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Monitoring deformations of infrastructure
networks: A fully automated GIS
integration and analysis of InSAR
time-series

Valentina Macchiarulo1, Pietro Milillo2, Chris Blenkinsopp1 and Giorgia Giardina3

Abstract
Ageing stock and extreme weather events pose a threat to the safety of infrastructure networks. In most countries, funding
allocated to infrastructure management is insufficient to perform systematic inspections over large transport networks. As
a result, early signs of distress can develop unnoticed, potentially leading to catastrophic structural failures. Over the past
20 years, a wealth of literature has demonstrated the capability of satellite-based Synthetic Aperture Radar Interferometry
(InSAR) to accurately detect surface deformations of different types of assets. Thanks to the high accuracy and spatial
density of measurements, and a short revisit time, space-borne remote-sensing techniques have the potential to provide a
cost-effective and near real-time monitoring tool. Whilst InSAR techniques offer an effective approach for structural health
monitoring, they also provide a large amount of data. For civil engineering procedures, these need to be analysed in
combination with large infrastructure inventories. Over a regional scale, the manual extraction of InSAR-derived dis-
placements from individual assets is extremely time-consuming and an automated integration of the two datasets is essential to
effectively assess infrastructure systems. This paper presents a new methodology based on the fully automated integration of
InSAR-based measurements and Geographic Information System-infrastructure inventories to detect potential warnings over
extensive transport networks. A Sentinel dataset from 2016 to 2019 is used to analyse the Los Angeles highway and freeway
network, while the Italian motorway network is evaluated by using open access ERS/Envisat datasets between 1992 and 2010,
COSMO-SkyMed datasets between 2008 and 2014 and Sentinel datasets between 2014 and 2020. To demonstrate the flexibility
of the proposed methodology to different SAR sensors and infrastructure classes, the analysis of bridges and viaducts in the two
test areas is also performed. The outcomes highlight the potential of the proposed methodology to be integrated into structural
health monitoring systems and improve current procedures for transport network management.

Keywords
critical infrastructure, transport networks, infrastructure resilience, early warning, roadway, bridges, MT-InSAR, remote
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Introduction

Civil infrastructure networks supply our basic needs for
mobility, power, water and communications, playing a central
role in the growth and development of national economies.
However, the structural failures of the last 30 years reflect the
vulnerability of existing infrastructure,1,2 and western coun-
tries are facing growing pressures to upgrade their national
infrastructure systems.3 Bridge collapses, water main breaks,
gas pipe ruptures, dam failures and steam pipe explosions are
some examples of infrastructure failures.

Evidence has shown that most of these failures are re-
lated to ageing stock.4,5 In many countries, pipelines, roads,
railways and bridges are reaching the end of their life service

and need to be upgraded.6–9 Infrastructure maintenance
requires large amounts of investment. The American

1Department of Architecture & Civil Engineering, University of Bath, Bath,
UK
2Cullen College of Engineering, Department of Civil and Environmental
Engineering, University of Houston, Houston, TX, USA
3Department of Geoscience & Engineering, Delft University of Technology,
Delft, The Netherlands

Corresponding author:
Giorgia Giardina, Department of Geoscience & Engineering, Delft
University of Technology, Stevinweg1, Delft, Zuid-Holland 2628 CN, The
Netherlands.
Email: g.giardina@tudelft.nl

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/14759217211045912
https://journals.sagepub.com/home/shm
https://orcid.org/0000-0002-0585-0560
mailto:g.giardina@tudelft.nl
http://crossmark.crossref.org/dialog/?doi=10.1177%2F14759217211045912&domain=pdf&date_stamp=2022-01-05


Society of Civil Engineers7 found that US infrastructure was
in an overall ‘poor condition’ and would require an in-
vestment of $2.2 trillion to fix. Germany’s Federal Ministry
of Transport10 has launched a €270 billion-investment pro-
gramme focused on the national transport infrastructure over
the next 15 years: 70% of the budget is allocated for
structural maintenance and repair of existing facilities. In
Italy, the Ministry of Infrastructure and Transport has ap-
proved an additional €28 billion of rail and road investment
for the 2019–2023 phase.11 The UK’s National Infrastructure
Plan12 allocated over £88 billion toward the transport seg-
ment, and £6.7 billion are required to upgrade substandard
bridges.

The vulnerability of transport infrastructure is tradi-
tionally assessed through field surveys and site-based in-
strumentation, such as tilt sensors and crack gauges.13,14

The larger the transport network, the higher the maintenance
costs are, making it impractical to conduct all the necessary
point-based measurements. Due to the high cost of sensors,
only a few assets around the world are equipped with site-
based instruments, while the health-structural evaluation is
mainly performed through visual inspections.15–18 Inspec-
tion timelines are different for different countries and
specific assets. For example, in the USA routine bridge-
inspections are usually performed every 1 or 2 years, while
underwater inspections take place every 6 years.19 In
Germany and the UK, bridges are surveyed once every
3 years and receive a full-check every 6 years. French
bridges receive a general inspection every year and a de-
tailed inspection every 3 years.20,21 In the Netherlands,
bridges are inspected every 6 years.22 The low frequency of
these investigations and the variable methodology and
accuracy of these evaluation techniques13 mean that
transport infrastructure often lacks systematic and reliable
structural inspections.

A promising solution to this problem is offered by the
exploitation of space-borne Interferometric Synthetic Ap-
erture Radar (InSAR) to monitor civil infrastructure on a
large scale. InSAR-based monitoring can be performed at
faster rates compared to traditional monitoring, allowing
savings of time and resources. In particular, Multi Temporal
InSAR (MT-InSAR) techniques23–25 allow the extraction of
surface displacements over time from high-resolution SAR
images – that is, up to 2–5 m for SAR satellites operating at
C-band (∼5.6 cm wavelength) and about 1 m for X-band
(∼3 cm wavelength) SAR sensors.26 MT-InSAR techniques
enable weekly detection of surface deformations with a
precision of up to the millimetre scale.27,28 These techniques
are based on the identification of point-targets showing
stable scattering properties along a time-series of InSAR
images. Due to their physical properties, buildings, steel
rails, bridges and dams can satisfactorily generate Permanent
(or Persistent) Scatterers (PSs), that is, point elements pro-
viding a temporally coherent electromagnetic backscattering.

This makes MT-InSAR techniques an excellent tool for de-
tecting deformations over built-up areas29–31 and civil
infrastructure.15,18,32–34

Recent studies have shown the feasibility of space-borne
MT-InSAR techniques to provide accurate spatial infor-
mation for building monitoring,35–44 bridges,16,45,46 dams,47–50

railways51–54 and other linear infrastructure,55–59 demonstrating
that remote-sensing data can be effectively utilised in
combination with conventional ground-based monitoring
systems, such as precise levellings and automated total stations.
However, the information obtained from MT-InSAR analysis
typically consists of a huge amount of data. For civil engineering
applications, these data need to be related to specific buildings
and infrastructure. The manual identification of anomalies on
surface features allows accurate results, but it is costly, time-
consuming and requires expertise to process and analyse,
limiting the timely dissemination of information provided by
MT-InSAR techniques.

Geographic Information Systems (GIS) facilitate the
integrated analysis of large volumes of multi-disciplinary
data, allowing the integration of remote-sensingmeasurements
and civil engineering assessment procedures.16,39,57,60–63 To
facilitate a preliminary identification of the most vulnerable
infrastructure assets or critical locations along linear infra-
structure systems, a methodology based on the fully automated
integration of MT-InSAR data and a GIS-based analysis is
presented in this paper. The proposed methodology auto-
matically processes large volumes of PS displacement time-
series and road network databases to extract deformation data
over a given network, and performs local deformation analysis
designed to detect anomalous differential movements between
parts of the same piece of infrastructure. Differently from
existing detection methods,58,61–64 the methodology presented
in this paper is designed to analyse InSAR displacements
belonging to infrastructure only, and it is independent from the
source of movement causing the deformation. Results are used
to generate a report displaying the location of identified
anomalies along the roads, as well as an indication of the
quality of the monitoring in terms of number of PSs available
for each infrastructure. As the detected anomalies might in-
dicate precursory signs of structural distress, the proposed
methodology can be used to target further investigations and
detailed structural analysis for informed operations and
maintenance planning. The developed algorithm was applied
to the Los Angeles highway and freeway network and the
Italian motorway network, to demonstrate its practical capa-
bilities. Then, the proposed methodology was used to evaluate
bridges and viaducts in Los Angeles, California, USA,
showing its flexibility to the analysis of different infrastructure
types. Finally, the case of an Italian motorway viaduct that was
damaged in 2015 is presented and analysed in relation to
the outputs of the developed algorithm to determine whether
the proposed methodology could be used to guide further
investigations.
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Literature review

Multi-Temporal InSAR (MT-InSAR) techniques have
proven effective in mapping surface displacements.65,66

Unlike the traditional Differential Interferometric SAR
(DInSAR), which is based on a two-image configuration,
these techniques exploit multiple SAR images over the
same area to reconstruct the temporal and spatial evo-
lution of surface deformations67 with a high level of
accuracy.

Since the late 1990s, a diverse range of stacking tech-
niques were developed to retrieve surface deformations
from large numbers of SAR images. Permanent (or Per-
sistent) Scatterer (PS) Interferometry24,25 was established to
overcome the limitations of conventional InSAR – that is,
geometric decorrelation and atmospheric effects – and
provide a full resolution scatter analysis without including
multi-looking operations, such as the SBAS techniques.68,69

PS Interferometry (PSI) is a multi-image approach that is
based on the identification of coherent radar reflectors, that
is, permanent scatterers (PSs), over a sequence of inter-
ferograms in a certain area, allowing the reconstruction of
the temporal and spatial evolution of superficial deforma-
tions affecting the ground and structures. This MT-InSAR
technique can achieve a millimetre-scale accuracy on a
time-series of surface displacement measurements.27,28,70

Since 2007, the second generation of space-borne SAR
missions,71–73 for example, TerraSAR-X (TSX), COSMO-
SkyMed (CSK) and Sentinel-1A/B (SNT), has provided a
spatial resolution in the order of metres and a temporal
resolution of a few days.26 Thanks to these developments,
the density of PSs extracted from high-resolution SAR data
is up to 6 times higher than from medium-resolution SAR,
for example, RADARSAT-1 and Envisat.74 The combina-
tion of high spatial density, wide coverage and high sen-
sitivity to small deformations has enabled the study of the
deformation of individual assets on a large scale, increasing
significantly the potential of MT-InSAR techniques.75

The physical nature of PSs makes MT-InSAR techniques
extremely effective for monitoring urban areas. PSs are
point elements which backscatter the signal emitted by a space-
borne SAR sensor. Thanks to their geometric configuration
and dielectric properties,76 PSs can remain stable within the
stack of processed images. Investigations on the response of
built-up areas to microwave radiation from satellite SAR
systems led to the identification of buildings, metallic struc-
tures and infrastructure as ideal monitoring targets.77

Over the last 20 years, MT-InSAR techniques have been
extensively applied to the civil engineering field. A
classification of the most important PSI applications for
infrastructure monitoring is given in Table 1. Four infra-
structure classes have been historically identified as good
targets of PSI applications, nominally bridges, dams,
railways and roadways. Table 1 provides relevant references

for each application, including motivation, details of the
study area, the space-borne InSAR sensor utilised, the
acquisition geometry (ascending or descending), the pe-
riod of analysis and the innovation presented in each
study.

The application of MT-InSAR techniques to real case
studies and the cross-validation of PS-based results against
in-situ measurements have demonstrated the reliability of
this approach for health monitoring of different types of
assets. Surface deformations can be effectively extracted for
individual objects, such as buildings,30,31,37–40,78,79 or linear
infrastructure, such as railways,32,33,80,81 roadways,56,57,82–84

levees85,86 and coastal structures.55 Previous studies have
shown the feasibility of these techniques for monitoring the
settlement of bridge piers87 and the structural deformations
of bridges.16,45,88–92 Other studies have utilised MT-InSAR
to investigate the response of dams to subsidence48,49,93 and
earthquakes,94 or to detect the non-linear component of
asset motion.50,88

The majority of MT-InSAR validation activities have
compared deformation velocities and displacement time-
series with estimations based on traditional sources, such as
levelling95,96 orGPSmeasurements.97–100Accurate geolocalisation
of radar targets101 and PS height estimate102 were demon-
strated. In more recent work,33,34,38,103–106 InSAR-derived
results from different type of structures have been com-
pared with measurements gathered by in-situ instruments and
visual inspections, revealing good agreement between the data
and enabling the integration ofMT-InSARmeasurements with
damage assessment procedures.38,39,107–110

However, while these studies demonstrate the potential
of MT-InSAR for infrastructure monitoring, handling the
large amount of PS data for civil engineering applications
is still a challenge. A significant part of the post-
processing phase usually takes place using GIS, with
the aim of merging the PS data and geospatial databases
related to the structures within the monitored area. This
allows the identification of the scatterers associated with
the buildings and/or infrastructure that we want to
monitor and in most of the cases it is performed manually.
An automated integration of MT-InSAR data and the GIS
environment will allow the capabilities of the InSAR tool
to be fully exploited in order to identify anomalous
moving areas61,62 and provide early warnings,64 with the
potential to prevent future catastrophic failures on a large
scale. The main novelty of this research is that the pro-
posed methodology enables the use of InSAR deforma-
tion measurements to assess relative movements between
different parts of the same infrastructure, and identify the
parts of the structure that exhibit local rates and local
deformation time-series dissimilar from the global
structural behaviour. The proposed methodology is not
limited to deformations caused by a specific source of
movement.
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Table 1. Revised literature of the main PSI applications. LOS indicates the satellite line of sight, while A and D indicate ascending and
descending orbits, respectively.

Infrastructure
Research
motivation Case of study Data source Innovation References

Bridges Pre-failure
assessment

Hintze Ribeiro bridge,
Portugal

ERS D (1995–2001) PSI+SB to evaluate bridge LOS
deformation

Sousa and
Bastos17

Settlement Valencia harbour
Bridge, Spain

ALOS A (2007–2010), CSK
D (2010–2012)

Multi-sensor PSI to evaluate bridge
LOS deformation

Del Soldato
et al.87

Health
monitoring

Dashengguan bridge,
China

SNT A (2015–2016) Comparison between PSI-based
longitudinal deformation of
bridge piers and temperature
data

Huang et al.111

Health
monitoring

Radot’in & Svinov
bridges, Czech
Republic

TSX A (2014–2015); TSX
D (2013–2015)

PSI to estimate the thermal
expansion component of bridge
deformation

Lazecky et al.89

Health
monitoring

Lupu Bridge, China CSK A (2008–2010) Extended PSI to overcome phase-
unwrapping and extract linear
and seasonal components of
bridge deformation

Zhao et al.92

Health
monitoring

Highway bridge,
Canada

RADARSAT A (2014–
2016)

Integration of PSI and finite
element models to simulate
bridge thermal behaviour

Cusson et al.112

Subsidence Three bridges in
Oxnard, California,
USA

ENV D (2005–2010) Integration of PSI and GIS to
identify bridges with anomalous
displacement patterns

DePrekel et al.16

Health
monitoring

NDHRB & NYRB,
China

SNT A (2015–2018); SNT
A (2015–2018)

Extended PSI to model thermal
component and structural
deformation of bridge deck

Huang et al.88

Settlement Amsterdam bridge
network, the
Netherlands

TSX A (2014–2016); TSX
A (2009–2016)

Integration of PSI and survey data
to predict bridge settlement-
induced damage

Peduto et al.90

Health
monitoring

Rainbow & Lupu
bridges, China

CSK A (2013–2014), SNT
A/D (2015–2017); CSK
A/D (2009–2010), TSX
D (2009–2010), TSX D
(2013–2016)

Integration of multi-sensor/
geometry PSI+SB and structural
information for arch bridge-risk
assessment and comparison
with levelling measurements

Qin et al.113

Health
monitoring

Eltham & Lord
Dealwere bridges in
Virginia, USA

TSX A/D (2016–2018) Comparison between multi-
geometry PSI-based bridge LOS
deformation and weather data

Hoppe et al.114

Subsidence Beishatan bridge, China CSK D (2011–2017) Combining PSI, terrestrial laser
scanning & ground-based radar
interferometry for bridge
structural monitoring

Liu et al.115

Settlement Jing-Shi HSR bridge,
Hebei, China

CSK A (2014–2017) Comparison between PSI-based
bridge vertical deformation and
ground data

Ma et al.116

Pre-failure
assessment

Morandi Bridge, Italy ENV A/D (2003–2011),
CSK A/D (2009–2018),
SNT A/D (2009–2018)

Integration of multi-sensor/
geometry PSI and Markov Chain
Monte Carlo approach to assess
bridge three-dimensional
deformation

Milillo et al.45

Health
monitoring

Aylesford Bridge, UK SNT A (2015–2017) Integration of PSI and ground
penetrating radar for bridge
structural monitoring

Alani et al.117

Settlement N3 bridge, the
Netherlands

ERS A/D (1995–2001),
ENV A/D (2003–2010),
RADARSAT-2 A/D
(2010–2017), TSX A/D
(2015–2018)

Integration of PSI, conventional
monitoring data and numerical
models to predict settlement of
transition zones between
bridges and road embarkments

Peduto et al.46

(continued)
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Table 1. (continued)

Infrastructure
Research
motivation Case of study Data source Innovation References

Health
monitoring

Waterloo Bridge, UK TSX A/D (2017–2018) Integration of PSI, corner
reflectors and automated total
station for bridge structural
monitoring

Selvakumaran
et al.91

Dams Pre-failure
assessment

Reservoir of MAL Co,
Hungary

ENV D (2003–2010) PSI to detect dam vertical
deformation before failure

Grenerczy and
Wegmuller118

Health
monitoring &
subsidence

Three Gorges Dam,
China

ENV A (2003–2008) Combined PSI and Quasi-PSI
analysis to detect dam
deformation

Wang et al.119

Settlement La Pedrera Dam, Spain ERS D (1995–2010), ENV
D (2008–2010), TSX D
(2008–2010)

Multi-sensor PSI to detect dam
LOS deformation and
comparison with in-situ
inspections

Tomas et al.93

Earthquake Conza Dam, Italy ENV A (2002–2010) Cross-validation of PSI-based dam
deformation against
extensometer measurements

Di Martire
et al.94

Subsidence Mosul Dam, Iraq ENV A/D (2004–2010),
CSK A (2014–2016),
SNT D (2014–2016)

Integration of multi-sensor/
geometry PSI and Markov Chain
Monte Carlo approach to study
dam deformation

Milillo et al.49

Health
monitoring

Pertusillo Dam, Italy CSK A/D (2010–2015),
TSX A (2010–2012),
ALOS A (2006–2010)

Integration of multi-sensor/
geometry PSI and hydrostatic
models to evaluate dam non-
linear deformation

Milillo et al.50

Health
monitoring

La Viñuela Dam, Spain ERS D (1992–2000), ENV
A (2003–2008), SNT D
(2014–2018)

Comparison between PSI+SB and
PSI processing to detect dam
LOS deformation

Ruiz-
Armenteros
et al.120

Pre-failure
assessment

Cadia gold mine Dam,
Australia

SNT D (2017–2018) PSI to identify slope failure
precursors and prevent dam
embankment collapse

Carla et al.47

Health
monitoring

Atbara dam, Sudan SNT D (2015–2018) Cross-validation of PSI-based dam
deformation against levelling
measurements

Wang et al.121

Pre-failure
assessment

Córrego do Feijão mine
Dam, Brazil

SNT D (2018–2019) Integration of PS/DS-InSAR and
Simulated-Annealing & Quasi-
Newton approach for dam
deformation monitoring

Du et al.122

Railways Subsidence Jinghu HSR, China TSX D (2009–2009) PSI to detect railway LOS
deformation

Liu et al.34

Permafrost
dynamics

QTR in Qinghai, China ALOS A (2007–2010), ENV
D (2004–2009)

Multi-sensor hybrid PSI analysis to
detect railway vertical
deformation

Chen et al.33

Health
monitoring

Betuweroute, the
Netherlands –
Germany

TSX A/D (2009–2013) Multi-geometry PSI to extract
railway vertical/transversal
deformation

Chang et al.80

Permafrost
dynamics

QTR in Qinghai, China ENV D (2007–2009) PSI to estimate seasonal & linear
components of railway vertical
deformation

Chang and
Hanssen123

Health
monitoring

Dutch railway network,
the Netherlands

RADARSAT D (2010–
2015)

Integration of PSI and probabilistic
method to detect unstable
railway segments on national
scale

Chang et al.51

Health
monitoring

Railway line in
Campania, Italy

CSK D (2011–2015) Comparison between PSI-based
railway LOS deformation and
temperature data

Poreh et al.124

(continued)
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Table 1. (continued)

Infrastructure
Research
motivation Case of study Data source Innovation References

Subsidence Jingjin Inter-City
Railway, Tianjin,
China

TSX D (2009–2010) Validation of the PSI accuracy for
railway vertical deformation
monitoring through
comparison with levelling
measurements

Luo et al.104

Settlement Hoekse Line, the
Netherlands

TSX D (2009–2013) Integration of PSI and geotechnical
investigations to define an
empirical geotechnical subsoil
model for embankment
settlement prediction

Peduto et al.54

Subsidence Beijing-Tianjin JJR &
Beijing-Shanghai JHR;
Shanghai-Hangzhou
HHR, China

ENV A (2008–2009); ENV
A (2008–2010), TSX D
(2008–2010), TSX D
(2011–2012)

PSI to estimate the thermal
dilatation component of railway
vertical deformation

Qin et al.125

Permafrost
dynamics

QTR in Qinghai, China TSX A (2014–2015) Integration of PSI and seasonal
model to estimate railway
seasonal deformation

Wang et al.81

Settlement Moerdijk, the
Netherlands

TSX D (2009–2015) PSI to detect deformation of
railway transition zones

Wang et al.106

Subsidence Railway line in Foggia,
Italy

SNT A/D (2017–2018),
CSK A/D (2016–2018)

Integration of PSI and ground
penetrating radar for railway
deformation monitoring

Bianchini
Ciampoli
et al.52

Subsidence BTR in Beijing, China ENV D (2003–2010), TSX
A (2010–2015), SNT A
(2015–2017)

Integration of PSI, subsidence
models and groundwater data
to analyse railway vertical
deformation

Zhao et al.126

Roadways Subsidence Jinghu & Jingbao
Highways, China

TSX D (2009–2011) PSI to extract roadway LOS
deformation from wide-area
analysis

Luo et al.82

Subsidence D1 in Ostrava-Svinov,
Czech Republic

ERS (1995–1999), ENV
(2005–2010), TSX
(2011–2011)

Comparison between PSI and
PSI+SB to detect roadway LOS
deformation

Lazecky et al.127

Health
monitoring

A15 in Rotterdam, the
Netherlands

TSX (2009–2013) Integration of PSI and probabilistic
approach to detect roadway
LOS deformation

Chang and
Hanssen32

Landslide SS 166 in Campania,
Italy

CSK A/D (2011–2014) Semi-automated integration of
multi-geometry PSI and GIS to
detect vertical and horizontal
roadway deformation

Infante et al.128

Subsidence and
health
monitoring

Roadway network,
Virginia &
Washington DC,
USA

CSK A (2011–2014); CSK
D (2014–2015)

Automated integration of PSI and
GIS to detect sinkhole, roadway
bridge settlement, slope
instability and road pavement
distress

Vaccari et al.83

Subsidence Roadway network in
Rome and
surroundings, Italy

SNT A/D (2015–2018) Integration of an automated PSI
processing chain and GIS to
extract roadway network-
vertical deformation at city scale

Delgado Blasco
et al.56

Landslide PR 264 in Salerno, Italy CSK A (2012–2015) Semi-automated integration of PSI
and GIS to classify the landslide-
induced damage of roadway
segments

Infante et al.57

Landslide SS 177 in Cosenza & SS
109 in Crotone, Italy

ERS (1992–22000), ENV A
(2003–22010), CSK A/D
(2011–2014)

Integration of PSI, landslide
inventory, in-situ survey and
Google Street View data to
evaluate road damage

Nappo et al.58
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Methodology

The proposed methodology is based on the combined use of
MT-InSAR and GIS to automatically detect potential vul-
nerabilities along large transport networks. MT-InSAR data
and a geo-spatial dataset of linear infrastructure were au-
tomatically integrated in a multistep algorithm. A velocity
and displacement analysis was then performed on the given
network and the results were used to produce an auto-
matically generated report. The workflow requires two
spatial datasets as an input:

· a road database in GIS file format, containing the
vector data of the road centrelines;

· PS datasets, obtained after the processing of a series
of InSAR images over the monitored area.

The following operations were implemented on the input
datasets through an automated process:

1. Roadway identification in the GIS catalogue;
2. Preliminary integration of the two datasets by as-

signing the PS points to the corresponding roads;
3. Division of the roadway network into rectangular

regions of equal areas;
4. Computation of PS density, average cumulative

displacements and local deformation velocities for
each rectangular region;

5. Generation of a report containing density, displace-
ment and velocity maps, with specific focus on PSs
showing an anomalous behaviour, that is, outliers.

The aim of the process is to (a) evaluate the spatial
coverage of the InSAR-derived monitoring points, that is,
PSs, on the extracted subset of roads and (b) identify critical
regions and anomalous points along the network. In the rest
of the paper, an anomalous PS will be referred to as an
outlier, that is, a data point on a graph or in a set of results
that has a significantly larger or smaller value than the next

nearest data points. Figure 1 gives an overview of the
analysis steps.

The input dataset

The algorithm shown in Figure 1 was tested on two different
case studies: the Los Angeles roadway network which is
subject to significant geological instabilities, and the Italian
roadway system which spans a territory with a varied to-
pography, considerable seismic and subsidence risk, and
landslides of different types.

The road data used for the Los Angeles metropolitan area
(Figure 2(a)) were provided by the Countywide Address
Management System for Los Angeles County.129 The
Italian road data were requested to the National Geoportal of
the Italian Ministry of Environment.130 Both datasets
contain the coordinates of every road, geometric mea-
surements (such as the road length), the road name, the road
type and other details. If a local database with details of the
transport network in a specific area is not available, the open
source OpenStreetMap (OSM) database131 could be used as
an alternative.

The MT-InSAR data shown in Figure 2(b) describes the
cumulative displacements and the spatial location of PSs in
Los Angeles County. For the Los Angeles case study, the
dataset was obtained by processing 84 ascending Sentinel
InSAR images from 2016 to 2019, using the SARPROZ
software package.132 For the Italian case study, two open
access PS databases were used. The first database133 con-
sists of 589 ERS/Envisat PS-datasets and 120 COSMO-
SkyMed PS-datasets from both ascending and descending
acquisition geometries. Such database contains surface
deformation displacements over the whole Italian territory,
obtained by processing the whole archive of ERS/Envisat
images between 1992 and 2010 over Italy, and COSMO-
SkyMed images from 2008 to 2014 for selected areas
distributed over the Italian country. The second database64

consists of seven Sentinel PS-datasets from both ascending
and descending acquisition geometries, and contains

Figure 1. The multistep method.
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surface deformations between 2014 and 2020 over the
Tuscany region, in central Italy. The database published by
Costantini et al.133 was processed through the traditional
PSI, while the datasets published by Raspini et al.64 were
processed by using the SqueeSAR technique.134

The workflow

The first step of the algorithm was to automatically extract
the roadways of the same type, that is, highways and
freeways for the Los Angeles dataset and motorways for the
Italian case study, from the entire road network dataset
(Figures 3(a) and (b)). In order to merge the GIS and MT-
InSAR datasets and identify only the PSs associated with
road infrastructure, a buffer was defined around each
roadway centreline (Figure 3(c)). Specifically, a 30-m-wide
buffer was applied either side of the Los Angeles highways

and freeways, and a 20-m-wide buffer was defined either
side of the Italian motorways. The choice of a 30-m-wide
buffer reflects the dimensions of the Los Angeles highways
and freeways, which are characterised by a 3.7 m lane
width, as defined by the U.S. Interstate Highway System,
and an average number of 6 lanes per driving direction. The
Italian motorway system is characterised by a number of 3
or 4 lanes per driving direction and a minimum lane width of
3.25 m, motivating the choice of a 20-m-wide buffer. If a
different type of roadway is analysed, the algorithm is
flexible to the use of a different buffer width. A GIS layer
with roadway buffers was the first output of the analysis.

In the second step, the roadway buffer layer was used as a
clipping mask and the PSs within this buffer were extracted.
The displacement time-series of each PS was used to cal-
culate deformation velocities along the satellite line of sight
(LOS) for all the PSs within the buffer. Due to the

Figure 2. The input datasets used in the algorithm: (a) highways and freeways in Los Angeles; (b) cumulative displacement map for Los
Angeles county, obtained by processing 84 ascending Sentinel images between 2016 and 2019. In (b), each PS is identified by a dot
whose colour represents its cumulative displacement measured along the satellite LOS.

Figure 3. Pre-processing steps: (a) the entire road network; (b) selection of a specific category of roads; (c) buffer along the road centreline.
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differential nature of the MT-InSAR measurements, such
deformation velocities are relative to a Ground Control
Point (GCP) that was chosen during the MT-InSAR time-
series processing. In the Los Angeles dataset, the GCP was
located in a stable area of Downtown Los Angeles as in
Lanari et al.135 The Italian datasets were calibrated with
GPS measurements, and more details can be found in
Costantini et al.133 and Raspini et al.64 The output of this
step was the PS cropped layer shown in Figure 4. Defor-
mation velocities were stored in the attribute table of this
layer. The geographical coordinates of the PS cropped layer
extent were used to identify only the roadways contained in
the area for which the PS data is available.

In the third step, a rectangular grid was created along the
linear infrastructure to quantify the density of monitoring
points (PSs) and identify critical locations. Specifically, each
road centreline was split into equal segments of 500-m-length.
This value was selected for practical reasons. Due to the
diverse ground resolution of different SAR sensors,63 an
analysis based on a rectangle with a shorter side would lose
statistical significance. Conversely, a rectangle with a longer
side cannot accurately follow the shape of the roadway. Then,
rectangles of equal area, as wide as the buffer previously
applied, were built around each segment. It is noted that the
width of the rectangle can bemodified according to the type of
roadway under analysis. The rectangles were rotated such that
they are aligned to their respective road segment, allowing the
grid to adapt its shape to the corresponding infrastructure. The
rectangular grid is shown in Figure 5.

In the fourth step, outputs from the previous phase, that
is, the PS cropped layer and the rectangular grid, were used
to identify the PSs contained in each rectangle. This in-
formation was used to calculate the PS density (number of
PS per km2), the average deformation velocity, the average
cumulative displacement and the average value of the
displacement time-series for each rectangle. Average cu-
mulative displacements and average deformation veloci-
ties were firstly calculated with respect to the GCP. To
reduce uncompensated noise due to a distant GCP and
remove possible seasonal effects and local instabilities, a
Local Control Point (LCP) was identified for each rect-
angle. Since deformation velocities were already calcu-
lated during step 2, the LCP was selected as the slowest
moving point along the satellite line of sight in each
rectangle. Deformation time-series and absolute values of
velocities relative to this point were calculated for all other
PSs within the rectangle. Finally, an average velocity
relative to the LCP was assigned to each rectangle. The
outputs from this step were a GIS layer containing the
rectangular grid and a GIS layer containing the LCPs. All
the information concerning density, average deformation
velocities and average cumulative displacements with
respect to the GCP, average velocities relative to the LCPs
and displacement time-series were stored in an attribute
table of the generated GIS layers and used in the final step
to generate corresponding maps and histograms. For each
rectangle, a clustering approach was used to detect po-
tential outliers, that is, PSs with a relative deformation rate
higher than a given threshold and a relative deformation
time-series dissimilar from the global structural behaviour.
Specifically, to identify the outliers three criteria were
implemented:

1. for each rectangle, a PS was classified as an outlier if
the absolute value of its relative velocity |v| with
respect to the LCP is higher than 5 mm/year.

Figure 4. Permanent Scatterers (PSs) cropped on the Los
Angeles highway and freeway network. The map shows the
cumulative displacements on the infrastructure, measured along
the satellite LOS between 2016 and 2019. Each PS is identified by a
dot whose colour represents its LOS cumulative displacement.
Negative values correspond to PSs moving away from the satellite,
while positive values refer to displacements toward the satellite.

Figure 5. Example of rectangular grid along linear infrastructure.
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Specifically, three ranges were defined: 5–7 mm/
year, 7–9 mm/year and > 9 mm/year. The se-
lected thresholds are in line with previous studies64;

2. the Average Local Displacement (ALD), that is,
the mean value of the displacement time-series,
was calculated for each rectangle as the mean of
the displacement time-series of all the PSs within
the rectangle. Outliers were identified as those
exceeding the standard deviation of the ALD in
the last 2 years of the InSAR dataset’s time
frame;

3. the Median Local Displacement (MLD), that is, the
median value of the displacement time-series, was
calculated as the median of the displacement time-
series of all the PSs within the rectangle. Outliers
were identified as those exceeding the standard
deviation of the MLD in the last 2 years of the
InSAR dataset’s time frame.

It should be noted that the presence of outliers is not a
straightforward indicator of a severe structural condition,
but only highlights an unusual behaviour that needs to be
investigated. All the outliers and related information were
saved in different GIS layers.

In the fifth and final step of the algorithm, the analysis
performed in the previous step was summarised in maps and
histograms showing the density distribution, deformation
velocities and cumulative displacements over the monitored
area. Thresholds were defined for each parameter to identify
the ranges of values shown in Table 2. Specifically, to evaluate
the density of PSs among different parts of the network, three
ranges of density based on the number of PS per km2 were
defined. A low coverage refers to a density lower than 100 PS/
km2, medium coverage corresponds to a density range be-
tween 100 PS/km2 and 500 PS/km2 and good coverage refers
to a PS density higher than 500 PS/km2. These ranges were
based on the dimension of the rectangular grid built along the
roadway infrastructure, and are in line with observations

presented in previous studies.37,56,62,82 Cumulative displace-
ments between �5 mm and 5 mm and deformation rates
between �2 mm/year and 2 mm/year, both relative to the
GCP, indicate no significative movements along the satellite
line of sight. Positive and negative values indicate movements
toward and away from the satellite, respectively. For relative
velocities with respect to the LCPs, values larger than 2 mm/
year are assumed to indicate an unstable condition. The
displacement and velocity thresholds adopted in this study are
in line with classification values already presented in
literature.63,64,136,137 On the basis of these ranges, a different
colour was assigned to each rectangle defined during step 3,
and used to render density, displacements and velocity maps.
Maps showing the outlier distribution were also generated.

The MT-InSAR processing chain: improvements
adopted in this paper

The MT-InSAR datasets used in this paper were processed
following the core steps of Permanent Scatterer Interfer-
ometry (PSI).24,25 PSI involves a series of N InSAR images
and the goal are the identification of pixels showing stable
scattering properties over the whole set of images, that is,
PSs, and the retrieval of their time-motion.

The PSI analysis is usually performed by assuming a
linear target motion, meaning that coherent scatterers
characterised by a non-linear motion are not identified as
PSs, or that the non-linear component of the their motion is
identified as part of the atmospheric contribution.24 Fur-
thermore, Perissin and Wang138 observed that sometimes
only a limited number of targets behave coherently along
the whole observation span, limiting the applicability of PSI
techniques. This is particularly true outside of urbanised
areas where coherent targets can be surrounded by vege-
tation or water basins, or when PSs are partially coherent
during the observation span. This latter case is verified
during the construction of new structures or the demolition
of old ones, leading to a certain number of PSs appearing or

Table 2. Thresholds for each indicator.

Parameter Range Classification

PS density < 100 PS/km2 Low coverage
100–500 PS/km2 Medium coverage
> 500 PS/km2 High coverage

Cumulative displacement < �5 mm Movements away from the satellite
�5�5 mm No significative movements
> 5 mm Movements toward the satellite

Velocity relative to the GCP < �2 mm/year Movements away from the satellite
�2–2 mm/year No significative movements
> 2 mm/year Movements toward the satellite

Velocity relative to the LCP 0–2 mm/year Stable
> 2 mm/year Unstable

10 Structural Health Monitoring 0(0)



vanishing.139 Consequently, in some scenarios a limited
availability of PSs per structure or a full lack of coverage for
certain assets can be observed, limiting the PSI performance
for structural deformation analysis on large scale.

To increase the PS density on man-made objects, the
Sentinel dataset used for the analysis of Los Angeles bridges
(the section ‘Bridges and Viaducts in Los Angeles’) was
processed by adding a step between steps 1 and 2 (Figure 6)
of the traditional PSI processing chain.25 This step, indi-
cated as 1b, exploits the spatial location of the selected
pixels to increase the initial number of PS candidates, and
originates from the idea presented by Van Leijen140 of
applying a rectangular mask to the data for initial pixel
selection. The flowchart of Figure 6 provides an overview of
the improved processing chain.

In step 1, PS candidates were identified on the basis of
their amplitude stability index (ASI). For a given pixel k, the
ASI quantifies the stability of the pixel amplitude values
along the temporal series of InSAR images. The mean and
standard deviation of the pixel amplitudes along the N
InSAR images are represented by μk and σk, respectively,
with the pixel ASI defined as77

ASI ¼ 1� σk

μk
: (1)

The ASI was estimated for each pixel, and only pixels
with ASI greater than a certain threshold, that is, ASI > 0.6,
were selected. This assumption enabled the identification of
an initial number of PSs, and more PSs were selected during
the rest of the processing. An initial set of selected pixels
was the output of this step.

In step 1b, the ASI threshold was reduced to 0.2. Then, a
GIS buffer layer containing the buffer of the infrastructure
network, as defined in the section ‘The workflow’, was
overlapped to the pixels with reduced ASI, and only the
pixels within the buffer were selected. This operation is
based on the observation that even pixels with a lowASI can
be characterised by high temporal coherence. In addition,

the exploitation of the GIS buffer layer gives confidence that
the pixels with lower ASI belong to the infrastructure. This
operation enabled the selection of an increased number of
pixels on the infrastructure network. Then, the PS candi-
dates from step 1 were integrated with the pixels selected in
step 1b. The union of the two set of pixels is the output of
this step.

Lastly, steps 2 and 3 (Figure 6) of the traditional PSI
processing chain were resumed to determine the
displacement-temporal series of the selected pixels.

Case studies

The Los Angeles case study. Los Angeles County is the
second largest metropolitan area in the United States and the
region with the densest road network in the country.141 Most
of the existing roadway infrastructure (around the 80%) was
deployed before 1960 and the 90% of current roadways
were built by 1987.142 Today the growth of the urban in-
frastructure system is minimal. The network consists of
approximately 39,000 centreline road kilometres, with local
roads accounting for 76% of the total network. Handling the
maintenance of a such large network is critical. Government
institutions are constantly struggling to finance the main-
tenance of the existing road-infrastructure and the costs
often exceed the city budget.143 It is estimated that the
construction of the network costed approximately $30
billion and maintenance activities have cost a $49 billion of
investment since it was constructed. In particular, since
1987, the average annual maintenance cost is estimated at
$1 billion and, on average, the construction and mainte-
nance of the network has cost approximately $2 million per
centreline kilometre.144

In its 2019 Bridge Report,6 the American Road &
Transportation Builders Association rated 47 052 of
America’s 616 087 bridges as ‘structurally deficient’
(Figure 7(a)). In California, 1812 bridges – about the 7% of
the bridges in the State – were classified as structurally

Figure 6. Steps of the improved PSI processing chain.
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deficient (Figure 7(b)) and 5093 bridges need repairs for an
estimated cost of $8.8 billion.145 Los Angeles County is
home to five of the California’s 10 most-travelled struc-
turally deficient bridges – two of them are along Highway
101 and the other three are on the Interstate 405. According
to the American Society of Civil Engineers,146 over 50%
bridges in the state exceeded their design life, making
California the US state with the second largest number of
outdated bridges. Many bridges currently in service were
designed for a 50-year lifespan and the average age of the
structurally deficient bridges is 62 years. 53% Californian
bridges are over 50 years old and 13% exceed 75 years in
age (Figure 7(c)).

The Italian case study. In Italy, the construction of the
modern roadway network started in the late 19th century,
but most major roads were built between 1950 and 1980.147

Since the 50s, the motorway system expanded rapidly,
increasing from 500 km to over 6000 km in the 80s and
becoming the second largest motorway network in Europe.

Between 1950 and 1980, national and secondary roads
increased by 72%.148 Nowadays, the overall network
consists of about 7000 km of motorway (fourth in Europe
after Spain, Germany and France), 20,000 km of national
roads and over 155,000 km of secondary and regional roads,
accounting for 85% of the all roads in the country. The
maintenance of the overall Italian network is estimated to
cost about €24.4 billion per year, corresponding to €30,000
per km of road. The motorway infrastructure expenditure is
about €5.4 billion per year.149

The Italian transport infrastructure includes about 43,000
road bridges and more than 1034 km of motorway bridges
and viaducts.150 According to Occhiuzzi,151 tens of thou-
sands of bridges and viaducts were built in the 1950s and
60s, and are currently beyond their expected lifespan. In
addition, approximately 70% of Italy’s 15,000 motorway
bridges and tunnels are today more than 40 years old. The
cost of a single bridge is typically €2000 per m2 and it is
estimated that tens of billions of euros are required to
upgrade Italy’s aged infrastructure.

Figure 7. Structurally deficient (SD) bridges in (a) US and (b) California. (c) Classification of 25 701 Californian bridges by age.146
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Results

Los Angeles and Italian roadway networks

The algorithm described in the section ‘The workflow’ was
applied to two road networks using different InSAR sensors.
A single Sentinel dataset from 2016 to 2019 was used to
monitor the Los Angeles highway and freeway network.
Seven Sentinel PS-datasets between 2014 and 2020 were
used to analyse the Italian motorway in the Tuscany region,
Italy, and 589 ERS/Envisat PS-datasets between 1992 and
2010 and 120 COSMO-SkyMed PS-datasets between 2008
and 2014 were used for the entire Italian motorway system.
The application of the algorithm to these two case studies
resulted in the automated creation of a report (step 5) which
contains maps and histograms showing the distribution of
PS densities, average cumulative displacements relative to
the GCP, average velocities relative to the GCP and LCPs,
and outliers. Depending on the number of outliers, addi-
tional details on the anomalous points are provided. Spe-
cifically, for each road segment containing at least one
outlier, a close-up map of the critical road-segment and three
plots showing the displacement time-series of the LCP, the
displacement time-series of the fastest anomalous point, and
the relative displacement time-series of the fastest anom-
alous point with respect to the LCP are displayed.

For Los Angeles, the analysis was performed on 4978
centreline kilometre of highway and freeway, and 10 117
Sentinel PSs and about 1 million displacement measure-
ments were identified over the road infrastructure. The
Italian motorway network consists of about 14, 600 cen-
treline kilometre. The ERS/Envisat datasets provided over
286, 000 PSs and 14 million displacement measurements
over the Italian motorway network, the COSMO-SkyMed
datasets enabled the identification of about 1.5 million PSs
and 69 million displacement measurements on the infra-
structure, and the Sentinel datasets in the Tuscany region,
Italy, provided 11, 276 PSs and about 3 million displace-
ment measurements on the network. The application of the
algorithm to test areas with such different extent and
characteristics demonstrates how the proposed methodol-
ogy can be applied from city to national scale.

The maps and histograms in Figures 8, 9 and 12(a) show
the density distribution of the PS extracted over the linear
infrastructure, providing a global overview of the number of
scatterers along the network and highlighting the areas with
more monitoring points. It is noted that when two acqui-
sition geometries were available, PS densities were esti-
mated for each acquisition geometry. The PS density along
different parts of the network was evaluated using the three
categories of density defined in the section ‘The workflow’.
The Sentinel dataset in Los Angeles provides an average
number of 326 PS/km2 and indicates that almost 60% road
segments have medium density of PS, while 19% of road

segments have a good PS density and 21% of the area has a
low number of PS per km2 (Figures 8 and 12(a)). As already
observed in previous studies,74,152 high-resolution
satellites – that is, COSMO-SkyMed – provide a higher
number of permanent scatterers. In the case of ERS/Envisat
data (Figures 9(a) and 12(a)), about 79% of road segments
are covered by less than 500 PS/km2 with an average
number of 364 PS/km2, while the COSMO-SkyMed dataset
(Figures 9(b) and 12(a)) provides an average number of
8400 PS/km2 and 97% of road segments have a good PS-
density, that is, higher than 500 PS/km2. The Sentinel
dataset in the Tuscany region, Italy, provides an average
number of 417 PS/km2: 55% of road segments have a
medium PS-density, 28% of road segments have a good PS-
density and 17% of road segments are characterised by a
low PS-density (Figures 9(c) and 12(a)). Due to the different
spatial scale of the two networks and the exploitation of a
different number of datasets, the Los Angeles and the Italian
case studies cannot be directly compared, but the PS

Figure 8. PS density over the Los Angeles highway and freeway
network using Sentinel-1 data from 2016 to 2019.
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densities provided by Sentinel and ERS/Envisat is similar. It
is also noted that the Sentinel dataset in Los Angeles refers
to a single acquisition geometry, that is, ascending, while for
the Italian case study, ERS/Envisat and Sentinel datasets
from both ascending and descending orbits were used.

To remove seasonal effects and regional instabilities due
to a distant ground reference point (GCP), velocity maps
referred to LCPs (Figures 10 and 11) were generated. The

maps show in red the road segments deforming at a rate
higher than 2 mm/year, allowing critical locations to be
identified. Figure 12(d) summarises the information dis-
played in Figures 10 and 11, showing instability for 3% of
the Los Angeles network. For the Italian motorway, 2.2% of
the network is classified as unstable when the ERS/Envisat
data are used, the COSMO-SkyMed data reveal instability
for 8.4% of the network, and the Sentinel data in the

Figure 9. PS density over the Italian motorway network using (a) ERS/Envisat data from 1992 to 2010, (b) COSMO-SkyMed data from
2008 to 2014 and (c) Sentinel-1 data from 2014 to 2020 in the Tuscany region. For visualisation purpose, a different scale interval was
adopted for the x-axis.
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Tuscany region show instability for about 1% of the net-
work. The different distribution of these indicators can be
explained by the different temporal window and surface
extension of ERS/Envisat, COSMO-SkyMed and Sentinel
data and the higher PS density provided by the COSMO-
SkyMed datasets.

Figures 12(b) and (c) summarise the cumulative dis-
placement and velocity distribution with respect to a GCP
over the Los Angeles and Italian road networks. About 6%
of the Los Angeles network exhibits movements larger than
15 mm and a velocity higher than 5 mm/year, while for
about 11% of the network movements away from the sat-
ellite can be observed. The Italian network is mainly
dominated by an average velocity between�2 mm/year and
2 mm/year: about 87% of road segments is in this range for
both ERS/Envisat and COSMO-SkyMed datasets. The
ERS/Envisat datasets reveal movements toward the satellite
for about 22% of road segments and movements away from

the satellite for about 37% of the network. The COSMO-
SkyMed data shows high displacements away from the
satellite for 15% of the network and movements toward the
satellite for 7.4% of road segments. Similarly, the Sentinel
datasets over the Tuscany region show that about 94% of
road segments are characterised by average velocities
between �2 mm/year and 2 mm/year, and reveal move-
ments toward and away from the satellite for 11% and 17%
of road segments, respectively.

The distribution of outliers over the monitored areas is
shown in Figure 13. The Sentinel data in Los Angeles led to
the identification of 88 outliers along the Los Angeles
highways and freeways (Figure 13(a)). 14% of these points
have a local velocity higher than 9 mm/year, 10% are in the
range 7 mm/year to 9 mm/year, and the remaining 76% have
a velocity between 5 mm/year and 7 mm/year (Figure
13(e)). For the Italian case study, the Sentinel datasets
over the Tuscany region led to the identification of 25
outliers along the Italian motorway; and 84% of them is
characterised by local velocity between 5 mm/year and
7 mm/year (Figure 13(b) and (e)). The use of multiple ERS
and Envisat datasets revealed 2525 outliers over the Italian
motorway network (Figure 13(c)). 70% of the outliers show
local velocity between 5 mm/year and 7 mm/year, 16%
between 7 mm/year and 9 mm/year and the last 14% exceeds
9 mm/year (Figure 13(e)). The COSMO-SkyMed dataset
revealed 27 602 outliers (Figures 13(d) and (e)), corre-
sponding to a factor of 10 more outliers than ERS/Envisat.
This is explained by the higher density of PSs that is
achieved with high-resolution X-band SAR satellites, that
is, COSMO-SkyMed, with respect to low ormedium-resolution
satellites operating in the C-band, that is, ERS/Envisat.26,74

Figure 13(e) shows that 59% of these outliers have a relative
velocity between 5 mm/year and 7 mm/year, 21% are in the
range 7 mm/year–9 mm/year and 20% have a relative ve-
locity higher than 9 mm/year.

Table 3 summarises the results of the analysis showing
for each SAR sensor the number of PSs, displacement
measurements and outliers identified on the corresponding
roadway infrastructure, and the average number of PSs per
km2 of infrastructure.

Figure 14 shows an example of a specific outlier. The
map (Figure 14(a)) shows the location of the outlier, and its
displacement time-series between 2016 and 2019 is shown
in Figure 14(b). The deformation pattern of Figure 14(c) is
obtained by subtracting the displacement time-series of the
LCP (Figure 14(d)) to the displacement time-series of the
outlier, and indicates that the outlier moved about 3 cm with
respect to the LCP between October 2016 and February
2017. The light and dark grey bands indicate the ranges
within which 68% and 95% of values lie, respectively, and
show that since the early 2017 the detected outlier is more
than two standard deviations (2σ) away from the mean
displacement time-series.

Figure 10. Distribution of relative velocities referred to Local
Control Points over the Los Angeles highway and freeway
network using Sentinel-1 data from 2016 to 2019. The proposed
classification is based on relative velocity absolute values.
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Bridges and Viaducts in Los Angeles

To demonstrate that the proposed methodology is flexible to
the analysis of different infrastructure classes, the algorithm
described in the section ‘The workflow’ was applied to Los
Angeles roadway bridges, using the Sentinel dataset over
Los Angeles County as an input (see the section ‘The input
dataset’). The OpenStreetMap dataset for the Californian

roadway network was used in this section to identify the
footprints of roadway bridges in the California State.

To improve the spatial density of PSs, the series of Sentinel
images already used for the LosAngeles freeway andmotorway
network was processed using the methodology described in the
section ‘The MT-InSAR processing chain: improvements
adopted in this paper’. The improved PSI processing chain
allowed for over double the number of bridges to be monitored.

Figure 11. Distribution of relative velocities referred to Local Control Points over the Italian motorway network using (a) ERS/Envisat
data from 1992 to 2010, (b) COSMO-SkyMed data from 2008 to 2014 and (c) Sentinel-1 data from 2014 to 2020 in the Tuscany region.
The proposed classification is based on relative velocity absolute values. For visualisation purpose, the same scale interval was adopted
for the x-axis.
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Figure 15 shows the PS-density distribution over the Los An-
geles bridges obtained through the implemented improvement.
For the original dataset, PSs were retrieved for only 1373

bridges, while with the improved processing at least one
monitoring point is available for 3110 bridges, and 60.6% of
them exhibit 3 or more monitoring points.

Figure 12. Percentage distribution of (a) PS density, (b) cumulative displacements, (c) velocities related to the GCP and (d) relative
velocities related to LCPs, over Los Angeles using Sentinel data from 2016 to 2019 and over Italy using Sentinel, ERS/Envisat and
COSMO-SkyMed data from 2014 to 2020, from 1992 to 2010 and from 2008 to 2014, respectively.

Macchiarulo et al. 17



Figure 16 shows the distribution of the local defor-
mation velocities and highlights the bridges deforming at a
rate higher than 2 mm/year. The analysis led to the
identification of 5374 outliers over the Los Angeles

bridges, and showed that 1375 assets are characterised by
at least 3 scatterers and have a local deformation velocity
higher than 2 mm/year. Figure 17 shows a Los Angeles
bridge for which outliers were detected, with a focus on the

Figure 13. Outliers (a) in Los Angeles using Sentinel data from 2016 to 2019, (b) in the Tuscany region, Italy, using Sentinel data from
2014 to 2020, (c) in Italy using ERS/Envisat data from 1992 to 2010 and (d) in Italy using COSMO-SkyMed data from 2008 to 2014. (e)
Percentage distribution of the outliers over the four datasets. Depending on the absolute value of their relative velocity v related to
LCPs, the outliers are indicated with yellow, orange or red dots.
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displacement-temporal series of the fastest moving point
(Figure 17(b)).

Validation case study: the Himera viaduct

To highlight how the proposed methodology contributes to
infrastructure risk management, a case study for which the

identified anomalies were associated with actual recorded
damage is presented.

The Himera viaduct is a 2360-m-long reinforced con-
crete asset located on the A19 Palermo-Catania motorway
between the municipalities of Scillato and Caltavuturo in the
Sicily region, Italy. On 10 April 2015, the Himera viaduct
was overrun by a landslide that caused a partial collapse of
the asset. During the landslide, four viaduct piers were

Table 3: Comparison between ERS/Envisat (ERS/ENV), COSMO-SkyMed (CSK) and Sentinel (SNT) for the analysis of the Italian
motorway network, and Sentinel for the analysis of the Los Angeles highway and freeway network.

InSAR sensor
Temporal
window

Number of PSs on
infrastructure

Number of displacement
measurements

Average PSs/km2 of
infrastructure Outliers

SNT (Los
Angeles)

2016–2019 10,117 1 million 326 88

ERS/ENV (Italy) 1992–2010 286,000 14 million 364 2525
CSK (Italy) 2008–2014 1.5 million 69 million 8400 27,602
SNT (Tuscany,
Italy)

2014–2020 11,276 3 million 417 25

Figure 14. Details of a critical location: (a) map showing the area of interest, with a specific outlier in red, Local Control Point (LCP) in
light blue and other PSs (Permanent Scatterers) in black; (b) displacement time-series of the point with highest relative velocity in black; (c)
relative displacement time-series of the same point with respect to the LCP in black; (d) displacement time-series of the LCP in black. The
red line refers to the average displacement time-series, obtained as the mean of the displacement time-series of all the PSs in the rectangle.
The light and dark grey bands indicate one (σ) and two (2σ) standard deviations from the average displacement time-series, respectively.
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damaged, with one of them experiencing tilt. This resulted
in both shift and subsidence of the viaduct deck. After the
hazardous event, that stretch of motorway was closed,
causing enormous economic losses to the Region and
several logistic issues to inhabitants.

The Himera viaduct is located along a region of the Imera
river basin, where the combination of tectonic activities and
hydrological and geomorphological conditions have led to
the occurrence of several landslide events over recent
years.153 In Rocca di Sciara, which is a slope adjacent to the
Himera viaduct, intense landslide activities have been ob-
served since 2005, when a vast portion of the nearby
provincial road SP24 was damaged. The landslide that
damaged the Himera viaduct in 2015 was likely triggered by
heavy rainfalls which occurred over the months prior to
failure.154 The landslide involved a portion of the slope
located between 380 m and 230 m a.s.l., and developed in

Numidian Flysch deposits, which mainly consist of clay
materials. At the time of the viaduct failure, the landslide
was 600-m-long and 290-m-wide, with the sliding body
reaching a presumed depth of 15–20 m. As the landslide
exhibited both rotational and translational movements, it
was classified as complex, according to the definition
proposed by Varnes.155

Analysis of the COSMO-SkyMed data resulted in the
identification of 17 outliers on the Himera viaduct: 5 from
ascending and 12 from descending acquisition geometries.
These outliers were analysed in relation to landslides
catalogues and PSs located on the slopes adjacent to the
asset. Figure 18 shows the distribution of ascending and
descending PS velocities, outliers and LCPs for the
analysed area. Landslides are also indicated and clas-
sified according to their movement type. The area located
south of the viaduct corresponds to Rocca di Sciara. The
region delimited by a purple dashed line is affected by a

Figure 15. PS density over roadway bridges in Los Angeles based
on Sentinel data from 2016 to 2019, using the improved PSI
processing chain (the section ‘The MT-InSAR processing chain:
improvements adopted in this paper’). Each asset is identified by a
star symbol and a green star indicates the assets for which at
least 3 PS were observed.

Figure 16. Average velocities relative to LCPs for the Los
Angeles roadway bridges based on Sentinel data from 2016 to
2019. The proposed classification is based on relative velocity
absolute values. Each asset is identified by a star symbol.
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deep-seated gravitational slope deformation (DGSD),
which is an ancient gravitational-induced process typically
evolving over years. The landslides within this area, which
also include the 2015 landslide, form a complex system of
spatially and temporally connected landslides, and their
interactions and evolutions can contribute to reactivation
scenarios.153

The COSMO-SkyMed data show that in Rocca di Sciara
landslide activities were already ongoing between 2011 and
2014. This is more evident in the ascending acquisition
geometry (Figure 18(a)), where several PSs with LOS
velocities lower than �6 mm/year were found in the area
near to the Himera viaduct. These PSs mainly belong to the
provincial road SP24 that after being damaged during the
2005 landslide was damaged again in 2015.

The ascending and descending datasets led to the
identification of 966 and 1346 PSs on the Himera viaduct,
respectively. While most of the PSs were characterised by a
stable velocity with respect to the respective LCP, outliers
were identified for both ascending and descending datasets.
Figure 19 shows the time-series of relative displacements
of two outliers captured from ascending and descending
acquisition geometries, respectively. Such outliers are located
nearby the portion of the viaduct that was damaged several
months later, and may indicate a preliminary sign of transient
deformations or a distress condition of the structure.

Discussion

The use of ERS/Envisat, COSMO-SkyMed and Sentinel
MT-InSAR datasets for two different case studies showed

the flexibility of the proposed methodology for the moni-
toring of different infrastructure networks, using input
datasets with different resolutions, extent and characteris-
tics. ERS/Envisat historical data cover all the Italian mo-
torway network and can be used for detecting pre-existing
long-term structural trends. Thanks to COSMO-SkyMed
better spatial resolution (Range × Azimuth resolutions are
3 m × 3 m for COSMO-SkyMed, 6 m × 24 m for ERS/
Envisat, and 5 m × 20 m for Sentinel-1), the average number
of PSs per km2 of infrastructure typically available with
ERS/Envisat or Sentinel can increase by a factor of 23
when COSMO-SkyMed is used. Furthermore, COSMO-
SkyMed data can guarantee a better geolocalization of the
scatterers. Sentinel data can provide a factor of 1.2 more
PSs per km2 of infrastructure than ERS/Envisat, and de-
formation trends can be reconstructed with a rate three
times higher than COSMO-SkyMed (6 days orbit repeat
for Sentinel, and 16 days for COSMO-SkyMed), with the
possibility to identify anomalous behaviours in near-real
time.

As open-source processed MT-InSAR datasets are be-
coming more available,64,133 PS density information is
useful to evaluate which parts of a given network can be
monitored through an accessible dataset. In contrast to in-
situ monitoring instruments which provide measurements
for controlled sparse points located on a given structure, the
location of PSs is not known before completion of MT-
InSAR analysis, with MT-InSAR measurements often
available with uneven distribution. As the reliability of
results is sensitive to the number of PSs per structure and to
the spatial distribution of these points along the structure, PS

Figure 17. Example of bridge with outliers in Los Angeles. (a) Aerial view of the bridge showing the scatterers producing an anomalous
behaviour: red, orange and yellow scatterers correspond to the outliers retrieved on the asset, the Local Control Point (LCP) is
indicated in light blue and the other PSs in black. (b) Relative displacement time-series of the fastest point with respect to the LCP: the
red line refers to the average displacement time-series, obtained as the mean of the displacement time-series of all the PSs on the bridge.
The light and dark grey bands indicate one (σ) and two (2σ) standard deviations from the average displacement time-series,
respectively.
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density maps can be used to support interpretation of results.
If only 1 PS is obtained on an asset, geological instabilities
and seasonal trends cannot be removed and relative

movements within the structure cannot be estimated.
Consequently, the identification of deformation trends along
the structure is not feasible. Even if 2 PSs are retrieved, the

Figure 18. View of the landslide system and COSMO-SkyMed data over the Himera viaduct and the adjacent Rocca di Sciara, with PS
velocities captured from (a) ascending and (b) descending acquisition geometries, respectively. Each dot indicates a PS whose colour
represents its LOS deformation rate between 2011 and 2014. The LCPs and outliers are also shown in the maps. The dashed purple line
identifies a region in Rocca di Sciara affected by deep-seated gravitational slope deformation (DGSD). The landslides are classified
according to the type of movement. In each map, the arrow indicates the outlier for which the displacement-temporal series with
respect to the corresponding LCP is shown in Figure 19.
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observation of deformation phenomena is still difficult.
However, the exploitation of both ascending and de-
scending orbits and different satellite datasets can provide a
higher PS density, increasing the reliability of results.

The accuracy of results depends also on the accuracy of
the infrastructure catalogue used as an input. In some cases,
multiple occurrences of the same asset were listed in the
analysed infrastructure catalogue. In addition, some assets
are missing in the database. Infrastructure catalogues with
higher precision would guarantee more accurate results.

The deformation time-series obtained during MT-InSAR
analysis are determined with respect to a GCP. Conse-
quently, the identification of a stable point on the structure,
i.e., the LCP, is essential to remove geological instabilities,
seasonal effects and possible noise caused by the use of a
distant GCP during MT-InSAR analysis. This allows the
observation of the displacement field of the structure alone,
highlighting the possible presence of anomalous relative
movements within the structure. However, in presence of a
low number of PSs or inhomogeneous geological instabilities
below the asset, it is less likely that a reliable reference point
on the structure will be identified. The use of multiple GCPs
during the processingwould help to remove local instabilities,
reducing the dependence of the result on the LCP.

Finally, this methodology can be used to screen large
networks and identify the infrastructure regions that require
an in-depth investigation. As shown through the case of the
Himera viaduct in Italy, the proposed methodology enables
the identification of critical areas, where the presence of
outliers could initiate geotechnical evaluations and in-situ
monitoring campaigns aimed to interpret the cause of the
anomalies and asses the health of the structure. It is re-
marked that the presence of anomalous trends is not a
straightforward indicator of a severe structural condition,

but highlights an unusual behaviour that should be inves-
tigated more in depth. It is important to underline that the
effect of the detected movements can only be determined by
integrating structural analysis and the observed deformations.
For example, for some types of bridges, the occurrence of
settlement does not necessarily produce damage into the
structure.90 A future integration of the displacement infor-
mation with the geometry and the construction material of the
specific asset would enable a more accurate evaluation of
the structural conditions, with the possibility to develop a
statistical characterisation of structural deformation pro-
cesses on a regional scale.

Conclusions

This study investigates the use of MT-InSAR techniques for
monitoring critical infrastructure networks and presents an
automated methodology for obtaining surface displacement
data over large infrastructure systems. These data could be
used to assess the deformation of assets over time or in-
corporated into an early warning system to aid transport
network managers. A fully automated and multi-step
methodology integrating MT-InSAR data and GIS-based
infrastructure catalogues was developed. The designed
methodology allows the density of monitoring points to be
assessed and enables retrieval of average displacements,
velocities and potential anomalies along segments of linear
infrastructure. Maps showing the distribution of these in-
dicators and critical locations are the output of the proposed
methodology. In addition, an improved version of the tra-
ditional PSI processing chain was presented.

The capability of the proposed methodology was dem-
onstrated through application to two case studies, showing
that it is not restricted to a specific input dataset, but could be

Figure 19. Relative displacement time-series with respect to LCPs of anomalous points on the Himera viaduct, captured from (a)
ascending and (b) descending acquisition geometries, respectively. The time-series in (a) and (b) corresponds to the outliers indicated
by the arrows in Figures 18(a) and (b), respectively. The red line refers to the average displacement time-series, obtained as the mean of
the displacement time-series of the PSs on the bridge. The light and dark grey bands indicate one (σ) and two (2σ) standard deviations
from the average displacement time-series, respectively. The displacement rate v indicates the absolute value of velocity relative to the
corresponding LCP, and corresponds to the slope of the black line. The dashed blue line and blue triangle indicate the dates from which
the relative deformation time-series exceed 2σ.
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used for any national or regional analysis of transport in-
frastructure networks for which processed InSAR deforma-
tion measurements are available. The Los Angeles freeway
and highway network was analysed using a Sentinel dataset
from 2016 to 2019. The dataset consists of 84 SAR images
processed using the SARPROZ software tool. The Italian
motorway network was analysed using open access PS-
datasets from different InSAR sensors. Specifically, 589
ERS/Envisat PS-datasets between 1992 and 2010, 120
COSMO-SkyMed PS-datasets between 2008 and 2014, and
seven Sentinel PS-datasets between 2014 and 2020were used.
The Italian datasets include both ascending and descending
acquisition geometries. The Sentinel dataset provided 10,117
PSs and about 1 million displacement measurements over the
Los Angeles highway and freeway network, accounting for an
average of 326 PS per km2 of infrastructure. On the Italian
motorway network, the ERS/Envisat datasets provided over
286,000 PSs and 14 million displacement measurements,
corresponding to an average of 364 PS per km2 of infra-
structure. About 1.5 million PSs and 69 million displacement
measurements were identified using the COSMO-SkyMed
datasets, accounting for an average of 8400 PS per km2 of
infrastructure. The Sentinel datasets in Tuscany, Italy, pro-
vided 11,276 PSs and about 3 million displacement mea-
surements on the motorway network, corresponding to an
average of 417 PS per km2 of infrastructure. To show the
flexibility of the proposed methodology to the analysis of
different infrastructure classes, the Sentinel dataset over Los
Angeles County was used to analyse Los Angeles roadway
bridges. Finally, to show the capability of the proposed
methodology to forewarn potentially damaging movements,
the case of an Italian motorway viaduct that had been
damaged in 2015 was presented.

The following conclusions can be drawn:

· the proposed methodology enables the automated
monitoring of critical infrastructure networks, allowing
the displacement field and deformation velocities over
large infrastructure systems to be extracted;

· the proposed methodology enables the identification
and mapping of infrastructure segments and assets with
higher local deformation rates and/or points moving
much faster than other parts of the structure (LCP), and
that may be related to anomalous structural behaviours;

· the proposed methodology enables the comparison of
the performance of different satellite datasets for
infrastructure monitoring, allowing the quality of
monitoring over different parts of a given network
and different infrastructure assets to be assessed;

· the application of the developed method to roadway
networks and bridges shows that it can be used on
linear infrastructure or individual assets, highlighting
its potential for the structural assessment of different
infrastructure typologies;

· its application to case studies with a different spatial
extent shows how the proposed methodology can be
used from city to national scale.

The proposed methodology has the potential to be in-
tegrated into traditional structural health monitoring sys-
tems and complement ground-based monitoring solutions.
The identification of deformation trends highlights the
possibility for this method to be used to support inspection
planning. As an example, if anomalous behaviours are
detected in the time lapse between two consecutive in-
spections, the developed tool could be used to reschedule
the inspection timeline for the specific asset. In addition,
giving an indication of the quality of the monitoring, the
proposed methodology can support decisions about the
selection of InSAR datasets for a specific test area, em-
phasising situations in which multiple datasets are essential
to guarantee satisfactory coverage. Finally, a future inte-
gration with structural models would offer the potential to
investigate the structural conditions of the monitored assets,
providing an assessment tool for large transport systems.
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