
KIT ScIenTIfIc RepoRTS 7598

ISBn 978-3-86644-717-2
ISSn 1869-9669

3rd Many-core Applications Research
Community (MARC) Symposium

Diana Göhringer
Michael Hübner
Jürgen Becker
(Hrsg.)

9 783866 447172

ISBN 978-3-86644-717-2

Diana Göhringer, Michael Hübner, Jürgen Becker

3rd Many-core Applications Research Community (MARC) Symposium

Karlsruhe Institute of Technology

KIT SCIENTIFIC REPORTS 7598

3rd Many-core Applications Research
Community (MARC) Symposium

Diana Göhringer
Michael Hübner
Jürgen Becker
(Hrsg.)

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe
www.ksp.kit.edu

KIT – Universität des Landes Baden-Württemberg und nationales
Forschungszentrum in der Helmholtz-Gemeinschaft

ISSN 1869-9669
ISBN 978-3-86644-717-2

Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

KIT Scientific Publishing 2011
Print on Demand

Report-Nr. KIT-SR 7598

http://www.uvka.de
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Preface�
�

The� 3rd� Many�core� Applications� Research� Community� (MARC)� Symposium� was� held� at� Fraunhofer�
Institute� of� Optronics,� System� Technologies� and� Image� Exploitation� (Fraunhofer� IOSB)� in� Ettlingen,�
Germany�on�July�5�6,�2011.�

For�the�first� time� in�the�history�of� this�symposium,�a�peer�review�for�the�26�submissions�had�been�
organized�which�led�to�12�accepted�papers�for�oral�presentation.�Since�the�submitted�paper�were�of�
high� quality,� the� symposium� organizer� decided� to� accept� the� remaining� 14� paper� as� poster�
presentation.� This� proceeding� therefore� contains� all� submitted� papers,� which� were� updated�
according�to�the�reviewer�feedback.�

The�symposium�had�a�high�registration�rate�with�64�attendees�from�Germany,�the�Netherlands,�
Switzerland,�USA,�Spain,�Italy,�Greece,�Cyprus,�Israel,�New�Zealand�and�Korea.��

After� a� welcome� and� introduction� note� from� Diana� Göhringer� from� Fraunhofer� IOSB� and� Ulrich�
Hoffmann� from� Intel� Labs� Braunschweig,� the� symposium� started� with� the� technical� presentations.�
We� kindly� want� to� thank� all� authors� for� presenting� their� work� so� well� and� with� high� quality.�
Furthermore,�we�want�to�thank�all�attendees�for�the�constructive�discussions�during�the�symposium.�
All�this�led�to�a�very�fruitful�and�well�received�event.�

A�special�thank�is�dedicated�to�Prof.�Maurus�Tacke,�director�of�the�Fraunhofer�IOSB,�who�enabled�the�
event�and�gave�an�introduction�into�the�research�and�development�activities�of�the�institute.�We�also�
want� to� thank� the� keynote� speaker,� Intel� Fellow� Jim� Held,� who� presented� a� talk� about� “The� SCC�
MARC�objectives�and�opportunities”.�Werner�Haas�from�Intel�Labs�Braunschweig�presented�a�tutorial�
with�the�important�topic�“Shared�Memory�on�SCC���pitfalls�on�the�way�to�data�consistency”.�Michael�
Riepen� from� Intel� Labs� Braunschweig� presented� the� concluding� tutorial,� the� "SCC� Working�
Environment”.��

We� kindly� want� to� thank� the� Intel� Research� Group� in� Braunschweig� for� their� excellent� and� kind�
support� of� the� symposium.� Furthermore,� we� want� to� thank� the� Karlsruher� Institute� of� Technology�
(KIT)�and�the�MSC�Vertriebs�GmbH�und�Gleichmann�&�Co.�Electronics�GmbH�for�their�great�support.�

Last� but� not� least,� we� want� to� thank� all� colleagues� at� Fraunhofer� IOSB� who� helped� with� the�
management,�catering,�demonstration,�web�page�and�the�daily�errands�which�ensured�a�smooth�and�
professional�organization�of�the�MARC�symposium.�

Co�Organizer�of�the�3rd�MARC�Symposium�

Diana�Göhringer,�Fraunhofer�IOSB,�Ettlingen�Germany�

Ulrich�Hoffmann,�Intel�Labs�Braunschweig,�Germany�

Michael�Hübner,�Karlsruhe�Institute�of�Technology�(KIT),�Germany�

Jürgen�Becker,�Karlsruhe�Institute�of�Technology�(KIT),�Germany�

Content�
�
�
�
Perfomance�analysis�and�tuning� �
� �
Victor�Pankratius,�Sven�Bläse:�"Application�Level�Automatic�Performance�Tuning�on�the�
Single�Chip�Cloud�Computer"…………………………………………………………………………………………...� 1�
� �
Andrea�Bartolini,�Mohammadsadegh�Sadri,�Francesco�Beneventi,�Matteo�Cacciari,�
Andrea�Tilli�and�Luca�Benini:�"SCC�Thermal�Sensor�Characterization�and�Calibration".........� 7�
� �
� �
Efficient�Use�of�Memories�and�Virtualization� �
� �
Michiel�W.�Van�Tol,�Roy�Bakker,�Merijn�Verstraaten,�Clemens�Grelck�and�Chris�R.�
Jesshope:�"Efficient�Memory�Copy�Operations�on�the�48�core�Intel�SCC�Processor"……..….� 13�
� �
Pablo�Reble,�Stefan�Lankes,�Carsten�Clauss�and�Thomas�Bemmerl:�"A�Fast�Inter�Kernel�
Communication�and�Synchronization�layer�for�MetalSVM"………………………………………………�

�
19�

� �
� �
Operating�Systems�and�Thermal�Management� �
� �
Anastasios�Papagiannis�and�Dimitrios�S.�Nikolopoulos:�"Scalable�Runtime�Support�for�
Data�Intensive�Applications�on�the�Single�Chip�Cloud�Computer"�……………………………………� 25�
� �
Jan�Arne�Sobania,�Peter�Tröger�and�Andreas�Polze:�"Linux�Operating�System�Support�for�
the�SCC�Platform���An�Analysis"………………………………………………………………………………………..� 31�
� �
Simon�Peter,�Adrian�Schuepbach,�Dominik�Menzi�and�Timothy�Roscoe:�"Early�experience�
with�the�Barrelfish�OS�and�the�Single�Chip�Cloud�Computer"………………………………..…………� 35�
� �
� �
Programming�Languages,�MPI�and�Application�Exploration� �
� �
Merijn�Verstraaten,�Clemens�Grelck,�Michiel�Van�Tol,�Roy�Bakker�and�Chris�Jesshope:�
"Mapping�Distributed�S�Net�on�the�48�core�Intel�SCC�processor"………………………….……….…� 41�
� �
Steffen�Christgau,�Simon�Kiertscher�and�Bettina�Schnor:�"The�Benefit�of�Topology�
Awareness�of�MPI�Applications�on�the�SCC"………………………………………………………....………….� 47�
� �
Randolf�Rotta:�"On�Efficient�Message�Passing�on�the�Intel�SCC"…………………………….…….....� 53�
� �
Marco�Fais�and�Francesco�Iorio:�"Fast�Fluid�Dynamics�on�the�Single�chip�Cloud�
Computer"…….….…….....� 59�
� �

� �

Poster�Session� �
� �
Andreas�Prell�and�Thomas�Rauber�:�“�Task�Parallelism�on�the�SCC”�………………………………...� 65�
� �
Waqaas�Munawar,�Janmartin�Jahn,�Artiom�Aleinikov,�Jian�Jia�Chen�and�Jörg�Henkel:�„An�
Empirical�Feedback�Provider�for�Multi�Core�Schedulers”……………………………………………..…..� 69�
� �
Björn�Saballus,�Stephan�Alexander�Posselt�and�Thomas�Fuhrmann:��“A�Scalable�and�
Robust�Runtime�Environment�for�SCC�Clusters”………………………………………………………………..�� 71�
� �
Florian�Thoma,�Michael�Huebner,�Diana�Goehringer,�Hasam�Ümitcan�Yilmaz�and�Juergen�
Becker:�“Power�and�performance�optimization�through�MPI�supported�dynamic�voltage�
and�frequency�scaling”……………………………………………………………………………………………………..� 75�
� �
Carsten�Clauss,�Stefan�Lankes,�Pablo�Reble�and�Thomas�Bemmerl:�“Recent�Advances�and�
Future�Prospects�in�iRCCE�and�SCC�MPICH”………………………………………………………………………� 79�
� �
Panayiotis�Petrides,�Andreas�Diavastos�and�Pedro�Trancoso:�“Exploring�Decision�Support�
Queries�on�Futured�Many�Core�Architectures”…………………………………………………………………� 81�
� �
Wasuwee�Sodsong�and�Bernd�Burgstaller:�“Fast�Fourier�Transformation�Algorithm�for�
Single�Chip�Cloud�Computers�Using�RCCE”……………………………………………………………………….� 85�
� �
Alexander�Arlt,�Jan�Hendrik�Schönherr�and�Jan�Richling:�“Meta�programming�Many�Core�
Systems”………� 89�
� �
Hayder�Al�Khalissi�and�Mladen�Berekovic:�“Performance�of�RCCE�Broadcast�Algorithm�in�
SCC”………..� 93�
� �
Nils�Petersen,�Julian�Pastarmov�and�Didier�Stricker:�“ARGOS���a�software�framework�to�
facilitate�user�transparent�multi�threading“……………………………………………………………………..� 99�
� �
Pedro�Alonso,�Manuel�F.�Dolz,�Francisco�D.�Igual,�Bryan�Marker,�Rafael�Mayo,�Enrique�S.�
Quintana�Ortí�and�Robert�A.�Van�De�Geijn:�“Power�aware�Dense�Linear�Algebra�
Implementations�on�Multi�core�and�Many�core�Processors”……………………………………………� 103�
� �
Nicolas�Melot,�Kenan�Avdic,�Jörg�Keller�and�Christoph�Kessler:�“Investigation�of�main�
memory�bandwidth�on�Intel�Single�Chip�Cloud�Computer”……………………………………………….� 107�
� �
Georgia�Kouveli,�Frank�Hannig,�Jan�Hugo�Lupp�and�Jürgen�Teich:�“Towards�Resource�
Aware�Programming�on�Intel's�Single�Chip�Cloud�Computer�Processor”…………………………..� 111�
� �
� �
� �

�

Application-Level Automatic Performance Tuning
on the Single-Chip Cloud Computer

Victor Pankratius
Karlsruhe Institute of Technology

76131 Karlsruhe, Germany
pankratius@kit.edu, www.victorpankratius.com

Sven Blaese
Karlsruhe Institute of Technology

76131 Karlsruhe, Germany
sven.blaese@student.kit.edu

Abstract—Improving application performance is the main
motivation to switch to manycore hardware and parallelize all
kinds of software. Intel’s Single-chip Cloud Computer (SCC)
offers a testbed with 48 general-purpose cores on one chip
as a first step towards chips with even more cores. However,
a current difficulty is that programmers are responsible for
controlling a variety of performance-affecting parameters that
are interdependent and that are influenced by both hardware
and software. Thus, tuning parallel applications on the SCC
is far from trivial, and manual approaches are tedious. To
address these problems, this paper is the first to introduce an
application-level automatic performance tuning approach on the
SCC. Programmers identify performance-impacting parameters
within their software applications and let an external auto-
tuner search for the best configuration. We discuss and evaluate
several tuning algorithms, including HyDES, our own approach
that combines Differential Evolution and Nelder-Mead Simplex
methods in a novel way. First results on parallel compression
and other applications show that HyDES can significantly boost
performance. In addition, our measurements reveal that good pa-
rameter configurations can be non-intuitive; in certain scenarios,
existing programs such as MPIBZIP do not even allow users to
set the optimal performance parameter configuration from the
command line. Our auto-tuning approach greatly simplifies the
application performance optimization process. It is easy to use
and has the potential to become a standard approach for large
number of SCC programmers.

I. INTRODUCTION

Multicore and manycore chips are here to stay, so program-
mers need to develop parallel software to exploit the hard-
ware potential. Average programmers with little experience
in parallel programming now face a spectrum of additional
difficulties, such as writing programs that are correct and at
the same time perform well on all available parallel platforms.
However, already on one single platform, parallel application
performance tuning is far from trivial. A key reason is that
parallel applications typically depend on a variety of inter-
related software parameters, hardware parameters, and input
parameters that influence performance in ways that can be too
complex to model with acceptable effort. As a consequence,
many programmers resort to manual trial-and-error when it
comes to tuning (e.g., to determine which degree of paral-
lelism is leads to the best compute performance, which data
partitioning has optimal cache exploitation, etc.). This tedious
process is typically repeated every time when a program is
ported to a new platform.

Intel’s experimental Single-chip Cloud Computer (SCC)
offers a glimpse into the future on how it would be like
to program a manycore computer with 48 general-purpose
cores. With an increasing number of cores, hardware needs to
adapt and make tradeoffs, which leads to solutions that differ
from today’s mainstream. This is why the SCC’s architecture
offers programmers even more freedom than many other
multicore architectures, which has significant consequences for
programmers. More control in software is good to squeeze
out the last percent of performance, but the downside is
that application tuning becomes even more difficult than it
is already on current shared-memory multicore platforms. For
example, every SCC core can boot an own operating system
image (where each image might be optimized differently) and
communicate via message passing with other cores, just as
in a regular distributed system. Communication performance
depends, among others, on which cores communicate and
how the software assigns work to cores. Inexperienced pro-
grammers might be overwhelmed by such details and fail to
achieve good performance, while experts might have to invest
large amounts of time in performance optimization instead of
moving on with other features. Software engineers clearly need
automation support for performance optimization to be more
productive on the SCC.

We tackle these problems in this paper, which is the first
paper to present an application-level automatic performance
tuning approach on the SCC. In particular, we make the
following novel contributions. We introduce an SCC auto-
tuner that automatically searches for good performance config-
urations for every tunable SCC application. To create tunable
applications, we exploit programmer’s knowledge and let
programmers define application performance parameters that
the auto-tuner should configure. For example, parameters may
include the maximum number of processes to generate, block
sizes for data structures, number of pipeline stages to create,
and choices of predefined algorithm variants for a particular
program task. Our technique leverages parallelism on higher
abstraction levels and complements other performance opti-
mizations (e.g. compiler optimizations). We introduce HyDES,
a novel search algorithm based on Nelder-Mead Simplex and
Differential Evolution methods, which has been specifically
developed and tested for the SCC. We experimentally compare
our approach with others using standard benchmarks and show

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 1

that our approach leads to significantly better performance.
Our SCC auto-tuner is able to improve the performance even
for parallel benchmark programs that are already optimized
with other techniques. Case studies reveal that well-performing
configurations can be non-intuitive.

The paper is organized as follows. Section II details the
problem specification and our application context. Section
III introduces auto-tuning strategies for parallel applications.
Section IV presents experimental evaluations on the SCC.
Section V contrasts related work. Section VI provides a
conclusion.

II. PROBLEM SPECIFICATION AND CONTEXT

Our optimization seeks to minimize the application run-time

f(�x), where �x = (x1, . . . , xN)

is a vector of tunable application parameters. Each parameter
xi has values out of a predefined valid range [xil, xih] ⊂ R.

We assume that developers write programs in such a way
that the prograns are configurable, i.e., �x is configurable
from the command line or the program communicates the
addresses of configurable variables to the auto-tuner. For now,
we assume for simplification that program inputs (e.g., files
used in computations) are additional implicit parameters; we
treat program tuning with different inputs as own optimization
problems. The function f depends on the specific properties of
each program and is typically unknown or difficult to model.

The purpose of our auto-tuner is to empirically find good
configurations of �x that minimize the function f , which
in our examples corresponds to finding the lowest paral-
lel application run-time. The complete search space con-
sists of the cartesian product of all parameter domains. i.e.,
dom(x1)× dom(x2)×, . . . ,×dom(xN). Trying out the entire
search space is obviously impractical for most application
scenarios. Our auto-tuner thus works iteratively to explore
the search space: It generates values for parameters using
the algorithms described in the next section, executes the
programs, measures performance, and uses the feedback to
find more promising parameter values. The process stops after
a defined number of iterations or if other termination criteria
are satisfied (e.g., run-time is below a certain threshold).

A. Homogeneous and Heterogeneous Tuning

For each auto-tuning algorithm, we developed and imple-
mented two versions that distribute the tuning process among
SCC cores in different ways.

In homogeneous tuning (Figure 1), there is a master core that
runs the tuning algorithm, computes the parameter values of �x,
and assigns the same �x to all worker cores. The worker cores
then process a program’s tasks (which are all split up equally)
in parallel. Considering parallel compression with BZIP as an
example, all cores would compress blocks of a file using the
same file block size. Updates to the block size are performed
by the master between complete program runs.

In heterogeneous tuning (Figure 2), every core is its own
master and computes its own �x. When a core is done, it

Master
Core

Core1 Tuning
Parameters

(x ,...x)1 N

Normalized
Run-time
Feedback

Normalized
Run-time
Feedback

Other Cores

Fig. 1. Principles of homogeneous tuning on SCC cores.

Core
i

Core
j

Monitor
Core

Ci‘s Tuning
Parameters +
Normalized
Run-time

Cj‘s Tuning
Parameters +
Normalized
Run-time

Other Cores

Other Core‘s
Parameters+
Normalized
Run-time

All core‘s
Parameters+
Normalized
Run-time

Fig. 2. Principles of heterogeneous tuning on SCC cores.

broadcasts �x and the run-time feedback (normalized w.r.t
amount of work) to all other cores. When finished, the cores
may adapt the new parameters if they are better than their
own. A monitor core collects global statistics about the best
parameter configuration so far. This approach parallelizes and
exchanges information about the optimization process itself
and may converge faster. However, it might not be applicable
to all sort of programs, e.g., when differing parameter values
are not allowed for different workers. This is why we have two
versions of tuning, so we can resort to homogeneous tuning if
necessary. Heterogeneous tuning for parallel compression, for
example, has different cores working on different file blocks,
but each core uses different file block sizes; block sizes are
adapted while the application is running when new work is
assigned to cores.

III. AUTO-TUNING STRATEGIES ON THE SCC

A. Random Tuning – A Comparison Baseline

This strategy serves as a comparison baseline for other
tuning algorithms, including ones from the literature. A good
tuning algorithm should be able to beat Random on the same
number of iterations to justify the implementation effort.

1) Homogeneous tuning: In each iteration, we generate
a random vector �x with elements xi ∼ U(xil, xih) with
uniform random distribution. The same vector is used by every
worker core. The master keeps the vector that leads to the best
application run-time after every tuning iteration.

2) Heterogeneous tuning: Each worker core configures its
random vector on its own and logs the best configuration.

2 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

When a core completes its work, it sends the best configuration
so far to the monitor core. The monitor core keeps the best
configuration found by any worker core.

B. Nelder-Mead Simplex

The principle of this algorithm is well-known in the lit-
erature [1], [2], [7], which is why we implement it for
comparison.

1) Homogeneous tuning: The algorithm has an elaborate
scheme with several case differentiations whose details are
beyond the scope of this paper, so we briefly sketch the
ideas. A simplex s ∈ (RN)N+1 is the simplest polygon
in N dimensions (e.g., a triangle for N = 2). For an N-
dimensional search space, the algorithm initializes N + 1
vertices with random values. Then, each iteration evaluates the
points of the current simplex and moves it to more promising
locations. There are several rules to move simplex points, such
as reflection, expansion, contraction, and reduction, which are
described in [1], [2]. For these rules, our implementation uses
the common values of α = 1, β = 0.5, γ = 2.

2) Heterogeneous tuning: Each worker core runs the entire
algorithm on its own and generates a random initial simplex.
After a core finishes the optimization, it communicates the
best result so far to the monitor core that gathers the best
configuration from all cores.

C. Differential Evolution

Literature shows that Nelder-Mead is not powerful enough
when it comes to escaping global minima, as it might get
trapped in local minima [3]. Differential Evolution is a more
promising heuristic that compensates this shortcoming. It
works even on non-linear and non-differentiable functions,
and it is less computationally intensive than other methods
that have the same goal [3]. In each iteration, Differential
Evolution works on a population of individuals (i.e., parameter
configurations or vectors, respectively), evaluates the best indi-
viduals, and replaces individuals in new population generations
by using several operators as described next.

1) Homogeneous tuning: Our approach is based on [3] and
starts with a population of npop configurations, where each
individual has values randomly chosen from each parameter
range. The population size npop remains constant during the
entire optimization process. A mutation operator creates new
configurations by taking the difference of two random popula-
tion vectors, weighing it by a factor F =

√
1

npop

−
α

2npop

[4],
and adding the result to a third randomly chosen population
vector. To increase diversity, the mutated vector is mixed with
yet another randomly chosen population vector vtarget by
taking an element from the mutated vector with probability
α = 0.7, and from vtarget with 1− α, resulting in the vector
vtrial. The program to optimize is run with the configuration
of vtarget and vtrial on all cores, and the better-performing
configuration is kept in the new population, which is used as
a starting point in future iterations.

2) Heterogeneous tuning: One or more individuals are
represented by one core. Each core works with a differ-
ent configuration of individuals. After each individual has
been evaluated, each core selects the best individual so far
and propagates the configuration to all other cores (using
allgather from RCCE_comm). Then, each core generates
a new individual as described for homogeneous tuning, and
the process restarts.

D. HyDES: Hybrid Differential Evolution Simplex

Our new approach combines the best of Nelder-Mead and
Differential Evolution methods. As shown later, it is effective
for application-level auto-tuning on the SCC.

1) Homogeneous tuning: As in Differential Evolution, we
start with a population of npop vectors (i.e, configurations).
One randomly chosen vector �p = (p1, . . . , pN) out of this pop-
ulation is used to generate a simplex. We employ the following
schema to generate N additional simplex points and ensure
that the simplex stretches appropriately in the search space:
For every dimension i, we compute di = (maxi −mini)/4.
If maxi − pi ≤ pi − mini then we multiply di by −1 to
achieve a larger stretching of the simplex. Then, we generate
new vectors by adding d1 to p1, d2 to p2, and so on. So from
p, each new simplex vector has a distance of di in dimension
i. In case that a simplex point is above any maxi or below any
mini of a dimension i, we correct the value in this dimension
by moving the vector by a random value into the valid search
space. This random displacement is computed using a normal
distribution that has its mean at the violated boundary and
the standard deviation (maxi −mini)/20. With the resulting
simplex, we perform optimization as described by Nelder-
Mead, which stops when the maximum distance between any
simplex vectors is less than a predefined ε. The result replaces
the initially selected individual p. Then, Differential Evolution
continues with the new population in which the new result is
used to generate other vectors as in Section III-C. Nelder-
Mead is applied on future populations with 5% probability,
otherwise Differential Evolution continues as described.

2) Heterogeneous tuning: Each core is responsible for one
individual and initialized by Differential Evolution. Each core
communicates its individual to all other cores. As an extension
to Figure 2, the monitor core also acts as a master to dictate
to all other cores when to apply Nelder-Mead and when to
apply Differential Evolution. When Nelder-Mead is applied,
the master randomly choses one core to monitor. When that
core finishes its Nelder-Mead optimization, the optimization
process in all other cores is stopped as well. All cores replace
their old individual by the new individual and broadcast their
new result to all cores.

IV. EXPERIMENTAL EVALUATION ON THE SCC

A. Setup

We employ the latest available Intel SCC with 48 cores
(16KB L1, 256KB L2 cache per core, 16KB message passing
buffer per tile). Cores are clocked at 533 MHz, routers at
800 MHz, and memory at 800 MHz. Each core runs an own

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 3

B
W

T
B

lo
ck

S
ize

(in
1
0
0
K

B
)

2

4

6

8

File Block Size

(in 10KB)
100

200

300

400

500

C
o
m

p
re

s
s
io

n
T

im
e

in
S

e
c
.

5

10

15

20

B
W

T
B

lo
ck

S
ize

(in
1
0
0
K

B
)

File Block Size

(in 10KB)

2

4

6

8
50

100

150

C
o
m

p
re

s
s
io

n
T

im
e
 in

 S
e
c
.

16

18

20

0 5 10 15 20 25 30

4
6

8
1
0

1
2

1
4

Iterations

C
o

m
p

re
s
s
io

n
 T

im
e

 i
n

 S
e

c
o

n
d

s

Random

Nelder Mead

Differential Evolution

HyDES

Random

Nelder Mead

Differential Evolution

HyDES

0 10 20 30 40 50

1
5

2
0

2
5

3
0

3
5

Iterations

C
o

m
p

re
s
s
io

n
 T

im
e

 i
n

 S
e

c
o

n
d

s

Scenario 1: MPIBZIP, 5MB Input, 6 Cores

Scenario 2: MPIBZIP, 46MB Input, 48 Cores

Exhaustive Search Auto-Tuning

Exhaustive Search Auto-Tuning

Fig. 3. Comparison of parallel compression tuning results with homogeneous tuning. Lower values are better.

image of Linux kernel 2.6.16. The compilers used are icc
8.1.038 for XHPL benchmarks (with MKL 8.1.1.004) and gcc
3.4.5 for MPIBZIP (with RCKMPI and RCCE). Due to space
limitations, however, we can present just an excerpt of all
evaluation results.

B. Auto-Tuning SCC Applications

To test our approach on a real application, we made the
MPIBZIP compression program configurable for two impor-
tant parameters (Burrows-Wheeler-Transform (BWT) block
size and file block size). Figure 3 shows results with homoge-
neous tuning which illustrate that our HyDES approach finds
the best performance configurations already after 10 program
executions. The exhaustive search in the 3D graphs shows
that the best performance configuration is non-intuitive; for
example, with 6 cores (1 master and 5 slave cores), distributing
a 5 MB file intuitively as 1 MB chunks per core is worse than

the optimum of 170 KB-sized chunks per core (also found
by the auto-tuner). When using a 46 MB input file and all 48
cores, the optimum chunk size per core is 50 KB. Interestingly,
MPIBZIP does not even allow users to set such a low value
from the command line, so auto-tuning not only paid off, but
also pointed to software improvements.

In practice, parameter tuning can be done for clusters
of inputs (e.g., ranges of file sizes) when the program is
customized to a platform; this yields good parameters that are
representative for a class of inputs, so tuning won’t have to
be repeated for every single input.

C. Stress-Test Evaluations

In addition to real applications, we used common stress-test
functions from the optimization literature [5], [6] to evaluate
the effectiveness of the aforementioned tuning algorithms in
difficult scenarios.

4 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

Dropwave Himmelblau Rosenbrock Schwefel

Fig. 4. Common benchmark functions [5], [6] used for optimization stress-testing.

Random

Nelder Mead

Diff. Evolution

Hybrid Dif Evol. Simplex

Dropwave Benchmark

dim: 2, range: -5.12 to 5.12 dim: 2, range: -1000 to 1000

dim: 2, range: -1000 to 1000 dim: 2, range: -1000 to 1000

Rosenbrock Benchmark Schwefel Benchmark

Himmelblau Benchmark

0 100 200 300 400 500

-0
.9

-0
.8

-0
.7

-0
.6

-0
.5

-0
.4

Iterations

F
u

n
c
ti
o

n
 v

a
lu

e

0 100 200 300 400 500

1
e

+
0

0
1

e
+

0
3

1
e

+
0

6
1

e
+

0
9

Iterations

F
u

n
c
ti
o

n
 v

a
lu

e
 (

L
O

G
)

0 100 200 300 400 500

1
e

+
0

1
1

e
+

0
3

1
e

+
0

5
1

e
+

0
7

1
e

+
0

9

Iterations

F
u

n
c
ti
o

n
 v

a
lu

e
 (

L
O

G
)

0 100 200 300 400 500

-8
0

0
-7

0
0

-6
0

0
-5

0
0

-4
0

0

F
u

n
c
ti
o

n
 v

a
lu

e

Iterations

Fig. 5. Tuning results with homogeneous tuning on common optimization stress-test benchmark functions (see Fig. 4). Lower values are better.

Figure 4 exemplifies the shapes of these multidimensional
functions for three dimensions. We implemented parameter-
ized SCC test programs whose run-time performance behaves
according to these functions.

Figures 5 and 6 show experimental evaluations of the
function benchmarks with homogeneous and heterogeneous
tuning. It is remarkable that our HyDES approach beats all
other approaches in all scenarios in finding better performance
configurations, while at the same time the speed of conver-
gence (measured by number of iterations) is good as well.

The homogeneous scenarios in Figure 5 use 20 individuals
for evolution. The heterogeneous scenarios in Figure 6 employ
a pre-specified number of cores (10, 15, and 48 cores). With
heterogeneous tuning, convergence is faster (i.e., fewer itera-
tions are needed) even on a larger problem (4D Rosenbrock).
This can be explained by the fact that the heterogeneous tuning
approach parallelized the tuning process, as explained earlier.

Note that HyDES combines the best of both worlds: It
avoids problems that single Nelder-Mead or Differential Evo-
lution would run into. Sometimes Differential Evolution is

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 5

dim: 4, range: -500 to 500 dim: 4, range: -500 to 500

Rosenbrock Benchmark on 10 Cores Rosenbrock Benchmark on 15 Cores Rosenbrock Benchmark on 48 Cores

Iterations

F
u

n
c
ti
o

n
 V

a
lu

e
 (

L
O

G
)

0 100 200 300 400

1
e

+
0

0
1

e
+

0
2

1
e

+
0

4
1

e
+

0
6

1
e

+
0

8

Iterations

F
u

n
c
ti
o

n
 V

a
lu

e
 (

L
O

G
)

0 100 200 300 400

1
e

+
0

0
1

e
+

0
2

1
e

+
0

4
1

e
+

0
6

1
e

+
0

8

Iterations

F
u

n
c
ti
o

n
 V

a
lu

e
 (

L
O

G
)

dim: 4, range: -500 to 500

0 100 200 300 400

1
e
+

0
0

1
e
+

0
2

1
e
+

0
4

1
e
+

0
6

1
e
+

0
8

Random

Nelder Mead

Diff. Evolution

HyDES

Fig. 6. Rosenbrock benchmark with heterogeneous tuning. Lower values are better.

better than Nelder-Mead or vice-versa, but HyDES always
ends up better than any of the latter.

D. Auto-Tuning a Common Benchmark

Finally, we also tuned the XHPL (Linpack) benchmark
in 11 dimensions (i.e., with 11 tuning parameters). Due its
application nature, we employed homogeneous tuning. The
results are shown in Figure 7.

XHPL (Linpack) Benchmark

0 100 200 300 400 500

6
0

0
8

0
0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

Iterations

M
F

L
O

P
S

Problem size: 500
Random

Nelder Mead

Differential Evolution

HyDES

Fig. 7. Auto-Tuning the XHPL (Linpack) benchmark with homogeneous
tuning (higher values are better).

The chart demonstrates the superior MFLOPS achievement
of our HyDES approach. It also visualizes that systematic
tuning is significantly better than using random performance
configurations.

V. RELATED WORK

Related work on auto-tuning on the SCC is scarce, but
this is because the SCC has appeared just recently and still
is an experimental system. It is conceivable to adapt other
auto-tuners that work on clusters (e.g., [7]) to the SCC.
However, we already include a comparison with [7], as that
particular tuner is based on Nelder-Mead optimization. Other
tuners that use new optimization approaches in the future can

be compared via our random tuning baseline. Most of the
literature on optimization [1], [2], [3], [4], [5] focuses on
specific classes of algorithms that are inappropriate to use
in our SCC context. For example, many algorithms either
don’t fit to our problem or assume that we can take arbitrarily
many samples (potentially infinitely many), which translates
to running a program infinitely often. Hybrid algorithms, such
as our HyDES, received little attention so far.

VI. CONCLUSION

Automatic performance tuning makes performance engi-
neering on the SCC less tedious for software developers. As a
new aspect, our approach targets general SCC applications,
not just scientific numerical applications. The results show
for compression and various stress-test applications that our
novel tuning approach systematically leads to better parallel
performance. Auto-tuning found non-intuitive performance
configurations and revealed that existing applications, such
as MPIBZIP, didn’t even allow users to manually set the
best-performing configurations from the command line. Our
technique has the potential to become standard for the SCC,
as it makes application development and tuning easier.

Remarks and Acknowledgments. The first author is the principal investigator in

the “Software Engineering for SCC Parallel Programs” project in collaboration

with Intel. We thank Intel for providing us with access to the SCC.

REFERENCES

[1] R. R. Barton and J. S. Ivey, Jr., “Modifications of the nelder-mead simplex
method for stochastic simulation response optimization,” in Proc. IEEE
WSC ’91, 1991.

[2] J. A. Nelder and R. Mead, “A simplex method for function minimization”
Computer Journal, vol. 7, 1965.

[3] R. Storn and K. Price, “Differential evolution - a simple and efficient
heuristic for global optimization over continuous spaces” J. of Global
Optimization, vol. 11, 1997.

[4] D. Zaharie, “Critical values for control parameters of differential evolution
algorithm” in Proc. 8th MENDEL intl. conf. on soft computing, 2002.

[5] F. Neri and V. Tirronen, “Recent advances in differential evolution: a
survey and experimental analysis” Artificial Int. Rev., vol. 33, 2010.

[6] L. Schoeman and A. P. Engelbrecht, “Containing particles inside niches
when optimizing multimodal functions” in Proc. SAICSIT ’05, 2005.

[7] C. Tapus et al. “Active Harmony: Towards Automated Performance
Tuning”, in Proc. SC’02, 2002

6 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

SCC Thermal Sensor Characterization and
Calibration

Andrea Bartolini, MohammadSadegh Sadri, Francesco Beneventi, Matteo Cacciari, Andrea Tilli, Luca Benini
Email: a.bartolini,mohammadsadegh.sadr2,francesco.beneventi,matteo.cacciari,andrea.tilli,luca.benini@unibo.it

University of Bologna, DEIS
via Risorgimento 2

40136 Bologna, Italy

Abstract—Many-cores systems on chip provide the highest
performance scaling potential due to the massive parallelism,
but they suffer from thermal issues due to the high power
densities. Furthermore, workload and process variation requires
performance run-time adaptation based on feedback controllers,
as open-loop control is not sufficiently robust and accurate.

The Single-Chip Cloud Computer (SCC) is an experimental
processor created by Intel Labs and, as most multi-core proto-
types, it integrates thermal sensors to track the thermal behavior
of the die. Unfortunately these sensors are not calibrated,
preventing the development of thermal management solutions.
In this paper we first extensively characterize the SCC thermal
sensors and propose a system level technique to calibrate them.
Our approach is based on the combination of stress patterns and
least-square fitting to extract the thermal sensor characterization
directly from the SCC device. Compared to other strategies this
method requires only the knowledge of the ambient temperature
under the minimum chip power consumption.

I. INTRODUCTION

Upcoming many-cores platforms stress the limits of
Moore’s law. High performance translates in high power
densities, that, combined with high spatial parallelism and
workload variations, produces non-uniform power dissipation
that translates in not-uniform silicon die thermal map. This
leads to degradation, acceleration of chip aging and increase in
cooling costs. To help designers in studying and counteracting
these looming threats, leading silicon manufacturers have
started to deliver the many-core prototypes to push researchers
toward creating solutions anticipating next-generation product
challenges.

As the number of cores integrated on single die increases, an
increasing number of accurate thermal sensors is required to
reliably maximize performance under a thermal envelope[1],
[2]. Unfortunately, due to process variations[3], [4], sensors
differ from the nominal ones[5] and thus need to be carefully
calibrated before being used. This process requires complex
and expensive infrastructures usually not available to the end-
users[6].

The Single-Chip Cloud Computer (SCC) experimental pro-
cessor [7] is a 48-core ’concept vehicle’ created by Intel
Labs as a platform for many-core software research. It has
24 dual-core tiles arranged in a 6x4 mesh. Each core is
a P54C core. The entire system is controlled by a board
management microcontroller (BMC) that initializes and shuts
down critical system functions. It is commonly connected by

PCI-Express cable to a PC acting as a Management Console
(MCPC). Each tile integrates two thermal sensors based on
ring oscillators, one positioned in proximity of the router and
the other positioned close to the bottom core L1 cache. The
BMC includes a power sensor capable of measuring the full
SCC chip power consumption.

Unfortunately the built-in thermal sensors are not character-
ized and thus provide as output only a counter value propor-
tional to the temperature. Due to process variation each sensor
under the same operating conditions has different offset and
temperature sensibility thus it is hard to use these uncalibrated
sensors to drive advanced closed-loop thermal-control policies.
Moreover thermal sensors output is also affected by noise,
adding another degree of complexity on the usage of them.

In this paper we present a technique to overcome these
limitations, based on a combination of stress patterns and least
square fitting to extract the thermal sensor characterization
directly from the SCC device. This method requires the
initial knowledge of only the ambient temperature under the
minimum chip power consumption.

The rest of paper is organized as follows: Section II de-
scribes the performance and behavior of the SCC thermal
sensors. Section III describes the thermal sensor calibration
technique. Section IV shows the results and performance of
the calibration procedure.

II. THERMAL SENSORS CHARACTERISTICS

As highlighted above, the SCC integrates in each tile two
built-in thermal sensors. The first thermal sensor is placed
close to the router and the second one is placed near the L1
cache of the bottom core. Each thermal sensor is composed
of two ring oscillators and the sensor output (TS) is the
difference of the two oscillators clock counts over a specific
time window tW . The difference is proportional to the local
die temperature(T) [8]. For each tile, the time window (tW)
can be programmed through a per-tile control register1[9] as
a number of tile clock cycle(NCC) tW [s] = NCC/ fT ILE . Thus
it needs to be updated each time the tile frequency changes.

For both the ring oscillators of the thermal sensor we can
write:

f1(T) = a1 +b1T, f2(T) = a2 +b2T (1)

1CRB Sensor Register (rw).

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 7

where f1 and f2 are the frequencies of the two ring oscillators
and a1, a2, b1 and b2 are oscillator characteristic parameters.

The counter of each ring oscillator counts a number of
cycles:

C1 = f1(T) · tW ,C2 = f2(T) · tW (2)

The output of each thermal sensor (TS) is

T S =C2−C1 = [(a2−a1)+(b2−b1) ·T] · tW (3)

= (A+B ·T)tW

where B < 0 (T S decreases with the temperature rising) and
A> 0 (T S is always positive and in the thousands) are different
for each sensors. By knowing Ai,Bi for each thermal sensors
(i) we can now relate the T Si with the absolute temperature (Ti)
as Ti = (T Si

tW
−Ai)/Bi. The Ai,Bi calibration will be described

in the next Section.
Now we focus on set of tests aimed to highlight time

window selection issues and its relation with sensibilities. To
restrict the source of variation on thermal sensors output we
constrained ourself to frequency changes without any change
in voltage supply2.

We first run a power virus3 in each core while setting
different time windows (tw). For all these configurations we
read the thermal sensors values (T S). As the time window
increases the output sensor value grows, and this can lead to
a counter overflow, as shown in figure 1.

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time Windows [us]

M
e
a
n

 T
h

e
rm

a
lS

e
n

s
o

r
V

a
lu

e
s

Fig. 1. Sensor output at different tW (T S/tW), frequency 533 MHz

The overflow position depends on the ring oscillator fre-
quency thus it depends on the temperature itself. As the
frequency increases, die temperature increases and overflows
happen at different place. This suggests to set the time window
in the safe region, far from overflow points (2,5,10 μs). Eq.4
needs to be updated accordingly.

We perform a second test with the goal of characterizing the
impact of the time window on the thermal sensor sensitivity.

2This applies throughout the paper.
3cpuburn power virus by Robert Redelmeier: it takes advantage of the

internal architecture to maximize the CPU power consumption.

Intuitively the sensibility should increase as the integrating
time of the ring oscillator (tW) increases. To quantify it we
apply after a few seconds a power virus to all the cores and
we track the sensor values during the transient.

0 2 4 6 8 10
0

5

10

15

20

25

30

35

Time Windows [us]

S
ta

n
d

a
rd

 D
e
v
ia

ti
o

n
 T

S
 V

a
lu

e
s

0 5 10 15 20 25 30 35 40
3900

3950

4000

4050

4100

4150

4200

4250

4300

Samples

T
S

 V
al

u
es

 o
f

T
ile

 1
 B

R
T

Detections with different time windows

TW=2
TW=6
TW=10

Fig. 2. Sensor sensibility at tW = 2,6,10μs and standard deviation at different
time windows

From Fig.2a it is clear that sensor values decrease with
the temperature (B<0) and start counting from a positive
(A>0) value. From the same figure we can also notice that the
TS sensibility increases significantly with the time windows
without impairing the dynamical sensor accuracy. Thus we
decided to use the 10μs value for all the future tests. Fig. 2b
instead shows the standard deviation of each thermal sensor
when the thermal transient is ended at different time windows.
We can notice that the noise increases along the integrating
time of the ring oscillator suggesting the presence of colored
noise. Even if the noise amplitude is greater at higher tW , the
Signal to Noise Ratio increases at higher time window.

0 20 40 60 80 100 120 140 160 180
38

40

42

44

46

48

50

52

time [minutes]

S
C

C
 o

n
 b

o
a
rd

 t
h

e
rm

a
l
s
e
n

s
o

r

Fig. 3. SCC board thermal sensor output under different SCC chip load.

The SCC platform is provided with a thermal sensor posi-

8 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

tioned on the motherboard. In Fig.3 we show the changes in its
value during a series of SCC stress tests. We can notice that the
ambient around SCC is exposed to a significant temperature
drift due to the heat dissipated by the SCC chip. This gives us
a lower bound for the real thermal cycle happening inside the
SCC die. But how to extract the absolute temperature values
for each core?

III. THERMAL SENSORS CALIBRATION METHODS

In this section we present a technique to link the ther-
mal sensor values with absolute temperature. [8] suggests
to use off-chip temperature measurements at references un-
der minimum activity (TAMB MIN) and maximum activity
(TAMB MAX), and then probe for all the thermal sensors the
output value (T Si) under the two different reference cases
(T Si MIN ,T Si MAX). Then we can characterize each sensor and
find the AREFi and BREFi for each core by linearly interpolating
these two points as described in Eq.4.

{
AREFi = T Si MIN −T Si MAX ·

T Si MAX−T Si MIN
TAMB MAX−TAMB MIN

BREFi =
T Si MAX−T Si MIN

TAMB MAX−TAMB MIN

(4)

This approach forces all sensors temperature to be equal
to each other both under minimum and maximum SCC uti-
lization. Whereas this approximation is reasonable at lower
ambient temperature, it leads to severe approximation errors at
maximum utilization since it does not consider spatial temper-
ature gradients caused by the not-uniform thermal dissipation.

To account for this effect we develop a new character-
ization method that takes advantage of the linear relation
between temperature and power (in steady-state condition)
and discovers it by linear regression. We first evaluate the
relation between SCC power and thermal sensor output while
executing different benchmarks and while running all the tiles
together at different frequency levels. Fig.4 shows the results,
we can recognize that sensor values are linear with frequency
regardless of frequencies below 166MHz where a saturation
effect is present. This it may be caused by the cooling system.
From the same picture we see that power scales linearly with
the frequency4.

20 30 40 50 60 70 80 90
2.08

2.1

2.12

2.14

2.16

2.18
x 10

4

SCC full Chip Power [W]

Tile 3 router average thermal sensor output

Fig. 4. SCC thermal sensors output vs. full chip power consumption.

Avoiding the saturation region, we can assume the steady
temperature to be linear with the core power, T = K ·P. Thus
thermal sensors output can be written as T Si = [Bi ·Ki ·P+Ai] ·
tW . This formula holds when all the cores are stimulated and

4As early introduced we do not change the voltage supply to avoid variation
in the ring oscillator dependency with temperature.

configured homogeneously. Now we generate a cloud of tuples
by stressing all the cores together at different ftile, workloads.
With this data we implement a least square algorithm to find
out A and B ·K for each sensor.

Now we generate a cloud of tuples by stressing all the cores
of SCC with different ftile, workloads and tW . This values are
obtained by stressing all the cores With this data we implement
a least square algorithm to find out Ai and Bi ·Ki for each
sensor. Having the Ai, we can estimate Bi by only using one
reference point for each thermal sensor (TAMB MIN ,T Si MIN).
We obtain it by reading each thermal sensor and the internal
environment temperature using the sensor on the board value
at the lowest frequency (100Mhz). We assume that at this
configuration, the internal chip temperature is equal to the one
we read on the board. We obtain B with the following formula
Bi =

(
T Si MIN

tW
−Ai

)
/TAMB MIN .

IV. EXPERIMENTAL RESULTS

In this section we discuss the performance of the presented
calibration method. In section IV-A we describe our data
collection infrastructure. In section IV-B we show the perfor-
mance of our sensor calibration technique whereas in section
IV-C we make a comparison between characterization results
with a Hotspot [10] model of SCC.

A. XTS Framework

To obtain the thermal sensors values we have modified the
SCC standard linux image to access at each schedule tick the
tile thermal sensors and the per core performance counters.
Inside the kernel we implement a double buffer system to
save the sensors entries generated for each core at the speed
of the scheduler kernel tick. In user space we implement an
application that synchronizes through a kernel driver with the
internal double buffer system and flushes it as soon one is full.
Thanks to this, we can trace sensors and performance counters
with a sampling time of 10ms to 1ms5.

B. Sensors Calibration Results

We first use the A,B calibrated sensors in comparison with
the AREFi ,BREFi calibration described by Eq.4 to evaluate the
performance of proposed solution. We used for both of the
two calibration methods the same minimum reference point
(TAMB MIN = 33oC) thus at lower power values they perform
similarly. We used as TAMB MAX the average of the sensors
temperature obtained with our approach under full load at
533Mhz. At minimum chip utilization, both calibrations return
same temperature distribution. Since they use same reference
point at full load, we can appreciate the main difference
between the two approaches.

Fig.5 shows the temperature map of SCC under full load
with our approach whereas Fig.6 shows the difference with
the reference calibration (REF). From both plots we can notice
that our calibration is capable of accounting for more realistic
thermal gradients.

5Accordingly to the linux kernel internal configuration and current tile
frequency.

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 9

Time:1203.1193

42.6097

40.3034

40.5107

39.4908

41.7373

40.5298

41.9969

42.0242

40.5229

41.7929

41.6033

40.0917

43.3124

42.1463

42.4052

41.5967

40.7073

41.7815

43.2145

42.2701

42.9345

41.9286

41.9274

41.0007

40.8025

40.6973

40.8601

42.2712

42.6127

42.0665

41.0766

40.7373

42.1358

41.1082

43.2607

42.0707

41.7768

42.5367

41.9226

42.3275

41.3913

42.02

43.0303

42.3232

44.9234

41.5599

41.8104

40.8941

1 2 3 4 5 6

1

2

3

4

5

6

7

8

30

32

34

36

38

40

42

44

46

48

50

Fig. 5. Distribution of temperature on chip surface under full load at 533Mhz.

Time:1203.1193

0.85

−1.5

−1.3

−2.3

−0.026

−1.2

0.23

0.26

−1.2

0.029

−0.16

−1.7

1.5

0.38

0.64

−0.17

−1.1

0.018

1.5

0.51

1.2

0.16

0.16

−0.76

−0.96

−1.1

−0.9

0.51

0.85

0.3

−0.69

−1

0.37

−0.66

1.5

0.31

0.013

0.77

0.16

0.56

−0.37

0.26

1.3

0.56

3.2

−0.2

0.047

−0.87

1 2 3 4 5 6

1

2

3

4

5

6

7

8

−4

−3

−2

−1

0

1

2

3

4

Fig. 6. Difference between our calibration and the reference one under full
load at 533Mhz.

Secondly, we use our calibrated thermal sensors to analyze
the thermal transient when passing from idle to full chip high-
load. Fig. 7 shows the thermal transient for both the sensors
of a center tile. All temperature values are represented in blue
whereas average signal is in red. In this figure, we can notice
that the thermal transient is characterized by different time
constants, indeed it looks like to be the response of a system
composed by multiple poles with a very long settling tail,
probably it is caused by a ”partial” pole-zero cancellation.

From the same plot we can see that when we average the
noise on the thermal sensor output we loose the information
about the fast dynamics in the system thermal response. This
suggests that thermal aware dynamic solutions that want to
tackle this time scale, need to embed advanced techniques to
be tolerant and resilient to sensor input noise.

C. Hotspot Model Comparison

To stress the performance of our calibration results we
have developed a thermal model for SCC using HotSpot[10]
thermal simulator. This model is capable of predicting SCC
chip temperature values at different on-die locations according

30

35

40

45
Router Sensor Tile10

Te
m

p
(°

C
)

50 100 150 200 250 300 350 400
30

35

40

45 Cache Sensor Tile10

Time (s)

Te
m

p
(°

C
)

Fig. 7. Step response Zoom

to input power to the chip. Fig 8 shows the results of compar-
ison between HotSpot and measured results when imposing
different stress patterns to SCC. These patterns are obtained
by running a Power Virus on some of the cores and leaving
the other cores idle. Our stress tests cover these 3 cases: (a)
Chip is in Idle state; (b) Half of the chip is in full load
and half is idle; (c) All of the cores are in full load. The
surface in Fig. 8 is the output temperature of the thermal
model and bars represent the calibrated sensors outputs with a
tolerance range (±1C). Fig. 8 d,e,f report the sensors outcome
compared to the modeled one. The ticks show when the model
output is within the sensor error tolerance whereas the arrows
represent when the model output is lower or higher. From
the first set of results we notice that the calibrated thermal
sensors measurements captures the thermal trends highlighted
by the hotspot model. Indeed at full load the center cores show
higher temperature than the external ones, whereas in idle the
thermal map is more uniform. Regarding the sensor values that
have more significant mismatch w.r.t. model predictions, we
can see different behaviors. One sensor is constantly outliers,
suggesting the presence of a HW fault or low performance in
the thermal characterization. The corner cases a,c show good
matching, with a percentage of outliers below 18%.

V. CONCLUSIONS

In this paper we have presented a study of the SCC thermal
sensors performance and behavior. Our results highlight the
presence of overflows on the output values and significant
spatial and temporal noise. To manage these non uniformities
in uncalibrated sensors we developed a novel procedure to
extract the relationship between thermal sensors output and
absolute temperature using data-regression. We then used our
calibration to highlight the thermal performance of SCC. We
compared it with Hotspot thermal simulation of a floorplan
similar to SCC and we highlighted rooms for improvement in
the presented thermal calibration techniques. We are currently
working to improve the presented technique by gathering more
data on different SCC HW platforms.

10 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

0
10

20
30

40
50

60
70

0

10

20

30

40

50

60

70

31.5

32

32.5

33

33.5

34

34.5

35

35.5

36

36.5

d)

a)

0
10

20
30

40
50

60
70

0

10

20

30

40

50

60

70

37

38

39

40

41

42

43

44

e)

b)

0
10

20
30

40
50

60
70

0

10

20

30

40

50

60

70

38

39

40

41

42

43

44

45

f)

c)

Fig. 8. Comparison between HotSpot measured temperatures, From left to
right: chip full load, half chip full load, and chip idle

VI. ACKNOWLEDGEMENTS

This work was supported, in parts, by Intel Corp., Intel Labs
Braunschweig and the EU FP7 Projects Pro3D (GA n. 248776)
and Therminator (GA n. 248603).

REFERENCES

[1] Bartolini, A., Cacciari, M., Tilli, A., Benini, L., ”A distributed and
self-calibrating model-predictive controller for energy and thermal man-
agement of high-performance multicores.” Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2011 , vol., no., pp.1-6,
14-18 March 2011

[2] Shervin Sharifi and Tajana Simunic Rosing. ”Accurate direct
and indirect on-chip temperature sensing for efficient dynamic ther-
mal management.” Trans. Comp.-Aided Des. Integ. Cir. Sys. 29,
10 (October 2010), 1586-1599. DOI=10.1109/TCAD.2010.2061310
http://dx.doi.org/10.1109/TCAD.2010.2061310

[3] Eric Humenay, David Tarjan, and Kevin Skadron. ”Impact of process
variations on multicore performance symmetry.” In Proceedings of the
conference on Design, automation and test in Europe (DATE ’07). EDA
Consortium, San Jose, CA, USA, 1653-1658.

[4] Paterna, F., Acquaviva, A., Caprara, A., Papariello, F., Desoli, G., Benini,
L., ”An efficient on-line task allocation algorithm for QoS and energy
efficiency in multicore multimedia platforms.” Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2011 , vol., no., pp.1-
6, 14-18 March 2011

[5] Spandana Remarsu and Sandip Kundu. ”On process variation tolerant
low cost thermal sensor design in 32nm CMOS technology.” In Proceed-
ings of the 19th ACM Great Lakes symposium on VLSI (GLSVLSI ’09).
ACM, New York, NY, USA, 487-492. DOI=10.1145/1531542.1531653
http://doi.acm.org/10.1145/1531542.1531653

[6] IBM ”Calibrating the Thermal Assist Unit in the IBM25PPC750L
Processors” PowerPC Embedded Processors Application Note. October
6, 2001.

[7] Howard, J.; and others, ”48-Core IA-32 message-passing processor with
DVFS in 45nm CMOS”, Solid-State Circuits Conference (ISSCC), 2010

[8] Intel Labs ”Using the Sensor Registers”, Revision 1.1, available at:
http://communities.intel.com/community/marc

[9] Intel Labs ”SCC External Architecture Specification (EAS)”, Revision
1.1, available at: http://communities.intel.com/community/marc

[10] Wei Huang, Stan, M.R., Skadron, K., ”Parameterized physical com-
pact thermal modeling.” Components and Packaging Technologies,
IEEE Transactions on , vol.28, no.4, pp. 615- 622, Dec. 2005 doi:
10.1109/TCAPT.2005.859737

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 11

12 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

Efficient Memory Copy Operations on the 48-core
Intel SCC Processor

Michiel W. van Tol, Roy Bakker, Merijn Verstraaten, Clemens Grelck and Chris R. Jesshope

Informatics Institute, University of Amsterdam

Sciencepark 904, 1098 XH Amsterdam, The Netherlands

Abstract—The Single-chip Cloud Computer (SCC) is a 48-
core experimental processor created by Intel Labs targeting the
many-core research community. It has hardware support for
sending short messages between cores, while large messages have
to go through off-chip shared memory. However, memory copy
operations on this chip are expensive and inefficient. In this
paper we provide insight in the SCC’s memory architecture and
describe and evaluate a few memory copy methods. We propose
a novel method, unique to the SCC, which we believe achieves
the maximum possible throughput for a single core on this chip.
In order to efficiently implement this approach we introduce
dedicated cores that run a memory copy service which can be
used asynchronously by other cores.

I. INTRODUCTION

The Single-chip Cloud Computer (SCC) experimental pro-

cessor [1] is a 48-core concept vehicle created by Intel Labs

as a platform for many-core software research. It provides

an on-chip message passing network, a non cache-coherent

off-chip shared memory and dynamic frequency and voltage

scaling. We are investigating possible implementations on

this platform of SVP [2], a hierarchical concurrent execution

model, and S-NET [3], an asynchronous stream processing co-

ordination language. The dataflow-style execution properties

of both models would provide us with a handle for adaptive

power management.

As the SCC effectively is an on-chip distributed system,

we can already run the two available distributed implemen-

tations [4], [5] of the models without any modification. As

these are based on more coarse grained communication prim-

itives such as TCP/IP sockets and MPI, we plan to rewrite

them to optimally use the hardware messaging support on

the SCC. However, the on-chip message passing buffers are

only efficient for relatively small messages; up to 8KB using

RCCE [6], or 128KB using the pipelined iRCCE [7] approach.

This is sufficient for many message passing programs that only

need to communicate small updates on every iteration, but in

SVP and S-NET we potentially move a lot more data around

between cores. Therefore we have investigated efficient ways

to copy large pieces of data on the SCC.

In this paper we make an analysis of several approaches to

implement efficient memory copy operations between cores on

the SCC. We do this by first giving an overview of its relevant

hardware features and performance properties (Section II),

then we discuss existing communication libraries and several

approaches using different memory access methods in Sec-

tion III. We present a novel method to copy memory, unique to

the SCC, in Section IV. We believe that this method achieves

the highest possible throughput for a single core copying

blocks of memory larger than 256KB. This requires dedicated

copy cores which support copy offloading that we discuss

in Section V. We conclude with comparing the discussed

approaches and our experience with the SCC platform in

Section VI.

II. SCC PLATFORM

The SCC is a single chip with 48 Intel IA-32 P54C cores

connected by an on-chip mesh network which has a 256 GB/s

bisection bandwidth [8]. Its features are intended to allow

CPUs scaling up to hundreds and potentially thousands of

cores. The mesh is organized as six voltage islands containing

four tiles with two cores per tile, creating a 6x4 mesh with

24 tiles total. Each tile has its own mesh router to access the

mesh for memory access and inter-core communication.

The basic communication paradigm for the SCC is message

passing, and therefore each tile has a local 16KB Message

Passing Buffer (MPB). The MPB is suitable for sending short

messages between cores. A special library (RCCE) to easily

use the MPBs to send/receive messages is available, as well as

an MPI channel implementation. With two cores per tile, each

core has an 8KB area in the local MPB only by convention, as

all MPBs are memory mapped and can be addressed directly

by each core.

The chip features extensive frequency and voltage control

on a per tile and voltage island basis. For all measurements in

this paper the cores were clocked at 533 MHz, and the mesh

network and memory controllers at 800 MHz.

A. Caches

Each core has both a 16KB L1 data and an instruction

cache which cache the complete address space, including the

MPBs. Therefore an extra memory type for MPB data (MPBT)

was added to the virtual memory system, together with an

instruction to invalidate all cachelines in the L1 D-cache that

are flagged with this type. As the P54C core originally only

supports a single outstanding write request, a Write Combine

Buffer (WCB) has been added to combine adjacent writes up

to a whole cacheline which can then be written back at once.

However, this is only used for MPBT flagged writes.

Each SCC core has a private unified 256KB L2 cache which

does not feature a cache coherency protocol. Also, in contrast

to the L1 cache, there is no native way to flush or invalidate the

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 13

L2 cache; the WBINVD/INVD instructions that can be used

to flush or invalidate L1 do not affect the L2 cache. To solve

the cacheability issues, users can turn off the L2 cache on a

per-core basis. It is also possible to set the cacheability for

each individual virtual memory page. This can be done with

the standard PCD cache disable flag to disable both caches,

or with the MPBT flag to bypass L2 and use the WCB. The

L2 cache can be reset separately from the core using a special

control register, which initializes all lines into invalid state.

However, this operation halts the core and therefore can not

be used to invalidate the cache during execution.

Both the L1 and the L2 are 4-way set associative with a

cacheline size of 32 bytes, are write back, and do not allocate

on write miss, i.e. are write around.

B. Memory structure and look-up tables

The individual P54C cores have a 32 bit core-physical ad-

dress space, while the chip has four DDR3 memory controllers

which each use 34 bits addressing. Combining the 34 bits with

the memory controller address, the system can address 64GB

in total. The translation of core-physical addresses to system-

physical addresses is done through look-up tables (LUTs).

Each core has a private LUT with 256 entries, where each

entry covers 16MB of the 4GB core-physical address space,

which we refer to as a LUT page.

The translation is done by indexing the LUT with the

highest 8 bits of a core-physical address, and then extending

it to form a 34 bit address and adding routing information for

the mesh network. An entry can map to a special memory

anywhere on the chip or to an addresses on any of the

four memory controllers. The MPB and System Configuration

Registers of each tile are examples of such special on-chip

memories, but also the LUT itself. The LUTs are usually set

up when booting a core, but can be changed dynamically when

the system is running, having effect immediately. This allows

sharing data between cores without having to copy it. A core

can map system-physical memory used by any other core at

the granularity of these 16MB LUT pages.

C. Memory subsystem properties

In the standard configuration, each memory controller runs

at 800 MHz, corresponding with a theoretical peak transfer

rate of 6.4 GB/s. Figure 1 shows the measurements of the

maximum memory throughput for a single core. This bench-

mark reads or writes data in 4-byte operations from/to memory

areas ranging in size from 8KB to 2MB, where each area is

prefetched before every measurement. This shows a reading

and writing bandwidth around 400 MB/s for the L1 cache for

size 8-16KB, 285 MB/s for reading the L2 cache at size 32-

256KB and 107 MB/s for reading external memory. Writes

to the L2 cache perform at 116 MB/s, or 130 MB/s when

using the write-combine buffer (WCB) by flagging the data as

MPBT. Writing to external memory shows the real benefit of

the WCB where MPBT flagged data is written at 125 MB/s

against 22 MB/s for non-MPBT writes. MPBT tagged reads do

not benefit from the L2 cache as it is bypassed, but therefore

perform slightly better than non MPBT writes to memory.

Figure 1. Memory throughput benchmark result of one core reading and
writing prefetched memory areas of several sizes, showing the effect of
different memory flags.

Figure 2. Memory throughput benchmark result showing the aggregate
memory bandwidth of 1 to 48 cores performing memory reads divided over
a different number of memory controllers and ranks.

The results in Figure 1 show us that a single core can

get nowhere near saturating a memory controller. Figure 2

shows how many cores are required to saturate one or more

memory controllers, or conversely, how many cores can access

the same controller without a large impact on performance.

Each memory controller has two banks that each consist of

two ranks, and requests to different banks and ranks are

interleaved [9]. However, the controller does not interleave

the address space between the four ranks. The default LUT

mappings map the main memory address space of a core to

a contiguous physical address range on a single controller,

mapping it to only a single rank. Rank and bank conflicts

impact memory performance, so we measured what it takes to

saturate a rank, a bank, the whole controller, two controllers,

and all four controllers.

Figure 2 shows us that a single rank is saturated by 9 cores

14 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

Figure 3. Pingpong benchmark results using the RCCE and iRCCE
communication libraries for a range of packet sizes, showing the effect of
different memory flags on send and receive buffers.

at an aggregated bandwidth of 1.0 GB/s. A whole controller

saturates at 19 cores delivering 1.8 GB/s, two controllers at 40

cores with 3.4 GB/s and all the 48 cores together are unable

to saturate the four memory controllers, scaling linearly to

deliver a peak of 5.9 GB/s.

III. MEMORY COPY OPERATIONS

A. RCCE and iRCCE

The initial intuitive approach to copy data from one core

to another is to use the on chip message passing buffers.

This can be done by using the supplied RCCE [10], [6]

framework. However, as we can see in [6], as well as in Figure

3 where this is shown as RCCE normal->normal, it has its

peak performance at 60 MB/s only for 4KB messages. For

larger messages up to 256KB it drops to around 20 MB/s and

for even larger messages the performance collapses to 5 MB/s.

iRCCE [7] was developed by RWTH Aachen to improve

RCCE performance. It uses pipelining when sending messages

larger than the MPB so that the read/write operations do not

happen in lockstep, and prefetches the target addresses into the

L2 cache so that data is not suffering from write around for

every 4 bytes. A specialized memcpy function is used to copy

data to and from the MPBs. This improves throughput a factor

of two compared to RCCE, and with messages larger than

4KB the pipelining gives an even greater advantage. At 128KB

messages the peak performance is reached, around 145 MB/s.

However, as soon as messages are larger than the L2 cache, the

performance drops to 60 MB/s. Figure 3 shows these results

in the plot as iRCCE normal->normal.
Section II-C showed us that using MPBT flagged memory

accesses can improve throughput, therefore we ran two more

experiments with RCCE and iRCCE. In the first experiment

we flag the receive buffer as MPBT type memory, and in the

second both the send and the receive buffers. Figure 3 shows

that this improves the performance for iRCCE messages larger

than 256KB to a throughput of 84.9 MB/s, and improves the

throughput of standard RCCE from 5 to 31 MB/s. As MPBT

flagged operations bypass the L2 cache, it shows worse per-

formance in our measurements than the normal RCCE/iRCCE

for messages between 4KB and 256KB. However, this is a red

herring; the pingpong test sends the same message back and

forth many times, effectively measuring the throughput when

the message data is already present in the cache. If the data

is not in the cache, the MPBT modification would outperform

normal iRCCE, even for small messages, similarly as it does

for messages larger than 256KB.

Another issue with these message passing approaches is

that it keeps two cores busy to copy data while they can not

perform any computation. This is less of an issue in message

passing based SPMD programming paradigms, such as MPI,

where usually all processes alternate between a computation

and communication step, but it is inefficient for our dataflow

style approaches. In our case it is more beneficial for the

sending core to copy the data into a shared memory location

and then asynchronously signal the receiving core that the

data is ready to be used. In the meantime, the receiving core

can potentially do other useful work without being tied up

in the copy process. Furthermore, when we are sending large

messages, data comes from memory, goes through the MPB

and is then written back to memory again by another core.

Therefore, we expect that we can be more efficient with a

direct memory to memory copy.

B. Optimizing memcpy

Naive memory copy operations with the standard memcpy
function performs very poorly on the SCC at only 17.4 MB/s.

This is because it does not take the cache hierarchy into

account which has a write around policy on a write miss.

When copying data to a new location, it is not likely to be in

the cache, which means that every 4 byte chunk is individually

written to memory instead of whole cachelines of 32 bytes at

a time. Also, the read data is unnecessarily cached in both

L1 and L2 cache, while only the spatial locality of a single

cacheline will help for the copy throughput, as the SCC does

not use prefetching.

To improve memory write performance, the SCC has the

WCB but this is only enabled for MPBT flagged data. As

this can be set per virtual memory page it can be used to

force normal memory writes to use the WCB. By applying

this to the target buffer we achieved a dramatic improvement

in throughput up to 69.4 MB/s. Besides the largest advantage

that comes from having a single 32 byte burst instead of 8

individual 4 byte writes on the memory bus, this also removes

the delay of accessing (and then writing around as it is a miss)

the L2 cache. The latter inspired us to a further optimization;

by flagging the input buffer as MPBT as well, the data is

loaded directly into the L1 cache. This still gives us the locality

advantage for subsequent reads, but removes the delay of

allocating in L2, then moving and allocating in L1. Using

this approach we measured a throughput of up to 70.9 MB/s.

We also investigated the optimized memcpy implementation

that was developed for iRCCE. It moves data through two

registers taking advantage of the dual-issue pipeline in the

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 15

P54C core, in contrast to the standard memcpy which uses

the special repetition prefix and 4 byte copy instruction. This

apparently has its advantages when copying data into the MPB,

but not when copying from memory to memory. In the best

case, again achieved by flagging the source and target memory

as MPBT, it reaches a throughput of 49.7 MB/s.

C. L2 Cache flush

An important issue when communicating through shared

memory is the L2 cache. As the SCC does not have support for

flushing or invalidating the L2 cache, care has to be taken when

the receiver wants to use the data copied by the sender. There

might be address conflicts in the L1 and L2 cache causing the

receiver to read stale data. This is not a problem for the L1 as

it can be flushed with an instruction, but the L2 can only be

flushed by making sure that the contents of the entire cache are

replaced, i.e. reading in 256KB of clean data. This is not an

issue on the sending side, assuming we use the MPBT based

memcpy method; MPBT flagged data does not go to the L2

cache, and even the L1 cache can be turned off for the target

addresses at as good as no performance hit as shown earlier in

Section II-C. Of course the sender needs to make sure that the

data it wants to send is not in dirty state in its own L2 cache,

so it would require a flush before starting the copy operation,

unless it can be absolutely certain that it can not be in dirty

state in its cache. Note that the L1 cache can be used as write

through, but the L2 cache can only operate as write back.

We have worked on optimizing the L2 cache flush routine

by using on-tile MPB mapped addresses to flush the cache. As

the MPB is mapped into a single LUT-page, it only occupies

a small portion of the 16MB address space. Memory accesses

beyond the MPB within the LUT-page wrap around back into

the MPB as the logic probably ignores the higher address

bits. However, from the perspective of the L2 cache, these

are still unique addresses, so they can be used to flush the

cache. By using a 256KB region beyond the MPB to avoid

interference with normal MPB accesses, we improved the flush

operation from over 1 million cycles to around 580K cycles.

Of course this is still a heavy impact on performance, as this

takes slightly more then 1 ms.

IV. LUT BASED COPY

The disadvantage of both the message passing and memcpy

approaches discussed in the previous section is that all data

needs to go through the core, being read and written in 4 byte

quantities. The L1 cache and the WCB alleviates the problem

slightly so that beyond that point only 32-byte cachelines are

transferred, but still 8 read and 8 write operations have to be

performed individually by the pipeline of the core to transfer

the contents of each line.

The SCC has a unique feature with the programmable LUTs

which do a second layer of address translation outside the

boundary of each core. As this happens transparently to the

core, this property can be exploited to efficiently duplicate

large blocks of memory. If two cores need to share data and

it is guaranteed to be used read-only, the receiving core can

simply map the memory anywhere (on a 16MB granularity)

����

����	
�� �� ������

�������	
������������������
������������������������������

��������������	
������
���������������������

�������	���������
���������������

	
������

����
��
�	��������

���	

	����
���	

�	�����
�����

	
�������

��

�	����

����	�����	��	

 �	�

	
������

!����
����

���"#

��
�	�����

��$�
��	��	

%�������

Figure 4. Memory copy operation using L2 cache and LUT remapping

into its address space by adding the correct LUT entries and

the sender only needs to make sure that the off-chip memory

is up to date with a cache flush.

Memory duplication of large blocks using the programmable

LUTs works as follows, and is illustrated in Figure 4; the core

reads in the first block of 256KB into the L2 cache. It only

needs to read a single byte per cacheline to fill the entire

cache. While doing this, it makes sure that every cacheline

is put in modified state by writing each byte it reads back

again to the L2 cache. The content of the data is unchanged,

but the L2 is unable to tell the difference. After the cache is

filled with modified lines, the core switches the LUT entry

for that core-physical address range to map to the destination

range in the system-physical address space. The core-physical

addresses that are present in the L2 cache now map onto

other system-physical addresses. Data is then pushed out of

the cache, for example with a cache flush, and is therefore

copied to the target location.

When a multiple of 256KB blocks needs to be transferred,

the copy procedure can be pipelined; Using a second address

range in the core-physical address space (i.e. another LUT

entry) the next block of 256KB is read in while it pushes out

the previous block to the target address range instead of the

cache flush. This needs to be a second core-physical range as

the first range is still used to push data out, and can therefore

not yet be reused. For the block after that, the first entry can

be used again, and so on, alternatingly using the two LUT

entries until all data has been copied.

We believe that this method achieves the highest possible

throughput for memory copy operations on a single core,

which we measured at 73 MB/s for large blocks. Similarly

to memcpy using MPBT flagged data only whole cachelines

are transferred from and to the memory controllers, most effec-

tively using the powerful on-chip network [8]. The advantage

it has over the memcpy approach is that only a single byte

per cacheline needs to pass through the core itself, resulting

in less read and write operations to copy a cacheline. Still

a whole cacheline is transferred between L2 and L1, but by

using L1 in write-through mode, only a single byte is written

back from L1 to L2. Unfortunately the L1 can not be bypassed

completely.

16 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

The proposed approach has a few downsides. First of all the

target address needs to be aligned at the same offset within

a 16MB LUT page within the system-physical address range,

though it does not have to be on the same memory controller.

This restriction can be compensated somewhat by the use of

virtual memory mappings, but as these map using a 4KB page

granularity, you still have to use the same offset within such

a 4KB page. A second issue is that both the source and target

areas need to be contiguous blocks in physical memory, or

at least at a granularity of the L2 cache which is 256KB.

Otherwise, conflicts would happen and as a side effect data

outside the source area would be copied as well as. A third

disadvantage is that care has to be taken that the L2 cache is

not influenced during a copy operation. This can be done by

using the MPBT flags to bypass L2 for all other memory used

by the program to avoid interference, however this impacts

performance. To keep this manageable, we can use dedicated

cores to which we delegate these memory copy operations.

V. DEDICATED COPY CORES

We introduce dedicated copy cores that run a memory

copy service. These cores can be asynchronously messaged

by writing meta-data into their MPB and sending them an

interrupt. This uses a mailbox protocol similar to what the

Barrelfish developers proposed in their report [11]. A message

tells a copy core to initiate a memory copy operation of a

given size between two addresses, and to send a notification

on completion, but not necessarily back to the requesting core.

As this requires minimal functionality, it can be implemented

as a small efficient kernel running directly on the bare metal
hardware, likely even fitting completely in the 16KB I-cache.

This makes it very suitable for our LUT based copy approach

that we just described, as it will have no cache interactions.

Furthermore, it has the advantage that we can completely

control the virtual memory types used, and therefore guarantee

that for any memory interaction required to run the code,

the L2 cache is bypassed and therefore remains untouched.

A second advantage is that such a kernel does not suffer from

the penalty of around 2K cycles to switch between kernel and

user mode on receiving interrupts, making message delivery

much cheaper taking around 600 cycles [11]. These cores are

not limited to using the LUT based copy approach, but can

implement any memcpy method discussed previously.

In an SPMD setting, these copy cores are probably not of

much use. In most cases, it would be better for the performance

to have the core participate in the computation than to have

it copy memory for other cores. However, this is not the case

in our dataflow style runtimes. Work might not be divided as

evenly as with SPMD, and in order to make more progress at

a critical point, having the aid of another core to copy memory

can be very beneficial. For example, if core A requires a copy

of a range of memory in order to start a new computation

on core B, it can ask copy core C to copy in the background

while A continues working, and C can notify B directly when

it is done. Furthermore, if a large amount of data needs to be

transferred, A could split the range and employ more than a

single copy core to copy the data, exploiting data parallelism.

Figure 5. Memory copy throughput benchmark using 1 to 8 copy cores to
copy data using either MPBT flagged memcpy or the LUT based lutcpy copy
method.

This then delivers more throughput, as a single core can get

nowhere near saturating the bandwidth of a mesh network link

or a memory controller. We measured that it takes 9 cores to

saturate a single bank, single rank on a memory controller.

A. Benchmark

Figure 5 presents some preliminary results of a copy core

implementation. This implementation is currently still running

under SCC Linux and uses polling instead of interrupts

to receive messages, but it gives us an initial idea of the

results that can be achieved with the techniques that we have

described. Our implementation supports both the LUT based

copy operation, lutcpy, and a memcpy operation that uses

MPBT flagged source and destination areas which delivers

the best memory throughput as discussed in Section II-C. It

should be noted that the LUT based copy method will not

reliably copy all the data in this environment, but the measure-

ments will still show the correct performance characteristics.

Furthermore, lutcpy can only be used to copy data larger than

256KB per copy core.

The results in Figure 5 show that lutcpy is only marginally

faster than memcpy on very large copy operations. memcpy
outperforms lutcpy because it uses uncached MPBT flagged

memory for its target address range, which means it does not

have to perform an expensive L2 cache flush at the end of

the operation. For larger copy operations this becomes a less

dominant factor for lutcpy, and then it slightly outperforms

memcpy in the way originally expected.

The most important result of our copy core benchmark

is that the technique scales very well. Even for very small

piece of data, such as 4KB, the copy operation benefits

from being split across two copy cores. However, this would

still be slower than performing the operation locally due to

the messaging latency. The advantage starts at 8KB, where

two copy cores together deliver 78.7 MB/s, that is including

messaging overhead, whereas the requesting core itself would

only be able to copy at 70.9 MB/s, see Section III-B.

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 17

VI. CONCLUSION

In this paper we have surveyed several options for efficiently

copying memory on the Intel SCC. Using the RCCE or iRCCE

message passing implementations has the advantage that it

does not require cache flushes, but has the disadvantage that

two cores are occupied in the copy process. It originally has

a low throughput for regions that are larger than the MPB

and/or L2 caches. We then showed how the standard memcpy
operation can be improved a four-fold by enabling the use of

the WCB with MPBT flags on virtual memory pages, and that

this also improves message passing performance.
We proposed a novel approach to copy memory, unique to

the SCC platform, by switching LUT entries to copy data

with the L2 cache using less interaction with the core. It

performed 3% faster than the fastest memcpy method in our

initial results, and we argued that this achieves the highest

possible throughput for a single P54C core. The disadvantage

of this approach is that it is cumbersome to use, with restricted

alignments and sizes for the data that is copied.
Complementary to the LUT based copy method, but or-

thogonally to the improved memcpy approach, we proposed

the introduction of copy cores to be able to asynchronously

offload copy operations, similar to DMA engines. We then

showed the benchmark results of a preliminary copy core

implementation, comparing MPBT flagged memcpy and LUT

based copy. Offloading to copy cores scales very well, but the

LUT based copy performance was not as good as we expected.

This is because a copy core requires an L2 cache flush at the

end of a LUT based copy operation, which is not required for

MPBT flagged memcpy.
The largest bottleneck for reading/writing memory, and

therefore also for inter-core message communication, as this

involves reading/writing an MPB, is the fact that a P54C core

can only have a single outstanding memory operation, and

stalls until it completes. For read operations this is partially

alleviated by the L1 cache as a few consecutive reads will

hit in the same lines. For write operations the WCB can be

used, however, as it is only enabled for MPBT flagged data

this is not easy. A solution to this could be to add one or

more programmable DMA engines capable of having multiple

outstanding memory requests to the platform. They would be

more simple than a P54C core, but could achieve a much

higher memory throughput. Now we require the combination

of multiple copy cores to achieve a higher throughput when

copying a large amount of data, possibly wasting precious

computing cycles. And to generally have a more optimal

memory and communication performance in a runtime system,

it needs to fully manage both virtual and physical memory,

applying MPBT flags where necessary to speed up operations.

This is what we are currently planning to do in the future for

our SVP and S-NET runtimes on the SCC.

REFERENCES

[1] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain,
T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow,
M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss,
T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. V. D. Wijngaart, and
T. Mattson, “A 48-core IA-32 message-passing processor with DVFS in
45nm CMOS,” pp. 108–109, February 2010.

[2] C. R. Jesshope, “A model for the design and programming of multi-
cores,” Advances in Parallel Computing, vol. High Performance Com-
puting and Grids in Action, no. 16, pp. 37–55, 2008.

[3] C. Grelck, S.-B. Scholz, and A. Shafarenko, “A gentle introduction
to S-Net: Typed stream processing and declarative coordination of
asynchronous components,” Parallel Processing Letters, vol. 18, no. 2,
pp. 221–237, 2008.

[4] M. W. van Tol and J. Koivisto, “Extending and implementing the self-
adaptive virtual processor for distributed memory architectures,” CoRR,
vol. abs/1104.3876, April 2011.

[5] C. Grelck, J. Julku, and F. Penczek, “Distributed S-Net: High-level
message passing without the hassle,” in 1st ACM SIGPLAN Workshop
on Advances in Message Passing (AMP’10), Toronto, Canada, 2010
(G. Bronevetsky, C. Ding, S.-B. Scholz, and M. Strout, eds.), ACM
Press, New York City, New York, USA, 2010.

[6] R. F. van der Wijngaart, T. G. Mattson, and W. Haas, “Light-weight
communications on Intel’s Single-chip Cloud Computer processor,”
SIGOPS Oper. Syst. Rev., vol. 45, pp. 73–83, February 2011.

[7] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and
improvements of programming models for the Intel SCC many-core
processor,” in Proceedings of the International Conference on High
Performance Computing and Simulation (HPCS2011) – to appear, Work-
shop on New Algorithms and Programming Models for the Manycore
Era (APMM), (Istanbul, Turkey), July 2011.

[8] P. Salihundam, S. Jain, T. Jacob, S. Kumar, V. Erraguntla, Y. Hoskote,
S. Vangal, G. Ruhl, and N. Borkar, “A 2 Tb/s 6×4 mesh network for a
Single-chip Cloud Computer with DVFS in 45 nm CMOS,” Solid-State
Circuits, IEEE Journal of, vol. 46, pp. 757–766, April 2011.

[9] Intel, “SCC extended architecture specification,” November 2010. Re-
vision 1.1.

[10] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy,
J. Howard, S. Vangal, N. Borkar, G. Ruhl, and S. Dighe, “The 48-core
SCC processor: the programmer’s view,” in Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, (Washington, DC, USA),
pp. 1–11, IEEE Computer Society, 2010.

[11] S. Peter, T. Roscoe, and A. Baumann, “Barrelfish on the Intel Single-
chip Cloud Computer,” Tech. Rep. Barrelfish Technical Note 005, ETH
Zurich, September 2010. http://www.barrelfish.org.

18 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

A Fast Inter-Kernel Communication and Synchronization Layer for MetalSVM

Pablo Reble, Stefan Lankes, Carsten Clauss, Thomas Bemmerl

Chair for Operating Systems, RWTH Aachen University
Kopernikusstr. 16, 52056 Aachen, Germany

{reble,lankes,clauss,bemmerl}@lfbs.rwth-aachen.de

Abstract—In this paper, we present the basic concepts for
fast inter-kernel communication and synchronization layer
motivated by the realization of a SCC-related shared virtual
memory management system, called MetalSVM. This scalable
memory management system is implemented in terms of a
bare-metal hypervisor, located within a virtualization layer
between the SCC’s hardware and actual operating system. In
this context, we explore the impact of the mesh interconnect to
low level synchronization. We introduce new scaling synchro-
nization routines based on SCC’s hardware synchronization
support targeting improvements of the usability of the shared
memory programming model and present first performance
results.

Keywords—Inter-kernel Communication, Low-level Synchro-
nization, Shared Virtual Memory

I. INTRODUCTION

The Single-chip Cloud Computer (SCC) experimental

processor [1] is a concept vehicle created by Intel Labs as

a platform for many-core software research, which consists

of 48 cores arranged in a 6 × 4 on-die mesh of tiles with

two cores per tile.

Each core possesses 8 kByte of a fast on-die memory that

is also accessible to all other cores in a shared-memory

manner. These special memory regions are the so-called

Message-Passing Buffers (MPBs) of the SCC. The SCC’s

architecture does not provide any cache coherency between

the cores, but rather offers a low-latency infrastructure in

terms of these MPBs for explicit message-passing between

the cores. Thus, the processor resembles a Cluster-on-Chip
architecture with distributed but shared memory.

The focus of this paper is a layer to realize fast inter-

kernel communication and synchronization for MetalSVM.

MetalSVM will be implemented in terms of a bare-metal

hypervisor, located within a virtualization layer between

the SCC’s hardware and the actual operating system. This

new hypervisor will undertake the crucial task of coherency

management by utilizing special SCC-related features such

as on-die Message-Passing Buffers (MPBs). In that way,

common Linux kernels will be able to run almost trans-

parently across the entire SCC system.

A requirement to inter-kernel synchronization is to control

the access to shared resources such as physical devices

or units of information. Limited availability of resources

can be controlled by defining the access as a Critical

Section. A critical section can thus be mapped to low-level

synchronization methods such as a simple spin-lock.

Synchronization is a challenge in shared-memory pro-

gramming. Especially for the SCC, whereas a high con-

tention is possible, the currently available synchronization

primitives (lock and barrier) could become a scalability

bottleneck.

II. MOTIVATION BEHIND METALSVM

A common way to use a distributed memory architec-

ture is the utilization of the message passing programming

model. However, many applications show a strong benefit

when using the shared memory programming model. Shared
Virtual Memory is an old concept to enable the shared

memory programming model on such architectures. How-

ever, the success story of SVM systems could be greater.

Many implementations are realized as additional libraries

or as extensions to a programming language. In this case,

only parts of the program data will be shared and a strict

disjunction between the private and the shared memory is

required. Intel’s Cluster OpenMP is a typical example of

such SVM systems, which in turn is based on TreadMarks

[2], and first experiences are summarized in [3] . However,

the disjunction between private and shared memory has side

effects on traditional programming languages like C/C++.

For instance, if a data structure is located in the shared

virtual memory, the programmer has to guarantee that all

pointers within this data structure refer also to the shared

memory. Therefore, it is extremely complex to port an

existing software stack to such an SVM system.

Furthermore, an SVM system virtualizes only the mem-

ory. Therefore, on distributed systems, the access to other

resources like the file system requires additional arrange-

ments. The integration of an SVM system into a distributed

operating system, in order to offer the view of a unique SMP

machine, increases the usability. Such systems are often

specified as Single System Image (SSI) and Kerrighed1 is

an typical example for an SSI system. However, an extreme

complexity and difficulties in maintainability are attributes

of SSI’s.

In the MetalSVM project, the SVM systems will be

integrated into a hypervisor so that a common Linux is able

1http://www.kerrighed.org

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 19

to run as a virtual machine on the top of MetalSVM. Such

a system is more simple to realize than a huge distributed

operating system because it realizes only a unique view to

the hardware and not to a whole operating system (including

the file system and the process management). Several other

projects have been started in this area. An example for a

hypervisor-based SVM system is vNUMA [4] that has been

implemented on the Intel Itanium processor architecture. For

x86-based compute clusters, the so-called vSMP architec-

ture developed by ScaleMP2 allows for cluster-wide cache-

coherent memory sharing.

The main difference between these approaches and

MetalSVM is that they explicitly use traditional networks

(Ethernet, InfiniBand) between the cluster nodes in order

to realize their coherency protocols, whereas MetalSVM
should support the SCC’s distinguishing capabilities of

transparent read/write access to the global off-die shared

memory. However, a recent evaluation [5] with synthetic

kernel benchmarks as well as with real-world applications

has shown that ScaleMP’s vSMP architecture can stand

the test if its distinct NUMA characteristic is taken into

account. We have already developed optimized applications

for vSMP. In our scenario, vSMP produces only an overhead

between 6% and 9%. In turn, 97% of this overhead is created

by migrating the pages between the nodes.

vSMP benefits that InfiniBand supports DMA transac-

tions, which don’t stress the cores. The SCC doesn’t support

a similar feature. However, in MetalSVM the shared pages or

the write notices – this depends on the memory model – are

located in the shared off-die memory. Therefore every core

has a transparent access to the shared data and doesn’t take

computation time of the other cores. MetalSVM has only to

signalize the changes with small messages, which are sent

via our inter-kernel communication layer. This layer will be

explained in detail in Section VII.

Figure 1 shows exemplarily the simplest form of an SVM

subsystem. In this case, only one core has access to a page

Figure 1. One Strategy to Realize a SVM Subsystem

frame.

If core 0 tries to access to a page frame, that holds core

47, an access violation will be triggered. Afterwards, the

2http://www.scalemp.com

kernel of core 0 sends an access request to core 47. Core 47

receives this request, flushes its cashes, deletes the access

permissions in its page table and sends the allowance for

the page access back to core 0. Following this, core 0 sets

the read/write permissions to its page table and continues its

computation.

Nevertheless, the evaluation of vSMP has also shown

that expensive synchronization is the big drawback of this

architecture. We believe that especially this drawback will

not occur in the context of our solution for the SCC, be-

cause MetalSVM provides better options to realize scalable

synchronization primitives.

III. BASIC CONCEPT OF METALSVM

Figure 2 depicts MetalSVM’s design approach, that allows

in principle a common Linux version without SVM-related

patches to run on the SCC in a common multicore manner.

The light weight hypervisor approach is based upon the

idea of a small virtualization layer, which is based on a

self-developed kernel. The well established interface to run

Linux as a para-virtualized guest will be used to realize the

hypervisor. This interface is part of the standard Linux kernel

thus no major modification to the guest kernel is needed.

With the IO virtualization framework virtio, a common way

to integrate IO device into the guest system exits.

Additionally, this framework will be used to integrate

the eMAC Ethernet interface, which is part of the sccKit
1.4.0 and already supported by our self-developed kernel. [6]

While common processor virtualization aims for providing

multiple virtual machines for separated OS instances, we

want to use processor virtualization for providing one logical

but parallel and cache coherent virtual machine for a single

OS instance on the SCC. Hence, the main goal of this project

is to develop a bare-metal hypervisor, that implements the

required SVM system (and thus the memory coherency

by applying appropriate consistency models) within this

hardware virtualization layer in such a way that an operating

system can run almost transparently across the entire SCC

system.

The Realization of such a hypervisor needs a fast inter-

core communication layer, which will be used to manage

resources between the micro-kernel. Therefore, an important

requirement for the communication layer is the support of

asynchronous receiving and sending of request messages

because it is not predictable when a kernel need an exclusive

access to a resource, which is owned or managed by an

other kernel. As a consequence, the synchronous communi-

cation library RCCE is not suitable for MetalSVM. [7] The

inter-core communication layer is based on enhancements

of our asynchrounous RCCE extensions, which we called

iRCCE [8], [9].

In the future version, the Linux kernel will forward its

synchronization requests via the para-virtualization interface

to the hypervisor, that has to use SCC-specific features to

20 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

���������	�
�����
����������	��

����
�����

������� �������

������� �

���������������

��������������
��������	
�����

� ��!�

�������

"##
�������

������

Figure 2. Basic Concept of MetalSVM

reach optimal performance. Therefore, we are in progress to

develop an optimized synchronization layer, which will be

discussed in the following section.

IV. SYNCHRONIZATION LAYER

The SCC has 48 Test-and-Set (T&S) registers to enable

a fast locking method. Therefore, each register an atomic

bit. Whereas, reading access to target register returns a 0
if its status is unchanged 0, a return value of 1 indicates

a previously atomic change from 1 to 0. Furthermore, the

status can be changed over a write access.

This behaviour is a limitation compared to atomic func-

tionality provided by shared-memory architectures. Hereby

various operations such as atomic increment or compare
exchange at word size using the LOCK prefix are provided.

In contrast to that flexibility the syntax of T&S registers does

not provide a read access without a possible changed value.

Another restriction is the limited amount of 48 T&S regis-

ters. A synchronization layer for MetalSVM will thus require

an allocation scheme for the T&S registers. The gory RCCE

API provides an interface to the memory mapped T&S reg-

isters of the SCC. The function RCCE_acquire_lock()
implements a simple busy wait loop (spin-lock) with the

target register as parameter. The corresponding function

RCCE_release_lock() releases the granted lock.

Access latencies are dependent of the location of an Unit

in Execution (UE) due to the 2D interconnect, as depicted

in Figure 3. For this measurement the UE was located at tile

00. A T&S register access is routed through the mesh and

therefore affected as well as the MPB accesses. Depending

on the distance of an UE to the target, a characteristic

latency-rise regarding the 2D mesh and the tiled structure

can be examined.

To evaluate the fairness and performance of different

spin-lock implementations, it is useful to count the number

of concurrent accesses. Whereas such a counter should be

accessed with a low latency, due to the lack of atomic

counters3, the preferred location for the value is within

the MPB. The counter access can be defined as a critical

section and be protected by a spin-lock. Nevertheless, if

the location of a UE is fixed we can calculate the expected

latencies. Furthermore, a generic Fetch and Φ function

targeting the MPB has to be filled with nops to emulate a

symmetric and thus fair accessing scheme. Such a simulated

fair counter can be used either for debug or for statistical

purposes with the single impact to increase the duration of

the critical section and thus generate an offset to the latency.

0 10 20 30 40 48
target location

100

150

200

250

la
te

nc
y

[c
yc

le
s]

Figure 3. Latencies of uncontended T&S register accesses

V. SPIN-LOCK VARIANT: EXPONENTIAL BACKOFF

However, by rising contention, a limited scalability results

from the access to a single Test-and-Set register, as depicted

in Figure 4. Each core contends for a spin-lock a million

times for this benchmark. [10] The SCC cores runs with

533 MHz and the mesh interconnect with 800 MHz in our

setup.

Expecting such a high contention, it could be useful to

expand the simple spin-lock with the goal to minimize the

time to acquire a lock. In the following, spin-lock alterna-

tives will be explored with a focus on the implementation

of a scaling synchronization layer for the SCC architecture

regarding the hardware restrictions.

Programs even based on the gory RCCE API have no

possibilty to realize a customized waiting strategy if a lock

is occupied. Therefore, a method is needed that returns, just

by indicating that a lock has been occupied. We call this

method trylock(), that is needed to realize a spin-lock

with a backoff.

Typically, a random component is introduced to minimize

the chance that retries fall into the same point in time. We

identified the stdlib rand() call to be time consuming with

a high variance by using the standard SCC configuration.

3at least in sccKit v1.3.0

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 21

Therefore, we used a linear congruential generator to gen-

erate pseudo random numbers for the backoff. This way, a

deterministic amount of time is ensured for the generation

and this makes the results comparable to other spinlock

methods because the generation is in the critical path and

therefore degrades the performance.

2 10 20 30 40 48
participants

0

5000

10000

15000

20000

25000

30000

ru
nt

im
e

[n
s]

backoff spin-lock
simple spin-lock

Figure 4. Average Times to acquire a Spin-lock

By using a backoff it is sufficient to use the presented

RCCE_release_lock method. Thus, in the case of no

concurrency a lock competitor needs two T&S register

accesses.

VI. TEST-AND-SET BARRIER

Using hardware support for synchronization such as T&S

registers, it is evaluated in the following how a linear barrier

can be realized. Assuming a communicator size of n, Listing

1 shows an implementation of a barrier using only T&S

Register for signaling incoming UE’s and wait for release.

// linear search for a free lock
while(!Test_and_Set(step)) ++step;
if(step != n-1) {

// wait for release, signal exit
// and wakeup right neighbor

while(!Test_and_Set(step));
*(virtual_lockaddress[step]) = 0x0;

*(virtual_lockaddress[step+1]) = 0x0;
} else {

// last UE: wakeup first UE and
// wait for release

Test_and_Set(step);

*(virtual_lockaddress[0]) = 0x0;
while(!Test_and_Set(step));
*(virtual_lockaddress[step]) = 0x0;

}

Listing 1. Test-and-Set Barrier algorithm in C

A requirement for the algorithm are n available T&S

registers with an initial value of 0. However the implemen-

tation works without the need for MPB initialization, by not

touching it.
Each UE that has entered the barrier tries to grab the first

available T&S register, for instance ordered by the numerical

count of the located core. After this first step each UE except

the last one will spin on the T&S register granted before.

Hereby, the contention is minimal and therefore the simple

spinlock is sufficient.
Figure 5 shows the runtimes of the presented Barrier to the

standard RCCE_barrier. A dynamic mapping of linear

access ordering and Core-ID by indicating the location of

a T&S register is a benefit of the linear cycles. However, a

static mapping could provide a better performance by using

a tree-based communication pattern [11].

2 10 20 30 40 48
participants

0

10000

20000

30000

40000

50000

60000

ru
nt

im
e

[n
s]

T&S
Standard RCCE

Figure 5. Barrier Runtimes of RCCE Compared to our Approach

VII. INTEGRATION OF IRCCE INTO METALSVM

Due to the lack of non-blocking communication functions

within the current RCCE library, we have started to extend

RCCE by such asynchronous communication capabilities. In

doing so, we aim at avoiding to interfere with the original

RCCE functions and therefore we have placed our exten-

sions into an additional library with a separated namespace

called iRCCE [9].
An obvious way to realize non-blocking communication

functions would be to use an additional thread that pro-

cesses the communication in background while the main

thread returns immediately after the function invocation.

Although this approach seems to be quite convenient, it is

not applicable in bare-metal environments where a program

runs without any operating system and thread support. Since

we have planed from the start to integrate iRCCE into

MetalSVM, we had to waive this thread-based approach.

Therefore, we have followed another approach where the

application (or moreover the MetalSVM kernel) must drive

on the communication progress by itself. For this purpose,

a non-blocking communication function returns a request
handle, which can be used to trigger its progress by means

of additional push, test or wait functions [8].

22 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

In the context of MetalSVM, these progress functions are

called by entering the kernel via interrupt, exception or

system call. Additionally, MetalSVM checks at this point

if the kernel has recently received a message. Therefore, all

messages begin with a header, which specifies the message

type and the payload size. The definition of a message type

is important because this layer will be used to send messages

between the cores from the SVM system and also from

the TCP/IP stack. Our self-developed kernel, that builds

the base of MetalSVM, supports LwIP 4 as a lightweight

TCP/IP stack. The TCP/IP stack will be used to collect status

information from the kernels and to feature the support of

administration tools in the future.

The maximum delay between sending and receiving a

message header is as large as a time slice, because at least

after one slice a (timer) interrupt will trigger, which checks

for incoming messages. Additionally, MetalSVM allows the

sender to trigger a remote interrupt on the side of the

receiver in order to reduce the delay. However, this creates

an additional overhead because the calculation on the remote

core could be unnecessarily interrupted. Further analysis will

be done to decide which communication model (with or

without triggering an interrupt) will be the best choice for

MetalSVM.

VIII. CONCLUSION AND OUTLOOK

In this paper, we have presented our first steps to design

and implement a low-latency communication and synchro-

nization layer for MetalSVM, a shared virtual memory sys-

tem for the SCC. We have pointed out the demand especially

for fast and hardware-based low-level synchronization primi-

tives and we have shown how such primitives can be realized

on the SCC be means of its special hardware features. In this

context, we have presented an optimized barrier algorithm

that utilizes the SCC’s Test-and-Set registers and we have

shown that this algorithm outperforms the RCCE-related

approach of using the SCC’s on-die message-passing buffers

for this purpose. We have also shown that especially in case

of highly contended locks an exponential back-off algorithm

can lead to an improved scalability compared to the straight

forward approach of the common RCCE library. Moreover,

we believe that we are even able to further improve our

low-level locking mechanism by applying a tree-like access

pattern to the Test-and-Set registers. Although such a tree-

based locking algorithm would cause an addition overhead

in the order of O(log(n)) in the non-contented case, we

think that this approach will play out its strength especially

in highly contended situations, as they will usually occur in

the context of MetalSVM.

ACKNOWLEDGMENT

The research and development was funded by Intel Cor-

poration. The authors would like to thank especially Ulrich

4http://savannah.nongnu.org/projects/lwip/

Hoffmann, Michael Konow and Michael Riepen of Intel

Braunschweig for their help and guidance.

REFERENCES

[1] SCC External Architecture Specification (EAS), Intel Corpo-
ration, November 2010, Revision 1.1.

[2] P. K. A. L. Cox, S. Dwarkadas, and W. Zwaenepoel, “Tread-
Marks: Distributed Shared Memory on Standard Workstations
and Operating Systems,” in Proceedings of the USENIX
Winter 1994 Technical Conference. Berkeley, CA, USA:
USENIX Association, 1994, pp. 10–10.

[3] C. Terboven, D. an Mey, D. Schmidl, and M. Wagner, “First
experiences with intel cluster openmp,” in OpenMP in a New
Era of Parallelism, ser. Lecture Notes in Computer Science,
R. Eigenmann and B. de Supinski, Eds. Springer Berlin /
Heidelberg, 2008, vol. 5004, pp. 48–59.

[4] M. Chapman and G. Heiser, “vNUMA: A virtual shared-
memory multiprocessor,” in Proceedings of the 2009 USENIX
Annual Technical Conference, San Diego, CA, USA, Jun
2009, pp. 349–362.

[5] D. Schmidl, C. Terboven, D. an Mey, and M. Bücker,
“Binding Nested OpenMP Programs on Hierarchical Memory
Architectures,” in Beyond Loop Level Parallelism in OpenMP:
Accelerators, Tasking and More, 6th International Workshop
on OpenMP (IWOMP 2010), ser. Lecture Notes in Computer
Science, Tsukuba, Japan, June 2010.

[6] The SccKit 1.4.0 Users Guide, Intel Labs, March 2011,
Revision 0.92.

[7] T. Mattson and R. van der Wijngaart, RCCE: a Small Library
for Many-Core Communication, Intel Corporation, May 2010,
Software 1.0-release.

[8] C. Clauss, S. Lankes, J. Galowicz, and T. Bemmerl, iRCCE:
A Non-blocking Communication Extension to the RCCE Com-
munication Library for the Intel Single-Chip Cloud Computer
– User Manual, Chair for Operating Systems, RWTH Aachen
University, December 2010, Users’ Guide and API Manual.

[9] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation
and Improvements of Programming Models for the Intel
SCC Many-core Processor (accepted for publication),” in
Proceedings of the International Conference on High Perfor-
mance Computing and Simulation (HPCS2011) – to appear,
Workshop on New Algorithms and Programming Models for
the Manycore Era (APMM), Istanbul, Turkey, July 2011,
accepted for publication.

[10] T. E. Anderson, “The performance of spin lock alternatives
for shared-memory multiprocessors,” IEEE Transactions on
Parallel and Distributed Systems, vol. 1, no. 1, pp. 6 –16,
January 1990.

[11] N. S. Arenstorf and H. F. Jordan, “Comparing barrier algo-
rithms* 1,” Parallel Computing, vol. 12, no. 2, pp. 157–170,
1989.

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 23

24 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

Scalable Runtime Support for Data-Intensive
Applications on the Single-Chip Cloud Computer

Anastasios Papagiannis∗ and Dimitrios S. Nikolopoulos∗
Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)

GR–70013, Heraklion, Crete, GREECE

{apapag,dsn}@ics.forth.gr

Abstract—Many-core processors, due to their complexity
and diversity, necessitate high-productivity, domain-specific ap-
proaches to parallel programming. These approaches should
hide architectural details and low-level parallelization constructs,
while enabling scalability and performance portability. This
paper presents a scalable implementation of MapReduce, a
runtime system used widely by domain-specific languages for
large-scale data processing, on the Intel SCC. We address the
scalability bottlenecks of MapReduce with data partitioning,
combining and sorting algorithms that we customize for the SCC
network on-chip architecture. We achieve linear or superlinear
speedups for representative MapReduce workloads with data sets
that fit on a single SCC node. We also show that the SCC node
outperforms the IBM Cell QS22 Blade, when the latter uses
the fastest implementation of MapReduce available for the Cell
processor.

Index Terms—MapReduce; Single-Chip-Cloud; Resource man-
agement; Runtime systems; Operating Systems; Parallel Pro-
gramming Models.

I. INTRODUCTION

Programming models for future many-core processors

should disengage from low-level parallel programming con-

structs –such as threads, locks, and messages– and em-

brace high-productivity domain-specific alternatives. Domain-

specific frameworks for parallel programming will require

scalable runtime systems to exploit many-core architectures.

As more many-core processor architectures forgo cache co-

herence and use fast on-chip communication to improve per-

formance and energy-efficiency, runtime systems for parallel

programming face the challenge of scaling, while hiding

the complexities of explicit communication from program-

mers [1].
Google’s MapReduce programming model [2] is widely

used for implementing domain-specific languages to support

large-scale data processing applications. MapReduce borrows

idioms from functional programming to express parallel op-

erators on distributed collections of data and to aggregate

data. The MapReduce programming framework has been

implemented on a variety of parallel architectures, including

clusters, shared-memory multi-core systems with coherent

caches, graphics processing units, and multi-core processors

with software-managed local memories [2], [3], [4], [5], [6].

∗Also with the Department of Computer Science, University of Crete,
Heraklion, Greece.

This paper presents the first, to the best of our knowledge,

implementation of the MapReduce programming model and

runtime system on the Intel Single-Chip Cloud Computer

(SCC). We present a design that utilizes effectively the SCC

interconnection network and on-chip shared communication

buffers to alleviate two fundamental scalability bottlenecks of

MapReduce: data partitioning and data sorting. The artifact

of our contribution is a fast and scalable implementation

of MapReduce, based on customized on-chip data exchange,

combining, and sorting algorithms. We achieve linear or su-

perlinear speedups for representative MapReduce workloads,

which process data sets that fit in the memory of a single

SCC node. We further show that an SCC node outperforms

an IBM QS22 Cell blade with two Cell processors, when the

latter uses the fastest implementation of MapReduce for the

Cell processor available to date [6].

II. BACKGROUND

We provide background for our work by presenting the

MapReduce program execution stages and discussing the key

architectural properties of the Intel SCC processor.

A. MapReduce

MapReduce [2] is a high-level parallel programming model

based on two primitives, map and reduce. Parallel computation

in MapReduce is expressed as processing and aggregation

operators applied on distributed data sets. A MapReduce

application processes an input of (key, value) pairs to produce

an output of (key, value) pairs. A typical MapReduce program

executes in four stages, a map stage, where parallel workers

(called mappers) produce a set of intermediate (key, value)

pairs for each input pair, a partition stage which exchanges

intermediate data between mappers, a group stage which

groups all intermediate (key, value) pairs associated with

the same key, and a reduce stage which merges the values

associated with each key. The map and reduce stages exe-

cute user-defined data processing and aggregation operators.

MapReduce implementations typically have an explicit barrier

between the map and partition stages, although this barrier can

be replaced by a software pipeline [7].

Figure 1 shows a typical MapReduce execution flow. The

MapReduce runtime splits the input data into fixed size chunks

and assigns each chunk to a mapper. Each mapper executes

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 25

 Map Task 1 Map Task 2 Map Task 3

Partition Function Partition Function Partition Function

M M M M M M

k1:v k1:v k2:v k1:v k3:v k4:v k4:v k5:v k4:v k1:v k3:v

chunk 0 chunk 1 chunk2 chunk 3 chunk 4 chunk 5

Group Group

k2:v k4:v,v,v k5:v k1:v,v,v,v k3:v,v

Reduce Task 1 Reduce Task 2

R R R RR

Fig. 1: A typical MapReduce execution flow (M stands for Mappers,
R stands for Reducers)

the map function on its assigned chunk, which consists of a

series of input (key, value) pairs. The map function generates

zero or more intermediate (key, value) pairs for every input

(key, value) pair. The input and output types of the map

function may differ. The runtime system maintains a number

of reducers that perform data aggregation. During the map

stage, each mapper exports as many different partitions as the

number of reducers. It is permissible for mappers and reducers

to execute on the same compute node.

To split the output of a mapper, the user may define a

partition function. The partition function takes as input a

key and the number of reducers and returns an index to

the reducer to which the output should be sent. The typical

implementation of this step is to hash the key and compute

the partition index as the key’s hash value modulo the number

of reducers. It is important to pick a partitioning function

that gives an approximately uniform distribution of data per

reducer for load balancing purposes, otherwise the runtime

may stall waiting for slow reducers to finish. The partition

stage executes between the map and reduce stages and moves

each intermediate (key, value) pair from the node running

the mapper that produced it to the node on which it will be

reduced.

Following the partitioning stage, an optional group stage

sorts the intermediate data on each reducer. The runtime has

to rearrange the intermediate (key, value) pairs so that the data

is organized as a set of unique keys and a list of values for

each key. Finally, the runtime executes the user-defined reduce

function to aggregate intermediate (key, value list) pairs. The

reducer iterates through the values that are associated with

each key and produces zero or more output (key, value) pairs.

B. Intel Single-Chip-Cloud-Computer (SCC)

The Intel SCC [8] (Figure 2) is a many-core processor with

24 tiles and 2 IA cores per tile. The tiles are organized in

a 4×6 mesh network with 256 GB/s bisection bandwidth.

The processor has 4 integrated DDR3 memory controllers,

one for each group of 6 tiles. Each core has a private L1

instruction cache of 16 KB, a private L1 data cache of 16

Tile

Tile Tile

Tile

Tile Tile

Tile

Tile Tile

Tile Tile

R R

R

R R

R R

System Interface

Tile Tile

Tile Tile

Tile Tile

Tile

Tile

Tile

Tile Tile

Tile Tile

R

R

R

R

R R

RR

R R R R

R R R

R

R

VRC

D
D

R
M

C

D
D

R
M

C
D

D
R

M
C

D
D

R
M

C

P54C
(16KB
each L1)

P54C
(16KB
each L1)

CC

CC

256KB

 L2

256KB

 L2

MIU

Message
 Passing
 Buffer

Traffic
Gen

Tile

P54C FSB To
Router

Fig. 2: SCC processor diagram

KB and a private unified L2 cache of 256 KB. Each dual-core

tile has a 16 KB message passing buffer (MPB), which is the

only component of the SCC on-chip memory hierarchy that is

shared between cores. The MPB provides space for direct core-

to-core communication. On-chip communication data is read

from the MPB through the L1 data cache and bypasses the L2

cache. For writes, a no-allocate policy is used, in conjunction

with a write combining buffer at the L1 cache. Software needs

to maintain coherence between the MPB and the L1 caches by

using a, unique to the SCC, L1 cache invalidation instruction,

when data is stored in the MPB.

The 32-bit address space of the system is mapped to an

extended 34-bit address space to allow access to up to 64

GB of off-chip memory (up to 16 GB from each group of 6

tiles). This is accomplished through a Look-Up Table (LUT)

attached to each core. The address space of the system is

configurable and can be distributed between private off-chip

memory associated with each core, shared off-chip memory,

and shared on-chip SRAM, which corresponds to data stored

in the message buffers and cached in the L1 cache.

We implemented MapReduce using the the standard soft-

ware environment of SCC compute nodes available by Intel,

namely a configuration running a Linux kernel on each core

and RCCE, the Intel one-sided communication library [9].

III. MAPREDUCE DESIGN

We implement a seven-stage runtime system for MapRe-

duce. The seven stages are map, combine, partition, group,

reduce, sort and merge. The combine and merge stages are

optional in typical MapReduce setups, whereas the group stage

replaces the intermediate sort stage of the original MapReduce

26 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

1 10 100 1000 10000 100000 1000000

Message Size in Bytes

0

20

40

60

80

100

120

M
B

yt
es

/s
ec

RCCE
RCKMPI

Fig. 3: RCKMPI vs. RCCE bandwidth in a ping-pong benchmark

pipeline, to reduce overall computational complexity. We de-

scribe the stages of MapReduce in more detail in the following

paragraphs.
a) Map: During the map stage, the runtime system

divides the input evenly to as many parts as the number of

mappers. In our implementation, we use as many mappers as

the number of cores. Each core then executes the user-defined

map function over its assigned input data. We preallocate a

large chunk of memory (64 MB) for the output of the map

stage. If the volume of intermediate data produced is more

than 64 MB, we allocate a new output buffer on demand.

Each core exports as many intermediate data partitions as

the number of cores in the system. To split intermediate

data between partitions, we use either a user-defined hash

function or a default generic hash function available by our

MapReduce runtime system. Each core emits keys and values

in a contiguous buffer.
b) Combine: This stage is optional and executes if the

user provides a combiner function. The purpose of this stage

is to reduce locally the size of each partition produced during

the map stage. The combine function takes as input a key and

a list of partially aggregated intermediate values associated

with that key. It produces as output a single (key, value) pair

where the value is an updated partial aggregation associated

with the same key. We use the combine function to reduce

data volume and balance the partitions that will be processed

by different cores in the following stages of MapReduce. We

use the same strategy as in the group stage described later to

group together all values with the same key. The combiner

function produces a new intermediate (key, value) pair for

each intermediate key and its corresponding list of values. The

combine stage is equivalent to applying the reduce stage in

each of the intermediate partitions.
c) Partition: The partition stage requires an all-to-all

exchange between cores. Data partitions generated during the

map stage may be different in size. We implement a custom

all-to-all exchange algorithm for the SCC to achieve scalable

data partitioning. The algorithm first executes an all-to-all

exchange of the intermediate partition’s sizes, followed by an

all-to-all exchange of the intermediate data. We implement

the all-to-all exchange using pairwise exchanges. Let p be the

number of available cores and rank the core ID. This algorithm

1000000 2000000 3000000 4000000

Number of Items

0

4

8

12

16

20

S
ec

on
ds

Quick Sort
Radix Sort

Fig. 4: Libc qsort vs. radix sort, for a variable number of word-size
elements

uses p− 1 steps and in each step k, core rank receives data

from core rank−k and sends data to core rank+k. We opted

to use the RCCE {send, recv} functions to implement this

all-to-all exchange. RCCE is an SCC communication run-

time environment based on one-sided get-put communication

primitives [9]. Figure 3 shows that native RCCE achieves

better throughput than RCKMPI, when communication flows

through the SCCMPB channel, which uses exclusively the

on-chip message-passing buffers. RCCE also uses the MPB

buffers to exchange data.

d) Group: The group stage groups together all (key,

value) pairs with the same key, taken across all intermediate

data partitions. In previous works [6], [3], [4], [5], [10], [11],

a generic sorting scheme with a user-defined comparator was

used to perform grouping. We replace this scheme with a

radix sort algorithm [12] for grouping on the SCC. The sorting

algorithms employed in prior MapReduce implementations on

multi-core systems have complexity O(nlogn), whereas radix

sort has complexity O(kn) where k is the size of the key

in bytes. Figure 4 shows a comparison of the libc quicksort

implementation and our radix sort implementation for different

input sizes. Radix sort outperforms quicksort with the caveat

that radix sort sorts strings of bytes and can not use a user-

defined comparator for sorting. This caveat implies that in

applications where the key data type is not a string, radix sort

may produce unsorted sequences that need to be processed

further in the following stages of MapReduce.

Previous sorting algorithms used in MapReduce swap (key,

value) pairs by copying the actual data of these pairs. Our radix

sort algorithm swaps pointers to (key, value) pairs instead.

Thus, in every swap we only exchange two pointers, making

the cost of the swap independent of the size of the (key, value)

pair. The output of this stage is an array of pointers to the

actual data. This array needs to be transformed to a structure

containing pairs of keys and value lists. We accomplish this

by simply iterating through the array and finding the unique

keys. We initiate an iterator for accessing the values with no

need to rearrange the data in memory. We statically know the

sizes of all the buffers needed for the sorting stage, therefore

we preallocate these buffers. This optimization minimizes the

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 27

Application Class Input size
Word Count partition-dominated 60 MB
Histogram sort-dominated 400 MB
Linear Regression map-dominated 32 MB
Kmeans map-dominated 115 MB

TABLE I: MapReduce application workloads

overhead of dynamic memory allocation.
e) Reduce: The reduce stage executes a user-defined key

aggregation function. The prior group stage exports an array

of all distinct keys where each key contains the number of

occurrences of the key and a pointer to an array of its values.

The output size of the reduce stage can be statically identified,

therefore we preallocate the stage’s output buffers, once again

to minimize dynamic memory allocation overhead.
f) Sort: The sort stage sorts the (key, value) pairs pro-

duced following the reduction, using quicksort and a user-

specified comparator. This stage is necessary because the

earlier group stage may produce unsorted sequences. However,

this sort stage is necessary only if the following data merging

stage is needed as well.
g) Merge: The merge stage optionally merges the output

of all cores in one core. In the default configuration of SCC,

each core has its private memory, therefore in applications that

require merging, we need to produce the final output in the

memory of a single core. We use the binomial merge algorithm

for this stage [13], which completes in logn steps.

IV. EXPERIMENTAL ANALYSIS

Table I lists the MapReduce application workloads that we

used for experiments. Following conventions from [11], we

classify applications as map-dominated, partition-dominated

and sort-dominated, according to the phase where these ap-

plications fail to scale on a multi-core system.

Histogram counts the frequency of occurrences of each

RGB color component in an image file. The map function

emits the occurrences of each color component in pixels and

the reduce function produces the sum of occurrences of each

component. Word Count counts the number of occurrences of

each word in a text file. The map function splits the input text

into words, whereas the reduce function sums the number of

occurrences of each word to produce a final count. Kmeans
creates clusters from a set of data points, by finding the closest

cluster for each data point in the map function and computing

the cluster means in the reduce function. Linear Regression
computes a line of best fit for a set of points, given their 2D

coordinates. Map computes intermediate summary statistics

for the points, while reduce gathers all data of each of the

summary statistics and calculates the best fit.

In our experiments, we use the standard frequency con-

figuration of the SCC chip. In this configuration, each tile

runs at a frequency of 533MHz, the mesh interconnect runs

at a frequency of 800MHz and DRAM runs at a frequency of

800MHz.

Figure 5 illustrates speedup and Figure 6 illustrates ex-

ecution time of application workloads, with and without a

0 5 10 15 20 25 30 35 40 45 50

Cores Number

0

4

8

12

16

S
pe

ed
up

Histogram

w combiner
w/o combiner
ideal

0 5 10 15 20 25 30 35 40 45 50

Cores Number

0

4

8

12

16

S
pe

ed
up

Word Count

w combiner
w/o combiner
ideal

0 5 10 15 20 25 30 35 40 45 50

Cores Number

0

4

8

12

16

S
pe

ed
up

Kmeans

w combiner
w/o combiner
ideal

0 5 10 15 20 25 30 35 40 45 50

Cores Number

0

4

8

12

16

S
pe

ed
up

Linear Regression

w combiner
w/o combiner
ideal

Fig. 5: Speedup of MapReduce workloads

0 5 10 15 20 25 30 35 40 45 50

Cores Number

0

2

4

6

8

10

S
ec

on
ds

Histogram

w combiner
w/o combiner

0 5 10 15 20 25 30 35 40 45 50

Cores Number

0

10

20

30

40

50

S
ec

on
ds

Word Count

w combiner
w/o combiner

0 5 10 15 20 25 30 35 40 45 50

Cores Number

0

4

8

12

16

20

24

28

S
ec

on
ds

Kmeans

w combiner
w/o combiner

0 5 10 15 20 25 30 35 40 45 50

Cores Number

0

4

8

12

16

S
ec

on
ds

Linear Regression

w combiner
w/o combiner

Fig. 6: Execution time of various applications

combiner function. Speedup is calculated using execution time

on 4 cores (2 tiles) as the nominator, therefore ideal linear

speedup is 16 for the entire SCC chip. Figure 7 and Figure 8

show breakdowns of execution time for all applications. All

applications scale well on the chip. With the use of a combiner

function, applications have nearly ideal linear or in some cases,

superlinear speedup. The partition stage exhibits the worst

scaling behavior. The combine stage improves performance by

reducing the intermediate data exported from the map stage.

28 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

0.0

0.5

1.0

S
ec

on
ds

Histogram
combiner w/o combiner

0

1

2

S
ec

on
ds

Kmeans

Merge
Sort
Reduce
Grouping
Partition
Combine
Map

combiner w/o combiner

Fig. 7: Execution time breakdowns

0

2

4

6

8

S
ec

on
ds

WordCount
combiner w/o combiner

0.0

0.5

1.0

S
ec

on
ds

LinearRegression

Merge
Sort
Reduce
Grouping
Partition
Combine
Map

combiner w/o combiner

Fig. 8: Execution time breakdowns

This in turn means that the partition stage has to exchange less

data between cores. The reason for superlinear speedup is that

the complexity of the group stage decreases exponentially with

the number of cores. In applications where the grouping stage

dominates execution time, the overall application speedup

may therefore be superlinear. We analyze briefly individual

applications in the following paragraphs.

Histogram does not achieve perfect speedup without a com-

biner (Figure 5), because the partition stage does not scale.

Partitioning overhead dominates execution time (Figure 7).

Reducing the intermediate data size with a combiner alleviates

the bottleneck. Using the combiner also decreases the execu-

tion time of the grouping and reduce stages. The combiner

function is the same function as the one used in the reduce

stage in this benchmark. Therefore, the combine stage executes

a part of the reduce stage on the intermediate values available

locally to each core. Histogram exports a maximum of only

3 × 255 different keys, which makes the merge stage time

insignificant.

KMeans and Histogram have similar behavior (Figure 5),

with the exception that in KMeans the map stage dominates

execution time, therefore the combiner has a less significant

impact on overall execution time (Figure 7). This is also the

reason why in Kmeans we do not achieve superlinear speedup.

Linear Regression is an entirely map-dominated benchmark

and therefore scales perfectly. Each map function exports five

(key, value) pairs and therefore group and reduce times are

insignificant. Since the map stage exports only five different

keys, we can only use five cores in the execution stages after

map. From the breakdowns (Figure 8) we observe that this is

0 5 10 15 20 25 30 35 40 45 50

Cores Number

0

10

20

30

40

50

S
ec

on
ds

SCC - w combiner
SCC - w/o combiner
Cell Blade - 1 processor
Cell Blade - 2 processors

Fig. 9: Comparison of SCC and Cell BE processors using wordCount
benchmark

not a scalability bottleneck. Merging the output results of five

cores has negligible overhead.

Word Count incurs load imbalance in the grouping stage. This

leads to erratic speedup (Figure 5). However, the problem is

easily alleviated with a combiner function that rebalances the

volume of intermediate data between cores. We have compared

many hash functions for strings while experimenting with

Word Count. We ended up using the djb2 hash function. This

function initially sets hash = 5381 and then for each character

of the string it sets hash = hash∗33+c where c is the ASCII

value of each character. The selected hash function results

in better distribution of intermediate keys among different

partitions in comparison with other hash functions.

Figure 9 illustrates a comparison of our implementation of

MapReduce on the SCC with a competitive implementation

of MapReduce on the Cell processor, which is the fastest

implementation for that processor published to date [6]. We

used the Word Count benchmark with a 60 MB input size. We

ran this benchmark on a Cell QS22 Blade with 8GB RAM

and report execution time with the Cell MapReduce runtime

published in [6], using one or both of the Cell processors

of the QS22 blade. Each Cell processor has 9 cores, out of

which 8 (the SPE vector cores) are used for MapReduce tasks

and one (the PowerPC PPE core) is used for the runtime

system. The maximum number of mapper and reducer cores

is 8 when using one Cell processor and 16 when using two

Cell processors. The SCC node with a single SCC processor

outperforms the dual-processor Cell QS22 blade by up to

1.87×, when the SCC MapReduce uses combiner functions.

We note that the Cell processors on the QS22 run at 3.2 GHz

and that each core on the Cell has a software-managed local

store of the same size as the L2 cache of each core on the

SCC.

V. RELATED WORK

Several prior research efforts ported MapReduce to promi-

nent hardware platforms for high-performance computing, in-

cluding multicore processors [4], [5], [14], GPUs [3], [15] the

Cell processor [11], [6], [16] and FPGAs via direct software

to hardware translation [17].

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 29

Phoenix, a port of MapReduce for cache-coherent shared-

memory multicore systems [4], [5], exploits locality implicitly

by controlling the granularity of tasks and the assignment

of tasks to cores. Phoenix performs dynamic assignment of

map and reduce tasks to cores. It controls task sizes so that

the working set of each task fits in the L1 cache of each

core. Phoenix also provides an option to perform prefetching

in the L2 data cache. The main focus in the design of

Phoenix is on achieving scalability through NUMA-aware

memory management. Each map thread emits intermediate

results on a space allocated on the closest memory module

to the CPU the thread is scheduled on. In the most recently

published version of Phoenix [5], the authors use a multi-

layer approach to optimize the runtime system. These layers

include the algorithm, the implementation and and the runtime-

OS interaction. A different approach to optimize Phoenix is

proposed in [14] where the authors use tiling to minimize

task memory footprints and improve cache locality.

MapReduce has also been ported to the Cell BE proces-

sor [11], [6]. In the implementation presented in [6], which

is the fastest, the runtime system controls locality explicitly,

using DMAs and software prefetching via multi-buffering

in the map and merge-sort stages. Contrary to Phoenix, the

runtime system does not hash and does not partition keys in

per-core buffers, thereby eliminating memory copies, while

still allowing a balanced distribution of work during the sort

and reduce stages.

Implementations of MapReduce on GPUs also consider the

implications of explicitly-managed local memories [10], [3],

[15]. Mars [3] uses mock map tasks to compute the sizes

of buffers needed by each core for emitting results of real

map tasks. Other optimizations of MapReduce on GPUs focus

on achieving fine-grain interleaving of memory accesses from

threads on the GPU, to utilize the available GPU memory

bandwidth.

VI. CONCLUSIONS

This paper presented a scalable implementation of Google’s

MapReduce runtime system on the Intel SCC. The imple-

mentation attests to the scalability of the chip, as well as

its ability to support software stacks and high-level parallel

programming models that hide explicit communication from

programmers. Our implementation of MapReduce leveraged

one-sided on-chip communication primitives and customized

data combining algorithms to alleviate bottlenecks that arise

during data partitioning and sorting. We demonstrated perfect

linear or superlinear scaling of applications with realistic

datasets for a single SCC node and performance that exceeds

the fastest to date implementation of MapReduce on IBM

Cell blades. While our results are promising, our work raises

several interesting questions for future research. These include

design choices for implementing the full MapReduce exe-

cution path, including I/O, alternative management schemes

for the SCC memory hierarchy that exploit off-chip shared

memory, the implementation of dynamic task scheduling, and

further analysis of applications.

ACKNOWLEDGEMENTS

The research leading to these results has received funding

from the European Community’s Seventh Framework Pro-

gramme [FP7/2007-2013] under the I-CORES project, grant

agreement no 224759

REFERENCES

[1] S. Schneider, J.-S. Yeom, B. Rose, J. C. Linford, A. Sandu, and D. S.
Nikolopoulos, “A Comparison of Programming Models for Multipro-
cessors with Explicitly Managed Memory Hierarchies,” in Proceedings
of the 14th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), Feb. 2009, pp. 131–140.

[2] J. Dean and S. Ghemawat, “Mapreduce: Simplified Data Processing on
Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[3] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars:
a MapReduce Framework on Graphics Processors,” in Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques (PACT), Oct. 2008, pp. 260–269.

[4] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,
“Evaluating MapReduce for Multi-core and Multiprocessor Systems,” in
Proceedings of the 13th International Symposium on High Performance
Computer Architecture (HPCA), Feb. 2007, pp. 13–24.

[5] R. M. Yoo, A. Romano, and C. Kozyrakis, “Phoenix Rebirth: Scalable
MapReduce on a Large-Scale Shared-Memory System,” in Proceedings
of the 2009 IEEE International Symposium on Workload Characteriza-
tion (IISWC), Oct. 2009, pp. 198–207.

[6] A. Papagiannis and D. S. Nikolopoulos, “Rearchitecting Mapreduce for
Heterogeneous Multicore Processors with Explicitly Managed Memo-
ries,” in Proceedings of the 39th International Conference on Parallel
Processing (ICPP), Sep. 2010, pp. 121–130.

[7] A. Verma, N. Zea, B. Cho, I. Gupta, and R. Campbell, “Breaking
the MapReduce Stage Barrier,” in Proceedings of the 2010 IEEE
International Conference on Cluster Computing (CLUSTER), Sep. 2010,
pp. 235–244.

[8] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom et al., “A 48-Core IA-32
Message-Passing Processor with DVFS in 45nm CMOS,” in Proceedings
of the 2010 IEEE International Conference on Solid-State Circuits
(ISSCC), Feb. 2010, pp. 108–109.

[9] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy,
J. Howard et al., “The 48-core SCC Processor: the Programmer’s
View,” in Proceedings of Supercomputing’10: The 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, Nov. 2010, pp. 1–11.

[10] B. Catanzaro, N. Sundaram, and K. Keutzer, “A Map Reduce Framework
for Programming Graphics Processors,” in Proceedings of the Third
Workshop on Software and Tools for Multicore Systems (STMCS), Apr.
2008.

[11] M. de Krujif and K. Sankaralingam, “Mapreduce for the Cell B.E.
Architecture,” IBM Journal of Research and Development, vol. 53, no. 5,
Sep. 2009.

[12] P. M. McIlroy, K. Bostic, and M. D. Mcilroy, “Engineering Radix Sort,”
Computing Systems, vol. 6, pp. 5–27, 1993.

[13] R. Thakur and R. Rabenseifner, “Optimization of Collective communica-
tion operations in MPICH,” International Journal of High Performance
Computing Applications, vol. 19, no. 1, pp. 49–66, Feb. 2005.

[14] R. Chen, H. Chen, and B. Zang, “Tiled-MapReduce: Optimizing Re-
source Usages of Data-Parallel Applications on Multicore with Tiling,”
in Proceedings of the 19th International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), Sep. 2010, pp. 523–534.

[15] W. Ma and G. Agrawal, “A Translation System for Enabling Data
Mining Applications on GPUs,” in Proceedings of the 23rd ACM
International Conference on Supercomputing (ICS), Jun. 2009, pp. 400–
409.

[16] M. M. Rafique, B. Rose, A. R. Butt, and D. S. Nikolopoulos, “Sup-
porting MapReduce on Large-Scale Asymmetric Multi-core Clusters,”
ACM SIGOPS Operating Systems Review, vol. 43, no. 2, pp. 25–34,
Apr. 2009.

[17] J. H. Yeung et al., “Map-Reduce as a Programming Model for Custom
Computing Machines,” in Proceedings of the 16th IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM), Apr. 2008,
pp. 149–159.

30 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

Linux Operating System Support
for the SCC Platform - An Analysis

Jan-Arne Sobania, Peter Tröger, Andreas Polze
Hasso Plattner Institute, University of Potsdam

Prof.-Dr.-Helmert-Str. 2-3

14482 Potsdam, Germany

Email: [jan-arne.sobania/peter.troeger/andreas.polze]@hpi.uni-potsdam.de

Abstract—The Single-Chip Cloud Computer (SCC) is an exper-
imental many-core system created for research purposes by Intel
Labs. In this paper, we analyze the necessary adjustments to run
a Linux kernel on a processor core of the new processor design.
Starting from the Intel-provided set of Linux modifications, we
present an alternative strategy for creating a SCC-compliant
kernel. Our approach allows to use recent versions with the
prototype platform, provides better portability for future versions
of Linux, and enables the utilization of latest kernel functionality
such as virtualization for future research.

I. INTRODUCTION

The Single-Chip Cloud Computer (SCC) experimental pro-

cessor [1] is a 48-core concept vehicle created by Intel Labs.

It is intended to act as a hardware platform for many-core

software research on different system levels. Highlights of

the SCC architecture are the on-die mesh network for com-

munication between cores and memory controllers, flexible

power management and frequency scaling capabilities, and a

reconfigurable shared memory hardware. The prototype board

has a Field-Programmable Gate Array (FPGA) that connects

the internal mesh network to a separate Management Console
PC (MCPC). Both together emulate the chipset and devices

for the prototype board.
The new processor core design (named “GaussLake”) is

derived from the Intel Pentium 90 architecture (P54C) [2]. It

combines two cores and their L2 caches to a tile. Each of the

24 tiles has a message passing buffer (MPB) and a message
router to let the cores communicate on the mesh network.

Access to memory is realized through message exchange with

the memory controllers. The system does not maintain cache

coherency for shared memory regions accessed from multiple

cores, since all memory controllers operate decoupled from

each other.
Due to the special hardware architecture, standard Windows

or Linux kernels cannot run even on a single core. The

default operating mode of the current prototype is to run 48

independent instances of a modified Linux distribution (SCC
Linux). It contains a tailored Linux 2.6.16 kernel, originally

released in 2005, with full sources available from Intel.
In this paper, we first analyze the modifications applied

to the default Linux kernel sources in Section II. Based on

this analysis, we propose an alternative kernel modification

strategy in Section III, which enables the utilization of recent

and future Linux kernel versions for the SCC hardware.

II. SCC LINUX

The neccessary handling of the prototype hardware by a

operating system can be summarized in three major categories:

• Bootloader and Real-Mode Setup: The SCC prototype

system does not contain any firmware implementation,

so the early boot stages must be modified to bring up the

operating system kernel.

• Protected Mode Setup: Initialization of most system

hardware is accomplished only after the kernel enters

protected mode. This phase again demands consideration

of SCC specialties.

• SCC Hardware Support: Specialized parts such as the

mesh network must be made available to user-mode

applications. In addition, networking functionalities must

be realized by the help of the FPGA-MCPC bridge.

The following sections discuss these three classes.

A. Bootloader and Real-Mode Setup

Due to the lack of firmware support for raw access to

devices, a standard boot loader approach is not applicable

in an SCC operating system. Intel’s boot procedure therefore

prepares an initial memory image on the MCPC, and copies it

via mesh network into the core’s private memory region while

the core is in reset state. Once the reset line is de-asserted,

all cores begin to execute the platform-defined reset vector at

0xFFFFFFF0.

The reset vector just needs to setup real-mode registers, e.g.

to provide a stack to the following boot stage, and then jump to

the Linux kernel’s real-mode setup entry point. The entry-point

relies on a parameter block describing basic properties of the

system, such as the type of boot loader, address of the loaded

(protected-mode) kernel, initial ram disk and kernel command

line. On a regular x86 system, this parameter block is filled by

the bootloader. On the SCC, the alternative approach is to rely

on proper default values in the kernel sources. This demands

a set of mandatory compilation options to ensure the correct

default values.

When the system passed the real-mode entry point, a

standard Linux kernel attempts to query the BIOS for basic

hardware information like the amount of installed memory.

In the original SCC Linux kernel, all these calls have been

removed and appropriate return values have been hard-coded.

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 31

B. Protected Mode Operation
For the proper adjustment of the protected mode operation,

several special issues for clock management, interrupt man-

agement and cache handling must be considered.
For time management purposes, Linux distinguishes be-

tween clock sources and timers. A periodic or single-shot timer
interrupts a core if the timeout elapses. Depending on whether

a timer can interrupt all or only a single core, it is classified

either as broadcast or per-cpu timer.
A clock source is a permanently updated counter with a

constant frequency. Clock sources can be driven by the peri-

odic timer interrupt in x86 systems, which leads to a limited

resolution in millisecond range. Alternative clock sources are

hardware units like the CPU’s Time-Stamp Counter (TSC) or

chipset devices such as a High-Precision Event Timer (HPET).
In the early stages of the protected-mode boot process, the

original Linux kernel assumes the system to have a broadcast

timer at hand that generates interrupts on all cores. Per-cpu

timers are then calibrated against this global timer. The SCC

hardware does not provide such global timer functionality –

the only timer available to cores is their local advanced pro-

grammable interrupted controller (LAPIC) timer. The kernel

therefore needs an according modification to accept the per-

cpu timer as the only authoritative source. In addition, the

calibration of this timer normally relies on measuring the

number of bus ticks per real time unit. Since the bus frequency

is statically known on the SCC hardware, the modified LAPIC

calibration routine can just return the static configuration value

for the bus clock.
The SCC does not have an interrupt controller connected

to the cores. Instead, all interrupts are delivered directly via

the LINT0 and LINT1 processor pins [2]. The LAPIC-related

operating system code needs two adjustments for the SCC

hardware:
Firstly, when LAPIC support is enabled in the kernel, it

assumes that LINT0 is connected to an according external

chip, and LINT1 is used as the NMI. However, on the SCC,

there is no external interrupt or NMI logic, and the current

device drivers and MCPC software assume these pins to di-

rectly generate an interrupt. Secondly, the kernel crashes when

attempting to query the base address of the LAPIC in memory,

because the corresponding machine status register (MSR) is

present only in later version of the Pentium architecture.
The modifications in SCC Linux consider these issues by

configuring LINT0 and LINT1 as responsible for interrupt

numbers 4 and 3, respectively, which are used for the SCC-

specific device drivers.
Another novel feature of the SCC core design is the per-

tile message passing support. This lead to a new data type

in the caching hierarchy called Message-Passing Buffer Type
(MPBT) and an according invalidation instruction. Support for

this functionality is globally enabled by the Message Buffer
Enable (MBE) bit in the architectural extension register (CR4);

afterward, MPBT caching is enabled via the page-table by

the Message Buffer (MB) bit. The MB bit shares its location

with the Page-Size (PS) bit from regular P54C, which itself is

enabled by the Page-Size Extension (PSE) bit in CR4. PS and

MB cannot be used at the same time, so it is also invalid to set

both architectural feature bits in CR4. Therefore, if MB shall

be used, the Linux kernel must be prevented from setting PS

and using large pages. As the kernel recognizes it is running

on a P54C, it will incorrectly enable PSE support by default.

This is prevented in Intel’s SCC Linux via a kernel patch that

masks out the corresponding bit from the core’s feature bit

mask. Afterward, MBE is set manually when the RockCreek-

specific rckmem driver is loaded.

Even though hardware support for MPBT is enabled, drivers

still need a means to specify this caching type for their

memory accesses. Intel’s SCC Linux exports an internal kernel

function (ioremap) to provide this functionality. It allows to

specify individual bits for page table entries, in contrast to the

regularly-exported ioremap and ioremap nocache.

C. SCC Hardware Support

The SCC Linux software provides different driver im-

plementations for accessing SCC-specific hardware features

from user mode. The RockCreek memory driver (rckmem)

allows applications to map arbitrary physical memory with

configurable caching types, thus allowing direct access to all

aspects of the system: message-passing buffers, voltage and

frequency settings and configuration registers, both per-tile

and globally. There are also two drivers for virtual network

devices included: rckpc for communication with the MCPC,

and rckmb for on-die communication between cores.

III. PORTABILITY IMPROVEMENTS FOR SCC LINUX

Given the analysis result for the necessary operating sys-

tem modifications, we developed a new set of SCC-enabling

patches for the Linux 2.6 kernel series. Our modifications fit

to the latest Linux kernel architecture at the time of writing

(2.6.37), but also allow an easy consideration of future kernel

versions for research purposes. The resulting kernel is fully

compatible to existing SCC applications (e.g. RCCE [3]).

Our approach focuses only on a very restricted set of source

code locations, by introducing a BIOS emulation and a new

x86 sub-architecture. We further propose extended SCC driver

functionalities, as explained in the following sections.

A. The RockCreek sub-architecture

To distinguish processor- from mainboard-specific initial-

ization code, the Linux kernel supports the concept of sub-
architectures [4]. A sub-architecture defines code that is only

used for a specific set of systems, typically sharing the same

kind of mainboard architecture. It bundles mainboard-specific

code in one place – the sub-architecture file – instead of

spreading it over different parts of the kernel sources. Due

to the nature of the SCC hardware specialties, the according

kernel adjustments fit smoothly into this concept. We therefore

introduced the “RockCreek” sub-architecture in our version of

SCC Linux. Examples for existing sub-architectures include

the Standard PC, AMD’s Elan micro controller, and Intel’s

32 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

“Moorestown” Mobile Internet Device. The latter is compara-

ble to the SCC architecture, since it does not contain typical

legacy PC peripherals. We therefore used it as template for

the newly introduced “RockCreek” sub-architecture.

Sub-architectures are defined by a set of callback routines.

Upon system start, the boot loader identifies which sub-

architecture is present and specifies the corresponding value in

the setup code’s parameter block. We therefore modified the

reset vector routine accordingly.

On kernel startup, the sub-architecture’s initialization rou-

tine is responsible for installing its callback routines. This

includes functions for initialization of broadcast and core-

specific timers, initialization of hardware interrupts, TSC cal-

ibration, detection of i8042 keyboard controller / multiproces-

sor table / BIOS extension ROMs, and for the reservation of

ISA resources.

1) Clocks: Since the SCC hardware does not implement a

broadcast timer, we disabled the corresponding callback, but

the only available clock source LAPIC cannot be configured

via the sub-architecture mechanisms. In order to solve this

issue, we used the static bus frequency approach as with the

original SCC Linux. It must be noted that this missing callback

is currently under work in the Linux kernel community. The

TSC is calibrated using the same mechanism, but unlike the

LAPIC timer, we can return the bus clock value from the

centralized sub-architecture in this case.

By calibrating the clock sources in the described way, the

kernel can be unintentionally triggered to detect an unstable

TSC clock source. In such cases, the original kernel would

switch over to jiffie-based clock counting, which results in low-

quality millisecond resolution for the overall operating system.

In order to disable this safeguard in a standardized way, we

added the tsc=reliable option to the kernel command line.

2) Interrupts: The original SCC Linux modifications com-

pensated the missing interrupt controller by configuring the

LAPIC directly at boot time. Our version of the kernel

adjustments perform the same operations, but as part of the

timers.setup percpu clockev sub-architecture callback. This

callback is invoked at a comparable point to the original

modification in the control flow of the Linux startup process.

The x86 Linux kernel normally expects the system to

have 8259A programmable interrupt controllers (PICs) in

the default cascade configuration. Instead of commenting out

only their usage in the sources, we used the sub-architecture

features to switch of PIC utilization completely. This brings up

the new issue that ISA interrupts 0 to 15 do not automatically

get an interrupt vector number assigned. When the LAPIC

sends the LINT0/1 interrupts in this state, the kernel does not

have a corresponding mapping and cannot dispatch the call.

To remedy this, we insert the mappings manually into the

according data structures during the sub-architecture callback.

3) Message Passing Memory: If MPBT support is enabled,

drivers need a way to express their demand for mapping

message passing buffer memory. The original SCC Linux just

exported an internal Linux kernel function (ioremap) for

this purpose. Since this function is no longer present on newer

kernels, we chose to export our own function ioremap mpbt,
which then delegates to the internal kernel function responsible

for this task. For Linux 2.6.37, ioremap caller fulfills this

role; we extended it to support the MB page bit.

B. BIOS Emulation

As described in Section II-A, all references to BIOS func-

tions were directly removed in the original SCC Linux. While

this approach works for a fixed version of the sources, it

has major implications for later kernel versions. The Linux

setup code has been rewritten almost completely, from pure

assembler in the 2.6.16 version to mostly C based routines

starting from 2.6.17.

In order to realize a portable version of SCC enabled Linux,

we chose not to modify the setup code directly, but instead to

supply an emulation of the BIOS functions requested by the

kernel. This requires two changes to the initial memory image:

1) An Interrupt Vector Table (IVT) needs to be installed at

physical address 0, since BIOS calls are accomplished

via software interrupts.

2) The BIOS Emulation code that implements the software

interrupts needs to reside below +1MB, the highest

address reachable in real-mode.

The corresponding binaries are integrated into the memory

image by modifying the load.map file for Intel’s SCC Linux

tool chain. We manually created the IVT in a hex editor,

as it just specifies addresses in segment:offset form – these

addresses are located within the BIOS binary.

The setup code uses interrupt numbers 0x10 for the VGA

BIOS, 0x15 for general BIOS services, 0x16 for keyboard

and 0x1A for CMOS access. However, only 0x15 needs to

be implemented – all others can just return to their caller

without a defined result (IRET), since the setup utilizes a

suitable standard configuration in this case. Interrupt 0x15 acts

as multiplexer for various functions, but only the physical

memory configuration querying (0xe820) needs to return a

valid result at the moment. Our BIOS emulation therefore

returns the same three entries that are hard-coded into the

original SCC Linux here: Two RAM ranges for node-local

memory, and a reserved entry for the core’s local APIC range

(4KB starting at 0xFEE00000).

The BIOS emulation concept allows us to dynamically

construct the e820 memory map in future versions of the new

SCC kernel. For example, sccKit 1.4.0 contains the size of

node-local memory in a register in the FPGA, which our BIOS

emulation could read to construct an appropriate memory map.

C. Driver adjustments

In addition to the new kernel modifications, we developed

refactored versions of the original SCC device drivers.

Similar to SCC Linux, we provide the two major SCC

network drivers – an MCPC NIC Driver (rckpc) for off-

die and a Message-Buffer NIC Driver (rckmbx) for on-die

communication. Both drivers were updated to fit to the most

recent kernel interfaces.

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 33

Our rckmbx driver extends the original version by allowing

different kernel subsystems to co-exist and send messages to

other cores. These subsystems are situated below the socket

layer in the kernel software hierarchy, and allow different

message formats without using an IPv4 header. With this

implementation strategy, transmission of IPv4 packets (that

is provided by the original rckmb driver) is just a single

subsystem implementation. Other subsystem identifiers can be

used if desired. One example is our current research work on

a cache-coherent memory driver, which can then communicate

without involving the IPv4 protocol stack.

We further introduced the RockCreek /proc Driver (rckproc)

that exposes low-level hardware information (like the contents

of the TILEID register, or the current LUT mappings) via

the /proc pseudo file system. It allows applications to read

these information via regular file accesses, instead of having

to access the device drivers directly as with the original SCC

Linux. With this modification, Intel’s pid application that

queries the coordinates of the current core on the SCC die

can be rewritten as a simple shell script.

Another new driver, the RockCreek Performance Meter
Driver, is intended to report the core’s utilization to the MCPC.

This functionality is necessary for sccGui’s performance meter

to recognize an active core. In the original SCC Linux, the

GUI relies on a modified version of the CPUUTIL user-space

program, which reads the values from the /proc file system and

writes them to a statically known location in shared memory.

Our implementation uses the same algorithm, but being a

kernel driver, it can read the relevant statistics directly without

having to go through the /proc interface.

D. Other issues

Several concepts of the original SCC Linux were kept

in our version. Besides other things, we rely on the same

bootstrap method as SCC Linux does, in order to pre-load the

operating system image in main memory. We also replaced

the proprietary initrd generation from SCC Linux with a

standardized approach based on BuildRoot.
On standard x86 architecture, the CMOS RAM is accessed

via the I/O ports of the real-time clock hardware. As this

peripheral is not present on the SCC, we commented out the

appropriate routines the same way as the original SCC Linux.

There is no means, by either the kernel configuration or sub-

architecture, to build a kernel without clock hardware access

routines. It is possible to disable the according driver, but that

only removes the user-visible rtc device, not the support code

in the kernel.

Newer kernels provide a means to specify a built-in

command line, so one does not need to rely on the boot

loader to pass correct arguments. We use this feature for the

mmu=nopentium option (see Section II-B) and the tsc=reliable
option (see Section III-A1).

SCC Linux is based on the TinyCore Linux distribution.

Since this distribution is optimized for a small memory foot-

print, its lacks a proper package management for easy access

to advanced user mode tools. As alternative, we provide a

SCC-compatible Linux distribution based on Gentoo as service

for the MARC community. This distribution works both with

the original SCC Linux kernel, and with the optimized kernel

version presented here.

IV. RELATED WORK

Porting Linux to alternative platforms is an established

approach in operating system development and research [5].

Typical work focuses on real-time and embedded system

hardware optimizations [6].

An alternative approach to Linux on the SCC is the Bar-

relfish operating system [7], whose satellite kernel approach

matches the SCC hardware characteristics more specifically

than that of the original Linux. As most of the operating

system adjustments we have presented are hardware-related,

we expect them to be of interest to Barrelfish as well. The same

holds for all future developments that target the bare-metal

environment, like the SCC bare metal framework developed

at ETH Zürich.

CoreBoot [8] is an open-source BIOS implementation that

currently supports over 230 mainboards from all major proces-

sor and chipset vendors. It could act as alternative to the BIOS

emulation approach. Another option is the Unified Extensible

Firmware Interface (UEFI) as provided by the TianoCore

project [9].

V. CONCLUSION

In this paper, we analyzed the necessary operating system

kernel modifications to run Linux on SCC processor cores.

Our proposed improvements for such modification provide

better compatibility with recent and future versions of the

Linux kernel. The updated kernel architecture also acts as

foundation for our ongoing SCC operating system research.

Future work will focus on a scalable cache-coherent memory

driver approach, and on a distributed hypervisor concept for

single system image operation of the SCC.

REFERENCES

[1] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins,
H. Wilson, N. Borkar, G. Schrom, and et al., “A 48-Core IA-32 message-
passing processor with DVFS in 45nm CMOS,” 2010 IEEE International
SolidState Circuits Conference ISSCC, vol. 9, pp. 58–59, 2010.

[2] Intel Corporation, Intel Architecture Software Developer’s Manual, Vol-
ume 3: System Programming, 1999.

[3] E. Chan, RCCE comm: A Collective Communication Library for the In-
tel Single-chip Cloud Computer, http://communities.intel.com/docs/DOC-
5663, 2010.

[4] R. Love, Linux Kernel Development, 3rd ed. Pearson Education, 2010.
[5] C. yue Bi, Y. peng Liu, and R. fang Wang, “Research of key technologies

for embedded Linux based on ARM,” in International Conference on
Computer Application and System Modeling, pp. 373–378.

[6] R. Lehrbaum, “Using Linux in Embedded and Real-Time Systems,” Linux
Journal, Jul. 2000.

[7] A. Schüpbach, S. Peter, A. Baumann, T. Roscoe, P. Barham, T. Harris,
and R. Isaacs, “Embracing diversity in the Barrelfish manycore operating
system,” in In Proceedings of the Workshop on Managed Many-Core
Systems, 2008.

[8] Coreboot, http://www.coreboot.org.
[9] Intel Corporation, “TianoCore,” http://www.tianocore.org.

34 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

Early experience with the Barrelfish OS
and the Single-Chip Cloud Computer

Simon Peter, Adrian Schüpbach, Dominik Menzi and Timothy Roscoe
Systems Group, Department of Computer Science, ETH Zurich

Abstract—Traditional OS architectures based on a single,
shared-memory kernel face significant challenges from hardware
trends, in particular the increasing cost of system-wide cache-
coherence as core counts increase, and the emergence of hetero-
geneous architectures – both on a single die, and also between
CPUs, co-processors like GPUs, and programmable peripherals
within a platform.

The multikernel is an alternative OS model that employs
message passing instead of data sharing and enables architecture-
agnostic inter-core communication, including across non-coherent
shared memory and PCIe peripheral buses. This allows a single
OS instance to manage the complete collection of heterogeneous,
non-cache-coherent processors as a single, unified platform.

We report on our experience running the Barrelfish research
multikernel OS on the Intel Single-Chip Cloud Computer (SCC).
We describe the minimal changes required to bring the OS up
on the SCC, and present early performance results from an SCC
system running standalone, and also a single Barrelfish instance
running across a heterogeneous machine consisting of an SCC
and its host PC.

I. INTRODUCTION

The architecture of computer systems is radically chang-
ing: core counts are increasing, systems are becoming more
heterogeneous, and the memory system is becoming less
uniform. As part of this change, it is likely that system-wide
cache-coherent shared memory will no longer exist. This is
happening not only as specialized co-processors, like GPUs,
are more closely integrated with the rest of the system, but
also as core counts increase we expect to see cache coherence
no longer maintained between general purpose cores.

Shared-memory operating systems do not deal with this
complexity and among the several alternative OS models,
one interesting design is to eschew data sharing between
cores and to rely on message passing instead. This enforces
disciplined sharing and enables architecture-agnostic commu-
nication across a number of very different interconnects. In
fact, experimental non-cache-coherent architectures, such as
the Intel Single-Chip Cloud Computer (SCC) [1], already
facilitate message passing with special hardware support.

In this paper, we report on our efforts to port Barrelfish to
the SCC. Barrelfish is an open-source research OS developed
by ETH Zurich and Microsoft Research and is structured
as a multikernel [2]: a distributed system of cores which
communicate exclusively via messages.

The multikernel is a natural fit for the SCC that can fully
leverage the hardware message passing facilities, while requir-
ing only minimal changes to the Barrelfish implementation for
a port from x86 multiprocessors to the SCC. Furthermore, the

Fig. 1. Sending of a message between SCC cores

SCC is a good example of the anticipated future system types,
as it is both a non-cache coherent multicore chip, as well as
a host system peripheral.

We describe the modifications to Barrelfish’s message-
passing implementation, the single most important subsystem
needing adaptation. We give initial performance results on the
SCC and across a heterogeneous machine consisting of an
SCC peripheral and its host PC.

II. MESSAGE PASSING DESIGN

Message passing in Barrelfish is implemented by a mes-
sage passing stub and lower-level interconnect and notifi-
cation drivers. The message passing stub is responsible for
(un-)marshaling message arguments into a message queue and
provides the API to applications. Messages are subsequently
sent (received) by the interconnect driver, using the notification
driver to inform the receiver of pending messages. Messages
can be batched to reduce the number of notifications required.

Message passing is performance-critical in Barrelfish and
thus heavily tied to the hardware architecture. In this section,
we describe the interconnect and notification driver design
between cores on the SCC, as well as between host PC and
the SCC. We mention changes to the message passing stub
where appropriate.

A. SCC Inter-core Message Passing

The SCC interconnect driver reliably transports cache-line-
sized messages (32 bytes) through a message queue in non-
coherent shared memory. Shared memory is accessed entirely
from user-space, shown by steps 1 and 7 in Figure 1, using
the SCC write-combine buffer for performance. The polling
approach to detect incoming messages, used by light-weight

Fig. 2. Sending of a message from host to SCC

message passing runtimes, such as RCCE [3], is inappropriate
when using shared memory to deliver message payloads, since
each poll of a message-passing channel requires a cache
invalidate followed by a load from DDR3 memory.

Consequently, the notification driver uses inter-core notifica-
tions, implemented within per-core kernels, to signal message
arrival. Notifications are sent by a system call (2) via a ring-
buffer on the receiver’s on-tile message passing buffer (MPB)
and reference shared-memory channels with pending messages
(3). An inter-core interrupt (IPI) is used to inform the peer
kernel of the notification (4), which it forwards to the target
application (6).

At first sight, it may seem odd to use main memory (rather
than the on-tile MPB) for passing message payloads, and to
require a trap to the kernel to send a message notification.
This design is motivated by the need to support many message
channels in Barrelfish and more than one application running
on a core. The SCC’s message-passing functionality does not
appear to have been designed with this use-case in mind. We
discuss this issue further in Section IV.

B. Host-SCC Message Passing

The SCC is connected to a host PC as a PCI express (PCIe)
device and provides access to memory and internal registers
via a system interface (SIF). The host PC can write via the
SIF directly to SCC memory using programmed I/O or the
built-in direct memory access (DMA) engine.

The interconnect-notification driver combination used be-
tween host PC and SCC, called SIFMP, employs two proxy
drivers. One on the host, and one on the SCC. New SIFMP
connections are registered with the local proxy driver. When
the interconnect driver is sending a message by writing to
the local queue (1), the notification driver notifies the proxy
driver (2), which copies the payload to an identical queue
on the other side of the PCIe bus (3). The proxy driver then
forwards the notification to the receiver of the message via
a private message queue (4, 5), sending an IPI to inform the
receiving driver of the notification via its local kernel on the
SCC (6, 7). The peer proxy reads the notification from its
private queue (8) and forwards it to the target application
(9), which receives the message by reading the local copy
via its interconnect driver (10). This implementation, shown
in Figure 2, uses two message queues (one on each side) and

Fig. 3. Average notification latency from core 0 (Overall). Send and Receive
show time spent in sending and receiving, respectively.

two proxy driver connections (one for each driver) for each
SIFMP connection.

III. EVALUATION

We evaluate message passing efficiency by running a series
of messaging benchmarks. All benchmarks execute on a Rocky
Lake board, configured to 533MHz core clock speed, 800MHz
memory mesh speed and 266MHz SIF clock speed. The host
PC is a Sun XFire X2270, clocked to 2.3GHz.

A. Notification via MPB

We use a ping-pong notification experiment to evaluate the
cost of OS-level notification delivery between two peer cores.
Notifications are performance critical to notify a user-space
program on another core of message payload arrival. The
experiment covers the overheads of the system call required to
send the notification from user-space, the actual send via the
MPB and corresponding IPI, and forwarding the notification
to user-space on the receiver.

Figure 3 shows the average latency over 100,000 iterations
of this benchmark between core 0 and each other core, as
well as a break-down into send and receive cost. As expected,
differences in messaging cost due to topology are only notice-
able on the sender, where the cost to write to remote memory
occurs. The relatively large cost of receiving the message is
due to the direct cost of the trap incurred by the IPI, which
we approximated to be 600 cycles, and additional much larger
indirect cost of cache misses associated with the trap.

B. Host-SCC Messaging

We determined the one-way latency of SIFMP for a cache-
line size message from host to SCC to be on the order of
5 million host cycles. As expected from a communication
channel that crosses the PCIe bus, SIFMP is several orders of
magnitude slower than messaging on the host (approximately
1000 cycles). To gain more insight into the latency difference,
we assess the performance of the PCIe proxy driver imple-
mentation, by evaluating read access latency of varying size
from SCC memory to the host PC, using DMA.

 5

 10

 15

 20

 25

 30

 35

 1 4 8 12 16 20 24 28 32

S
p

e
e

d
u

p

Cores

RCCE
Barrelfish

Fig. 4. RCCE LU benchmark speedup comparison

The results show a baseline read overhead of about 500,000
host clock cycles, which is 10% of the messaging overhead.
Thus, PCIe bus latency explains only a fraction of the mea-
sured messaging overhead and we have yet to determine the
cause of these overheads.

C. Application-level benchmarks

The standard software environment available on the SCC
uses RCCE [3], a library for light-weight communication,
highly optimized for this platform, requiring exclusive access
to the MPB. We implemented a substrate supporting the
RCCE message-passing interface using Barrelfish stubs and
interconnect drivers for messaging, which multiplexes MPB
access to applications. We evaluate the LU benchmark shipped
with RCCE to compare the performance achieved on Barrelfish
to that of RCCE.

From the result, shown in Figure 4, we can see that, at
the application level, Barrelfish shows only slightly lower
performance and scalability than direct MPB access via RCCE.
This overhead is due to multiplexing and the early version of
our port, which we seek to improve.

IV. DISCUSSION

The port of the IA-32 version of Barrelfish to the SCC
required 2235 lines of SCC-specific C code and 130 lines of
assembly, only 17% of which execute in privileged mode. By
and large, the bring-up for SCC was straightforward and took
about 2 person-months. The prototype is fully functional and
shows adequate initial application performance.

We experienced no significant problems with Barrelfish due
to the lack of coherent caches on the SCC. This was not a big
surprise to us, but it was a confirmation of our expectations,
and a validation of the OS design. We regard the lack of
coherent caches as a useful feature from a research perspective.

In this section, we cover the most influential architectural
issues to our design and discuss possible improvements in
either software or hardware.

A. Cache issues

The caches do not allocate a cache line on a write miss,
treating it as an uncached write to memory. Furthermore, a

core is allowed only one outstanding write transaction; when
such a write miss occurs, any subsequent memory or L2 cache
access causes the core to stall until the write to memory
completes (typically around 100 cycles). Combined with the
lack of a store buffer, this policy causes severe performance
degradation for word-sized writes to data not already present
in the cache. When storing to a fresh stack frame, or saving
registers in a context switch path, each individual memory
write instruction will stall the processor.

For example, in Barrelfish kernel code, we observed that
simple function calls in hot paths of the system regularly
have an order of magnitude greater overhead (in cycles) on
SCC compared to newer x86 processors. Our code is not
optimized for this behavior and shows major inefficiencies,
in particular on function call boundaries immediately after
kernel crossings. Our tentative explanation is that caller-saved
registers will be pushed onto the stack upon a function call and
then restored upon return from the function. Both cases miss
in the cache, but the call incurs particularly high overhead,
as each individual write goes to memory, and the cache lines
are only allocated when reading them on return. We have also
observed substantially increased costs for exception and trap
handling, which save register state to memory not commonly
present in the cache.

It is possible that an OS workload is a particularly bad case
for this cache design. More work is required to both confirm
this as the cause, and explore possible solutions. Ideally this
could be fixed in hardware, through changes to the cache
architecture, the addition of a store buffer, or simply allowing
the write-combining buffer to be used for non-message-buffer
memory, which would mitigate the problem by allowing full
cache-line writes to memory. A possible software fix would
involve reading from each cache line before it was written, to
ensure its presence in the cache; in the case of context save
code this could be done explicitly, but for stack access would
probably require compiler modifications.

B. Message-passing memory

The ability to bypass the L2 cache for areas of address
space designated as messaging buffers (MB), combined with
an efficient L1 invalidation of all such lines, is one of the most
interesting features of the SCC.

As with other message-passing features of the SCC, this
functionality may have been designed with a single-application
system in mind. When using MB memory for the operating
system, as in Barrelfish, we typically have a number of com-
munication channels in use at any one time. For this reason,
although the CL1INVMB instruction is extremely cheap to
execute, its effects may be somewhat heavyweight, since it
invalidates all messaging data, some of which we may wish
to have remain in the L1 cache.

In our message-passing implementations, we generally
know precisely which addresses we wish to invalidate. Conse-
quently, we would find more fine-grained cache control very
useful. An instruction which would invalidate a region around
a given address would be ideal for us.

July, 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 37

Better still would be to extend such functionality to the
L2. Receiving data in an MPB generally involves an L1
miss (ideally to the on-tile MPB, but see below why this
is problematic), followed by a miss to main memory caused
by copying the data somewhere where it can be cached in
L2, followed by a second L2 miss when the data needs to
be subsequently read, due to the non-allocation policy of the
cache on a write miss. The final penalty can be mitigated
somewhat by performing a read of the destination location
(and so populating the L2) before writing the received data.

This coarse-grain cache access can have far-reaching impli-
cations for applications. For example, in its current form the
cache architecture seems to prohibit any efficient zero-copy
I/O implementation, since if the message passing buffers are
used, any cached data will be invalidated any time further I/O
occurs. Our position overall is that explicit cache management
is good, and Barrelfish (and, we believe, other OS code)
would benefit from future SCC implementations providing
much more fine-grained control over it.

C. The on-tile message passing buffer

We experienced two significant challenges when using the
on-tile message passing buffers on SCC. These challenges are
related, but different.

1) Size: The small size of 8192 bytes constrains the size of
message queues. If messages cannot be lost (a typical design
assumption for message-passing applications, including Bar-
relfish), this results in blocking and tighter coupling between
communicating processes.

Barrelfish uses message-passing throughout for communica-
tion, and consequently requires a large number of independent
message channels to share the MPB. This leads to the question
of how to allocate space in the MPB to message channels.
Obviously, the space is too small to reserve parts for message
payload. For example, reserving 8 cache lines for each mes-
sage queue would allow only 32 message channels per core,
which is impractical.

It is conceivable to multiplex all Barrelfish channels onto a
single channel per pair of cores, requiring only 47 channels
in the MPB and privileged code to demultiplex incoming
messages. This allows 170 bytes of buffer per core pair, still
small, but possibly useful for small messages. The downside
to this approach is a kernel crossing and increased contention.

Finally, message payload could be written to the MPB per
application, but this increases contention even further. In both
cases, direct payload access by applications is prohibited, as
the MPB has to be freed up as quickly as possible to reduce
contention. This requires copying the message in and out of
the MPB, which is a costly operation.

2) Multiplexing: An operating system must mediate access
to the MPBs to ensure safe sharing of the buffers between
applications. Unfortunately, the very high MPB access perfor-
mance is completely dominated by the cost of kernel crossing
to validate the access. As an additional cost, since multiple
cores can be expected to be accessing each tile’s MPB, write
access to each core’s memory must be done under a lock.

Like most resources, the MPBs can be multiplexed in both
in space and time.

Space-multiplexing the MPBs requires a high-performance
protection mechanism to divide the buffer between applica-
tions or other resource principals. For main memory, this is
performed by each core’s MMU. The P54C chip used in
the SCC provides hardware protection of memory segments
of sizes smaller than a page and thus could be used to
space-multiplex the MPB when small messages are sufficient.
However, the size of the MPB prohibits space multiplexing of
larger message queues.

Time-multiplexing the MPBs requires copying each appli-
cation’s state into or out of the MPBs on a context switch,
or performing this lazily. This is potentially 8KB of message
data, a substantial context-switch overhead when caches do
not allocate on a write miss.

Unlike memory which is under the exclusive use of an appli-
cation, memory used for communication between applications
on different cores is shared between a pair of principals. Time-
multiplexing on-tile MPB memory in software is possible via
co-scheduling [4] of communicating principals on different
cores. However, this constrains the system-wide schedule and
requires considerable communication overhead in itself [5].

In addition, our experience with Barrelfish so far suggests
that some kind of inter-core notification mechanism is an
important complement to polled message-passing support. The
fact that we can access interrupt pins on cores remotely on
the SCC is very nice in this regard, but even better would be
some kind of fast user-space control transfer. One option is to
introduce address space identifiers (these should be orthogonal
to virtualization in any case), and cause a lightweight same-
address-space jump if and only if that address space is running.

D. System Interface

A number of different approaches are possible for com-
munication across a PCIe bus, such as using only a single
driver in the host PC which controls all memory operations
on the SCC. While this approach is both simpler and more
resource efficient than our current implementation, the lack of
notification mechanism from the SCC to the host PC makes
it untractable. The host PC has to poll every possible mes-
sage channel in SCC memory, incurring a huge performance
overhead. The double proxy approach reduces this cost by
requiring only one channel to be polled.

To be able to better leverage a single image OS across both
host and peripheral and facilitate message passing across the
PCIe bus, we are missing an efficient notification mechansim
from SCC to host. Given PCIe bus latencies, a simple PCI
device interrupt would be sufficient.

V. RELATED WORK

Helios [6] introduces the concept of satellite and coordinator
kernels to enable heterogeneous computing. Satellite kernels
are light-weight run-times that execute on the peripheral and
provide a limited set of services. System calls pertaining
to functionality implemented in the coordinator kernel are

38 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

relayed to the host PC. This enables applications and operating
system components to run unmodified on the peripheral.
Barrelfish has no concept of satellite kernels and follows a
fully distributed model.

The standard operating system model for the SCC treats the
chip as a cluster of independent machines and runs a complete
Linux operating system on each core that communicate via the
TCP/IP network protocol [3]. Using TCP/IP to communicate
incurs high overheads for unnecessary functionality, such as
message fragmentation, replay and sequencing. Furthermore,
executing a complete OS on each core has high memory
overhead, while complicating global resource management,
which has to be carried out by coarse-grained user-level cluster
resource management software.

VI. CONCLUSION

We have demonstrated that it is possible to run a single
image OS across a heterogeneous, non-cache-coherent ma-
chine consisting of an SCC and its host PC with reasonable
performance (the remaining issues with our PCIe interconnect
driver notwithstanding).

Our experience so far has provided insight into messaging
performance on the SCC when the on-tile message buffers
have to be multiplexed by an operating system. Barrelfish is
a work in progress, and we believe that we can improve on
the performance numbers presented here. Nevertheless, we feel
our SCC experience provides useful insights for future designs
of more OS-friendly message-passing hardware.

In addition to performance, asymmetry and latency will
continue to be issues for future multicore architectures. We
are looking at using improved scheduling to address this
challenge, using the SCC port of Barrelfish as a research
vehicle. For example, threads that communicate or synchronize
frequently should not be placed on cores separated by a
high latency link, and the cost of transferring a program and
its working set to a different core should not outweigh the
expected speed-up.

REFERENCES

[1] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenk-
ins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob,
S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow, M. Riepen,
G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss, T. Lund-Larsen,
S. Steibl, S. Borkar, V. De, R. Van Der Wijngaart, and T. Mattson, “A
48-core IA-32 message-passing processor with DVFS in 45nm CMOS,”
in International Solid-State Circuits Conference, Feb. 2010, pp. 108–109.

[2] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: a new OS
architecture for scalable multicore systems,” in Proceedings of the 22nd
ACM Symposium on Operating System Principles, Oct. 2009.

[3] R. F. van der Wijngaart, T. G. Mattson, and W. Haas, “Light-weight com-
munications on intel’s single-chip cloud computer processor,” SIGOPS
Oper. Syst. Rev., vol. 45, pp. 73–83, February 2011.

[4] D. G. Feitelson and L. Rudolph, “Gang scheduling performance bene-
fits for fine-grain synchronization,” Journal of Parallel and Distributed
Computing, vol. 16, pp. 306–318, 1992.

[5] J. Ousterhout, “Scheduling techniques for concurrent systems,” in IEEE
Distributed Computer Systems, 1982.

[6] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and G. Hunt,
“Helios: heterogeneous multiprocessing with satellite kernels,” in Pro-
ceedings of the 22nd ACM Symposium on Operating System Principles,
2009, pp. 221–234.

July, 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 39

On Mapping Distributed S-NET

to the 48-core Intel SCC Processor
Merijn Verstraaten, Clemens Grelck, Michiel W. van Tol, Roy Bakker, Chris R. Jesshope

Informatics Institute, University of Amsterdam

Science Park 904, 1098 XH Amsterdam, The Netherlands

Abstract—Distributed S-NET is a declarative coordination
language and component technology primarily aimed at modern
multi-core/many-core chip architectures. It builds on the concept
of stream processing to structure dynamically evolving networks
of communicating asynchronous components. These components
themselves are implemented using a conventional language suit-
able for the application domain. Our goal is to map Distributed
S-NET to the Intel SCC processor in order to provide users with
a simplified programming environment, yet still allowing them
to make use of the advanced features of the SCC architecture.

Following a brief introduction to the design principles of
S-NET, we sketch out the general ideas of our implementation
approach. These mainly concern the use of SCC’s message
passing buffers for lightweight communication of S-NET records
and control data between cores as well as remapping of large
data structures through lookup table manipulation. The latter
avoids costly memory copy operations that would result from
more traditional message passing approaches. Last, but not
least, we present prototypical performance measurements for our
communication primitives.

I. INTRODUCTION

The Single-chip Cloud Computer (SCC) experimental pro-

cessor is a concept vehicle created by Intel Labs as a platform

for many-core software research. It provides 48 P54C cores, an

on-chip message passing network, non cache-coherent off-chip

shared memory and dynamic frequency and voltage scaling on

different subsets of cores [1]. Creating programs for systems

which support large amounts of parallelism is already difficult;

even in the absence of specific exploitation of the power

saving features. Trying to also utilise these power management

features at the same time complicates the programmer’s job

considerably.

Currently RCCE [2] (including the community contributed

iRCCE [3]) and RCKMPI [4] are available for programming

the SCC. RCCE is an SCC-specific low-level message passing

library and RCKMPI is an adaptation of MPI largely based on

RCCE. To the best knowledge of the authors, no higher level

programming environments are (yet) available on the SCC.

While message passing is a very efficient way programming

it also requires a lot of attention to detail from the programmer.

Our goal is to make this task simpler.

S-NET1 [5], [6], [7] is a coordination language whose aim

is to simplify the programming of parallel systems. As a pure

coordination language S-NET provides no features to express

any sort of computation; it relies on an auxiliary language

1The development of S-Net has been funded by the European Union through
the FP-6 project Aether and the FP-7 project Advance.

for the implementation of sequential, state-less components.

S-NET in turn organises the interaction of these components

— called boxes — in a streaming network. A type system on

streams gives essential static guarantees on the behaviour of

S-NET streaming networks.

Our two step approach, internally sequential components on

the one hand and orderly component interaction, somewhat

reflects the hardware design principle of the SCC and other

contemporary multicore chip architectures: cores that were

originally designed as central processing units combined on

a single die.

This paper reports on our on-going efforts to map S-NET to

the Single Chip Cloud Computer as an alternative program-

ming environment. Starting from our MPI-based distributed

implementation of S-NET [7] the obvious choice is to simply

use RCKMPI as underlying middleware layer. However, the

performance of MPI is less than what can be achieved by

an implementation which uses the SCC’s hardware features

directly. Additionally MPI restricts us to a static number of

nodes, which is something which is undesirable in light of

future development directions. Instead we focussed our efforts

on implementing asynchronous message passing using the

message passing buffers (MPBs) as communication channel

and using interprocessor interrupts as out-of-band notifica-

tions. To accomplish this we had to come up with a way for

our userspace code to receive the interrupts which are being

trapped by the kernel.

In this paper we will analyse the approaches we considered

and their impact on our goal of having a programming model

which is more convenient to use than writing programs directly

using RCCE or MPI, while still capable of using the features

provided by the SCC. We will begin with an overview of

both S-NET (Section II) and Distributed S-NET (Section III)

before we discuss the effects of the SCC’s design on our

design (Section IV). We will discuss our initial measurements

in Section V and conclude in Section VI.

II. S-NET

S-NET turns functions written in a standard programming

language (e.g. C) into asynchronously executed, stateless

stream-processing components termed boxes. Each box is

connected to the rest of the network by two typed streams, one

for input and one for output. Messages on these typed streams

are organised as non-recursive records, i.e. sets of label-value

pairs. The labels are subdivided into fields and tags. Fields are

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 41

C D

C D

C D

C D

<i> <i>

A B

A B

A B

A B

{<stop>}

net X connect ((A..B | C..D)!<i>)*{<stop>}

Figure 1. Example of an inductive streaming network constructed using network combinators. A, B, C and D denote boxes or networks defined elsewhere.
Then A..B|C..D denotes the subnetwork where any record either goes through A and then B or through C and then D. The actual routing depends on the
types of A, B, C and D and is left out in this figure. The whole subnetwork is then replicated in parallel based on the index i carried along by all records in
the system. At last, this network is replicated serially with the presence of stop tag acting as a dynamic drop-out condition for a records after having passed
each instance of the replicated network.

associated with values from the box language domain, they are

entirely opaque to S-NET. Tags are associated with integer

numbers that are accessible on both the coordination and on

the box level.

A box triggers when it receives a record on its input stream,

the box then applies its box function to that record. In the

course of function execution the box may output records to its

output stream. Once the function has finished the S-NET box

is ready to receive and process the next record on the input

stream.

On the S-NET level a box is characterised by a box
signature; a mapping from an input type to a disjunction of

types, named the output type. For example,

box foo ((a , < b >) −> (c) | (c , d , < e >)) ;

declares a box that expects records with a field labeled a and

a tag labeled b. The box responds with an unspecified number

of records that either have just field c or fields c and d as

well as tag e. The associated box function foo is supposed to

be of arity two: the first argument is of type void* to qualify

for any opaque data; the second argument is of type int.

The box signature naturally induces a type signature. For a

proper specification of the box interface it is essential to have

a concrete ordering of fields and tags. However, on the S-NET

level we ignore the ordering when reasoning about boxes:

treating them as sets of labels instead of tuples of labels. Hence

the type signature of box foo is {a,} −> {c} | {c,d,<e>}.

This type signature states foo accepts any input record

that has at least field a and tag b, but may well contain

further fields and tags. The formal foundation of this behaviour

is structural subtyping on records. Any record type t1 is a

subtype of t2 iff t2 ⊆ t1. This subtyping relationship extends

to multivariant types. A multivariant type x is a subtype of y
if every variant v ∈ x is a subtype of some variant w ∈ y.

Subtyping on input types of boxes raises the question what

happens to the excess fields and tags. These are not just

ignored in the input record of a network entity, but are attached

to any outgoing record produced by it in response to that

record. Subtyping and flow inheritance are indispensable when

it comes to getting boxes that were designed separately to work

together in a streaming network.

It is a distinguishing feature of S-NET that it neither

introduces streams as explicit objects nor defines network

connectivity through explicit wiring. Instead, it uses algebraic

formulae to describe streaming networks. The restriction of

boxes to a single input and a single output stream (SISO) is

essential for this. S-NET provides four network combinators:

static serial and parallel composition of two networks and

dynamic serial and parallel replication of a single network.

These combinators preserve the SISO property; any network,

regardless of its complexity, again is a SISO entity.

Let A and B denote two S-NET networks or boxes. Serial

combination (A..B) constructs a new network where the

output stream of A becomes the input stream of B, and the

input stream of A and the output stream of B become the input

and output streams of the combined network, respectively. As

a consequence, A and B operate in pipeline mode.

Parallel combination (A|B) constructs a network where

incoming records are either sent to A or to B and the resulting

record streams are merged to form the overall output stream

of the combined network; the type system controls the flow

of records. Each network is associated with a type signature

inferred by the compiler. Any incoming record is directed

towards the subnetwork whose input type better matches the

type of the record. If both branches match equally well, one

is selected non-deterministically.

The parallel and serial combinators have infinite counter-

parts: serial and parallel replicators for a single subnetwork.

The serial replicator A*type constructs an infinite chain of

replicas of A connected by serial combinators. The chain is

inspected before every replica to extract records that match

the type specified as the second operand.

The parallel replicator A!<tag> also replicates network

A infinitely, but the replicas are connected in parallel. All

incoming records must carry the tag; its value determines the

replica to which a record is sent.

Fig. 1 shows an example for the use of network combinators

to construct streaming networks.

42 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

Whereas boxes can easily split one incoming record into

multiple records sent to the output stream one after the other,

the opposite operation, i.e. merging two records on the input

stream to form a single record on the output stream, is not

possible with the means of S-NET introduced thus far. Merg-

ing independent records is the essence of synchronisation in

the streaming context of S-NET. To isolate this coordination-

level feature as far as possible from the box or application

level, S-NET uses a special built-in box for this purpose called

synchrocell. For example, the synchrocell {[|{ a ,b},{c ,d }|]

awaits records containing fields a/b and c/d and merges them

into a record containing all four fields. For an exact definition

of synchrocells and an extended discussion of the whole issue

of synchronisation in the context of S-NET see [8].

We refer interested readers to [6], [5] for a detailed account

of the design of S-NET and to [9], [10] for application

examples.

III. DISTRIBUTED S-NET

S-NET as described so far is an abstract notation for stream-

ing networks of asynchronous components. There is no notion

of computing resources in S-NET, nor does S-NET make any

specific assumptions about the execution environment.

Distributed S-NET [7] is a conservative extension of S-NET

that introduces the concept of abstract compute nodes as an

organisational layer on top of the logic network of boxes

defined by standard S-NET.

We introduce two placement combinators. Static placement
places the execution of a box or a network onto a logical node.

Indexed dynamic placement places the execution of a box or

a network onto a logical node on a per-record basis, based on

a specific tag of that record. More precisely, each record is

routed through a replica of the box or network instantiated on

the relevant logical node.

We deliberately restrict ourselves to plain integer values

for identifying nodes to retain the advantages of an abstract

model as far as possible. The concrete mapping of numbers

to machines is implementation-dependent. Our prototype im-

plementation of Distributed S-NET is based on MPI where

numbers correspond to MPI task identifiers.

Implementation-wise, Distributed S-NET takes care of ini-

tially setting up and dynamically maintaining disconnected

S-NET streaming graphs on multiple nodes. Input and Output

managers at node-boundaries render the distributed memory

transparent by automatically serialising, transmitting and de-

serialising S-NET records when moving from one node to

another.

While tags are easily sent around the network, field data can

potentially be large. In this case serialisation, transmission and

deserialisation at every node boundary between the creating

node and the consuming node of some field would be costly.

We instead transmit a qualified reference which allows the

actual data associated with some field to be fetched, on-

demand, from its current location to where it is needed.

Interested readers are referred to [7] for a more thorough

introduction of the design and implementation of Distributed

S-NET. Several case studies in [7] as well as [11] illus-

trate that implementing real-world distributed applications in

Distributed S-NET is easier than using a low-level message

passing middleware directly.

IV. S-NET ON THE SCC

Our initial work focussed on preparing the S-NET code-

base to support multiple implementations of its distribution

layer, implementing and experimenting with communication

primitives on the SCC and later, when it became available,

getting the current MPI implementation running on the SCC

using RCKMPI. As mentioned in Section II, the MPI im-

plementation of Distributed S-NET copies (potentially large)

application data structures by (de-)serialising them over MPI

messages. This is an expensive operation which can and should

be avoided on a shared memory machine like the SCC.

Instead of copying it should be much faster to remap the

memory from one core to another using the programmable

lookup tables (LUTs). These control the translation of memory

requests from “virtual” addresses to actual physical memory

addresses. This means that changing an entry in the LUTs lets

us move data in and out of a core’s visible memory space

without having to actually copy or move the data.

One problem with this approach is that the LUTs are behind

the L2 cache. This mean cache hits and misses are checked

before the final physical address look up is done. Hence, the

L2 cache may contain stale data, e.g. the cache contains data

at virtual address x (which translates to physical address y),

meanwhile the LUTs have been changed so virtual address x
translates to physical address z. When the core attempts to

read from virtual address x it will still read the cached data

at y instead of z.

This isn’t a problem if it is possible to — efficiently —

invalidate or flush the relevant L2 entries (or the entire L2).

However, since the P54C cores of the SCC never had an L2

cache they don’t have such an instruction. There is an L2 reset

pin available on the machine, but using it crashes the core. This

leaves two possible solutions for remapping memory: marking

the used address range as uncacheable or flushing the L2 after

every remap. Since there is no flush instruction the only way

to accomplish a flush is to manually read in a full cache worth

of data, thereby evicting the entire contents of the cache.

Aside from the big field data S-NET also sends a large

amount of smaller meta-data messages consisting of tags.

We want to be able to quickly deal with these messages,

while wasting as little time as possible on this “non-work”

computation.

Secondly, we need to be able to deal with multiple incoming

message queues. This is important because S-NET utilises

fixed size buffers, which propagate back pressure through the

network, to prevent a box which produces huge number of

output records from overwhelming the network.

If communication to one of the incoming queues can also

block communication to other queues, then the network sud-

denly becomes susceptible to deadlocks. For example, imagine

we use a synchronous communication method (like RCCE)

or an asynchronous communication method which uses the

MPB as a single queue for all incoming messages. When

a node blocks on a send — because it is synchronous or the

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 43

receiving MPB queue is full — the network deadlocks when

further progress of the network depends on the same node

(further down the network) doing a receive.

Since a node can have an arbitrary number of incoming

message queues, the MPB with its limited size is not suitable

for holding all incoming queues for a node. A node should

move incoming messages from the MPB to queues in its own

memory as soon as possible to keep receive space free. There

are two obvious mechanism for a core to know when to move

messages from the MPB: the core can either occasionally poll

its MPB to see if there is anything new or we can use an

out-of-band signal, in the form of an interprocessor interrupt.

The downside of polling is that when done infrequently

it can take too long to make room in the MPB for new

messages. If done too frequently time and energy are wasted.

The interrupt based approach means having to context switch

to the kernel to handle the interrupt and then context switch

back to the program. The viability of this later option depends

on the cost of a context switching.

Once the more basic work of getting S-NET running on the

SCC is finished we intend to investigate the possibilities of

the power management features. Since not all tasks take the

same time and S-NET propagates back pressure through the

network; there will always be one or more bottlenecks in a

network, potentially leaving the parts of the network which

are behind this bottleneck idle. The runtime system should

be capable of lowering the clock speed on these idle nodes

to save power, while increasing it on the bottleneck nodes to

increase throughput of the network.

This functionality could then be extended to take into

account that S-NET networks are dynamic, they grow and

shrink as the computation moves through phases. Dynami-

cally splitting and merging networks into smaller or bigger

components would allow the runtime to allocate more cores

to bottleneck tasks or deallocate cores from idle components,

potentially even shutting down cores entirely or starting them

up as computation demands.

V. MEASUREMENTS

As discussed in the previous section, there are only two

ways to deal with the possibility of stale data in the L2 cache

when remapping memory using the LUTs. Manually flushing

the entire cache or marking the memory as uncacheable.

Our measurements show that it takes approximately 1 million

cycles to flush the cache manually; plus the cost of evicting

still useful data, which has to be fetched from memory again.

The difference between L2 cache hits and L2 cache miss-

es/uncached memory is a factor 6 writing speed reduction.

Uncached memory and L2 cache misses write at a speed of

up to 20 MB/s, cache hits write at up to 125 MB/s. For reading

the speed difference is a factor 14. Uncached memory and L2

cache misses read at up to 20 MB/s whereas cache hits read

at up to 285 MB/s.

The uncached speeds translate to a read and write speed

of approximately 102 cycles per 4 bytes, or 25.5 cycles/byte.

This means it costs 51 cycles in total to transfer one byte using

uncached memory, from here we can see that the performance

Hops Remote Kernel Roundtrip

0 2.8 4.6 7.4

1 2.9 4.5 7.5

2 3.0 4.6 7.6

3 3.0 4.7 7.7

4 3.1 4.7 7.8

5 3.0 4.6 7.6

6 3.0 4.7 7.7

7 3.0 4.6 7.6

8 3.1 4.6 7.7

Table I
INTERPROCESSOR INTERRUPT LATENCIES (IN 1000 CYCLES)

penalty of disabling caches start to outweigh the 2 million

cycles required to flush two L2 caches once we want to transfer

more than 38 KB.

The Barrelfish developers already did some measurements

[12] with regard to the speed of notifications using the MPBs

and the latencies of interprocessor interrupts (IPI). But since

we plan to run in user space under Linux, unlike Barrelfish, we

are interested in how much overhead we would incur doing

this. We did all our measurements on a system running the

cores at 533 MHz and mesh network and DDR controllers

running at 800 MHz.

To free up one of the two available interrupt pins we

modified the rckmb driver to expose a kernel parameter

(using sysfs) which lets us switch between interrupt-driven and

polling mode. Next we wrote a simple Linux kernel module

which would register a handler for the freed interrupt. This

handler simply sends a POSIX signal to a user process; this

way we can use interrupts to effectively send POSIX signals

between processes running on different cores. Which signal

is send and to which user process it is sent is configured via

kernel parameters exposed using sysfs.

After the kernel module was done we had the basic infra-

structure needed to test the latencies of IPIs. Each core, except

core 0, was running a simple program with an infinite loop

doing nothing and an installed signal handler which would

raise an interrupt on core 0. Core 0 was running a program

which would run through 100,000 iterations of the below steps

for every core:

1) Read the cycle counter

2) Raise an interrupt on the other core

3) Read the cycle counter upon entering the interrupt

handler in the kernel

4) Read the cycle counter again upon entering the process’

signal handler

5) Read the cycle count read inside the kernel in using the

sysfs

These tests give us three cycle counts for each iteration,

from which we can compute three time intervals: the time

it took from sending the interrupt to getting a return interrupt

from the remote core, the time from entering the kernel locally

to entering the user space signal handler and the full roundtrip

time. Table I shows the averages of these measurements under

the columns “Remote”, “Kernel” and “Roundtrip”.

44 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

As the table shows, the difference in hops between cores

has a negligible impact on the latency. This is as expected

when comparing the network’s high speed network with the

relatively slow core speed. However, it is surprising to see

the difference between the remote and kernel columns. The

former shows the time between raising an interrupt on the

remote core, the remote core trapping to the kernel, running its

interrupt handler, signalling the user space process and sending

an interrupt back. This took around 3000 cycles on average.

This is peculiar because the kernel time, the time between

core 0 trapping into the kernel and the user space process

receiving the signal, took around 4700 cycles and this time is

also included in the remote time measurement.

Some additional tests show that this difference always

appears between the initiating and replying core, the core who

receives the reply and prints out measurements always takes

more time to go from the kernel interrupt handler to the user

space signal handler.

A possible explanation for this behaviour is that the remote

kernel is idle aside from running the interrupt handler and the

process’ signal handler, whereas the local kernel has to access

the filesystem and execute other system calls to retrieve the

cycle counts stored by the kernel’s interrupt handler. This is

done outside of the reads from the cycle counter, so it should

not impact the measurements, but it might still evict parts of

the working set from the L1 and L2 caches causing a slow

down by needing to go to main memory.

In [12] the Barrelfish developers measure a roundtrip latency

of approximately 5000 cycles on bare metal, though this time

includes reading and writing to MPB memory twice, making

their measurements time higher than the raw IPI roundtrip

time they had. This means the overhead of running in user

space under Linux is around 2000 cycles more than bare metal.

Sending and receiving interrupts is costly, but less so than we

expected.

Using the above interrupt implementation we then im-

plemented sending and receiving of S-NET records using

interrupts to notify the receiver of a message. For our tests

we used records consisting of 8 bytes of metadata and 25

tags (ints) and their 25 corresponding values (ints). This is

more than the average S-NET record should have, but still

well within range of realistic sizes. We then measured the

roundtrip latency of sending these records between two cores

to see what sort of latency we could achieve. For comparison

we also implemented a busy-waiting version of the interrupt

code, an MPI version and a RCCE version. Table II shows

the results of these measurements (averaged over 1 million

roundtrips).

For S-NET, as mentioned earlier, we are not that interested

in low latencies and more in lightweight communication. Our

interrupt based messaging implementation outperforms the

MPI version by a good 20%, but has double the latency of the

RCCE version and almost quadruple that of its busy-waiting

equivalent.

The last column in Table II shows the average number of

cycles that the interrupt based implementation was idle each

roundtrip. This free time can be used for computational work

and makes up 75% of the roundtrip time. The RCCE and

Hops Polling RCCE MPI Interrupt Free

0 5.4 9.9 25.7 18.8 14.4

1 5.6 9.9 25.8 21.0 16.2

2 6.6 10.4 26.2 21.8 16.9

3 5.9 10.1 26.2 21.2 16.2

4 6.1 11.0 26.6 21.6 16.6

5 6.3 10.4 26.7 21.6 16.4

6 6.5 10.6 27.3 21.6 16.4

7 6.9 10.7 27.0 22.2 16.8

8 7.4 10.8 26.8 22.4 17.0

Table II
ROUNDTRIP MESSAGING LATENCY (IN 1000 CYCLES)

polling implementations on the other hand waste their time

in a busy-wait loop, preventing the core from doing useful

computation. This problem can of course be diminished by

polling every n micro-/miliseconds instead of busy-waiting, at

the cost of increased the latency.

It would be interesting to compare the efficiency of various

polling intervals for the polling and RCCE implementations

and see whether a trade-off in latency can improve their

efficiency to be on par with that of the interrupt implemen-

tation. Unfortunately we did not have time to finish these

measurements and include them in this paper. The biggest

problem in measuring this information is the granularity of

the Linux scheduler. Most ways for a thread to yield its

execution (so computational code can run) cause the next

poll to be postponed until the next time the scheduler runs

it. This causes blocks to last far to long for the polling to be

effective. To solve this problem we will need to utilise Linux’

real time scheduling support to make suspending the polling

threat frequently for intermediate amounts of time feasible.

VI. CONCLUSION

In this paper we have introduced the declarative coordina-

tion language S-NET. It is designed to provide a more con-

venient way of programming for multi-core/many-core chip

architectures by viewing programs as independent components

with an input and output stream. These components are then

used to construct programs using a set of combinators.

We sketched out our ideas for implementing the S-NET

runtime system on top of the SCC. Focussing on the two

most important short-term goals for S-NET: utilising the

LUT capabilities of the SCC to eliminate needless copying

of data by being able to quickly remap it and using the

message passing buffers and on-chip network to implement a

lightweight communication mechanism for S-NET’s records.

In the near future we also want to investigate the ability to

dynamically change the power and speed at which the cores

run, allocating more resources to bottlenecks in the S-NET

network and reducing the energy wasted by the parts which

are idle.

After this presentation of our ideas we went on to discuss the

various tests we implemented, their performance and how their

results impacts our ideas for S-NET. We determined that the

latencies for sending interrupts are not as small as we would

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 45

like, but are low enough what we need. Combined with the

message passing buffers they provide us with enough to let us

implement lightweight asynchronous message passing.

Unfortunately we were not able to finish implementing tests

to compare the efficiency of asynchronous messaging to our

polling and RCCE implementations (using various polling in-

tervals), this means we don’t have a conclusive “best” solution,

but the numbers for our asynchronous implementation make

us cautiously optimistic about how well it will stack up against

the polling and RCCE implementations.

The biggest problem we encountered during our work was

the lack of control over the L2 cache. Without control over

the cache’s behaviour it is difficult to accurately predict the

performance (and in some cases correctness) of code. Making

it difficult to accomplish some of the things we want to do,

such as remapping memory using the LUTs. We can work

around this, but at the cost of convenience and performance.

REFERENCES

[1] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain,
T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow,
M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss,
T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. V. D. Wijngaart, and
T. Mattson, “A 48-core IA-32 message-passing processor with DVFS in
45nm CMOS,” pp. 108–109, feb. 2010.

[2] R. F. van der Wijngaart, T. G. Mattson, and W. Haas, “Light-weight com-
munications on intel’s single-chip cloud computer processor,” SIGOPS
Oper. Syst. Rev., vol. 45, pp. 73–83, February 2011.

[3] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and
improvements of programming models for the Intel SCC many-core

processor (accepted for publication),” in Proceedings of the Interna-
tional Conference on High Performance Computing and Simulation
(HPCS2011) – to appear, Workshop on New Algorithms and Program-
ming Models for the Manycore Era (APMM), (Istanbul, Turkey), July
2011. accepted for publication.

[4] Intel, “RCKMPI User Manual,” February 2011.
[5] C. Grelck, A. S. (eds):, F. Penczek, C. Grelck, H. Cai, J. Julku,

P. Hölzenspies, S. Scholz, and A. Shafarenko, “S-Net Language Report
2.0,” Technical Report 499, University of Hertfordshire, School of
Computer Science, Hatfield, England, United Kingdom, 2010.

[6] C. Grelck, S. Scholz, and A. Shafarenko, “Asynchronous Stream Pro-
cessing with S-Net,” International Journal of Parallel Programming,
vol. 38, no. 1, pp. 38–67, 2010.

[7] C. Grelck, J. Julku, and F. Penczek, “Distributed S-Net: High-Level
Message Passing without the Hassle,” in 1st ACM SIGPLAN Workshop
on Advances in Message Passing (AMP’10), Toronto, Canada, 2010
(G. Bronevetsky, C. Ding, S.-B. Scholz, and M. Strout, eds.), ACM
Press, New York City, New York, USA, 2010.

[8] C. Grelck, “The essence of synchronisation in asynchronous data flow,”
in 25th IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS’11), Anchorage, USA, IEEE Computer Society Press,
2011.

[9] C. Grelck, S.-B. Scholz, and A. Shafarenko, “Coordinating Data Parallel
SAC Programs with S-Net,” in 21st IEEE International Parallel and
Distributed Processing Symposium (IPDPS’07), Long Beach, USA, IEEE
Computer Society Press, 2007.

[10] F. Penczek, S. Herhut, C. Grelck, S.-B. Scholz, A. Shafarenko, R. Bar-
rière, and E. Lenormand, “Parallel signal processing with S-Net,”
Procedia Computer Science, vol. 1, no. 1, pp. 2079 – 2088, 2010. ICCS
2010.

[11] F. Penczek, S. Herhut, S.-B. Scholz, A. Shafarenko, J. Yang, C.-Y. Chen,
N. Bagherzadeh, and C. Grelck, “Message Driven Programming with
S-Net: Methodology and Performance,” Parallel Processing Workshops,
International Conference on, vol. 0, pp. 405–412, 2010.

[12] S. Peter, T. Roscoe, and A. Baumann, “Barrelfish on the Intel Single-
chip Cloud Computer,” Tech. Rep. Barrelfish Technical Note 005, ETH
Zurich, September 2010. http://www.barrelfish.org.

46 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

The Benefit of Topology-Awareness of MPI
Applications on the SCC

Steffen Christgau, Bettina Schnor
Institute of Computer Science, University of Potsdam

August-Bebel-Strasse 89, 14482 Potsdam, Germany

Email: {hyperion, schnor}@cs.uni-potsdam.de

Simon Kiertscher
Potsdam Institute for Climate Impact Research

P.O. Box 60 12 03, 14412 Potsdam, Germany

Email: kiertscher@pik-potsdam.de

Abstract—In this paper the scaling of two MPI applications, a
parallel answer set solver and a parallel climate simulation, on the
SCC is presented and discussed. Further, the paper discusses is-
sues of the implementation of the MPICH/CH3 device used on the
Single-Chip Cloud Computer (SCC), the so-called RCKMPI. We
present work in progress regarding an optimization of RCKMPI
that improves the communication bandwidth by evaluating the
application’s communication graph and making optimal use of
SCCs Message Passing Buffers. This way, we make RCKMPI
topology-aware.

I. INTRODUCTION

The SCC experimental processor is a 48-core ”concept

vehicle” created by Intel Labs as a platform for many-core

software research [1]. All IA-32 cores are connected with an

on-die network without providing cache coherency through

hardware. Additionally, two cores share a SRAM which is

called message passing buffer (MPB) and is generally used

as fast communication memory. On each core an individual

Linux instance can be booted, thus providing a cluster on

a chip. Since a conventional Pentium-like core is used as

its building block the SCC allows to run existing software

with only recompilation to be done. RCKMPI, a Message

Passing Interface (MPI) implementation for the SCC [2],

makes the execution and investigation of existing parallel MPI

applications possible.

We experimented with two different MPI applications that

could be executed without modifications on the SCC. We se-

lected two applications with different parallelization schemes.

The climate simulation Aeolus uses a functional decomposition

(see section III) where each function is run on a different core.

Aeolus has shown a bad scaling on the Nehalem processor, but

is suited for an architecture with no cache-coherence.

In section IV the parallel answer set solver Claspar and

its scalability is presented. Claspar is the parallel version of

Clasp suited for compute clusters. It uses a master-worker

parallelization. Competition results show that clasp is a very

competitive system, i.e, the potassco tools collection of which

clasp is the most important part, was first in all categories of

the ASP Competition in 20091.

Section V presents the concept of a topology-aware layout

of SCCs Message Passing Buffer. First performance measure-

ments proof the benefit of this approach.

1http://www.cs.kuleuven.be/∼dtai/events/ASP-competition/Results.shtml

II. RCKMPI BASICS

In early 2011 Intel provided RCKMPI an MPICH2 [3]

derivative including dedicated CH3 devices for the SCC with

the SCCMPB [2] among them. The SCCMPB device equally

divides the MPB of each SCC core into n− 1 sections where

n is the size of the MPI process group. Each section of

a core’s MPB represents a dedicated area where a remote

process writes in and the receiving core reads from. Due to

the SCC core architecture the size of one section is always a

multiple of a cache line size (32 bytes). A section also includes

a flag segment which is 16 byte large. Thus, for an application

started with seven processes the section size is 1344 bytes with

a maximal MPI payload of 1328 bytes. This static layout of

the MPB is initialized on MPI startup and kept over the whole

runtime of the application.

III. AEOLUS

Aeolus is a climate simulation that computes the evolution

of seven atmospheric variables of synoptic scale [4]. It is

developed at the Potsdam Institute for Climate Impact Re-

search and is part of Climber-3, an Earth System Model of

Intermediate Complexity (EMIC). Such systems attempt to

overcome the gap between simple and comprehensive climate

models [5]. The computation is dominated by seven variables

which are arranged in a three dimensional grid around the

Earth’s globe and occupy 180 KB each. The evolution is

calculated in discrete time steps. Between those variables

a producer consumer relationship exists (see Fig. 1): The

computed value of one variable in a time step is required by

the computation of several other variables in the next step.

Additionally, the computed values are regularly stored.

Initially designed as a sequential application, Aeolus was

later parallelized in cooperation with the Institute of Computer

Science at Potsdam University with a functional decompo-

sition approach: Each process computes one synoptic scale

variable whose computational effort is approximately equal.

The exchange of required variables is done via message

passing using MPI. The message size equals the size of a

variable, i.e. 180 KB. A master process collects the produced

variable values and puts them to the storage. Due to the

exchange of variable values after each single time step Aeolus
is a communication intensive application.

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 47

��

��

��

����

��

��

Fig. 1. Dependency graph of the variables computed by Aeolus.

A. Experiences on a Nehalem cluster

The parallelized application was executed on a Linux cluster

where each of the 28 nodes is equipped with two Intel Xeon

E5520 quad-core CPUs with Nehalem cores running at 2.27

GHz (Simultaneous Multi-Threading disabled) and 48 GB of

RAM. All nodes are connected via 20 GBit/s Infiniband over

a single switch and use Intel MPI as message passing library.

The configuration of a single node with eight cores in total

allows the whole parallel application to run on one node. Thus

the computational power of all cores can be exploited. Since

only seven variables are computed the I/O performing master

processes can be bound to the eighth core.

Using such a configuration leads to a speedup of 2.47 which

is really poor compared with the optimal speedup of 7. This

may be related to high cache saturation and pollution effects

as one of the variables exceeds the size of the L1 cache (32

KB). Moreover, in the case of Aeolus the cache coherency

between the cores’ caches is not required from the application

side.

Therefore, each MPI process was mapped to a single node

of the cluster eliminating cache effects, i.e. Aeolus was started

on 8 nodes using only one core per node. This results in an

improved speedup of 3.15. The still not optimal speedup is

due to high communication costs, since the updated variables

have to be exchanged via the interconnect after each time-step.

Performance evaluation revealed that the application spends

10 to 20 percent of its runtime in message passing calls when

running on the Nehalem cluster.

B. Experiences on SCC

As the SCC is not providing any cache coherency between

the cores and offers a fast on-chip network running Aeolus on

the chip was a clear consequence. Without further platform-

specific optimizations the observed speedup was 4.04 while

maintaining computational correct results.

IV. CLASPAR

Claspar [6] is a distributed Answer Set Programming (ASP)

solver, based on the ASP solver clasp [7]. Thinking of new

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

sp
ee

du
p

worker

pigeonhole10 - speedup

Zuse

SCC

linear speedup

Fig. 2. Speedup comparison of Claspar on SCC and on a Nehalem Cluster
for pigeonhole10.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
sp

ee
du

p

procs

pigeonhole11 - Speedup

SCC

linear speedup

ZUSE

Fig. 3. Speedup comparison of Claspar on SCC and on a Nehalem Cluster
for pigeonhole11.

assistive technologies where people are assisted by an intel-

ligent system which evaluates information like for example

sensor data the need for high performance is obvious. The

used solvers have to be fast to respond in good time to be

helpful.

Claspar uses a master-worker approach. It uses MPI for the

communication between the master and its worker processes.

Basically the master takes care about dividing the search space

among the workers. If a worker finishes its part, it asks the

master for new work. The master sends a split request to a

worker which is not finished yet asking to split its search

space.

The runtime values for claspar on the Nehalem cluster

are taken from [8]. The considered benchmark is the pigeon

hole benchmark where the search space has to be traversed

completely (since there is no way to put N+1 pigeons into

N holes allowing only one pigeon per hole).

Figure 2 and Figure 3 show the scaling of claspar for 1

up to 30 workers for pigeonhole10 and pigeonhole11. While

the runtime improvements are impressive the scaling is poor

on both platforms. In case of pigeonhole10 the runtime for

one worker is 263 seconds, for two workers 168 seconds, and

for four workers 100 seconds. In case of pigeonhole11 the

runtime for one worker is 3377 seconds, with two workers

2388 seconds, and 1189 seconds with four workers.

To investigate the bad scaling of claspar, we made another

run with pigeonhole12 on the Zuse cluster and used the

scalasca tool for performance analysis. The sequential runtime

48 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

0

10

20

30

40

50

60

70

4 16 64 256 1024 4096 16384

ba
nd

w
id

th
 /

M
B

yt
e/

s

MPI_Send message size / byte

2 processes
24 processes
48 processes

Fig. 4. Ping-pong bandwidth between SCC core 0 and 47 for different
numbers of started MPI processes.

was about 2747 s and nearly completely spent with solving.

In case of the parallel run using 62 workers, each worker

was uniformly loaded and spent about 116 s with solving,

i.e. the parallel version needed 116 · 62 = 7912 s solving

time. So, the reason for the bad scaling is not overhead due

to communication but that the solving time increases. The

sequential solver has obviously learned clauses which are more

efficient in the solving process which the parallel version does

not. This is a hint for the claspar team that the parallel version

may benefit from the exchange of clauses.

V. MAKING RCKMPI TOPOLOGY-AWARE

The partitioning of the MPB has influence on the bandwidth

between two cores. Fig. 4 shows the bandwidth of a MPI ping-

pong between core 0 and 47 for different message sizes and

different number of processes in comm world (2, 24 or 48

started processes). So only 2 processes exchanged messages,

the remaining 22 resp. 46 in the second and third experiment

had no really work to do.

Fig. 4 shows that the benefit of using the MPB is obviously:

As long as the message size fits into the MPB section at the

receiver side, the bandwidth is increasing. Each time the mes-

sage size exceeds a multiple of the section size the bandwidth

drops due to the necessary additional packet transfer of the

remaining data. Additionally, increasing cache conflicts arise

in case of larger messages. Therefore, the bandwidth decreases

as smoothly as with RCCE, the communication framework

shipped with the SCC [9].

But what also can be seen is that the effect of the limited

MPB section size manifests with a decreasing maximum

bandwidth with increasing number of processes in use. A

comparable impact can not be observed with a MPICH2 CH3

device for Infiniband or even TCP/IP. The reason is that

while in the test scenario the ping-pong communication took

place only between two processes, RCKMPI cuts the MPB in

smaller sections when more processes are started.

0

2

4

6

8

10

12

32 64 128 256 512 1024 2048 4096 8192 16384

ba
nd

w
id

th
 /

M
B

yt
e/

s

MPI_Send message size / byte

with provided topology information
without topology information

Fig. 5. Ping-pong bandwidth between two of 48 MPI processes with and
without topology information

Since the minimum MPB section size is 160 byte, one

would expect that the bandwidths would be equal up to a

message size of 160 byte. In Fig. 4 one can observe different

bandwidths already for small message sizes.

A. RCKMPI Improvement

To compensate the equally limited bandwidth one can

evaluate an application’s intrinsic communication topology. As

for Aeolus, it is not required to communicate with all cores.

For example the process computing the variable TV does not

interact with the producer of QV (see Fig. 1). In case of claspar
the communication graph is a star.

Hence, parallel applications can gain additional bandwidth

and performance gain if the communication graph of the

application is considered, i.e., if the bandwidths for mes-

sage transfers are adjusted for processes that communicate

frequently with each other. MPI allows an application to

introduce topology information in two fashions. The first one,

via MPI_GRAPH_CREATE e.g., is a general graph based

approach where nodes represent MPI processes and edges

stand for communication between those processes. The second

approach are Cartesian topologies, which are defined via

MPI_CART_CREATE for convenience reasons to facilitate

the definition of grids, tori or even hypercubes. With each

approach a new communicator is allocated by MPI [10].

In MPICH2, which is the base for RCKMPI, the creation

of a communicator can be hooked by a CH3 device. By doing

so, it is also possible to hook into the introduction of topology

information. Thus, these information can be used by the

SCCMPB CH3 device. This process is completely transparent

to the application programmer. The required steps to make

the CH3 device topology-aware consist of simple MPI calls.

In case of a Cartesian topology one can distribute all processes

among all dimensions with the help of MPI_Dims_create.

Afterwards a new topology communicator is derived from an

existing communicator with the process distribution created

before (MPI_Cart_create) as shown in Listing 1. When

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 49

#define NUM_DIMS 2

int grid_dims[NUM_DIMS], grid_periods[NUM_DIMS];
MPI_Comm comm_topo;

/* set all items of grid_periods to true
to get a torus */

MPI_Dims_create(numProcs, NUM_DIMS, grid_dims);
MPI_Cart_create(MPI_COMM_WORLD, NUM_DIMS, grid_dims,

grid_periods, true, &comm_topo);

Listing 1. Example MPI Code to introduce a Cartesian topology

such a communicator is generated, the CH3 device enlarges

the MPB sections of communication partners.

Thereby, two problems need to be solved. On the one hand,

an improved MPB layout must consider both communica-

tion neighbors and all other MPI processes since collective

operations like barriers have to be supported. On the other

hand, each MPI process has to know its offset within all

remote MPBs. Since the MPB sections shall be enlarged

for communication neighbors, a process needs to know the

neighbors of the owner of the remote MPB to calculate its

remote write offset.

The MPB layout of the original RCKMPI implementation

was changed in the following way: The flag areas were

moved from the end of a write section to the beginning of

the MPB. This had to be done to prevent the flags from

being destroyed during the MPB layout rearrangement when

topology information are introduced. The remainder part of

the MPB is generally reserved for data exchange. In case

of Cartesian topology this space is divided into regions for

neighbor and non-neighbor processes. For each of the latter,

96 bytes are resevered, e.g. for collective operations. For

the neighbor proceses, the remaining MPB area is equally

subdivided for each dimension of the Cartesian topology.

Within such a dimension area, half of the area is devoted to

the upper resp. lower neighbor process.

The original and the new MPB layout for an application

which consists of nine processes using a 2-D domain com-

position is shown in Fig. 6. Since domain decomposition is a

popular approach for parallelization, this represents a big class

of parallel applications. The corresponding communication

topology is a 2-D Cartesian topology where each process has

four communication neighbors. After the flag area follow the

96 bytes areas for all n−1 processes (expect the MPB owner).

The remaining MPB area is given to the four communication

partners.

B. First Results

The implementation of the proposed improvement is de-

veloped within a master thesis at Potsdam University [11].

In Fig. 5 we show first results and compare the bandwidth

between two processes with and without topology-aware MPB

layout. In both cases all 48 SCC cores were used. Again, we

simulated a typical application with a 2-D Cartesian commu-

nication topology. The topology information is introduced to

���������	
 ���������	�

���� ����� �

���������	
�������

����	����

���������	
�������

Fig. 6. MPB layout of the original RCKMPI SCCMPB CH3 device (top)
and the enhanced version (bottom) for 9 processes

RCKMPI via MPI_GRAPH_CREATE. So the lower curve in

Fig. 5 is the same as the 48-processes curve in Fig. 4. As

a result of our optimization the bandwidth is enhanced by a

factor of three in this case. From this improvement a compute-

intense application can benefit additional performance. In

contrast to Fig. 4, one can observe that the bandwidths are

the same for small message sizes.

VI. CONCLUSION AND CURRENT WORK

Our experience with 2 MPI applications from different

application areas on the SCC was very positive. Both ap-

plications were runnable out-of-the box. Both applications

are communication intensive with known scaling problems on

current multicore architectures resp. current cluster platforms.

So, it was interesting to investigate their behavior on the SCC

platform.

While the application Aeolus benefits from the SCC archi-

tecture, especially from the non cache-coherence approach,

the parallel answer set solver claspar seems to have also

scaling problems on the SCC. But the reason is application-

inherent and not related to the communication demands of

claspar. Currently, we are investigating the efficient exchange

of learned clauses [12], so-called nogoods. This seems to be

a very big challenge on traditional compute clusters since the

communication demands are enormous: every solver-process

learns thousands of clauses each second which must be com-

municated to all other solvers.

In the field of cluster computing, the MPI feature to specify

topology information was unnecessary as long as the cluster

belongs to the uniform communication architecture (UCA).

In case of the SCC, we have special hardware, the MPBs,

which makes it NUCA. We use the communication topology

of an application to optimize the MPB layout and in this way

the bandwidth for frequently communicating processes. More

implementation details and measurements will be presented

in [11].

50 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

REFERENCES

[1] J. Howard et al., “A 48-core IA-32 message-passing processor with
DVFS in 45nm CMOS,” in Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2010 IEEE International, 7-11 2010, pp. 108
–109.

[2] I. A. C. Urena, “Lightweight MPI for the Single Chip
Cloud,” in Many Core Architecure Research Community
Symposium. Braunschweig: Intel, Nov. 2010. [Online]. Avail-
able: http://communities.intel.com/servlet/JiveServlet/previewBody/
5844-102-1-8986/MARC-Symposium-Nov-2010-Lightweight-MPI.pdf

[3] W. Gropp, “MPICH2: A new start for MPI implementations,” in Recent
Advances in Parallel Virtual Machine and Message Passing Interface,
ser. Lecture Notes in Computer Science, D. Kranzlmueller, J. Volkert,
P. Kacsuk, and J. Dongarra, Eds. Springer Berlin / Heidelberg, 2002,
vol. 2474, pp. 37–42.

[4] D. Coumou, V. Petoukhov, and A. Eliseev, “Three-dimensional param-
eterizations of the synoptic scale kinetic energy and momentum flux in
the earths atmosphere,” Tellus, 2010, in review.

[5] M. Montoya, A. Griesel, A. Levermann, J. Mignot, M. Hofmann,
A. Ganopolski, and S. Rahmstorf, “The earth system model of inter-
mediate complexity CLIMBER-3α. Part I: description and performance
for present-day conditions,” Climate Dynamics, vol. 25, pp. 237–263,
2005.

[6] L. Schneidenbach, B. Schnor, M. Gebser, R. Kaminski, B. Kaufmann,
and T. Schaub, “Experiences Running a Parallel Answer Set Solver on
Blue Gene,” in 16th European PVM/MPI Users’ Group Meeting. Espoo,
Finland: Spinger, Lecture Notes in Computer Science, 2009.

[7] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “Conflict-
driven answer set solving,” in Proceedings of the Twentieth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’07), M. Veloso,
Ed. AAAI Press/The MIT Press, 2007, pp. 386–392, available at
http://www.ijcai.org/papers07/contents.php.

[8] [Online]. Available: http://www.cs.uni-potsdam.de/claspar/
[9] T. G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy,

J. Howard, S. Vangal, N. Borkar, G. Ruhl, and S. Dighe, “The 48-core
scc processor: the programmer’s view,” in Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 1–11. [Online]. Available:
http://dx.doi.org/10.1109/SC.2010.53

[10] Message Passing Interface Forum, MPI: A Message-Passing Interface
Standard, Version 2.2. High Performance Computing Center Stuttgart
(HLRS), September 2009.

[11] S. Christgau, “Performance Optimization of Message Passing on the
SCC,” Master Thesis, University of Potsdam, to appear 2011.

[12] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, and B. Schnor,
“Cluster-based ASP Solving with claspar,” in Proceedings of the 11th
International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’11) (accepted paper), Vancouver, Canada, 2011.

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 51

52 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

On Efficient Message Passing on the Intel SCC
Randolf Rotta

Brandenburgische Technische Universität Cottbus
Konrad Wachsmann Allee 1

03046 Cottbus, Germany
Email: rrotta@informatik.tu-cottbus.de

Abstract—The Single-Chip Cloud Computer (SCC) is an ex-
perimental processor created by Intel Labs. Instead of the usual
shared memory programming, its design favors message passing
over a special shared on-chip memory. However, the design
of efficient message passing is still an ongoing research work,
because the system differs quite much from traditional hardware.
This paper presents design options for message passing protocols
on the SCC and discusses some implications.

I. INTRODUCTION

The Single-Chip Cloud Computer (SCC) experimental pro-
cessor [1] is a 48-core concept vehicle created by Intel Labs
as a platform for many-core software research. Although the
SCC features shared on-chip memory, it is not intended for
traditional shared memory programming. Instead, the platform
is designed for research around many-core message passing
concepts. In consequence, the on-chip memory, also called
message passing buffer, is quite small and deliberately does
not provide automatic cache coherence.

While the SCC provides fast access to the on-chip memory,
middleware libraries have to provide actual message passing
protocols, i.e. algorithms organizing the concurrent access to
the message memory. The SCC’s non-coherent memory and
its high number of cores is quite different from previously
known processors, and thus, porting existing message passing
code from cc-NUMA systems to the SCC does not result in
optimal performance (see for example [2]). Therefore, the
design of efficient message passing poses a renewed design
challenge: Which old or new strategies are feasible on the
SCC? What is achievable within the limits of the current
hardware? How much could the performance benefit from
future adapted hardware support?

This paper discusses some aspects of the design space
of message passing protocols on the SCC. The focus will
be on non-blocking asynchronous in-order transfer of small
messages (<200 bytes) between arbitrary cores, that is with-
out explicitly established point-to-point connections. These
requirements are based on active message middle-ware layers
like TACO [3], but are useful for other software as well, for
example MPI on top of active messages [4].

The next section discusses relevant parts of the SCC hard-
ware, and Section III introduces some useful performance
indicators. The main part is Section IV with an overview of the
design dimensions and options for message passing protocols.
The paper concludes with a discussion of related work and
possible directions for future work.

Fig. 1. Conceptual address translation and access modes on the SCC.

II. THE INTEL SCC

This section start with an overview of the communication
capabilities of the SCC. After some notes about the perfor-
mance, the section concludes with a discussion of differences
to other systems.

A. Memory Access over the Mesh Network

The SCC combines 48 standard processor cores, derived
from the P54C Pentium, on a single chip. All communication
is carried out over a packet-switched 2D mesh network of 6×4
routers. Communication between cores is performed indirectly
by writing to and reading from shared on-chip SRAM and
external DRAM memory using the standard machine instruc-
tions, i.e. MOV with byte, word (2 byte), or double word (4
byte) granularity [5]. The destination and access mode of a
request is determined in two steps as shown in Figure 1:
First, the usual page table maps from the logical to the core’s
physical address space and sets the access mode on 4kB page
granularity. Between core and router, the physical addresses
are mapped to system addresses through a lookup table (LUT)
with 16MB granularity. These addresses contain the mesh
coordinates of the destination router and the local destination
(e.g. SRAM, device registers, or attached external devices).

Fig. 2. Writing and reading over the mesh network.

Although all cores can access the same DRAM and SRAM
memory, the system has no implicit cache coherence mech-
anism. Instead, a new access mode called Message Passing
Buffer Type (MPBT) is provided. Data read from such memory
is only cached in the L1 cache and the new instruction
CL1INVMB invalidates all such MPBT lines from the cache.
Write operations to MPBT memory are collected in a write-
combine buffer, which tries to fill up an entire cache line before
sending the data to the destination.

The usual un-cached memory access mode (UC) can be
used as well. Data read from such memory is not cached and
write operations are directly issued to the network. Concurrent
writes to the same memory line do not conflict. Note that it
is possible to mix MPBT and UC access to the same physical
memory by mapping it twice into the logical address space.
In this setting, it is just necessary to invalidate MPBT lines
from the cache before accessing the UC-mapped memory.

In addition, one atomic test-and-set bit per core is available
in the device registers. Reading from it activates the bit and
returns its previous state. Writing resets the bit to zero. The
firmware of the system interface provides a set of atomic
counters. Reading from a counter increments it and returns
its previous value. Unfortunately, the access is expected to be
much slower than to the on-chip SRAM.

B. Performance Model for Memory Access

The LogP-model of Culler et.al. [6] summarizes the behav-
ior of communication systems in a few parameters, namely
the latency L, send overhead os, receive overhead or, gap g
between subsequent messages, and the number of processors
P (=cores). While it was not designed to model memory
accesses, SCC’s behavior can be represented quite well using
the overhead and gap as depicted in Figure 2.

The P54C cores are strictly in-order and can handle only a
single outstanding memory request. Write operations over the
mesh are completed by a small response message from the des-
tination. This results in write ordering when accessing different
destinations, but also simplifies costs predictions. It takes time
os to fill the write-combine buffer or issue an un-cached write
operation. These overlap with the previous request, but the

TABLE I
MEASURED CYCLE COUNTS FOR WRITING AND READING OVER THE
MESH. RANGES REFER TO THE SMALLEST AND LARGEST DISTANCE.

1 byte (UC) 4 byte (UC) 32 byte (MPBT)
os 5 5 28
gs 48–81 48–81 75–105
or 53–86 53–86 58–88

core stalls until the previous request is completed. The time
between issuing the write and its completion is modelled by
the gap g. When reading, the core stalls until the data arrived.
This time is represented by the receive overhead or.

All three parameters depend on the memory type (MPBT or
UC) and the mesh distance. Micro-benchmarks like [7] can be
used to estimate the actual parameters. Table I provides cycle
counts for the chip configuration with 800 MHz core clock
rate and 1600 MHz mesh clock rate.

C. Differences to other systems

An ultra low latency network: With networks like Infiniband
the hardware latency (especially between CPU and network
controller) dominates most other costs. In combination with
high processor speeds, differences between message passing
implementations are quite small. In addition, the network
already implements many details, for example, hardware-
managed message queues. In contrast, on the SCC, the com-
munication latency is quite low, but several communication
steps are necessary for a single message transfer. Thus, the
performance differences between protocols are much larger.

A different memory model: Most message queue designs
for shared memory are based on cache coherent memory and
compare-and-swap operations (see for example [8], [9]). The
SCC provides no hardware cache coherence. Thus, the location
of data in the mesh is known exactly and all data transfers are
triggered explicitly. This also eliminates false-sharing prob-
lems. Unfortunately, no remote compare-and-swap is available
on the SCC, but can be emulated with the lock registers. In
contrast to traditional cache-coherent systems, it is much more
efficient to use un-cached writes to update individual values
directly in the memory instead of performing cache line round-
trips. Combining un-cached and MPBT access to the memory
provides new design opportunities.

Finally, the scalability of the overal message passing be-
comes an issue: The increasing number of cores results in an
even faster growing number of communication partners and
managing these connections can quickly become a bottleneck
in respect to computational overhead and memory usage.

III. COMMUNICATION PATTERNS

The LogP model was designed to describe essential perfor-
mance characteristics of communication systems. Based on the
mesh parameters (Table I), predictions of the mesh-induced
protocol overhead Os, Or, gap G and latency L are easily
calculated.1 However, the raw LogP parameters are difficult to

1Here, uppercase letters denote parameters of a protocol while lowercase
letters are used for the mesh. The receive overhead Or is the time to process
a transmitted message.

(a) Remote Method
Invocation

(b) Streaming (c) Scatter (d) Gather

Fig. 3. Communication patterns.

interpret. This section introduces four communication patterns
that are used to investigate specific aspects and implications
of a protocol’s performance (Figure 3).

The first pattern, called Remote Method Invocation (RMI),
describes a function call with result value, which is executed
on a remote core. It is similar to message roundtrips and its
completion time is roughly TRMI = 2(Os + L+Or).

A second scenario are distributed processing pipelines,
where the cores send and receive continuously streams of
data or asynchronous remote method calls. For small messages
like method calls, the steady-state message throughput is of
interest, which should be about TP = 1/(Os +G) messages
per cycle. For large data transfers that are split into smaller
messages, the bandwidth (“goodput”) is more interesting. It
should be about BWn = n/(Os,n+Gn) bytes per cycle when
messages of n bytes payload are used.

Some applications use collective operations in which a task
is initiated by a core and then performed in parallel on a group
of cores. This involves propagation of the task (multicasting)
and possibly waiting for its completion (collecting and merg-
ing results). Unfortunately, the completion time depends on
the multicast topology and the optimal topology depends on
the protocol parameters. Instead, the collective operations are
dissected into their basic local communication patterns: The
Scatter pattern delivers a message to k direct receivers. Its
completion time at the sender is roughly k(Os + G) and the
arrival time at the last receiver is k(Os+G)−G+L+Or. The
inverse direction is the Gather pattern. Its completion time is
kOr (processing k transmitted messages).

Obviously, all of these performance indicators depend on the
message size and the mesh distance. More importantly, they
also depend on details of the protocols and thus the above
formulas provide just a rough impression.

IV. A DESIGN SPACE FOR MESSAGE PASSING

This section presents a design space for message passing
protocols and discusses several available options in each
design dimension. The discussion begins with the software
level at which message passing could be implemented (Sec-
tion IV-A). The next sections discuss message placement
(Section IV-B) and memory allocation (Section IV-C).

Some kind of flow control is necessary to protect against
overwriting of unprocessed messages, which could happen by
two cores writing concurrently or by one core writing too early
to the same place. This protection is achieved by notification
and acknowledgement mechanisms: Notification mechanisms
signal the arrival of new messages and have to ensure that no

Fig. 4. Message placement on receiver vs. sender side.

message is missed (Section IV-D). Acknowledgement mecha-
nisms signal which messages have been processed and thus
enable the save reuse of message memory (Section IV-E).
When all message slots are in use or no notifications are cur-
rently possible, a sender cannot send further messages without
conflicts. This is resolved by wait mechanisms (Section IV-F).

A. Levels of Abstraction

At which software layer should the message passing be
implemented? Independent one-to-one queues are easier to
adapt to specific communication needs as they can be mixed
in the same application. Many-to-one protocols exploit that
they will receive messages from multiple sources and one-
to-many protocols optimize sending to different destinations.
Combining both into many-to-many protocols provides most
chances for exploiting synergies. While such approaches
complicate incorporating application specific knowledge, their
performance might make this unnecessary.

For example, with independent one-to-one queues, the mem-
ory requirements grow quadratically with the number of cores
(at least P 2 − P individual queues for P cores) and polling
slows down linearly (P − 1 queues to check). Checking for
messages on the SCC while using only MPBT memory takes
at least 3200 cycles (47 cores times 58+9 cycles for fetching
a line and testing the content). Combining the notification
mechanism of all queues into a many-to-one protocol, allows
to reduce this overhead to 220 cycles and possibly even lower
as will be discussed in Section IV-D.

In summary, efficient protocols will most probably require
global approaches. These cannot be implemented at the level
of individual message queues inside applications, but should
be provided as a shared service by the system.

B. Placement: Pulling vs. Pushing Messages

With receiver side placement (aka push mode) the sender
writes the message payload into the remote receiver’s memory.
In contrast, with sender side placement (aka pull mode) the
message is put in the sender’s local memory.

For the method call and streaming patterns there is no
direct difference: On the SCC, a remote write with a local
read takes as long as a local write with a remote read. The
effort just shifts between sender and receiver. However, for the
scatter pattern, the sender side placement is better (Figure 4):
Local writing reduces the send overhead and gap (sequential
local writing), while the more expensive remote transfer to the

receivers is parallelized. In contrast for the gather pattern, the
receiver side placement is better: Sequential reading is faster
on local memory, while the senders would do their remote
writing in parallel. What a doubtful choice: When a scatter
is followed by a gather, both effects cancel out each other.
Therefore, a protocol can exploit the parallelism of appropriate
message placement only by breaking the symmetry.

C. Allocation: Managing the Message Memory

This design dimension is concerned with the allocation
of message memory. Here, we consider a fixed amount of
fixed size message slots per core, which reside in the on-
chip SRAM. The main focus of this subsection lies in quick
memory allocation. A separate acknowledgement mechanism
will be necessary to reuse the slots.

1) Static Allocation: Each core uses a specific slot depend-
ing just on the destination. In the simplest case just a single
slot is used for all destinations. In consequence, a new message
can be sent only after the acknowledgement of the previous
message and thus the send gap G is at least L+Or. This effect
is decreased by using a separate slot per destination. Then,
subsequent messages to the same destination still have the
longer gap Gsame = L+Or, but sending to varying destinations
has a smaller gap Gother � Gsame.

The single slot approach requires just P slots (one for each
core), and P 2−P slots are required when using separate slots.
Separate slots improve the performance of the gather pattern,
while streaming remains inefficient because of the larger gap.

2) Static Allocation by Direction: Each core owns a sender
side and a receiver side set of separate slots per destination.
The sender side slots are used for scatter communication and
the receiver side slots are used to send gather messages. Other
messages can use any of the two possible slots. This increases
the scatter and gather performance and reduces the send gap
problem slightly, but requires even more slots (in total 2P 2).

3) Receiver-based Allocation: The sender acquires a slot
from the receiver, for example, by exploiting the notification
mechanism. This works best with receiver side placement.

4) Sender-based Round-Robin: Each sender has a set of
slots in its local memory (sender side placement) and the slots
are used in a round-robin fashion: Before using a slot, the
sender checks for the acknowledgement of the slot’s previous
message. If not yet free, the next slot is tried. Under normal
conditions it should take some time until a slot is revisited and
thus the first slot tried is free with a high probability.

With this approach, the sender has to wait just when all slots
were checked without success. Thus, especially the streaming
throughput and bandwidth is improved in comparison to static
allocation. A further advantage is the gained control over the
size of the message memory, because it no longer depends on
the number of cores. Instead, the number of slots per core can
be chosen freely and more slots decrease waiting times.

This idea can be extended to variably sized slots. While this
increases the memory utilization even further (less bandwidth
degradation for small message sizes), the additional manage-
ment overhead might increase the send overhead too much.

D. Notification: Discovering new Messages
The notification mechanism’s task is to signal the arrival of

messages and discovering these at the receiver.
1) Separate Notification Flags: Each core d owns an array

of notification flags Nd(i). Using SCC’s un-cached write
operations, a sender s can set his flag Nd(s) at receiver
d without interfering with other cores. Let non-zero values
indicate arrived messages. The receiver d polls for messages
by scanning Nd, which is speed up by fetching whole lines (i.e.
at most 32 flags, each one byte) at once by reading from the
MPBT-mapped memory. Therefore, the mesh-induced polling
overhead is dP/32eolocal

r,32, i.e. 116 cycles. This approach is
efficient on the SCC, because the senders do not suffer from
false-sharing as would be the case on cache-coherent systems.

The search for notifications is accelerated by looking for
nonzero double words first, which reduces the tests from 48
to 12 in case no message arrived. Our benchmarks showed
about 220 cycles polling overhead with this method. The idea
could be extended to notification trees, reducing the necessary
tests to O(logP). However, this increases the memory usage
and computational overhead considerably.

2) Single Flag with Locking: SCC’s 48 atomic locks enable
the following strategy [10]: The sender acquires the desti-
nation’s lock and then writes its notification into a single
fixed flag. The receiver polls by reading just this single flag.
When a notification was found, the receiver resets the flag
and releases the lock. This would yield nearly optimal RMI
and scatter performance, but the streaming and the gather
performance would be quite bad. Without contention, the
notification overhead for the sender will be about 106–172
cycles (lock, write flag). Polling needs just about 53 cycles to
check the flag. The acknowledgement overhead will include
106 cycles (reset flag, unlock).

3) Notification Ring Buffer: The read position is incre-
mented only by the owner, while the write position is incre-
mented by all senders and thus ideally is an atomic counter.
The buffer is full, when the difference between the acquired
write position and the current (or last known) read position is
larger or equal the buffer size. Then, a sender must not write
to its flag, but new senders shall still be able to reserve a flag
by incrementing the write position. This can be achieved with
full 32 bit counters and computing the actual flag position
just for writing. Note that the receiver cannot compare read
and write positions to find new messages, because the sender
writes the actual notification after incrementing the counter.

Compared to the previous notification mechanisms, this one
is scaleable: It supports multiple concurrent senders while the
memory requirements and polling overhead are independent
of the number of cores. Emulating the counter with locks
results in 265–430 cycles notification overhead (lock, fetch
write position, write new position, unlock, write flag). Using
the hardware atomic counters should be faster.

4) Message Linking: The previous approaches can be com-
bined with this method in order to increase the throughput
and reduce the congestion as follows: Instead of acquiring
a new notification flag, each message contains an additional

56 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

notification flag. The sender writes the location of the new
message into the flag of its previous message sent to the
same destination, thus forming a linked list of messages.
The receiver discovers the first message using the primary
notification mechanism. Then it processes each message in
the list until reaching the last message and continues with the
primary notification mechanism. Special care is necessary with
the acknowledgements, because the receiver may see the end
of the list while the sender appends a new message.

E. Acknowledgement: Freeing Memory
Once a message is processed by the receiver, it is necessary

to give the memory back to its owner for use in future
messages. This information can be placed in a separate array
of acknowledgement flags at the receiver or sender side with
one byte per message slot. Alternatively, the structure of mes-
sage headers can be exploited. For example, active messages
contain a non-zero pointer to a handler function and resetting
it to zero provides an in-message acknowledgement.

The owner of a message may actively check the flags during
polling. In that case it is more efficient to check just the
outstanding acknowledgements. However, because the chance
of an acknowledgement increases with time, it is even more
efficient to just check on-demand as late as possible.

A separate array of byte-sized acknowledgement flags is
an interesting option in combination with a dynamic slot
allocation, because the fast search method for notification
flags (Section IV-D1) can be applied to quickly collect ac-
knowledged slots. For this purpose, acknowledgements are
represented by non-zero flags. The collector resets these flags
to zero and adds the slots to a free-list. This collection can be
performed during idle time and when the free-list is empty.

F. Waiting: Handling full Queues
A sender has to wait when all message slots or notification

flags are currently in use. Simple busy waiting and any
other blocking behavior is not sufficient as it would lead to
deadlocks when two cores try to send a message to each other.

Depending on the middleware framework, several options
are available. The sender might just do repeated polling until
the message can be sent. This has the lowest overhead, in case
the channel becomes free again very soon. A second option is
to temporarily suspend the thread (or coroutine) that issued the
message and thus other work can proceed. Once the scheduler
activates the thread, it will retry sending the message. How-
ever, if all threads are waiting, polling is necessary. Alterna-
tively, the thread can be completely suspended. The protocol
has to wake up the thread when the channel becomes free,
which could be detected from incoming acknowledgements.
Instead of exploiting threads, sender side message queues can
store the pending messages. During polling, the channels could
be checked and the next message sent. When this queue is full
as well, the protocol has to revert to one of the above strategies.

V. RELATED WORK

The design options presented in the previous section can be
used to characterize existing protocols and get a quick impres-

sion of their relative performance. In this section, the current
state regarding existing SCC software is discussed, namely
X10, Barrelfish, RCCE, Rckmpb, RCKMPI, and TACO.

X10 is a parallel object-oriented programming language
targeted to multi-core systems [11]. The X10 implementation
for the SCC [12] uses sender side message placement, separate
notification flags at the receiver side and separate acknowl-
edgement flags at the sender side. The flags are probably
accessed through the MPBT mode and are stored in separate
cache lines. Thus, polling for new messages will cost about
3200 cycles (see Section IV-A), i.e. the RMI roundtrip time
is at least 6400 cycles.

The Barrelfish operating system has a SCC variant and first
benchmarks reported an average message round-trip time of
8746 cycles [2], including the operating system’s scheduling
overhead. The message data is placed in shared off-chip
DRAM and the on-chip SRAM is used just for notification.
The notification mechanism uses the inter processor interrupt
(IPI) and a MPBT-based ring buffer that is protected against
concurrent writing by the receiver’s lock register. Therefore
the polling overhead will be low (58 cycles to inspect the
cache line at the current read position), but the notification
overhead is at least 660 cycles (lock, fetch r/w positions, write
notification, update write position, unlock, send IPI).

RCCE is a message passing library for the SCC [13]. The
low level interface provides put and get operations to the
on-chip SRAM and synchronization flags. On top of this,
blocking send/receive operations with sender-side message
placement are implemented. The synchronization flags are
used for notification and acknowledgement, but any-source
polling is currently not supported. Applications have to probe
for each possible source sequentially and incoming messages
can be processed quickly just as long as the sender is known.

The Rckmpb driver provides TCP/IP networking between
Linux instances running on the SCC cores [13]. It uses sender
side placement with round-robin allocation and receiver side
separate descriptor flags (each one byte), which are used
for notification and acknowledgement. Polling just reads the
two cache lines of the descriptor flags (see Section IV-A).
Individual flags are updated without locking by exploiting the
behavior of the Write Combine buffer (similar to a UC write).

RCKMPI is a MPI implementation for the SCC that adapts
the CH3 streaming channel of MPICH [14]. It uses receiver
side placement with static allocation in separate slots. Flow
control is managed with sequence counters, which are stored
in separate cache lines. As with all protocols that use separate
cache lines for notification, polling is particularly slow.

We implemented an over-simplified protocol (Figure 5) for
the TACO framework [15]. It uses receiver side placement
with static allocation, separate notification flags, separate on-
demand acknowledgement flags, and waiting by polling. The
implementation has a send overhead of Os = 250 cycles, a
latency of L = 600 cycles, a send gap of Gsame = 880 cycles,
and a roundtrip time of TRMI = 1770 cycles (all values include
the middleware overhead). Although this protocol seems to
perform very good, it is still not optimal. For example, the

July, 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 57

Fig. 5. Exchange of an one-way message over the SRAM.

used allocation and notification mechanisms are not scalable,
and the acknowledgement flags could be replaced by checking
the notification flags or in-message flags.

VI. SUMMARY AND FUTURE WORK

Various aspects of message passing on the SCC can be
organized in a design space with six dimensions: Abstraction
Level, Placement, Allocation, Notification, Acknowledgement,
and Waiting. Flow control is a cross cutting concern connect-
ing Allocation, Notification and Acknowledgement. The Level
of Abstraction is not an independent dimension, but classifies
protocols into a range from independent one-to-one channels
to global unified many-to-many protocols.

Future work and collaboration is necessary in the ex-
ploration of actual protocols. Cost predictions and micro-
benchmark results for individual design options could direct
the search towards better solutions. Obviously, some choices
conflict, require additional steps to work together, or provide
chances for optimization. Thus, the real performance can be
compared only on real implementations. To date just few
and quite similar protocol implementations exists. Protocols
should not be compared on their LogP parameters alone.
As discussed, a collection of typical usage patterns will be
necessary to provide a more detailed insight into performance
differences. The performance indicators should be extended to
also compare the power consumption.

The design space can be expanded by new hardware
features, e.g. compare-and-swap implemented directly in the
on-chip SRAM, or hardware-based notification queues. This
would allow to predict the improvements over existing proto-
cols even before the actual hardware exists.

Finally, as the message passing is a critical system com-
ponent and protocols become more complicated, it would be
helpful to verify properties like wait-freeness, lock-freeness,
or in-order delivery with formal methods.

ACKNOWLEDGEMENTS

We wish to express our gratitude to our master students Jana
Traue, Thomas Prescher and Peter Sauer, who contributed a
lot to the discussions and benchmarks. Furthermore we thank
Intel for the access to a SCC and the opportunity to contribute
to its MARC program. Most specifically we thank Werner
Haas and Michael Konow from Intel Research Braunschweig,
Germany, for the tremendous insights into the architecture.

REFERENCES

[1] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom et al., “A 48-core IA-32
message-passing processor with DVFS in 45nm CMOS,” in Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE
International. IEEE, 2010, pp. 108–109.

[2] S. Peter, T. Roscoe, and A. Baumann, “Barrelfish on the Intel Single-chip
Cloud Computer, Barrelfish Technical Note 005,” Tech. Rep., 2010.

[3] J. Nolte, Y. Ishikawa, and M. Sato, “TACO – Prototyping High-Level
Object-Oriented Programming Constructs by Means of Template Based
Programming Techniques,” ACM Sigplan, Special Section, Intriguing
Technology from OOPSLA, vol. 36, no. 12, December 2001.

[4] C.-C. Chang, G. Czajkowski, C. Hawblitzel, and T. von Eicken,
“Low-latency communication on the IBM RISC system/6000 SP,” in
Proceedings of the 1996 ACM/IEEE conference on Supercomputing.
Washington, DC, USA: IEEE Computer Society, 1996.

[5] T. G. Mattson, R. F. van der Wijngaart, M. Riepen, T. Lehnig, P. Brett,
W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, and
S. Dighe, “The 48-core SCC Processor: the Programmer’s View,” in
Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–11.

[6] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken, “LogP: towards a realistic model
of parallel computation,” in Proceedings of the fourth ACM SIGPLAN
symposium on Principles and practice of parallel programming. New
York, NY, USA: ACM, 1993.

[7] D. E. Culler, L. T. Liu, R. P. Martin, and C. O. Yoshikawa, “Assessing
fast network interfaces,” IEEE Micro, vol. 16, pp. 35–43, February 1996.

[8] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms,” in Proceedings
of the fifteenth annual ACM symposium on Principles of distributed
computing. New York, NY, USA: ACM, 1996, pp. 267–275.

[9] W. N. Scherer, III, D. Lea, and M. L. Scott, “Scalable synchronous
queues,” Commun. ACM, vol. 52, pp. 100–111, May 2009.

[10] K. E. Schauser and C. J. Scheiman, “Experience with active messages on
the Meiko CS-2,” in Proceedings of the 9th International Symposium on
Parallel Processing. Washington, DC, USA: IEEE Computer Society,
1995, pp. 140–149.

[11] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing,” in Proceedings of the 20th
annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications. New York, NY, USA: ACM,
2005, pp. 519–538.

[12] K. Chapman, A. Hussein, and A. Hosking, “X10 on the SCC,”
Presentation, 2011. [Online]. Available: http://communities.intel.com/
docs/DOC-6255

[13] R. F. van der Wijngaart, T. G. Mattson, and W. Haas, “Light-weight
Communications on Intel’s Single-chip Cloud Computer Processor,”
SIGOPS Oper. Syst. Rev., vol. 45, pp. 73–83, February 2011.

[14] I. A. Comprés Ureña, “Lightweight MPI for the Single Chip Cloud,”
Presentation, 2010. [Online]. Available: http://communities.intel.com/
docs/DOC-5844

[15] R. Rotta and J. Nolte, “Low latency collective operations on the Intel
SCC,” 2011, work in progress.

h

Fast Fluid Dynamics on the Single-chip Cloud

Computer

Marco Fais, Francesco Iorio

High-Performance Computing Group

Autodesk Research

Toronto, Canada

francesco.iorio@autodesk.com

Abstract—Fast simulation of incompressible fluid flows is
necessary for simulation-based design optimization. Traditional
Computational Fluid Dynamics techniques often don’t exhibit the
necessary performance when used to model large systems,
especially when used as the energy function in order to achieve
global optimization of the system under scrutiny. This paper
maps an implementation of the Stable Fluids solver for Fast
Fluid Dynamics to Intel’s Single-ship Cloud Computer (SCC)
platform to understand its data communication patterns on a
distributed system and to verify the effects of the on-die
communication network on the algorithm’s scalability traits.

Keywords: Fast Fluid Dynamics (FFD), Computational Fluid
Dynamics (CFD), Conjugate Gradient, Distributed Systems, Intel
Single-chip Cloud Computer .

I. INTRODUCTION

Simulation of incompressible fluids is often used in
conjunction with the design and analysis phases of engineering
and construction projects.

Fast Fluid Dynamics (FFD) is a technique originally
introduced by Foster and Metaxas [2] for computer graphics,
used to simulate incompressible fluid flows using a simple and
stable approach.

In recent years FFD has been applied to numerous
scenarios and its validity has been independently verified by
multiple groups [1]. While simulations results diverge from
experimental data, the accuracy of the prediction is often
sufficient to provide guidance when fast simulation turnaround
is required for design optimization and emergency planning
scenarios.

FFD techniques use a regular grid spatial partitioning
scheme. In order to simulate very large problems the amount of
memory a single system can support is often not sufficient.
Aggregating collections of systems is often used to simulate
large domains and this technique corresponds to employing
distributed-memory architecture. Even when memory on a
single system is sufficient, the number of computing cores
operating in single-image SMP architectures can exhaust the
total available memory bandwidth. The overall algorithms
scalability can thus suffer, regardless of the amount of
available parallelism the algorithms actually exhibit.

The goal of our work is to design and implement a variant
of the FFD method to evaluate its scalability traits on a system

that employs an on-die network and not to produce the fastest
possible implementation.

II. THE SCC ARCHITECTURE AND THE RCCE

COMMUNICATION LIBRARY

Intel’s Single Chip Cloud system is a novel microprocessor
system design based on computing “tiles” organized in a 2D
grid topology [5][6]. No hardware support for cache coherence
is provided, but hardware support for message passing,
message routing and synchronization primitives is available.

The main message communication library available on the
system is RCCE [7], and offers basic synchronous message
passing and synchronization facilities.

III. STABLE FLUIDS ALGORITHM

Stable Fluids was introduced by Stam [3][4] as a fast, stable
technique to solve incompressible fluid field motion; the fluid
domain is decomposed in a regular voxel grid. Each voxel
contains the density and the velocity at the corresponding
spatial location, thus defining a vector velocity field U and a
density scalar field D.

Figure 1. Regular voxel grid

To solve for a time step the simulator performs a series of
sequential phases that operate on the velocity field and the
density field:

Add velocity forces: compute contribution of external
forces on the velocity field.

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 59

Core 0 Core 1

Core 2 Core 3

Diffuse velocity: compute the diffusion effect of the
velocity field.

Advect velocity: compute the movement of velocity as
affected by the velocity field itself.

Project velocity: compute the effects of mass conservation
on the velocity field.

Add density sources: compute the contribution of external
density sources on the density field.

Diffuse density: compute the effects of diffusion on the
density field.

Advect density: compute the movement of the density field
as affected by the velocity field.

IV. SIMULATING FLUIDS ON THE SCC

Mapping the Stable Fluids solver on the SCC requires
decomposing the fluid field into multiple tiled subdomains and
assigning a core to each subdomain. A block partitioning
scheme is the most natural solution due to the network
topology the cores in the SCC architecture are organized into.

The domain decomposition operation is performed upon
starting the simulator. In the current implementation the
subdomains' locations and sizes do not change after
initialization. The partitions are implicit: system software
provides to each core its own network row and column index in
the grid, and the total number of cores present in each row and
column. Every core can therefore directly compute the size
(number of rows and columns) and the origin of its own
subdomain.

The effect of this partitioning scheme is that cores that are
physical neighbors in the mesh topology operate on adjacent
subdomains. This is important for optimizing overall
communication latencies, as a significant amount of data
dependencies refer to neighboring subdomains.

As a result, almost all communication happens between
cores that are direct neighbors in the SCC mesh network. Fig. 1
shows how a part of the domain is mapped onto cores at
indexes (0, 0), (0, 1), (1, 0), (1, 1) on the SCC.

Figure 2. Domain decomposition

For efficiency reasons the fluid domain data is organized in
memory in an Array of Structures layout. In this way it is
possible to maximize spatial and temporal coherence in the
different phases of the algorithm, and hopefully reduce
performance degradation due to stalls in the memory hierarchy.
Almost all data structures are evenly partitioned among the
cores involved in the execution of the solver, the only
exceptions are the structures containing details about the voxel
type of the other data grids: in the current implementation,
these data structures are replicated on each core, as they are
involved in handling internal and external boundary conditions.

We implemented the solver as a C++ class library, using
template constructs to facilitate changing of the basic data type
of the simulation; varying the data type between different
levels of precision obviously affects the overall simulation
precision, performance and memory usage.

In the next subsections we analyze the individual phases
that are performed in solving for a time step in the simulation.

A. Add forces/sources phase
Adding forces to the velocity field and the density field is a

trivially parallel operation that doesn't require any data
communication across subdomain boundaries; considering F as
a vector field of external forces and S an external scalar field of
density sources, this phase can be expressed as follows:

The formula for velocity is:

U i , j
n+1=U i , j

n +dt F i , j

The formula for density is:

Di , j
n+1=Di , j

n +dt Si , j

B. Diffusion phase
The diffusion phase computes the effect of diffusion on

velocity and density in the voxel grid, which involves solving a
system of linear equations. In this system h represents the size
of a voxel as shown in Figure 1. ν represents the fluid
viscosity constant, and κ represents the density diffusion
constant.

The formula for velocity is:

Ui , j
n+1 –νdt

(Ui−1, j
n+1 +U i+1, j

n+1 +U i , j−1

n+1 +Ui , j+1

n+1 −4 Ui , j
n+1)

h2
=U i , j

n

The formula for density is:

Di , j
n+1–κ dt

(Di−1, j
n+1 +Di+1, j

n+1 +Di , j−1

n+1 +D i , j+1

n+1 −4 Di , j
n+1)

h2
=D i , j

n

Our implementation uses the Conjugate Gradient method to
solve the linear systems due to its ability to handle internal
boundaries. Solving the linear systems results in a strictly data-
parallel 5-point stencil data access pattern. Due to the
predictable nature of the data access the communication
requirements are all statically known. For this reason we can
perform all the required data exchanges concurrently at the
beginning of the phase then proceed to compute the voxels that
do not require subdomain boundary values. At the end, we

60 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

process the boundary voxels and as a result, completely overlap
the data communication of all the cores.

C. Advection phase
The purpose of the Advection phase is to move both

density and velocity along the velocity field.

Figure 3. Advection phase backtracking and interpolation

In this phase h represents the size of a voxel as shown in
Figure 1, Δ t represents the time step, Interp represents a 2D
linear interpolation function.

The formula for velocity is:

U i , j
n+1=Interp (U i , j

n ,(i
j)−Δ t

h U i , j
n)

The formula for density is:

Di , j
n+1=Interp(Di , j

n ,(i
j)−Δ t

h U i , j
n)

The data access pattern of the Advection phase is
unpredictable at compile time, since it is data dependent. In
fact, the access pattern depends on the evolution of the velocity
field. This model of computation is known as dynamic stencil
and its efficient parallelization is generally problematic.

Currently our solution involves using an implementation of
a request-response protocol that allows one core to request
another core for the voxel values of a specific grid. Each core
batches its requests into a queue for every other core involved.

The queue data structure is implemented as a collection of
fixed size arrays. The queue is initially composed of a single
array of requests per destination core. When the space in each
array is exhausted it is sent to the target core and a new array is
allocated, becoming the current requests storage array. We thus
use a data structure that can grow dynamically to accommodate
computation requirements. To optimize memory usage, a
garbage collection mechanism releases unused requests arrays
as required. At the end of the Advection phase, unused arrays
in each queue are deallocated in a single operation.

Take for example a queue composed of four arrays, where
the three extra arrays have been allocated during a previous
Advection phase. If the current Advection phase uses only two
arrays, the last two are deallocated at the end of the phase. This
strategy is based on the assumption that changes in the velocity
field are not abrupt between consecutive executions, thus
generating a similar amount of requests. Since we will likely
require similar sized sets for the next Advection phase, we
don’t release all the arrays at the end of the phase.

To compute the Advection phase on a 2D domain, then for
each voxel in its local subdomain, each core first computes the
global grid indices of its four neighbor voxels (eight in a 3D
environment), resulting from the backtracking operation. If all
the required voxels are local, the final voxel value is computed.
Otherwise a new request is added to the queue of the core
which owns the subdomain containing each remote voxel, and
the computation of the final voxel value is deferred.

In summary, since the request-response protocol introduces
some communication overhead, we use a batching strategy to
minimize overhead. Core specific requests are batched and sent
at the end of the local computation or when the current request
array is full. A communication thread running on each core
monitors incoming requests from other cores, then creates
messages containing the requested data and enqueues the
messages for transmission back to the requesting cores.

On each core when all the required remote data has been
successfully received, all the previously deferred voxels can
finally be computed.

This approach has proven to be quite efficient due to the
low communication latency on the SCC mesh network.
However it is important to underline that performance is highly
data dependent. For example, small velocities and small time
steps imply a small number of voxels with remote
dependencies, with the remote voxels likely being stored in the
memory of physically neighboring cores on the SCC mesh
network. This results in a limited amount of communication
between direct physical neighbors, minimizing both the
required bandwidth and message routing distance on the mesh,
in turn minimizing latency.

In a different scenario, large velocities and/or large time
steps introduce large amounts of voxels with remote
dependencies, which may involve communicating across larger
routing distances on the mesh. This implies additional hops in
the communication network, more message collisions/conflicts
and in general, higher communication latency.

The implementation of our request-response protocol on the
SCC required functionality not available in the RCCE library,
which only supports pure send-receive communications. Our
protocol requires both asynchronous message passing and data-
dependent message destinations. We then extend the RCCE
library with additional functions which will be discussed in
section V.

D. Projection phase
The Projection phase corrects the velocity field to ensure

conservation of mass, and involves computing the current flow
gradient field and solving the Poisson equation to force the
flow in and out of each voxel to be equivalent.

The current flow gradient field is easily obtained using the
current velocity field, and only requires statically known
communication of voxel values along borders of the
subdomains. The solver then proceeds to solve the following
linear system, where P represents the pressure field in the
Poisson equation:

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 61

Pi+1, j+Pi−1, j+Pi , j+1+Pi, j−1−4P i , j=
(U i+1, j

x −U i−1, j
x +U i , j+1

y −U i , j−1

y)h
Solving the linear system is accomplished by re-using the

Conjugate Gradient method already applied during the
Diffusion phase. The data access pattern is the same and we
can easily overlap all data communication by using
asynchronous communication functions.

V. RCCE EXTENSION

Due to the data-dependent and unpredictable nature of the
data access pattern in the Advection phase, the basic RCCE
library provided by the SCC SDK is not suitable. The RCCE
API does not contain functionality to efficiently listen to
incoming messages which can arrive at any time from any
core. It also lacks support for asynchronous communication,
which is fundamental to implement our request-response
protocol.

Some other communication libraries have been developed
since the SCC architecture has been released, iRCCE [11] and
RCKMPI [10] are the most popular. The former is an extension
to the RCCE library while the latter is an implementation of the
MPI standard for the SCC.

iRCCE is a promising library, as it adds non-blocking
point-to-point communication capabilities to RCCE and
introduces a new, smarter version of the “send/receive”
functions. This alternative communication scheme is referred
to as “pipelined”. It splits the Message Passing Buffer (MPB)
into two chunks, allowing both the sender and the receiver to
access the MPB at the same time, in parallel. While the new
features introduced by the iRCCE extension are useful in the
context of our work, they are still not sufficient for our
purposes. In particular it is not possible to efficiently receive a
message without knowing the sender in advance, and mixing of
non-blocking communication requests with blocking collective
operations is not supported.

In our computation we often need to compute the norm of a
vector partitioned among all the cores’ address spaces. Without
mixing point-to-point communication requests with collective
operations, we would require a barrier every time we need to
compute a norm. Moreover, the pushing mechanism used by
iRCCE to allow the communication to progress leads to a more
complicated and less portable application code. One of our
purposes is to write the algorithm in a way that minimizes the
effort required to port the code to different distributed memory
architectures, a cluster, for example. For this reason we decided
to isolate the architecture-dependent aspects of the
communications in a separate thread that emulates a
communication controller, for example a DMA engine, or a
hardware thread in a Simultaneous Multithreading system.

Using a dedicated thread for communication management
introduces a small amount of overhead due to the context
switches between the computation thread and the
communication thread. However this solution is more flexible,
because the communication management thread waking pattern
(and hence the context switch frequency) is configurable. An
additional advantage is that the application code is cleaner, as

the calls to the functions that allow communication progress is
not interleaved with the algorithm code.

RCKMPI is one of several implementations of the MPI
standard [8] developed for the SCC architecture, derived from
the MPICH2 implementation [9]. Its main advantage is that
many parallel applications programmers are familiar with MPI
and a parallel application written with RCKMPI only needs to
be recompiled with an MPI implementation to be ported to a
variety of distributed systems. However, RCKMPI is affected
by some of the issues already discussed: in particular the need
for a receiver to statically know the rank of the sender and the
size of the message.

For these reasons we implement our own extension of the
basic RCCE library, reusing most pre-existing data structures
to support asynchronous communication and a request-
response protocol. Our extension uses an interface similar to
the standard TCP/IP “select” function, and introduces a non-
blocking operation to quickly identify incoming messages and
operate on them.

Our “select” function takes an array of chars as input,
which will be filled with the ranks of the cores that are
requesting to initiate a communication. Upon completion, our
function returns the number of valid entries in the array. Our
“select” is based on custom variants of the low-level RCCE
“send_general” and “receive_general” primitives.

Our new “send” adds a header to the message containing
the type of the message and its size in bytes, so that the new
“receive” does not require the size of the message as a
parameter.

The type of the message is an additional one-byte field that
can be used by the sender program to mark the content of the
message, so that the receiver program can perform different
tasks according to this information.

We allocate two new sets of communication flags in the MPB,
that are used for signaling by all the new functions (“select”,
size-agnostic “send” and “receive”). This way we can handle
both point-to-point and collective communication requests
without signaling conflicts. The new flags allocated on the
MPB reduce the size of the largest data chunk transferable by
48 bytes (using flags of 1 byte), but we consider this trade-off
acceptable.

VI. RESULTS

We tested our solver on domains of different sizes. For
each experiment we incremented the size of the domain
proportionally to the number of cores involved, which provided
a good measure of the impact of communications on the overall
performance.

For each domain size, the domain partitions were assigned
to neighboring cores in the mesh network by using the logical
layout provided by the RCCE library. This ensured
neighboring logical domain partitions were assigned to
physically adjacent cores.

While our experiment provided a test of both the processor
cores and the on-chip mesh communication network, initially

62 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

we only used the default frequencies for the processor cores
and communication mesh.

The focus of the tests was not absolute performance but an
analysis of the scalability traits.

TABLE 1. EXECUTION TIMES FOR ONE TIME STEP OF SIMULATION

Domain Size Cores Time (seconds)

1024 X 1024 1 X 1 116.76

2048 X 2048 2 X 2 142.63

4096 X 4096 4 X 4 153.00

6144 X 6144 6 X 6 153.45

8192 X 6144 8 X 6 153.85

Figure 4. Scalability results

Table 1 reports the execution times for solving one
simulation time step using single precision floating point as the
basic data type. Fig. 1 represents the actual scalability of the
current implementation of the solver on the SCC and compares
it with the ideal scalability curve.

The reference single-core solver used for obtaining the
baseline timing does not contain any form of communication.
The multi-core distributed solver thus introduces a certain
amount of overhead even in its minimal 2x2 cores
implementation.

The results demonstrate that while communication indeed
introduces overhead, the overall scalability traits of the
algorithm are good. The overhead is constant beyond 4x4
cores. As a result the solver exhibits a constant execution time
for larger domains, up to the maximum size tested. The
memory used approached the upper limit of the SCC system
used for our tests.

VII. CONCLUSION AND FUTURE WORK

The approach chosen in our implementation exhibited fairly
good scalability, with the experimental results being quite
promising. We plan to continue the work with the introduction

of additional optimizations for performance, communication
and synchronization.

This paper focused on simulations performed on 2D
domains, but work is already underway on an extension of the
solver to 3D domains. The performance optimization work will
concentrate on the improvement of memory access, additional
exploitation of asynchronous data transfer, and better
exploitation of temporal coherence, especially in the Advection
phase.

Variations of the cores and mesh frequencies will also be
evaluated to understand their effects on power usage, and to
find the optimal frequencies that allow the fastest algorithm
performance while minimizing power usage. The chosen
domain partitioning layout is expected to benefit this
experiment by minimizing the average distance messages need
to travel on the mesh network.

ACKNOWLEDGMENT

The authors would like to acknowledge Dr. Jos Stam for
the precious collaboration and guidance on the algorithm
details, and Alex Tessier for his insightful comments.

REFERENCES

[1] W. Zuo and Q. Chen, “Validation of fast fluid dynamics for room
airflow ”, IBPSA Building Simulation 2007, Beijing, September 2007

[2] N. Foster and D. Metaxas, “Realistic animation of liquids”, Graphical
Models and Image Processing, volume 58, number 5, 1996, pp.471-483

[3] J. Stam, “Stable fluids”, In SIGGRAPH 99 Conference Proceedings,
Annual Conference Series, August 1999, pp.121-128

[4] J. Stam, “Real-time fluid dynamics for games”, Proceedings of the
Game Developer Corner, March 2003

[5] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D.
Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S.
Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow, M. Riepen,
G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss, T. Lund-
Larsen, S. Steibl, S. Borkar, V. De, R. Van Der Wijngaart, T. Mattson,
“A 48-Core IA-32 message-passing processor with DVFS in 45nm
CMOS”, Proceedings of the International Solid-State Circuits
Conference, Feb 2010

[6] T. G. Mattson, R. F. Van Der Wijngaart, M. Riepen, T. Lehnig, P. Brett,
W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, S.
Dighe, “The 48-core SCC Processor: the programmer's view”,
Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, p.1-11,
November 13-19, 2010

[7] T. Mattson, R. Van Der Wijngaart, “RCCE: a small library for many-
more communication”, Intel Corporation, May 2010, Software 1.0-
release

[8] Message Passing Interface Forum, “MPI: a message passing interface
standard”, High-Performance Computing Center Stuttgart (HLRS),
September 2009, Version 2.2

[9] “MPICH2”, Internet: http://www.mcs.anl.gov/research/projects/mpich2,
[June 20, 2011]

[10] I. A. Comprés Urena, “RCKMPI user manual”, Internet:
http://communities.intel.com/docs/DOC-6628, January 2011

[11] C. Clauss, S. Lankes, J. Galowicz, T. Bemmerl, “iRCCE: a non-blocking
communication extension to the RCCE communication library for the
Intel Single-chip Cloud Computer”, Internet:
http://communities.intel.com/docs/DOC-6003, February 2011

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 63

64 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

Task Parallelism on the SCC

Andreas Prell and Thomas Rauber
Department of Computer Science

University of Bayreuth, Germany

{andreas.prell,thomas.rauber}@uni-bayreuth.de

Abstract—Task parallel programming has become a popular
and effective approach for programming multicore systems.
An interesting question is always how to implement the task
abstraction on a new architecture. In this short paper, we look at
Intel’s Single-Chip Cloud Computer (SCC) and propose a tasking
environment for the SCC. We compare two different runtime
systems with work-sharing and work-stealing schedulers.

I. INTRODUCTION

Task parallel programming allows programmers to iden-

tify opportunities for parallelism while leaving the details

of parallel execution to the runtime system. Consequently,

runtime systems become a major factor in the success of this

programming model. As new architectures continue to emerge,

much work has to go into building task abstractions that map

well to increasingly parallel hardware.

The Single-Chip Cloud Computer (SCC) is a 48-core exper-

imental processor created by Intel Labs to serve as a platform

for manycore software research [1], [2]. The SCC is de-

signed to be a message-passing chip where cores communicate

through non-cache-coherent shared memory. In this short pa-

per, we describe our approach to task parallel programming on

the SCC. We implement a tasking environment and show that

efficient runtime schedulers can be built by taking advantage

of the processor’s on-chip Message Passing Buffers (MBPs).

II. TASKING ON THE SCC

Figure 1 shows the components of our tasking environment

for the SCC processor. At the lowest level, we use some

functionality from RCCE [2], as well as our own library

routines for accessing MPB memory. Worker threads are based

on the RCCE notion of “units of execution” (UE), which are

mapped to the cores of the chip. Each UE is assigned a rank

from 0 to N − 1, where N is the number of UEs the program

is running on. We use these ranks to define our worker IDs:

UE 0 becomes worker 0, UE 1 becomes worker 1, and so on.

We choose worker 0 as the (default) master to run the main

program. Tasks that are spawned are picked up and executed

by workers.

To store tasks in MPB memory, we have implemented

a double-ended queue (deque) that is similar to the work-

stealing deques of [3], [4], but lock-based instead of lock-free.

Locks are the only way to achieve synchronization; no atomic

operations, such as CAS, are available that work across the

cores of the SCC. On top of that, there are only 48 test-and-

set registers (one per core), meaning that at most 48 locks

can be used at a time. Tasks are stored in a circular array of

Fig. 1. A tasking environment for the SCC processor.

fixed size, with head pointing to the oldest task. New tasks are

inserted at tail. A single lock per deque is sufficient to allow

deque operations at opposite ends to proceed concurrently

most of the time, as long as only one worker inserts tasks.

If more than one worker inserts tasks, all accesses require

locking. Using two locks per deque would allow for more

concurrency between enqueue and dequeue operations [5], but

with two workers sharing a deque, inserting a task (a frequent

operation!) becomes less efficient.

III. RUNTIME SYSTEMS

The runtime system is the central component that imple-

ments the scheduler. The scheduler is responsible for assigning

tasks to worker threads and performing load balancing. There

are two general approaches to load balancing a computation:

work-sharing and work-stealing.

A. Work-Sharing Scheduling

Work-sharing is based on the idea of redistributing tasks

to underutilized workers. A trivial implementation of a work-

sharing scheduler uses a single queue that is shared among all

workers. Because of the scalability problems of centralized

task pools, we explore a slightly different implementation.

Workers can keep their tasks in private memory, but are

required to share some of their work when the need arises.

Every worker maintains a queue in private memory (no

synchronization is required here because workers have no way

to access other workers’ private memory). In addition, we

allocate a deque in the MPB of the master thread for load

balancing. Workers that have enough tasks are responsible for

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 65

sharing; workers that run out of tasks can pick up new work

from the deque.

B. Work-Stealing Scheduling

In work-stealing scheduling, idle workers take the initiative

to find new work. Every worker has a local deque on which it

operates. Whenever a worker finds its deque empty, it attempts

to steal a task from the deque of another worker, which, in

the ideal case, is not disrupted by the steal.

We currently support two strategies for selecting victims:

randomized and latency-oriented work-stealing. In randomized

work-stealing, victims are chosen uniformly at random [6]. In

latency-oriented work-stealing, victims are selected based on

their distance in terms of on-chip network hops. A thief always

tries to steal from the same tile, before it checks for tasks on

other tiles, in increasing order of distance, up to a maximum

of 8 hops [2].

C. Synchronization

Synchronization is required to coordinate the execution of

tasks. We have implemented a task model similar to that

of OpenMP 3.0 [7], [8] with two primary synchronization

constructs: (1) A taskbarrier waits for the completion of all

pending tasks. This form of synchronization is coarse-grained

and can only be invoked from the master thread. (2) A taskwait
waits for the completion of all direct descendants of the current

task. This form of synchronization allows fine-grained control

over parent-child dependencies.

A taskbarrier marks a global synchronization point: all tasks

must complete before execution can continue past the barrier.

Only the master thread is allowed to check into the barrier.

Workers keep running their scheduling loop and eventually

become idle after finishing all tasks, at which point the master

returns from the barrier. The master doesn’t simply wait inside

the barrier, but helps make progress when work is available.

A taskwait keeps track of the children that a parent task is

waiting for. In order to provide an efficient implementation, we

allocate task counters from MPB memory. A task counter is

atomically updated whenever a child is created or terminates.

Once the taskwait completes by reading a count of zero, the

memory for the task counter can be freed or otherwise marked

as reusable. A direct consequence of this implementation is

that deep recursion may overflow MPB memory. We currently

deal with this problem by limiting the runtime’s MPB usage.

New tasks that would exceed the limit are not created but

executed sequentially. Tasks are created again once enough

memory has been reclaimed.

In addition to the synchronization constructs derived from

OpenMP 3.0, we provide simple explicit futures [9]. A future

is essentially a placeholder for the result of an asynchronous

computation (task). Forcing a future means waiting for the

result to arrive, rather than waiting for the task to complete. A

worker that forces a future is free to start other tasks while the

future is pending. Again, for efficiency reasons, we allocate

future objects from MPB memory. A future object contains a

synchronization flag that is set once the result is available.

IV. PRELIMINARY EXPERIMENTAL RESULTS

We compare performance on three microbenchmarks that

stress the ability of the runtime system to find work and

perform load balancing:

• Simple Producer-Consumer (SPC) benchmark: A single

producer (worker ID 0) spawns n consumer tasks. Con-

sumer tasks perform some computation for time t.
• Bouncing Producer-Consumer (BPC) benchmark [10]:

A variation of the producer-consumer benchmark with

two kinds of tasks, producer and consumer tasks. Each

producer task creates another producer task followed by

n consumer tasks, until a depth of d is reached. Producer

tasks do nothing besides spawning tasks. Consumer tasks

perform some computation for time t.
• Fibonacci-like tree-recursive benchmark: Modeled after

the tree-recursive process of computing Fibonacci num-

bers. Each task n ≥ 2 creates two child tasks n− 1 and

n − 2 and waits for their completion. Leaf tasks n < 2,

which end the recursion, compute for time t.

The SCC is used in the default configuration, with cores

clocked at 533 MHz, routers at 800 MHz, and DDR3-800

memory. Work-sharing and work-stealing runtimes are con-

figured to use a deque size of 101. Work-stealing proceeds by

selecting victims at random.

A. Work-Sharing Scheduling

The top row of Figure 2 shows the results for the work-

sharing runtime. Work-sharing is only an option for relatively

coarse-grained parallelism. Despite our attempt to reduce

contention somewhat by setting up private queues, the single

shared queue remains a significant bottleneck that quickly

limits scalability when workers are frequently searching for

tasks. In fact, the contention on the deque grows so high that

performance starts to degrade. To work against this, we would

have to manage contention explicitly, for example by following

a backoff strategy before trying to access the deque again.

B. Work-Stealing Scheduling

The bottom row of Figure 2 shows the results for the work-

stealing runtime. Work-stealing delivers good performance on

medium to fine-grained parallelism. Very fine-grained paral-

lelism on the order of a few microseconds per task is hard to

exploit due to the cost of task creation and scheduling.

We see only one case where work-stealing is outperformed

by work-sharing: on the SPC benchmark with large tasks.

There are two reasons for this: (1) Our work-stealing imple-

mentation uses deques in MPB memory, which are fixed-size,

and when full, require that new tasks are executed sequentially.

Doing so can cause load imbalance, especially if that worker

is the only source of tasks. (2) Unlike work-sharing, work-

stealing involves probing deques, often randomly, as in this

case, until a deque is found from which it is possible to steal.

1A deque of 10 tasks takes up 1504 KB, which is roughly 20% of the
available MPB memory of a worker.

66 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

0 8 16 24 32 40 48

Number of workers

0

8

16

24

32

40

48
Sp

ee
du

p
ov

er
 s

er
ia

l e
xe

cu
ti

on

Task size
1000μs
100μs
10μs

n = 100 000

(a) SPC

0 8 16 24 32 40 48

Number of workers

0

8

16

24

32

40

48

Sp
ee

du
p

ov
er

 s
er

ia
l e

xe
cu

ti
on

Task size
1000μs
100μs
10μs

n = 9, d = 10 000

(b) BPC

0 8 16 24 32 40 48

Number of workers

0

8

16

24

32

40

48

Sp
ee

du
p

ov
er

 s
er

ia
l e

xe
cu

ti
on

Task size
1000μs
100μs
10μs

n = 25

(c) Fib-like

0 8 16 24 32 40 48

Number of workers

0

8

16

24

32

40

48

Sp
ee

du
p

ov
er

 s
er

ia
l e

xe
cu

ti
on

Task size
1000μs
100μs
10μs

n = 100 000

(d) SPC

0 8 16 24 32 40 48

Number of workers

0

8

16

24

32

40

48

Sp
ee

du
p

ov
er

 s
er

ia
l e

xe
cu

ti
on

Task size
1000μs
100μs
10μs

n = 9, d = 10 000

(e) BPC

0 8 16 24 32 40 48

Number of workers

0

8

16

24

32

40

48

Sp
ee

du
p

ov
er

 s
er

ia
l e

xe
cu

ti
on

Task size
1000μs
100μs
10μs

n = 25

(f) Fib-like

Fig. 2. Performance of work-sharing (top row) and work-stealing (bottom row) schedulers on SPC, BPC, and tree-recursive benchmarks. The numbers of
tasks are 100 000 for SPC and BPC and 242 784 for Fib-like.

This probing, especially when not strictly needed, can increase

the time it takes to find new work.

Several strategies can help improve performance on SPC

type of workloads. Increasing the deque size, perhaps dynam-

ically at runtime, or trying to insert tasks in remote deques

could effectively prevent producers from inlining large tasks.

Adapting work-stealing to be more directed towards the deque

of the producer could reduce consumer idle time.

V. SUMMARY AND FUTURE WORK

Our preliminary results show that tasks can be moved

efficiently around the cores of the SCC processor. Work-

stealing turns out to be much more practical than work-sharing,

especially in the case of fine-grained parallelism.

We consider two directions for future work: (1) simplifying

the programming model by adding compiler support for task

parallelism and (2) exploring new scheduling approaches that

can be adapted for future manycore processors.

The hybrid nature of the SCC makes it an interesting

platform for software research. Beyond finding out what works

well in the context of the SCC, we think it’s important to

explore ideas that can be generalized for manycore computing.

ACKNOWLEDGMENT

We thank Intel for granting us access to the SCC as part of

the MARC program. Our work is supported by the Deutsche

Forschungsgemeinschaft (DFG).

REFERENCES

[1] J. Howard et al., “A 48-Core IA-32 Message-Passing Processor with
DVFS in 45nm CMOS,” in Proceedings of the 2010 IEEE International
Solid-State Circuits Conference, 2010, pp. 108–109.

[2] T. G. Mattson et al., “The 48-core SCC Processor: the Programmer’s
View,” in Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 1–11.

[3] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread Scheduling for
Multiprogrammed Multiprocessors,” in Proceedings of the tenth annual
ACM symposium on Parallel algorithms and architectures, ser. SPAA
’98. New York, NY, USA: ACM, 1998, pp. 119–129.

[4] D. Chase and Y. Lev, “Dynamic Circular Work-Stealing Deque,” in
Proceedings of the seventeenth annual ACM symposium on Parallelism
in algorithms and architectures, ser. SPAA ’05. New York, NY, USA:
ACM, 2005, pp. 21–28.

[5] D. Majeti, “Lightweight Dynamic Task Creation and Scheduling on the
Intel Single Chip Cloud (SCC) Processor,” in Proceedings of the Fourth
Workshop on Programming Language Approaches to Concurrency and
Communication-cEntric Software, ser. PLACES ’11, 2011, pp. 35–42.

[6] R. D. Blumofe and C. E. Leiserson, “Scheduling Multithreaded Com-
putations by Work Stealing,” J. ACM, vol. 46, pp. 720–748, September
1999.

[7] “OpenMP Application Program Interface Version 3.0,” http://www.
openmp.org/mp-documents/spec30.pdf, May 2008.

[8] E. Ayguadé et al., “The Design of OpenMP Tasks,” IEEE Trans. Parallel
Distrib. Syst., vol. 20, pp. 404–418, March 2009.

[9] R. H. Halstead, Jr., “Multilisp: A Language for Concurrent Symbolic
Computation,” ACM Trans. Program. Lang. Syst., vol. 7, pp. 501–538,
October 1985.

[10] J. Dinan et al., “Scalable Work Stealing,” in Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis, ser. SC ’09. New York, NY, USA: ACM, 2009, pp. 53:1–
53:11.

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 67

68 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

An Empirical Feedback Provider for Multi-Core Schedulers

Waqaas Munawar, Janmartin Jahn, Artiom Aleinikov, Jian-Jia Chen, Jörg Henkel
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

(munawar, jahn, aleinikov, jchen, henkel)@kit.edu

Abstract—Packaging multiple cores per chip is the most viable
design methodology of continuing improvement of computational
performance. The use of multi-core processors has been chal-
lenging due to many issues from both software and hardware
aspects. In this paper, we present a practical setup to investigate
the effects of design choices in multi-core scheduling algorithms
on different parameters of interest. These parameters include
the performance overhead, power consumption, thermal effects
and cache coherency issues. As a use case, we employ the SCC
platform and a robotic head, while the controlling application
has been parallelized to reap performance benefits of a large
number of cores. This paper presents the current state of our
implementation and its design choices, and also outlines the
remaining research challenges.

I. INTRODUCTION

Multi-core systems are expected to increasingly employ

homogeneous and heterogeneous cores to accommodate per-

formance requirements without significant increase of power

consumption and heat dissipation. This presents an addi-

tional challenge for programmers, system designers, and re-

searchers. Additionally, multi-core architectures depart from

the paradigm of sharing memory resources, as this does not

scale well with a large number of cores [1]. Moreover, the

access latency and bandwidth of different on and off chip

memory banks vary due to varying distance, network load, or

link vitality on the network on chip (NOC). Orthogonal to per-

formance considerations, power optimizations can benefit im-

mensely from the ability to dynamically tweak the frequency

and voltage of the cores. The presence of these variables

obligates non-trivial decisions from the scheduler that manages

the system. Additionally, constraints on power consumption,

temperature, and different performance requirements, as well

as the absence of shared memory, lead to the challenges to

design effective schedulers.

Unfortunately, to the best of our knowledge, there exists no

setup to profile a novel scheduler’s performance under realistic

practical settings on large-scale multi-core hardware platform,

such as Intel’s Single Chip Cloud Computer (SCC) with 48

cores. In this paper we present our setup on such a platform

along with its implementation status and the early results. The

core idea behind this platform is to provide the necessary

infrastructure for task migration and profiling to support the

empirical comparison among different scheduling and core-

assignment algorithms. As our proposed system serves as a

runtime facilitation layer for the scheduler, it faces additional

constraints on the performance of its subcomponents. Hence,

we keep it transparent in the normal functioning of the

overall system. Our platform is hardware agnostic and can

be utilized on most multi-core architectures. We use Intel’s

Single Chip Cloud Computer (SCC) along with the Barrelfish

operating system [2] as our first implementation test-bed. The

first application we profile is a parallelized robotic software

package that incorporates stereo vision, object recognition

and robotic control. To increase the level of parallelism, we

have transformed the robotic software package to a software

pipeline, where each stage runs in a separate thread and

communication between stages is implemented using message

passing. Stages run in parallel and do not share memory, thus

they can be assigned to and migrated among different cores.

II. ARCHITECTURE

The central idea of the system is to provide an interface

to the scheduler through which it can accomplish two main

objectives: (i) it can implement its decisions regarding the

frequency selection, voltage control and task mapping and

remapping on different cores and (ii) the scheduler can see the

results of its decisions in terms of the specified performance

metric such as power savings, temperature control and re-

sponse time. We adopt a hierarchical scheduler so that the level

of abstraction increases with acceptable decrease of control

granularity [3]. In order to support such schedulers at different

levels of abstraction, we need a hierarchical facilitation system,

providing services at appropriate levels.

Figure 1a summarizes the available interface for facilitation

and feedback services. Considering the first of the two objec-

tives, a hierarchical structure would imply multiple levels of

appropriate facilitation operators for the corresponding layer.

For an example, let us consider the task migration mechanism.

Its objective varies according to the corresponding level in

hierarchy. At top-most level it must address the shift of

application from one set of cores to another considering the

capability and constraints of hardware and its interconnects.

At the lower levels it deals with moving a group of threads

that belong to a task, from one core to another to actuate,

for example, temperature reduction. Similarly, other facilities

e.g. frequency and voltage control, memory interconnect and

priority reassignment, are accessible via other actuation com-

mands at appropriate level in hierarchy. Like facilitation, the

requirements posed by profiling (i.e. the second objective) also

demand a layered feedback provider.

III. IMPLEMENTATION

The main principles guiding our implementation of the

discussed platform are: (i) The developed solution should not

be tied to a specific hardware platform and (ii) the constant

runtime overhead contribution from the framework should

be minimal. Therefore, the Barrelfish multikernel OS [4],

which satisfies our objective, is adopted as our implemen-

tation. The reason for selecting Barrelfish is its ability to

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 69

Scheduler structure Controlled aspect Facility actuation Feedback generated

App A App B

Proc a1
(OpenMP etc.)

Proc a2 Proc b1

Monitor 1

cpu2 cpu3

Mon 2 Monitor 3

U
se

r s
pa

ce
K

er
ne

l s
pa

ce

Process’

threads

Thread
migration
support

cpu1

Core drivers manage internal priority based scheduling

Fr
eq

. /
 V

ol
t.

do
m

ai
n

Application requirements
Hardware capability

+Interconnects

QoS achieved

+ Timeliness

+ Scheduler fairness

+ Resource utilization

Frequency control

+ Voltage control

Load balancing

+ Temperature control
Performance/resource

Priority management Priority reassignment
Power consumption/core

+ Core temperature

(a) Architecture of the system in relation to a generic hierarchical multi-core scheduler (b) Head of the humanoid robot

Fig. 1: Architecture and the case study.

capture and present the underlying hardware’s heterogeneity

in logic-constructs, thereby easing scheduler’s adaptability.

However, the architecture design in Figure 1a makes it easy

and possible to port to other operating systems, like SMP

Linux. It also holds for task migration algorithms. The task

migration capability is an important aspect in our system. A

number of task migration solutions have been discussed in the

literature [5] and any of these, given it fulfills the constraints

at corresponding level, can be employed. Our modular archi-

tecture facilitates this replacement. The implementation of the

presented architecture is still an ongoing task.

IV. A USE CASE

The first usage of the system is on the humanoid robotic

head’s (shown in Figure 1b) software package of the robot

ARMAR [6]. It continuously captures stereo images from

two FireWire (IEEE 1394) cameras and uses computer vision

algorithms to follow a moving object. The source images

are first transformed and segmented. Then, moving objects

are discovered, stereo matching is performed and the robot

performs actions based on their 3D coordinates.

The robotic application exhibits several types of parallelism.

As the correct order of the iterations must be maintained, a

straightforward parallel execution of loop iterations on dif-

ferent cores would need significant synchronization overhead.

However, the filters (FilterHSV2, Erode, Dilate) loop over the

image and can be loop-parallelized with OpenMP. Unfortu-

nately such parallelization requires to operate on shared mem-

ory, which contradicts to the paradigm of the SCC platform

of departing form shared memories, and is thus infeasible.

To generate a reasonably balanced level of parallelism in

terms of granularity, we have chosen to create a software

pipeline from the main application loop. Each stage operates

on private data and forwards its results using message pass-

ing. The schematic flow of the application and its stages is

depicted in Figure 2. Each box represents a pipeline stage that

continuously loops its execution as soon as its input data is

available.

By the use of this application we will be able to collect

the vital statistics to compare different scheduling algorithms

among each other in terms of their fairness, power optimiza-

tion, responsiveness, effect of hardware interconnects etc.

O
bj

ec
t

R
ec

og
ni

tio
n

Capture Left Capture Right

Undistort Undistort

Grayscale Grayscale

CalculateHSV CalculateHSV

FilterHSV2 FilterHSV2

Erode/Dilate Erode/Dilate

SegmentImage SegmentImage

FindObjects

Control Robot

Im
ag

e
ac

qu
is

iti
on

 &

pr
ep

ar
at

io
n

Fi
lte

rin
g

D
SP

C

trl

Fig. 2: Robotic Application Pipeline

V. CONCLUSION

In this paper we have outlined the need for empirical

results for next generation schedulers and have presented

the architecture of a system to acquire them. We believe

this will be helpful for scheduler design, power optimization,

temperature management and performance evaluation.

REFERENCES

[1] J. Howard et al., “A 48-core ia-32 message-passing processor with dvfs
in 45nm cmos,” in ISSCC’10 IEEE International, pp. 108 –109.

[2] A. Schpbach, S. Peter, A. Baumann, T. Roscoe, P. Barham, T. Harris,
and R. Isaacs, “Embracing diversity in the barrelfish manycore operating
system,” in Proceedings: Managed Many-Core Systems, 2008.

[3] S. Peter, A. Schüpbach, P. Barham, A. Baumann, R. Isaacs, T. Harris,
and T. Roscoe, “Design principles for end-to-end multicore schedulers,”
ser. HotPar’10, 2010, pp. 10–10.

[4] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: a new os
architecture for scalable multicore systems,” ser. SOSP ’09, pp. 29–44.

[5] J. Jahn, M. A. Al Faruque, and J. Henkel, “CARAT: Context aware
runtime adaptive task migration for multi core architectures,” in DATE
’11, 2011.

[6] T. Asfour, K. Regenstein, P. Azad, J. Schroder, A. Bierbaum,
N. Vahrenkamp, and R. Dillmann, “Armar-iii: An integrated humanoid
platform for sensory-motor control,” in IEEE-RAS Humanoid Robots,
2006, pp. 169 –175.

70 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

A Scalable and Robust Runtime Environment for
SCC Clusters

Björn Saballus, Stephan-Alexander Posselt and Thomas Fuhrmann
Technische Universität München

Boltzmannstrasse 3, 85748 Garching/Munich, Germany

{saballus|posselt|fuhrmann}@in.tum.de

Abstract—Today, computing systems – especially high-
performance computing systems – become more and more
parallel. As a consequence, each system’s memory becomes more
fragmented across a large network of computing elements, and
also across the various different processing cores within a single
element. Applications that need to be executed on a whole
cluster are most easily implemented when they can pretend
to run on a single system. However, providing coherence in
hardware is getting more expensive as the number of cores grows.
Maintaining memory consistency in software is hard to get right.

As a possible solution to these problems, we develop a
distributed Java virtual machine (VM). The VM’s system model
respects the memory hierarchy of modern computer architectures
as well as their hardware failure rates. Additional features such
as transparent thread and object migration help to achieve a
high utilization of the available compute resources, while hiding
the underlying hardware from the programmer.

I. INTRODUCTION

Since about 2005, a fundamental change in software and

hardware development is under way. The physical limitations

lead the processor design from fast, single core chips to mas-

sively parallel, heterogeneous processors. Today, an increase

in processor performance can only be achieved by increasing

the number of processing cores. However, the growing num-

ber of cores also aggravates the problems with concurrency.

Hardware-based coherence among the cores is expensive and

hard to achieve in many-core processors. Similarly, lock-based

consistency between the threads is hard to get right.

Hence, this development imposes a high burden on the

software developer, who has to deal with memory consistency,

as well as with the distributed and potentially heterogeneous

nature of the underlying system.

The J-Cell project1 aims at hiding the heterogeneous and

distributed nature of clusters of many-core processors from

the software developer. Additionally, a software transactional
memory (STM) system shall support the developer to ease

the implementation of parallel applications. For this purpose,

we develop a scalable and robust runtime environment that

provides a single system image (SSI) [1] across all cores and

all processors in a compute cluster. To this end, we address

the following research questions:

• How can we implement a massively scalable STM?

• How can we hide the latencies of the memory hierarchy?

1J-Cell is supported by the German Ministry of Education and Research
under grant number 01IH08011.

• How can we efficiently protect an application from hard-

ware failures?

• How can we consolidate applications on the cores to save

energy?

• How can we efficiently distribute the workload to increase

hardware utilization?

We seek to solve these challenges by developing a virtual
machine (VM) that accesses memory on behalf of the threads.

Threads and data can migrate transparently across cores and

machines, while our runtime environment ensures the consis-

tency of the data in face of concurrent access. In addition,

it can maintain a certain level of redundancy of the data to

protect against hardware failures.

II. SYSTEM OVERVIEW

Our research focuses on unlimited scalability by completely
eliminating all centralized components. The main component

of our system is a fully-decentralized virtual machine that

scales to vast numbers of cores, processors, and machines in

a cluster. On each core runs an individual VM instance in its

own thread. Each of these VM threads, again, executes one or

more Java threads. Together, all these instances collaborate to

create an SSI that allows one or more concurrent applications

to run transparently on heterogeneous multi-core machines.

The VM instances distribute code, objects, and threads onto

the compute resources, which may be added or removed at

run-time.

To this end, the system builds an ad-hoc network of pro-

cessors and cores. A fully decentralized object location and

retrieval algorithm facilitates the access to distributed shared

objects [2]. A multi-version STM system, the DecentSTM [3],

coordinates concurrent access to these objects with the help

of a fully decentralized consensus protocol. To deal with node

failures, our system uses a decentralized recovery mechanism

that works on well-chosen, outdated versions of data to avoid

explicit checkpointing [4].

A. Decent Virtual Machine

Our starting point is the Java virtual machine (JVM). We

are also developing a library for C, but the JVM has a well-

defined memory model that lends itself to distribution and

STM. Java has gained a lot of interest in engineering and

scientific computing in the recent years. Taboada et al. [5]

analyze current research projects (as of 2009) that use Java

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 71

for High Performance Computing (HPC). They conclude, that

Java is well suited for hybrid shared memory (intra-node)

and distributed memory (inter-node) architectures because Java

threads support shared memory, and Java network support

assists distributed memory communication.
Instead of modifying an existing JVM, we decided to

develop our own, customized VM. This gives us full control

over the VM: We can freely design the interpreter, memory

management, and garbage collection. Furthermore, we are free

to choose the internal representation of objects and execution

contexts to enable easy object and thread migration.
The result is the Decent Virtual Machine (DecentVM)

[6] design; a fully decentralized, distributed virtual machine

with a small code footprint that is compliant with the Java

standard. An off-line transcoder converts the Java bytecode

of an application to a custom, optimized instruction set. This

leads to a less complex VM implementation.

Fig. 1. The DecentVM hardware model

The DecentVM supports the partitioned global address
space (PGAS) programming model. Its memory model is

derived from a non-uniform memory access (NUMA) archi-

tecture and distinguishes between logical (private or global)

and physical (private, local or remote) memory.
Logically private memory maps to the physically private

memory. It is only used and accessed by a single VM instance,

which may execute multiple Java threads. Nevertheless, the

VM itself takes precautions that no Java thread can access

the memory of any other thread that is executed by the same

VM instance. Physically, this memory is tightly coupled with

a single core of the processor, e. g. registers or caches.
Logically global memory is shared among all VMs of a

cluster. It does not have a physical representation of its own,

but consists of all the physically local memories that are

littered across different address spaces. From the perspective

of a single node, the own physically local memory is shared by

multiple VM instances that reside in the same address space,

e. g. on the cores of the same processor, cf. Fig. 1. On multi-

core and multi-processor systems, this usually maps neatly

onto the local RAM. Again, from the perspective of a single

node, the physically local memories of all other nodes are

combined into the physically remote memory. It is the task of

the VM to make all these local memories appear as a single

system image, i. e. the logically global memory.

B. Objects
Java and thus the DecentVM work with objects, which

can be Java language objects and arrays, but also execution

Physical
private local remote

Logical
LOC Mem. Addr. – –
GAO – Mem. Addr. GUID

TABLE I
REFERENCE REPRESENTATION OF GAOS AND LOCS

contexts and code.

Due to the differences in memory types and the DecentSTM

algorithm, the DecentVM object model distinguishes between

globally accessible objects (GAOs) and local object copies
(LOCs). Note that this distinction is only made at the VM

level, not at the application level.

LOCs are stored in private memory. They are only acces-

sible by the thread to which they belong. Because the LOC

resides in the same address space as the thread, it is directly

accessible via a local memory address.

GAOs logically reside in the global memory and can be

shared among different threads on different nodes. Therefore,

they cannot be referenced with a plain memory address be-

cause local memory addresses are only valid within the address

space of the respective VM. Instead, we introduce a new type

of reference: The globally unique identifier (GUID) is location

independent and suffices to uniquely identify a GAO within

the whole cluster. Additional location information is needed

to be able to find the node on which the GAO resides. The

GAO’s location may change over time due to object migration

or recovery from node failures.

A GAO is always stored in the physically local memory

of some node. Hence, it is always directly accessible on this

node via a local memory address. Internally, the DecentVM

uses various tables to map local memory addresses to GUIDs

and vice versa. See Table I for the different reference repre-

sentations of LOCs and GAOs depending on the type of the

physical memory that stores it.

Besides by their location, objects are also classified by the

way in which a reference to the object is acquired. Thus, we

distinguish between dynamic and static objects.

Dynamic objects are e. g. Java objects (instances of a class),

arrays, or execution contexts. These are dynamically instanti-

ated. The access to a dynamic object is only possible via a

known reference. This reference may be acquired by reading a

reference field of an object. However, the only way to create a

new reference is by instantiating an object. There is no way for

client code to otherwise make up a valid or invalid reference.

Within the DecentVM, static objects are e. g. Java class

variables and code objects. A Java method must be able to

access static objects without being passed a reference to the

instance. Nevertheless, the VM itself has to take adequate

actions, such as loading the class during the first access to a

class variable, or the first object instantiation of this class. At

this time, the VM creates the reference to the class variables,

which afterwards must be globally available to all threads.

In a distributed system, dynamic and static objects require

two different location and retrieval mechanisms, especially in

72 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

face of object migration.

All nodes in the distributed system must be able to access

all static objects. The DecentVM uses a combination of a

distributed singleton mechanism together with a distributed
hash table (DHT). Whenever a node accesses a static object

for the first time, it computes the hash value of that object’s

bytecode and uses it as a key to index a DHT. If the key could

not be found, the accessing node creates the static object and

stores a reference in the DHT. The next node that makes a

lookup with the key in the DHT retrieves the reference and

can afterwards send its access requests directly to this node.

To minimize the number of DHT lookups, the accessing node

caches the reference for future use.

In contrast to static objects, which must be accessible by

all nodes, typically only a small sub-set of nodes ever needs a

reference to any given dynamic object. Therefore, the DHT is

too expensive for dynamic objects because a DHT is a global

data structure that cannot limit location updates to the sub-

set of referencing nodes. Instead, the DecentVM offers two

methods [7] to confine reference updates to these referencing

nodes: one reactively updates the GAO location information,

the other one updates proactively.

With the reactive update approach, a migrating GAO creates

an intermediate proxy on its former home node. After the

migration, this proxy forwards all subsequent accesses to the

new location of the object. After an access along a single proxy

or a chain of proxies, the accessing node is aware of the new

location and does not need the proxy (chain) anymore. To

prevent proxy chains from getting overly long and eventually

exhausting the memory, each garbage collector run updates

all invalid location information and afterwards removes all

proxies.

Alternatively, a proactive update approach uses proxies and

additional incoming references. These incoming references

point to all nodes that hold a reference to the corresponding

object. Whenever an object migrates, an update message is

sent to all incoming references. After all update messages have

been acknowledged, the proxy can be deleted immediately.

It depends on the application which of these two approaches

performs better: On the one hand, the reactive update approach

does not send update messages, but the access latency will

get high if objects migrate frequently and accesses have to

traverse a long chain of proxies. On the other hand, the

proactive update approach might create a huge number of

maintenance messages if many objects are referenced often.

Here, the access latency is low because in most cases the

access reaches the actual object directly, without having to

traverse a chain of proxies.

C. Software Transactional Memory

STM is an alternative to lock-based synchronization. Instead

of acquiring and releasing locks when accessing shared data,

these accesses are placed in atomic blocks, i. e. ranges of code

that run as a transaction. With respect to other nodes, STM

makes the observable effects of a transaction – reading and

writing shared data – appear as if the whole transaction was

executed as a single, atomic instruction.

Our STM protocol mediates between GAOs and LOCs,

and thereby between (logically) private and global memory. It

works with GAOs and GAO versions. A GAO is only a virtual

meta structure, whereas the GAO versions are the causally

consistent representations of the GAO in the physical memory.

So, the GAO determines the GAO version that represents its

current value.

Each transaction stores all GAO versions that it created,

along with other meta-data, in a so-called transaction record.

The runtime does not delete transaction records when they

become outdated, but retains them for some time as redun-

dancy. Whenever a new transaction commits, our cost model

determines which old transaction records to discard and which

to keep. This obviates the need for checkpointing in most

cases, and still allows the system to tolerate a certain rate

of node failures.

III. THE DECENTVM ON THE SCC

One target platform of the DecentVM is Intel’s Single-Chip
Cloud computer (SCC), an experimental 48-core processor

[8] that Intel Labs have created as a “concept vehicle” for

many-core software research. The SCC contains 48 Pentium

I cores on a single die. The cores are organized in a 6×4

array of 24 tiles, each hosting two cores. These tiles are

connected in a 2D mesh network via 24 routers, which route

messages between the different tiles via XY-routing. Each

core owns a portion of the external memory as its private

memory. All remaining memory is shared among the cores.

There is no built-in mechanism to guarantee cache coherency

for the shared memory. Consistency among the cores has to

be implemented in software. This approach has the advantage

that software coherency among multiple caches is dynamically

reconfigurable. With this design, each application can define its

own memory domain, in which the application can guarantee

memory coherency.

A. SCC Programming

To support application developers, Intel offers the RCCE

native message passing library [9]. RCCE offers a basic and

a gory interface for memory management and an additional

interface for power management.

The basic RCCE interface offers send and receive methods

to pass messages between cores. It handles all communication

details, whereas the gory RCCE interface provides low-level

access to the communication layer.

Very recently, the beta version of the privately owned public
shared memory (POP-SHM) [10] library was released. The

POP-SHM library allows a core to allocate private memory

and make it available to other cores, which also use the POP-

SHM library. The POP-SHM library gathers all the publicly

available memory and offers it as one contiguous address space

to all cores that also use this library. Due to this feature, a

reference to an object in the POP-SHM memory is the same

on all cores.

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 73

B. The DecentVM on the SCC

The DecentVM is well suited for the SCC: The per-core

L1 and L2 caches together with the external private memory

represent the logically private memory, whereas the rest of

the external shared memory adds up to the physically local

memory that is shared by all DecentVM instances.

The new POP-SHM library directly supports the DecentVM

on the SCC: Up to now, a committing STM transaction

had to copy the LOC data from private memory to local

memory to promote the changed LOCs to new globally visible

GAO versions. The POP-SHM library simplifies this operation

because the LOC can be allocated first in private POP-SHM

memory. Only upon a successful commit, the VM makes the

POP-SHM memory publicly available without having to copy

it.

Thanks to these features, the DecentVM can easily run on

a single SCC processor. Together with the described mech-

anisms for remote memory access via GUIDs and location

information, the DecentVM is able to support not only a single

SCC, but also a huge cluster of SCCs.

IV. RELATED WORK

Several projects pursue similar objectives:

The Jessica research projects at the University of Hong

Kong have been investigating distributed virtual machines

since 1996 [11]. The original Jessica project developed a

distributed Java Virtual Machine based on the Kaffe VM.

It offers an SSI on top of the underlying hardware and

supports transparent thread migration. Jessica2 introduced a

built-in global heap with lazy release consistency and simple

object home migration, as well as a JIT-compilation mode

[12]. Jessica3 had the main objectives to overcome mem-

ory space limitations and to solve the problem of global

thread scheduling [13]. Jessica4 aims at new parallel pro-

gramming paradigms, e.g. the PGAS programming model and

transaction-based synchronization with two-way elastic atomic

blocks (TWEAK).

Azul Systems Inc. [14] and Terracotta Inc. [15] both offer

commercial solutions to distribute Java business applications

in clusters.

Azul developed the Zing JVM that enables Java application

servers to transparently offload threads to a pool of network

attached worker nodes. Unlike our approach, Azul’s VM

follows the client/server paradigm: A single host machine

handles class loading, native code execution, file I/O, and

network communication. The system relies on efficient hard-

ware support for thread synchronization, rather than on new

consistency approaches on the VM level.

The Terracotta system modifies the Java bytecode and in-

struments it for the use in a global heap. The so modified code

runs on unmodified Java VMs, and the application developer

has to decide which objects to store in the global heap. Unlike

our approach, Terracotta does not allow data and threads to

seamlessly migrate between the machines in the cluster.

V. CONCLUSION

This paper has given a brief introduction into our current re-

search on a fully decentralized runtime system, the DecentVM.

The DecentVM is highly scalable and provides an SSI on top

of a cluster of heterogeneous computing nodes.
We sketched two fully decentralized algorithms for locating

and retrieving objects. The first algorithm relies only on prox-

ies to forward object accesses, whereas the second algorithm

features incoming references to proactively update location

information. We also briefly introduced the other components

of the DecentVM that are vital to scalability: our decentralized

STM and our decentralized recovery mechanism.
Altogether, these mechanisms support the offered SSI,

e. g. on top of the SCC many-core processor. Thus, developers

can implement their applications without the need to deal with

the SCC-specific details; they only sees the Java interface and

used Java APIs. If multiple many-core processors are con-

nected to form a compute cluster, the very same mechanisms

allow the applications to extend across all the nodes in this

cluster without any software modifications.

REFERENCES

[1] R. Buyya, T. Cortes, and H. Jin, “Single System Image,” International
Journal of High Performance Computing Applications, vol. 15, no. 2,
pp. 124–135, 2001.

[2] B. Saballus and T. Fuhrmann, “Maintaining Reference Graphs of Glob-
ally Accessible Objects in Fully Decentralized Distributed Systems,” in
Proc. of the Int. ACM Symposium on High Performance Distributed
Computing (HPDC’09), Munich, Germany, Jun. 11 – 13, 2009.

[3] A. Bieniusa and T. Fuhrmann, “Consistency in Hindsight, A Fully
Decentralized STM Algorithm,” in Proc. of the IEEE Int. Symposium
on Parallel Distributed Processing (IPDPS’10), Atlanta, Georgia, USA,
Apr. 19 – 23, 2010.

[4] S.-A. Posselt, “Design of a Reliable, Fully Decentralized Software
Transactional Memory Protocol,” Diploma thesis, Technische Universität
München, Munich, Germany, Aug. 2010.

[5] G. Taboada, J. Touriño, and R. Doallo, “Java for High Performance
Computing: Assessment of Current Research and Practice,” in Proc. of
the 7th Int. Conf. on Principles and Practice of Programming in Java
(PPPJ’09), Calgary, Alberta, Canada, Aug. 27 – 28, 2009.

[6] A. Bieniusa, J. Eickhold, and T. Fuhrmann, “The Architecture of the
DecentVM – Towards a Decentralized Virtual Machine for Many-Core
Computing,” in Proc. of the 4th Workshop on Virtual Machines and
Intermediate Languages (VMIL’10), Reno, Nevada, USA, Oct. 17, 2010.

[7] B. Saballus and T. Fuhrmann, “A Decentralized Object Location and
Retrieval Algorithm for Distributed Runtime Environments,” Technische
Universität München, Munich, Germany, Tech. Rep. TUM-I1025, Dec.
2010.

[8] Intel Corporation, “The SCC Platform Overview, Rev. 0.7,” May 2010.
[9] T. Mattson and R. van der Wijngaart, “RCCE: a Small Library for Many-

Core Communication, Version 0.7,” May 03, 2010.
[10] Intel Corporation, “The SccKit 1.4.0 User’s Guide, Rev. 1.0,” Mar. 2011.
[11] M. J. M. Ma, C.-L. Wang, and F. C. M. Lau, “JESSICA: Java-Enabled

Single-System-Image Computing Architecture,” Journal of Parallel and
Distributed Computing, vol. 60, no. 10, pp. 1194–1222, 2000.

[12] W. Zhu, C.-L. Wang, and F. Lau, “JESSICA2: a distributed Java Virtual
Machine with transparent thread migration support,” in Proc. of the IEEE
Int. Conf. on Cluster Computing (CLUSTER’02), Chicago, Illinois, USA,
Sep. 23 – 26, 2002.

[13] K. Lam, Y. Luo, and C. Wang, “A Performance Study of Clustering Web
Application Servers with Distributed JVM,” in Proc. of the 14th IEEE
Int. Conf. on Parallel and Distributed Systems (ICPADS’08), Melbourne,
Australia, Dec. 08 – 10 2008.

[14] Azul Systems, Inc., “Zing Java Virtual Machine,” http://www.
azulsystems.com, last visited: May 05, 2011.

[15] A. Zilka and Terracotta Inc., The Definitive Guide to Terracotta. New
York: Apress Media LLC, Mar. 2011.

74 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

Power and performance optimization through MPI supported dynamic voltage
and frequency scaling

Florian Thoma
1
, Michael Hübner

1
, Diana Göhringer

2
, Hasan Ümitcan Yilmaz

2
, Jürgen Becker

1

1Karlsruhe Institute of Technology (KIT), Germany
2Fraunhofer IOSB, Ettlingen, Germany

{florian.thoma, michael.huebner, becker}@kit.edu, {diana.goehringer, yilmaz}@iosb.fraunhofer.de

Abstract

The Intel Single Chip Cloud Computer (SCC)
architecture offers the adjustment of voltage and
frequency on individual islands in a certain range and in
a certain dependability to each other. This possibility
offers a high degree of freedom for workload balancing
which can be done statically (at compile time) or
dynamically (at run-time). Especially the latter topic, the
dynamic voltage and frequency scaling (DVFS) is of high
interest for novel multiprocessor systems, if they are
deployed in energy efficient systems. It enables to provide
computing performance on demand and therefore reduces
power consumption. We envision to develop models,
methods and cost functions for the DVFS in order to
optimize the workload balance of all processor cores at
run-time on the SCC.

Keywords: DVFS, Dynamic MPI, workload balancing

1. Introduction

The Intel Single Chip Could Computer (SCC)

architecture offers the adjustment of voltage and

frequency on individual islands (consisting of 24

frequency and 7 voltage domains) in a certain range and

in certain dependability to each other. This possibility

offers a high degree of freedom for workload balancing

which can be done statically (at compile time) or

dynamically (at run-time). Especially the latter topic, the

dynamic voltage and frequency scaling (DVFS) is of high

interest for novel multiprocessor systems, if they are

deployed in energy efficient systems. It enables to provide

computing performance on demand and therefore reduces

power consumption. We envision to develop models,

methods and cost functions for DVFS in order to optimize

the workload balance of all processor cores at run-time on

the SCC. For this purpose, novel modules for MPI will be

developed in order to support the programmer through an

autonomous performance / power consumption

management. Furthermore, the modules which include the

methods and cost functions for the DVFS avoid critical

constellations of voltage and frequency which might lead

to damage on the SCC. The challenging research topic

delivers an extension to the MPI-based programming

model through the support of DVFS on the SCC and

closes therefore a gap for a novel MPSoC programming

methodology. As a result, a reduced power consumption

and simultaneously optimized performance increases the

attractiveness of the SCC in a variety of application

scenario and might open new markets for this and future

multiprocessor systems. Especially the embedded high

performance applications such as image processing for

surveillance of rooms e.g. in an airport, benefit from a

dynamic control of the MPSoC architecture in order to

optimize power consumption tailored to a current

situation. The research, which is proposed, follows the

trend of cyber-physical systems, where a close control

loop is used to optimize the system characteristic (see

[1]). The benefit of the novel method will be measured

under real conditions (a realistic application scenario) and

compared to the traditional realization. All hardware

related methods lead to a novel paradigm called Dynamic

MPI. The SCC architecture with its MPI (Message

Passing Interface) API is an excellent platform for

studying and evaluating new programming paradigms.

The research objective of this proposal is to define and

implement a novel programming standard together with a

designflow for efficiently programming heterogeneous

and homogeneous multiprocessor systems. The idea is to

extend the existing MPI standard with dynamic aspects.

Out of this results the new programming paradigm:

Dynamic MPI.

2. Relationship to other research at KIT
and IOSB and previous work

The ITIV is working successfully on run-time adaptive

systems over 9 years. In the area of reconfigurable

hardware the group counts to the leading researchers in

the world. The ITIV was responsible for the realization of

the network-on-chip, the on-chip integration of the

reconfigurable tiles and the run-time system support for

the MORPHEUS chip (see [2]). Within this project,

funded by the EU, the novel concepts of dynamic

workload balancing were investigated successfully for

this multicore chip. The proposed research with the SCC

differs from the previous work besides MORPHEUS,

several DFG funded projects and bilateral research

projects in that way, that a fully new concept of a

homogeneous processor array which follows the

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 75

programming model MPI can be used to optimize the

performance and power consumption of the MPSoC. The

project enables to gain the experience in run-time

adaptive systems and enable to develop a standard

programming model through an extension of MPI which

is then available for the community.

To the best of our knowledge there exists so far no

similar research on Dynamic MPI and its designflow as

proposed here. The most similar approach is our own

designflow (see [3]) from RAMPSoC, which supports the

MPI-standard. RAMPSoC is a heterogeneous FPGA-

based MPSoC consisting of a variable number of

processors closely coupled with hardware accelerators.

RAMPSoC exploits dynamic and partial reconfiguration

to adapt the hardware structure of the MPSoC at runtime.

For the runtime management of RAMPSoC a special

purpose operating system called CAP-OS was developed.

The designflow so far does not handle the dynamic

aspects, which are planned for the here proposed

Dynamic MPI. The research strengths at IOSB are the

development of the architecture, the designflow and the

runtime management system for heterogeneous

multiprocessors based on FPGAs. Furthermore, a great

research strength of our institute is the development of

image processing algorithms, especially as the above

mentioned object detection and tracking algorithms.

3. Impact of the research

The result of this research is an extension of the MPI

programming model for the SCC chip. It is envisioned to

gain the attractiveness of the SCC for a wide area of

applications. Since power and performance can be

optimized simultaneously through DVFS, but this design

space is huge and practically not to handle by the

designer, the programming model, the modules and the

autonomous methods enable to handle this powerful

feature of the new SCC chip. It is envisioned to reduce the

power consumption by up to 50% in comparison to an

application which is realized with traditional MPI. The

application will be selected out of a scenario for image

processing in embedded systems (a focus is here

homeland security with surveillance cameras). The results

will be delivered as an extension for MPI and distributed

to the community together with Intel. Furthermore, the

output of the research gives a feedback to Intel in terms of

the requirements for DVFS. This means that the

requirements of the granularity for the adjustment of

voltage and frequency were evaluated. A result could be

that less stages for the adjustment are sufficient for

optimizing the system characteristic which leads to an

decrease of chip area and therefore reduced costs.

Furthermore, it is planned to extend and create a new

programming standard for homogeneous as well as

heterogeneous MPSoCs called Dynamic MPI together

with a corresponding designflow. With these results, we

want to provide a first solution for efficiently

programming the SCC architecture and also existing and

future architectures consisting of heterogeneous or

homogeneous processing elements. Especially, we focus

on the modeling of dynamic aspects, e.g. workload

balancing depending on inputs from the environment

within our programming paradigm. So far, to the best of

our knowledge, these dynamic aspects are not handled by

any programming paradigm. The envisioned extension of

MPI enables to exploit the benefit of a dynamic allocation

of processes on an MPSoC through standardized methods

included in the MPI library.

4. Preliminary results

In order to explore the performance and power

consumption tradeoff of the SCC two image processing

applications have been selected and programmed using

RCKMPI. The overall execution time and power

consumption have been measured by varying the number

of processing elements and their clock frequency.

4.1. Image processing applications

The first image processing algorithm is the sobel

operator. This is an edge detection algorithm, which

calculates the gradient magnitude at each point in a grey

level image. It is often used to separate between objects

and their background. The operator works with two

convolution masks, one for horizontal changes and one

for vertical ones. These masks slide over the image and

compute the two derivative images. However, the sobel

operator is a direction-independent edge detector, so the

two results are normed (by the Pythagoras Theorem) and

a direction-independent image is created. The

characteristics of the sobel algorithm are many

multiplications, additions and also square root operations.

The second image processing algorithm is a thinning

algorithm. These algorithms are used to reduce two-

dimensional objects to single pixel wide branches by

removing pixels inside the object shape according to some

criteria, but they do not shorten or break the object shape

apart. Here a thinning algorithm, developed by Z. Guo

and W. R. Hall [6], is used. This algorithm uses two

subiterations, the first subiteration deletes the north and

east and the second deletes the south and west outline

points of the shape. For more information about this

algorithm see [6] and [7]. The characteristics of this

algorithm are multiple compare and jump operations.

Figure 1 shows the input image used for the

exploration and the result images of the Sobel and the

thinning algorithm.

76 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

Figure 1. a) input image, b) Sobel output,
c) thinning output

Figure 2 shows the number of required clock cycles for

the Sobel algorithm. With the increase of the number of

cores it can be seen, that the effect of clock cycle

reduction comes to saturation. A number of 24 cores is for

this implementation of the Sobel algorithm the best

choice. Certainly, algorithm and communication

optimization can lead to slightly other results.

A other effect can be found with the thinning

algorithm where a nearly linear speedup can be found.

Therefore the maximum number of cores used to perform

this application is of high benefit.

Figure 2. Execution time of the Sobel
algorithm by varying the
number of cores

Figure 3. Execution time of the Thinning
algorithm by varying the
number of cores.

5. Conclusions and outlook

Currently the workgroups work in parallel on hardware

related topics like the scaling of the voltage and frequency

scaling mechanisms and the extension of the MPI

standard as well as required virtualization techniques (see

[4]). Here MPI methods for an FPGA-based MPSoC are

presented. The groups intend to extract from this work the

experience for the SCC related MPI extensions.

Furthermore, attractive application scenarios from image

processing, bioinformatics as well as from simulation

acceleration are the use cases (see [5]).

Next steps of this research work is to include the

realized MPI extensions and the control loops for the

physical adjustment of voltage and frequency in more

application scenarios in order to measure the impact and

derive important parameter sets for the control loop

equations. Currently an interdisciplinary discussion with

experts from control engineering leads to a promising

very novel technical experience which can lead to a fully

new control mechanism for the SCC and SCC like

architectures.

398.612.187

325.144.563

286.744.305

236.510.958

192.962.136
183.382.179

180.130.884 177.796.632

0

50.000.000

100.000.000

150.000.000

200.000.000

250.000.000

300.000.000

350.000.000

400.000.000

450.000.000

1 Core 2 Cores 3 Cores 4 Cores 8 Cores 16 Cores 24 Cores 32 Cores 48 Cores

Number of Clock Cycles

1.719.238.521

883.660.266
784.727.943

539.681.421

373.425.821

190.838.741 130.781.755
97.484.423 61.048.697

0

200.000.000

400.000.000

600.000.000

800.000.000

1.000.000.000

1.200.000.000

1.400.000.000

1.600.000.000

1.800.000.000

2.000.000.000

1 Core 2 Cores 3 Cores 4 Cores 8 Cores 16 Cores 24 Cores 32 Cores 48 Cores

Number of Clock Cycles

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 77

6. References

[1] Becker, Huebner: “Multiprocessor System-on-Chip - Hardware

Design and Tool Integration”, 1st Edition. 2010, Springer US
ISBN 978-1-4419-6459-5

[2] Voros, Rosti, Huebner: “Dynamic System Reconfiguration in
Heterogeneous Platforms: The MORPHEUS Approach”,
ISBN: 9789048124275

[3] D. Göhringer, M. Hübner, M. Benz, J. Becker: “A Design
Methodology for Application Partitioning and Architecture

Development of Reconfigurable Multiprocessor Systems-on-

Chip”; In Proc. of the 18th Annual International IEEE
Symposium on Field-Programmable Custom Computing

Machines” (FCCM 2010), Charlotte, USA, May, 2010

[4] D. Göhringer et al. :“RAMPSoCVM: Runtime support and
hardware virtualization for a runtime adaptive MPSoC”,
accepted for the FPL 2011, Chania, Greece

[5] C. Roth et al. “Flexible and Efficient Co-Simulation of

Networked Embedded Devices”, SBCCI 2011, Brazil
[6] Z. Guo, W.R. Hall: “Parallel Thinning with two-

Subiteration Algorithm”, CACM, March 1989, vol. 1.32,

no.3, pp.359-373.

[7] Y.Y. Zhang, P.S.P. Wang: ”A parallel thinning algorithm

with two-subiteration that generates one-pixel-wide

skeletons”, Pattern Recognition, 1996, Proceeding of the

13th International Conference, 1996, vol.4, pp: 457 – 461.

78 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

Recent Advances and Future Prospects in iRCCE and SCC-MPICH
— Poster Abstract —

Carsten Clauss, Stefan Lankes, Pablo Reble, Thomas Bemmerl

Chair for Operating Systems, RWTH Aachen University
Kopernikusstr. 16, 52056 Aachen, Germany

{clauss,lankes,reble,bemmerl}@lfbs.rwth-aachen.de

Abstract—The Single-Chip Cloud Computer (SCC) experi-
mental processor [4] is a 48-core concept vehicle created by
Intel Labs as a platform for many-core software research.
Intel provides a customized programming library for the SCC,
called RCCE [5], that allows for fast message-passing between
the cores. For that purpose, RCCE offers an application
programming interface (API) with a semantics that is derived
from the well-established MPI standard [7]. However, while the
MPI standard offers a very broad range of functions, the RCCE
API is consciously kept small [6] and far from implementing
all the features of the MPI standard. So, for example, RCCE
only provides blocking (often also referred to as synchronous)
send and receive functions, whereas the MPI standard also
defines the semantics of non-blocking communication functions.
For this reason, we have started to extend RCCE by new
communication capabilities, as for example by the ability to
pass messages asynchronously. In doing so, we aim to avoid
interfering with the original RCCE library and therefore
we have placed our extensions and improvements into an
additional library called iRCCE [2]. Moreover, this additional
library in turn serves us as low-level communication layer
for SCC-MPICH, that is an SCC-customized and full MPI-1
compliant MPI library. In this contribution, we present the
recent advances and future prospects for both these SCC-
related communication libraries: iRCCE and SCC-MPICH.

Keywords—Many-core, Message-Passing, SCC, RCCE, MPI

I. iRCCE: A NON-BLOCKING COMMUNICATION

EXTENSION TO THE RCCE COMMUNICATION LIBRARY

Due to the lack of non-blocking communication functions

within the current RCCE library, we have started to extend

RCCE by such asynchronous communication capabilities

(iRCCE_isend/iRCCE_irecv). In doing so, we aim to

avoid interfering with the original RCCE functions and

therefore we have placed our extensions into an additional

library with a separated namespace called iRCCE. An ob-

vious way to realize non-blocking communication functions

would be to use an additional thread that processes the com-

munication in background. Although this approach seems

to be quite convenient, it is not applicable in bare-metal
environments where a program runs without any operating

system and thread support. And since RCCE has been

designed to support also such bare-metal environments, we

had to waive this thread-based approach for realizing non-

blocking functions. Therefore, we have followed another

approach where the application must drive on the com-

munication progress by itself. For this purpose, the non-

blocking communication functions return request handles
which can then be used by the application to trigger the

progress by means of additional push, test or wait functions

(iRCCE_push, iRCCE_test, iRCCE_wait). [2]

A recent improvement of iRCCE is the feature that one

can use a wildcard (iRCCE_ANY_SOURCE) instead of a

definite source rank when calling the receive function. That

means that this wildcard can be used to receive any incoming

message regardless from its actual sender. However, the

application programmer still has to ensure that at least the

stated message length matches between receiver and sender.

Currently, we are developing a mailbox system on top of

iRCCE that can be used to exchange small (cache-line-sized)

datagrams between the cores. Since this mailbox system

works without interference with the common send and

receive functions, it can be used to pass additional signaling

information alongside with normal RCCE/iRCCE messages.

Therefore, such a mailbox datagram is well structured in

terms of data items that are quite similar to that of message

headers: source, size, tag and embedded payload.

Our aim is to use this mailbox system to extend the current

semantics of the send and receive functions. So, for example,

we plan to introduce a further wildcard mechanism also for

the message length (iRCCE_ANY_LENGTH). That means

that the information about the actual message size has then

just to be provided by the sender, while the receiver merely

has to ensure that the receive buffer is large enough to store

the message. Moreover, by introducing additional message

tags, as known from the MPI standard, even a message

prioritization and reordering by means of these tags would

become possible.

For this purpose, a sender would initially post a mailbox

datagram to the respective receiver, indicating that a payload

message of a certain size and with a certain tag will follow.

Therefore, the local mailbox on the receiver side needs to

be checked frequently in order to detect such incoming

messages. However, it is entirely possible that the receiver

detects a message that is yet still unexpected. This is for

example the case when the message tags on sender and

receiver side do not yet match and thus a message reordering

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 79

becomes necessary. In such a case, the receiver can either

copy the incoming message into a temporary buffer or

the receiving of the actual payload must be delayed by

sending a corresponding response datagram. The choice

for one of these two approaches depends on the message

size: for short and midsize messages, a temporary buffering

seems to be acceptable, whereas long messages should be

delayed because the additional copy procedure would impact

the communication performance. Besides this, very small

messages could be embedded into a datagram, so that there

is no need for an additional payload message in such a case.

II. SCC-MPICH: YET ANOTHER MPI-COMPLIANT

MESSAGE-PASSING LIBRARY FOR THE INTEL SCC

Although the semantics of RCCE’s communication func-

tions are obviously derived from the MPI standard, the

RCCE API is far from implementing all MPI-related fea-

tures. And even though iRCCE extends the range of sup-

ported functions (and thus the provided communication

semantics), a lot of users are familiar with MPI and hence

want to use its well-known functions also on the SCC.

A very simple way to use MPI functions on the SCC is

just to port an existing TCP/IP-capable MPI library to this

new target platform. However, since the TCP/IP driver of

the Linux operating system image for the SCC does not

utilize the fast on-die message-passing buffers (MPBs), the

achievable communication performance of such a ported

TCP/IP-based MPI library lags far behind the MPB-based

communication performance of RCCE and iRCCE.

For this reason, we have started in the last year to

implement an SCC-optimized MPI library, called SCC-

MPICH, which in turn is based upon our iRCCE ex-

tensions of the original RCCE communication library. At

about the same time, Intel also started to implement an

SCC-customized MPI library, called RCKMPI [8]. While

RCKMPI has already been released by Intel, we have not

yet published SCC-MPICH despite the fact that it is already

fully operational, too. The reason for this is that we think

that our human resources are too limited to provide sufficient

user support for this project in case of an official software

release. However, we use SCC-MPICH as basis for our

future message-passing related research on the SCC and we

have launched several student projects that in turn are also

based on SCC-MPICH.

A major advantage of SCC-MPICH compared to

RCKMPI is that it can be installed and used as easy as

RCCE. That means that one can use the mpirun script

just instead of the known rccerun directly from the

Management Console PC (MCPC) without installing any

additional libraries or startup environments on the SCC

cores. Moreover, even the cores of the MCPC can easily be

involved into an SCC-MPICH session. That means that one

can start x MPI processes on the SCC cores and additionally

y MPI processes on the cores of the MCPC.

In doing so, SCC-MPICH does not use just TCP/IP (as

the lowest common dominator) for all the communication,

but rather offers hierarchy-awareness in such a way that

always the fastest communication mode is being used. That

means that MPI processes running on the SCC cores use

the message-passing buffers (MPBs) to communicate among

each other, while processes running on the MCPC commu-

nicate via shared memory. The communication between the

MCPC processes and the SCC cores is then eventually con-

ducted via TCP/IP. In order to start such a mixed MPI ses-

sion, one just needs to issue mpirun -nue x -mcpc y
in a console on the MCPC.

A further advantage of SCC-MPICH is that it offers

SCC-optimized collective communication routines. This is

because SCC-MPICH is directly based upon RCCE (with

iRCCE extensions) and due to the fact that RCCE can in

turn be extended by the customized collective functions of

the so-called RCCE comm library [1]. That way, an easy

mapping of MPI collective function calls onto the optimized

RCCE comm functions becomes possible
A more detailed description of SCC-MPICH together with

some performance results can be found in [3].

REFERENCES

[1] Ernie Chan. RCCE comm: a Collective Library for the Intel
Single-chip Cloud Computer. Intel Corporation, September
2010.

[2] C. Clauss, S. Lankes, J. Galowicz, and T. Bemmerl. iRCCE:
A Non-blocking Communication Extension to the RCCE Com-
munication Library for the Intel Single-Chip Cloud Computer.
Chair for Operating Systems, RWTH Aachen University, De-
cember 2010. Users’ Guide and API Manual.

[3] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl. Evaluation
and Improvements of Programming Models for the Intel SCC
Many-core Processor (accepted for publication). In Proceed-
ings of the International Conference on High Performance
Computing and Simulation (HPCS2011) – to appear, Istanbul,
Turkey, July 2011. accepted for publication.

[4] Intel Corporation. SCC External Architecture Specification
(EAS), July 2010. Revision 0.98.

[5] T. Mattson and R. van der Wijngaart. RCCE: a Small Library
for Many-Core Communication. Intel Corporation, May 2010.
Software 1.0-release.

[6] T. Mattson, R. van der Wijngaart, M. Riepen, T. Lehnig,
P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar,
G. Ruhl, and S. Dighe. The 48-core SCC Processor: The
Programmer’s View. In Proceedings of the 2010 ACM/IEEE
Conference on Supercomputing (SC10), New Orleans, LA,
USA, November 2010.

[7] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard. High-Performance Computing Center
Stuttgart (HLRS), September 2009. Version 2.2.

[8] Isaias A. Compres Urena. RCKMPI User Manual. Intel
Braunschweig, January 2011.

80 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

Exploring Database Workloads on Future Clustered
Many-Core Architectures

Panayiotis Petrides
Department of Computer Science

University of Cyprus

Email: csp7pp5@cs.ucy.ac.cy

Andreas Diavastos
Department of Computer Science

University of Cyprus

Email: cs06da1@cs.ucy.ac.cy

Pedro Trancoso
Department of Computer Science

University of Cyprus

Email: pedro@cs.ucy.ac.cy

Abstract—Decision Support System (DSS) workloads are
known to be one of the most time-consuming database workloads
that process large data sets. Traditionally, DSS queries have
been accelerated using large-scale multiprocessor. In this work
we analyze the benefits of using future many-core architectures,
more specifically on-chip clustered many-core architectures, for
such workloads for accelerating DSS query execution and study
their performance behavior. To achieve this goal we propose
data-parallel versions of the original database scan and join
algorithms. In our experiments we study the behavior of three
queries from the standard DSS benchmark TPC-H executing on
the Intel Single Chip Cloud Computing experimental processor
(Intel SCC). The results show that parallelism can be well
exploited by such architectures and also how the computational
workload compared to the data size of each executed query can
influence performance. Our results show linear scalability for
queries where the computation to data size ratio is balanced.

I. INTRODUCTION

The de-facto standard in processor design is the multi-

core architecture. This architecture offers the benefit of an

increased degree of parallelism to provide better performance,

without the drawbacks of previous monolithic designs, such as

high power consumption and complex design. As technology

improves, the integration level increases leading to an increase

in the number of cores per chip. While this results in a further

increase of the degree of parallelism, it may not necessarily

lead to improved performance, even when considering highly

parallel applications. The increasing number of processing

units per chip results in a higher demand for “feeding” those

units with both instructions and data. At the same time, neither

the number of pins on the chip, nor the links to memory

improve at the same rate as the number of cores. Moreover

the complexity of the interconnection network of large scale

multi-core architectures increases with the number of cores,

the above mentioned multi-core issues result in limiting the

scalability in terms of number or cores of these architectures.

The proposed large scale many-core architecture by Intel, also

known as the Intel Single Chip Cloud Computing experimental

processor (Intel SCC) [1] addresses the above limitations.

Database applications are of the most demanding workloads.

More specifically, Decision Support Systems (DSS) database

applications combines the processing of large data sets along

with the computation of statistical information extracted from

data. The purpose of this paper is first to understand the

benefits of the use of a future clustered many-core architec-

ture, like Intel’s Single Chip Cloud Computing experimental

processor [1], in a large scale data center which handles DSS

applications.

In order to achieve our goal we have analyzed the perfor-

mance of the basic database algorithms parallelized using the

available toolchain of the Intel SCC. The algorithms are the

basis for the execution of standard representatives DSS queries

taken from the TPC-H benchmark suite [3].

The Single-Chip Cloud Computer (SCC) experimental pro-

cessor [1] is a 48-core concept vehicle created by Intel Labs

as a platform for many-core software research. Intel SCC

processor implements on-chip clustered many-core architec-

ture where cores are organized in tiles of 2 cores, 24 tiles

in total, and the communication is based on a 2D mesh

interconnection network. This modern architecture includes 48

Intel Pentium cores (P54C architecture) that are served by four

on-chip memory controllers. The memory controllers use the

technology DDR3-800 and -1066 speed grades.

II. MAPPING DATA-PARALLEL DATABASE QUERIES TO

INTEL SCC EXPERIMENTAL PROCESSOR

Queries submitted for execution in a Database Management

System (DBMS) are described in a high-level language (SQL)

where four basic operations can be performed: Scan, Join,

Order and Aggregate. The execution of these operations is

done by a set of algorithms provided by the DBMS.

For example, Scan can be performed using the Sequential
Scan or the Index Scan algorithm. The DBMS Query Opti-
mizer decides which algorithm will be used for the submitted

operations in order to achieve the best execution time.

We have formatted the processing data as data streams

resembling data arrays from regular high-level languages. For

the purpose of our work the data are stored column-wise,

i.e. all values of a particular attribute belonging to different

records, are stored in the same data stream. More details about

the algorithms used and how data are mapped can be found

in [2]. Let’s consider a table (Table A) which is composed of

records containing 3 attributes: attr1, attr2, and attr3. For each

attribute a new stream is created to store all data as is shown

in Fig 1 (b) instead of the traditional way to store the data as

is shown in Fig 1 (a).

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 81

Fig. 1. Table A: (a) logical and (b) physical data organization.

Given the data layout as presented above, for this work, we

use the simple sequential scan algorithm as to exploit both

load balancing and locality while traversing the data. In our

algorithm, all records are traversed and the record’s attributes

are checked against a certain condition. If the condition is

satisfied then the record is copied to the result stream. The

condition may be a simple attribute comparison or a complex

boolean function. We have mapped this operation to the Intel

SCC by implementing the condition to be tested and by

sending to each core the input parameters which are the data

streams that are used to evaluate the scan condition.

The data-parallel nested loop Join is also implemented in

order to exploit the streaming model. More specifically if we

want to join Table A with key ka and Table B with foreign

key ka, then the key value over the foreign key are compared.

Join operation is performed by checking a certain key value

from one table against all the key values of the other table.

The checks may be performed in a loop and the results that

satisfy the checks are then passed to the next condition.

III. EXPERIMENTAL SETUP

For this work we have used the Intel Single Chip Cloud

Computing (Intel SCC) experimental processor, RockyLake

version. The operating system used for the Intel SCC cores

is the default Linux kernel provided by the RCCE SCC Kit

1.3.0. The host PC, responsible for controlling the applications

execution on the Intel SCC processor, is configured with Intel

Core i7 processor 3.7GHz and 4GB memory. The connection

of the host PC to the Intel SCC is through a PCIe Expansion

Card and a PCIe x4 Cable. For porting and executing the

applications on the SCC we have used RCCE 1.3.0 toolchain.

For our work we focused on the execution of the basic

database algorithms and their parallelization. As such, the

queries analyzed in this work were implemented as programs

that executed the operations determined by the queries and

their results were validated. We have ported 3 different queries

from TPC-H benchmark suite of different complexity and

demands. More specifically we have ported Queries 3, 6 and

12, from now on referenced as Q3, Q6 and Q12. Different

input sizes were used for our evaluation in order to study their

performance scalability. The input data sets were generated

using the dbgen tool. The input sizes and the number of tables

used for each query execution are depicted in Table I.

select

 sum(l_extendedprice*l_discount)as revenue

from

 lineitem

where

 l_shipdate >= date `[DATE]’

and l_shipdate < date `[DATE] + interval `1’ year

 and l_orderkey = o_rderkey

 and l_discount between [DISCOUNT] – 0.01 and + 0.01

 and l_quantity < [QUANTITY];

Fig. 2. TPC-H Q6. The parameters used were: DATE=2005, DISCOUNT=10,
and QUANTITY= 1000000.

select

 sum(case when o_orderpriority = ‘1-URGENT’ or

o_orderpriority = `2-HIGH’

then 1

else 0 end) as high_line_count

from

 orders, lineitem

where

 o_rderkey = l_orderkey

 and l_shipmode in (`[SHIPMODE1]’, `[SHIPMODE1]’)

 and l_commitdate < l_receiptdate

 and l_shipdate < l_commitdate

 and l_receiptdate > date `[DATE]’

 and l_receiptdate > date `[DATE]’ + interval ‘1’ year;

Fig. 3. Simplified version of TPC-H Q12. The parameters used were:
SHIPMODE1=1, SHIPMODE2=2 and DATE=2009.

select

 l_orderkey,

from

 customer, orders, lineitem

where

 c_mktsegment = `[SEGMENT]’

 and c_custkey = o_custkey

 and l_orderkey = o_rderkey

 and o_orderdate < date `[DATE]’

 and l_shipdate > date `[DATE]’;

Fig. 4. Simplified version of TPC-H Q3. The parameters used were:
DATE=2007 and SEGMENT=3.

IV. RESULTS

We have monitored the execution of the three queries scaling

them from 1 to 48 cores on the Intel SCC processor.

The first investigation for our workloads was to monitor the

time taken for reading the input data to the different cores

for the different input sizes. The results were obtained by

measuring the time taken for all cores to read the same amount

of input data simultaneously, i.e. creating a copy of the input

data locally at each core. It is important to notice that for

82 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

TABLE I
TPC-H QUERIES INPUT SIZE.

Query Tables Input Size 0.01 Input Size 0.1
Q3 3 4.24MB 93.56MB

Q6 1 3.71MB 74.24MB

Q12 2 3.74MB 91.14MB

both input sizes the time taken to read input data is stable

and does not show high deviation between the different cores

neither when the number of cores is increased. This can be

explained from the high bandwidth available to the cores from

the network-on-chip and the integrated memory controllers.

0
5

10
15
20
25
30
35
40
45
50

1 2 4 8 16 32 48 1 2 4 8 16 32 48

S
p

e
e

d
u

p

Number of Cores

Computation Speedup on SCC for Input Size 0.01 and 0.1

Q3 Speedup Computation

Q6 Speedup Computation

Q12 Speedup Computation

Fig. 5. Computation Speedup for TPC-H Queries 3, 6 and 12 for input size
0.01 and 0.1.

Secondly we wanted to investigate the scalability of the

algorithms in the section where computation is done. In

Figure 5 we can observe the speedup results for the three

queries for the two different input data, 0.01 and 0.1, for

the computational part of each algorithm. From our results

we can observe the good speedup scalability of Q12. For Q6

with input data size 0.01, we can observe that the speedup

reaches a maximum of 10x for 16 cores. For 32 and 48 cores

we can observe a degradation of the speedup. This is caused

due to the low computational complexity and the small input

data set of Q6. Even though in scale factor 0.1 the workload

increases significantly we can also observe that the speedup

does not increase linearly from 32 to 48 cores, but instead

it remains stable. This can also be explained due to the low

computation complexity of the specific query. For Q3 we can

observe a performance improvement for both input data sizes

as the number of cores increases, although not in a linear way.

This is caused by the high computation complexity in contrast

to the other queries which results in slow performance increase

as the number of cores increases.

In Figure 6, we show the total speedup for the three

queries including both the time for reading the input data and

the computational time until the completion of the queries.

We can observe from our results that even though we can

achieve a relatively good speedup scalability for Q6 in terms

of computation, when it comes to the total time spend for the

execution of the specific query the results are dominated by

the time taken for reading the input data.

Q12 offers very good scalability since it combines well

the data transfers and computation resulting to almost linear

0
5

10
15
20
25
30
35
40
45

1 2 4 8 16 32 48 1 2 4 8 16 32 48

S
p

e
e
d

u
p

Number of Cores

Total Queries Speedup on SCC for Input Size 0.01 and 0.1

Q3 Total Speedup

Q6 Total Speedup

Q12 Total Speedup

Fig. 6. Total Speedup for TPC-H Queries 3, 6 and 12 for input size 0.01
and 0.1.

speedup for both input sizes, up to 36x and 42x respectively

for the two input sizes for 48 cores. Q3, which has the highest

complexity of the three queries, offers relatively good speedup

but lower compared to the Q12 for the two different input

sizes, 15x and 17x respectively for the 48 core setup. Even

though there is a similar behavior to the other queries, the

impact to the performance is the computational part of the

query. As described earlier, this query makes a join of three

tables and consequently this can impact performance due to

data transfers from the memory to the local cache of the cores

and/or conflict misses to the local cache from the different

data. These factors affect performance of Q3 even though the

performance improves as the number of cores is increased.

V. CONCLUSION

From our experiments we have observed that for queries

algorithms we have different performance behavior. In order

to achieve good performance the algorithms’ complexity and

input data ratio must be well balanced otherwise the perfor-

mance is dominated by the data transfers. More specifically,

our results shows that a medium complexity algorithm with

large input data set, Q12, achieves linear speedup up to 42x

for 48 cores setup in contrast to low complexity algorithms,

Q6, which are dominated from the data transfers. Our future

work will be focused on concurrently execute the different

queries on the Intel SCC. The target of our future work is

to determine how we can split the Intel SCC resources for

the most optimal execution of the different queries. Also we

plan to investigate how we can overcome the data transfers

overhead in order to improve the performance of algorithms

that are dominated by them.

ACKNOWLEDGMENT

The authors would like to thank Intel Labs for lending the

Intel SCC research processor.

REFERENCES

[1] J. Howard, et al, A 48-Core IA-32 Message-Passing Processor with DVFS
in 45nm CMOS, In Proceedings of the International Solid-State Circuits
Conference, Feb 2010.

[2] P. Trancoso and D. Othonos and A. Artemiou, Data parallel acceleration
of decision support queries using Cell/BE and GPUs, In Proceedings of
the 6th ACM conference on Computing frontiers (CF’09), pages 117-126,
2009.

[3] Transaction Processing Council, TPC Benchmark H (Decision Support)
Standard Specification Revision 2.6.1, June 2006.

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 83

[4] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha, Gputerasort:
High performance graphics o-processor sorting for large database man-
agement, In SIGMOD 06: Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, pages 325336, 2006.

84 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

A Fast Fourier Transformation Algorithm for Single-
Chip Cloud Computers Using RCCE

Wasuwee Sodsong and Bernd Burgstaller
Department of Computer Science

Yonsei University
Seoul, Korea

Abstract— Multimedia applications, spectrum analyses and data
compression algorithms employ Fourier transformations as one
of their main components to transform series from the time to the
spectral domain and vice versa. Effective fast Fourier
transformation (FFT) algorithms imply performance
enhancements in related applications. Although architecture-
specific programs achieve better performance, many FFT
implementations were designed to be hardware independent and
unaware of the underlining architecture. In this paper we
introduce a novel FFT algorithm based on the RCCE native
message passing library for the single-chip cloud computer
(SCC). We parallelized the recursive (divide-and-conquer) radix-
2 FFT such that the inputs for all processing units are
independent. Private memories are used to avoid cache coherence
issues, and the algorithm was designed to minimize the message
passing overhead. Preliminary experimental results were
conducted using the RCCE emulator on an Intel Xeon 2 CPU
quad-core computer. The emulator results showed promising
scalability and speed-ups over the sequential implementation.
Based on hardware availability, we plan to run the experiments
on real SCC hardware for the final version of this paper.

Keywords-component; Fourier transform; Single-Chip Cloud
Computer; Radix-2 DIT FFT; RCCE;

I. INTRODUCTION

Fourier analysis is widely used across a large number of
applications involving time series and waveform analysis [6],
including audio compression, image processing, and spectrum
analysis. Many sequential and parallel FFT sources are
currently available, as well as architecture-specific FFTs such
as FFTW for the Cell B/E architecture [9, 13]. However, to the
best of our knowledge, an application for the SCC processor
has not yet been devised.

Intel's SCC consists of 48 cores arranged in a grid of 4x6
tiles with two cores per tile [1, 2, 7]. Communication costs
between cores on the same tile are invariably smaller than
communication costs between cores farther away on the mesh.
Architecture-independent FFT algorithms cannot minimize
those communication overheads leading to degraded overall
performance. Besides communication-aware mapping of
processes to cores, the choice of memory also affects the
performance of the SCC. The SCC architecture does not
support cache coherence between cores [3]. The SCC memory
hierarchy comprises three types: off-chip private memory, off-
chip shared memory and on-chip shared memory. The

characteristics of those memory-types are discussed in
Section II. This paper focuses on SCC properties provided
through the RCCE library to develop parallel FFT algorithms.

The remainder of this paper is organized as follows.
Section II describes background material on SCCs, RCCE and
Fourier analysis. Section III discusses different approaches on
FFT algorithms. Section IV contains our experimental
evaluation; we draw our conclusions and outline future work in
Section V.

II. BACKGROUND

A. Single-Chip Cloud Computer (SCC)

The SCC architecture was introduced by Intel’s Tera-Scale
research team based on the idea of implementing a cloud
computer system on a single die. The architecture contains a
mesh of 24 tiles with two cores and one router per tile [2].
Each core consists of 16KB L1 cache, 256KB L2 cache and 8
KB-SRAM Message Passing Buffer (MPB). By default, 64 GB
off-chip DRAM is divided into 48 private memory regions,
plus a memory-region shared by all cores. The off-chip private
memory, served as a local memory, is accessible by only one
core. Hence, normal cache rules are applied. Data is cached
through L1 and L2 accordingly. On the other hand, depending
on user’s specifications, shared memory can be set up as
cacheable and non-cacheable memory [3]. If cacheable shared
memory is used, cache coherence must be explicitly handled by
the user programs. In addition to DRAM, the SCC provides the
MPB which consists of fast on-chip SRAM shared memory.
The MPB is mainly utilized for message passing purposes.
Although RCCE logically partitions the MPB for each core, the
MPB is accessible by any core [12].

Each type of memory was designed to serve different
purposes. The RCCE library provides users an ability to
manage memory allocations. Applied to FFT, frequently used
variables can be stored in the off-chip shared memory.
However, accessing off-chip memory consumes many clock-
cycles compared to accessing the MPB. Alternatively, the
variables can be stored in the private memory. Private memory
is cached by L1 and L2 caches, but because private memory is
exclusive to a core, message passing must be used for
communication between cores. A hosts file in RCCE contains
the number of cores in the system in descending rank order.
Since FFT algorithms have a fixed data flow and
communication pattern, an optimal partitioning of processes

Research partially supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MEST) (No. 2010-
0005234), and the OKAWA Foundation Research Grant (2009).

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 85

onto cores can be achieved through the hosts file. Hence, in this
paper we applied private memory.

B. Fast Fourier Transform (FFT)

In 1965, Cooley and Tukey [10] introduced an algorithm
commonly known as the fast Fourier transform, which
effectively computes a DFT in �(n log n). Several FFT
algorithms exist. In this paper, we use one-dimensional radix-2
FFT. An FFT equation of length N is rearranged as the sum of
the following two parts: the DFT of even indices and the DFT
of odd indices [6] as shown in Equation 1. The reduced
equations can be recursively broken down into two half-size
DFT problems.

X(k) = DFTN/2 [x(0),x(2),…,x(N-2)]

 + WN
k * DFTN/2 [x(1),x(3),…,x(N-1)] (1)

Each small DFT takes different inputs, which makes it
suitable for parallel programming.

III. APPROACHES

Our SCC FFT algorithms are based on radix-2 FFT. As
follows from Equation (1), inputs of sub-DFTs are independent
of each other; hence, each computation can be easily mapped
onto a different core. We develop two parallel FFT algorithms
based on the RCCE library:

1. a synchronous message passing FFT algorithm, and

2. a pipelined one-sided message passing FFT algorithm.

The first algorithm uses synchronous message passing
based on recursive FFT. The algorithm comprises three steps:
initialization, private FFT and combining of results. Using P
units of execution (UE), the top-ranked UE loads input
sequences of length N and distributes N/P elements to all
working UEs in the initial step. Process i internally performs a
DFT on x[i, i+P, i+2P, … , N-P+i]. After this computation, half
of the active cores pass their results to the other half for further
DFT and combining of results. As shown in Figure 1, UE0
must combine results from UE2 and UE1 in respective order.
To guarantee this order, synchronous message passing is
chosen to prevent deadlocks as UE1 may compute faster and
try to pass messages to UE0 before UE2.

Figure 1: Synchronous message passing Radix-2 FFT algorithm
for length-8 data array using four cores. The Core ID indicates
distribution of work where DFTs are performed.

In practice, an application performs an FFT on a sequence
of input data. Instead of blocking processes to wait for
messages, FFT can operate in a pipelined fashion. To avoid the
deadlock problem from the first design and enable pipelined
operation, the second approach uses 2P-1 UEs. In the case of

Figure 1, the total of seven cores are needed for the pipelined
method, where four cores perform the lowest level, N/4 points
DFT, two cores are responsible for N/2 points DFT and at the
highest level, the last core produces the final results by
combining N points. As all cores always get messages from a
lower level and send to a higher level, incorrect message
passing from the first design is prevented. The pipeline
algorithm works on more than one FFT at a time and finishes
one FFT per step. As the lowest level finishes its computation,
it then immediately loads the next set of inputs. The pipelined
version was implemented using one-sided message passing
(gory mode). The MPB has a limited size of 8 KB per core to
hold both communication flags and messages. The algorithm
behaves as asynchronous message passing as long as the sizes
of messages do not exceed the MPB’s capacity. However gory
mode on RCCE does not handle messages exceeding the
MPB’s capacity. In the initialization step, the top-ranked UE
divides input into chunks of 4KB and distributes the chunks to
appropriate MPB addresses on the receivers’ tiles in a round-
robin fashion. Once a message is read, the receiver sets an
acknowledged-flag on the sender and waits for the next chuck
of the message. When the sender sees an acknowledge flag, it
resumes and sends the next chunk of code. In the combining
step, two UEs pass their results to the same receiver. Both
senders put data on their MPB and set sent-flags on the
receiver's side. The receiver gets data from the source locations
in a round-robin fashion. One-sided communication allows the
sender to continue its computation after placing the last chunk
of data on MPB without waiting for an acknowledged signal
from the receiver.

All UEs have fixed sources and targets. From observations,
the most communication is located between the two lowest
levels. Because the RCCE hosts file allows to order the ranks
of all cores, we arrange such that UEs from the two lowest
levels are on the same tile. For instance, according to Figure 1,
the first design has UE0 andUE2 on the same tile next to a tile
consisting of UE1 and UE2.

Figure 2: Total execution times for FFT algorithms with input size

of 65536 elements.

IV. RESULTS

Our experimental evaluation was conducted using the
RCCE V1.0.13 emulator with the g++ compiler version 4.1.2
on an Intel Xeon 2 CPU quad-core computer. For simplicity
the input size and number of active UEs were chosen to be a

86 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

power of two. Each method performs FFT with one, fifty and
one hundred input sets. The execution times are shown in
Figure 2. In the experiment, parallel synchronous message
passing and the pipelined algorithm use four and seven cores
respectively, and the input sizes vary from 256 to 1024
elements. The performance improvements are shown in
Table 2 and Table 3. For one iteration and input size of 65536,
the pipelined version and synchronous message passing
achieve on average a 2.58x improvement over the sequential
algorithm. However when the input size is 256, a performance
loss is shown in the synchronous algorithm and a small
improvement in the pipelined version. The main reason is that
computation is relatively small with respect to communication
time. The pipelined method is faster in this case because the
input size is smaller than the MPB’s capacity, and it employs
asynchronous message passing. With 1000 iterations, the
pipelined algorithm achieves up to 3.39x speedup while the
parallel algorithm levels off at 2.60x for input of 65536
elements. The algorithms produce correct results on the RCCE
emulator. It should be noted that the performance results may
differ from a real SCC environment, because the emulator
cannot represent the message passing cost of the SCC
hardware.

Table1: Speed up of the parallel synchronous message passing
version in comparison to the sequential algorithm.

Parallel Iterations

Input Size 1 5 10 100 1000

256 0.84 1.57 1.25 1.05 1.02
1024 1.56 1.72 1.66 1.69 1.64
4096 2.03 2.12 2.13 2.12 2.10
16384 2.30 2.40 2.35 2.41 2.36

65536 2.58 2.62 2.61 2.61 2.60

Table2: Speed up of the pipelined version in comparison to the
sequential algorithm.

Pipeline Iterations

Input Size 1 5 10 100 1000

256 1.33 1.53 1.41 1.37 1.28
1024 1.72 2.39 2.45 2.31 2.38
4096 2.03 2.68 2.90 2.99 3.01
16384 2.36 3.08 3.13 3.23 3.20

65536 2.58 3.22 3.29 3.41 3.39

V. CONCLUSION

In this paper, we have proposed two fast FFT algorithms
for the SCC processor, using the RCCE library. The algorithms
aim to minimize communication overhead by distributing UEs
such that distances between cores are minimized. The results
on the RCCE emulator establish the correctness of the
algorithms and show a promising 2.24x speedup for 7 cores
with the pipelined method. As for future work, we want to
evaluate our algorithms on real SCC hardware and investigate
none-recursive FFT algorithms.

REFERENCES

[1] R. Van der Wijngaart, T. G. Mattson, and W. Haas. Light-weight

communications on intel’s single-chip cloud computer processor. ACM
Operating Systems Review, 2011. in press.

[2] T. G. Mattson et al. The 48-core SCC processor: The programmer’s
view. In SC’10: Proceedings of the 2010 ACM/IEEE Conference on
Supercomputing, New Orleans, LA, USA, 2010.

[3] “SCC External Architecture Specification (EAS)”, Intel Coopration,
November 2010

[4] Intel’s Many-core applications reseach community website. Available:
http://communities.intel.com/community/marc/

[5] R. Fisher, S. Perkins, A. Walker and E. Wolfart, “Fourier Transform“,
Available: http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm, 2003

[6] A. Grama, A.Gupta, G. Karypis, V. Kumar. “Fast Fourier Transform,” in
Introduction to Parallel Computation, 2nd ed., Edinburgh Gate: Pearson
Education Limited, pp.537-548, 2003.

[7] J. Howard et al. A 48-core ia-32 message-passing processor with DVFS
in 45nm CMOS. In ISSCC ’10: Proceedings of the International
SolidState Circuits Conference, 2010.

[8] J. R. Breitenbach, Sequential FFT Source Code in C language,
Available: http://courseware.ee.calpoly.edu/~jbreiten/C/

[9] Parallel FFT for Cell Broadband Engine processor, Available:
http://www.fftw.org/cell/index.html

[10] J. Cooley, J. W. Tukey, "An algorithm for the machine calculation of
complex Fourier series," Math. Comput. 19, 297–301 (1965).

[11] R. Van der Wijngaart, T. G. Mattson, and W. Haas. Light-weight
communications on intel’s single-chip cloud computer processor. ACM
Operating Systems Review, 2011. in press.

[12] “The SCC Platform Overview”, Intel Labs, May 2010.

[13] Matteo Frigo and Steven and G. Johnson, "The design and
implementation of FFTW3", Proceedings of the IEEE,
2005, pp. 216-231.

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 87

88 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

Meta-programming Many-Core Systems

Alexander Arlt, Jan H. Schönherr, Jan Richling
arlteini@mailbox.tu-berlin.de, {schnhrr|richling}@cs.tu-berlin.de

Communication and Operating Systems Group

Technische Universität Berlin, Germany

Abstract—In this paper we present a novel approach for a
highly customizable operating system for modern many-core
architectures such as the Single-Chip Cloud Computer (SCC),
an experimental processor created by Intel Labs. The cus-
tomizability is realized by advanced template meta-programming
techniques. We employ these techniques at runtime and exploit
hardware features not present in today’s multi-core systems to
create a versatile general purpose operating system.

I. INTRODUCTION

Over the last decade, processor manufacturing made con-

siderable progress, and the mass market turned from single-

core computer systems to multi-core systems. Currently, it

is expected that this trend will continue and that many-

core systems will emerge. While the designers of operating

systems were able to adapt their products towards the multi-

core era, it is unlikely that these operating systems will be

able to handle many-core processors adequately. On the one

hand, there are scalability issues within the operating systems

itself. On the other hand, future many-core processors may

differ from current architectures substantially, invalidating core

assumptions current operating systems rely on. An example for

this is the Single-Chip Cloud Computer (SCC) experimental

processor [1] created by Intel Labs which is a 48-core concept
vehicle as a platform for many-core software research: while it

supports shared memory, it no longer provides cache-coherent

shared memory. This makes current multi-core operating sys-

tems unusable on this architecture.

Instead, Intel’s SCC can be configured and used like a

cluster: each core is handled as a single node with distinct

memory. While such configurations basically work, they are

not able to unleash the full potential of many-core architec-

tures. Furthermore, they greatly restrict the possibilities of

application design to a small subset. Therefore, a different

approach for many-core architectures is needed. The multiker-
nel model [2] addresses this by considering the cores within

many-core architectures to be independent from each other

but still closely coupled: while the multiple kernels have to

use message passing in order to interact, they are – compared

to cluster operating systems – lightweight and applications

are conceptually allowed to use architectural features, such as

shared memory.

A vastly different view on operating system design exists

within the area of embedded systems: different techniques

were developed to realize highly customizable operating sys-

tems fitting a multitude of embedded devices without causing

overhead at runtime. This is realized by synthesizing an

instance of the operating system in an application-aware step

at compile time including only relevant parts and aspects.

Examples of this kind of operating system are PURE, CiAO,

and EPOS. They use a meta-description of the target system,

a system configuration. While PURE [3] and CiAO [4] use a

set of tools and languages to realize the synthesis out of the

system configuration, EPOS [5] achieves this with template

meta-programming techniques. Running many-core systems

with such highly tailored operating systems allows applications

to exploit the full potential of the system. However, this comes

at the disadvantage that the tailoring is done offline. This

makes it either unsuitable for general purpose systems, or,

if general purpose aspects are included in the synthesis, the

desired goal of specialization is not achieved.

Therefore, we propose a novel approach for many-core op-

erating systems: synthesizing the operating system at runtime

on a subsystem level as an extension of the traditional offline

synthesis. This keeps the efficiency of approaches like EPOS,

while adding the flexibility of dynamic reconfigurations. Ad-

ditionally, this concept allows to utilize the unique features

of Intel’s SCC in order to target a general purpose operating

system that specializes on demand while still guaranteeing

protection between different subsystems.

The remainder of the paper is structured as follows: In

Section II, we present our template-based approach in more

detail followed by a description how our concept can be

applied to Intel’s SCC in Section III. Finally, the paper is

wrapped up in Section IV.

II. APPROACH

Our approach generates optimized, application-specific ker-

nels for individual cores at runtime. This is made feasible

by many-core architectures for two reasons: First, there are

enough cores available so that sufficient computational re-

sources can be reserved for kernel creation without causing

too much distress. Second, modern many-core architectures

provide us with hardware support to protect cores from each

other. This is necessary as the specialized kernels may drop

the classical distinction between user and kernel mode for

performance reasons. On many-core architectures we are able

to regain that distinction on core level. These ideas perfectly

match the SCC architecture as described in more detail in

Section III. For the purpose of system management and

system reconfiguration, we designate a dynamically changing

number of cores as system cores which have full access to the

system. They generate individual, application-specific kernels

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 89

namespace c o n f i g {
t y p e d e f model : : Hardware<

a r c h i t e c t u r e : : s c c : : A r c h i t e c t u r e ,
a r c h i t e c t u r e : : s c c : : Cores<

Off , Off , Off , Off , AppA<0>, AppA<2>,
Off , Off , Off , Off , AppA<1>, AppA<3>,
BareMeta l <0>, Off , Off , Off , Off , AppB ,
BareMeta l <1>, Off , Off , Off , Off , AppC ,
Off , Off , Off , Off , System , Linux ,
Off , Off , Off , Off , System , Linux ,
Off , Off , Off , Off , Off , Linux ,
Off , Off , Off , Off , Off , Linux

>
> Hardware ;

} / / namespace c o n f i g

Listing 1. Excerpt of an example configuration of an SCC system

for the application cores and enforce that application cores

are confined to their respective partitions with only restricted

interfaces to the remaining system.

To synthesize such highly customized kernels, we use C++

template meta-programming techniques. C++ template meta-

programming is Turing-complete and can be interpreted as a

functional language directly embedded in C++ that is evaluated

at compile time. Our system is mainly driven by Alexan-

drescu’s proposed policy-based design [6] with the addition of

traits [7], [8] and the curiously recurring template pattern [9].

In general, these techniques allow the movement of calcula-

tions and decisions from runtime to compile-time resulting

in a reduced amount of code with increased performance.

Policies and static polymorphism enable a high abstraction

level in software engineering without sacrificing performance

in otherwise low-level kernel development.

System and application cores are described by a concrete

system configuration. The model of this system configuration

is realized as a collection of template-classes. Different pa-

rameters of this model are represented as template arguments.

As template arguments can be templates themselves, it is

possible to describe configurations of different subsystems

recursively. Finally, if all template arguments are specified,

the system configuration is complete. From the viewpoint

of the compiler, the resulting configuration-model is just a

type. Therefore, meta-programming techniques can be used to

retrieve information from the model, analyze it, and finally

synthesize the desired behavior.

An example configuration of an SCC system is shown in

Listing 1 describing the different cores of the SCC system.

It contains two system cores and many different application

cores. There are no restrictions regarding the type of applica-

tions: even other operating systems or bare metal applications

are supported. For every application, further configurations

exist that describe their interfaces. For example, a parallel

application like AppA might need to exchange messages.

Thus, the synthesized kernels for AppA will support mes-

sage passing between their cores, while this functionality

is excluded from the kernels for AppB and AppC. On the

other hand, AppC might consist of multiple threads resulting

in a scheduler to be included in the corresponding kernel.

Individual kernels are reduced exactly to the functionality

required by their applications with respect to the underlying

architecture. This reduces the complexity and therefore the

memory footprint of the resulting kernels drastically. Case

studies based on template meta-programming, e. g., [10], [11],

exemplarily show a code size reduction of more than 50%.

We expect similar results for our approach.

The possibility to execute other operating systems, such as

Linux, allows us to seamlessly integrate legacy applications.

Applications with known requirements on the other hand, are

subject to our individual kernel generation.

A system configuration as described above is sufficient to

run a static set of applications. However, in order to realize

a general purpose operating system, we include the ability to

change the system configuration at runtime by applying differ-

ential configurations. The differential configuration serves two

purposes: (i) we can derive the next system configuration to

generate the necessary core-specific kernels, and (ii) we can

create an operating system component that is able to carry

out the necessary changes to transform the system from the

previous configuration to the next without affecting running

but untouched applications.

III. SCC INTEGRATION

The SCC architecture [12] provides the necessary hardware

features to realize our approach: On the one hand, the complete

management of the SCC can be done from within the SCC

itself. On the other hand, the SCC allows us to create iso-

lated partitions where bare-metal applications can be executed

without them being able to compromise the system. This is

due to the fact that all configuration registers are accessed

with regular memory accesses which – in turn – undergo

a translation via per-core lookup tables (LUTs). Thus, it is

possible to remove access to the configuration registers by

modifying the LUTs appropriately.

Currently, the initial bootstrapping must be done by the

management console PC (MCPC). However, due to the nature

of our approach, this can be done using the same code base

with slightly adapted policies. Based on an initial system

configuration, a boot loader and one or more kernels will be

compiled on the MCPC. Template meta-programming tech-

niques create the necessary code within the boot loader, so

that it sets up LUTs and other system parameters according

to the configuration, stores the generated core images at the

desired memory locations within the SCC and initiates the

boot process. Depending on the actual use case, the initial

system configuration may already contain an arbitrary mix

of application and system cores. For minimal bootstrapping,

a single system core would be sufficient: after bootup, the

SCC can operate without the MCPC by modifying the system

configuration, building further kernels and compiling and

starting the boot loader for other cores itself.

90 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

IV. CONCLUSION

In this paper we introduced a novel approach for an operat-

ing system for many-core systems. Our approach is based on

the principle of static offline configuration. However, we apply

this idea not on system scale but at subsystem level allowing

arbitrary reconfigurations of system partitions at runtime. The

configuration itself is based on the concept of template meta-

programming and is used to create operating system images

for individual cores that perfectly fit the needs of the software

to be executed. This way, we avoid unnecessary overhead

while still retaining universality. Furthermore, the approach

supports different levels of heterogeneity up to the point where

some cores execute existing operating systems while other

cores execute applications with highly specialized kernels –

either with interactions through shared memory or message

passing, or with guaranteed freedom of interference from other

applications.

The next step of our research is to transfer this concept

into reality. We plan to do this by implementing a prototype

that runs on Intel’s SCC and demonstrates the feasibility of

our approach and allows to evaluate its usefulness compared to

more traditional concepts. Ideally, it will be self-contained and

turn the SCC into a general purpose system without sacrificing

parts of its potential.

Overall, we consider static configurations at core level with

dynamic reconfigurations at runtime as a promising way to

address the challenges of upcoming many-core systems.

REFERENCES

[1] J. Howard et al., “A 48-core IA-32 message-passing processor with
DVFS in 45nm CMOS,” in IEEE International Solid-State Circuits
Conference Digest of Technical Papers, Feb. 2010, pp. 108–109.

[2] A. Baumann, P. Barham, P. E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: A new
OS architecture for scalable multicore systems,” in Proceedings of the
22nd ACM SIGOPS Symposium on Operating systems principles, 2009,
pp. 29–44.

[3] F. Schön, W. Schröder-Preikschat, O. Spinczyk, and U. Spinczyk,
“Design rationale of the PURE object-oriented embedded operating
system,” in Proceedings of the International Workshop on Distributed
and Parallel Embedded Systems, 1999, pp. 231–240.

[4] D. Lohmann, F. Scheler, W. Schröder-Preikschat, and O. Spinczyk,
“PURE embedded operating systems – CiAO,” in Proceedings of the
International Workshop on Operating System Platforms for Embedded
Real-Time Applications, Jun. 2006.

[5] A. A. M. Fröhlich, “Application-oriented operating systems,” Ph.D.
dissertation, Technische Universität Berlin, 2001.

[6] A. Alexandrescu, Modern C++ Design: Generic Programming and
Design Patterns Applied. Addison-Wesley Professional, Feb. 2001.

[7] N. C. Myers, “Traits: a new and useful template technique,” C++ Report,
Jun. 1995.

[8] A. Alexandrescu, “Traits: the else-if-then of types,” C++ Report, Apr.
2000.

[9] J. O. Coplien, “Curiously recurring template patterns,” C++ Report, Feb.
1995.

[10] C. Steup, M. Schulze, and J. Kaiser, “Exploiting template-
metaprogramming for highly adaptable device drivers – a case study on
CANARY an AVR CAN-driver,” in Proceedings of the 12th Brazilian
Workshop on Real-Time and Embedded Systems, 2010, pp. 51–62.

[11] R. Klemm and G. Fettweis, “Bitstream processing for embedded systems
using C++ metaprogramming,” in Proceedings of the Conference on
Design, Automation, and Test in Europe, 2010, pp. 909–913.

[12] SCC External Architecture Specification (EAS), Intel Labs, 2011, rev.
1.1.

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 91

92 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

Performance of RCCE Broadcast Algorithm in SCC

Hayder Al-Khalissi
Institute of Computer and Network Engineering

TU Braunschweig

Braunschweig, Germany

h.al-khalissi@tu-braunschweig.de

Mladen Berekovic
Institute of Computer and Network Engineering

TU Braunschweig

Braunschweig, Germany

berekovic@ida.ing.tu-bs.de

Abstract—RCCE is a small library for many-core commu-
nication created for the Single-Chip Cloud Computer (SCC)
processors. RCCE has two basic communication primitives,
which are point-to-point communication and broadcast. Col-
lective communication are an important aspect of most of the
message-passing programming. The Broadcast function is the
most heavily used collective operation for the widely used message
programming paradigm. In this work, we have implemented,
optimized, and compressed RCCE bcast performance on the
SCC. This paper looks at the broadcast function of RCCE
and explores some alternative implementations for the SCC
architecture. It then compares these implementations to the
build-in broadcast RCCE implementation and propose a new
implementation for the optimization of one-to-many operation.
This proposed algorithm improves 95% of communication time
over current broadcast algorithm with large number of cores and
message size.

Index Terms—RCCE (Message Passing library on many-core
system), SCC (Single Chip Cloud Computer), pipeline, collective
operations.

I. INTRODUCTION

The Single-Chip Cloud Computer SCC [1], has been de-

signed to explore the future of many-core computing by Intel.

It contains 48 P54C Pentium cores connected with a 4x6 2D-

mesh. The architecture of the SCC resembles a small cluster

or ”cloud” of computers. The SCC has 24 dual-core tiles, one

off-chip private memory per core, shared off-chip memory, and

a shared on-chip message passing buffer (MPB). The MPB

is a small fast local memory located in each tile. There are

also four DDR3 memory controllers on the chip, which are

connected to the 2D-mesh as well. The SCC does not use

any cache coherency between the cores, but rather offers a

special hardware in terms of these MPBs for explicit message-

passing between cores. Each core can boot its own operating

system and software stack. The cores are connected via a mesh

network with low latency and high bandwidth (256 gigabytes

per second). RCCE [2,3] is a Message Passing API has been

designed for the SCC and used for programming these SCC

features. RCCE is a simple message passing environment

based on a simple one-sided (put/get) communication system.

The RCCE has two basic communication primitives which

are point-to-point communication and collective operations.

iRCCE [4], is a non-blocking communication extension to

the RCCE communication library that has been developed at

RWTH Aachen university. iRCCE extended RCCE by adding

asynchronous message-passing functions and improved the

performance of some existing RCCE functions. As an example

for the blocking send and receive operations is applying of an

assembler-coded and SCC-customized memory copy routine.

RCCE uses a static Single Program Multiple Data (SPMD)

model familiar to message passing programmers [3].

As the number of cores grows the need for cores commu-

nication also grows, and since core communication can be

one or more orders of magnitude slower than local memory.

The communication time can quickly come to dominate the

time it takes to complete a computation. Thus, improvement

in communication speed can significantly improve the overall

performance of an application.

The broadcast function is one of several sub routines defined

by RCCE for collective communication operations [3]. Its

purpose is to distribute data from one processor to all of

the other processors in a communications group. Broadcast

is used in situations where, for example, partial results from

one processor must be shared among all the processors in a

group in order for the computation to continue.

This paper focuses on the algorithms for one-to-all com-

munication and implements several possible implementations

of broadcast algorithms in RCCE and compares their perfor-

mance. Broadcast algorithms implementations are based on the

blocking and the pipelining blocking communication. Based

on the results of the empirical testing and on analysis of the

algorithms, we propose a new implementation.

II. DEFINITION

The following parameters are required for the analytical

algorithms presented in the next sections:

Root : the root core is the process that is broadcasting the

data.

P : number of cores which take part in the collective

communication:

D : the size of the data.

C : the number of (equal-sized) parts into which the data is

split by an algorithm. C is also the number of transmissions

that take place to transmit all of the data from one processor

to another.

T : the communication time that is defined as the time it

takes for one core to transfer data of size D to another core in

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 93

one operation. It consists of time it takes to start up sending

(Ts) plus the time it takes to transmit the data.

Td : the time required for the broadcast function to complete

transmitting all data to all processors.

Saturation : for ease of discussion, we define saturation

to be, the network state in which every processor is either

sending to or receiving from (or both sending to and receiving

from) another processor. This is the point at which network

throughput is at its maximum.

III. SCC HARDWARE AND RCCE

A. Architectures of the SCC

Fig 1 shows the features of the SCC chip. The SCC is a

(mostly) distributed memory, tiled, and many-core processor.

Each tile is containing two cores, a Mesh Interface Unit (MIU),

a 16 KB Message Passing Buffer (MPB), and two test-and-

set registers. The SCC processors P54C cores are second

generation Pentium processors. Each core has a 16 KB L1

instruction cache and a 16 KB L1 data cache. The L1 caches

are on the core. Each core also has a 256 KB L2 cache that is

on the tile. The MPB shared among all the cores on the chip.

Each tile is connected to a router. This router works with the

MIU to integrate the tiles into a mesh. The MIU packetizes

data onto the mesh and de-packetizes data from the mesh using

a round-robin scheme to arbitrate between the two cores on

the tile [1, 2].

B. SCC Communication Environment (RCCE)

With regards to the architecture in previous section, the SCC

supports a variety of parallel programming models. RCCE

(pronounced rockey) is a message passing programming model

provided with SCC. It is a small library for message passing

tuned to the needs of many core chips such as SCC. The

communication between cores occurs by transferring data from

the private memory through the L1 cache of the sending core

to the message passing buffer (MPB) and then to the L1 cache

of the receiving core. The MPB allows L1 cache lines to move

between cores without having to use the off-chip memory.

RCCE has functions that perform the actions as for initialize

and shut down the environment, send/receive message among

the environment, and synchronize core programs with barriers

and fences. It also has functions that manage data between

private memory and the MPBs with simple put/get routines,

and synchronize core programs using flags [5].

iRCCE is a non-blocking communication extension to the

well-known RCCE communication library that extends RCCE

by asynchronous message-passing functions. The iRCCE li-

brary implements a queuing mechanism in terms of single-

linked lists with one send and one receive queue per core.

The pipeline approach is implemented within iRCCE in terms

of the blocking send and receive functions[4]. The pipelining

blocking approach is based on dividing MPB into two smaller

chunks, since in this case sender and receiver can work on the

MPB simultaneously in a pipelined and parallelized manner.

*+ *+

Fig. 1. Layout and tile architecture for the SCC

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 0 50000 100000 150000 200000 250000 300000

La
te

nc
y

(n
an

os
ec

on
d)

 Message size (Bytes)

RCCE_bcast (12Cores)
iRCCE_bcast (12Cores)
RCCE_bcast (36Cores)
iRCCE_bcast (36Cores)
RCCE_bcast (48Cores)
iRCCE_bcast (48Cores)

Fig. 2. Communication Latency vs. Message size of RCCE bcast and
iRCCE bcast

IV. RCCE BROADCAST

The primary problem with broadcast line is how to take

advantage of all the available network bandwidth. The fastest

algorithms have two characteristics: (1) it gets the saturation

(as defined above), and (2) how it is accessing to saturation

quicker than the other algorithms. For performance timing

analysis, we used the rdtc CPU instruction [6], and Time

measurement is only performed and printed on core P0.

This assembly instruction returns the number of clock cycles

elapsed since the last reboot of the machine and due to

its machines clock precision and minimal execution time, it

gives better execution time information when compared to

RCCE wtime() of the RCCE library that gives only second

precision. We have used 19 data points to draw all graphs in

each section which are represented average time for 100 runs.

A. Simple Algorithm

The simplest algorithm of broadcast is for P0 (root) to

send its data to all participating cores. RCCE bcast is a

blocking collective operation which is already implemented

according to this algorithm in RCCE library. RCCE bcast

is build on the elementary RCCE send/recv functions. We

implemented iRCCE bcast by replacing the RCCE send/recv

by pipelining blocking routines iRCCE send/recv to improve

the performance of this algorithm. The total time equal to T

times the number of processors minus one: Td = T (P − 1).
On the SCC, iRCCE bcast performs better than RCCE bcast

94 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

��,-./0 12 10 13 14 15 16 17

��,-./3 12 10 13 14 15 16 17

��,-./4 12 10 13 14 15 16 17

8

8

8

19

19

19

Fig. 3. Chain broadcast running on 8 cores

as the amount of data increases because the Ts divided by

C. Both algorithms performance for transferring various D for

small (1B) and large (262144 B) are shown in Fig 2. Fig 2

shows the broadcast duration (RCCE bcast and iRCCE bcast

) which are giving a real average duration of run 100 for each

algorithm in the same number of cores. The iRCCE bcast

algorithm was the fastest on all the test with different number

of cores when D is larger than 1024 B.

B. Chain Algorithm

Another algorithm with a similar performance lets each

core sends and receives at most one message. This effectively

creates a kind of ring topology where each core has one

predecessor from which it receives the message, and one

successor to which it sends the message (for that reason it

is also sometimes called ring algorithm). Since the root core

does not need to receive a message, this is illustrated in

Fig 3, the ring is reduced to a chain where the last core

skips the sending part. We implemented RCCE bcast chain

and iRCCE bcast chain based on the point-to-point block-

ing communication and pipelining blocking communication

respectively. Theoretically, these implementations should per-

form identically, with total time Td = T (P − 1) in the

previous section, but in iRCCE bcast chain, T is different

because the Ts divided by C. The P0 completes the broadcast

after a single send, and the last core in the chain needs to

wait (P − 1) rounds until it receives the message. This gives

the following extreme performance numbers : Ts ≤Ts(simple

algorithm). Fig 4, shows the variation of communication time

for different message sizes and different number of cores

for two implementations of this algorithm. We obvious the

broadcast duration in Fig 4 is less than in Fig 2. Also, the

Chain algorithm that is implemented by using pipeline block-

ing communication, it gets better performance with different

number of cores and various message sizes.

C. Binary Tree Algorithm

A binary tree is a well-known data structure in computer sci-

ence. Nodes, which represent RCCE processes, are connected

by directed edges, which indicate the direction of the message

transfer. To get a good performance. we require that each

parent node has two children - except the leave nodes which

are allowed to have only a single or no children (Fig 5). This

algorithm reduces the number of transmission steps from (P-1)

to (log2(P+1) -1) and Td = ((log2(P+1))-1)* T. In Fig 5, for

an 8-core network, that translates from 7 steps to 4, a reduction

of 43%. We also implemented this algorithm based on two

routines for blocking and pipelining blocking communications

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 0 50000 100000 150000 200000 250000 300000

La
te

nc
y

(n
an

os
ec

on
d)

 Message size (Bytes)

RCCE_bcast_chain (12Cores)
iRCCE_bcast_chain (12Cores)
RCCE_bcast_chain (36Cores)
iRCCE_bcast_chain (36Cores)
RCCE_bcast_chain (48Cores)
iRCCE_bcast_chain (48Cores)

Fig. 4. Communication Latency vs. Message size of RCCE bcast chain and
iRCCE bcast chain

��,-./0 12 10

13��,-./3 12

��,-./4

10 14

� 1�10

13 1�

1�14

1���,-./� 13

Fig. 5. Binary Tree broadcast running on 8 cores

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 50000 100000 150000 200000 250000 300000

La
te

nc
y

(n
an

os
ec

on
d)

 Message size (Bytes)

RCCE_bcast_binary (12Cores)
iRCCE_bcast_binary (12Cores)
RCCE_bcast_binary (36Cores)
iRCCE_bcast_binary (36Cores)
RCCE_bcast_binary (48Cores)
iRCCE_bcast_binary (48Cores)

Fig. 6. Communication Latency vs. Message size of RCCE bcast binary
and iRCCE bcast binary

as (RCCE bcast binary and iRCCE bcast binary). We can

see the performance of those implementations in Fig 6.

D. Two Tree Algorithm

We propose a Two Tree algorithm by considering k cores,

(P0,P1,...,Pk−1), where P0 is the root core. In the first round,

P0 sends a message to P1. In the second round, P0 sends to P5

and P1 sends to P2. In the third round, processors 2-5 send

to processors 3-6, respectively, and so on, with the number

of cores sending and receiving being D at each round (Fig

7). Basically, the number of cores is divided into subtrees:

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 95

��,-./0 12 10

1���,-./� 12 ��,-./5

1� 1$

171�

1$ 15

��,-./$

1�10 1�17

Fig. 7. Two Tree broadcast running on 8 cores

%&

%�

%- �
%-

%-!�

%" �

Fig. 8. A Two Tree broadcast with K cores consists of two sub-tree

one is an n-core tree (P0,P1,...,Pn−1) rooted at P0 and the

other is a (K − n)-core tree rooted at Pn as shown in Fig

8. In order to construct a two tree, two requirements must

be satisfied. First, the core Pn must be chosen such that the

generated subtree is optimal (Pn = ((P/2) + 1) when P is

even, Pn = (P/2) when P is odd) . Second, the two subtrees

(P0,P1,...,Pn−1) and (Pn,Pn+1,...,Pk−1) must apply the same

algorithm to each subtree. We chose Chain algorithm to be

implemented in each subtree because it has better performance.

Thus, this algorithm improves the performance by reducing

the number of transmission steps to (log2(P + 1) -1). The

time measurement for this algorithm is Td = (log2(P + 1)-
1)* T that is identical to Td in section (C) but the difference

in time transmission between cores as illustrated in Fig 8.

As mentioned in [7], that shows the latency comparative for

transfer messages between same tile, neighboring tile, and

farthest tile. Ts between cores in the same tile or neighboring

tile is less than Ts between the farthest tile. As result, Td

in section (C) is greater than Td in this section because the

Two Tree algorithm are exploiting neighboring core and tile to

save broadcasting duration. Fig 9 presents the performance re-

sults of RCCE bcast 2tree and iRCCE bcast 2tree which are

implemented by using point-to-point communication blocking

and pipelining blocking respectively.

V. PERFORMANCE COMPARISON OF VARIOUS

ALGORITHMS

The goal of this section is to compare the performance

of RCCE broadcast and iRCCE broadcast operations on the

SCC. The purpose of this comparison is to determine the best

performance of sending message from one processor to all

processors using two-sided routines (blocking and pipelining

blocking). For all measurements the cores were running at 533

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 0 50000 100000 150000 200000 250000 300000

La
te

nc
y

(n
an

os
ec

on
d)

 Message size (Bytes)

RCCE_bcast_2tree (12Cores)
iRCCE_bcast_2tree (12Cores)
RCCE_bcast_2tree (36Cores)
iRCCE_bcast_2tree (36Cores)
RCCE_bcast_2tree (48Cores)
iRCCE_bcast_2tree (48Cores)

Fig. 9. Communication Latency vs. Message size of RCCE bcastt 2tree and
iRCCE bcastt 2tree

MHz and the mesh at 800 MHz.

To study the performance of RCCE and iRCCE broadcast

communications commands on SCC, we have run the blocking

RCCE version of our code for transferring various block sizes

starting (1B) and up to (262144 B) of data to different numbers

of processor. After several runs for each case, we noticed

the time in Fig 10 and 11 which made clear the differences

between algorithms. Fig 10 shows the performance of four

algorithms which are based on blocking communication send-

ing. While, Fig 11 depicts the performance of four algorithms

which are based on pipeline blocking communication rou-

tine. On the SCC, for 1-Byte and 262144-Byte message, the

RCCE/iRCCE broadcast algorithms implementation is signifi-

cantly slower than all the other algorithms implementation as

shown in Fig 10 and Fig 11.

This study is analogous to the previous sections; the com-

munication time required for transferring the same data block

size is less in pipelining blocking broadcast than in broadcast

blocking. The difference increases with larger data block

size and with more number of processors. We observe the

difference in performance of RCCE and iRCCE operations in

each implementation separately as illustrated in Table 1.

Fig 12 explains chart of time performance variation for each

broadcast function for transferring two different message size

(8192 B, 262144 B) to 48 processors. It clearly shows that

iRCCE bcast 2tree outperforms all the other algorithms for

different data size sets on the SCC. This proposes that the

overall performance of RCCE broadcast improved by used

pipelining blocking routines. For the small D on a small

number of P, iRCCE bcast (simple algorithm) performs the

best. For large D, iRCCE bcast 2tree works the best.

Finally, Table 1 summarizes the percentage improvement in

completion time between RCCE bcast function and various

broadcast algorithms which are implemented on SCC. Table

1 shows that for messages sizes 8192 B and 262144 B,

RCCE bcast 2tree saves 96% and 95% respectively over

RCCE bcast.

96 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 0 50000 100000 150000 200000 250000 300000

La
te

nc
y

(n
an

os
ec

on
d)

 Message size (Bytes)

RCCE_bcast(48Cores)
RCCE_bcast_chain (48Cores)

RCCE_bcast_binary (48Cores)
RCCE_bcast_2tree (48Cores)

Fig. 10. Performance of RCCE broadcast algorithms

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 0 50000 100000 150000 200000 250000 300000

La
te

nc
y

(n
an

os
ec

on
d)

 Message size (Bytes)

iRCCE_bcast(48Cores)
iRCCE_bcast_chain (48Cores)

iRCCE_bcast_binary (48Cores)
iRCCE_bcast_2tree (48Cores)

Fig. 11. Performance of iRCCE broadcast algorithms

However, the formula for the Td is identical to the

RCCE bcast binary (as explained in section (4.C)), but

RCCE bcast 2tree is vast because it reduces the time for

transfer messages between cores by sending message to

neighbor. Therefore, we reduce the number of transmission

steps and time of transmission. Table 1 also showed that

RCCE bcast chain gets better performance, as compared to

the RCCE bcast.

We compare the broadcast algorithms communication tim-

ing which are improved by pipelining blocking operation with

iRCCE bcast as reported in Table 2. According to Table 2,

those algorithms which are improved by pipelining blocking

send functions, the communication time saved more than

93% over iRCCE bcast with number of cores = 48. Where

iRCCE bcast 2tree saved time 96% over iRCCE bcast time

and 1% over iRCCE bcast chain when is sending data with

size 262144 B. It is obvious, for broadcast improvement

algorithms, processors can better utilize the waiting time in

sent data by using pipelining blocking send, showing better

performance compared to the blocking send.

Fig. 12. Comparison RCCE broadcast algorithms performance on 48-cores

TABLE I
COMPARISON BETWEEN RCCE BCAST VARIOUS BROADCAST

ALGORITHM WITH % IMPROVEMENT IN TIME

Message size iRCCE bcast bcast chain bcast binary bcast 2tree

8192 13% 95% 94% 96%
262144 21% 95% 93% 95%

TABLE II
COMPARISON BETWEEN IRCCE BCAST VARIOUS BROADCAST

ALGORITHM WITH % IMPROVEMENT IN TIME

Message size bcast chain bcast binary bcast 2tree

8192 95% 94% 95%
262144 96% 93% 96%

VI. CONCLUSION

From the above experimental study on the SCC architec-

ture, it is interesting to note that with different number of

cores, the broadcasting can be implemented using different

algorithms to save time (in nanosecond) appreciably. The

performance of broadcast in RCCE can be improved on SCC

for data sets by changing its implementation. The broadcast

implementation on RCCE uses simple algorithm. We could

switch to RCCE bcast 2tree or iRCCE bcast 2tree which

have better performance for different message sizes would

work. So, the experimental results reveal the fact that for

different sizes of message and number of cores, it is better to

implement broadcasting in terms of pipelining blocking point-

to-point communication in parallel programming by using

RCCE library on the SCC system.

ACKNOWLEDGMENT

We wish to express my sincere gratitude to Intel for provid-

ing SCC system and software development platform. We also

thank Intel Lab staff in TU Braunschweig and Adrian Knoth

(Jena University) for helping.

REFERENCES

[1] Intel Corporation. SCC External Architecture Specification (EAS). July
2010. Revision 0.99.

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 97

[2] T. Mattson, R. van der Wijngaart, M. Riepen, T. Lehnig, P. Brett, W. Haas,
P. Kennedy, J. Howard, S. Vangal, N. Borkar, G. Ruhl, and S. Dighe. The
48-core SCC Processor: The Programmers View. In Proceedings of the
2010 ACM/IEEE Conference on Supercomputing (SC10), New Orleans,
LA, USA, November 2010.

[3] Ernie Chan. RCCE comm: A Collective Communication Library for the
Intel Single-chip Cloud Computer. 2010.

[4] Carsten Clauss, Stefan Lankes, Jacek Galowicz, Thomas Bemmerl. iR-
CCE: A Non-blocking Communication Extension to the RCCE Commu-
nication Library for the Intel Single-Chip Cloud Computer. February
22, 2011.

[5] T. Mattson and R. van der Wijngaart. RCCE: a Small Library for Many-
Core Communication. Intel Corporation, May 2010. Software 1.0-
release.

[6] Intel Corporation. Intel Application Notes - Using the RDTSC Instruction
for Performance Monitoring. Technical report, Intel, 1997.

[7] Aparna Chandramowlishwaran, Richard Vuduc, and Kamesh Madduri.
Performance Evaluation of the 48-core SCC Processor. LBNL ICCS
2011 Workshop.

98 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

ARGOS - a software framework to
facilitate user transparent multi-threading

Nils Petersen
DFKI GmbH

Email: nils.petersen@dfki.de

Julian Pastarmov
Google Germany GmbH

Email: pastarmovj@google.com

Didier Stricker
DFKI GmbH

Email: didier.stricker@dfki.de

Abstract—In this paper we present a software framework
called ARGOS designed for auto-parallelizing algorithms and
distributing its parts among physical machines.

The core approach is to split an algorithm into an abstract,
a target specific static, and a run-time part. The abstract part
is an abstract graph representation of the distinct steps of an
algorithm with all data dependencies explicitly resolved.

The target specific part is statically distributing graph-parallel
parts of the algorithm among threads and physical machines
and in addition associates each algorithm step with an optimal
implementation for the respective target hardware.

The run-time part covers load-balancing and - in presence of
streaming data - parallelizes sequential branches of the graph by
stage-parallel execution.

The underlying programming model allows for optimal par-
titioning of the graph in terms of computational load and
memory resp. bandwidth footprint. All thread synchronization
and memory management is hereby carried out by the framework
making the multi-threaded execution completely transparent to
the user.

The software is in daily use within our research group and
has already been deployed to several industrial projects.

I. INTRODUCTION

Developing efficient software for current multi-core and fu-

ture many-core hardware is becoming an increasingly difficult

task. While some constraints, like the demand on memory

efficiency could be relaxed to some extent due to cheap

memory, the paradigms for writing fast code has switched to

making extensive use of multi-threaded execution.

This puts higher demands on the algorithmic design and thus

the skills of the developer and provides an additional source

of hard-to-catch code issues. To alleviate the demands on the

programmer, we have designed a software framework that is

able to perform many parallelization steps either completely

automatically or with only little interaction.

The framework hereby implements a constrained but suf-

ficient programming model that implicitly favors algorithmic

architectures that afford parallelization.

The general optimization strategies of Argos are threefold:

• Optimize by separating the implementation from the

declaration of an algorithm. This allows to choose an op-

timal implementation for a given target hardware without

changing the algorithm design.

• Optimize by graph-parallel execution and distribution of

fragments to different threads and physical machines. The

goal is to partition the graph into balanced fragments

in terms of computational load with minimal bandwidth

footprint in between.

• Optimize by stage parallel execution, accelerating graph-

sequential parts. This technique used by most modern

processors allows to exploit hardware parallelism also for

explicitly sequential algorithms.

Although the software framework is still under heavy de-

velopment it is already in daily use in our research group and

has proved its applicability to many use cases in the fields

of real-time computer vision, sensor fusion, as well as offline

processing and ”number crunching”. We call our framework

ARGOS after the 100-eyed giant from greek mythology in

reference to its principal field of application, the parallelization

of computer vision algorithms.

In the remainder of this paper, after shortly discussing

related work, we will show the means of optimization and

the underlying architecture in more detail.

II. RELATED WORK

Since there seems to be a consensus that the current

programming paradigms have to - at least - be extended to

facilitate writing highly parallel applications, new languages

or programming models evolve.

One successful member of this fraction is nVidia CUDA

[3] that allows the development of general purpose software

on the GPU without the inconvenience of requiring to disguise

the implementation as a graphical shader program. The CUDA

concept extends C and recently C++ by simple directives to ad-

vise the compiler on the number of dedicated processing cores

and blocks as well as to influence data locality. Unfortunately

CUDA is limited to nVidia GPUs. A more comprehensive

change in comparison to classical programming languages

is OpenCL [4]. OpenCL is a so called stream processing

language, thus having a very similar goal as CUDA but is

a common standard and multi-platform targeted.

While it is very easy to create a working implementation

using both of these languages it is quite hard to achieve

an actual speed up. The developer needs considerably more

insight into the underlying hardware as well as the preferred

data locality compared to writing code for e.g. modern x86

hardware with its automatic multi-level caches.

To that end there is the class of declarative languages,

e.g. the Microsoft Accelerator concept [5] where the parallel

programming is achieved through merely declaring the data

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 99

parallelism rather than explicitly creating and dispatching

threads. Through the declarative nature, the concept can even

synthesize into FPGA circuitry [1]. This concept is the closest

to ARGOS as our program representation is a declaration of

the steps necessary to solve a problem as well as the fully

resolved data dependencies for each of these steps.

III. SYSTEM DESCRIPTION

We have given careful thoughts of a how to design a system

that

• implicitly influences the developer to favor architectures

that facilitate parallel execution

• hides the complexity and the synchronization overhead

of multi-threaded execution

• is able to automatically parallelize and optimize parts of

the provided algorithm

• allows to make use of hardware like GPUs without

requiring a certain system configuration

• can distribute code among heterogeneous physical ma-

chines and clusters

• still allows the developer to formally override all these

mechanisms to provide specifically optimized implemen-

tations

In the following we explain the distinct concepts we have

implemented to meet these requirements. The enumeration is

in didactic order and not reflecting the utility or priority of

concepts.

A. Component-based graphs with full data dependency reso-
lution

The component paradigm has several natural benefits for the

purpose of parallelization. The fact, that the developer provides

a component- (or filter-)graph that describes the algorithm

affords extracting static information about run-time behavior.

The nodes in our graph are placeholders for what we call

modules. We will explain this in detail in the following section.

We require that all data dependencies are made explicit in

the graph. Either by ”wiring” a consumer to all associated

data providers in the graph or by referencing constant default

values, see figure 1 for an example graph. A module is allowed

to opt out this requirement by declaring that it maintains

internal state. This affects the scheduler to treat these modules

differently as for instance the order of execution is important.

From a performance perspective the biggest drawback is that

the framework cannot automatically replicate these modules

to use them within a single instruction multiple data (SIMD)

configuration. Examples for modules that maintain internal

state would be a module providing camera images (the reading

of the sensor provides the internal state) but also probabilistic

modules where the seed for the random number generation is

not made explicit.

To facilitate global loops that maintain an internal state,

we allow for cycles in the graph. To initialize cyclic graphs,

ARGOS provides dedicated trigger policies for boot-strapping

and reinitialization.

SourcePort
Layer

Source
Layer

Execution
Layer

Sink
Layer

SinkPort
Layer

Module

Fig. 2. The internal structure of a module using 5 distinct layers.

After all, this representation gives the scheduler a lot of

information that is either hard or incompletely acquirable

through code analysis. The downside is that the approach

depends on how well the developer has divided the algorithm

into smaller pieces, as each component is treated as a black-

box by the scheduler.

B. Strong separation between algorithm and implementation

Binary code that runs fast on a given target hardware

might not be optimal for another one. Especially since one

of the goals is to facilitate cluster processing where not all

machines might have the same hardware configuration. For

example a general purpose GPU (GPGPU) might be available

on one machine and not on the other. Additionally an optimal

algorithm is dependent on the nature and the amount of data

that has to be processed.

Since Argos has the focus to distribute code among several

machines abstraction from actual implementations becomes a

necessity. Therefore, when constructing complex algorithms

the building blocks never directly refer to concrete implemen-

tations but rather algorithms or even classes of algorithms.

Since the graphs resolve all data dependency, each imple-

mentation has to be able to cope with the provided set of

information. This does not mean, that two implementations of

the same algorithms have to provide the same interface but that

both implementations have to comply with the set of required

data as defined by the abstract algorithm declaration.

Due to this, ARGOS can distribute parts of an application

before actually associating any implementations at all.

The combination of signature and actual implementation for

an abstract algorithm is called module. An arbitrary amount

of modules can be registered to an algorithm.

C. Language agnostic implementations

A module is comprised of five different layers, see figure 2.

The SourcePort and SinkPort layers are doing the actual data

synchronization that will be explained in the following sub-

section. The Source and Sink layers subsume the information

from the respective ports and communicate with the so called

execution layer.

The execution layer contains the actual implementation and

is the only part that has to be provided by the developer.

The source code in algorithm 1 lists the complete execution

100 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

Fig. 1. An example graph visualized in the web based user interface. The components in the graph are cascadable. The ”Hand Tracker” component in the
middle of the graph for example comprises several sub-components which allows for internal parallelism.

layer implementation in C++ for a simple module that outputs

the width and height of an image. Since the data input and

output of an actual implementation is not required to be exactly

identical with its associated abstract algorithm, the developer

declares this in the implementation. ARGOS then creates all

other module layers from this definition.

To make the syntax as convenient and unobtrusive as

possible, the input and output buffers can be mapped to shadow

variables that are managed by ARGOS.

The execution layer is completely language agnostic, be-

sides C++ and Cuda we have provided implementations in

Matlab, Python, and Lua.

D. Asynchronous execution of single-threaded implementa-
tions

Each module is entirely self-dependent besides its specified

data dependencies. This property allows to execute data paral-

lel (which is exactly equivalent to graph-parallel) modules in

parallel. Additionally ARGOS is able to parallelize sequential

branches of the graph in presence of streaming data by using

stage parallel execution: While the second module in the

pipeline processes the output of the first module, the first

module can already start processing the next frame of data.

This becomes possible by thread-safe buffers maintained in

the sink ports. Figure 3 illustrates a simplified sketch of the

asynchronous data handover between two modules. Once a

module gets triggered, i.e. all data that is necessary for the

implemented algorithm to run is available, ARGOS selects

the correct input and output buffers for this iteration (in case

of stage-parallel execution) and invokes the run-method of the

module.

Within the run-method, the module has exclusive writing

rights on its output buffers and guaranteed reading rights on

the input buffers.

The module developer does not need to care about thread

and data synchronization. The code within the run method

can be written without any additional constraints compared to

single threaded applications. Thus, the developer is also free to

provide a multi-thread implementation within a single module.

The single-thread nature of each module is also not violated

when Argos parallelizes SIMD operations as every worker

thread will be represented by its own module.

This has two advantages. First, the scheduled graph is a suffi-

Consumer

Provider 1

Provider 2

Provider n

…

Provider Threads Consumer Thread Thread-safe buffers

Runs in provider thread
Runs in consumer thread
Port connection

Fig. 3. Asynchronous data handover between two modules.

cient representation of a parallel schedule for an algorithm.

Second, this constraint is the prerequisite to maintain and

update internal state.

E. Instrumentation and optimal cuts

As the topology is static and all data dependencies are

explicit, a scheduler can easily measure the computational

and bandwidth footprint of each single module. This allows

to compute optimal cuts through the graph leading to load-

balanced fragments that can eventually be distributed among

physical machines.

As already stated above, the graph is a sufficient represen-

tation of the data parallel schedule which means this load-

balancing can be performed in a nicely structured way.

F. Delayed scheduling

When establishing the graph representing an application

or algorithm, everything is solely defined abstractly. The

process of scheduling associates implementations, dispatches

worker modules for SIMD tasks and distributes among several

physical machines.

When not doing a profile guided scheduling this is per-

formed in less than a second and happens in the moment when

a graph gets started. Hereby only the most performing basic

optimizations are performed:

Every algorithm is scheduled to run in its own thread which

allows for full stage-parallel and graph-parallel execution but

leads to severe overhead problems with larger graphs due to

the high amount of threads.

For every algorithm its default implementation is selected and

no distribution to different physical machines is performed.

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 101

0

50

100

150

200

native openCV ARGOS
sequential

ARGOS stage
parallel

ARGOS Cuda

Small Image (384 x 288)

0
1
2
3
4
5
6

native openCV ARGOS
sequential

ARGOS stage
parallel

ARGOS Cuda

Large Image (2480 x 3508)
fps fps

Fig. 4. Performance comparison for small (left) and large (right) input cardinality. The experiment was performed on a Intel Core2Quad 2.5 GHz with
nVidia 9800 GTX

A profile guided schedule exploits information about com-

putational and bandwidth footprint of each module acquired

through instrumentation. Currently this schedule is in large

part computed through brute force, trying out every possible

combination of implementation and measuring the resulting

common performance.

Algorithm 1 An example module implementation. The mod-

ule receives an input image and outputs its width and height.

class ModuleExample: public Module
{
private:

const argos::Image *_inImg;
argos::Int *_outWidth;
argos::Int *_outHeight;

protected:
ModuleExample() {

createSource("image", &_inImg);
createSink("width", &_outWidth);
createSink("height", &_outHeight);

}

void run() {
*_outWidth = _inImg->getWidth();
*_outHeight = _inImg->getHeight();

}
};

IV. PERFORMANCE EVALUATION

To give an impression of possible speed ups we evaluated a

simple sequential algorithm. We implemented chose closing,

which is simply a number of subsequent image dilate and

erode operations. We chose a total of 4 erode/dilate steps to

provide enough stages to saturate a quad-core. First we did a

”native” implementation using OpenCV [2]. For testing with

ARGOS we implemented the two trivial modules that simply

wrap the OpenCV calls for erode and dilate and have built

the equivalent pipeline: image reader - dilate - dilate - erode

- erode.

Additionally we provided ARGOS with a CUDA implemen-

tation of erode and dilate.

The results of the experiment can be reviewed in fig-

ure 4. Both for small and big input images the overhead

due to ARGOS is below the measurement accuracy. When

ARGOS was allowed to perform stage parallel execution, the

application performed at about 3.3 times the speed of the

single threaded execution resp. at 80% of the theoretically

achievable maximum on a quad core. Forcing the ARGOS

scheduler to dispatch erode/dilate to CUDA implementations,

performance was slightly worse on small input cardinality. On

bigger images, the CUDA implementation could exceed the

CPU implementation. This underscores the utility of a loose

association between algorithm and implementation. The opti-

mal choice of algorithm is depending on the target platform

as well as on the nature of data to process. The possibility to

delay the actual scheduling to the time information about both

is available is a desirable property.

V. SUMMARY AND FUTURE WORK

We have presented ARGOS, a component based software

framework to design, implement, and execute algorithms on

possibly heterogeneous hardware. By abstracting from im-

plementation details, algorithms can quickly be adapted to

accommodate a specific target hardware.
Currently we adapt the software to run on Intel Single-

Chip Cloud (SCC) many-core CPU. Future work includes

improving our scheduling that exploits computational and

bandwidth footprints also optimizing schedules for the SCC.

Of particular interest for SCC schedules is to meet topological

conditions like router distance or thermal considerations.

Acknowledgment. This work has been partially funded by

the project CAPTURE (01IW09001) and the German BMBF

project AVILUSplus (01M08002).

REFERENCES

[1] B. Bond, K. Hammil, L. Litchev, and S. Singh. Fpga circuit synthesis of
accelerator data-parallel programs. In FCCM, 2010.

[2] G. Bradski and A. Kaehler. Learning opencv. O’Reilly, 2008.
[3] C. Nvidia. Programming guide, 2008.
[4] J. Stone, D. Gohara, and G. Shi. Opencl: A parallel programming

standard for heterogeneous computing systems. Computing in Science
and Engineering, 12:66–73, 2010.

[5] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: using data-parallelsim to
program gpus for genral purpose uses. In ASPLOS, 2006.

102 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

Power-aware Dense Linear Algebra Implementations
on Multi-core and Many-core Processors

Pedro Alonso∗, Manuel F. Dolz†, Francisco D. Igual†, Bryan Marker‡,
Rafael Mayo†, Enrique S. Quintana-Ortı́† and Robert A. van de Geijn‡

∗Univ. Politécnica de Valencia, 46.022 - Valencia, Spain
†Univ. Jaume I de Castellón, 12.071 - Castellón, Spain

‡The University of Texas at Austin, TX 78712

Abstract—This paper outlines our research on the application
of power-control techniques to the execution of dense linear alge-
bra operations on modern multi-core processors and hybrid CPU-
GPU architectures. The framework is based on the SuperMatrix
runtime system which exploits the inherent task-parallelism
present in most blocked dense linear algebra algorithms. As part
of the on-going work, we analyze the possibility of extending the
power-aware techniques to novel many-core architectures, such
as the Intel SCC processor.

Index Terms—Dense linear algebra, power consumption, multi-
core processors, DVFS, Intel SCC processor.

I. INTRODUCTION

During the last decades, the combined pressure from the

mobile and embedded market segments has forced hardware

manufacturers to improve the power efficiency of their designs.

Large-scale high-performance computing (HPC) facilities have

greatly benefited from this shift towards greener informa-

tion technologies hardware. However, most current scientific,

engineering and industrial applications running in the HPC

centers are quite oblivious to the possibilities offered by the

underlying hardware, in spite of the significant assets it can

yield [1]. This is no longer possible: power consumption has

a direct impact on the operation and maintenance costs of

these centers, compromising their existence and impairing the

deployment of new facilities [2], [3].

A major part of the computations that are needed to solve

many of these HPC applications can be cast in terms of

a reduced number of well-known linear algebra problems

like, e.g., basic matrix algebra operations, linear systems

of equations, or eigenvalue and singular value problems.

Recent work has demonstrated the advantage of exploiting

task-level parallelism present in these dense linear algebra

(DLA) operations when targeting multi-core processors [4].

In these projects, (blocked) DLA algorithms are decomposed

into a collection of tasks (or kernel operations), forming a

directed acyclic graph (DAG) which captures the parallelism

information implicit in the algorithm. This can then be used

by a scheduler to optimize the degree of parallelism during

the execution of the algorithm.

In this paper we briefly describe how task-level parallelism,

and the potential scheduling information stored in the DAG,

can be effectively used to reduce power consumption of task-

parallel codes for linear algebra operations on multi-core

processors and hybrid CPU-GPU architectures, and how the

same strategy can be effortlessly transferred to a drastically

different architecture: the Intel SCC experimental chip. We

take benefit from the separation of concerns advocated by

the FLAME framework, more specifically by the versatility

of the SuperMatrix runtime system [4], to port our power-

aware techniques to different architectures, namely multi-core

processors, hybrid CPU-GPU architectures, and novel many-

core architectures such as the Intel SCC chip.

While there exist a number of related investigations on the

trade-off between energy and computational performance [5],

and the design of power-aware schedulers [6], none of these

works explicitly tackles the exploitation of task-level paral-

lelism present in DLA codes on multi-core and accelerator-

based and novel many-core architectures.

II. THE SUPERMATRIX RUNTIME AS A FRAMEWORK FOR

POWER-AWARE COMPUTING

The conventional approach to extract performance in the

linear algebra domain focused on exploiting parallelism at the

BLAS level. Therefore, the efficient concurrent execution of

scientific applications written on top of these kernels heavily

depended on the expertise of the BLAS developers, usually

armed with a deep knowledge of the architectural details.

More recently, the FLAME project (as well as several other

projects in this and other more general domains) has shown the

benefits of a different approach, one that extracts parallelism at

a higher level, so that only a sequential tuned implementation

of the BLAS routines is necessary. In this approach, extracting

parallelism is left in the hands of a runtime system, Super-

Matrix in the case of the FLAME project and the associated

libflame library [4] for DLA. Precisely this runtime is the

tool we plan to leverage in order to extract parallelism and

tune power consumption on a fully novel architecture like the

Intel SCC chip.

The SuperMatrix runtime adapts libflame to modern

multi-core architectures. It provides automatic parallelization

of dense and banded linear algebra algorithms. The framework

exploits the benefits of storing and indexing matrices by blocks

and algorithms-by-blocks in general, applying techniques for

dynamic scheduling and out-of-order execution (common in

superscalar processors) and a systematic handling of data

dependencies at execution time.

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 103

Our efforts towards power conservation start with the DAG

of tasks that need to be performed to compute a given

DLA operation. It is based on two key observations. First,

if tasks are all run at full speed (i.e., highest frequency),

some cores will experience idle periods during the execution

of the DAG. Second, present processors are quite good at

adjusting frequency/voltage (DVFS) dynamically and hence

the energy consumed. In previous works, we have investigated

and demonstrated the theoretical possibilities of two different

power reduction policies, the slack reduction algorithm (SRA)

and the race-to-idle approach, which precisely aim at saving

energy by controlling the operation frequency of the cores [7].

The SRA algorithm detects and avoids idle periods in the

operation of cores by reducing the frequency at which certain

tasks are performed (in particular, those which do not increase

the global execution time if slowed down). The race-to-idle

algorithm (RIA), on the other hand, operates at the maximum

frequency, so as to generate longer idle periods which can be

exploited by promoting the cores to a low consuming state.

Our experiments using a simulator determined the superiority

of the RIA for the execution of DLA operations based on level-

3 BLAS kernels. Our aim next is to experimentally validate

these results for realistic DLA problems on general-purpose

multi-core architectures, and simultaneously extend them to

hybrid CPU-GPU architectures, and the SCC processor, by

controlling which resources are idle at each time of the parallel

execution, reducing their frequency as they become idle.

Specifically, the task dependency information generated at

runtime and stored in the DAG can be effectively used to

design novel power-saving strategies. For example, given a

list of ready tasks, inactive threads can be blocked until new

ready tasks are generated. In the meanwhile, the frequency of

the corresponding cores is adjusted accordingly to the chosen

power-aware heuristic. These idle times can be controlled

via busy-wait or, better from the energy savings viewpoint,

estimating the execution time of each task. Factors like cache

affinity, reuse distance, or number of pending tasks to be

released upon the completion of a given one, can then be ex-

ploited in the design of new power-aware scheduling policies.

III. ACCOMMODATING POWER-AWARE TECHNIQUES INTO

SUPERMATRIX

Reducing the frequency/voltage operation in CPU-bounded

DLA operations (as those in the level-3 BLAS as, e.g., gemm)

entails an increase in the execution time that is directly

translated into higher energy consumption. Despite being also

CPU-bounded kernels, the behavior of DLA operations like

the LU factorization with partial pivoting can be potentially

different. Specifically, the existence of task dependencies in

algorithms-by-blocks when task-parallelism is exposed yields

idle periods during the computation (depending on a large

variety of factors like, e.g., the problem dimension, efficiency

of the computational kernels, number of cores, scheduling

algorithm, etc.). Modern operating systems offer mechanisms

(governors in the Linux kernel) to set idle threads into

power-hungry/power-save modes by increasing/reducing their

operation frequency and voltage scaling. While idle periods in

30

40

50

60

70

80

90

100

110

0 5 10 15 20 25 30

P
o
w

er
(W

at
ts

)

Time (s)

Power for different thread activities

MKL dgemm at 2.0 GHz
Polling at 2.0 GHz

Polling at 1600 MHz
Blocking at 1600 MHz

Fig. 1. Power consumption of different actions performed by threads.

DLA implementations can be exploited by selecting a given

governor for the entire application, our aim is to integrate

this mechanism into the runtime level. This approach allows

the application of more sophisticated techniques, specifically

tailored for each DLA operation and system configuration. In

addition, the designed techniques can be seamlessly migrated

to other architectures where the runtime is already available,

in our case, hybrid CPU-GPU architectures and the SCC chip,

to name only two.

In this paper, we propose two different complementary

approaches to integrate power-aware policies into the Su-

perMatrix runtime. The first energy-saving technique scales

the frequency operation of the cores when the corresponding

threads are idle. Proceeding in this manner, when a thread

finds no pending tasks in the list of ready jobs, the runtime

immediately scales the operation frequency of the associated

core to the lowest possible (system call cpufreq). On the

other hand, as soon as the poll for new ready task is successful,

the frequency is raised back to the highest, in preparation

for the execution of the corresponding job. The main benefit

of this operation mode is a reduction in the polling rate,

which is beneficial from the point of view of energy saving.

To illustrate the impact of the frequency reduction in the

polling phase, Figure 1 illustrates the difference in energy

consumption between a thread that performs polling at 2.0

GHz and one that does the same at 1600 MHz on a dual socket

Quad-core Intel E5504 processor (when all remaining cores

are idle); in this case, energy consumption is decreased from

around 75 Watts to less than 70 Watts. Note also the power

consumption of a thread performing polling at the highest

frequency is only slightly smaller than that of one performing

useful work like, e.g. a matrix-matrix product (MKL dgemm).

These results also reveal an interesting insight that conforms

the basis of our second technique. Observe that a thread

performing the busy-wait corresponding to polling, even at

1600 MHz, still employs a considerable amount of energy.

However, when the same thread is blocked, the consumption

is decreased significantly, to 40–50 Watts.

Taking into account this observation, our second power

saving technique replaces the polling strategy for new ready

tasks by a blocking policy. In our implementation we employ

104 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

0

20

40

60

80

100

2
0
4
8

3
0
7
2

4
0
9
6

5
1
2
0

6
1
4
4

7
1
6
8

8
1
9
2

9
2
1
6

1
0
2
4
0

1
1
2
6
4

1
2
2
8
8

%
o
f

to
ta

l

Matrix size (n)

#Threads running concurrently

1
2
3
4
5
6
7
8

Fig. 2. Thread activity during the execution of the LU factorization with
partial pivoting.

POSIX semaphores to control the active threads. Now, when a

thread finds no ready tasks in the corresponding list, it blocks

itself instead of keep on polling for new jobs. Also, upon

the completion of the execution of a task, the corresponding

thread updates the dependencies of tasks in the pending list. In

case that this requires moving k tasks from the pending list to

the ready list, using our strategy, this thread will also enforce

that (at least) there exist k active threads, awakening blocked

threads in case it is necessary. The basic effect of this mecha-

nism is that there is basically one active thread per task in the

ready list and, key to power conservation, that no continuous

polling is being done on an empty list, with the corresponding

theoretical energy savings. (Whether this technique yields an

actual gain ultimately depends on the existence and duration

of idle periods during the parallel execution of the algorithm

and the overhead of blocking/activating a thread.)

IV. EXPERIMENTAL RESULTS

All experiments reported next were obtained using double-

precision arithmetic on a dual socket Quad-core Intel E5504

processor (2.0 GHz) with 32 Gbytes of DDR3 RAM. The

system runs a Linux Ubuntu 10.04 distribution. We use the

Intel icc compiler (version 11.1), and highly tuned imple-

mentations of BLAS and LAPACK provided by MKL 10.2.4.

A modified version of SuperMatrix runtime in libflame ver-

sion 5.0–r5587 was designed to leverage the two power-saving

techniques described in the previous section. We evaluate exe-

cution times/power measurements of routine FLASH_LU_piv
(blocked right-looking variant of the LU factorization with

partial pivoting) from this library, linked to the original and

power-aware implementations of the runtime. Our evaluation

includes a variety of (square) matrix dimensions, ranging from

2048 to 12288, and the block size b = 512.
Power was measured using an internal DC powermeter. This

is an ASIC operating with a sampling frequency of 25 Hz,

directly attached to the lines connecting the power supply unit

and the motherboard (chipset plus processors). All tests were

repeated 30 times and average values are reported.
Our first experiment evaluates the existence and length of

idle periods during the computation of the LU factorization

0

10

20

30

40

50

60

2
0
4
8

3
0
7
2

4
0
9
6

5
1
2
0

6
1
4
4

7
1
6
8

8
1
9
2

9
2
1
6

1
0
2
4
0

1
1
2
6
4

1
2
2
8
8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
im

e
(s

)

C
o
n
su

m
p
ti

o
n

(W
h
)

Matrix size (n)

Time - polling
Time - blocking
Energy - polling

Energy - blocking

0.7

0.8

0.9

1

1.1

1.2

2
0
4
8

3
0
7
2

4
0
9
6

5
1
2
0

6
1
4
4

7
1
6
8

8
1
9
2

9
2
1
6

1
0
2
4
0

1
1
2
6
4

1
2
2
8
8

0.7

0.8

0.9

1

1.1

1.2

%
Im

p
ac

t
o
n

ti
m

e

%
Im

p
ac

t
o
n

co
n
su

m
p
ti

o
n

Matrix size (n)

Time - ratio blocking vs polling
Energy - ratio blocking vs polling

Fig. 3. Evaluation of the impact on time and energy of the power-saving
strategies.

with partial pivoting using 8 threads on the Intel proces-

sor, with parallelism extracted by the SuperMatrix runtime.

Figure 2 reports the results from this evaluation. When the

problem size is (n=)2048, during 54% of the time there is a

single active thread and only 6% of the time all the available

threads are effectively performing work (that is, executing

tasks). On the other hand, when the problem size is much

larger, e.g. n=10240, about 18% of the time there is one active

and most of the remaining period all 8 threads are running. As

a conclusion, there actually exists the opportunity of saving

energy by carefully controlling the level of activity of idle

threads as described in the previous section.

This observation is not effective unless our energy-aware

approach actually yields energy gains. In our second exper-

iment, we compare the original SuperMatrix runtime with a

modified variant that employs semaphores to block idle threads

(following the second technique described in the previous

section). We leave the manipulation of core frequencies in the

hands of the OS by setting the governor to ondemand, with

the default policies to raise/lower frequency (namely, when the

CPU load exceeds/falls below 95%, its frequency is set to the

highest/lowest possible; the OS samples CPU activity with a

frequency of 10 ms.). In this mode, a polling thread is active

and, thus, the corresponding core/CPU remains at 2.0 GHz;

a thread blocked in a semaphore, instead, is detected by the

OS which lowers the operation frequency of the associated

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 105

CPU to the minimum available frequency (in this case, 1600

MHz). We will refer to these two versions of SuperMatrix as

“polling” and “blocking”.

Figure 3 illustrates the effect of the power-saving strategy

from two perspectives: execution time and energy consump-

tion. The impact on the execution time is small, with a

maximum increase of 2% at most for some problem sizes

while, for others, there is no appreciable difference between

the two strategies or the blocking strategy is even more

efficient. On the other hand, the effect on power efficiency

is much more relevant. For the smallest problem sizes, the

number of tasks is relatively low compared with the number

of threads, which results in idle periods during the parallel

execution; this translates into significant energy savings. These

inactive periods are reduced as the problem dimension grows,

and the power savings tend to stabilize around 6%.

Preliminary results for well-known DLA operations on

multi-core and hybrid CPU-GPU architectures have demon-

strated nonnegligible energy savings using naive scheduling

policies. On multi-core processors, alternative combinations of

waiting policies for idle threads (busy-wait or blocking) and

frequency governors have been explored. On the SCC, similar

qualitative results are expected. In addition, the power control

capabilities of this processor open new challenges for novel

scheduling policies and fine-grained power saving techniques.

Our aim is to propose techniques general enough to cover the

full functionality of the libflame library, attaining power

savings with no impact on the programmability of the solution.

V. RETARGETING THE FRAMEWORK TO THE SCC CHIP

We have recently demonstrated how the techniques used in

SuperMatrix (and thus, the whole runtime) can be effortlessly

ported to a radically different architecture: the Intel SCC

processor. The separation of concerns proposed by FLAME

enables the application of both the methodology and the

runtime implementation to this many-core chip, abstracting the

programmer from the underlying architecture, and thus reusing

the same codes independently from the target architecture. Two

different approaches were adopted to port this tool to the SCC:

• View the SCC chip as a purely distributed memory archi-

tecture: we have developed an alternative implementation

of the runtime targeting distributed-memory clusters, and

successfully migrated it to the SCC processor using the

RCCE communication library [8].

• View the SCC chip as a shared memory architecture:

the FLAME team has developed a port of the Su-

perMatrix runtime targeting the many-core processor.

In this approach, all matrix data are allocated using

RCCE_shmalloc with uncacheable hijacked shared

memory on SCC. The DAG is generated and tasks are

scheduled to the different cores using the SuperMatrix

scheduling algorithms [9].

The interesting point is that, in both cases, all the research

performed for multi-core and hybrid CPU-GPU architectures

was directly applicable to the SCC processor, without major

conceptual changes. The capabilities of the SCC processor, in

terms of power consumption control, make it the ideal testbed

in which the combination of the runtime-based implementa-

tions of libflame and DVFS can be exploited to gain new

insights to economize power on present multi-core and future

many-core architectures.

VI. CONCLUSIONS

While CPU-bounded computations like, e.g., the matrix-

matrix product should be run at the highest frequency so as

to reduce execution time and, therefore, energy consumption,

this paper addresses this issue for complex dense linear algebra

operations, where idle periods appear during the execution of

the corresponding algorithm due to data dependencies. In par-

ticular, we address the LU factorization with partial pivoting,

and a parallel data-flow runtime-assisted (SuperMatrix) from

a production library like libflame, to analyze the trade-off

between performance and energy on a multi-core platform.

Our results show that, for large problem sizes, it is possible to

leverage these inactive periods, reducing energy consumption

around 6% with a negligible impact on the execution time.

We consider the Intel SCC chip as an ideal framework

for consolidating and extending the power-aware scheduling

policies and programming techniques already developed and

under investigation on multi-core and hybrid accelerated ar-

chitectures. The port of the SuperMatrix framework to the

SCC offers a rich variety benchmark of dense linear algebra

implementations. We expect to demonstrate significant energy

benefits in a transparent manner for the library developer.

ACKNOWLEDGMENTS

The authors from the Universidad Jaume I were supported

by project CICYT TIN2008-06570-C04-01 and FEDER.

REFERENCES

[1] Susanne Albers. Energy-efficient algorithms. Commun. ACM, 53:86–96,
May 2010.

[2] Wu-chun Feng, Xizhou Feng, and Rong Ce. Green supercomputing comes
of age. IT Professional, 10(1):17 –23, jan.-feb. 2008.

[3] Ralf Gruber and Vincent Keller. One Joule per GFlop for BLAS2 Now!
In Simos Theodore E., Psihoyios George, and Tsitouras Ch, editors, AIP
Conf. Proceedings, volume 1281, pages 1321–1324. American Institute
of Physics, 2010.

[4] Field G. Van Zee. libflame: The Complete Reference.
www.lulu.com, 2009.

[5] Vincent W. Freeh, David K. Lowenthal, Feng Pan, Nandini Kappiah, Rob
Springer, Barry L. Rountree, and Mark E. Femal. Analyzing the energy-
time trade-off in high-performance computing applications. IEEE Trans.
Parallel Distrib. Syst., 18:835–848, June 2007.

[6] D. King, I. Ahmad, and H.F. Sheikh. Stretch and compress based
re-scheduling techniques for minimizing the execution times of DAGs
on multi-core processors under energy constraints. In International
Conference on Green Computing, pages 49–60. IEEE, 2010.

[7] P. Alonso, M.F. Dolz, R. Mayo, and E.S. Quintana-Ort. Improving power
efficiency of dense linear algebra algorithms on multi-core processors via
slack control. In Workshop on Optimization Issues in Energy Efficient
Distributed Systems (OPTIM), part of the International Conference on
High Performance Computing & Simulation (HPCS), 2011, Istanbul,
Turkey, page To appear, 2011.

[8] Francisco Igual and Gregorio Quintana-Ortı́. Solving linear algebra
problems on distributed-memory computers using serial codes. Technical
Report DICC 2010-07-01, Depto. de Ingenierı́a y Ciencia de Computa-
dores. University Jaume I, July 2010.

[9] FLAME. http://z.cs.utexas.edu/wiki/flame.wiki/.

106 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

Investigation of Main Memory Bandwidth
on Intel Single-Chip Cloud Computer

Nicolas Melot, Kenan Avdic and Christoph Kessler
Linköpings Universitet

Dept. of Computer and Inf. Science
58183 Linköping

Sweden

Jörg Keller
FernUniversität in Hagen

Fac. of Math. and Computer Science
58084 Hagen

Germany

Abstract—The Single-Chip Cloud Computer (SCC) is an exper-
imental processor created by Intel Labs. It comprises 48 x86 cores
linked by an on-chip high performance network, as well as four
DDR3 memory controllers to access an off-chip main memory of
up to 64GiB. This work evaluates the performance of the SCC
when accessing the off-chip memory. The focus of this study is
not on taxing the bare hardware. Instead, we are interested in
the performance of applications that run on the Linux operating
system and use the SCC as it is provided. We see that the
per-core read memory bandwidth is largely independent of the
number of cores accessing the memory simultaneously, but that
the write memory access performance drops when more cores
write simultaneously to the memory. In addition, the global and
per-core memory bandwidth, both writing and reading, depends
strongly on the memory access pattern.

I. INTRODUCTION

The Single-Chip Cloud Computer (SCC) experimental pro-
cessor [1] is a 48-core “concept-vehicle” created by Intel
Labs as a platform for many-core software research. Its 48
cores communicate and access main memory through a 2D
mesh on-chip network attached to four memory controllers
(see Figure 1).

Algorithm implementations usually make a more or less
heavy use of main memory to load data and to store inter-
mediate or final results. Accesses to main memory represent
a bottleneck in some algorithms’ performance [2], despite the
use of caches to reduce the penalty due to limited bandwidth
to main memory. Caches are high-speed memories, close to
processing units but are rather small and their effect is less
visible when a program manipulates a larger amount of data.
This leads to the design of other optimizations such as on-chip
pipelining for multicore processors [2].

This work investigates the actual memory access bandwidth
limits of SCC from the perspective of applications that run
on the Linux operating system and use the SCC as it is
provided to them. As thus, the focus is not what the bare
hardware is capable of, but what the system, i.e. the ensemble
of hardware, operating system and programming system (com-
piler, communication library, etc) achieves. Our approach is
to use microbenchmarking to create different sets of patterns
to access the memory controllers. Our experience indicates
that the memory controllers can support all cores reading data
from their private memory, but that the cores experience a

significant performance drop when writing to main memory.
For both read and write accesses, the available bandwidth is
strongly dependent on the memory access pattern.

Section II introduces the SCC, then Section III describes
the method used for stressing the main memory interface and
discusses the results obtained. Finally Section IV concludes.

II. THE SINGLE CHIP CLOUD COMPUTER

The SCC provides 48 independent x86 cores, organized in
24 tiles. Figure 1 provides a global schematic view of the
chip. Tiles are linked together through a 6× 4 mesh on-chip
network. Each tile embeds two cores with their cache and a
message passing buffer (MPB) of 16KiB (8KiB for each core);
the MPB supports direct core-to-core communication.

The cores are IA-32 x86 (P54C) cores which are provided
with individual L1 and L2 caches of size 32KiB and 256KiB,
respectively, but no SIMD instructions. Each link of the mesh
network is 16 bytes wide and exhibits a 4 cycles crossing
latency, including the routing activity.

The overall system admits a maximum of 64GiB of main
memory accessible through 4 DDR3 memory controllers
evenly distributed around the mesh. Each core is attributed
a private domain in this main memory whose size depends on
the total memory available (682 MiB in the system used here).
Six tiles (12 cores) share one of the four memory controllers
to access their private memory. Furthermore, a part of the
main memory is shared between all cores; its size can vary
up to several hundred megabytes. Note that private memory is
cached on cores’ L2 cache but caching for shared memory is
disabled by default in Intel’s framework RCCE. When caching
is activated, the SCC offers no coherency among cores’ caches
to the programmer. This coherency must be implemented
through software methods, by flushing caches for instance.

The SCC can be programmed in two ways: a baremetal ver-
sion for OS development, and using Linux. In the latter setting,
the cores run an individual Linux kernel on top of which any
Linux program can be loaded. Also, Intel provides the RCCE
library which contains MPI-like routines to synchronize cores
and allow them to communicate data to each other. RCCE also
allows the management of voltage and frequency scaling.

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 107

0
0

10
1

2
3

4
5

6
7

SCC die

D
IM

M

R

tiletile

R

tile

R

tile

R

tile

R

tile

RMC MC

D
IM

M

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

tile

RMC MC

D
IM

M

D
IM

M

tile

R

tile

R

tile

R

tile

R

tile

R

tile

R

Figure 1. A schematic view of the SCC die. Each box labeled DIMM
represents 2 DIMMs.

III. EXPERIMENTAL EVALUATION

The goal of our experiments consists in the measurement of
the bandwidth available to an application that runs on top of
the Linux operating system in standard operating conditions
(cores at 533 MHz, on-chip network at 800 MHz, memory
controllers at 800 MHz). Furthermore, we are interested in
how this bandwidth varies with the number of cores per-
forming memory operations and the nature of the operations
themselves, read or write. This is achieved by consecutively
reading respectively writing the elements of a large array of
integers, aligned by 32 bytes which is the size of a cache
line. Thus, consecutive access to all integers (1-int-stride, 4-
byte-stride) yields perfect spatial locality whereas 8-int-strided
access (4 out of 32 bytes) to the data always results in a cache
miss. Each participating core runs a process that executes a
program as depicted in Fig. 2, where each array is located in
the respective core’s private memory and through which the
cores iterate exactly once.

While the 1-int-strided and 8-int-strided memory accesses
stresses the bandwidth difference due to cache hits and cache
misses, the random access pattern stresses the memory con-
trollers’ throughput using a random access, making helpless its
hardware optimizations that parallelize or cache read or write
accesses, such as using a plurality of open rows in the attached
SDRAMs. To simulate random access, the array is accessed
through a function pi(j) that is bijective in {0, . . . ,SIZE−1},
where j is same index (strided 1 int or 8 ints) used to access
the array in the strided access described above. In practice,
we use pi(j) = (a · j) mod SIZE for a large, odd constant a
where SIZE is a power of two and the size of the array to be
read. The random access pattern also applies the 1-int-strided,
8-int-strided and mixed patterns described above to the index
j.

Finally strided, mixed and random access make all the cores
read or write at the same time, along the different access
patterns they define. All these patterns also combine read
and write operations, one half of processors performing reads,
and the second half performing writes. This is denoted as the
combined access pattern.

In this experiment, a varying number of cores synchronize,
then iterate through the array to read or write as described
above. Since every memory operation leads to a cache miss
in the 8-int-strided access and random access reduces the

/* SIZE is a power of two
* strictly bigger than L2 cache
*/
int array[SIZE];

void memaccess (int stride)
{
int i, j, tmp;

for (j = 0; j < SIZE; j += stride)
tmp = array[j];

}

Figure 2. Pseudo-code of the microbenchmark for reading access. For
writing, the order of the variables in the assignments is exchanged.

memory controllers’ performance, such memory operations
generate traffic and the time necessary to read the targeted
amount of data allows the calculation of the actual bandwidth
that was globally available to all cores. The amount of data
to be read or written by each core is fixed to 200MiB. 3
to 12 cores are used, as up to twelve cores share the same
memory controller. Cores run at 533 MHz and 800 MHz in two
different experiments, while the mesh network and memory
controllers remain both at 800MHz. The global bandwidth and
the bandwidth per core are measured: the global bandwidth
represents the bandwidth a memory controller provides to
all the cores. The bandwidth per core is the bandwidth a
core gets when it shares the global bandwidth with all other
running cores. Figures 3, 4 and 5 show the global and per core
bandwidth measured in our experiments.

Figure 3 indicates that both read and write bandwidth are
linearly growing with the number of cores. Since the SCC
provides no hardware mechanism to manage and share the
memory bandwidth served to cores, this shows that all cores
together still fail to saturate the read memory bandwidth
available. The random access pattern offers a much lower
read throughput around 250MiB/sec with 12 cores running
at both 533 and 800 MHz. The write throughput for random
stride 1 shows the same performance as write stride 1 (up to
105 and 120MHz respectively at 533 and 800MHz) and other
write patterns do not exceed 20MiB/sec nor about 7MiB/sec
for random stride 8 access pattern. This shows that memory
controllers struggle to serve irregular main memory request
patterns. The absolute numbers of read bandwidth per core
in the 1-int-stride experiment are stable around 205 MiB/s
and around 125 MiB/s with the 8-int-stride access pattern
with cores running at 533 MHz and respectively 305 and
235 MiB/sec at 800 MHz, as shown in Fig. 4(a). However,
the bandwidth per core with the write accesses (Fig. 4(b))
drops with the number of cores from 10 MiB/sec with 3 cores
to 9 MiB/sec using 12 cores at 533 MHz and from 11 MiB/sec
to 10 MiB/sec at 800MHz. The P54C’s L1 cache no-allocate-
on-write-miss behavior may explain this performance drop:
as write cache misses do not lead to a cache line allocation,
every consecutive write results in a write request addressed
to the memory controller. In both cases, the low difference

108 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12

B
a

n
d

w
id

th
 i

n
 M

iB
/s

e
c

Number of cores

Global main memory read bandwidth at 533 and 800MHz

 Read stride 1 int (533)
 Read stride 8 int (533)

 Read mixed (533)
 Read random 1 int (533)
 Read random 8 int (533)

 Read stride 1 int (800)
 Read stride 8 int (800)

 Read mixed (800)
 Read random 1 int (800)
 Read random 8 int (800)

(a) Global main memory read bandwidth at 533 and 800 MHz.

20

40

60

80

100

120

2 4 6 8 10 12

B
a

n
d

w
id

th
 i

n
 M

iB
/s

e
c

Number of cores

Global main memory read bandwidth at 533 and 800MHz

 Write stride 1 int (533)
 Write stride 8 int (533)

 Write mixed (533)
 Write random 1 int (533)
 Write random 8 int (533)

 Write stride 1 int (800)
 Write stride 8 int (800)

 Write mixed (800)
 Write random 1 int (800)
 Write random 8 int (800)

(b) Global main memory write bandwidth at 533 and 800 MHz.

Figure 3. Measured global memory read and write bandwidth as a function
of the number of cores involved, at 533 and 800 MHz.

in performance of 1-int-stride and 8-int-stride access patterns
shows that the high performance memory controllers are able
to compensate efficiently the performance losses due to cache
misses. However the mixed access pattern, with one half of the
cores reading memory with a 1-int-stride and the second half
with 8-int-stride, exhibits lower performance, which shows
again the limited capabilities of memory controllers to serve
irregular access patterns.

The bandwidth measured per core for the random access
pattern reveals better performance with faster cores.

IV. CONCLUSION

The memory wall represents an important performance lim-
iting issue still present in multicore processors, and implemen-
tations of parallel algorithms are still heavily penalized when
accessing main memory frequently [2]. This work enlightens
the available memory bandwidth on Intel’s Single Chip Cloud
Computer when several processors perform concurrent read
and write operations. The measurements obtained here and
the difficulty we experience to actually saturate the read
memory bandwidth show that the cores embedded in the
SCC cannot saturate all together the read memory bandwidth
available: for read access patterns behave regularly, the cores
cannot saturate. However, the measurements obtained from
the write access patterns demonstrate a much smaller write
bandwidth available. Also, we can note that the available
bandwidth for both read and write strongly depends on the
memory access pattern, as the low bandwidth on random

0

50

100

150

200

250

300

350

2 4 6 8 10 12

B
a

n
d

w
id

th
 i

n
 M

iB
/s

e
c

Number of cores

Per core main memory read bandwidth at 533 and 800MHz

 Read stride 1 int (533)
 Read stride 8 int (533)

 Read mixed (533)
 Read stride 1 int (800)
 Read stride 8 int (800)

 Read mixed (800)

(a) Read memory bandwidth per core at 533 and 800 MHz.

0

2

4

6

8

10

12

2 4 6 8 10 12

B
a

n
d

w
id

th
 i

n
 M

iB
/s

e
c

Number of cores

Per core main memory write bandwidth at 533 and 800MHz

 Write stride 1 int (533)
 Write stride 8 int (533)

 Write mixed (533)
 Write stride 1 int (800)
 Write stride 8 int (800)

 Write mixed (800)

(b) Write memory bandwidth per core at 533 and 800 MHz.

Figure 4. Measured per-core memory bandwidth as a function of the number
of cores involved, for strided access patterns, at 533 and 800 MHz.

1

2

3

4

5

6

2 4 6 8 10 12

B
a

n
d

w
id

th
 i

n
 M

iB
/s

e
c

Number of cores

Bandwidth per core with random access

 5 int gap read
 13 int gap read
 21 int gap read
 5 int gap write

 13 int gap write
 21 int gap write

 5 int gap combined
 13 int gap combined
 21 int gap combined

(a) Memory bandwidth per core with random access pattern at 533 MHz.

2

4

6

8

10

12

14

16

2 4 6 8 10 12

B
a

n
d

w
id

th
 i

n
 M

iB
/s

e
c

Number of cores

Bandwidth per core with random access

 5 int gap read
 13 int gap read
 21 int gap read
 5 int gap write

 13 int gap write
 21 int gap write

 5 int gap combined
 13 int gap combined
 21 int gap combined

(b) Memory bandwidth per core with random pattern at 800 MHz.

Figure 5. Measured per-core memory access bandwidth as a function of the
number of cores, for random access patterns, at 533 and 800 MHz.

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 109

access patterns indicates. Thus, there is no point in reducing
the degree of parallelism in order to increase the available
bandwidth for tasks requiring a high main memory bandwidth.
The measurements shown in the paper show a behavior
possibly adapted to program restructuring techniques such as
on-chip pipelining and our previous implementation of on-
chip pipelined mergesort [2]. In this implementation, many
tasks mapped to several cores fetch input data in parallel from
main memory, and a unique task running on a unique core
writes the final result back to main memory, therefore limiting
expensive main memory accesses. However, the gap between
the memory bandwidth available and the limited capabilities of
cores to saturate it shows that there is room to add more cores,
run them at higher frequency or add SIMD ISA extensions.
Without such improvements in the cores’ processing speed
and accordingly higher demands on memory bandwidth, our
ongoing research on program restructuring techniques such
as on-chip pipelining is, for SCC, limited to implementation
studies leading to predictions of their theoretical speed-up
potential, rather than demonstrating concrete speed-up on
the current SCC platform. Such techniques could speed up
memory-access intensive computations such as sorting [2],
[3] on SCC-like future many-core architectures that are more
memory bandwidth constrained.

ACKNOWLEDGMENTS

The authors are thankful to Intel for providing the oppor-
tunity to experiment with the “concept-vehicle” many-core
processor “Single-Chip Cloud Computer”. We also thank the
anonymous reviewers for their helpful comments on an earlier
version of this paper.

This research is partly funded by the Swedish Re-
search Council (Vetenskapsrådet), project Integrated Software
Pipelining.

REFERENCES

[1] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla,
M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen, S. Steibl,
S. Borkar, V. De, and R. Van Der Wijngaart, “A 48-Core IA-32 message-
passing processor in 45nm CMOS using on-die message passing and
DVFS for performance and power scaling,” IEEE J. of Solid-State
Circuits, vol. 46, no. 1, pp. 173–183, Jan. 2011.

[2] R. Hultén, J. Keller, and C. Kessler, “Optimized on-chip-pipelined merge-
sort on the Cell/B.E.” in Proceedings of Euro-Par 2010, vol. 6272, 2010,
pp. 187–198.

[3] K. Avdic, N. Melot, J. Keller, and C. Kessler, “Parallel sorting on
Intel Single-Chip Cloud Computer,” in Proc. A4MMC workshop on
applications for multi- and many-core processors at ISCA-2011, 2011.

110 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

Towards Resource-Aware Programming on Intel’s
Single-Chip Cloud Computer Processor

Georgia Kouveli, Frank Hannig, Jan-Hugo Lupp, and Jürgen Teich
Hardware/Software Co-Design,

Department of Computer Science,
University of Erlangen-Nuremberg, Germany.

Abstract—In this paper, we apply a new programming paradigm
called resource-aware programming to the Single-Chip Cloud
Computer. According to this paradigm, an application may change
at certain points of execution its allocation of resources. This
gives application engineers the opportunity to dynamically adapt
an algorithm’s behavior and parallelism to the work load and
state of the underlying resources (e. g., availability, clock frequency,
temperature). Resource-aware programming can provide a self-
organizing behavior to conventional programs for being able to
not only tolerate certain types of faults and cope with feature
variations, but also to provide scalability, higher resource uti-
lization, as well as performance and power gains by managing
voltage/frequency islands and adjusting the amount of allocated
resources to the temporal needs of a running application. We
discuss the details of resource-aware programming as well as three
alternative implementation concepts that we intend to evaluate.
Finally, we present the results of initial experiments, we conducted
using a centralized resource management framework on the Single-
Chip Cloud Computer.

I. INTRODUCTION

As transistor feature sizes keep shrinking, billions of transis-
tors can be implemented in a single chip, which has led to a
shift of processor architecture trends towards massively parallel
processors. Multi-core and many-core architectures are now
mainstream, either in the form of desktop and server processors,
or multiprocessor System-on-Chip (MPSoC) designs used in
embedded devices. By 2020, packing more than 1000 cores in
a single chip will be possible due to technology scaling.

With the availability of these many-core architectures, a
number of challenges arise for the application programmers to
face. Among these challenges is the mapping of algorithms and
programs to the numerous available processors. Current system
support for distribution of resources among the different applica-
tions executing on a chip is expected not to scale well for thou-
sands of processors. Applications will need to become adaptive
to run efficiently without change on a variable set of processors,
depending on their availability during the application’s run-time.
Applications will also face transient and permanent faults, which
will become more evident as the number of cores on a chip
increases. All these requirements call for new programming
paradigms, which will allow us to efficiently exploit available
resources and increase programmer’s productivity.

The concept we envision as an answer to the aforementioned
challenges is a new programming paradigm based on resource-
aware programming. The core idea of resource-aware program-
ming, as the name suggests, is making the application aware of
the status and the availability of the underlying resources and
giving it control over resource allocation and deallocation. In the
resource-aware programming paradigm, a given program is able
to explore the available resources and distribute its computations

to neighboring processors, thus executing code sections with
high degrees of parallelism in parallel on the number of available
processing elements. The program can dynamically claim or
release resources to adjust to changes in its degree of parallelism
or to the status and availability of resources on the chip.

Resource-aware programming can enable us to tackle the
challenges of many-core programming. The self-organizing be-
havior of resource-aware applications can lead to optimal uti-
lization of resources, as their availability varies during run-time.
The performance of individual applications can be boosted by
discovering and allocating additional available resources while
the application is running, in order to adjust to its varying
degrees of parallelism. The overall processor utilization is also
greatly improved by the fact that applications explicitly release
resources they no longer need. Resource-aware programming
can also result in improved power consumption, by managing
voltage/frequency of the processing elements to meet application
computational needs. Moreover, monitoring temperature statis-
tics and adjusting workload accordingly can lead to a decrease
of faults to overheating. Keeping track of resource status can
also enhance the fault tolerance of applications.

We believe the concept of resource-aware programming will
be of high importance in the design of future programming
languages and programming environments for the development
of parallel programs. Providing the programmer with an inter-
face to manage resources explicitly will in the future be of
high importance for algorithms running on many-core platforms,
since it gives algorithm designers the opportunity to dynamically
adapt an algorithm’s behavior and parallelism to the dynamic
features of the platform. Even though “forcing” the programmer
to keep details about the underlying platform in mind when
programming seems counter-intuitive, experience from parallel
programming so far has shown that the best implementations of
parallel algorithms consist of low-level, hand-optimized code.
One can also argue that the concepts of resource-aware program-
ming do not need to be exposed directly to the programmer,
but can be exploited by operating systems and parallelizing
compilers to automatically generate good quality parallel code.

The Single-Chip Cloud Computer (SCC) experimental proces-
sor [1] is a 48-core “concept vehicle” created by Intel Labs as
a platform for many-core software research, and as such it pro-
vides the ideal platform for our experimentation with resource-
aware programming. The large number of available cores and
provided capabilities such as dynamic voltage/frequency scaling
and temperature monitoring provide us with the opportunity to
explore the benefits of resource-aware programming for future
many-core platforms.

In this paper, we present our first thoughts and initial ex-

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 111

perimentation with resource-aware programming on the SCC.
In Section II, we present previous work related to the concept
of resource-aware programming, in Section III we discuss the
application of resource-aware programming to the SCC and the
necessary changes that are required in the supplied programming
models in order to support it and in Section IV we describe
our initial experimentation with the concepts of resource-aware
programming on the SCC. Finally, Section V concludes the
paper with our plans for future work.

II. RELATED WORK

In the CAPSULE project [2], the authors describe a
component-based programming paradigm combined with hard-
ware support for processors with simultaneous multi-threading
in order to handle the parallelism in irregular programs. Here,
an application is dynamically parallelized at run-time. A pure
software version of CAPSULE, demonstrated on an Intel Core
2 Duo processor is presented in [3]. In the TRIPS project [4],
an array of small processors is used for the flexible allocation of
resources dynamically to different types of concurrency, ranging
from running a single thread on a logical processor composed
of many distributed cores to running many threads on separate
physical cores. However, these approaches do not touch the
major problems of algorithmic design. In [5], Henkel and others
proposed a run-time agent-based mapping approach that mini-
mizes thermal hotspots through power distribution for general
multi-core architectures. Power management on a concrete tiled
architecture, namely the SCC, is part of the current research by
Cintra and others [6].

Our ideas presented in this paper are strongly related to
the concepts of invasive computing [7], a new paradigm for
resource-aware computing that integrates research on MPSoC
architectures, compilers, simulation, applications, and run-time
support. A first framework for resource-aware programming and
the simulation of MPSoC architectures through extensions of
the programming language X10 [8] has been recently proposed
in [9]. X10 is also currently ported to the SCC by Hosking and
others [10].

III. RESOURCE-AWARE PROGRAMMING ON INTEL SCC

The SCC provides an ideal platform for experimentation
with the concepts of resource-aware programming. It consists
of 48 cores, each one of which is fully capable of running
a full operating system, and provides hardware support for
message passing, as well as shared memory. It is, therefore,
very well suited to many-core software research. A resource-
aware program running on the SCC has the possibility to monitor
dynamic state information such as processor utilization, temper-
ature (via the temperature sensors located on each tile), voltage
and frequency, therefore adapting its resource usage on these
statistics, and use frequency/voltage scaling, to optimize power
consumption according to the variable needs of the application.

A. Resource-aware program phases

The execution of any resource-aware program can be broken
down to phases that can be roughly categorized in three types:
resource allocation, execution, and resource deallocation (see
Fig. 1). Usually, a program allocates resources, executes its code
using those resources and at the end of execution deallocates
them. This is represented by solid lines. In a resource-aware

Allocate
resources Execute Deallocate

resources

Fig. 1: Phases of execution of a resource-aware program.

program, however, there can exist more than one of each type of
phase. For example, a program that needs a lot of computational
resources can allocate more resources as these become available,
or allocate more resources only for one particular part of its
code with high degree of parallelism and then deallocate them
before continuing the execution of less demanding code. These
cases where the execution of a resource-aware program might
differ from a simple parallel program are represented by dashed
lines in Fig. 1. An example of what a simple resource-aware
application might look like is given in pseudocode in Listing 1.

Listing 1: Example pseudocode for a simple resource-aware
application
/ Reque s t r e s o u r c e s /
c l a i m = r e q u e s t _ r e s o u r c e s (t ype , q u a n t i t y , c o n s t r a i n t s) ;

i f (s u c c e s s f u l (c l a i m)) {
/ E xecu te on a l l o c a t e d r e s o u r c e s /
e x e c u t e (c laim , code , d a t a) ;

/ R e l e a s e r e s o u r c e s /
r e l e a s e (c l a i m) ;

} e l s e {
e x e c u t e _ s e q u e n t i a l l y () ;

}

1) Resource allocation: In this phase, a program claims
the resources it needs for the following execution phase, and
depending on their status and availability, allocates them. The
simplest form of request a program can make is for a given
number of cores for exclusive use. For this type of request,
the only information that needs to be maintained by our re-
source management system is one bit of information for each
core, denoting whether it is idle or occupied. Building on
this, more complicated requests can be formed, for example
for non-exclusive use of a number of cores, given that their
workload remains under a given percentage. Other possibilities
for constraints the program might impose on the requested
resources can be related to the temperature of the cores, or
to their frequency, e.g., for the execution of computationally
intensive parts of the program, it might request cores of the
highest available frequency.

2) Execution phase: After allocating the necessary resources,
the program needs to execute parts of its code utilizing those
resources. This phase is the most straightforward one, however,
it poses some significant implementation challenges. The pub-
licly available programming models for the SCC provide no
dynamic process management, which is essential to the concept
of resource-aware programming. The RCCE library does not
allow the dynamic creation of processes to execute on other
cores. As a matter of fact, it does not even allow the execution
of two RCCE processes on the same core, since each one of
them uses the entirety of the on-chip shared Message Passing
Buffer (MPB) memory that corresponds to each core [11]. In
order to apply the concept of resource-aware programming to

112 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

MC

MC

MC

MC

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

App1

App1

App1

App1

App2

App2

App2

App2

App2

App2

App2

App2

App2

App2

App2

App2

RM App3

request 4 cores

Fig. 2: Centralized resource management: Resource alloca-
tion/deallocation requests from applications are forwarded to and
serviced by the Resource Manager (RM).

the SCC, there needs to be, therefore, a major design change in
the RCCE library.

3) Resource deallocation: In this phase, the program deallo-
cates resources it does not need anymore, due to a decrease in
its degree of parallelism. This phase, although straightforward,
is very important, as releasing resources that do not need to be
allocated to the program can lead to significant improvements
in resource utilization, in particular when applications are com-
peting for exclusive use of resources.

Our ultimate goal is to provide a library implementation that
supports these basic constructs of resource-aware programming
for programs executing on the SCC.

B. Centralized vs. distributed resource management

In order to enable resource-aware programming on the SCC,
a resource management framework has to be implemented
that provides the basic functionality described in the previous
subsection. We intend to experiment with two main different
approaches for resource management, one centralized and one
distributed approach, as well as combinations of these two.

1) Centralized approach: In the case of centralized re-
source management, there is one “master” process that manages
resource availability and status information and services all
application requests for resource allocation/deallocation (see
Fig. 2). Whenever an application needs to allocate or deallocate
resources, it forwards a request to the “master” process (central
resource manager), which receives it and composes a so-called
claim of assigned resources as a response, depending on the
status and availability of resources on the chip. This is the
approach towards which our initial experiments are directed,
since a centralized approach is simpler and, therefore, easier
to implement. Moreover, since the “master” process can access
all information on resource status and availability, it can make
better choices for the allocation of resources than if it only
had access to information regarding its neighborhood. However,
a centralized approach is expected to suffer from bottlenecks
and is more prone to faults. For example, if all applications
running on the SCC keep making frequent requests to the central
resource manager, performance will be seriously degraded. Still,
for research purposes, it is interesting to implement a centralized

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

MC

MC

MC

MC

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

P54C

App1

App1

App1

App1

App1

App2

App2

App2

App2

App2

App2

App2

App2

App2

App2

App2

App2

App2

App2

App2

App2

App2

App2

App3

App3

App3

App3

Fig. 3: Distributed resource management: Resource alloca-
tion/deallocation requests from applications are immediately
directed to the requested cores.

approach, which can later serve as a reference implementation
to compare our more advanced implementations with.

2) Distributed approach: In contrast to the centralized ap-
proach, there exists no central resource manager to service re-
quests for resource allocation/deallocation, instead these requests
are directly forwarded to the requested resources. Various alter-
natives can be implemented here. For example, an application
executing on one core might claim its neighboring cores in a
given direction (e.g., “north”), or it can be allowed to request
usage of particular cores identified by their coordinates in the
processor grid. Fig. 3 shows how an application (App1) could
request the allocation of its neighboring cores to it directly.

To make the best out of a distributed approach, information
should also be maintained in a distributed way. Thus, the bottle-
necks that arise in a centralized approach will be eliminated. A
distributed approach also offers better fault tolerance, since in
case one processor fails, the rest of the system can still function,
as opposed to the case of failure of a centralized resource
manager. However, a distributed approach is more complicated
to implement. Information is maintained non-locally and an
application lacks a general view of status and availability of
resources. Therefore, more time will be needed to access nec-
essary information and make decisions on resource allocation,
which will tend to be suboptimal.

3) Hybrid approach: The previous two approaches can also
be combined in a hybrid approach, where there exist more than
one resource manager process, each one managing an “island”
of tiles/cores. One can experiment with varying granularity for
these “islands”. One resource manager per core gives us the
fully distributed approach, whereas regarding all the cores as
one “island” gives us the centralized approach. Thus we can
combine the best characteristics of the two approaches, namely
the simplicity and optimal decisions on resource allocation that
a centralized approach provides, and fault tolerance and absence
of bottlenecks, as in the case of a distributed approach.

IV. INITIAL EXPERIMENTATION

For our initial experiments, we chose to explore the imple-
mentation of a centralized resource manager to enable resource-
aware programming on the SCC. In our first experiments, the
resource management framework consists of a “manager” thread

July 5-6th, 2011
Ettlingen, Germany

3rd Many-core Applications Research Community Symposium 113

and a pool of “worker” threads, one per core, which communi-
cate with each other using the RCCE library, which implements
message passing over the on-chip shared Message Passing Buffer
(MPB) memory. The “manager” distributes pieces of work,
which initially are restricted to single-processor programs, to the
“workers”, by sending them an appropriate message. Information
about the utilization of tiles (idle/occupied) is also stored in the
on-chip shared MPB memory, provided by the gory version of
the RCCE API. Once a “worker” has finished execution of the
work assigned to it, it updates its flag to denote that it is no
longer occupied. In this sense, utilization information is stored
and updated in a distributed way, despite the presence of a
central resource manager that allocates tasks to cores.

Our initial experiments helped us to realize the restrictions and
weaknesses of the currently available programming models for
the SCC and determine our next steps. One of the most important
restrictions of the RCCE library was that there was no way to
start the execution of a parallel RCCE application from within
our resource management framework, since the framework is
also using the RCCE library, which makes the assumption that
the whole MPB memory is available to the application and
overwrites all previously stored data [11], including the status
of the resources and the buffers we use to communicate with
the “workers”. For this reason, we modified the original RCCE
library to reserve a part of the on-chip shared Message Passing
Buffer memory for our resource management purposes and use
the rest for normal message passing between applications. We
provide special functions to access the dedicated parts of the
MPB memory, as well as to initialize these parts of the memory
(see Listing 2).

Listing 2: Interface for resource management functions
/� I n i t i a l i z e r e s o u r c e management framework � /
i n t RCCE _ re s ource_awa re_ in i t (i n t �a rgc , char��� a rgv) ;

/� F u n c t i o n s t o modi f y bus y f l a g � /
i n t RCCE_ read_busy_ f lag (i n t �va lue , i n t rank) ;
i n t RCCE _ s e t_busy_ f lag (i n t rank) ;
i n t RCCE _c le a r_bus y_ f lag (i n t rank) ;

/� F u n c t i o n t o w a i t u n t i l work i s a s s i g n e d t o
t h e worker � /

vo id RCCE_wait_for_work () ;

/� F u n c t i o n s t o a c c e s s t h e b u f f e r c o n t a i n i n g t h e command
t o be e x e c u t e d by t h e worker � /

char �RCCE_ read_cmd_buffer (char � s t r , i n t rank) ;
i n t RCCE_w r i te_cmd_buffe r (char � s t r , i n t rank) ;

Another significant change is the integration of the shared
memory initialization process in the initialization of the RCCE
library. This was previously done separately, by executing a
completely different application to initialize the MPB memory to
a known state, before the execution of the RCCE application. We
modified this to facilitate the execution of RCCE applications
from the “workers”. For this purpose, we implemented a tour-
nament algorithm to initialize shared memory and synchronize,
based on [12]. Thus, the application code does not need to be
changed, but the initialization is performed within the library.

Another important restriction is that we cannot dynamically
offload simply one piece of code, e.g., one function, for ex-
ecution on another processor, since every core is running a
completely different instance of the operating system and the
executed image does not reside in the shared memory. This must
also be taken into consideration when defining the tasks that a
resource-aware application can offload to newly allocated cores.

V. CONCLUSIONS

In this paper, we discussed the benefits of applying resource-
aware programming to many-core architectures, including in-
creased resource utilization, performance, power consumption
and fault tolerance. We also described the application of
resource-aware programming on the SCC, our current work
in progress, which will help us fully exploit the potential of
this architecture. We presented the experience gathered from
our early experimentation with resource management on the
SCC, regarding the restrictions and limitations of the currently
available programming model, and our first steps towards lifting
those limitations and enabling resource-aware programming.

VI. ACKNOWLEDGMENTS

The authors would like to thank the Intel Corporation for
providing access to the Single-Chip Cloud Computer and the
excellent assistance. The conceptual design of the paradigm
of resource-aware programming was partly supported by the
German Research Foundation (DFG) as part of the Transregional
Collaborative Research Centre “Invasive Computing" (SFB/TR
89).

REFERENCES

[1] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenk-
ins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob,
S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow, M. Riepen,
G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss, T. Lund-Larsen,
S. Steibl, S. Borkar, V. De, R. Van Der Wijngaart, and T. Mattson, “A
48-core ia-32 message-passing processor with dvfs in 45nm cmos,” in
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010
IEEE International, feb. 2010, pp. 108 –109.

[2] P. Palatin, Y. Lhuillier, and O. Temam, “CAPSULE: Hardware-Assisted
Parallel Execution of Component-Based Programs,” in Proceedings of the
39th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Orlando, Florida, USA, 2006, pp. 247–258.

[3] O. Certner, Z. Li, P. Palatin, O. Temam, F. Arzel, and N. Drach, “A
Practical Approach for Reconciling High and Predictable Performance in
Non-Regular Parallel Programs,” in Proceedings of Design, Automation
and Test in Europe (DATE), Munich, Germany, 2008, pp. 740–745.

[4] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan, D. Gulati,
D. Burger, and S. W. Keckler, “Composable Lightweight Processors,” in
Proceedings of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Chicago, Illinois, USA, 2007, pp. 381–394.

[5] T. Ebi, M. A. A. Faruque, and J. Henkel, “TAPE: Thermal-Aware Agent-
Based Power Economy for Multi/Many-Core Architectures,” in Proceed-
ings of the 27th IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), San Jose, California, USA, 2009, pp. 302–309.

[6] N. Ioannou and M. Cintra, “Application-Driven Power Management on the
Single-Chip Cloud Computer,” Nov. 2010, Talk, 1st MARC Symposium,
Intel Braunschweig, Germany.

[7] J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel, W. Schröder-
Preikschat, and G. Snelting, “Invasive Computing: An Overview,” in
Multiprocessor System-on-Chip: Hardware Design and Tool Integration,
M. Hübner and J. Becker, Eds. Springer, 2011, pp. 241–268.

[8] G. Bikshandi, J. Castanos, S. Kodali, V. Nandivada, I. Peshansky,
V. Saraswat, S. Sur, P. Varma, and T. Wen, “Efficient, Portable Imple-
mentation of Asynchronous Multi-Place Programs,” in Proceedings of the
14th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP). Raleigh, NC, USA: ACM, 2009, pp. 271–282.

[9] F. Hannig, S. Roloff, G. Snelting, J. Teich, and A. Zwinkau, “Resource-
Aware Programming and Simulation of MPSoC Architectures through
Extension of X10,” in Proceedings of the 14th International Workshop
on Software and Compilers for Embedded Systems (SCOPES). St. Goar,
Germany: ACM Press, Jun. 2011.

[10] K. Chapman, A. Hussein, and A. Hosking, “X10 on the Single-Chip
Cloud Computer,” in Proceedings of the X10 Workshop co-located with
32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). San Jose, CA, USA: ACM Press, Jun. 2011.

[11] R. Van der Wijngaart and T. Mattson and W. Haas, “Light-weight Com-
munications on Intel’s Single-Chip Cloud Computer Processor,” Operating
Systems Review, vol. 45, no. 1, pp. 73–83, 2011.

[12] Hemmendinger, “Initializing memory shared by several processors,” IJPP:
International Journal of Parallel Programming, vol. 18, 1989.

114 3rd Many-core Applications Research Community Symposium July 5-6th, 2011
Ettlingen, Germany

KIT ScIenTIfIc RepoRTS 7598

ISBn 978-3-86644-717-2
ISSn 1869-9669

3rd Many-core Applications Research
Community (MARC) Symposium

Diana Göhringer
Michael Hübner
Jürgen Becker
(Hrsg.)

9 783866 447172

ISBN 978-3-86644-717-2

	marc3_submission_15_2.pdf
	Introduction
	The Intel SCC
	Memory Access over the Mesh Network
	Performance Model for Memory Access
	Differences to other systems

	Communication patterns
	A Design Space for Message Passing
	Levels of Abstraction
	Placement: Pulling vs. Pushing Messages
	Allocation: Managing the Message Memory
	Static Allocation
	Static Allocation by Direction
	Receiver-based Allocation
	Sender-based Round-Robin

	Notification: Discovering new Messages
	Separate Notification Flags
	Single Flag with Locking
	Notification Ring Buffer
	Message Linking

	Acknowledgement: Freeing Memory
	Waiting: Handling full Queues

	Related Work
	Summary and Future Work
	Acknowledgment
	References

