RDT identified by ENVISAT (blue line) and COSMO-SkyMed (magenta line) are in the 

southeast corner of the Palos Verdes Peninsula. Contour lines with 10-m intervals (black 

lines) are derived from the ASTER GDEM. The background image shows the same areal 

extent as Figure 7.1. The white rectangle outlines the extent of Figure 7.8. 
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 LTS are mapped in both the CLI and ILI, indicating protracted slope deformation. 

These slides exhibit |𝑉𝑉� | > 4 mm/year between 2005 and 2014. A total of 14 LTS with an 

average area of 169,576 m2 are identified.  

 UESS are unmapped in the CLI but mapped in the ILI. Most UESS are in urban 

settings, which is probably due to the facts that (1) private property and infrastructure 

obstruct geological investigations and (2) PSI excels in urbanized regions, allowing the 

technique to measure slow displacement rates, which has been successfully accomplished 

in recent studies (Gullà et al. 2017; Peduto et al. 2017). 67 UESS are mapped in total and 

are by far the smallest, with an average area of 8,865 m2. 

 A regional downward trend (RDT), a relatively large area of downward ground 

motion detectable by both ENVISAT and COSMO-SkyMed satellites, is present in the 

southeast corner of the Palos Verdes Peninsula (Figure 7.4 and 7.5 in PSI results; outlined 

in Figure 7.7). The mean velocity of the RDT was measured to be -4 mm/year between 

2005 and 2010 (via ENVISAT) and -5 mm/year between 2012 and 2014 (via COSMO-

SkyMed). The center of the RDT appears to shift north, either indicating a migration in the 

triggering mechanism or evidence of two separate events (Figures 7.4, 7.5, and 7.7). 

Regional subsidence caused by oil, natural gas, and groundwater extraction in the Los 

Angeles Basin has been well documented (Mayuga and Allen 1970; CDWR 2014). Per the 

GPS displacement time series at VTIS station (Figure 7.6), the average velocity between 

2005 and 2010 is -1 mm every two years. The geometry of the RDT does allow for the 

potential of segmented movement of a large, slow-moving landslide (Figure 7.7). One can 

envision downward motion in the southeast direction, parallel to slope dip direction in the 

area, encroaching the sea. Only three slides within the RDT have been mapped in the CLI. 

Many UESS have been identified in this region, but difficulty arises when trying to join 

them into an ~18 km2 landslide using point-source PSI data (as mentioned above). Further 

field investigation, which is recommended practice for InSAR remote sensing validation 

in general (Cigna et al. 2013), is needed to determine the existence of this potential 

landslide. 

 The final landslide inventory combines the original field notes included in the CLI 

with numerical displacement data from PSI results. Four different landslide types within e 
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PVHLC, labeled I-IV in Figure 7.8, were chosen to illustrate the type of information 

incorporated in the final landslide inventory, which is provided in Table 7.5. Slides I, II, 

and III were originally mapped in the CLI and, therefore, are described in greater detail 

than Slide IV. A common feature of all four slides is the presence of anthropogenic 

structures and private property within the slide boundaries. An entire residential 

neighborhood is encompassed by Slides III and IV. Slide III, previously mapped as part of 

PVHLC, has 155 unstable PS (~23% of total PS count) and a maximum average velocity 

measured at -10.34 mm/year. Slide IV, previously unmapped, has 90 unstable PS, ~2% of 

total PS count, spanning 15-20 houses at a maximum average velocity of -9.17 mm/year. 

This slow movement will not cause catastrophic destruction but could cause structural 

damage over an extended period.  
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Figure 7.8: View of the final landslide inventory at the PVHLC. An example of CLI and ILI 

data integration is shown for the four slopes labeled I-IV, representing each landslide type, 

in Table 7.5. Contour lines with 10-m intervals (black lines) are derived from the ASTER 

GDEM. 
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Table 7.5: Integration of CLI and ILI data for four slopes, labeled I-IV, in the PBLC 

(Figure 7.8). 

Slide Number I II III IV 
Slide Type RSS PAS LTS UESS 
Slide Area 357,905 m2 19,665 m2 271,720 m2 203,790 m2 

Slide Thickness Deep (>15 m) Shallow (<3 m) Deep (>15 m) Unknown 
Max. Slope 33.22º 29.45º 24.96º 10.57º 
Number of 
Unstable PSα 0 0 155 90 

Number of 
Stable PSβ 12 0 531 5,111 

Max. Downslope 
Velocity -0.98 mm/year Unknown -10.34 mm/year -9.17 mm/year 

Location of 
Max. Velocity Southeast Toe Not Applicable Head Southeast Flank 

Direction of 
Movement 230º 170º 220º Probably  

220º-230º 

Originally 
Mapped 1998 1998 1998 

2017  
(Previously 
Unmapped) 

CLI 
Interpretation 
Confidence 

Definite Definite Definite 
Uncertain,  
Field Inspection 
Required 

αAn unstable PS exhibits |V�| > 4 mm/year in either direction. 
βA stable PS exhibits |V�| < 4 mm/year in either direction. 
 

7.6.1 PSI Limitations for Landslide Mapping 

 Limitations of the PSI technique have already been alluded to in this study, but it 

is worth discussing three PSI limitations for landslide mapping in detail: sensor LOS 

direction, temporal decorrelation due to vegetation, and temporal decorrelation due to rapid 

deformation.  

 Landslide detection and deformation measurements are limited to the sensor LOS 

direction; this is inherent to the technique (Colesanti and Wasowski 2006; Bianchini et al. 

2013; Cigna et al. 2013; Hu et al. 2014). Some landslides may not be detectable from 

certain LOS directions, e.g., steep slopes dipping parallel and away from the LOS direction 

(a steep, west facing slope may not reflect radar waves back to the ENVISAT and COSMO-

SkyMed sensors). This is the shadow problem that occurs with slant-range radar systems 

(Sarmap 2009). Landslide displacement perpendicular to the LOS direction (north or south) 
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is also not detectable (Casagli et al. 2017). A work-around of the LOS limitation would be 

to acquire and process multiple SAR SLC image stacks with different fields of view over 

the same area, e.g., descending and ascending. 

 Temporal decorrelation due to the presence of vegetation may effectively hide 

landslides from PSI detection (Wei and Sandwell 2010; Mazzanti et al. 2012). This may 

be the case in the region of decorrelation in Figure 7.5 – the stack of short-wavelength (X-

band) COSMO-SkyMed radar images was unable to correlate properly when subset around 

this region, while in contrast, the stack of (relatively) longer-wavelength (C-band) 

ENVISAT radar images can obtain PS in this region, albeit at a low PS density. Longer 

wavelengths are more likely to penetrate vegetation and, thus, L-band (wavelength  

~23 cm) performs better in vegetated regions than C-band (wavelength ~5.6 cm) which 

performs better than X-band (wavelength ~3.1 cm), and so forth. 

 It is well documented that rapid landslides cause temporal decorrelation for the PSI 

technique (Crosetto et al. 2016; Casagli et al. 2017). Cigna et al. 2013 list the maximum 

velocities measurable with the PSI technique for satellites with different wavelengths and 

revisit periods; they range from ~15 cm/year (ERS-1/-2 and ENVISAT at C-band) to  

~45 cm/year (ALOS and JERS at L-band). Crosetto et al. 2016 calculate the maximum 

velocities to be ~14.7 cm/year (ENVISAT) and ~25.7 cm/year (COSMO-SkyMed). 

Presence of these relatively quick landslides may be why there are 114 PAS (Figure 7.7), 

which were mapped in the CLI but may be moving too rapidly for PSI detection. This 

limitation may also be why many mapping studies focus on slow landslides when using 

PSI (Colesanti and Wasowski 2006; Mazzanti et al. 2012; Antronico et al. 2013; Cascini 

et al. 2013; Cigna et al. 2013; Tofani et al. 2013; Lu et al. 2014; Bouali et al. 2016a; Gullà 

et al. 2017; Peduto et al. 2017).  

 

7.6.2 PSI Advantages for Landslide Mapping 

 Despite inherent limitations of PSI, many advantages make this remote sensing 

technique a quality supplemental landslide mapping approach. In general, PSI is a low 

cost/benefit ratio technique that allows for the detection of ground motion at any time of 

the day or night with an accuracy of 1 mm/year over wide areal coverage with a large 
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archive of satellite imagery, beginning with ERS-1 in 1992 (Ferretti et al. 2000; Ferretti et 

al. 2001; Hooper et al. 2004; Colesanti and Wasowski 2006; Crosetto et al. 2016; Casagli 

et al. 2017). More specifically to slow landslide mapping, PSI excels in urban areas. 

 Anthropogenic structures (e.g., buildings) and infrastructure (e.g., bridges, 

pipelines, tunnels, and assets along transportation corridors) in urban settings are coherent 

targets that yield PSI results with high PS density. This is evident in Figures 7.4 and 7.5, 

where PS density is greater in urban areas (east and west portions of the peninsula) 

compared to the more rural, vegetated areas (middle of the peninsula). PS density may be 

high enough such that multiple PS are detected on each structure. This is beneficial because 

heavily urbanized areas may hinder traditional field-based landslide mapping, and as a 

proxy, PSI can be used to pinpoint neighborhoods, city blocks, or even individual buildings 

experiencing anomalous movements (Antronico et al. 2013; Tofani et al. 2013; Bouali et 

al. 2017b; Gullà et al. 2017; Wang et al. 2017).  

 

7.7 Conclusion 
 The purpose of this paper is to update the CLI with satellite-based remote sensing 

data—PSI technique with 34 ENVISAT and 40 COSMO-SkyMed SLC SAR images—to 

include extremely slow landslides, defined as experiencing |𝑉𝑉� | > 4 mm/year. The landslide-

prone Palos Verdes Peninsula is chosen as the study site (Figures 7.1 and 7.2). Only PS 

with γ ≥ 0.75 are included in PSI results (Figures 7.4 and 7.5). PS derived from both 

satellites are then merged to generate the ILI based on four criteria: PS number, average 

velocity, slope angle, and slope aspect. The ILI is then merged with the CLI to generate a 

final landslide inventory (Figures 7.7 and 7.8). Landslides are separated into four 

categories: LTS, PAS, RSS, and UESS. These categories are based on whether they were 

previously mapped, if PS are present, and whether the PS are unstable or stable. The final 

inventory includes 263 mapped landslides across the peninsula: 68 RSS, 114 PAS, 14 LTS, 

and 67 UESS.  

 Constructing a near real-time landslide monitoring methodology using PSI would 

be a powerful supplemental approach for landslide life-cycle management. InSAR is 

already being used for near-real-time emergency response for natural hazards (Ramsey et 
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al. 2009; Salvi et al. 2012; Nascetti et al. 2015). Near-real-time reprocessing of SAR SLC 

radar image stacks would allow for updates to landslide inventories at a frequency much 

higher than any current traditional approach, and fortunately, there are many current 

(Sentinel-1, ALOS-2, COSMO-SkyMed, PAZ, and KOMPSAT-5) and upcoming 

(RADARSAT constellation, NISAR, SAOCOM, and COSMO-SkyMed SG) SAR satellite 

missions for this to be feasible.  
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Chapter 8: Evidence of Instability in 
Previously-mapped Landslides as Measured 
using GPS, Optical, and Radar Data between 

2007 and 2017: A Case Study in the 
Portuguese Bend Landslide Complex, 

California24 
 

El Hachemi Bouali25; Thomas Oommen, Ph.D., A.M.ASCE26;  
and Rüdiger Escobar-Wolf, Ph.D.27 

 
8.1 Abstract 
 Velocity dictates the destructive potential of a landslide. A combination of radar, 

optical, and GPS data were used to maximize spatial and temporal coverage to monitor 

continuously-moving portions of the Portuguese Bend landslide complex on the Palos 

Verdes Peninsula in southern California. Forty radar images from the COSMO-SkyMed 

satellite, acquired between 19 July 2012 and 27 September 2014, were processed using 

Persistent Scatterer Interferometry (PSI). Eight optical images from the WorldView-2 

satellite, acquired between 20 February 2011 and 16 February 2016, were processed using 

the Co-registration of Optically Sensed Images and Correlation (COSI-Corr) technique. 

Displacement measurements were taken at GPS monuments between September 2007 and 
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May 2017. Incremental and average deformations across the landslide complex were 

measured using all three techniques. Velocity measured within the landslide complex 

ranges from slow (> 1.6 m/year) to extremely slow (< 16 mm/year). COSI-Corr and GPS 

provide detailed coverage of m/year-scale deformation while PSI can measure extremely 

slow deformation rates (mm/year-scale), which COSI-Corr and GPS cannot do reliably. 

This case study demonstrates the applicability of radar, optical, and GPS data synthesis as 

a complimentary approach to repeat field monitoring and mapping to changes in landslide 

activity through time. 

 

8.2 Introduction 
 Destructive capabilities of a landslide depend on its velocity and proximity to assets 

deemed valuable to human livelihood (Hungr 2007). Unfortunately, many landslides occur 

in areas that put human life and societal assets (e.g., homes, infrastructure, transportation 

networks, etc.) at risk (Dai et al. 2002; Petley 2012). It is important that communities 

identify areas susceptible to landslides and perform necessary preventative measures, 

which may in some form include spatial identification (e.g., landslide inventory) and 

temporal monitoring (e.g., displacement measurements), to establish a community 

landslide mitigation plan (Ge and Lindell 2016; Scolobig et al. 2016). Observational 

landslide identification and monitoring can take many forms: repeat mapping expeditions 

with qualitative descriptions, quantitative field assessments and installation of in situ 

monitoring equipment (e.g., inclinometers or GPS monuments), and remote sensing 

surveys (terrestrial, aerial, or satellite-based).  

 The authors utilize similar data – the California landslide inventory (McMillian and 

Haydon 1998a, 1998b, and 1998c; Haydon 2007), annual displacement measurements at 

GPS monuments (McGee 2007-2017), and two satellite-based remote sensing techniques: 

Persistent Scatterer Interferometry (PSI) and Co-registration of Optically Sensed Images 

and Correlation (COSI-Corr) – to map the extent of recent landslide activity within a 

landslide complex and create a landslide activity map based on the Cruden and Varnes 

(1996) landslide velocity scale. PSI, COSI-Corr, and GPS measurements are used together 

to maximize spatial and temporal coverage but also, as shown in Table 8.1, to make sure 
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any limitations of a single technique are surmounted by the others. For example, COSI-

Corr and GPS can reliably measure ground deformation rates in the cm/year to m/year 

range, but neither have the accuracy to measure sub-cm/year velocity; PSI is capable of 

mm/year-scale measurements. Direct use of long-term radar, optical, and GPS monitoring 

of landslide activity mapping at three orders of magnitude (m/year to mm/year) has not 

been done previously. 

 

Table 8.1: Variables to consider prior to mapping and monitoring of landslides using PSI, 

COSI-Corr, and GPS. 

 PSI COSI-Corr GPS 

Spatial 
Distribution of 

Data Points 

Unknown until 
processing complete 

Gridded across spatial 
extent of input 

imagery 

Installed; must be 
placed in areas where 

not disturbed by 
external factors  

Temporal 
Distribution of 

Data 

Spans acquisition period 
of sensor 

Spans acquisition 
period of sensor 

Spans acquisition 
period post-
installation 

Range of 
Measurable 
Deformation 

Rates 

< 2.5 cm/year (threshold 
changes based on data 

quality, number of 
images, and radar 

wavelength) 

cm/year to m/year cm/year to m/year 

Direction(s) of 
Measurements 

1-dimensional, sensor 
line-of-sight 

2-dimensional, 
horizontal (north-

south and east-west) 

3-dimensional, 
horizontal and 

vertical 
Accuracy 1 mm/year 5-10 cm/year 1-2 cm/year 

Sources of 
Noise 

Ionospheric effects, snow 
cover, precipitation, 
changes in dielectric 

properties of materials, 
vegetation, systematic 

noise 

Cloud cover, snow 
cover, vegetation, 
drastic changes in 

ground surface (e.g., 
construction), 

systematic noise 

Rapid ground 
deformation 

(destruction of 
monuments), external 
factors (e.g., humans 

and animals) 
Measurements 

Unavailable 
(Decorrelation) 
or Unreliable 

Dense vegetation, 
topographic shadow 

zones, areas with rapid 
ground deformation 

Areas beneath clouds, 
dense vegetation, 

topographic shadow 
zones 

If impacted by 
sources of noise 

listed above 

Validation GPS and other ground-
truthing methods 

GPS and other 
ground-truthing 

methods 

Other ground-
truthing methods 

(e.g., surveys) 
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8.3 Study Area 
 An active landslide complex is located on the south-central coast of the Palos 

Verdes Peninsula in California. Residential neighborhoods of Rancho Palos Verdes, 

Rolling Hills, and Rolling Hills Estates delineate the perimeter of previously mapped 

landslides. At least eight major landslides form this complex (Figure 8.1), including 

Ancient Portuguese Bend (AnPB), Active Portuguese Bend (AcPB), Valley View Graben 

(VVG), Parcel 4 (P4), Abalone Cove (AC), Klondike Canyon (KC), Beach Club (BC), and 

Flying Triangle (FT), as mapped by the California Geological Survey (Haydon 2007). 

Landslide mapping was originally performed through analysis of aerial photographs and 

then validated through field reconnaissance and topographic map interpretations 

(McMillian & Haydon 1998a, 1998b, & 1998c). Landslides were classified based on 

specific characteristics using terminology from Varnes (1978), Wieczorek (1984), Keaton 

and DeGraff (1996), and Cruden and Varnes (1996). Characteristics include landslide type, 

thickness, activity (as shown in Figure 8.1), movement direction, and confidence of 

interpretation (Haydon 2007); see Table 8.2 for characteristics of notable landslides.  

 The landslide complex is sliding south-southwest down the Palos Verdes Hills, a 

northwest-southeast trending ridge located north of Rolling Hills and Rolling Hills Estates. 

All major landslides are classified as rock slides (Haydon 2007) where the moving mass 

includes bedrock and younger alluvium, the main body generally stays intact, and 

movement can be described as either translational or rotational, although larger landslides 

exhibit complex movements (both translational and rotational). The basal surface of 

rupture on these deep-seated landslides (> 15 m in thickness) typically occurs along 

bedding planes of the tuffaceous unit of the Altamira Shale, the oldest member of the 

middle to upper Miocene Monterey Formation, parts of which have been altered to 

bentonite and montmorillonite (Woodring et al. 1946; Merriam 1960). Relatively 

impermeable tuff beds rest between clay-altered, highly absorbent bedding planes that act 

as a conduit for groundwater (the basal surface of rupture) and studies have observed a 

direct correlation between precipitation and landslide activity (Ehlig and Bean 1982; Kayen 

et al. 2002; Haydon 2007; Calabro et al. 2010). Landslide activity (Figure 1 and Table 2) 

was defined by the California Geological Survey using aerial photographs from 1952-1959 
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and 1994, and field work in the 1990s (Haydon 2007); it is based on the terminology 

proposed by Keaton and DeGraff (1996). Dormant slides are those that have not moved for 

at least 100 years – old/relict slides have not moved in the last 10,000 years. They show 

evidence of erosion and are covered with vegetation. Active/Historic slides are those that 

have occurred recently (since the 1950s) or “within historic time,” defined as occurring 

within the last 100 years.  

 The landslide complex was dormant prior to reactivation in 1956 and possibly 

caused by two anthropogenic factors that may have increased groundwater pore pressure 

(although Kayen et al. (2002) acknowledge a lack of hydrologic data to support this 

hypothesis). First, Rancho Palos Verdes approved the construction of Palos Verdes Drive 

South, a road running perpendicular to the coastline, which cut through the slope toe. 

Material and fill used for construction were piled nearby, potentially causing rapid loading. 

Second, irrigation practices from nearby neighborhoods may have contributed to elevated 

groundwater levels (Ehlig 1992). The 1956 reactivation occurred within portions of AcPB. 

In February 1974, southern AC also began moving (Proffer 1992). Heavy rainfall in early 

1978 accelerated deformation within the entirety of both AcPB and AC landslides (Ehlig 

and Bean 1982). A 1979 field investigation by Proffer (1992) concluded that short-term 

instability of AC was caused by increased groundwater levels and long-term instability by 

wave erosion of the toe. Eight dewatering wells were installed within the AC landslide 

boundary in 1980, significantly mitigating landslide hazard (Proffer 1992). In 1984, 

dewatering wells were also installed in the AcPB landslide (Ehlig 1992; Kayen et al. 2002; 

Zeiser Kling Consultants Inc. 2006). Other active landslides in the area were moving by 

the early- to mid-1980s (Ehlig 1992; Proffer 1992) and have been continuously moving 

since, exhibiting accelerated deformation rates (> 2.6 m/year) during rainy months and 

decelerated deformation rates (< 1 m/year) during dry months (Kayen et al. 2002; Calabro 

et al. 2010). In recent years, coastline roads (including Palos Verdes Drive South) had to 

be repaired, replaced, or rerouted (City of Rancho Palos Verdes 2012) and mitigation of 

the landslide complex is a continued topic of debate (Osier 2018). 
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Figure 8.1: Study area. Major landslides, colored based on landslide activity (Haydon 

2007), are Ancient Portuguese Bend (AnPB), Active Portuguese Bend (AcPB), Valley View 

Graben (VVG), Parcel 4 (P4), Abalone Cove (AC), Klondike Canyon (KC), Beach Club 

(BC), and Flying Triangle (FT). Contour intervals are 10 m. GPS monuments are displayed 

as red triangles.  
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Table 8.2: Landslide characteristics. 

Landslide Type Thickness 
(ft, m) Activity 

Movement 
Direction 
(azimuth) 

Interpretation 
Confidence 

Level 

AnPB Rock 
Slide 

>50,  
>15.24 

Dormant 
Old/Relict 180 Definite 

AcPB Rock 
Slide 

>50,  
>15.24 Active/Historic 180 Definite 

VVG Rock 
Slide 

>50,  
>15.24 

Dormant 
Old/Relict 180 Definite 

P4 Rock 
Slide 

10-50,  
3.05-15.24 

Dormant 
Old/Relict 180 Definite 

AC Rock 
Slide 

>50,  
>15.24 Active/Historic 220 Definite 

KC Rock 
Slide 

>50,  
>15.24 Active/Historic 220 Definite 

BC Rock 
Slide 

>50,  
>15.24 Active/Historic 220 Definite 

FT Rock 
Slide 

>50,  
>15.24 Active/Historic 230 Definite 

 

8.4 Data and Methodology 
 
8.4.1 GPS 

 GPS surveys were conducted by Michael McGee, of McGee Surveying Consulting, 

on behalf of the City of Rancho Palos Verdes. Sixty-six GPS monuments were placed in a 

~4 km2 area, with a focus on the more active AcPB, KC, BC, and AC landslides, and 

partial coverage of AnPB and FT (Figure 8.1). This GPS survey was a continuation of an 

original survey which began in 1994 and included 149 monuments, but 89 monuments 

were lost or destroyed, some due to rapid landslide deformation mainly in AcPB (McGee 

2007). McGee resumed annual monitoring of all GPS monuments (60 found from 1994 

survey and six new) in September 2007, and continued through May 2017 (most recent 

dataset available). A subset of monuments (about 30) were chosen for semiannual 

monitoring beginning February 2012 and triannual monitoring beginning April 2014. All 

the information for this project, entitled ‘Portuguese Bend Landslide Monitoring Surveys,’ 

including project history, datums and reference system, data collection, equipment and 
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processing, Global Navigation Satellite System (GNSS) network diagram and description, 

accuracy, and quality control/quality assurance may be found in a series of reports from 

the City of Rancho Palos Verdes (McGee 2007-2017). These GPS measurements are 

accurate to 1 cm (in relatively stable areas) and 2 cm (in active areas) between annual 

readings (McGee 2007-2017). 

 

8.4.2 COSI-Corr 

 Co-registration of Optically Sensed Images and Correlation (COSI-Corr) is an 

optical remote sensing technique and ENVI software module (Leprince et al. 2004; 

Leprince et al. 2007). It was originally created to measure ground deformation from seismic 

activity with satellite or aerial optical image pairs – a pre-event image and post-event image 

(Ayoub et al. 2017). COSI-Corr measures two-dimensional (horizontal) ground 

deformation between image pairs, with displacement vectors in the north/south and 

east/west directions. Although designed to measure earthquake-induced deformation, 

COSI-Corr has been successfully used to measure geomorphological and surficial 

processes (Vermeesch and Drake 2008; Necsoiu et al. 2009; Bridges et al. 2012; Lucieer 

et al. 2014; Turner et al. 2015). 

 Eight WorldView-2 high resolution (50 cm) panchromatic optical images were 

acquired between 20 February 2011 and 16 February 2016. Images were obtained at an 

incidence angle of 20° in the 450-800 nm spectral range. Operated by DigitalGlobe, images 

were processed to the map scale 1:12,000 orthorectified level. Full-size WorldView-2 

images were cut to only include the spatial extent covered by the landslides identified in 

Figure 8.1 and Table 8.2 and distributed by ESA through a written proposal (ID 36617). 

The final output to COSI-Corr processing is a deformation map which includes two-

dimensional horizontal displacement measurements (north/south and east/west 

components) and a signal-to-noise ratio (SNR) at each pixel. SNR values range from 0 (all 

noise) to 1 (no noise). This procedure was then repeated for all image pairs and yielded 

nine deformation maps, which were then summed to produce a total deformation map. 
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8.4.3 PSI 

 Persistent Scatterer Interferometry (PSI) is a remote sensing technique that 

measures geophysical and geometric changes of ground targets using radar image stacks 

(Ferretti et al. 2000; Ferretti et al. 2001). Coherent points, known as persistent scatterers 

(PS), are identified in every image to produce a point cloud, and each PS within the point 

cloud includes sufficient data to create a displacement-time series. PSI has been widely 

used for long-term monitoring of dynamic processes, with many recent studies focusing on 

landslides (Bianchini et al. 2015; Oliveira et al. 2015; Piacentini et al. 2015; Sara et al. 

2015; Sun et al. 2015; Xue et al. 2015; Carlà et al. 2016; Ciampalini et al. 2016; Bayer et 

al. 2017; Béjar-Pizarro et al. 2017; Bianchini et al. 2017; Bouali et al. 2017; Rosi et al. 

2018). 

 Forty descending COSMO-SkyMed radar images (level 1A: single-look complex 

slant products) were initially acquired between 19 July 2012 and 27 September 2014 by 

the Italian Space Agency (ASI). Images were acquired at a frequency of 9.6 GHz – 

corresponding wavelength of 3.1 cm (X-band) – in STRIPMAP HIMAGE mode (~26° 

incidence angle) with a spatial resolution of 3 m.  Images were provided by the European 

Space Agency (ESA) through a written proposal (ID 31684). Level 1A products arrive as 

focused data in slant range, complex form with no Doppler projection, and include the 

following pre-processing steps (performed by ASI from Level 0 RAW products): gain 

receiver compensation, internal calibration, data focusing, statistics estimation of the 

output data, and data formatting into output (Italian Space Agency 2009). COSMO-

SkyMed radar images were processed with the ENVI + SARscape PSI software package 

(Sarmap 2017). The result is a PS point cloud. Every PS in the point cloud contains the 

following information: displacement (mm) at each acquisition; average velocity 

(mm/year); coherence; location within three-dimensional, geocoded coordinate system  

(x, y, z); line-of-sight incidence angle and azimuth direction of radar signal; original 

location within slant range coordinate system (azimuth, range); precision estimates of 

height (m) and velocity (mm/year). 

  



163 
 

8.5 Results and Discussion 
 Maps illustrating the spatial extent of incremental displacement as measured by 66 

GPS stations (McGee 2007) between 24 September 2007 and 3 May 2017 are provided in 

Figure 8.2. A maximum displacement > 20 m (average velocity > 2 m/year) was measured 

at the toe of AcPB. The most active region of the landslide complex is within the AcPB 

landslide block, which experienced incremental displacements > 1.5 m between annual 

surveys (orange and red arrows in Figure 8.2). Other regions of the landslide complex that 

experienced displacements between 1 m and 1.5 m (light green and yellow arrows in Figure 

8.2) include AC (Figures 8.2A, 8.2C, 8.2D, and 8.2I), FT (Figures 8.2A-8.2E), and AnPB 

(Figures 8.2A and 8.2D) although the latter is mapped as dormant old/relict (Figure 8.1).  

 Average horizontal downslope velocity maps, as measured between eight 

chronological WorldView-2 images between 20 February 2011 and 16 February 2016 

using COSI-Corr, are provided in Figure 8.3. The chronological maps show average 

horizontal velocity values ranging from 0.5 m/year to 6.2 m/year. Areas with an average 

horizontal velocity < 0.5 m/year are transparent and are either stable or fall within the noise 

range. These average horizontal velocity results are draped over a 3 m digital elevation 

model (LAR-IAC 2006) to illustrate that deformation occurs in the downslope direction.  

 Widespread deformation occurred throughout the Portuguese Bend landslide 

complex between 20 February 2011 and 29 May 2011 (Figure 8.3A); this timeframe is also 

encapsulated in GPS displacement measurements between 25 October 2010 and 3 October 

2011 (Figure 8.2D). These widespread, relatively high rates of deformation in early 2011 

correlate with a wet rainy season (December 2010 through March 2011). As shown in 

Figure 8.4, precipitation during this period was well above average in neighboring Los 

Angeles, California, with a total of 15.15 inches of rain.  

 GPS, COSI-Corr, and precipitation data can be combined to create a unique, 

descriptive timeline of annual deformation in and around the Portuguese Bend landslide 

complex. 
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Figure 8.2: Incremental displacement (m) measured through annual GPS surveys from 

McGee (2007): (A) 24 September 2007 – 10 December 2008; (B) 10 December 2008 –  

18 November 2009; (C) 18 November 2009 – 25 October 2010; (D) 25 October 2010 –  

3 October 2011; (E) 3 October 2011 – 14 September 2012; (F) 14 September 2012 –  

4 October 2013; (G) 4 October 2013 – 19 September 2014; (H) 19 September 2014 –  

8 October 2015; (I) 8 October 2015 – 5 October 2016; (J) 5 October 2016 – 3 May 2017. 

Displacement magnitude shown using color scale (green to red). Displacement direction 

shown using arrows (displacement direction unavailable for H, I, and J). 
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Figure 8.3: Incremental average horizontal downslope velocity (m/year) between 

chronological Worldview-2 image pairs. (A) 20 February 2011 – 29 May 2011;  

(B) 29 May 2011 – 17 February 2012; (C) 17 February 2012 – 9 November 2012;  

(D) 9 November 2012 – 15 September 2013; (E) 15 September 2013 – 29 March 2014;  

(F) 29 March 2014 – 17 September 2015; (G) 17 September 2015 – 16 February 2016. 

AnPB and AcPB are referenced in (F) and the yellow rectangle delineates the approximate 

extent of the reference map provided in Figure 8.1. 
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Figure 8.4: Precipitation time series for Los Angeles, California between January 2007 

and January 2018 (NOAA 2018). 

 

 2007 and 2008. GPS survey begins 24 September 2007. Landslide deformation  

> 1.5 m occurs within the western and central regions of AcPB and FT (orange and red 

arrows in Figure 8.2A). Deformation between 1 m and 1.5 m is measured in the 

southeastern region of AnPB and northern/northwestern regions of AcPB (yellow arrows 

in Figure 8.2A). KC and BC are relatively stable. 

 2009. Deformation across AcPB, although similar in extent to previous years, 

decreases slightly (there are more orange arrows in the central region of AcPB, Figure 

8.2B).  Eastern toe of FT still measures ~1 m displacement. AnPB and AC are more stable. 

KC and BC are still stable. 

 2010. Central region of AcPB remains the most active and deformation has 

increased since 2009 (more red arrows, Figure 8.2C). Activity levels of other landslides 

remain the same as in 2009. 

 2011. Deformation increases within and around the Portuguese Bend landslide 

complex (Figures 8.2D and 8.3A) and correlates with rainy season (December 2010 

through March 2011) with well above-average precipitation (Figure 8.4). GPS-measured 
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displacements exceed 1 m in western and central AcPB, AC, and FT (Figure 8.2D). 

Average horizontal downslope velocity measurements by COSI-Corr show widespread 

instability, including areas not mapped as landslides, between February and May 2011 

(Figure 8.3A). The study area experiences little significant deformation (none in the 

landslide complex) for the remainder of the year (Figure 8.3B). 

 2012. AcPB remains active throughout the year as shown by both GPS (Figure 

8.2E) and COSI-Corr (Figure 8.3C). Adjacent slides also experience activity, such as FT 

and AnPB. Slides outside the Portuguese Bend landslide complex undergo movement as 

well. 

 2013. Most active landslide during this year is P4. Average horizontal downslope 

velocity in P4 peaks at ~4 m/year through September (Figure 8.3D) before decreasing to 

~3 m/year for the remainder of the year (Figure 8.3E). AcPB remains active, although 

appears to be dominated by vertical deformation since three-dimensional GPS 

measurements indicate > 1.5 m displacement (Figure 8.2F) while two-dimensional 

(horizontal) COSI-Corr measurements do not capture significant deformation (Figures 

8.3D and 8.3E). 

 2014 and 2015. No significant horizontal deformation measured by COSI-Corr 

(Figure 8.3F) until September 2015 (Figure 8.3G). GPS measurements continue to show 

activity throughout AcPB while adjacent landslides are stable (Figures 8.2G and 8.2H).  

 2016. Average horizontal downslope velocity within AcPB ranges from 0.5 m 

(throughout landslide) to 3 m (near head of landslide) between September 2015 and 

February 2016 (Figure 8.3G). Although GPS coverage at head of AcPB is sparse, 

measurements indicate > 3 m displacement at the two of AcPB (Figure 8.2I).  

 2017. GPS measurements continue to show relatively high displacements (> 2 m) 

across AcPB through May (Figure 8.2J). 

 GPS and COSI-Corr measurements can also be directly compared to analyze 

temporal changes at a single location in the landslide complex. A velocity time series from 

the AcPB toe is provided in Figure 8.5. AcPB toe maintains a deformation rate between 

0.8 and 1.0 m/year from late 2007 through early 2009. Deformation then accelerates to a 

peak velocity > 1.6 m/year in June 2010. The toe then experiences a prolonged 
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deceleration. After peak acceleration in June 2010 the toe steadily decelerates to a 

minimum velocity of ~0.2 m/year in July 2014. GPS and COSI-Corr data show a 

deceleration trend, although the latter shows a semi-cyclical fluctuation with a period of 

~18 months. The final GPS and COSI-Corr average velocity point indicates another period 

of acceleration. Both datasets provide the greatest discrepancy in velocity measurements: 

~0.8 m/year (GPS) and ~1.5 m/year (COSI-Corr).  

 

 
Figure 8.5: Average velocity time series with GPS (solid curve) and COSI-Corr (dashed 

curve) at GPS station UB-2 located at the toe of AcPB (the most active region of the 

Portuguese Bend landslide complex). 

 

 Neither GPS nor COSI-Corr can accurately measure extremely slow deformation 

of < 16 mm/year (Cruden & Varnes 1996), so PSI is required for these measurements. 

Figure 8.6 shows PSI average velocity measurements between 19 July 2012 and  

27 September 2014 across the Portuguese Bend landslide complex. PSI average velocity is 

measured in the line-of-sight direction (26° from nadir, N85°W), with negative values 

indicating ground movement away from the satellite (which corresponds to downward 

and/or westward directions). There are five areas of interest that stand out when comparing 

PSI results with GPS and COSI-Corr. 

 AcPB Body. As mentioned before, this is one of the more active areas within the 

landslide complex. A lack of PS suggest decorrelation due to rapid deformation (which 
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occurs at a velocity > 2.5 cm/year). PS that border AcPB exhibit velocity around  

-8 mm/year. PS presence within AcPB appear to act as a boundary around high landslide 

activity areas, which are approximated well by GPS displacement measurements (yellow, 

orange, and red arrows in Figure 8.2). 

 AC and AcPB Toe. This region also shows high landslide activity (Figures 8.2 and 

8.3). However, presence of PS suggests there is no decorrelation due to rapid deformation 

and, instead, high landslide activity is localized (e.g., GPS stations are placed in areas with 

local instability and nearby areas may not be as unstable, hence PS presence). In fact, there 

are no PS along the coast (Figure 8.6), which is where most GPS monuments are located 

(see Figures 8.1 and 8.2). PS presence in this region once again act as a boundary to the 

high landslide activity occurring along the coast. 

 KC. Houses in a residential neighborhood in Rancho Palos Verdes were built on 

the KC landslide, which was mapped as an active slide (Figure 8.1). These houses appear 

to be moving with KC at a velocity between -6 and -8 mm/year (red PS in Figure 8.6). PSI 

velocity values follow a general trend through this neighborhood: houses undergoing 

greatest velocity are in the west (atop KC, red PS), toward the southeast are houses with 

moderate velocity (approximately -4 mm/year, yellow PS), and further east are stable 

houses (green PS). 

 AnPB and VVG Scarp Reactivation. A region of red and yellow PS highlights a 

possible reactivation near the scarp of AnPB and VVG (Figure 8.6), which has been 

mapped as a dormant slide. Previous mapping efforts (Haydon 2007) have interestingly 

identified three small, historic soil slides (shallow, < 3 m deep) within AnPB and VVG 

(small brown areas, Figure 8.1). PSI results indicate the possibility of a larger, slow-moving 

landslide with a triangular shape that mirrors the location of the historic soil slides. The 

historic soil slides may be small, surficial slides caused by relatively slow movement of a 

larger block. PSI results give a reason to believe there may be an extremely slow 

reactivation near the historic scarp of the AnPB and VVG landslides. 

 P4. This landslide was previously mapped as a dormant slide (Haydon 2007) and 

has not been studied in any recent landslide analysis of the Palos Verdes Peninsula. P4 is 

home to the 0.40-km2 Three Sisters Reserve, one of ten reserves that make up the Palos 
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Verdes Nature Preserve. COSI-Corr total horizontal displacement measurements indicate 

the entire region surrounding P4 is undergoing significant deformation: an average velocity 

of 1.20 m/year (2011-2016) and peak velocities exceeding 4 m/year in early 2011 and 

between November 2012 and March 2014. PSI results support the general assessment of 

P4 instability (Figure 8.6): there are few PS within the P4 (except for relatively stable points 

in the south and west), and there is a large areal swath of relatively high-velocity PS (red 

and orange, between -5 and -8 mm/year) in the residential neighborhood to the north. 

 

 
Figure 8.6: Average velocity (mm/year) between 19 July 2012 and 27 September 2014 

measured using 40 COSMO-SkyMed images with PSI processing. Negative velocity values 

measure deformation away from the satellite. 
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8.6 Final Landslide Deformation Map 
 A final landslide deformation map is provided in Figure 8.7. This map, which 

segments landslide activity based on Cruden and Varnes (1996) landslide velocity scale, is 

divided as follows: slow (velocity > 1.6 m/year), very slow (velocity between 16 mm/year 

and 1.6 m/year), and extremely slow (velocity < 16 mm/year). Stable areas, those with no 

sustained deformation throughout the study period, are not labeled. Below are listed 

additional notes on how PSI, COSI-Corr, and GPS deformation data were converted into 

the final landslide deformation map. 

 Slow Landslides. No location within the landslide complex moved at an average 

velocity > 1.6 m/year over the entire span of GPS or COSI-Corr observations. However, 

14 GPS monuments experienced a velocity > 1.6 m/year for a portion of the study period. 

The areal extent of these 14 GPS monuments cover the slow landslide area in Figure 8.7.  

 Very Slow Landslides. These are portions of the landslide complex that were 

consistently moving, as measured by COSI-Corr and GPS. There was typically a lack of 

PS presence in these areas since a velocity of 16 mm/year is near the maximum PS velocity 

threshold of 25 mm/year.  

 Extremely Slow Landslides. Velocity < 16 mm/year is below the accuracy of 

COSI-Corr and GPS measurements and, therefore, mapping of these areas relied 

exclusively on PSI results. 

 Stable Areas. Areas were considered stable if (1) COSI-Corr and GPS 

measurements were below the accuracy threshold and (2) PS with a velocity of ~0 mm/year 

were present. 
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Figure 8.7: Activity within landslide complex based on Cruden and Varnes (1996) 

landslide velocity scale. Slow landslide area (velocity > 1.6 m/year) denoted by red 

diagonal hashes. Very slow landslide area (velocity between 16 mm/year and 1.6 m/year) 

denoted by orange horizontal hashes. Extremely slow landslide area (velocity < 16 

mm/year) denoted by yellow diagonal hashes. Landslide activity, as previously mapped 

(McMillan & Haydon 1998a, 1998b, & 1998c; Haydon 2007), same as Figure 8.1. 

 

8.6 Conclusion 
 Continuously-moving landslides, such as the Portuguese Bend landslide complex 

on the Palos Verdes Peninsula in southern California, are ideal locations for multi-sensor 

monitoring. The premise is that each technique (PSI, COSI-Corr, and GPS), when analyzed 

together, provides an advantage where the others might be limited (see Table 8.1). Forty 

COSMO-SkyMed radar images (2012-2014) were processed using PSI to measure average 
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velocity, eight WorldView-2 (2011-2016) optical images were processed using COSI-Corr 

to measure average horizontal downslope velocity, and 66 GPS monuments (2007-2017) 

were used to measure incremental displacement. This approach allowed for delineation of 

active zones within the landslide complex (during the study period between 2007 and 

2017). A final landslide deformation map was produced (Figure 8.7), which divides the 

landslide complex into three activity categories based on the Cruden & Varnes (1996) 

velocity scale: slow (> 1.6 m/year), very slow (between 16 mm/year and 1.6 m/year), 

extremely slow (< 16 mm/year), and stable. Average velocity measurements obtained in 

this study match those of previous studies (Calabro et al. 2010; City of Rancho Palos 

Verdes 2012) and older observations (Ehlig 1992; Proffer 1992; Kayen et al. 2002; Haydon 

2007). 
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Chapter 9: Future Work in Landslide 
Prediction 

 
 

9.1 Introduction 
 The consequences of slope instability (e.g., landslides, rockfalls, debris flows) are 

severe across the world. United States Geological Survey (USGS) estimated a cost of $3.5 

billion annually was required to repair slope instability damages in US, 25-50 deaths 

annually, reduced real estate values, loss of productivity, and damage to natural 

environments (USGS 2005). A 2012 study in Geology found that loss of life is usually 

underestimated and between 2004 and 2010 a total of 2,620 fatal landslides caused  

32,322 deaths globally, which is an order of magnitude greater than previously calculated 

(Petley 2012). A recent example, the Oso, Washington mudslide which occurred on  

March 22, 2014 covered an area of approximately 1 square mile, killed 43 people and 

caused approximately $42M in damage and clean-up according to Governor Inslee of 

Washington state (AP 2014; BBC 2014), and cost $28.1M to rebuild highway SR 530 

(WSDOT 2015). The complexity and confusion surrounding predicting when landslides 

occur can be summed up by the responses of officials and academics during the two days 

after the Oso slide: John Pennington (Snohomish County Department of Emergency 

Management Director) claimed the slide was “completely unforeseen” and “came out of 

nowhere,” yet Daniel Miller (geomorphologist at the Earth Systems Institute) wrote a 

report in 1997 basically predicting this landslide (Green et al. 2014) having knowledge of 

the unstable geology of the region (Haugerud 2014). The Oso mudslide only partially 

illustrates the difficulties in dealing with landslides: not only are they frequent, seemingly 

unpredictable, and can cause heavy damage, but the myriad of landslide triggers and 

mechanisms (Highland & Bobrowsky 2008) can result in unstable slopes in all 50 states 

(Radbruch-Hall et al. 1982). Types of landslides differ widely by region, including 

mountainous avalanches and slides (Radbruch-Hall et al. 1976), alluvial fan slides (Blair 
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and McPherson 1994), or unstable bluffs along lakeshore environments (Chase and Kehew 

2000). A common complaint after devastating landslides of any sort is the lack of 

forewarning. This has led research into the study of landslide forecasting.  

 

9.2 Future Work in Landslide Prediction 
 Conventional monitoring techniques require the installation of invasive, in situ 

instrumentation such as inclinometers, piezometers, and/or accelerometers to measure 

rotational displacement, ground water levels (convert to pore pressure), and the change in 

displacement rates, respectively. The installation of this instrument suite, although 

exceptionally useful (e.g., inclinometers alone can measure landslide movement direction, 

magnitude, rate, and depth), does have some downsides, including requiring upfront cost 

of installation and continued upkeep of the instruments, the common accidental improper 

installation resulting in the underachievement of actual slope monitoring (Stark and Choi 

2008), and alteration of the environment in and on top of the slope. Regardless, much 

progress has been made in the way of in situ data analysis toward landslide monitoring and 

slope failure prediction. 

 Fukuzono (1985) and Voight (1989b) developed a relationship between a material’s 

time of failure and its strain rate. This relationship has been successfully applied to the 

prediction of slope failure using in situ data. Voight (1989a), Kilburn and Voight (1998), 

and Petley et al. (2002) applied the relationship proposed by Voight (1989b). The authors 

quantified a relation between the strain rate applied to a material and it’s time of failure 

between metals (e.g., aluminum, nickel, and titanium) and soils (e.g., mixed mineral soil, 

Haney clay). The relationship is as follows: 

Ω̇−𝛼𝛼Ω̈ − 𝐴𝐴 = 0 

where α and A are constants and Ω is the strain of the deforming material (equation 1 from 

Voight 1989b). Time of failure may be approximated by plotting the inverse velocity (Ω̇−𝛼𝛼) 

or acceleration (Ω̈), on the y-axis, with respect to time. Material failure occurs when the 

inverse velocity approaches zero (Ω̇−𝛼𝛼 → 0) or, likewise, when the acceleration 
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asymptotically approaches infinity (Ω̈ → ∞). The approximate time at which Ω̇−𝛼𝛼 → 0 or 

Ω̈ → ∞ occurs is the time at which the material has failed. 

 Figure 9.1 shows two example plots by Petley et al. (2002) where two sets of 

readings from inclinometers located within the Selborne landslide were converted into Ʌ 

measurements (with units of days/millimeter). Since 1/v = 0 is impossible, applying a basic 

best-fit trend line in the form of Ʌ = mt + b (for a linear Ʌ-t relationship), where m is the 

slope and b is the Ʌ -intercept, and solving for t yields a predicted time for slope failure. A 

linear Ʌ-t relationship has been observed in cases where brittle deformation or failure along 

pre-existing planes of weakness (e.g., shear zones, faults, scarps) occurs (Petley et al. 2002; 

Kilburn and Petley 2003; Petley 2004). Nonlinear Ʌ-t relationships have also been 

observed and have been interpreted as landslides exhibiting a ductile failure mechanism 

(Angeli et al. 1989; Petley et al. 2002; Petley and Petley 2004; Federico et al. 2012; 

Wartman & Malasavage 2013). A time integration of the model from Voight (1989b) 

allows for the calculation of the landslide velocity, V(t): 

𝑉𝑉(𝑡𝑡) = �𝐴𝐴(𝛼𝛼 − 1)�𝑡𝑡𝑓𝑓 − 𝑡𝑡� + 𝑉𝑉𝑓𝑓1−𝛼𝛼�
1

1−𝛼𝛼 

where Vf is the velocity at the time of failure (tf). Wartman & Malasavage (2013) found 

that predicting slope failures using linear regression works better “with data collected 

closer to failure… but at the cost of reduced warning time” while nonlinear models 

“produce an excellent fit over the full time range of observed displacements” but requires 

“back-fit empirical parameters” (p747) which limits its application for landslide failure 

predictions. 
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Figure 9.1: Ʌ-t plots for two inclinometers experiencing different deformation rates at 

separate times. (A) This inclinometer experienced linear acceleration (slope of trend line) 

until failure at day 180. (B) This inclinometer experienced steady-state creep (horizontal 

trend line) until day 152 when a sudden increase in acceleration was observed until failure 

on day 180. Image taken from Petley et al. (2002).  

 

 Unfortunately, in situ instrumentation is costly and not practical to use for 

comprehensive monitoring and prediction of largescale landslides. Remote sensing 

(satellite-based optical and radar imagery) has proven to be a nonintrusive and cost-

effective alternative option for the long-term monitoring of landslides (Mantovani et al. 

1996; Temesgen et al. 2001; Metternicht et al. 2005; Tralli et al. 2005). There are a few 

advantages that remote sensing has over in situ measurements: (1) the ability to repeatedly 

cover large swaths of land over relatively short periods of time, (2) the capability of 

acquiring data over an entire slope as opposed to point-source data, and (3) the fact that 

remote sensing is noninvasive and does not impact the environment or geotechnical 

infrastructure in any way. Many studies have demonstrated the advantage of satellite 

remote sensing techniques for landslide monitoring (Rathje et al. 2006; Raspini et al. 2013; 

Suncar et al 2013; Schaefer et al. 2015; Schlögel et al. 2015). Rathje et al. (2006) found 

that satellite-based optical imagery allowed researchers to “capture the extent of damage” 

and “to consider fully the context of failure” (p841). Suncar et al. (2013) later showed that 

deformation rates calculated from high resolution optical imagery correlated well with GPS 
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ground stations. Schlögel et al. (2015) were able to use satellite-based radar imagery to 

map displacement patterns to infer geomorphological structure and landslide deformation 

type (e.g., rotational slide, translational slide, and complex slide). Even with successful 

application of satellite-based techniques towards landslide monitoring, there have been no 

studies utilizing the satellite derived data toward landslide prediction, like that of in situ 

measurements plotted in Ʌ-t space, as described by Voight (1989a). 

 Information gained from landslide prediction will also benefit landslide hazard and 

risk assessments. Landslide hazard assessment determines the probability of landslide 

occurrence within a specific period. Landslide risk is the product of its hazard, the potential 

outcomes, and the elements (e.g., infrastructure, people, etc.) at risk. An example risk 

assessment workflow, recreated from Dai et al. (2002), is provided in Figure 9.2. Most of 

the data required for landslide hazard and risk assessment (Triggering Factors, Preparatory 

Factors, Landslide Inventory, Land Use, and Elements at Risk) can be obtained through 

geographic information systems (GIS) layers from various sources. Probability of 

Landslide and Runout Behavior can utilize results from the inverse velocity method and 

slope stability models. The Vulnerability Assessment, Hazard Assessment, and Risk 

Assessment can be performed like previously published geotechnical and landslide 

assessments (Dai et al. 2002; Dilger and Halstead 2005; Pantelidis 2011 and citations 

therein; Anderson & Rivers 2013; Metzger et al. 2014; Hutchinson et al. 2015). 
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Figure 9.2: Landslide hazard and risk assessment framework (recreated from Dai et al. 

2002). 

 

9.3 Preliminary Results in Landslide Prediction 
 The first preliminary test of applying displacement time-series and Ʌ-t plots toward 

slope monitoring and prediction have been conducted on a rock slope in southeastern 

Nevada (slope studied in Chapters 2 and 3). The slope in question has experienced two 

forms of slope instability since blasting occurred in January 2005: (1) occasional rockfalls, 

and (2) rotational (~2-5 ft) and extensional displacements (up to 20 ft) concentrated along 

the scarp. The objective of this test was to examine whether the use of SB-InSAR could 

(1) identify the large, unstable portion of the slope, and (2) monitor the deformation 

experienced on the slope, mainly the fact that the slope was stable prior to January 2005 

and unstable afterwards. 

 Although the slope has yet to fail, a Ʌ-t plot (Figure 9.3) was generated for one of 

the three DS points exhibiting relatively high displacement along the slope face  

(Figure 3.7). The Ʌ-t plot illustrates the variable amounts of deformation and displacement 

mechanism types experienced by the slope between 1992 and 2011. The slope appears to 

become more stable from 1992 to 2001, where the inverse velocity increases from 100 

days/mm to almost 1,000 days/mm. Figure 9.3(B) shows the zoomed-in portion of the Ʌ-t 

plot from 2003 to 2010, where the overall Ʌ-t trend appears to be nonlinear (ductile). Figure 

9.3(C) then shows the portion of the Ʌ-t plot from 2009 to 2010, where the overall Ʌ-t plot 
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has changed to a linear (brittle) inverse velocity curve. This indicates a potential change in 

displacement regime (e.g., a transition from extensional displacement to rotational 

sliding?). Further investigation is required. 

 

 
Figure 9.3: Inverse velocity plots of one DS point generated from the SqueeSAR™ 

technique at slope S-1 (aka Richmond Slide) from Figure 3.7. 
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 The second preliminary result continues the work on the Palos Verdes Peninsula 

landslide complex discussed in Chapter 8. In additional to the spatial analysis of Persistent 

Scatterer Interferometry (PSI), Co-registration of Optically Sensed Images and Correlation 

(COSI-Corr), and global positioning system (GPS) displacement and velocity data, a 

temporal analysis of these data at specific locations within a landslide can yield results on 

landslide history (e.g., periods of acceleration and deceleration). A velocity-time series 

from measurements at a GPS monument located on the toe of AcPB (Figure 8.1), along 

with corresponding COSI-Corr horizontal velocity calculated from Kriging interpolation 

(from Figure 8.6), is provided in Figure 9.4. Average velocity (𝑉𝑉�) is calculated with the 

following equation: 

𝑉𝑉� =  
𝑑𝑑𝑇𝑇

(𝑖𝑖𝑛𝑛+1 − 𝑖𝑖𝑛𝑛) 

where 𝑑𝑑𝑇𝑇 is the total displacement (GPS) or total horizontal displacement (COSI-Corr) and 

(𝑖𝑖𝑛𝑛+1 − 𝑖𝑖𝑛𝑛) is the timespan between image pairs. Landslide activity at the AcPB toe can be 

divided into three temporal activity states. 

 

 
Figure 9.4: Velocity-time series of GPS monument (Figure 8.1) and COSI-Corr in m/year. 

Each point is plotted at the middle date within image pairs (e.g., average velocity between 

February 20, 2011 and May 29, 2011 is plotted on April 10, 2011).  
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 September 2007 – June 2010. AcPB toe maintained a deformation rate between 

0.8 and 1.0 m/year from late 2007 through early 2009. Rate of deformation then accelerated 

to a peak > 1.6 m/year in June 2010. Only GPS data are available for this period. 

 June 2010 – July 2014. The toe then experienced a prolonged deceleration. Post-

peak acceleration in June 2010, the toe steadily decelerated to a minimum deformation rate 

of ~0.2 m/year in July 2014. GPS and COSI-Corr data show a deceleration trend, although 

the latter shows a semi-cyclical fluctuation with a period of ~18 months.  

 July 2014 – December 2015. The final GPS and COSI-Corr average velocity point 

indicates another period of acceleration occurred. Unfortunately, neither dataset extends 

past January 2016. Both datasets also provide the greatest difference in deformation rates: 

GPS at ~0.8 m/year and COSI-Corr at ~1.5 m/year.  

 This is an example of preliminary temporal analysis of GPS, COSI-Corr, and PSI 

data within the landslide complex on the Palos Verdes Peninsula. The remainder of this 

paper focuses on spatial analysis of velocity measurements, but future work in temporal 

analysis includes spatial representation of acceleration/deceleration periods (e.g., annual 

maps that show which areas of acceleration, deceleration, or constant velocity across the 

landslide complex) and the possibility of landslide prediction (e.g., Inverse Velocity 

Method). 
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Chapter 10: Conclusions 
 

 

10.1 Introduction 
 The motivation of research presented in this dissertation is on the use of remote 

sensing to monitor ground deformation across assets (e.g., stable and unstable slopes, dams, 

and urban infrastructure) as an efficient and cost-effective geotechnical asset management 

approach. Previous chapters have focused on outputs of remote sensing techniques, mainly 

spatial and temporal distribution of ground deformation (in terms of displacement, velocity, 

or acceleration). In contrast, this chapter provides brief concluding thoughts on the remote 

sensing techniques themselves through a series of comparisons. Section 10.2 examines how 

differences in various parameters (e.g., radar wavelength, spatial resolution, coherence, 

etc.) influence deformation results from radar sensors. Section 10.3 compares the 

performance of radar and optical sensors. The remaining sections look at recent and future 

research in combining radar, optical, and Global Positioning System (GPS) datasets 

(Section 10.4) and use of unmanned aerial vehicles (UAVs) for high-resolution data 

collection (Section 10.5).  

 

10.2 Synthetic Aperture Radar Sensors 
 Many satellites include synthetic aperture radar (SAR) sensors (Table 10.1). 

Optimal application of SAR data depends on a variety of parameters. A discussion and 

comparison of these parameters is provided below, including radar wavelength  

(Section 10.2.1), spatial resolution (Section 10.2.2), and coherence (Section 10.2.3). 
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Table 10.1: Historic, present, and future satellites with SAR sensors.  

Satellite Acquisition 
Period Operator 

Radar 
Wavelength 

(Band) 

ERS-1 1991 – 2000 European Space 
Agency (ESA) C-Band 

JERS-1 1992 – 1998 
Japan Aerospace 

Exploration Agency 
(JAXA) 

L-Band 

ERS-2 1995 – 2011 ESA C-Band 

Radarsat-1 1995 – 2013 Canadian Space 
Agency (CSA) C-Band 

ENVISAT 2002 – 2012 ESA C-Band 
ALOS-1 2006 – 2011 JAXA L-Band 
COSMO-
SkyMed 2007 – present Italian Space Agency 

(ASI) X-Band 

TerraSAR-X  
Deutsches Zentrum 

für Luft- und 
Ramfahrt e.V. (DLR) 

X-Band 

Radarsat-2 2007 – present CSA C-Band 
TanDEM-X 2010 – present DLR X-Band 

RISAT-1 2012 – present 
Indian Space 

Research 
Organization (ISRO) 

C-Band 

KOMPSAT-5 2013 – present 
Korean Areospace 
Research Institute 

(KARI) 
X-Band 

ALOS-2 2014 – present JAXA L-Band 
Sentinel-1A 2014 – present ESA C-Band 
Sentinel-1B 2016 – present ESA C-Band 

PAZ 2018 
Instituto National de 
Técnica Aeroespacial 

(INTA) 
X-Band 

COSMO-
SkyMed SG 2018 ASI X-Band 

RADARSAT 
Constellation 2018 CSA C-Band 

SAOCOM-1a, b 2018, 2019 
Comision Nacional de 

Actividades 
Espaciales 

L-Band 

NISAR 2020 ISRO and National 
Aeronautics and L-Band 
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Space Administration 
(NASA) 

TanDEM-L 2022 DLR L-Band 
 

10.2.1 Radar Wavelength 

 The wavelength of a transmitted radar wave is one of the most important parameters 

for a satellite sensor. Radar wavelength (λ) defines the modulo-2π phase change scale and 

is inversely proportional to the phase change (ϕ), as shown in Figure 10.1 and displayed in 

the following equation: 

𝜙𝜙 =  2𝑅𝑅
2𝜋𝜋
𝜆𝜆

 

where R is the slant-range distance is doubled to incorporate the two-way travel distance. 

Since λ is an engineered parameter in the radar sensor (e.g., an independent variable) and 

R is directly proportional to ϕ, λ determines the maximum R that can be measured with one 

full ϕ-cycle. This can be quantified by setting ϕ = 2π (one ϕ-cycle) and solving the previous 

equation for R: 

𝑅𝑅 =
𝜆𝜆
2

 

Therefore, the maximum R measurable by any radar sensor (without repeating phase 

values) is λ/2. For example, ERS-1, ERS-2, and ENVISAT used radar sensors with  

λ ≈ 5.6 cm, resulting in a maximum R ≈ 2.8 cm (between image pairs without phase ramps).  
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Figure 10.1: Radar wave shown as a sinusoidal function with period of 2π radians. 

Identically-colored points (black, red, blue, and green) correspond to a respective phase 

change value between 0 and 2π. Image taken from Part A of the European Space Agency 

InSAR Users Guide (Ferretti et al. 2007a).  

 

 Radar sensors that transmit different wavelengths may also record different phase 

changes due to radar interaction with ground targets that have experienced physical 

changes from various sources (Ferretti et al. 2007b), including vegetation (random 

geometric changes) and irrigation, flooding, or precipitation (changes in moisture content, 

electrical conductivity, and volume of swelling soils). For example, radar sensors using 

longer wavelengths are less affected by random geometric changes (e.g., decorrelation) 

caused by vegetation; thus, L Band performs better than C Band which performs better 

than X band and has been shown in previous studies (Kellndorfer et al. 2004; Garestier et 

al. 2008; Bergen et al. 2009; Wei and Sandwell 2010; Ahmed et al. 2011).  

 Based on the intrinsic wavelength-phase change-slant range distance relationship, 

radar sensors perform better at certain study sites. Short wavelength (e.g., X Band) sensors 

are useful in urban areas and human-made structures and would be beneficial in areas like 

San Pedro, California (Chapter 4) and dams (Chapters 5 and 6). Long wavelength  

(e.g., L and P Band) sensors are useful in rural and vegetated regions and would be 

beneficial in areas like the Portuguese Bend Landslide Complex (Chapters 7 and 8) or in 

regions with cm-scale deformation like the slides along the railroad complex in Nevada 
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(Chapters 2 and 3). Medium wavelength (e.g., C Band) sensors are the most common (see 

Table 10.1) and perform adequately in many regions, which is why these sensors were used 

in many studies (Chapters 2, 3, 5, 6, and 7).  

 

10.2.2 Spatial Resolution 

 SAR dimensions are defined as azimuth (parallel to satellite flight path) and range 

(perpendicular to satellite flight path) as shown in Figure 10.2 (Dzurisin and Lu 2007). The 

best range resolution (ΔRg) attainable with SAR is  

∆𝑅𝑅𝑔𝑔 =
𝑐𝑐

2𝐵𝐵 sin𝜃𝜃  
 

where c is the speed of light, B is the frequency bandwidth of a transmitted radar pulse, 

and θ is the incidence angle. Range resolution “…is controlled by the type of frequency 

modulated waveform and the way in which the return signal is compressed” (Dzurisin and 

Lu 2007, p162). The best azimuth resolution (ΔAg – also shown as δx in Figure 10.2) 

attainable with SAR is 

∆𝐴𝐴𝑔𝑔 = 𝛿𝛿𝛿𝛿 =
𝐿𝐿
2

 

where L is the antenna length. Azimuth resolution is only controlled by the antenna length: 

a shorter antenna results in an improved azimuth resolution. However, although a smaller 

antenna results in better azimuth resolution, data from a small antenna will result in a poor 

signal-to-noise (SNR) ratio due to issues with the pulse repetition frequency and energy 

output from the sensor – see Dzurisin and Lu (2007) for further discussion on this subject.  
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Figure 10.2: Azimuth resolution is parallel to satellite flight path; range resolution is 

perpendicular to satellite flight path. Variables in the image are defined as follows: Vs is 

the satellite velocity; t1, t2, and t3 are chronological points in time; Hs is the satellite height; 

βr is the angular beam width in range direction; τp is the pulse duration; Wa is the footprint 

width in the azimuth direction; Ag is the azimuth resolution; δx is the focused azimuth 

resolution; L is the antenna length. Image provided by Dzurisin & Lu (2007).  

  

 The relationship between antenna length and spatial resolution can be seen with 

actual SAR sensors. TerraSAR-X antenna has a length of 5 m and a spatial resolution of 

1.1 m, ALOS PALSAR antenna has a length of 8.9 m and offers a 10 m spatial resolution, 

and Sentinel-1 has an antenna length of 12.3 m with a spatial resolution of 20 m.  
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10.2.3 Coherence 

 Coherence (γ) is an estimation of the phase noise (or SNR) from an interferogram 

generated by a SAR image pair (u1 and u2) and ranges in value from 0 (presence of 

complete phase noise) to 1 (absence of phase noise). Phase noise between SAR image pairs 

may occur from various sources, including physical changes of ground targets, mis-

registration of SAR images, geometric decorrelation, and systematic noise (Rodriguez and 

Martin 1992). Coherence is calculated over a small-pixel window as follows: 

𝛾𝛾 =  
𝑢𝑢1𝑢𝑢2∗

�𝑢𝑢12𝑢𝑢22
 

where * is the complex conjugate (Ferretti et al. 2007c). Ferretti et al. (2007b) came up with 

five generalizations about expected coherence between SAR image pairs. 

1. Areas with high coherence include urban settings and exposed rock. 

2. Coherence is inversely proportional to temporal resolution in areas with sparse 

vegetation – that is, less time between SAR image pairs will result in relatively high 

coherence. 

3. Areas with dense vegetation (e.g., forests) exhibit low coherence. 

4. Foreshortening will result in areas with no coherence (0) if the perpendicular 

baseline between SAR image pairs exceeds a few meters (more likely than not). 

5. Slopes facing toward the radar sensor will have higher coherence than slopes facing 

away from the radar sensor. 

 

 Coherence may also be used to determine interferogram quality through the 

generation of coherence maps (Goodman 1963; Prati and Rocca 1992; Rodriquez and 

Martin 1992; Rocca et al. 1994). As described in the list above, coherence can measure 

changes in scattering properties of ground targets. Ferretti et al. (2007b) provide a few 

examples as to how coherence maps can measure and monitor changes of different ground 

features; these examples are provided in Table 10.2. 
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Table 10.2: Typical coherence values of ground targets. 

Ground Target Coherence Explanation 

Water bodies Near zero 

Calm water bodies reflect all 
radar waves away from sensor; 
turbulent water bodies change 
scattering properties constantly 

Vegetation 

Ranges from near zero 
(dense) to medium 

(short) depending on 
vegetation type 

Dense vegetation is in constant 
motion (e.g., wind through 
trees); shrubbery and short 

vegetation may not randomly 
scatter radar waves as much 

Human-Made Structures 
and Bare/Exposed Rock High 

Unless these ground targets are 
moving rapidly (destroyed), 
coherence will remain high 

since scattering properties do 
not change much over time 

  

10.3 Radar vs Optical Sensors 
 Radar (active) and optical (passive) sensors each provide a set of pros and cons 

when processing satellite-based remote sensing data. These pros and cons have been 

covered extensively, are taught in introductory remote sensing courses, and are inherent to 

each system. In general, satellite-based radar sensors excel over optical sensors in terms of 

data acquisition flexibility (radar can obtain data when cloudy and, as an active system, at 

night), deformation measurement accuracy (1 mm/year for radar and multiple cm/year for 

optical), and ground property measurements (e.g., geometry, dielectric constant and 

conductivity, surface roughness, and moisture content). Satellite-based radar sensors suffer 

in certain aspects where optical sensors do not, including experiencing reduction in SNR 

and coherence (especially over long time periods), geometric effects from topography that 

require precise processing (e.g., layover, foreshortening), and data loss due to topographic 

shadowing or snow cover.  

 The remainder of this section will include concise discussions on effectiveness of 

radar and optical sensors at study sites discussed in previous chapters. These include:  

(1) benefits of using both sensors for a Rockfall Hazard Rating System (RHRS) and for 

geotechnical asset management (GAM) purposes within a railroad corridor in southeastern 
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Nevada (Chapters 2 and 3), and (2) use of persistent scatterer interferometry (PSI) and co-

registration of optically sensed images and correlation (COSI-Corr) for landslide mapping 

and monitoring on the Palos Verdes Peninsula in California (Chapters 7 and 8).  

 

10.3.1 Rockfall Hazard Rating System and Geotechnical Asset Management 

 A railroad corridor through a canyon system is the study site at which the RHRS 

(Chapter 2) and GAM (Chapter 3) projects were performed. Terrestrial-, UAV-, and 

satellite-based optical imagery were utilized for the RHRS project, while terrestrial- and 

satellite-based optical imagery and satellite-based radar imagery were used for the GAM 

project. In both cases, it was highly beneficial to use a combination of imagery: optical 

images were used for geotechnical site characterization and radar images for deformation 

measurements. Below are a few take-aways regarding the practicality and effectiveness of 

combining optical and radar images for RHRS and GAM projects: 

1. It is helpful to collect optical imagery from various look angles (line-of-sight, LOS) 

to fully capture unstable slopes and rockfall hazards, especially on slopes with a 

wide range of dip angles. For example, vertical slopes will not be seen in optical 

images taken from sensors with LOS at nadir (0° incidence angle). The optimal 

LOS direction is perpendicular to the slope dip direction. Vertical images are useful 

at observing potential hazards above the slope and at locations that may be 

unobservable from the ground (e.g., railroad tracks at the bottom of a slope). 

2. Resolution of optical images is vital. Resolution is directly proportional to the 

effectiveness of optical images for RHRS purposes. Coarse resolution imagery led 

to an underestimation of RHRS scores when compared to high-resolution imagery. 

This is because coarse resolution imagery limits the user’s ability to ‘see’ slope 

characteristics that may indicate instability (e.g., rock blocks, faults, surface 

erosion, etc.) if the spatial extent of these characteristics is less than pixel 

resolution. For example, a 4 x 4 m boulder on a 45° slope, which can cause immense 

damage during a rockfall, will be unobservable in optical images with a resolution 

of 10 m.  
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3. Deformation measurements from radar images provide a proxy for condition 

assessment. High rates of deformation, or presence of substantial differential 

deformation (e.g., shearing), indicate possible deterioration in an asset’s condition.  

4. The archival SAR image library spans from 1992 to present with radar data 

obtained from many agencies (see Table 10.1). This resource provides data useful 

for long-term asset monitoring.  

 

10.3.2 Landslide Mapping and Monitoring 

 Chapter 7 provides a case study for the use of radar images for mapping extremely 

slow landslides on the Palos Verdes Peninsula. Chapter 8 focuses on the Portuguese Bend 

Landslide complex (also on the Palos Verdes Peninsula) to demonstrate a novel approach 

for combining results from radar and optical images, along with GPS data, to monitor 

continually-moving landslides. The chapters incorporate remote sensing stacking 

techniques – PSI with radar data (Chapters 7 and 8) and COSI-Corr with optical data 

(Chapter 8) – to measure ground deformation. Here are some thoughts on the utility of both 

radar and optical data for measuring landslide deformation at various magnitudes: 

1. Extremely slow landslides are those with a velocity less than 16 mm/year (Cruden 

and Varnes 1996). Assuming the study site is adequate for PSI analysis (see Section 

10.2.3), this radar technique works well for extremely slow landslide monitoring. 

PSI velocity measurements have an accuracy of 1 mm/year and can measure 

deformation up to ~2-3 cm/year (Ferretti et al. 2000; Ferretti et al. 2001; Crosetto 

et al. 2016). These highly accurate measurements limit the range of landslides 

observable with PSI and, in the presence of faster landslides, another technique 

should be used.  

2. COSI-Corr and GPS are capable of measuring landslide velocity on the cm/year- 

and m/year-scales. Neither COSI-Corr nor GPS are stacking techniques; instead, 

long-term measurements are obtained through the summation of chronological 

acquisitions (e.g., comparison of chronological optical image pairs with COSI-Corr 

and continuous or repeat measurements with GPS). Summation of chronological 

acquisitions results in greater noise (lower SNR) when compared with stacking 
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techniques (e.g., PSI) and, therefore, COSI-Corr and GPS are unable to discern 

mm/year-scale deformation rates.  

 

10.4 Combining Radar, Optical, and GPS 
 As demonstrated in previous chapters and by myriad references provided 

throughout, there exist a variety of remote sensing and geodetic approaches for the 

measurement of surface deformation. Remote sensing approaches include optical 

(photography, photogrammetry, and LiDAR) and radar from various platforms, including 

stationary and moving terrestrial, airborne via airplane or UAV, and satellite-based. The 

most common ground-based geodetic approach is GPS. Each approach has inherent 

strengths and weaknesses. One common way to work around this approach is to employ a 

methodology that incorporates multiple remote sensing and/or geodetic datasets. For 

example, we utilize satellite-based radar, satellite-based optical, and terrestrial GPS to 

monitor landslide activity of the Portuguese Bend Landslide complex (Chapter 8). 

Unfortunately, however, comparing results from various sensors is like comparing apples 

to oranges – how can we compare mm/year-scale PSI results measured in a specific line-

of-sight (LOS) direction (N85°W, about 23° from vertical) with cm/year to m/year COSI-

Corr results measured in the horizontal plane? The following sections focus on the 

difficulties with comparing radar, optical, and GPS results (Section 10.4.1) and discuss a 

few ideas to work around these difficulties (Section 10.4.2).   

 

10.4.1 Difficulty with Comparing Radar, Optical, and GPS Results 

 As alluded to in the previous section, the major difficulty with comparing 

deformation measurements from different remote sensing and geodetic datasets is coping 

with the apparent deformation magnitude, which differs from the absolute deformation 

magnitude. The absolute deformation magnitude is the actual or “true” deformation; if we 

could measure deformation in all directions, the absolute deformation magnitude would be 

measured in the direction of greatest deformation. For example, if 2 m of vertical 

subsidence was occurring in our area of interest, the absolute deformation magnitude would 
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be 2 m. If we were to measure this same subsidence event with a remote sensor with a LOS 

oblique from vertical (the direction of greatest deformation), we would measure subsidence 

displacement at < 2 m, depending on the LOS incidence angle. Finally, if we were to 

measure this subsidence with COSI-Corr – which only measures horizontal deformation 

(e.g., incidence angle at 90° vertical), we would not detect any subsidence at all. These last 

two scenarios demonstrate apparent deformation magnitudes where, since we are not 

collecting data in the actual subsidence direction (the direction of greatest deformation in 

this case), we do not capture the full impact of the subsidence event.  

 In addition to this LOS difficulty, each remote sensing and geodetic technique 

measures ground deformation across different magnitude ranges. PSI can measure ground 

deformation between 1 mm/year and 2-3 cm/year. Radar interferograms can generally 

measure cm/year and m/year deformation rates, depending strongly on coherence and lack 

of decorrelation. COSI-Corr can measure cm/year and m/year deformation rates, 

depending on temporal resolution and cloud cover. GPS can also measure cm/year and 

m/year deformation rates but suffer from data loss if rapid deformation occurs and the 

instrument is destroyed (as happened at Portuguese Bend Landslide complex). Radar 

interferograms, COSI-Corr, and GPS cannot resolve mm/year deformation due to noise. 

 

10.4.2 How to Resolve LOS and Magnitude Differences 

 The only way to compare radar, optical, and GPS deformation results is to make 

sure each result is measuring the same thing. Of the two difficulties discussed above – LOS 

and magnitude differences – only the first can be resolved directly while the second may 

be indirectly helpful.  

 LOS differences can be resolved using trigonometry so that all deformation 

measurements are in the same direction. Thus, if we use the scenario from Chapter 8 where 

radar, optical, and GPS data were acquired over the Portuguese Bend Landslide complex, 

we can decide which LOS direction we need to solve for by assigning a degree of freedom 

number to each technique. Degree of freedom is equal to the number of spatial dimensions 

a technique uses for deformation measurements. GPS has a degree of freedom of three 

because it measures ground deformation in three dimensions: up/down, north/south, and 
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east/west. COSI-Corr (optical) has a degree of freedom of two: north/south and east/west. 

PSI (radar) has a degree of freedom of one: satellite LOS direction. Thus, in theory, we 

should recompute GPS and COSI-Corr deformation measurements to match PSI 

measurements, since PSI is the most limited in terms of degree of freedom. However, an 

issue arises between PSI and COSI-Corr: PSI measurements include a vertical component 

while COSI-Corr does not and, so, they cannot be compared. One workaround is to perform 

PSI processing using two stacks – one descending and one ascending over the same area 

of interest – so that two-dimensional deformation measurements can be resolved, allowing 

direct mathematical comparisons between PSI, COSI-Corr, and GPS. Unfortunately, 

ascending COSMO-SkyMed radar images were not available for the study in Chapter 8. 

How can we resolve this issue? 

 One idea is to use three-dimensional GPS results as a bridge between PSI and 

COSI-Corr. GPS results can be independently compared to both PSI and COSI-Corr and if 

GPS matches well with each we can then assume PSI and COSI-Corr would be comparable 

too. This forms a PSI to GPS to COSI-Corr bridge, but there may be another problem: 

deformation magnitude. GPS and COSI-Corr deformation results are too noisy for 

mm/year-scale measurements and, for the most part, maximum C-Band PSI results are 

approximately 2-3 cm/year. The only plausible solution to this problem (other than using 

a different technique than PSI) is to use a radar sensor with a longer wavelength (e.g., L-

Band or P-Band). Processing long wavelength radar data with PSI allows for a greater 

deformation (velocity) threshold. For example, the ALOS PALSAR sensor emits a radar 

wavelength of ~23.62 cm; potential future P-band satellites would have a wavelength 

between 60 cm and 1.2 m, which would greatly increase the deformation range measurable 

using PSI. For now, and with the wavelengths used in this dissertation (X-Band and C-

Band), directly comparing GPS and PSI results is limited unless used like in Chapter 8: 

PSI is used for very slow measurements and COSI-Corr and GPS used for more rapid 

measurements. 
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10.5 Utilizing Unmanned Aerial Vehicles (UAVs) 
 It is worth mentioning the potential of UAVs as a platform for interferometric 

synthetic aperture radar (InSAR). Like the progression optical photogrammetry took – 

satellite to terrestrial to UAV – InSAR is presently used on satellite and terrestrial platforms 

and, so naturally, the next step is to deploy a high-resolution UAV with a SAR sensor. A 

few issues that need to be resolved include: 

1. Antenna Length and Weight Restrictions. Azimuth resolution is indirectly 

proportional to antenna length: shorter antennas yield higher resolution. Satellites 

must sacrifice azimuth resolution and carry longer antennas so that enough radar 

echoes return and are captured by the antenna. UAVs may not suffer from a similar 

issue since they will be flying much closer to the ground. Due to weight restrictions 

and battery life, UAVs would most likely be limited to very small, light-weight 

antennas.  

2. Flight Path. Flight paths can be mapped using computer software. InSAR would 

be possible if flight paths were designed to be horizontally offset by an amount 

less than the perpendicular baseline. Here is an example: 

a. Acquisition 1: UAV is flown in one direction (e.g., north to south) over 

area of interest. 

b. Acquisition 2: Later, the UAV follows a flight path identical to 

Acquisition 1 (and in the same north-to-south direction) but the flight path 

is now offset by 1 m to the east.  

The offset flight path during Acquisition 2 will allow for the generation of an 

interferogram. 

3. Other Engineering Variables. Many components would have to be newly 

designed (basically miniaturized satellite components). Another big limitation is 

data storage because high-resolution InSAR would accrue a lot of data during a 

brief period. Data would either need to be uploaded during acquisition, which 

would require communication with a ground base station, or stored on an external 

hard drive device, which would increase instrument weight on the UAV. Other 
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variables to consider are battery life, flight time, and maneuverability (especially 

if the UAV is carrying a lot of equipment). 

Overall, the future for UAV-based InSAR is bright and appears to be under development 

by some research groups (Nitti et al. 2015), although few (if any) case studies have been 

published. 

 

 

  



198 
 

 

References 
 

AASHTO: American Association of State Highways and Transportation Officials (1993) 

Guide for Design of Pavement Structures. AASHTO, GDPS-4, Washington, D.C., 

624 p. 

AASHTO: American Association of State Highways and Transportation Officials (2001) 

Pavement Management Guide. AASHTO, Washington, D.C., 254 p. 

AASHTO: American Association of State Highways and Transportation Officials (2011) 

An Overview of the Guide. In: U.S. Department of Transportation Federal Highway 

Administration, editors. AASHTO Transportation Asset Management Guide: A 

Focus on Implementation. Washington, D.C., 1.1-24. 

AASHTO: American Association of State Highways and Transportation Officials (2013) 

AASHTO Transportation Asset Management Guide: A Focus on Implementation. 

Publication No. FHWA-HIF-10-023, 1-48. 

Abellán A, Calvet J, Vilaplana J M, and Blanchard J (2010) Detection and spatial 

prediction of rockfalls by means of terrestrial laser scanner monitoring. 

Geomorphology, 119(3-4):162-171. 

Abellán A, Jaboyedoff M, Oppikofer T, Vilaplana JM (2009) Detection of millimetric 

deformation using a terrestrial laser scanner: experiment and application to a 

rockfall event. Natural Hazards and Earth System Sciences, 9:365-372. 

Ahmed R, Siqueira P, Hensley S, Chapman B, and Bergen K (2011) A survey of temporal 

decorrelation from spaceborne L-Band repeat-pass InSAR. Remote Sensing of 

Environment, 115(11):2887-2896. 

Anderson SA, Alzamora D, and DeMarco MJ (2009) Asset Management Systems for 

Retaining Walls. In: Geo-Velopment: The Role of Geological and Geotechnical 

Engineering in New and Redevelopment Projects, 162-177. 



199 
 

Anderson SA and Rivers BS (2013) Corridor Management: A Means to Elevate 

Understanding of Geotechnical Impacts on System Performance. Transportation 

Research Record: Journal of the Transportation Research Board, 2349:9-15. 

Angeli M-G, Gasparetto P, Pasuto A, and Silvano S (1989) Examples of landslide 

instrumentation (Italy). Proceedings of the 12th International Conference on Soil 

Mechanics and Foundation Engineering, Rio de Janeiro, 3:1531-1534. 

Antronico L, Borrelli L, Peduto D, Fornaro G, Gullà G, Paglia L, Zeni G (2013) 

Conventional and innovative techniques for the monitoring of displacements in 

landslide affected area. In: Landslide science and practice, Springer Berlin 

Heidelberg, 125-133. 

AP: Associated Press (2014) Last body found in Washington mudslide. MyNorthwest. 

http://mynorthwest.com/174/2570325/Last-body-found-in-Washington-mudslide.  

ASI: Italian Space Agency (2009) COSMO-SkyMed SAR Products Handbook, Rev. 2. 

Italian Space Agency, 105 p. 

Austroads (1997) Strategy for improving asset management practices. Austroads 

Incorporated, Sydney, Australia. 

Ayoub F, Leprince S, and Avouac J-P (2017) User’s Guide to COSI-CORR: Co-

registration of Optically Sensed Images and Correlation. California Institute of 

Technology, 

http://www.tectonics.caltech.edu/slip_history/spot_coseis/pdf_files/CosiCorr-

Guide2017.pdf.  

Baran I, Stewart MP, Kampes BM, Perski Z, and Lilly P (2003) A modification to the 

Goldstein radar interferogram filter. IEEE Transactions on Geoscience and Remote 

Sensing, 41(9):2114-2118. 

Bauer A, Paar G, and Kaltenböck A (2005) Mass movement monitoring using terrestrial 

laser scanner for rock fall management. In: Geo-information for disaster 

management, Springer Berlin Heidelberg, 393-406. 

Bayer B, Simoni A, Schmidt D, and Bertello L (2017) Using advanced InSAR techniques 

to monitor landslide deformations induced by tunneling in the Northern Apennines, 

Italy. Engineering Geology, 226:20-32. 



200 
 

BBC: British Broadcasting Corporation (2014) Oso mudslide: Washington state disaster 

site yields more dead. BBC News, http://www.bbc.com/news/world-us-canada-

26855649.  

Béjar-Pizarro M, Notti D, Mateos RM, Ezquerro P, Centolanza G, Herrera G, Bru G, 

Sanabria M, Solari L, Duro J, and Fernández J (2017) Mapping Vulnerable Urban 

Areas Affected by Slow-Moving Landslides Using Sentinel-1 InSAR Data. Remote 

Sensing, 9(9):876. 

Berardino P, Frnaro G, Lanari R, and Sansosti E (2002) A new algorithm for surface 

deformation monitoring based on small baseline differential SAR interferograms. 

IEEE Transactions on Geoscience and Remote Sensing, 40(11):2375-2383. 

Bergen KM, Goetz SJ, Dubayah RO, Henebry GM, Hunsaker CT, Imhoff ML, Nelson RF, 

Parker GG, Radeloff VC (2009) Remote sensing of vegetation 3-D structure for 

biodiversity and habitat: Review and implications for lidar and radar spaceborne 

missions. Biogeosciences, 114(G2), 13 p. 

Bianchini S, Ciampalini A, Raspini F, Bardi F, Di Traglia F, Moretti S, and Casagli N 

(2015) Multi-Temporal Evaluation of Landslide Movements and Impacts on 

Buildings in San Fratello (Italy) By Means of C-Band and X-Band PSI Data. Pure 

and Applied Geophysics, 172(11):3043-3065. 

Bianchini S, Herrera G, Mateos RM, Notti D, Garcia I, Mora O, and Moretti S (2013) 

Landslide activity maps generation by means of persistent scatterer interferometry. 

Remote Sensing, 5(12):6198-6222. 

Bianchini S, Solari L, and Casagli N (2017) A GIS-Based Procedure for Landslide Intensity 

Evaluation and Specific Risk Analysis Supported by Persistent Scatterers 

Interferometry (PSI). Remote Sensing, 9(11):1093. 

Blair TC and McPherson JG (1994) Alluvial Fan Processes and Forms. Geomorphology of 

Desert Environments, V:354-402. 

Bouali EH, Oommen T, and Escobar-Wolf R (2016a) Interferometric Stacking toward 

Geohazard Identification and Geotechnical Asset Monitoring. Journal of 

Infrastructure Systems, 22(2) 05016001. 



201 
 

Bouali EH, Oommen T, Vitton S, Escobar-Wolf R, and Brooks C (2016b) Rockfall hazard 

rating system: benefits of utilizing remote sensing. Environmental and Engineering 

Geoscience, 23(3):165-177. 

Bouali EH, Oommen T, and Escobar-Wolf R (2017a) Mapping of slow landslides on the 

Palos Verdes Peninsula using the California landslide inventory and persistent 

scatterer interferometry. Landslides, 1-14.  

Bouali EH, Oommen T, and Escobar-Wolf R (2017b) Structure mapping through spatial 

and temporal deformation monitoring using persistent scatterer interferometry and 

geographic information systems. Geotechnical Frontiers 2017, 278:509-519. 

Brawner CO (1994) Rockfall Hazard Mitigation Methods – Participant’s Workbook, NHI 

Course No. 13219. U.S. Department of Transportation, Federal Highway 

Administration, Publication No. FHWA SA-93-085. 

Brawner CO and Wyllie DC (1975) Rock Slope Stability on Railway Projects. Proceedings 

of the American Railway Engineering Association Regional Meeting, Vancouver, 

British Columbia, Canada, 8 p. 

Bridges NT, Ayoub F, Avouac J-P, Leprince S, Lucas A, and Mattson S (2012) Earth-like 

sand fluxes on Mars. Nature, 485:339-342. 

Brutus O and Tauber G (2009) Guide to asset management of earth retaining structures. 

U.S. Department of Transportation, Federal Highway Administration, Office of 

Asset Management, Washington, D.C., 120 p. 

Calabro MD, Schmidt DA, and Roering JJ (2010) An examination of seasonal deformation 

at the Portuguese Bend landslide, Southern California, using radar interferometry. 

Journal of Geophysical Research: Earth Surface, 115(F2):1-10.  

Calvello M, Peduto D, and Arena A (2017) Combined use of statistical and DInSAR data 

analyses to define the state of activity of slow-moving landslides. Landslides, 

14(2):473-489. 

Cambridge Systematics Inc., Applied Research Associates Inc., Arora and Associates, 

KLS Engineering, PB Consult Inc., Lambert L (2009) An Asset-Management 

Framework for the Interstate Highway System. Transportation Research Board, 

Washington, D.C., 82 p. 



202 
 

Cambridge Systematics Inc., Parsons Brinckerhoff Quade and Douglas Inc., Roy Jorgensen 

Associates Inc., and Thompson PD (2002) Transportation Asset Management 

Guide, Task 1 – Synthesis of Asset Management Practice. Phase 1 Report, NCHRP 

Web Document 41 (Project SP20-24[11]): Contractor’s Final Report, 1-84. 

Carlà T, Raspini F, Intrieri E, and Casagli N (2016) A simple method to help determine 

landslide susceptibility from spaceborne InSAR data: the Montescaglioso case 

study. Environmental Earth Sciences, 75(24):1492. 

Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, and Reichenbach P (1991) GIS 

techniques and statistical models in evaluating landslide hazard. Earth Surface 

Processes and Landforms, 16(5):427-445. 

Casagli N, Frodella W, Morelli S, Tofani V, Ciampalini A, Intrieri E, Raspini F, Rossi G, 

Tanteri L, and Lu P (2017) Spaceborne, UAV and ground-based remote sensing 

techniques for landslide mapping, monitoring and early warning. 

Geoenvironmental Disasters, 4.1(9):1-23. 

Cascini L, Peduto D, Pisciotta G, Arena L, Ferlisi S, and Fornaro G (2013) The 

combination of DInSAR and facility damage data for the updating of slow-moving 

landslide inventory maps at medium scale. Natural Hazards and Earth System 

Sciences, 13(6):1527-1549. 

Catani F, Casagli N, Ermini L, Righini G, and Menduni G (2005) Landslide hazard and 

risk mapping at catchment scale in the Arno River basin. Landslides, 2(4):329-342. 

CDWR: California Department of Water Resources (2014) Summary of Recent, Historical, 

and Estimated Potential for Future Land Subsidence in California. State of 

California Department of Water Resources, 23 p. 

CGS: California Geological Survey (2017) California landslide inventory [web-based 

GIS]. California Department of Conservation, 

http://maps.conservation.ca/gov/cgs/lsi.  

Chase RB and Kehew AE (2000) Slope stability analysis and ground-water hydrology in 

heterogeneous glacial material: Elements for prediction of bluff erosion. U.S. Army 

Research Office Grant 34767-GS Final Progress Report, 20 p. 



203 
 

Chen B, Deng K, Fan H, and Hao M (2013) Large-scale deformation monitoring in mining 

area by D-InSAR and 3D laser scanning technology integration. International 

Journal of Mining Science and Technology, 23(4):555-561. 

Chou C, Chen A, Ling H, and Change C-M (2006) Development of the Maintenance Rating 

Program for City Roadway Networks in Taiwan. Airfield and Highway Pavement 

Specialty Conference, Atlanta, Georgia, April 30-May 3, 924-935. 

Ciampalini A, Raspini F, Lagomarsino D, Catani F, and Casagli N (2016) Landslide 

susceptibility map refinement using PSInSAR data. Remote Sensing of 

Environment, 184, 302-315. 

Cigna F, Bianchini S, and Casagli N (2013) How to assess landslide activity and intensity 

with persistent scatterer interferometry (PSI): the PSI-based matrix approach. 

Landslides, 10(3):267-283. 

Chung CF and Fabbri AG (1999) Probabilistic prediction models for landslide hazard 

mapping. Photogrammetric Engineering and Remote Sensing, 65(12):1389-1399. 

CLA: City of Los Angeles (2016) White Point landslide: project summary. 

http://eng.lacity.org/whitepoint/whitepointlandslide.htm.  

Colesanti C and Wasowski J (2006) Investigating landslides with space-borne synthetic 

aperture radar (SAR) interferometry. Engineering Geology, 88(3):173-199. 

Constantini M (1998) A novel phase unwrapping method based on network programming. 

IEEE Transactions on Geoscience and Remote Sensing, 36(3):813-821. 

Constantini M, Falco S, Malvarosa F, and Minati F (2008) A new method for identification 

and analysis of persistent scatterers in series of SAR images. IEEE International 

Geoscience and Remote Sensing Symposium, 2:449-452. 

Crafford AEJ (2007) Geologic Map of Nevada. U.S. Geological Survey Data Series 249, 

1: 250,000 scale. 

Crosetto M, Biescas E, and Duro J (2008) Generation of advanced ERS and Envisat 

interferometric SAR products using the stable point network technique. 

Photogrammetric Engineering & Remote Sensing, 74(4):443-450. 



204 
 

Crosetto M, Monserrat O, Cuevas-González M, Devanthéry N, and Crippa B (2016) 

Persistent scatterer interferometry: a review. Journal of Photogrammetry and 

Remote Sensing, 115:78-89. 

Crosetto M, Monserrat O, Iglesias R, and Crippa B (2010) Persistent scatterer 

interferometry: Potential, limits and initial C- and X-band comparison. 

Photogrammetric Engineering and Remote Sensing, 76(9):1061-1069. 

Crosetto M, Monserrat O, Jungner A, and Crippa B (2009) Persistent scatterer 

interferometry: Potential and limits. Proceedings of the 2009 ISPRS Workshop on 

High-Resolution Earth Imaging for Geospatial Information, 25, 6 p. 

CRPV: City of Rancho Palos Verdes (2012) Landslide Workshop. 

http://www.rpvca.gov/documentcenter/view/5564.  

Cruden DM (1991) A simple definition of a landslide. Bulletin of Engineering Geology 

and the Environment, 43(1):27-29. 

Cruden DM and Varnes DJ (1996) Landslide types and processes. In: Turner KA, Schuster 

RL (eds) Landslides: Investigation and Mitigation (Chapter 3), Transportation 

Research Board Special Report 247:36-75. 

CWC: Central Water Commission (1986) Report on Dam Safety Procedures. Government 

of India, Ministry of Water Resources, Central Water Commission am Safety 

Organisation, 103 p. 

Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an 

overview. Engineering Geology, 64(1):65-87. 

DDSI: Division of Dam Safety and Inspections (2006) Chapter IX: Instrumentation and 

Monitoring. In: Engineering Guidelines for the Evaluation of Hydropower Projects, 

Federal Energy Regulatory Commission, 

https://www.ferc.gov/industries/hydropower/safety/guidelines/eng-

guide/chap9.pdf, 86 p. 

Di Crescenzo G and Santo A (2007) High-resolution mapping of rock fall instability 

through the integration of photogrammetric, geomorphological and engineering-

geological surveys. Quaternary International, 171-172:118-130. 



205 
 

Di Martire D, Iglesias R, Monells D, Centolanza G, Sica S, Ramondini M, Pagano L, 

Mallorqui JJ, and Calcaterra D (2014) Comparison between differential SAR 

interferometry and ground measurements data in the displacement monitoring of 

the earth-dam of Conza della Campania (Italy). Remote Sensing of Environment, 

148:58-69. 

Dilger F and Halstead RJ (2005) Integrating hazards assessment and impact assessment: 

the case of the Caliente rail corridor to Yucca Mountain. 32nd annual Waste 

Management Symposium, 1 March, Tucson, Arizona, 14 p. 

Dzurisin D and Lu Z (2007) Interferometric synthetic-aperture radar (InSAR). In: Dzurisin 

D (ed) Volcano Deformation: Geodetic Monitoring Techniques, Springer, Berlin, 

Heidelberg, 153-194. 

Ehlig PL (1982) The Palos Verdes Peninsula: its physiography, land use and geologic 

setting. In: Cooper JD (ed) Volume and Guidebook: Landslides and Landslide 

Abatement, Geological Society of America, Palos Verdes Peninsula, Southern 

California, Cordilleran Section, 78th Annual Meeting, 3-6. 

Ehlig PL (1992) Evolution, mechanics and mitigation of the Portuguese Bend landslide, 

Palos Verdes Peninsula, CA. In: Pipkin BW and Proctor RJ (eds.) Engineering 

Geology Practice in Southern California. Special Publication No. 4, Associations 

of Engineering Geology. 

Ehlig PL and Bean RT (1982) Dewatering of the Abalone Cove landslide, Rancho Palos 

Verdes County, CA. In: Cooper JD (ed) Volume and Guidebook: Landslides and 

Landslide Abatement, Geological Society of America, Palos Verdes Peninsula, 

Southern California, Cordilleran Section, 78th Annual Meeting, 67-79. 

Emadali L, Motagh M, and Haghighi MH (2017) Characterizing post-construction 

settlement of the Masjed-Soleyman embankment dam, Southwest Iran, using 

TerraSAR-X SpotLight radar imagery. Engineering Structures, 143:261-273. 

Emmett M, Strikis A, Etherington T, and Eastoe N (2015) Asset Management Plan 

Vegetation. Tasmanian Networks, 30 p. 

Escobar-Wolf R, Bouali EH, Oommen T, Brooks C, and Vitton SJ (2015) Cost benefit 

analysis of a proactive geotechnical asset management system using remote 



206 
 

sensing. Deliverable 6-A, US Department of Transportation, USDOT Cooperative 

Agreement No. RITARS-14-H-MTU, 42 p. 

Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, 

AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo and the GIS User Community 

(2016a) World Imagery Basemap, ArcMap® software. 

Esri, HERE, DeLorme, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, 

NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri 

China (Hong Kong), swisstopo, MapmyIndia, © OpenStreetMap contributors and 

the GIS User Community (2016b) World Topographic Map Basemap, ArcMap® 

software. 

FDOT: Florida Department of Transportation (2013) Florida Department of Transportation 

Maintenance Rating Program Handbook Computer Based Training, 

http://wbt.dot.state.fl.us/ois/MRPHandbook/index.htm.  

FERC: Federal Energy Regulatory Commission (2006) Engineering Guidelines for the 

Evaluation of Hydropower Projects, Chapter IX: Instrumentation and Monitoring. 

Division of Dam Safety and Inspections, 

https://www.ferc.gov/industries/hydropower/safety/guidelines/eng-

guide/chap9.pdf, 86 p. 

Federico A, Popescu M, Elia G, Fidelibus C, Internò G, and Murianni A (2012) Prediction 

of time to slope failure: a general framework. Environmental Earth Science, 

66:245-256. 

Fell R (1994) Landslide risk assessment and acceptable risk. Canadian Geotechnical 

Journal, 31(2):261-272. 

Fell R and Hartford D (1997) Landslide risk management. In: Cruden D, Fell R (eds) 

Landslide Risk Assessment. Balkema, Roterdam, 51-109. 

Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, and Rucci A (2011) A New Algorithm 

for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Transactions on 

Geoscience and Remote Sensing, 49(9):3460-3470. 



207 
 

Ferretti A, Monti-Guarnieri A, Prati C, Rocca F, and Massonnet D (2007a) Part A: InSAR 

Principles: Guidelines for SAR Interferometry Processing and Interpretation. 

Fletcher K (ed.), European Space Agency, TM-19, ESA Publications, 48 p. 

Ferretti A, Monti-Guarnieri A, Prati C, Rocca F, and Massonnet D (2007b) Part B: InSAR 

Processing: A Practical Approach. Fletcher K (ed.), European Space Agency, TM-

19, ESA Publications, 71 p. 

Ferretti A, Monti-Guarnieri A, Prati C, Rocca F, and Massonnet D (2007c) Part C: InSAR 

Processing: A Mathematical Approach. Fletcher K (ed.), European Space Agency, 

TM-19, ESA Publications, 115 p. 

Ferretti A, Prati C, and Rocca F (2000) Nonlinear subsidence rate estimation using 

permanent scatterers in differential SAR interferometry. IEEE Transactions on 

Geoscience and Remote Sensing, 38(9):2202-2212. 

Ferretti A, Prati C, and Rocca F (2001) Permanent Scatterers in SAR Interferometry. IEEE 

Transactions on Geoscience and Remote Sensing, 39(1):8-20. 

FHWA: Federal Highway Administration (1991) An Advanced Course in Pavement 

Management Systems. Federal Highway Administration, Washington, D.C., 184 p. 

FHWA: Federal Highway Administration (1999) Asset Management Primer. U.S. 

Department of Transportation, Washington, D.C., 1-30. 

FHWA: Federal Highway Administration (2007) Asset Management Overview. U.S. 

Department of Transportation, Washington, D.C., 52 p. 

FHWA: Federal Highway Administration (2013) Selection Procedure for Reference and 

Cluster Bridges, 

http://www.fhwa.dot.gov/multimedia/research/infrastructure/bridges/ltbp/index.cf

m  

FHWA: Federal Highway Administration (2014) Program Overview, 

http://www.fhwa.dot.gov/research/tfhrc/programs/infrastructure/structures/ltbp/ab

out.cfm  

Finlay PJ (1996) The risk assessment of slopes. University of New South Wales, School 

of Civil Engineering, PhD Dissertation. 



208 
 

Fisher MA, Normark WR, Langenheim VE, Calvert AJ, Sliter R (2004) The offshore Palos 

Verdes Fault Zone near San Pedro, Southern California. Bulletin of the 

Seismological Society of America, 94(2):506-530. 

Flintsch GW and Bryant Jr. JW (2006) Asset management data collection for supporting 

decision processes. U.S. Department of Transportation, Washington, D.C., 97 p. 

Fukuzono T (1985) A new method for predicting the failure time of a slope. Proceedings 

from the IV International Conference and field Workshop on Landslides, Tokyo, 

Japan, 145-150. 

Galehouse L, Mouthrop JS, and Hicks RG (2006) Principles of pavement preservation. In 

Pavement preservation compendium II, Federal Highway Administration report no. 

FHWA-IF-06-049, Washington, D.C., 67-73. 

Garestier F, Dubois-Fernandez PC, and Champion I (2008) Forest height inversion using 

high-resolution P-band Pol-InSAR data. IEEE Transactions on Geoscience and 

Remote Sensing, 46(11), 3544-3559. 

Gatelli F, Guamieri AM, Parizzi F, Pasquali P, Prati C, and Rocca F (1994) The wave 

number shift in SAR interferometry. IEEE Transactions on Geoscience and Remote 

Sensing, 32(4):855-865. 

Ge YG and Lindell MK (2016) County planners’ perceptions of land-use planning tools 

for environmental hazard mitigation: A survey in the US Pacific states. 

Environment and Planning B: Planning and Design, 43(4):716-736. 

Ghulam A, Amer R, and Ripperdam R (2010) A filtering approach to improve deformation 

accuracy using large baseline, low coherence DInSAR phase images. Geoscience 

Remote Sensing Symposium (GARSS), 2010 I.E. International, Honolulu, Hawaii, 

3494-3497. 

Glendinning S, Hall J, and Manning L (2009) Asset-management strategies for 

infrastructure embankments. Proceedings of the Institution of Civil Engineers-

Engineering Sustainability, 162(2):111-120. 

Göblirsch W and Pasquali P (1996) Algorithms for calculation of digital surface models 

from the unwrapped interferometric phase. Remote sensing—a scientific vision for 

sustainable development 1997. IEEE International, 1:656-658. 



209 
 

Goldstein RM and Werner CL (1998) Radar interferogram filtering for geophysical 

applications. Geophysical Research Letters, 25(21):4035-4038. 

Goodman NR (1963) Statistical analysis based on a certain multivariate complex Gaussian 

distribution (an introduction). The Annals of Mathematical Statistics, 34(1):152-

177. 

Green N (1998) Federal Agency Urges Bolstering of Casitas Dam. Los Angeles Times, 

written June 24, 1998, http://articles.latimes.com/1998/jun/24/local/me-63010.  

Green SJ, Brunner J, Rosenthal BM, Armstrong K, and Carter M (2014) Risk of slide 

‘unforeseen’? Warnings go back decades. The Seattle Times. Originally published 

March 24, 2014, 

http://old.seattletimes.com/html/localnews/2023218573_mudslidewarningsxml.ht

ml.  

Grenerczy G and Wegmüller U (2011) Persistent scatterer interferometry analysis of the 

embankment failure of a red mud reservoir using ENVISAT ASAR data. Natural 

Hazards, 59(2):1047. 

Guarnieri AM, Guccione P, Pasquali P, and Desnos YL (2003) Multi-mode ENVISAT 

ASAR interferometry: techniques and preliminary results. IEE Proceedings-Radar, 

Sonar and Navigation, 150(3):193-200. 

Gullà G, Peduto L, Antronico L, and Fornaro G (2017) Geometric and kinematic 

characterization of landslides affecting urban areas: the Lungro case study 

(Calabria, southern Italy). Landslides, 14:171-188. 

Gutkowski RM and Arenella ND (1998) Investigation of PONTIS – A bridge management 

software, http://www.mountain-plains.org/pubs/pdf/MPC98-95.pdf, 43 p. 

Haas R and Hudson WR (2015) Pavement Asset Management. John Wiley and Sons, 432 

p. 

Harris Geospatial Solutions (2018) RPC Orthorectification Tool. 

http://www.harrisgeospatial.com/docs/rpcorthotutorial.html.  

Haugerud RA (2014) Preliminary Interpretation of Pre-2014 Landslide Deposits in the 

Vicinity of Oso, Washington. US Geological Survey Open-File Report 2014-1065, 

4 p., http://dx.doi.org/10.3133/ofr20141065.  



210 
 

Hawkins N and Smadi O (2013) Use of Transportation Asset Management Principles in 

State Highway Agencies: A Synthesis of Highway Practice. Transportation 

Research Board, Washington, D.C., 98 p. 

Haydon WD (2007) Landslide Inventory Map of the Palos Verdes Peninsula, Los Angeles 

County, California. California Geological Survey, Geologic Information and 

Publications, Sacramento, CA 95814, 

www.conservation.ca/gov/cgs/geologic_hazards/landslides/.  

Herrera G, Gutierrez F, Garcia-Davalillo JC, Guerrero J, Notti D, Galve JP, Fernandez-

Merodo JA, and Cooksley G (2013) Multi-sensor advanced DInSAR monitoring of 

very slow landslides: the Tena Valley case study (central Spanish Pyrenees). 

Remote Sensing of Environment, 128:31-43. 

Highland LM and Bobrowsky P (2008) The landslide handbook A guide to understanding 

landslides. US Geological Survey Circular 1325, 129 p. 

Holecz F, Moreira J, Pasquali P, Voight S, Meier E, and Nuesch D (1997) Height model 

generation, automatic geocoding and a mosaicking using airborne AeS-1 InSAR 

data. Remote sensing—a scientific vision for sustainable development 1997. IEEE 

International, 4:1929-1931. 

Hooper A, Zebker P, Segall P, and Kampes B (2004) A new method for measuring 

deformation on volcanoes and other non-urban areas using InSAR persistent 

scatterers. Geophysical Research Letters, 31(23):1-5. 

Hu J, Li ZW, Ding XL, Zhu JJ, Zhang L, and Sun Q (2014) Resolving three-dimensional 

surface displacements from InSAR measurements: a review. Earth-Science 

Reviews, 133:1-17. 

Huang SL, Darrow MM, and Calvin P (2009) Unstable Slope Management Program: 

Background Research and Program Inception – Phase I Final Report. Alaska 

Department of Transportation and Public Facilities, 90 p. 

Hungr O (2007) Dynamics of rapid landslides. In: Fukuoka H (ed) Progress of landslide 

science. Springer, Berlin Heidelberg, 47-57. 

Hutchinson JD, Lato M, Gauthier D, Kromer R, Ondercin M, MacGowan T, and Edwards 

T (2015) Rock Slope Monitoring and Risk Management for Railway Infrastructure 



211 
 

in the White Canyon, British Columbia, Canada. Engineering Geology for Society 

and Territory, 2:435-439. 

Jennings CW, Strand RG, and Rogers TH (1977) Geologic map of California. California 

Division of Mines and Geology.  

Jones CE, An K, Blom RG, Kent JD, Ivins ER, and Bekaert D (2016) Anthropogenic and 

geologic influences on subsidence in the vicinity of New Orleans, Louisiana. 

Journal of Geophysical Research: Solid Earth, 121(5):3867-3887.  

Jonsson B (2010) Transportation Asset Management: Quality-Relating Accounting, 

Measurements and use in Road Management’s Processes, Report 92. Department 

of Real Estate and Construction Management, Royal Institute of Technology 

(Kungliga Tekniska Högskolan), 1-214. 

Justice SM (2015) Application of a hazard rating system for rock slopes along a 

transportation corridor using remote sensing. Master’s Report, Michigan 

Technological University, 86 p. 

Kang F, Liu J, Li J, and Li S (2017) Concrete dam deformation prediction model for health 

monitoring based on extreme learning machine. Journal of the International 

Association for Structural Control and Monitoring, 24:1-11. 

Kayen RE, Lee HJ, and Hein JR (2002) Influence of the Portuguese Bend landslide on the 

character of the effluent-affected sediment deposit, Palos Verdes margin, Southern 

California. Continental Shelf Research, 22(6):911-922. 

Keaton JR and DeGraff JV (1996) Chapter 9: Surface observation and geologic mapping. 

In: Turner AK and Schuster RJ (eds.) Landslides: Investigation and Mitigation, 

Special Report 247, Transportation Research Board, National Research Council, 

Washington, D.C., 178-230. 

Kellndorfer J, Walker W, Pierce L, Dobson C, Fites JA, Hunsaker C, Vona J, and Clutter 

M (2004) Vegetation height estimation from Shuttle Radar Topography Mission 

and National Elevation Datasets. Remote Sensing of Environment, 93:339-358. 

Kilburn CRJ and Petley DN (2003) Forecasting giant, catastrophic slope collapse: lessons 

from Vajont, Northern Italy. Geomorphology, 54:21-32. 



212 
 

Kilburn CRJ and Voight B (1998) Slow rock fracture as a precursor at Soufriere Hills 

volcano, Montserrat. Geophysical Research Letters, 25:3665-3668. 

Kousteni A, Hill R, Dixon N, and Kavanagh J (1999) Acoustic emission technique for 

monitoring soil and rock slope instability. In Yagi N, Yamagami T, Jiang JC (eds) 

Slope stability engineering. Balkema, Rotterdam, 150-156. 

Kumar M (2017) Dam Safety in India. Government of India, Ministry of Water Resources, 

Central Water Commission Dam Safety Organisation, 69 p. 

Lan H, Martin CD, Zhou C, and Lim CH (2010) Rockfall hazard analysis using LiDAR 

and spatial modeling. Geomorphology, 118(1-2):213-223. 

LAR-IAC: Los Angeles Regional Imagery Acquisition Consortium (2006) 10-foot Digital 

Elevation Model (DEM), LAR-IAC Public Domain. 

https://egis3.lacounty.gov/dataportal/2011/01/26/2006-10-foot-digital-elevation-

model-dem-public-domain/. 

LAR-IAC: Los Angeles Regional Imagery Acquisition Consortium (2008) Los Angeles 

Countywide Building Outlines. ArcMap® GIS Layer File available at 

http://egis3.lacounty.gov/dataportal/2011/04/28/countywide-building-outlines/.  

Lato MJ, Diederichs MS, Hutchinson DJ, and Harrap R (2012) Evaluating roadside 

rockmasses for rockfall hazards using LiDAR data: optimizing data collection and 

processing protocols. Natural Hazards, 60(3):831-864. 

Lato MJ, Hutchinson DJ, Diederichs MS, and Harrap R (2009) Engineering monitoring of 

rockfall hazards along transportation corridors: Using mobile terrestrial LiDAR. 

Natural Hazards and Earth System Sciences, 9(3):935-946. 

Lee Merkhofer Consulting (2014) Technical Terms Used in Project Portfolio Management 

(Continued), http://www.prioritysystem.com/glossary2aa.html  

Leprince S, Ayoub F, Lin J, Avouac J-P, Muse P, Barbot S, Michel R, Binet R, and Klinger 

Y (2004) COSI-Corr: Measuring ground deformation using optical satellite and 

aerial images. 

http://www.tectonics.caltech.edu/slip_history/spot_coseis/index.html.  

Leprince S, Barbot S, Ayoub F, and Avouac J-P (2007) Automatic, precise, ortho-

rectification and co-registration for satellite image correlation: Application to 



213 
 

seismotectonics. IEEE Transactions in Geosciences and Remote Sensing, 45:1529-

1558. 

Leroueil S, Locat J, Vaunat J, Picarelli L, Lee H, and Faure R (1996) Geotechnical 

characterization of slope movements. In: Senneset K (ed) Landslides. Balkema, 

Rotterdam, 53-74. 

Lindquist K and Wendt M (2012) Transportation Asset Management (TAM) Plans 

including Best Practices: Synthesis. Washington State Department of 

Transportation, 51 p. 

Lu P, Catani F, Tofani V, and Casagli N (2014) Quantitative hazard and risk assessment 

for slow-moving landslides from persistent scatterer interferometry. Landslides, 

11(4):685-696. 

Lu P, Stumpf A, Norman K, and Casagli N (2011) Object-oriented change detection for 

landslide rapid mapping. IEEE Geoscience and Remote Sensing Letters, 8(4):701-

705. 

Lucieer A, de Jong SM, and Turner D (2014) Mapping landslide displacements using 

Structure from Motion (SfM) and image correlation of multi-temporal UAV 

photography. Progress in Physical Geology, 1-20. 

Maerz NH, Youssef A, and Fennessey TW (2005) New Risk-Consequence Rockfall 

Hazard Rating System for Missouri Highways Using Digital Image Analysis. 

Environmental & Engineering Geoscience, XI(3):229-249. 

Mantovani F, Soeters R, and Van Westen CJ (1996) Remote sensing techniques for 

landslide studies and hazard zonation in Europe. Geomorphology, 15(3-4):213-225. 

Mayuga MN and Allen DR (1970) Subsidence in the Wilmington Oil Field, Long Beach, 

California, USA. Proceedings of Tokyo Symposium of Land Subsidence, 1:66-79. 

Mazzanti P (2017) Toward transportation asset management: what is the role of 

geotechnical monitoring? Journal of Civil Structural Health Monitoring, 1-12.  

Mazzanti P, Rocca A, Bozzano F, Cossu R, and Floris M (2012) Landslide forecasting 

analysis by displacement time series derived from satellite InSAR data: preliminary 

results. ESA SP-697:1-8. 



214 
 

McGee M (2007-2017) Survey Report of the Portuguese Bend Landslide Monitoring 

Surveys for the City of Rancho Palos Verdes prepared by McGee Surveying 

Consulting. Series of Reports: 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 

2015, 2016, and 2017, City of Rancho Palos Verdes, McGee Surveying Consulting, 

234 p. 

McMillan JR and Haydon WD (1998a) Earthquake-Induced Landslide Zones in the 

Torrance 7.5-Minute Quadrangle, Los Angeles County, California. California 

Geological Survey Seismic Hazard Zone Report 035, Section 2, 19-38. 

McMillan JR and Haydon WD (1998b) Earthquake-Induced Landslides Zones in the San 

Pedro 7.5-Minute Quadrangle, Los Angeles County, California. California 

Geological Survey Open File Report 98-24, Section 2, 15-30. 

McMillan JR and Haydon WD (1998c) Earthquake-Induced Landslide Zones in the 

Redondo Beach 7.5-Minute Quadrangle, Los Angeles County. California 

Geological Survey Seismic Hazard Zone Report 031, Section 2, 17-35. 

McNulty B (2012) Geology of the Palos Verdes Peninsula, Los Angeles, CA: A Field 

Guide for the Non-Geologist. Department of Earth Science, California State 

University Dominguez Hills and CSUDH Presidential Creative Initiative Fund. 

http://www4.csudh.edu/earth/palos-verdes.  

MDOT: Michigan Department of Transportation (2015) Asset Management at MDOT, 

http://www.michigan.gov/mdot/0,4616,7-151-9621_15757-25283--,00.html.  

Merriam R (1960) Portuguese Bend landslide, Palos Verdes Hills, California. Journal of 

Geology, 68(2):140-153. 

Metzger AT, Olsen M, Wartman J, Dunham L, and Stuedlein A (2014) A platform for 

proactive risk-based slope asset management – phase 1. Pacific Northwest 

Transportation Consortium, 97 p. 

Mian JF, Whittlestone AP, Patterson D, and Rudrum DM (2011) A risk-based approach 

for the assessment and management of infrastructure assets. Asset Management 

Conference 2011 IET and IAM, London, United Kingdom, Nov 30-Dec 1, 1-6. 



215 
 

Monserrat O, Crosetto M, and Luzi G (2014) A review of ground-based SAR 

interferometry for deformation measurement. ISPRS Journal of Photogrammetry 

and Remote Sensing, 93:40-48. 

Morgenstern NR (1997) Toward landslide risk assessment in practice. In: Cruden D, Fell 

R (eds) Landslide risk assessment. Balkema, Rotterdam, 15-23. 

Mosman Council (2013) Asset Management Buildings. Mosman Council, 80 p. 

Nascetti A, Capaldo P, Porfini M, Pieralice F, Fratarcangeli F, Benenati L, and Crespi M 

(2015) Fast terrain modelling for hydrogeological risk mapping and emergency 

management: the contribution of high-resolution satellite SAR imagery. 

Geomatics, Natural Hazards and Risk, 6(5-7):554-582. 

NCTA: North Carolina Turnpike Authority (2014) Maintenance Rating Program: Triangle 

Expressway 2014 Third Quarter Report (July-September), 

http://www.ncdot.gov/projects/triangleexpressway/download/mrp_q3_2014_final.

pdf, 126 p. 

Necsoiu M, Leprince S, Hooper DM, Dinwiddie CL, McGinnis RN, and Walter GR (2009) 

Monitoring migration rates of an active subarctic dune field using optical imagery. 

Remote Sensing of Environment, 113(11):2441-2447. 

Nitti DO, Bovenga F, Chiaradia MT, Greco M, and Pinelli G (2015) Feasibility of Using 

Synthetic Aperture Radar to Aid UAV Navigation. Sensors, 15:18335. 

Notti D, Davalillo JC, Herrera G, and More O (2010) Assessment of the performance of 

X-band satellite radar data for landslide mapping and monitoring: Upper Tena 

Valley case study. Natural Hazards and Earth System Sciences, 10(9):1865-1875. 

Novellino A, Cigna F, Sowter A, Ramondini M, and Calcaterra D (2017) Exploitation of 

the intermittent SBAS (ISBAS) algorithm with COSMO-SkyMed data for landslide 

mapping in north-western Sicily, Italy. Geomorphology, 280:153-166. 

Oliveira SC, Zèzere JL, Catalão J, and Nico G (2015) The contribution of PSInSAR 

interferometry to landslide hazard in weak rock-dominated areas. Landslides, 

12(4):703-719. 



216 
 

Osier V (2018) Rancho Palos Verdes mulling long-term fix for Portuguese Bend Landslide. 

Daily Breeze, January 27, https://www.dailybreeze.com/2018/01/27/rancho-palos-

verdes-mulling-long-term-fix-for-portuguese-bend-landslide/.  

Pantelidis L (2011) A critical review of highway slope instability risk assessment systems. 

Bulletin of Engineering Geology and the Environment, 70:395-400. 

Parise M (2001) Landslide mapping techniques and their use in the assessment of the 

landslide hazard. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & 

Planetary Science, 26(9):697-703. 

Parise M (2003) Observation of surface features on an active landslide, and implications 

for understanding its history of movement. Natural Hazards and Earth System 

Science, 3:569-580. 

Peduto D, Ferlisi S, Nicodemo G, Reale D, Pisciotta G, and Gullà G (2017) Empirical 

fragility and vulnerability curves for buildings exposed to slow-moving landslides 

at medium and large scales. Landslides, 1-15.  

Perry J, Pedley M, and Reid M (2003) Infrastructure Embankments: Condition Appraisal 

and Remedial Treatment, 2nd edition. Construction Industry Research and 

Information Association (CIRIA) Publication, 245 p. 

Peterson DE (1987) Pavement Management Practices. NCHRP Synthesis 135, 

Transportation Research Board, Washington, D.C., 139 p. 

Petley DN (2004) The evolution of slope failures: mechanisms of rupture propagation. 

Natural Hazards and Earth System Sciences, 4:147-152. 

Petley DN (2012) Global patterns of loss of life from landslides. Geology, 40(10):927-930. 

Petley DN and Petley DJ (2004) On the initiation of large rockslides: perspectives from a 

new analysis of the Vajont movement record. In: Large Rock Slope Failures (ed: 

Evans SG), Balkema, Rotterdam (NATO Science Series), 77-84. 

Petley DN, Bulmer MH, and Murphy W (2002) Patterns of movement in rotational and 

translational landslides. Geology, 30(8):719-722. 

Piacentini D, Devoto S, Mantovani M, Pasuto A, Prampolini M, and Soldati M (2015) 

Landslide susceptibility modeling assisted by Persistent Scatterer Interferometry 



217 
 

(PSI): an example from the northwestern coast of Malta. Natural Hazards, 

78(1):681-697. 

Pierson LA, Davis SA, and Van Vickle R (1990) Rockfall Hazard Rating System 

Implementation Manual: Oregon Department of Transportation. Pub. No. FHWA-

OR-EG-90-01, 1-112. 

Pierson LA (1991) Rockfall Hazard Rating System. Oregon State Highway Division, 

Federal Highway Administration, Report No. FHWA-OR-GT-92-05, 15 p. 

Pierson LA (1992) Rockfall Hazard Rating System: Rockfall prediction and control and 

landslide case histories. Research Record 1343, Transportation Research Board, 

Washington, D.C., 6-13. 

Pierson LA and Van Vickle R (1993) Rockfall Hazard Rating System – Participant’s 

Manual, NHI Course No. 130220. U.S. Department of Transportation, Federal 

Highway Administration, Publication No. FHWA SA-93-057, 112 p.  

POLA: Port of Los Angeles (2012) Facts and Figures Card. Port of Los Angeles, 2 p. 

Prati C and Rocca F (1992) Range resolution enhancement with multiple SAR surveys 

combination. International Geoscience and Remote Sensing Symposium, 26-29 

May, Houston, Texas, USA, 1576-1578. 

Proffer KA (1992) Ground water in the Abalone Cover landslide, Palos Verdes Peninsula, 

southern California. Reviews in Engineering Geology, IX:69-82. 

Radbruch-Hall DH, Colton RB, Davies WE, Lucchitta I, Skipp BA, and Varnes DJ (1982) 

Landslide Overview Map of the Conterminous United States. US Geological 

Survey Professional Paper 1183. Digital version of the map created by Godt JW 

and found as an Open-File Report 97-289: 

http://landslides.usgs.gov/hazards/nationalmap/.  

Radbruch-Hall DH, Varnes DJ, and Savage WZ (1976) Gravitational spreading of steep-

sided ridges (“sacking”) in western United States. Bulletin of the International 

Association of Engineering Geology, 14:23-35. 

Ramsey E III, Werle D, Lu Z, Rangoonwala A, and Suzuoki Y (2009) A case of timely 

satellite image acquisitions in support of coastal emergency environmental 

response management. Journal of Coastal Research, 1168-1172. 



218 
 

Raspini F, Moretti S, and Casagli N (2013) Landslide Mapping Using SqueeSAR Data: 

Giampilieri (Italy) Case Study. Landslide Science and Practice, 1:1-8. 

Rathje E, Kayen R, and Woo K-S (2006) Remote Sensing Observations of Landslides and 

Ground Deformation from the 2004 Niigata Ken Chuetsu Earthquake. Soils and 

Foundations, 46(6):831-842. 

Reigber A and Moreira J (1997) Phase unwrapping by fusion of local and global methods. 

Remote sensing—a scientific vision for sustainable development 1997. IEEE 

International, 2:869-871. 

Rocca F, Prati C, Pasquali P, and Monti Guarnieri A (1994) ERS-1 SAR Interferometry 

techniques and applications. ESA Contract Report n.3-7439/92/HGE-1, 134 p. 

Rodriguez E and Martin JM (1992) Theory and design of interferometric synthetic aperture 

radars. IEEE Proceedings F – Radar and Signal Processing, 139(2):147-159. 

Rosi A, Tofani V, Tanteri L, Tacconi Stefanelli C, Agostini A, Catani F, and Casagli N 

(2018) The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: 

geomorphological features and landslide distribution. Landslides, 15(1):5-19. 

Salvi S, Tolomei C, Boncori JPM, Pezzo G, Atzori S, Antonioli A, Trasatti E, Giuliani R, 

Zoffoli S, and Coletta A (2012) Activation of the SIGRIS monitoring system for 

ground deformation mapping during the Emilia 2012 seismic sequence, using 

COSMO-SkyMed InSAR data. Annals of Geophysics, 55(4):797-802. 

Sanford Bernhardt KL, Loehr JE, and Huaco D (2003) Asset management framework for 

geotechnical infrastructure. Journal of Infrastructure Systems, 9(3):107-116. 

Sara F, Silvia B, and Sandro M (2015) Landslide inventory updating by means of Persistent 

Scatterer Interferometry (PSI): the Setta basin (Italy) case study. Geomatics, 

Natural Hazards and Risk, 6(5-7):419-438. 

Sarmap (2009) Synthetic Aperture Radar and SARscape® Guidebook, 274 p. 

Sarmap (2014) PS Tutorial (Version 0.9). 

http://www.sarmap.ch/tutorials/PS_Tutorial_V_0_9.pdf.  

Sarmap (2017) SARscape v. 5.2 software. 

Schaefer LN, Lu Z, and Oommen T (2015) Dramatic volcanic instability revealed by 

InSAR. Geology, 43(8):743-746. 



219 
 

Schaefer LN, Lu Z, and Oommen T (2016) Post-eruption deformation processes measured 

using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala. Remote 

Sensing, 8(1), 15 p. 

Schaefer LN, Wang T, Escobar-Wolf R, Oommen T, Lu Z, Kim J, Lundgren PR, and Waite 

GP (2017) Three-dimensional displacements of a large volcano flank movement 

during the May 2010 eruptions at Pacaya Volcano, Guatemala. Geophysical 

Research Letters, 44(1):135-142. 

Scheidegger AE (1973) On the prediction of the reach and velocity of catastrophic 

landslides. Rock Mechanics and Rock Engineering, 5(4):231-236. 

Schlögel R, Doubre C, Malet J-P, and Masson F (2015) Landslide deformation monitoring 

with ALOS/PALSAR imagery: A D-InSAR geomorphological interpretation 

method. Geomorphology, 231:314-330. 

Schulz WH, Coe JA, Ricci PP, Smoczyk GM, Shurtleff BL, and Panosky J (2017) 

Landslide kinematics and their potential controls from hourly to decadal timescales: 

insights from integrating ground-based InSAR measurements with structural maps 

and longterm monitoring data. Geomorphology, 285:121-136. 

Scolobig A, Thompson M, and Linnerooth-Bayer J (2016) Compromise not consensus: 

Designing a participatory process for landslide risk mitigation. Natural Hazards, 

81(1):45-68. 

Sherard JL and Dunnigan LP (1985) Filters and leakage control in embankment dams. In 

Seepage and leakage from dams and impoundments, ASCE, 1-30. 

Simons M and Rosen PA (2007) Interferometric synthetic aperture radar geodesy. In: 

Treatise on Geophysics – Geodesy, Vol. 3, Elsevier, Amsterdam, Netherlands, 391-

446. 

SSWD: Sacramento Suburban Water District (2011) Buildings and Structures Asset 

Management Plan: Draft. Sacramento Suburban Water District, 25 p.  

Stanley DA and Pierson LA (2013) Geotechnical Asset Management of Slopes: Condition 

Indices and Performance Measures.  Proc., Geo-Congress 2013: Stability and 

Performance of Slopes and Embankments III, Geotechnical Special Publication No. 

231, American Society of Civil Engineers, New York, 1658-1667. 



220 
 

Stark TD and Choi H (2008) Slope inclinometers for landslides. Landslides, 5:339-350. 

Stephenson WJ, Rockwell TK, Odum JK, Shedlock KM, and Okaya DA (1995) Seismic 

reflection and geomorphic characterization of the onshore Palos Verdes Fault Zone, 

Los Angeles, California. Bulletin of the Seismological Society of America, 

85(3):943-950. 

Strouth A and Eberhardt E (2007) The use of LiDAR to overcome rock slope hazard data 

collection challenges at Afternoon Creek, Washington. In: Laser and 

Photogrammetric Methods for Rock Face Characterization, eds. Tonon, F. and 

Kottenstette, J. T., American Rock Mechanics Association in Conjunction with 

GoldenRocks 2006, Colorado School of Mines, 109-120. 

Sun Q, Zhang L, Ding XL, Hu J, Li ZW, and Zhu JJ (2015) Slope deformation prior to 

Zhouqu, China landslide from InSAR time series analysis. Remote Sensing of 

Environment, 156:45-57. 

Suncar O, Rathje E, and Buckley S (2013) Deformations of a Rapidly Moving Landslide 

from High-Resolution Optical Satellite Imagery. Geo-Congress 2013, 269-278. 

Surman M (2000) $42-Million Retrofit of Casitas Dam Mostly Done. Los Angeles Times, 

written on February 12, 2000, http://articles.latimes.com/2000/feb/12/local/me-

63600.  

Temesgen B, Mohammed MU, and Korme T (2001) Natural hazard assessment using GIS 

and remote sensing methods, with particular reference to the landslides in the 

Wondogenet Area, Ethiopia. Physics and Chemistry of the Earth, Part C: Solar, 

Terrestrial & Planetary Science, 26(9):665-675. 

Terzaghi K (1950) Mechanisms of landslides. In; Paige S (ed) Application of geology to 

engineering practice. Geological Society of America, New York, New York, 83-

123. 

Tofani V, Raspini F, Catani F, and Casagli N (2013) Persistent scatterer interferometry 

(PSI) technique for landslide characterization and monitoring. Remote Sensing, 

5:1045-1065. 



221 
 

Tomás R, Cano M, Garcia-Barba J, Vicente F, Herrera G, Lopez-Sanchez JM, and 

Mallorqui JJ (2013) Monitoring an earthfill dam using differential SAR 

interferometry: La Pedrera dam, Alicante, Spain. Engineering Geology, 157:21-32. 

Tralli DM, Blom RG, Zlotnicki V, Donnellan A, and Evans DL (2005) Satellite remote 

sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. 

ISPRS Journal of Photogrammetry and Remote Sensing, 59(4):185-198. 

TranSystems Corporation (2011) Asset Management Guide for Local Agency Bridges in 

Michigan. Michigan Transportation Asset Management Council, 78 p. 

Turner D, Lucieer A, and de Jong SM (2015) Time series analysis of landslide dynamics 

using an unmanned aerial vehicle (UAV). Remote Sensing, 7(2):1736-1757. 

UAM: Utility Asset Management (2013) Utility Asset Management Cutting Edge Skills 

and Service (brochure). Utility Asset Management, 2 p.  

USBR: United States Bureau of Reclamation (2015) Chapter 13: Seismic Analysis and 

Design. In: Design Standards No. 13: Embankment Dams, U.S. Department of the 

Interior, 352 p. 

USBR: United States Bureau of Reclamation (2018) Projects & Facilities: Casitas Dam. 

https://www.usbr.gov/projects/index.php?id=276.  

USDOT: U.S. Department of Transportation (1995) Recording and Coding Guide for the 

Structure Inventory and Appraisal of the Nation’s Bridges. Federal Highway 

Administration, report no. FHWA-PD-96-001, 124 p. 

USDOT: U.S. Department of Transportation (2007) Asset Management Overview. Federal 

Highway Administration Office of Asset Management, report no. FHWA-IF-08-

008, 52 p. 

USDOT: U.S. Department of Transportation (2012) Achieving the Bridges of Tomorrow: 

The Long-Term Bridge Performance Program, publication no. FHWA-HRT-12-

017, http://www.fhwa.dot.gov/publications/focus/12sep/12sep03.cfm.  

USDOT: U.S. Department of Transportation (2013) Performance Management, 

http://www.fhwa.dot.gov/map21/factsheets/pm.cfm.  

USDOT: U.S. Department of Transportation (2015) Moving Ahead for Progress in the 21st 

Century Act (MAP-21), http://www.dot.gov/map21.  



222 
 

USGS: U.S. Geological Survey (1999) National Elevation Dataset, 10 m Digital Elevation 

Model. 

USGS: U.S. Geological Survey (2005) Landslide hazards – a national threat. USGS Fact 

Sheet 2005-3156, Dec. 2005, 2 p. 

USGS: U.S. Geological Survey (2015) High Resolution Orthoimagery (HRO). 

https://lta.cr.usgs.gov/high_res_ortho.  

USGS: U.S. Geological Survey (2017) National Elevation Dataset, Hillshade Map, 10 m 

Digital Elevation Model. https://lta.cr.usgs.gov/NED.  

USGS: U.S. Geological Survey (2018) The National Map. 

https://nationalmap.gov/index.html.  

van Westen CJ, Rengers N, Terlien MTJ, and Soeters R (1997) Prediction of the occurrence 

of slope instability phenomena through GIS-based hazard zonation. Geologische 

Rundschau, 86(2):404-414. 

Varnes DJ (1978) Slope movement types and processes. In: Special Report 176, Schuster 

RL and Krizek RJ (eds.), Landslides: Analysis and Control, Transportation 

Research Board, National Research Council, Washington, D.C., 11-33. 

Vermeesch P and Drake N (2008) Remotely sensed dune celerity and sand flux 

measurements of the world’s fastest barchans (Bodélé, Chad). Geophysical 

Research Letters, 35(24):L24404. 

Vessely M (2013) Geotechnical Asset Management: Implementation Concepts and 

Strategies. United States Department of Transportation, Central Federal Lands 

Highway Division, Pub. No. FHWA-CFL/TD-13-003, 1-73. 

Vessely M, Widmann B, Walters B, Collins M, Funk N, Ortiz T, and Liapply J (2015) Wall 

and Geotechnical Asset Management Implementation at the Colorado Department 

of Transportation. Transportation Research Board: Journal of the Transportation 

Research Board, 2529:27-36. 

Voight B (1989a) A method for prediction of volcanic eruptions. Nature, 332:125-130. 

Voight B (1989b) A Relation to Describe Rate-Dependent Material Failure. Science, New 

Series, 243(4888):200-203. 



223 
 

Vonder Linden K (1989) The Portuguese Bend landslide. Engineering Geology, 27(1-

4):301-373. 

Vonder Linden K and Lindvall CE (1982) The Portuguese Bend landslide. In: Cooper JD 

(ed) Volume and Guidebook: Landslides and Landslide Abatement. Geological 

Society of America, Palos Verdes Peninsula, Southern California, Cordilleran 

Section, 78th Annual Meeting, 49-56. 

Wang Y, Zhu XX, Zeisl B, and Pollefeys M (2017) Fusing meter-resolution 4-D InSAR 

point clouds and optical images for semantic urban infrastructure monitoring. IEEE 

Transactions on Geoscience and Remote Sensing, 55(1):14-26. 

Wartman J and Malasavage NE (2013) Predicting Time-to-Failure in Slopes from 

Precursory Displacements: A Centrifuge Experiment. Geo-Congress 2013, 741-

749. 

Wei M and Sandwell DT (2010) Decorrelation of L-band and C-band interferometry over 

vegetated areas in California. IEEE Transactions on Geoscience and Remote 

Sensing, 48(7):2942-2952. 

Wei Y and Sun Y (2010) Study on modeling dam settlement by grey system method [J]. 

Journal of China Institute of Water Resources and Hydropower Research, 1:007. 

Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, and Reynolds JM (2012) ‘Structure-

from-Motion’ photogrammetry: A low-cost, effective tool for geoscience 

applications. Geomorphology, 179:300-314. 

Wieczorek GF (1984) Preparing a detailed landslide-inventory map for hazard evaluation 

and reduction. Bulletin of the Association of Engineering Geologists, 21(3):337-

342. 

Woodring WP, Bramlette MN, and Kew WSW (1946) Geology and paleontology of the 

Palos Verdes Hills, California. U.S. Geological Survey Professor Papers 207, 145 

p. 

Woodruff JM (2005) Consequence and likelihood in risk estimation: A matter of balance 

in UK health and safety risk assessment practice. Safety Science, 43:345-353. 



224 
 

Wright TL (1991) Structural geology and tectonic evolution of the Los Angeles basin, 

California. In: Biddle KT (ed) Active margin basins. American Association of 

Petroleum Geologists memoir, 52:35-134. 

WSDOT: Washington State Department of Transportation (2015) Rebuilding SR 530. 

http://www.wsdot.wa.gov/projects/SR530/Landslide/.  

Wyllie DC (1980) Toppling rock slope failures: examples of analysis and stabilization. 

Rock Mechanics, 13:89-98. 

Wyllie DC (1987) Rock slope inventory system. Proceedings of the Federal Highway 

Administration Rock Fall Mitigation Seminar, FHWA, Region 10, Portland, 

Oregon, 25 p. 

Wyllie DC, McCammon NR, and Brumund WF (1979) Use of risk analysis in planning 

slope stabilization programs on transportation routes. Research Record 749, 

Transportation Research Board, Washington, D.C. 

Xue YT, Meng XM, Li K, and Chen G (2015) Loess Slope Instability Assessment Based 

on PS-InSAR Detected and Spatial Analysis in Lanzhou Region, China. Advanced 

Materials Research, 1065:2342-2352. 

Zeiser Kling Consultants, Inc. (2006) Evaluation of Recent Movement related to the 

Klondike Canyon Landslide, Rancho Palos Verdes, California. Correspondence 

with the City of Rancho Palos Verdes, PN 97082-1364, March 14, 10 p. 

Zhao C, Zhang Q, He Y, Peng J, Yang C, and Kang Y (2016) Small-scale landslide 

monitoring with small baseline subsets interferometric synthetic aperture radar 

technique – case study of Xingyuan landslide, Shaanxi, China. Journal of Applied 

Remote Sensing, 10(2):1-14. 

Zhu PY, Zhou Y, Thevenaz L, and Jiang GL (2009) Seepage and settlement monitoring 

for earth embankment dams using fully distributed sensing along optical fibers. In 

2008 International Conference on Optical Instruments and Technology: 

Optoelectronic Measurement Technology and Applications, 7160:716013. 

  



225 
 

Appendix 
 
A.1 Processing Workflows  
 

 
Figure A.1.1: PSI workflow. 
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Figure A.1.2: COSI-Corr workflow.  
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A.2 Abstracts for Conference Presentations  
 The abstracts for conference presentations given on the topic of remote sensing for 

geotechnical and natural hazard applications are listed below in chronological order. 

Subsections are titled by presentation name. The presenter is denoted with an asterisk (*).  

 

A.2.1 An Application of Interferometric Synthetic Aperture Radar in a Railroad 

Corridor 

El Hachemi Bouali1, Thomas Oommen1*, Rüdiger Escobar-Wolf1, and Samuel C Douglas2 

1Department of Geological and Mining Engineering and Sciences, Michigan Technological 

University, 1400 Townsend Drive, Houghton, MI 49931 
2Union Pacific Railroad, Omaha, NE 68179 

 

Presented at the 2014 Annual Technical Forum for Geohazards Impacting Transportation, 

August 5-7, 2014 in Lexington, Kentucky. 

  

 The value of using the remote sensing technique Interferometric Synthetic Aperture 

Radar (InSAR) to detect ground movement has been recognized and is increasing in 

popularity over the last decade. InSAR has been widely used to detect surficial deformation 

due to natural hazards (e.g. landslides, subsidence, lava flows, etc.). Specialized InSAR 

techniques, such as Persistent Scatterer Interferometry (PSI), has allowed for millimeter-

scale detection of ground motion on coherent structures and landmarks, which are mainly 

found in urban areas. Therefore, applications of these InSAR techniques have been focused 

around ground deformation beneath anthropogenic structures, such as those found within 

the transportation environment. 

 The purpose of this project is to examine the use of InSAR within a specific and 

relatively complex transportation environment: a railroad corridor that passes through 

complex terrain. Two InSAR techniques are used to study the ground deformation along 

the railroad corridor. Both approaches use the same 51 single-look complex images (Level 

1) from ENVISAT-ASAR (C-band SAR, 5.331 GHz) acquired between 2003 and 2010. 

The first approach is the generation of interferograms to view the phase change between 
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chronological pairs of scenes. The second approach utilizes the PSI technique, an 

interferometric stacking method, which allows for quantitative results in the form of spatial 

ground velocity points and displacement time-series analyses. By using this multi-tiered 

approach, InSAR results allow for the generation of useful datasets, such as deformation 

hazard maps, which are beneficial in providing data for preventative transportation asset 

management. 

 

A.2.2 Interferometric Synthetic Aperture Radar Applied to Geotechnical Asset 

Management in Transportation Environments 

El Hachemi Bouali1*, Rüdiger Escobar-Wolf1, and Thomas Oommen1 

1Department of Geological and Mining Engineering and Sciences, Michigan Technological 

University, 1400 Townsend Drive, Houghton, MI 49931 

 

Presented at the Association of Environmental & Engineering Geologists 57th Annual 

Meeting, September 20-28, 2014 in Scottsdale, Arizona. 

 

 The geotechnical assets that are common to various transportation environments 

include cut slopes, embankments, retaining structures, rock slopes, culverts, and pipelines. 

These geotechnical assets often provide the foundational building block that holds or 

supports other transportation assets. Monitoring and maintaining these assets along the 

transportation corridor is particularly challenging due to its vastness. Therefore, it has 

become a common practice for transportation agencies to approach asset maintenance with 

a worst first mindset: focus on the infrastructure in the worst, or failed condition prior to 

addressing any preventative measures. The high logistical expenses and labor costs 

required for field investigation to maintain all assets leads to this mindset. Therefore, 

developing an approach that would be cost effective, relatively easy to use, and would 

allow for data processing over a large swath of area over a short period of time could be an 

ideal approach for geotechnical asset management (GAM). Remote sensing techniques are 

capable of fulfilling these criteria. This project focuses on the application of Interferometric 

Synthetic Aperture Radar (InSAR) techniques to directly measure ground motion along 
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and near geotechnical assets in four different transportation environments: (1) Alaskan 

highway through mountainous terrain; (2) a segment of the Trans-Alaska Pipeline System; 

(3) the Michigan 10 highway; (4) part of the Union Pacific Railroad. Applying InSAR to 

these differing environments will allow for a better understanding of the advantages and 

limitations of using this technique and, ultimately, to incorporate these methods for 

transportation assets and GAM. This project will illustrate the capabilities of InSAR usage 

over different transportation environments, discuss various calibration and validation 

efforts, and compare InSAR displacement results to field-derived displacement data as a 

measure of accuracy of this remote sensing application. 

 

A.2.3 Field Verification of Satellite-based Velocity Data 

El Hachemi Bouali1*, Thomas Oommen1, and Rüdiger Escobar-Wolf1 

1Department of Geological and Mining Engineering and Sciences, Michigan Technological 

University, 1400 Townsend Drive, Houghton, MI 49931 

 

Presented at the Geological Society of America North-Central Section 49th Annual 

Meeting, May 19-20, 2015, in Madison, Wisconsin.  

 

 Interferometric Synthetic Aperture Radar (InSAR) has become a popular satellite-

based remote sensing technique used to measure many types of ground deformation, 

including subsidence/uplift, faulting, and landslides. InSAR stacking, such as the Persistent 

Scatterer Interferometry (PSI) algorithm, allows for pixel-scale velocity measurements as 

accurate as 1 mm/year. The purpose of this project is to assess the capabilities of PSI to 

identify hazard zones through field verification and validation. 

 The study area is a 30-km railroad corridor that traverses a canyon system 

composed of volcanic sediments and rocks in southeastern Nevada. Since 2005, sporadic 

rockfalls have occurred along slopes near the railroad tracks, prompting an investigation 

of the capabilities of various remote sensing techniques to monitor slope movements and 

to identify additional, potentially unstable regions. With the use of PSI a total of 90 satellite 
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images (ERS-1/-2 and ENVISAT), acquired over the railroad corridor from 1992 to 2011, 

were processed and results are in the form of persistent scatterer (PS) points. 

 Potential hazard zones were identified using qualitative criteria similar to those 

found in current slope management programs. Slopes were classified as hazardous if they 

displayed the following three criteria: (1) slope height ≥ 50 feet, (2) located within 100 feet 

of railroad tracks, and (3) average downslope velocity > 2 mm/year. 13 potential hazard 

zones were identified. This presentation will discuss the capability of radar interferometry, 

coupled with basic slope management criteria, to accurately identify downslope 

movements along a transportation environment. Field verification will help solidify the 

benefits of utilizing InSAR techniques. 

 

A.2.4 Can We Extract Information Regarding Transportation Asset Condition from 

Satellite-based Radar Interferometric Data? 

El Hachemi Bouali1*, Thomas Oommen1, and Rüdiger Escobar-Wolf1 

1Department of Geological and Mining Engineering and Sciences, Michigan Technological 

University, 1400 Townsend Drive, Houghton, MI 49931 

 

Presented at the Association of Environmental & Engineering Geologists 58th Annual 

Meeting, September 19-26, 2015 in Pittsburgh, Pennsylvania. 

 

 As many transportation agencies adopt asset management (AM) programs for 

preventative care and long-term maintenance purposes, it is becoming more apparent that 

the myriad of disparate asset types across large-scale transportation networks (e.g., state-

wide level) are difficult to adequately manage in a timely fashion. There seems to be a 

disconnect between the robust requirements for successful AM implementation, as 

described by various transportation agencies’ AM frameworks, and the completion of these 

requirements in the field. For example, the recently-passed Moving Ahead from Progress 

in the 21st Century Act (MAP-21) dictates that each State Department of Transportation is 

required to develop a risk-based AM plan and are encouraged “to include all infrastructure 
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assets within the right-of-way corridor…” This is a daunting task if done entirely via field-

based methods. 

 The authors investigate the use of radar interferometry, a remote sensing technique 

where all data are acquired via active microwave sensors attached to polar orbiting 

satellites, towards the condition assessment of various asset types (e.g., geotechnical, 

transportation, and pavement) within the transportation corridor. An analysis of different 

radar interferometry outputs – primary products such as interferograms, coherence maps, 

amplitude imagery, and persistent scatterer points – is explored to see if secondary products 

may be generated to further assist in the initial condition assessment and long-term 

monitoring steps of AM programs. 

 

A.2.5 A Multi-Sensor Approach to Monitor Slope Displacement 

El Hachemi Bouali1*, Thomas Oommen1, and Rüdiger Escobar-Wolf1 

1Department of Geological and Mining Engineering and Sciences, Michigan Technological 

University, 1400 Townsend Drive, Houghton, MI 49931 

 

Presented at the American Geophysical Union Fall 2015 Meeting, December 14-18, 2015, 

in San Francisco, California. 

 

 The use of remote sensing toward slope monitoring and landslide detection has 

been widespread. Common techniques include interferometric synthetic aperture radar 

(InSAR), light detection and ranging (LiDAR), and optical photogrammetric methods. 

Each technique can measure ground motion when data over the same region are acquired 

through multiple acquisitions, with typical data outputs displayed in spatial form (e.g., 

displacement/velocity maps or two- and three-dimensional change detection models) or in 

temporal form (e.g., displacement time series). 

 The authors apply a multi-sensor approach – combining satellite-based InSAR, 

terrestrial LiDAR, and aerial optical photogrammetry – in order to optimize these remote 

sensing techniques based on their advantages and limitations. This application is conducted 

over a railroad corridor in southeastern Nevada. InSAR results include the calculation of 
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displacement rates across many slopes over a long period of time. Two slopes, identified 

as potentially hazardous, are further analyzed in greater detail using LiDAR and optical 

photogrammetry. Slope displacements are measured using a point-cloud change detection 

analysis; the potential for stacking acquisitions to create displacement time-series is also 

explored. Overall, the goal is to illustrate the benefits of using a multi-sensor, remote 

sensing approach towards the monitoring of slope instability.  

 

A.2.6 Monitoring Slope Instability and Ground Deformation across the Palos Verdes 

Peninsula with COSMO-SkyMed Satellite Radar Imagery 

El Hachemi Bouali1* 
1Department of Geological and Mining Engineering and Sciences, Michigan Technological 

University, 1400 Townsend Drive, Houghton, MI 49931 

 

Presented at the 2016 Graduate Research Colloquium at Michigan Technological 

University, February 24-25, 2016, in Houghton, Michigan. 

 

 The Palos Verdes Peninsula, located in southwestern Los Angeles County, 

California, experiences widespread slope instability and ground deformation due to many 

geologic and climatic factors. A majority of the landslides occur within the Palos Verdes 

Hills, a complex of ancient and modern mass movements atop the southward-dipping 

portion of an anticline. Landslides can be classified into two groups: (1) deep-seated 

translational slides with a slip surface usually adjacent to the Altamira Shale Formation, 

and (2) relatively shallow complex slides occurring on remnant deposits of past mass 

movements. Climatic factors, mainly precipitation, have been correlated to increased slope 

instability as the magnitude of landslides increases during the wet season (winter to spring). 

In order to understand the spatial and temporal variations in ground deformation across the 

peninsula, an interferometric synthetic aperture radar (InSAR) stacking technique 

(persistent scatterer interferometry, PSI) was used to process 40 COSMO-SkyMed satellite 

radar images acquired between July 2012 and September 2014. PSI allows for the 

conversion of single-look complex radar images, which measure the amplitude and phase 
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of radar echoes, into ground deformation maps that show deformation rates (e.g., velocity) 

down to 1 mm/year at a spatial resolution of 3 m. This presentation will illustrate the 

capabilities of InSAR to monitor slope instability in rural environments and the impacts of 

widespread ground deformation on anthropogenic structures in adjacent urban 

environments.  

 

A.2.7 Rockfall Hazard Analysis using Satellite, UAV, and Field Data: A Comparison 

of Techniques and RHRS Results 

El Hachemi Bouali1*, Thomas Oommen1, Stanley Vitton2, Rüdiger Escobar-Wolf1, and 

Colin Brooks3 
1Department of Geological and Mining Engineering and Sciences, Michigan Technological 

University, 1400 Townsend Drive, Houghton, MI 49931 
2Department of Civil and Environmental Engineering, Michigan Technological University, 

1400 Townsend Drive, Houghton, MI 49931 
3Michigan Tech Research Institute, 3600 Green Court, Suite 100, Ann Arbor, MI 48105 

 

Presented at the Association of Environmental & Engineering Geologists 59th Annual 

Meeting, September 18-24, 2016 in Kona, Hawaii. 

 

 Providing efficient and economically feasible assessment methods is an important 

component of a geotechnical asset management (GAM) program. Traditionally, the 

assessment method has been to collect field-based data and observations. This takes time, 

especially for large transportation corridors. The uses of satellites and unmanned aerial 

vehicles (UAVs) is presently becoming a more viable method for GAM programs. This 

study uses the Rockfall Hazard Rating System (RHRS) as the metric for assessing rock 

slope conditions along a railroad corridor in southeastern Nevada. RHRS values, a measure 

of potential future rock slope instability, were measured along 14 slopes using three data 

sources: (1) detailed field investigations (the traditional and most widespread approach), 

(2) historical optical satellite imagery, and (3) optical UAV imagery. RHRS values 

generated from these three data sets were compared and contrasted. As expected, the field-



234 
 

based RHRS approach is a more robust method when compared to remote sensing 

techniques. The study found, however, that satellite-based data can provide meaningful 

RHRS estimates when accounting for image resolution limits and UAV-based data can 

provide RHRS estimates that are within the statistical variance of traditional field-based 

data. 

 

A.2.8 Comparing the California Landslide Inventory to Ground Motion Detected by 

the COSMO-SkyMed Satellite across the Palos Verdes Peninsula  

El Hachemi Bouali1*, Thomas Oommen1, and Rüdiger Escobar-Wolf1 

1Department of Geological and Mining Engineering and Sciences, Michigan Technological 

University, 1400 Townsend Drive, Houghton, MI 49931 

 

Presented at the Association of Environmental & Engineering Geologists 59th Annual 

Meeting, September 18-24, 2016 in Kona, Hawaii. 

 

 The California Landslide Inventory (CLI), prepared by the California Geological 

Survey, is a digital landslide map database. A landslide inventory map establishes the 

extent of historic ground deformation and aids in the identification of potential locations 

of future activity. Incorporating landslides that have occurred statewide over the past 50 

years, the CLI documents the spatial, temporal, and geologic information, acquired from 

various field observations, of each mass movement. Interferometric Synthetic Aperture 

Radar (InSAR) techniques have become a widely-used remote sensing technique for the 

detection and monitoring of ground deformation. Forty COSMO-SkyMed synthetic 

aperture radar images, acquired between July 2012 and September 2014, were processed 

using the Persistent Scatterer Interferometry (PSI) InSAR technique. PSI allows for the 

pixel-scale (3 m) displacement rate calculations with an accuracy of 1 mm/year. A benefit 

of using InSAR is that the technique can detect very slow landslides, with velocities on the 

mm-scale, which may not be immediately detectable by field crews. The study area is the 

Palos Verdes Peninsula. Located southwest of the Los Angeles metropolitan area, the 

peninsula contains landslide-prone regions that experience significant ground deformation, 
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especially during wet seasons. The goal of this project is to combine available resources 

(CLI, InSAR displacement rates, and InSAR displacement time-series) to determine 

whether areas of relatively high displacement rates (measured using InSAR) correspond to 

known, historic landslides or previously unnoticed landslides.  

 

A.2.9 Utilizing PSInSAR to Monitor Transportation Asset Conditions to Maintain 

Mobility Efficiency 

El Hachemi Bouali1* and Thomas Oommen1 

1Department of Geological and Mining Engineering and Sciences, Michigan Technological 

University, 1400 Townsend Drive, Houghton, MI 49931 

 

Presented at the Michigan Tech Mobility Summit, April 20, 2017 in Houghton, Michigan. 

 

 Many transportation agencies are adopting asset management programs for 

preventative care and long-term maintenance purposes. The condition of assets such as 

bridges, overpasses, retaining walls, and slopes directly influence mobility efficiency 

within the right-of-way corridor. Mobility, inversely proportional to the cost and time 

required for travel (high mobility occurs with low cost and travel time), decreases when 

transportation assets experience extreme degradation or failure. The development of an 

approach that can monitor changes to transportation asset conditions over time can be of 

great benefit to asset management programs at any scale. The authors demonstrate the 

capabilities of PSInSAR, a remote sensing technique that stacks radar signals from 

satellites, to measure ground deformation rates along transportation assets over a period of 

time. 

 

A.2.10 Evaluating the Integrity of Railway Corridor Using Remote Sensing 

El Hachemi Bouali1*, Thomas Oommen1, Rüdiger Escobar-Wolf1, Colin Brooks2, and Pasi 

Lautala3 

1Department of Geological and Mining Engineering and Sciences, Michigan Technological 

University, 1400 Townsend Drive, Houghton, MI 49931 
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2Michigan Tech Research Institute, 3600 Green Court, Suite 100, Ann Arbor, MI 48105 
3Department of Civil and Environmental Engineering, Michigan Technological University, 

1400 Townsend Drive, Houghton, MI 49931 

 

Presented at the Rail Infrastructure and Vehicle Inspection Technology Conference, June 

20-21, 2017 in Urbana, Illinois. 

 

Abstract written by Thomas Oommen: 

 Slope instability related conditions often interrupt the integrity of the railway 

corridor in mountainous terrains. A pro-active monitoring of the railway corridor is 

necessary to reduce interruption, improve safety, and more appropriate allocation of limited 

maintenance funds. However, a corridor wide quantitative monitoring using traditional 

slope monitoring techniques is challenging and cost prohibitive. In recent studies, remote 

sensing methods have shown promise for monitoring slope instability along railway 

corridors. We present a recent application of remote sensors such as Interferometric 

Synthetic Aperture Radar (InSAR), Light Detection and Ranging (LiDAR), and 

photogrammetry from satellite, airborne, mobile, and terrestrial platforms to monitor a rail 

corridor in Nevada. The study showed that thee sensors provide high spatial and temporal 

resolution to quantitatively evaluate the integrity of the rail corridor. The InSAR results 

indicate that mm scale detection of ground movements can be achieved to pro-actively 

monitor slope instability before a failure occurs. Whereas, the photogrammetry provides a 

cost-effective approach to quantify ground displacements. 

 

A.2.11 Monitoring the Casitas Dam in Ventura County, California with Satellite 

InSAR 

El Hachemi Bouali1*, Thomas Oommen1, and Rüdiger Escobar-Wolf1 

1Department of Geological and Mining Engineering and Sciences, Michigan Technological 

University, 1400 Townsend Drive, Houghton, MI 49931 
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Presented at the Association of Environmental & Engineering Geologists 60th Annual 

Meeting, September 10-16, 2017 in Colorado Springs, Colorado. 

 

 The Casitas Dam is an earthfill dam built in 1959 and operated by the Bureau of 

Reclamation in Ventura County, California. The dam is 2,000 feet long, 334 feet tall, and 

impounds Coyote Creek to form Lake Casitas, a reservoir with a volume of 254,000 acre-

feet. An environmental report was released in 1998 labelling the dam at risk of rupture if a 

magnitude-7 earthquake occurs on the proximal Red Mountain Fault. A rupture would 

release a 300-foot wall of water down Coyote Creek, possibly killing 400 people and 

causing about $430 million in property damage. This report prompted an effort to 

strengthen the dam, which began in May 1999 and concluded in December 2000, by 

replacing liquefaction-prone soils with firm earth and building a buttress behind the dam. 

Interferometric Synthetic Aperture Radar (InSAR) can be utilized for the measurement of 

structural displacement across the Casitas Dam. This allows for long-term monitoring of 

dam movements and quantification of the effectiveness of stabilization efforts in 2000. For 

example, 24 ENVISAT images (acquired between 2005 and 2010) were processed with the 

Persistent Scatterer Interferometry (PSI) algorithm and revealed that portions of the Casitas 

Dam underwent approximately five centimeters of displacement and the buttress 

experienced nine centimeters of displacement, both in the downward direction. Aerial 

images correlate some areas of dam displacement with surficial erosion. However, there 

are regions of centimeter-scale displacements with no evidence of erosion, possibly 

indicating internal deformation of the earthfill dam and buttress. The authors use PSI 

results, displacement-time series, and interpolation maps to demonstrate InSAR 

capabilities of monitoring the Casitas Dam. 

 

A.2.12 Slow Landslide Identification using InSAR to Update the California Landslide 

Inventory on the Palos Verdes Peninsula 

El Hachemi Bouali1*, Thomas Oommen1, and Rüdiger Escobar-Wolf1 

1Department of Geological and Mining Engineering and Sciences, Michigan Technological 

University, 1400 Townsend Drive, Houghton, MI 49931 
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Presented at the Geological Society of America Annual Meeting, October 22-25, 2017 in 

Seattle, Washington. 

 

 Sudden, quick-moving landslides are well-documented natural hazard events that 

can cause extreme damage and loss of life. Slow landslides, those with displacement rates 

less than 16 mm/year, may be imperceptible without proper instrumentation, but can also 

damage infrastructure and require expensive reconstruction efforts, typically on a long-

term timescale. The objective of this presentation is to update the California Landslide 

Inventory (CLI) with slow landslides information from the Palos Verdes Peninsula using 

the Interferometric Synthetic Aperture Radar (InSAR) technique known as Persistent 

Scatterer Interferometry (PSI). 34 ENVISAT (2005-2010) and 40 COSMO-SkyMed 

(2012-2014) radar images were processed. Slow landslides detected using InSAR comprise 

the InSAR Landslide Inventory (ILI), which was created using four criteria: a minimum 

PS count, average ground velocity, slope angle, and slope aspect. Landslides in the ILI are 

further divided into four categories: (1) long-term slides, (2) potentially active slides, (3) 

relatively stable slopes, and (4) unmapped extremely slow slides. The four categories were 

based on whether landslides were previously mapped on that slope (in the CLI), if 

persistent scatterers (PS) were present, and whether PS are stable or unstable. The final 

inventory included 263 mapped landslides across the Palos Verdes Peninsula, of them 67 

landslides were identified as unmapped extremely slow slides. 
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The consequences of slope instability are severe across the world: the US Geological 

Survey estimates that, each year, the United States spends $3.5B to repair damages caused 

by landslides, 25-50 deaths occur, real estate values in affected areas are reduced, 

productivity decreases, and natural environments are destroyed. A 2012 study by D.N. 

Petley found that loss of life is typically underestimated and, between 2004 and 2010, 2,620 

fatal landslides caused 32,322 deaths around the world. These statistics have led research 

into the study of landslide monitoring and forecasting. More specifically, this presentation 

focuses on assessing the potential for using satellite-based optical and radar imagery 

toward overall landslide life-cycle monitoring and prediction. Radar images from multiple 

satellites (ERS-1, ERS-2, ENVISAT, and COSMO-SkyMed) are processed using the 

Persistent Scatterer Interferometry (PSI) technique. Optical images, from the Worldview-

2 satellite, are orthorectified and processed using the Co-registration of Optically Sensed 

Images and Correlation (COSI-Corr) algorithm. Both approaches, process stacks of 

respective images, yield ground displacement rate values. Ground displacement 

information is used to generate ‘inverse-velocity vs time’ plots, a proxy relationship that is 

used to estimate landslide occurrence (slope failure) and derived from a relationship 

quantified by T. Fukuzono in 1985 and B. Voight in 1988 between a material’s time of 

failure and the strain rate applied to that material. Successful laboratory tests have 

demonstrated the usefulness of ‘inverse-velocity vs time’ plots. This presentation will 

investigate the applicability of this approach with remote sensing on natural landslides in 

the western United States. 

 

A.2.14 Satellite InSAR as an Initial Health Assessment Tool for Dams and Reservoirs 

El Hachemi Bouali1*, Thomas Oommen1, KS Sajinkumar2, and Rüdiger Escobar-Wolf1 

1Department of Geological and Mining Engineering and Sciences, Michigan Technological 

University, 1400 Townsend Drive, Houghton, MI 49931 
2Department of Geology, University of Kerala, Karyavattom, Thiruvananthapuram, Kerala 

695581, India 

 



240 
 

Presented at the U.S. Society on Dams Conference and Exhibition, April 30 – May 2, 2018 

in Miami, Florida. 

 

Worldwide, there are over 57,000 large dams (>15 meters in height)—with China, the 

United States, India, Japan, and Brazil owning well over 32,000 large dams. Dams provide 

a range of benefits: flood control; water storage in reservoirs for agricultural, industrial, 

and municipal uses; hydropower; navigation; debris control; and recreation. Dams also 

pose an inherent risk, mainly to humans, wildlife, and infrastructure downstream, for 

example if a dam failure occurs. Dam failures may be caused by structural failure, 

settlement or cracking (concrete), piping or internal erosion (soil), movement of the dam 

foundation, or natural deterioration due to insufficient preventative maintenance and 

upkeep. This paper presents a demonstration of satellite Interferometric Synthetic Aperture 

Radar (InSAR) as an initial health assessment tool for dam and reservoir infrastructure 

through a series of case studies of dams in the United States and India. InSAR techniques, 

such as Persistent Scatterer Interferometry (PSI), can measure small, decadal displacement 

rates (~1 mm/year) on ground targets that experience relatively minimal geometric and 

dielectric variations, such as anthropogenic infrastructure. Dams in these case studies are 

monitored using satellite radar imagery from ERS-1, ESR-2, ENVISAT, Sentinel-1, and 

COSMO-SkyMed, collectively between 1992 and 2016. PSI results pinpoint areas of 

abnormal displacement, which may indicate early signs of dam instability. This paper 

illustrates a rapid monitoring approach for identifying dam instability and locations that 

may require further structural and geotechnical assessment. 
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The destructive potential of a landslide is directly related to its peak velocity, cumulative 

displacement, and activity duration. A combination of radar, optical, and GPS data were 

used to monitor continually-moving portions of the Portuguese Bend Landslide complex 

on the Palos Verdes Peninsula in southern California. Forty radar images from COSMO-

SkyMed, acquired between July 19, 2012 and September 27, 2014, were processed using 

Persistent Scatterer Interferometry (PSI). Ten optical images from WorldView-2, acquired 

between February 20, 2011 and March 6, 2016, were processed using the Co-registration 

of Optically Sensed Images and Correlation (COSI-Corr) technique. Data from 66 GPS 

monuments were acquired between September 2007 and May 2017. PSI, COSI-Corr, and 

GPS allowed for deformation measurements spanning three orders of magnitude, from m-

scale to mm-scale. Each technique provides an advantage where the others might be 

limited. COSI-Corr and GPS provide detailed coverage of m-scale deformation. COSI-

Corr is not prone to loss of data due to rapid movements (e.g., destruction of GPS 

monuments); GPS is not affected by systematic remote sensing noise (e.g., COSI-Corr 

signal-to-noise ratio). PSI can measure extremely slow deformation (e.g., mm-scale), 

which COSI-Corr and GPS cannot do reliably. PSI, COSI-Corr, and GPS results were 

combined to monitor peak velocity (>1.6 m/year), cumulative displacement (>10 m), and 

activity duration (some locations continuously active for over 12 years), allowing for 

detailed spatial and temporal analyses of landslide deformation across the Portuguese Bend 

Landslide complex. 
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