164 research outputs found

    Towards Implicit Parallel Programming for Systems

    Get PDF
    Multi-core processors require a program to be decomposable into independent parts that can execute in parallel in order to scale performance with the number of cores. But parallel programming is hard especially when the program requires state, which many system programs use for optimization, such as for example a cache to reduce disk I/O. Most prevalent parallel programming models do not support a notion of state and require the programmer to synchronize state access manually, i.e., outside the realms of an associated optimizing compiler. This prevents the compiler to introduce parallelism automatically and requires the programmer to optimize the program manually. In this dissertation, we propose a programming language/compiler co-design to provide a new programming model for implicit parallel programming with state and a compiler that can optimize the program for a parallel execution. We define the notion of a stateful function along with their composition and control structures. An example implementation of a highly scalable server shows that stateful functions smoothly integrate into existing programming language concepts, such as object-oriented programming and programming with structs. Our programming model is also highly practical and allows to gradually adapt existing code bases. As a case study, we implemented a new data processing core for the Hadoop Map/Reduce system to overcome existing performance bottlenecks. Our lambda-calculus-based compiler automatically extracts parallelism without changing the program's semantics. We added further domain-specific semantic-preserving transformations that reduce I/O calls for microservice programs. The runtime format of a program is a dataflow graph that can be executed in parallel, performs concurrent I/O and allows for non-blocking live updates

    Towards Implicit Parallel Programming for Systems

    Get PDF
    Multi-core processors require a program to be decomposable into independent parts that can execute in parallel in order to scale performance with the number of cores. But parallel programming is hard especially when the program requires state, which many system programs use for optimization, such as for example a cache to reduce disk I/O. Most prevalent parallel programming models do not support a notion of state and require the programmer to synchronize state access manually, i.e., outside the realms of an associated optimizing compiler. This prevents the compiler to introduce parallelism automatically and requires the programmer to optimize the program manually. In this dissertation, we propose a programming language/compiler co-design to provide a new programming model for implicit parallel programming with state and a compiler that can optimize the program for a parallel execution. We define the notion of a stateful function along with their composition and control structures. An example implementation of a highly scalable server shows that stateful functions smoothly integrate into existing programming language concepts, such as object-oriented programming and programming with structs. Our programming model is also highly practical and allows to gradually adapt existing code bases. As a case study, we implemented a new data processing core for the Hadoop Map/Reduce system to overcome existing performance bottlenecks. Our lambda-calculus-based compiler automatically extracts parallelism without changing the program's semantics. We added further domain-specific semantic-preserving transformations that reduce I/O calls for microservice programs. The runtime format of a program is a dataflow graph that can be executed in parallel, performs concurrent I/O and allows for non-blocking live updates

    Running stream-like programs on heterogeneous multi-core systems

    Get PDF
    All major semiconductor companies are now shipping multi-cores. Phones, PCs, laptops, and mobile internet devices will all require software that can make effective use of these cores. Writing high-performance parallel software is difficult, time-consuming and error prone, increasing both time-to-market and cost. Software outlives hardware; it typically takes longer to develop new software than hardware, and legacy software tends to survive for a long time, during which the number of cores per system will increase. Development and maintenance productivity will be improved if parallelism and technical details are managed by the machine, while the programmer reasons about the application as a whole. Parallel software should be written using domain-specific high-level languages or extensions. These languages reveal implicit parallelism, which would be obscured by a sequential language such as C. When memory allocation and program control are managed by the compiler, the program's structure and data layout can be safely and reliably modified by high-level compiler transformations. One important application domain contains so-called stream programs, which are structured as independent kernels interacting only through one-way channels, called streams. Stream programming is not applicable to all programs, but it arises naturally in audio and video encode and decode, 3D graphics, and digital signal processing. This representation enables high-level transformations, including kernel unrolling and kernel fusion. This thesis develops new compiler and run-time techniques for stream programming. The first part of the thesis is concerned with a statically scheduled stream compiler. It introduces a new static partitioning algorithm, which determines which kernels should be fused, in order to balance the loads on the processors and interconnects. A good partitioning algorithm is crucial if the compiler is to produce efficient code. The algorithm also takes account of downstream compiler passes---specifically software pipelining and buffer allocation---and it models the compiler's ability to fuse kernels. The latter is important because the compiler may not be able to fuse arbitrary collections of kernels. This thesis also introduces a static queue sizing algorithm. This algorithm is important when memory is distributed, especially when local stores are small. The algorithm takes account of latencies and variations in computation time, and is constrained by the sizes of the local memories. The second part of this thesis is concerned with dynamic scheduling of stream programs. First, it investigates the performance of known online, non-preemptive, non-clairvoyant dynamic schedulers. Second, it proposes two dynamic schedulers for stream programs. The first is specifically for one-dimensional stream programs. The second is more general: it does not need to be told the stream graph, but it has slightly larger overhead. This thesis also introduces some support tools related to stream programming. StarssCheck is a debugging tool, based on Valgrind, for the StarSs task-parallel programming language. It generates a warning whenever the program's behaviour contradicts a pragma annotation. Such behaviour could otherwise lead to exceptions or race conditions. StreamIt to OmpSs is a tool to convert a streaming program in the StreamIt language into a dynamically scheduled task based program using StarSs.Totes les empreses de semiconductors produeixen actualment multi-cores. Mòbils,PCs, portàtils, i dispositius mòbils d’Internet necessitaran programari quefaci servir eficientment aquests cores. Escriure programari paral·lel d’altrendiment és difícil, laboriós i propens a errors, incrementant tant el tempsde llançament al mercat com el cost. El programari té una vida més llarga queel maquinari; típicament pren més temps desenvolupar nou programi que noumaquinari, i el programari ja existent pot perdurar molt temps, durant el qualel nombre de cores dels sistemes incrementarà. La productivitat dedesenvolupament i manteniment millorarà si el paral·lelisme i els detallstècnics són gestionats per la màquina, mentre el programador raona sobre elconjunt de l’aplicació.El programari paral·lel hauria de ser escrit en llenguatges específics deldomini. Aquests llenguatges extrauen paral·lelisme implícit, el qual és ocultatper un llenguatge seqüencial com C. Quan l’assignació de memòria i lesestructures de control són gestionades pel compilador, l’estructura iorganització de dades del programi poden ser modificades de manera segura ifiable per les transformacions d’alt nivell del compilador.Un dels dominis de l’aplicació importants és el que consta dels programes destream; aquest programes són estructurats com a nuclis independents queinteractuen només a través de canals d’un sol sentit, anomenats streams. Laprogramació de streams no és aplicable a tots els programes, però sorgeix deforma natural en la codificació i descodificació d’àudio i vídeo, gràfics 3D, iprocessament de senyals digitals. Aquesta representació permet transformacionsd’alt nivell, fins i tot descomposició i fusió de nucli.Aquesta tesi desenvolupa noves tècniques de compilació i sistemes en tempsd’execució per a programació de streams. La primera part d’aquesta tesi esfocalitza amb un compilador de streams de planificació estàtica. Presenta unnou algorisme de partició estàtica, que determina quins nuclis han de serfusionats, per tal d’equilibrar la càrrega en els processadors i en lesinterconnexions. Un bon algorisme de particionat és fonamental per tal de queel compilador produeixi codi eficient. L’algorisme també té en compte elspassos de compilació subseqüents---específicament software pipelining il’arranjament de buffers---i modela la capacitat del compilador per fusionarnuclis. Aquesta tesi també presenta un algorisme estàtic de redimensionament de cues.Aquest algorisme és important quan la memòria és distribuïda, especialment quanles memòries locals són petites. L’algorisme té en compte latències ivariacions en els temps de càlcul, i considera el límit imposat per la mida deles memòries locals.La segona part d’aquesta tesi es centralitza en la planificació dinàmica deprogrames de streams. En primer lloc, investiga el rendiment dels planificadorsdinàmics online, non-preemptive i non-clairvoyant. En segon lloc, proposa dosplanificadors dinàmics per programes de stream. El primer és específicament pera programes de streams unidimensionals. El segon és més general: no necessitael graf de streams, però els overheads són una mica més grans.Aquesta tesi també presenta un conjunt d’eines de suport relacionades amb laprogramació de streams. StarssCheck és una eina de depuració, que és basa enValgrind, per StarSs, un llenguatge de programació paral·lela basat en tasques.Aquesta eina genera un avís cada vegada que el comportament del programa estàen contradicció amb una anotació pragma. Aquest comportament d’una altra manerapodria causar excepcions o situacions de competició. StreamIt to OmpSs és unaeina per convertir un programa de streams codificat en el llenguatge StreamIt aun programa de tasques en StarSs planificat de forma dinàmica.Postprint (published version

    PiCo: A Domain-Specific Language for Data Analytics Pipelines

    Get PDF
    In the world of Big Data analytics, there is a series of tools aiming at simplifying programming applications to be executed on clusters. Although each tool claims to provide better programming, data and execution models—for which only informal (and often confusing) semantics is generally provided—all share a common under- lying model, namely, the Dataflow model. Using this model as a starting point, it is possible to categorize and analyze almost all aspects about Big Data analytics tools from a high level perspective. This analysis can be considered as a first step toward a formal model to be exploited in the design of a (new) framework for Big Data analytics. By putting clear separations between all levels of abstraction (i.e., from the runtime to the user API), it is easier for a programmer or software designer to avoid mixing low level with high level aspects, as we are often used to see in state-of-the-art Big Data analytics frameworks. From the user-level perspective, we think that a clearer and simple semantics is preferable, together with a strong separation of concerns. For this reason, we use the Dataflow model as a starting point to build a programming environment with a simplified programming model implemented as a Domain-Specific Language, that is on top of a stack of layers that build a prototypical framework for Big Data analytics. The contribution of this thesis is twofold: first, we show that the proposed model is (at least) as general as existing batch and streaming frameworks (e.g., Spark, Flink, Storm, Google Dataflow), thus making it easier to understand high-level data-processing applications written in such frameworks. As result of this analysis, we provide a layered model that can represent tools and applications following the Dataflow paradigm and we show how the analyzed tools fit in each level. Second, we propose a programming environment based on such layered model in the form of a Domain-Specific Language (DSL) for processing data collections, called PiCo (Pipeline Composition). The main entity of this programming model is the Pipeline, basically a DAG-composition of processing elements. This model is intended to give the user an unique interface for both stream and batch processing, hiding completely data management and focusing only on operations, which are represented by Pipeline stages. Our DSL will be built on top of the FastFlow library, exploiting both shared and distributed parallelism, and implemented in C++11/14 with the aim of porting C++ into the Big Data world

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 24th International Conference on Fundamental Approaches to Software Engineering, FASE 2021, which took place during March 27–April 1, 2021, and was held as part of the Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg but changed to an online format due to the COVID-19 pandemic. The 16 full papers presented in this volume were carefully reviewed and selected from 52 submissions. The book also contains 4 Test-Comp contributions

    Easing parallel programming on heterogeneous systems

    Get PDF
    El modo más frecuente de resolver aplicaciones de HPC (High performance Computing) en tiempos de ejecución razonables y de una forma escalable es mediante el uso de sistemas de cómputo paralelo. La tendencia actual en los sistemas de HPC es la inclusión en la misma máquina de ejecución de varios dispositivos de cómputo, de diferente tipo y arquitectura. Sin embargo, su uso impone al programador retos específicos. Un programador debe ser experto en las herramientas y abstracciones existentes para memoria distribuida, los modelos de programación para sistemas de memoria compartida, y los modelos de programación específicos para para cada tipo de co-procesador, con el fin de crear programas híbridos que puedan explotar eficientemente todas las capacidades de la máquina. Actualmente, todos estos problemas deben ser resueltos por el programador, haciendo así la programación de una máquina heterogénea un auténtico reto. Esta Tesis trata varios de los problemas principales relacionados con la programación en paralelo de los sistemas altamente heterogéneos y distribuidos. En ella se realizan propuestas que resuelven problemas que van desde la creación de códigos portables entre diferentes tipos de dispositivos, aceleradores, y arquitecturas, consiguiendo a su vez máxima eficiencia, hasta los problemas que aparecen en los sistemas de memoria distribuida relacionados con las comunicaciones y la partición de estructuras de datosDepartamento de Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Artificial, Lenguajes y Sistemas Informáticos)Doctorado en Informátic

    Lessons from Formally Verified Deployed Software Systems (Extended version)

    Full text link
    The technology of formal software verification has made spectacular advances, but how much does it actually benefit the development of practical software? Considerable disagreement remains about the practicality of building systems with mechanically-checked proofs of correctness. Is this prospect confined to a few expensive, life-critical projects, or can the idea be applied to a wide segment of the software industry? To help answer this question, the present survey examines a range of projects, in various application areas, that have produced formally verified systems and deployed them for actual use. It considers the technologies used, the form of verification applied, the results obtained, and the lessons that can be drawn for the software industry at large and its ability to benefit from formal verification techniques and tools. Note: a short version of this paper is also available, covering in detail only a subset of the considered systems. The present version is intended for full reference.Comment: arXiv admin note: text overlap with arXiv:1211.6186 by other author

    Parallel Programming with Global Asynchronous Memory: Models, C++ APIs and Implementations

    Get PDF
    In the realm of High Performance Computing (HPC), message passing has been the programming paradigm of choice for over twenty years. The durable MPI (Message Passing Interface) standard, with send/receive communication, broadcast, gather/scatter, and reduction collectives is still used to construct parallel programs where each communication is orchestrated by the developer-based precise knowledge of data distribution and overheads; collective communications simplify the orchestration but might induce excessive synchronization. Early attempts to bring shared-memory programming model—with its programming advantages—to distributed computing, referred as the Distributed Shared Memory (DSM) model, faded away; one of the main issue was to combine performance and programmability with the memory consistency model. The recently proposed Partitioned Global Address Space (PGAS) model is a modern revamp of DSM that exposes data placement to enable optimizations based on locality, but it still addresses (simple) data- parallelism only and it relies on expensive sharing protocols. We advocate an alternative programming model for distributed computing based on a Global Asynchronous Memory (GAM), aiming to avoid coherency and consistency problems rather than solving them. We materialize GAM by designing and implementing a distributed smart pointers library, inspired by C++ smart pointers. In this model, public and pri- vate pointers (resembling C++ shared and unique pointers, respectively) are moved around instead of messages (i.e., data), thus alleviating the user from the burden of minimizing transfers. On top of smart pointers, we propose a high-level C++ template library for writing applications in terms of dataflow-like networks, namely GAM nets, consisting of stateful processors exchanging pointers in fully asynchronous fashion. We demonstrate the validity of the proposed approach, from the expressiveness perspective, by showing how GAM nets can be exploited to implement both standalone applications and higher-level parallel program- ming models, such as data and task parallelism. As for the performance perspective, preliminary experiments show both close-to-ideal scalability and negligible overhead with respect to state-of-the-art benchmark implementations. For instance, the GAM implementation of a high-quality video restoration filter sustains a 100 fps throughput over 70%-noisy high-quality video streams on a 4-node cluster of Graphics Processing Units (GPUs), with minimal programming effort

    3rd Many-core Applications Research Community (MARC) Symposium. (KIT Scientific Reports ; 7598)

    Get PDF
    This manuscript includes recent scientific work regarding the Intel Single Chip Cloud computer and describes approaches for novel approaches for programming and run-time organization

    Tailored Protocol Development Using ESTEREL

    Get PDF
    The rapid evolution of networking and the multiplication of new applications re-emphasizes the importance of the efficient communication supports. Implementations must be able to take maximal advantage of the details of application-specific semantics and of specific networking environments. In other words, the application needs to have more control over data transmission. Such control can be obtained by tailoring the communication facilities (or protocols) to the application characteritics, and by integrating the communication control to the application. Because such a task is too complex to be realized manually, we propose to automate the protocol development process using a formal approach. This report presents our approach to the automated design and implementation of application- specific communication protocols based on information provided by the application. Starting from the formal description of an application, our approach is based on a tool called "Protocol Compiler" that will automatically produce the implementation of a communication protocol tailored to the application. The formalism we use is ESTEREL, a synchronous reactive language dedicated to the description of real-time systems. Protocol description and verification using ESTEREL are described, as well as protocol optimization and implementation principles
    corecore