3,400 research outputs found

    Comparison of Several Methods of Chromatographic Baseline Removal with a New Approach Based on Quantile Regression

    Get PDF
    The article is intended to introduce and discuss a new quantile regression method for baseline detrending of chromatographic signals. It is compared with current methods based on polynomial fitting, spline fitting, LOESS, and Whittaker smoother, each with thresholding and reweighting approach. For curve flexibility selection in existing algorithms, a new method based on skewness of the residuals is successfully applied. The computational efficiency of all approaches is also discussed. The newly introduced methods could be preferred to visible better performance and short computational time. The other algorithms behave in comparable way, and polynomial regression can be here preferred due to short computational time

    HiTRACE: High-throughput robust analysis for capillary electrophoresis

    Full text link
    Motivation: Capillary electrophoresis (CE) of nucleic acids is a workhorse technology underlying high-throughput genome analysis and large-scale chemical mapping for nucleic acid structural inference. Despite the wide availability of CE-based instruments, there remain challenges in leveraging their full power for quantitative analysis of RNA and DNA structure, thermodynamics, and kinetics. In particular, the slow rate and poor automation of available analysis tools have bottlenecked a new generation of studies involving hundreds of CE profiles per experiment. Results: We propose a computational method called high-throughput robust analysis for capillary electrophoresis (HiTRACE) to automate the key tasks in large-scale nucleic acid CE analysis, including the profile alignment that has heretofore been a rate-limiting step in the highest throughput experiments. We illustrate the application of HiTRACE on thirteen data sets representing 4 different RNAs, three chemical modification strategies, and up to 480 single mutant variants; the largest data sets each include 87,360 bands. By applying a series of robust dynamic programming algorithms, HiTRACE outperforms prior tools in terms of alignment and fitting quality, as assessed by measures including the correlation between quantified band intensities between replicate data sets. Furthermore, while the smallest of these data sets required 7 to 10 hours of manual intervention using prior approaches, HiTRACE quantitation of even the largest data sets herein was achieved in 3 to 12 minutes. The HiTRACE method therefore resolves a critical barrier to the efficient and accurate analysis of nucleic acid structure in experiments involving tens of thousands of electrophoretic bands.Comment: Revised to include Supplement. Availability: HiTRACE is freely available for download at http://hitrace.stanford.ed

    Automated mass spectrometry-based metabolomics data processing by blind source separation methods

    Get PDF
    Una de les principals limitacions de la metabolòmica és la transformació de dades crues en informació biològica. A més, la metabolòmica basada en espectrometria de masses genera grans quantitats de dades complexes caracteritzades per la co-elució de compostos i artefactes experimentals. L'objectiu d'aquesta tesi és desenvolupar estratègies automatitzades basades en deconvolució cega del senyal per millorar les capacitats dels mètodes existents que tracten les limitacions de les diferents passes del processament de dades en metabolòmica. L'objectiu d'aquesta tesi és també desenvolupar eines capaces d'executar el flux de treball del processament de dades en metabolòmica, que inclou el preprocessament de dades, deconvolució espectral, alineament i identificació. Com a resultat, tres nous mètodes automàtics per deconvolució espectral basats en deconvolució cega del senyal van ser desenvolupats. Aquests mètodes van ser inclosos en dues eines computacionals que permeten convertir automàticament dades crues en informació biològica interpretable i per tant, permeten resoldre hipòtesis biològiques i adquirir nous coneixements biològics.Una de les principals limitacions de la metabolòmica és la transformació de dades crues en informació biològica. A més, la metabolòmica basada en espectrometria de masses genera grans quantitats de dades complexes caracteritzades per la co-elució de compostos i artefactes experimentals. L'objectiu d'aquesta tesi és desenvolupar estratègies automatitzades basades en deconvolució cega del senyal per millorar les capacitats dels mètodes existents que tracten les limitacions de les diferents passes del processament de dades en metabolòmica. L'objectiu d'aquesta tesi és també desenvolupar eines capaces d'executar el flux de treball del processament de dades en metabolòmica, que inclou el preprocessament de dades, deconvolució espectral, alineament i identificació. Com a resultat, tres nous mètodes automàtics per deconvolució espectral basats en deconvolució cega del senyal van ser desenvolupats. Aquests mètodes van ser inclosos en dues eines computacionals que permeten convertir automàticament dades crues en informació biològica interpretable i per tant, permeten resoldre hipòtesis biològiques i adquirir nous coneixements biològics.Una de las principales limitaciones de la metabolómica es la transformación de datos crudos en información biológica. Además, la metabolómica basada en espectrometría de masas genera grandes cantidades de datos complejos caracterizados por la co-elución de compuestos y artefactos experimentales. El objetivo de esta tesis es desarrollar estrategias automatizadas basadas en deconvolución ciega de la señal para mejorar las capacidades de los métodos existentes que tratan las limitaciones de los diferentes pasos del procesamiento de datos en metabolómica. El objetivo de esta tesis es también desarrollar herramientas capaces de ejecutar el flujo de trabajo del procesamiento de datos en metabolómica, que incluye el preprocessamiento de datos, deconvolución espectral, alineamiento e identificación. Como resultado, tres nuevos métodos automáticos para deconvolución espectral basados en deconvolución ciega de la señal fueron desarrollados. Estos métodos fueron incluidos en dos herramientas computacionales que permiten convertir automáticamente datos crudos en información biológica interpretable y por lo tanto, permiten resolver hipótesis biológicas y adquirir nuevos conocimientos biológicos.One of the major bottlenecks in metabolomics is to convert raw data samples into biological interpretable information. Moreover, mass spectrometry-based metabolomics generates large and complex datasets characterized by co-eluting compounds and with experimental artifacts. This thesis main objective is to develop automated strategies based on blind source separation to improve the capabilities of the current methods that tackle the different metabolomics data processing workflow steps limitations. Also, the objective of this thesis is to develop tools capable of performing the entire metabolomics workflow for GC--MS, including pre-processing, spectral deconvolution, alignment and identification. As a result, three new automated methods for spectral deconvolution based on blind source separation were developed. These methods were embedded into two computation tools able to automatedly convert raw data into biological interpretable information and thus, allow resolving biological answers and discovering new biological insights

    Peaks detection and alignment for mass spectrometry data

    Get PDF
    The goal of this paper is to review existing methods for protein mass spectrometry data analysis, and to present a new methodology for automatic extraction of significant peaks (biomarkers). For the pre-processing step required for data from MALDI-TOF or SELDI- TOF spectra, we use a purely nonparametric approach that combines stationary invariant wavelet transform for noise removal and penalized spline quantile regression for baseline correction. We further present a multi-scale spectra alignment technique that is based on identification of statistically significant peaks from a set of spectra. This method allows one to find common peaks in a set of spectra that can subsequently be mapped to individual proteins. This may serve as useful biomarkers in medical applications, or as individual features for further multidimensional statistical analysis. MALDI-TOF spectra obtained from serum samples are used throughout the paper to illustrate the methodology

    Mathematical resolution of complex chromatographic measurements

    Get PDF
    corecore