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Who are we? We find that we live on an insignificant planet of a humdrum star lost

in a galaxy tucked away in some forgotten corner of a universe in which there are

far more galaxies than people.

Standing over humans, gods, and demons, subsuming Caretakers and Tunnel

builders, there is an intelligence that antedates the universe.

We live in a society exquisitely dependent on science and technology, in which hardly

anyone knows anything about science and technology. This is a prescription for

disaster. We might get away with it for a while, but sooner or later this combustible

mixture of ignorance and power is going to blow up in our faces.

Imagination will often carry us to worlds that never were. But without it we go

nowhere.

Carl Sagan
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Abstract

One of the major bottlenecks in metabolomics is to convert raw data samples into bi-
ological interpretable information. Moreover, mass spectrometry-based metabolomics
generates large and complex datasets characterized by co-eluting compounds and with
experimental artifacts. This thesis main objective is to develop automated strategies
based on blind source separation to improve the capabilities of the current methods
that tackle the different metabolomics data processing workflow steps limitations.
Also, the objective of this thesis is to develop tools capable of performing the entire
metabolomics workflow for GC–MS, including pre-processing, spectral deconvolution,
alignment and identification. As a result, three automated strategies for spectral de-
convolution were developed based on blind source separation methods. These meth-
ods were embedded into two computation tools able to automatedly convert raw data
into biological interpretable information and thus, allow resolving biological answers
and discovering new biological insights. The tools were implemented in a modular-
ized manner and their structure was standardized in a single S4 method known as
MetaboSet.

First, an independent component regression (ICR) for GC–MS compound identifi-
cation as an alternative to multivariate curve resolution (MCR–ALS) was introduced.
Whereas the typical approach of the ICA-based methods for GC–MS data processing
was based on considering the spectra as the independent component in the chro-
matogram, in this ICR implementation the concept of independence was twisted:
compound profiles were targeted as the independent source of the chromatographic
mixture, as opposite to the spectra. Also, an orthogonal signal deconvolution (OSD)
approach using principal component analysis as an alternative to the traditional least
squares approach was introduced, allowing the extraction of refined spectra when
compounds elute under the influence of biological matrices, compound co-elution or
other types of noise.

Second, independent component analysis - orthogonal signal deconvolution strat-
egy was proposed for the automated resolution of chromatographic signals in com-
prehensive gas chromatography – mass spectrometry. The ICA–OSD method was



proposed as an effective method to enhance the spectral deconvolution capability and
to increase the processing speed when applied for the automated compound decon-
volution in chromatographic signals.

Third, the application of multivariate algorithms, e.g., MCR–ALS or ICA-based
approaches, in GC–MS data involve segmenting the chromatogram into regions or
windows, which may lead to failure in the detection of compounds. Thus, we proposed
the application of ICA–OSD and MCR–ALS through a moving window to avoid the
usual practice of chromatographic segmentation into regions or windows.

Fourth, despite the existence of different pieces of free and commercial software
for GC–MS data analysis, none of these allow the execution of an integrated workflow
that includes spectral deconvolution and alignment, followed by the identification and
quantification of metabolites in the same application, and implemented in a modu-
larized and standardized manner. This still leads many researchers to implement
separate software for each process, and tedious manual workflows for data processing.
In this thesis, eRah was designed to fill this gap. Also, while univariate peak–picking
approaches are focused on the ion fragment peak as the analysis entity, multivari-
ate methods such as MCR–ALS or ICA aim at extracting the spectra from GC–MS
data by taking advantage of the inherent fragment-redundancy in mass spectrometry.
However, multivariate methods performance depend, to a greater degree, on an ap-
propriate estimation of the number of components to build the multivariate model. In
eRah, we introduced a multivariate compound detector to detect compounds instead
of peaks. We later used OSD to determine the compound spectra. The tandem appli-
cation of the multivariate compound detector by local covariance (CMLC) with OSD
allowed the spectral deconvolution of compounds in GC–MS mixtures without the
use of factor analysis techniques. eRah was demonstrated to be capable of robustly
conducting the complete metabolomics workflow.

Fifth, a tool called BaitMet was introduced to take advantage of the knowl-
edge provided by metabolomics spectral libraries to process full scan GC–MS chro-
matograms in a driven manner, and with the possibility of standardize the retention
times without the use of internal standards. BaiTMet operates under the assumption
that the retention time relation between metabolites naturally found in the samples
can be used to predict their respective retention indexes. BaiTMet is an R package
for high-throughput quantification of compounds of an entire MS library into GC–MS
data. BaiTMet was able to identify compounds by the standardization of retention
time without mixing internal standards in the samples. Moreover, BaiTMet is also
compatible with the use of internal standards mixed in the samples, and use them to
characterize the RI/RT curve in each chromatogram.
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Chapter 1

Introduction

1.1 Metabolomics

Metabolomics [1, 2] is the profiling of metabolites in biofluids, cells and tissues, and

it is routinely applied as a tool for biomarker discovery [3]. Metabolomics is now

widely used to obtain new insights into human, plant and microbial biochemistry, as

well as in drug discovery, nutrition research and food control through the study of

the organism’s metabolome. The metabolome is typically defined as the collection of

low weight molecular compounds - in a cell, tissue or organism - that are chemically

transformed during metabolism. Metabolites are considered the terminal downstream

product of the genome and, as such, they provide a functional readout of cellular state,

which allows linking cellular pathways to biological mechanisms [4, 5].

Metabolomics is one of the four most representative -omic sciences: genomics,

with epigenomics as one of its important branches, transcriptomics and proteomics

(Figure 1-1). Metabolomics is considered the one that comes closest to expressing

phenotype, providing a chance to look at genotype-phenotype as well as genotype-

envirotype relationships [6]. This is due to the fact that, unlike genes and proteins, the

functions of which are subject to epigenetic regulation and post-translational mod-
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Figure 1-1: Scheme showing the relation between the different -omic sciences and the relation
between DNA, RNA, proteins and metabolites. The genes (genomcis) are transcripted into
RNA (transcriptomics), which are translated to proteins (proteomics). We have to take into
account that not all the genome is transcripted or expressed, and that not all the RNA
is translated. Besides, the non-coding RNA is involved in transcription and translation
regulation. The non-coding RNA, also known as ’junk RNA’, comes from a very large
part of the genome that is not expressed and, in the past, it was believed not to have any
biological function. Although it seems that some non-coding RNA is the product of spurious
transcription, it has recently been shown that it plays an important role in the translation
of proteins and the regultation of the gene expression.

ifications respectively, metabolites serve as direct signatures of biochemical activity

and are therefore easier to correlate with the phenotype [4]. Metabolites are also

more dynamical entities as their concentration may change dramatically in small pe-

riods of time. In short, while genomics, transcriptomics and protemics explain what

may happen, metabolomics explains what is happening in the organisms [7]. Despite

that, and although the metabolic profile can be seen as the ultimate expression of

the genome, the metabolome state does not only depend on the complex interactions

and processes of the genes, transcripts and proteins, but it is also affected by the en-

vironment, including commensal microorganisms, nutritional factors, environmental

agents, and drugs or toxic substances [8, 9].

One of the most important differences between metabolomics and the rest of the -
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omics sciences is that, whereas the human genome has been sequenced and it is known

(estimated in 25 K genes), and also the number of transcripts (150 K) and proteins (1

M) is now well estimated, the exact size of the human metabolome at the present time

is still unknown [10]. And although the total number of metabolites registered to the

date, for example, at the Human Metabolome Database [11] is 42 K, most of them are

(known) unknown metabolites, which are presumed to be breakdown products and

molecules transformed by enzyme or microbial activity [12]. Identification of unknown

metabolites and data interpretation and translation of analytical platforms results

into a biologically interpretable information (data processing) are still some of the

most important challenges in metabolomics [13]. These bottlenecks have prevented

metabolomics from evolving as fast as the other omic sciences [14, 15, 16] .

1.2 Analytical platforms

Nowadays, different analytical techniques including nuclear magnetic resonance spec-

troscopy (NMR) or other hyphenated techniques such as liquid chromatography cou-

pled to mass spectrometry (LC-MS), are used for compound profiling in metabolomics.

In fact, different analytical techniques are needed as no analytical platform covers the

full metabolome, and thus they have to be combined. However, the proof of concept

for what we now know as mass spectrometry-based metabolomics was reported in

1966 by Dalgliesh et al. [19], which conducted the first GC/MS experiment to sepa-

rate a wide range of metabolites occurring in urine and tissue extracts. Later in 1971

Horning et al. [20] introduced the term metabolic profiles, and along with Pauling

and Robinson led to the development of GC–MS methods for monitoring metabo-

lites in biological samples through the 1970s [21, 22]. In this thesis, two analytical

platforms were used: GC–MS and GC×GC–MS
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1.2.1 GC–MS

Gas chromatography – mass spectrometry has been a long-standing approach used

for metabolite profiling of volatile and semi-volatile compounds due to the widespread

use of electron impact ionization (EI) mode. EI is a hard ionization technique that

has been historically standardized at 70 eV. Unlike soft ionization techniques such as

ESI [17] or MALDI [18], EI is a highly reproducible ionization process across many

different platforms.

In GC–MS, volatile metabolites can be directly analyzed whereas semi-volatile

compounds can only be detected by a previous silylation process of the polar groups

(derivatization) [23]. The main objective of derivatization is to block the polar func-

tional groups, leading to an increase in volatility and reduction in polarity. Also,

due the robustness and reproducibility of the electron impact (EI) ionization tech-

nique, the extensive fragmentation allows a straightforward identification of com-

pounds through spectral libraries. These distinctive advantages have contributed to

establish GC–MS as a robust platform for the quantitative analysis of volatile and

semi-volatile metabolites.

1.2.2 Comprehensive GC–MS

Gas chromatography separates the metabolites while passing through a single chro-

matographic column. However, when two or more compounds do not completely

separate chromatographically, those compounds are known to be co-eluted, i.e., over-

lapped with other compounds or matrix components, providing several problems with

the identification and quantification of the compounds. To overcome this obsta-

cle, comprehensive gas chromatography - mass spectrometry (GC×GC–MS) [24, 25]

emerged over the last two decades as a powerful analytical technique. In the com-

prehensive GC×GC, the entire first dimension column eluate is further analyzed in

the second dimension column. Therefore, the sample pass through two chromato-
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graphic columns with orthogonal retention properties, which improves the compound

separation space, improving thus the chromatographic resolution and it leads to an

increased compound detection capacity as co-elution is diminished.

GC×GC–MS has a higher chromatographic separation power, a broader dynamic

range and lower detection limits, and thus it should be the preferred technique for

metabolomics analysis [26]. However, the lack of tools that allow retrieving inter-

pretable information (list of compounds and their concentration for each sample)

from raw data has limited the application of GC×GC–MS in metabolomics. This

lack of tools can be explained due to difficulties of processing the enhanced data

complexity of GC×GC–MS respect to the one-dimensional GC.

1.2.3 Mass detectors

Although GC and GC×GC can be used in combination with a wide variety of detec-

tors, the most commonly-used detection technique coupled with GC that is used nowa-

days is mass spectrometry (MS) detectors. In untargeted GC-based metabolomics,

the full scan mode of MS is employed for identifying compound structures, whereas

the selective ion monitoring (SIM) is usually employed in targeted metabolomics to

achieve higher sensitivity for (selective) quantification. The electron impact is the

most widespread mode used in GC–MS and GC×GC–MS, which is a highly repro-

ducible ionization process across many different platforms and that has been histori-

cally standardized at 70 eV.

Among the different MS analyzers, the single quadrupole, (quadrupole) time of

flight (qTOF/TOF) or triple quadrupole (QqQ) are the most popular in GC. Both

TOF and qTOF are the most employed detectors in GC–MS, while the best GC×GC

equipment (LECO Corp.) is attached to a TOF detector. While qTOF–MS allows

full-scan screenings with high mass resolution and accuracy, TOF detectors allow the

full-scan screening only in nominal mass.
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1.3 Metabolomics experimental workflow

Metabolomics experiments involve carrying out a series of steps that generally com-

prises the following workflow: experimental design, sample preparation, analysis of

samples, data processing and data analysis [4]. Experimental design aims at prepar-

ing the proper specifications of the experiment - analytical platform to use, the type

and the number of samples - to answer the biological hypothesis or to discover new

biomarkers. After that, sample preparation aims at the extraction of the metabolites

of interest for its posterior analysis through the analytical platform chosen. Also,

and concretely in GC–MS or GC×GC–MS, metabolites are derivatized to enhance

its volatility. Next, the data generated by the analytical platform has to be pro-

cessed through the so-called metabolomics data processing workflow, which is de-

tailed in the next chapter. Finally, data analysis aims at discovering the up-regulated

or down-regulated metabolites between classes or physiological conditions and also

the interactions between them through (univariate/multivariate) statistical tests and

methods.
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Chapter 2

State of the Art

2.1 Data processing workflow in GC/MS and

GC×GC/MS-based metabolomics

In order to identify and extract quantitative information of metabolites across mul-

tiple biological samples, workflows for GC–MS and GC×GC–MS data processing are

needed. Data processing in gas and comprehensive gas chromatography – mass spec-

trometry share common steps. These steps include a pre-processing, comprised of

noise filtering and baseline removal of chromatograms, peak-picking or deconvolution

of compounds and their alignment across samples, and the identification of metabo-

lites by spectral library matching.

2.1.1 Pre-processing

A chromatogram is usually considered to be composed of three additive components:

signal, baseline and noise [1, 2]. Hence, all GC–MS and GC×GC–MS chromatograms

are usually affected by baseline drift or instrumental noise (Figure 2-1), and the pre-

processing of chromatograms by noise filtering and baseline correction may improve

the posterior deconvolution and alignment performance. One of the most stablished
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method to determine the best baseline model is the asymmetrically weighted least

squares regression (ALS) [2], which provided a basis for improvements or variations

based on or compared to the original algorithm [3, 1]. Also, different studies have

focused on the pre-processing of data as a method for the subsequent extraction of

informative features [2, 4, 5, 6].

Figure 2-1: Typical GC–MS artifacts or situations: (a) baseline drifts, (b) low S/N ratios due
to low concentrated compounds, (c) changes in the peak shape (e.g. peak-tailing or peak-
fronting), (d) co-elution of compounds, and (e) combination of all the situations. Picture
from Jalali-Heravi et al. [7]

Noise filtering can be conducted by multiple methods imported from the signal

processing field [8], by linear and non-liner filters such as the typical finite impulse

response (FIR) filters or moving average filters. However, the most widespread filter

used in chromatographic data is the Savitzky–Golay filter [9]. Savitzky and Go-

lay were interested in smoothing mass spectral data, and they demonstrated that

least squares smoothing reduces noise while maintaining the shape and height of the

gaussian-shaped peaks [10]. This is of special importance in chromatography, since

some filters are more destructive, and they smooth the data without maintaining

the original shape. Savitzky and Golay’s paper is one of the most cited papers in
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the journal Analytical Chemistry [11]. Later, Eilers claimed that the Whittaker filter

[12], based on penalized least squares, was a better and faster alternative to Savitzky–

Golay filter.

2.1.2 Peak picking or spectral deconvolution

Data processing in untargeted GC–MS and GC×GC–MS-based metabolomics involve

detecting signals that will be ultimately related to metabolies. To do so, methods

for data processing can be divided into two main categories: methods based on peak-

picking and methods for compound extraction through multivariate algorithms and

spectral deconvolution.

Univariate approaches

This first category involves detecting all relevant fragment ion peaks in the spectra

to subsequently align them across multiple samples [13, 14] and discover statistical

peak variations between experimental groups. The quantitative variables provided by

these methods are not based on the compound spectra, but the m/z value, retention

time window and area of fragment ion peaks.

The method for what we now know as peak-picking approach for high-throughput

data analysis was reported by Smith et al, where they introduced XCMS [15], a com-

putational tool for processing LC-MS data. A more sensitive peak-picking called

centWave was later reported [16] (Figure 2-2). Smith et al popularized the peak-

picking approach, and different tools using the same principle were later reported

(generally as a part of computational tools and therefore discussed in Section 2.2).

Advantages of these methods are that they should be more reliable, as no deconvolu-

tion is performed and therefore the true area of the m/z peak is registered. Despite

that, no spectra is deconvolved and identification of metabolites is the main bottleneck
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of peak-picking approaches. Moreover, peak alignment across samples is conducted

without any spectral information, and thus, only the retention time distance between

peaks is used. In that sense, some other computational tools attempted to overcome

this limitation by grouping the different peaks (based on their shape similarity or

peak correlations) into compound spectra. These computational tools are discussed

also in Section 2.2.

BMC Bioinformatics 2008, 9:504 http://www.biomedcentral.com/1471-2105/9/504
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The following is the description of the most important
steps of the centWave workflow:

• The scale range smin, smax for the CWT and the pmin
parameter for the ROI detection are calculated from the
input parameters wmin, wmax and the average inter-scan
distance.

• ROI detection (see section 2.1.1) is performed using the
parameters μ and pmin

• Chromatographic analysis of each detected ROI:

- To accommodate noise and baseline estimation, each
ROI is laterally extended by a multiple of the expected
chromatographic peak width

- Local noise and baseline estimation: Let x be the vector
of intensity values of the actual (extended) ROI, and xt the
10% trimmed x (5% of the smallest and 5% of the largest
intensity values are discarded). Then the baseline BL is
assessed as the mean value of xt and the noise level NL as
the standard devation of xt.

Matched filter effects, example region 1Figure 3
Matched filter effects, example region 1. HPLC/ESI-QTOF-MS of a A. thaliana leaf extract. Extracted ion chromatogram 
(277.213 – 277.221 m/z) and matched filter results using second derivative Gaussian with different filter widths. Negative filter 
values were omitted.
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Figure 2-2: This picture illustrates the centWave [16] matched filter effect. Although this
is a HPLC/ESI-QTOF-MS of a A. thaliana leaf extract chromatogram, it illustrates the
operation of a typical peak-picking approach despite the analytical platform. The match
filter filters the data leading to the detection of different peaks. However, each m/z channel
is processed separately and thus, the overall spectral information (spectral co-variance) is
not taken into account. Picture from Tautenhahn et al. [16]

40



Multivariate approaches

Multivariate approaches focuses on the compound as the analysis entity, as opposed to

the use of individual fragment peaks. Compounds are quantified and identified on the

basis of a multivariate deconvolution process [17] that extracts and constructs pure

compound spectra from raw data (Figure 2-3). Methods such as multivariate curve

resolution – alternating least squares (MCR-ALS), independent component analysis

(ICA) or parallel factor analysis (PARAFAC) have been used to process GC–MS and

GC×GC–MS data [18].

Advantages of those methods include that the spectra are directly extracted from

data by taking advantage of the inherent fragment-redundancy in mass spectrome-

try. This fragment-redundancy means that for each compound, different fragments or

ions elute at the same retention time and with the same elution profile. Then, chro-

matographic - mass spectrometry data is characterized by a temporal and spectral

redundancy which yields to a natural co-variance of fragments that can be used to

extract more efficiently the spectra associated to each metabolite. This co-variance

redundancy is more emphasized in GC×GC–MS data, where, due to the second re-

tention time dimension, compounds elute in more than one modulation cycle. In

these cases, tensor decomposition can be applied.

However, multivariate methods performance depend, to a greater degree, on an

appropriate estimation of initialization parameters and/or the correct estimation of

the number of components - the number of distinct multivariate sources from which

the data can be built. Different methods have been reported to determine the number

of components in a mixture, but the most popular methods include the singular value

decomposition (SVD) [19], a cross-validation procedure [20], or the evaluation of the

residual sum of squares [21].
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Figure 2-3: Illustration of the bilinear data structure. The bilinear model describes the data
(D) as the composition of two matrices (C and S), where C represents the pure chromato-
graphic profiles and S the pure spectra. Generally, multivariate methods aim to decompose
the chromatographic mixture into (ideally) quantificable chromatographic profiles and iden-
tificable spectra. The top picture represents the raw data (a GC–MS chromatographic
segment), and each blue line represents each m/z.

Also, to ensure a correct performance, multivariate two-way methods have to be

applied in small regions of the chromatogram [22], and therefore the chromatograms

have to be segmented prior to the application of the algorithms. The automation

of this segmentation process is a challenging task as it implies separating between

informative data and noise from the chromatogram.

Multivariate curve resolution – alternating least squares: Multivariate

curve resolution (MCR) is an historical chemometric method, widely used for the

resolution of chromatographic mixtures. The first study that inspired MCR was

reported in 1971 by Lawton and Sylvestre [23], but the most reported and popular
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MCR algorithm, known as multivariate curve resolution – alternating least squares

(MCR–ALS), was proposed by Tauler in 1995 [24]. MCR–ALS has been reported for

the resolution of GC–MS, GC×GC–MS, and also of LC–MS signals [25]. MCR–ALS

is used to decompose a data matrix containing a mixture of compounds into two

matrices containing the resolved pure concentration profiles and pure spectra.

Independent component analysis: Independent component analysis (ICA) is

a blind source separation (BSS) method developed in the early 1980s, and it is widely

used for the processing of signals of different natures (Figure 2-4) including electroen-

cephalographic records [26, 27, 28], or other biomedical signals, image analysis [29]

or sonar applications [30] among others. In chemistry, this method is well-stablished

in spectroscopy [31, 32, 33, 34, 35], but its use in chromatography was introduced by

Shao et al [36]. Since then, several algorithms were developed [37], which used ICA

for resolution of chromatographic signals, including mean-field ICA (MF–ICA) [38],

post-modification based on chemical knowledge (PBCK) [39], window ICA (WICA)

[40] and non-negative ICA [41]. Artificial immune system algorithms involving the

use of ICA were also proposed [42].

The aforementioned ICA-based approaches for the resolution of GC–MS signals

share a common procedure: first, they use ICA to deconvolve the mass spectrum for

each compound in the mixture, i.e., they consider the spectra as the independent

source in the chromatograms. After that, each above-mentioned algorithm uses dif-

ferent approaches to determine the elution profile of each compound, since the elution

profiles determined by ICA tend to be inaccurate or affected by various ICA ambigui-

ties such as negativity or variance (energy) indetermination [43]. However, ICA-based

algorithm efficiency has been questioned by Parastar et al. [44], where they claimed

that up the existing ICA-based algorithms could be considered as an alternative tool

for resolving mixed signals in analytical chemistry only in a limited number of cases.
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Figure 2-4: Illustration of ICA outcome. In this example, three signals (sine, triangular and
square) are mixed. Whereas PCA may find difficulties in recovering the original sources,
ICA recovers the qualitative shape of the original signals.

ICA and MCR methods share the same objective, which is the resolution of com-

plex mixtures into pure-components: pure chromatographic profiles and spectra [45].

The most characteristic difference between the methods is that, whereas MCR–ALS

resolves a chromatographic mixture by minimizing the residual error between the

data and the predicted model, ICA uses another type of measure which is the sta-
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tistical independence, and it estimates the original compound sources by maximizing

the independence between components.

Tensor decomposition: Generally, GC–MS data is built in a (two-way) matrix

of order (Rt×m/z), where Rt and m/z are the retention time and masses respectively.

However, when multiple samples are employed, data can be represented in a (three-

way) array (or tensor) of order (Rt × m/z × Chr), where Chr is each chromatogram

or sample. Contrarily, in GC×GC–MS, each single chromatogram is composed of a

three-way array of order (Rt1 × Rt2 × m/z), where each Rt 1 and 2 are the 1st and

2nd retention times (and where the first corresponds to each modulation cycle). These

arrays can be seen as a box in which the ways correspond to the vertical, horizontal

and depth axis [46].

In those cases where data is composed by a three dimensional array -tensor-, three-

way multivariate algorithms can be applied. Although MCR–ALS can be adapted to

resolve a three-way structure by data (row or column wise) augmentation or by data

unfolding into multiple two-way matrices [47] - since MCR can not be applied directly

to three-way a data structure -, the historically known as parallel factor analysis

(PARAFAC) [48] - and later known as Canonical Decomposition (CANDECOMP) or

Canonical Polyadic Decomposition (CND) -, is the most popular tensor decomposition

method which has been shown to be effective for the resolution of chromatographic

signals [49], which generally may achieve similar results to MCR-ALS [50].

Three dimensional arrays can be built from multiple GC–MS chromatograms or a

single (or also multiple) GC×GC–MS chromatogram. Tensor decomposition does not

only take advantage of the temporal and spectral co-variance of metabolites, but also

of the variation across chromatograms or modulation cycles. Tensor decomposition

is specially powerful in those cases where similar - or co-eluting - compounds may

be difficult to separate just from the information provided by single chromatogram.

However, those compounds may have different relative concentrations across chro-
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matograms, and tensor decomposition aims to use these differences of variation to

resolve data even more efficiently.

The main drawbacks of tensor decomposition problems are that generally, the

data has to be trilinear, which means that compounds appearing in multiple samples

should be well aligned, and this usually does not occur. In that sense, methods

such as Tucker3 [51] were proposed to resolve non-trilinear three-way datasets. In

the same way that two-way methods, three-way methods depend also on the correct

estimation of the number of factors or components, and this parameter critically

affects its outcome.

2.1.3 Alignment of metabolites

Alignment of metabolites aim to correct the retention time variation of eluting com-

pounds, facilitating the relative quantification and comparison of compounds across

samples. In that sense, metabolites in GC–MS have to be aligned between chro-

matograms, whereas - and due to the second retention time dimension - metabo-

lites appearing in GC×GC/MS data have to be aligned within and between chro-

matograms.

Currently, alignment algorithms fall into two distinct branches: first, there are

several methods based on the pre-alignment of the chromatogram before the appli-

cation of any data processing and thus, the application of these methods is usually

considered as data pre-processing. The aim of these algorithms is to facilitate the

posterior processing of the data, or to directly register metabolite differences among

samples since metabolites are expected to be already aligned. Generally, algorithms

for pre-alignment of chromatographic signals are based on dynamic time warping

[52, 53].

The second category include the alignment of compound or peak lists. These

algorithms align the metabolites after their are deconvolved from data by clustering
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them on the basis of the retention time distance - and spectral similarity if spectra

is obtained - between metabolites. Usually, those algorithms are reported as part of

computational tools, but some independent methods focused exclusively in what is

known as alignment of peaks (list) or spectra have been reported [54, 55, 56].

Disctinctively in GC×GC–MS, the same metabolites appearing in different mod-

ulation cycles have to be also aligned within the chromatogram. Methods that tackle

this matter have also been reported [57].

2.1.4 Identification

The extensive fragmentation of the electron impact ionization allows obtaining dis-

tinctive and highly reproducible fragmentation patterns - spectra - for each analyzed

metabolite. Therefore, and although different levels of identification can be applied

[58], identification of metabolites is generally conducted by spectral similarity with

reference pattens provided by spectral libraries, and often also by the comparison of a

physico-chemical property (e.g., chromatographic retention time). Those two molec-

ular properties are known to be orthogonal, and although stereoisomers are difficult

to be distinguished by only these two properties [59], the combination of both allows

a reliable metabolite identification in most of the cases.

However, compound retention time is not a reproducible variable, as it depends on

the chromatographic method employed in each case. To solve that, retention indices

(RI) are used instead [59]. In RI, the retention time is standardized and thus it is given

relative to the retention time of known standards - typically fatty acid methyl esters

(FAME) or alkanes (ALK) -mixed with the samples. The retention times of those

standards vary according to the method, but the RI - the relative chromatographic

distance between metabolites and known standards - is a very reproducible feature.

Methods for spectral matching include the widely used cosine dot product/Pearson’s

correlation [60] or the Stein and Scott’s composite score [61], among others [62]. For
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retention index (RI) comparison, methods including linear interpolation and known

as van den Dool [63] and Kováts [64] methods or spline interpolation are used to

standardize the empirical retention time into RI.

Different free and commercial spectral libraries are currently used in metabolomics,

which provide information on chemical structures, physico-chemical properties, spec-

tral/fragmentation patterns, biological functions and pathway mapping of metabo-

lites [58]. Among those, libraries with electron impact fragmentation patterns include

the Golm Metabolome Database (GMD) [65, 66], the Human Metabolome Database

(HMDB) [67], the MassBank repository [68] or the NIST and Wiley libraries. The

NIST is the richest library by the number of metabolites recorded. However, NIST

EI-MS spectra are recorded using single quadrupole (SQ) mass spectrometer. The

advent of other mass detectors such as GC–(q)TOF and GC–Orbitrap with other op-

erational principles than SQ raises the need for EI-based exact mass libraries acquired

with these new detectors. One of the most significant variations of spectra from the

same compound acquired using SQ and TOF detectors is the difference in relative

ion intensities. This directly translates into lower matching scores when querying SQ

based spectral libraries with data acquired using TOF detectors. Therefore, GMD

is the richest library currently available for GC-TOF detectors. Of note, GMD is

however populated using TOF detectors with nominal mass.

2.2 Implementation of the workflow: computational

tools for GC–MS data processing

Current computational approaches for GC–MS data processing in untargeted metabolomics

fall into two main categories: tools based on peak-picking, and tools for compound

extraction through the so-called curve resolution and spectral deconvolution (Table

2.1). The first category involves detecting all relevant molecular ion peaks in the spec-
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tra, align them across multiple samples, and discover statistical peak variations be-

tween experimental groups. Representative tools from this category include MZmine

[69, 70], MetAlign [71, 72], and XCMS [15, 73]. Although these tools were initially in-

tended for liquid chromatography mass spectrometry (LC–MS) data processing, they

can also be used for GC–MS data analysis [74, 75]. The quantitative variables pro-

vided by these methods are not the compound spectra, but the m/z value, retention

time window and area of individual fragment ion peaks. Thus, compound identifi-

cation is the main bottleneck of peak-picking approaches. In this regard, tools such

as metaMS [76], TagFinder [77], MetaboliteDetector [78] and PyMS [79] attempt to

overcome this limitation by grouping the different peaks (based on their shape similar-

ity or peak correlations) into compound spectra, allowing the putative identification

of compounds by comparing their mass spectra with a reference MS library.

The second category focuses on the compound as the analysis entity, as opposed

to the use of individual molecular ion peaks. Compounds are quantified and identified

on the basis of a multivariate deconvolution process [17] that extracts and constructs

pure compound spectra from raw data. Representative tools falling into this category

include TNO-DECO [80] or ADAP-GC [81]. TNO-DECO uses multivariate curve

resolution to extract the compound spectra whereas the deconvolution algorithm of

ADAP-GC is based on hierarchical clustering of the fragments shape for compound

detection. Furthermore, there are other free softwares, such as AMDIS [60] or Bin-

Base [82, 83], that perform parts of the untargeted GC–MS metabolomics workflow.

AMDIS is used to identify compounds in samples by using the NIST library, but it

does not include spectral alignment. BinBase uses the spectral deconvolution provided

by a proprietary algorithm in the commercial software ChromaTOF (LECO Corpo-

ration) to align compounds across samples, and provide compound quantification and

identification based on self-constructed or downloadable libraries [84]. Finally, Tar-

getSearch [85] is an R package for library-driven compound profiling that relies on
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the retention indexes (RI) and the list of selective masses provided by a reference MS

library to quantify a high number target compounds with univariate techniques. It

requires mixing internal standards with the samples.

Table 2.1: List of representative softwares for GC–MS data processing

Tool Language Anal. Plat. Type/Comment
XCMS R LC/MS, GC/MS Univariate.

mzMine Java LC/MS, GC/MS Univariate.
MetAlign C++ LC/MS, GC/MS Univariate. No open-source.
MetaMS R LC/MS, GC/MS Univariate.

TagFinder Java GC/MS Univariate. No open-source.
TargetSearch R GC/MS Univariate.

MetaboliteDetector C++ GC/MS Univariate. No open-source.
PyMS Python GC/MS Univariate.

TNO-DECO Matlab GC/MS Multivariate. Open-source
ADAP-GC Java GC/MS Multivariate. No open-source

and currently not available.
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Chapter 3

Goals

3.1 Main objective

One of the major bottlenecks in metabolomics is to convert raw data samples into

biological interpretable information. Also, mass spectrometry-based metabolomics

generates large and complex datasets characterized by co-eluting compounds and

with experimental artifacts. This thesis main objectives are to develop new methods

based on blind source separation to improve the capabilities of the current strategies

that tackle the different metabolomics workflow steps limitations. Also, the objec-

tive of this thesis is to develop tools capable of performing the entire metabolomics

workflow for GC–MS, including pre-processing, spectral deconvolution, alignment and

identification. These tools should be able to convert raw data into biological inter-

pretable information and thus, allow resolving biological answers and discovering new

biological insights.

3.2 Goals of the project

∙ O1: Compare and improve the performance of MCR–ALS and ICA applied in

GC–MS and GCxGC–MS data. Design an automated strategy for the appli-
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cation of multivariate algorithms based on independent component analysis in

GC–MS data.

∙ O2: Combine the strengths of univariate (peak-picking) and multivariate (MCR–

ALS/ICA) methods for chromatographic data processing. Develop a factor

analysis-free method for the multivariate spectral deconvolution of chromato-

graphic signals.

∙ O3: Implement an easy-to-use R library to perform a flexible, robust and au-

tomated metabolomics data processing workflow of GC–MS.

∙ O4: Implement an easy-to-use R library to take advantage of the knowledge pro-

vided by metabolomics spectral libraries to process GC–MS samples in a driven

manner, and with the possibility of standardize the retention times without the

use of internal standards.

∙ O5: Implement all the R libraries with a standardized S4 method, and with

a modular structure, so each familiarized programmer can attach their own

modules (deconvolution, alignment, identification) to the main package.

3.3 Expected contributions

Expected contributions include the development of new strategies based on blind

source separation for GC–MS data processing contextualized in metabolomics. Those

strategies are expected to be applied as a part of a R package capable of performing

the entire metabolomics workflow. The developed methods should provide a new

and original strategy to resolve the typical problems of the univariate (peak-picking)

and multivariate approaches for GC–MS data resolution, in order to advance in the

automated interpretation of mass spectrometry data.

64



Chapter 4

Compound identification in gas

chromatography/mass

spectrometry–based metabolomics by

blind source separation

Published as: Domingo-Almenara X, Perera A, Ramírez N, Cañellas N, Correig X, Brezmes

J. Journal of Chromatography A. Vol. 1409 (2015) 226-233. DOI: 10.1016/j.chroma.2015.07.044.

65



Abstract

Metabolomics GC–MS samples involve high complexity data that must be effec-
tively resolved to produce chemically meaningful results. Multivariate curve resolu-
tion–alternating least squares (MCR–ALS) is the most frequently reported technique
for that purpose. More recently, independent component analysis (ICA) has been
reported as an alternative to MCR. Those algorithms attempt to infer a model de-
scribing the observed data and, therefore, the least squares regression used in MCR
assumes that the data is a linear combination of that model. However, due to the
high complexity of real data, the construction of a model to describe optimally the
observed data is a critical step and these algorithms should prevent the influence
from outlier data. This study proves independent component regression (ICR) as an
alternative for GC–MS compound identification. Both ICR and MCR though require
least squares regression to correctly resolve the mixtures. In this paper, a novel or-
thogonal signal deconvolution (OSD) approach is introduced, which uses principal
component analysis to determine the compound spectra. The study includes a com-
pound identification comparison between the results by ICA–OSD, MCR–OSD, ICR
and MCR–ALS using pure standards and human serum samples. Results shows that
ICR may be used as an alternative to multivariate curve methods, as ICR efficiency is
comparable to MCR–ALS. Also, the study demonstrates that the proposed OSD ap-
proach achieves greater spectral resolution accuracy than the traditional least squares
approach when compounds elute under undue interference of biological matrices.
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4.1 Introduction

The analysis of samples from a metabolomics perspective allows the phenotyping

of organisms at a molecular level [1]. At the same time, metabolomics provides a

means of detecting early biochemical changes in organisms before the appearance of

a disease and thus, a means of finding predictive biomarkers [2]. Among the analytical

techniques used in metabolomics, gas chromatography-mass spectrometry (GC–MS)

is a well stablished platform due to its robustness and its applicability to a wide range

of matrices and metabolites through silylation of the polar groups.

Because of the high complexity of biological fluids, the complete chromatographic

resolution of all the metabolites in a sample cannot be easily achieved as the co-

elution of two or more of them usually occurs. The correct identification of co-eluted

compounds depends mostly on the degree of the chromatographic separation and their

spectral dissimilarity. Likewise, the metabolites in the samples usually occur at low

concentrations and the background signal, inherent in the instrument and the sample

biological matrix, interferes in their correct identification and quantification. The use

of resolution algorithms, which can help extract the purest compound elution profile

and spectra, is mandatory for GC–MS data processing.

One of the best–established algorithms for application to chromatographic data to

resolve co-eluted compounds is multivariate curve resolution–alternating least squares

(MCR–ALS) [3, 4]. MCR–ALS can resolve a mixture of compounds into a pure con-

centration profile matrix and a pure spectra matrix [5]. In recent years, a blind source

separation (BSS) technique known as independent component analysis (ICA) [6], al-

ready widely applied for the resolution of spectroscopic mixtures [7, 8, 9, 10, 11],

has also been applied for the resolution of GC–MS samples [12]. In a GC–MS chro-

matogram, the compounds elution profiles appear mixed with their respective spectra.

In these cases, ICA-based approaches are able to recover the different independent

sources contained in data and, eventually, resolve GC–MS data. MCR–ALS ap-
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proaches this problem by minimizing the residual error between the data and the

predicted model, whereas ICA focuses on estimating the original sources - or com-

ponents - by maximizing their statistical independence. Actual ICA-based meth-

ods to resolve chromatographic data include mean-field ICA (MF–ICA) [13], post-

modification based on chemical knowledge (PBCK) [14], window ICA (WICA) [15]

and non-negative ICA [16]. Artificial immune system algorithms involving the use of

ICA have also been proposed [17]. The first step of the resolution procedure in these

methods is the use of ICA to resolve the mass spectrum for each compound in the

mixture. The above-mentioned algorithms use different approaches to determine the

elution profile of each compound, since the elution profiles determined by ICA tend

to be inaccurate or affected by various ICA ambiguities such as negativity or variance

(energy) indetermination [18]. Recently, these ICA-based methods were compared

with MCR for the resolution of GC–MS data by Parastar and coworkers [19] who

showed that the ICA-based resolutions methods show the same performance than

MCR. A natural extension of ICA to recover co-eluted profiles might be independent

component regression (ICR), which was first used to resolve mixtures in near infrared

(NIR) spectra by Shao et al. [20], but whose efficiency on GC–MS data treatment

has not yet been studied.

The use of least squares (LS) regression, common to most algorithms in GC–MS

data resolution, has a major drawback, induced by the inherent correlation between

ions related to the same compound. This correlation yields an ion-redundancy which

means that, for each compound, different ions, also called fragments or m/z, elute at

the same retention time and with the same elution profile. When fitting the elution

profiles to data, no correlation information between the ions is taken into account,

so the LS regression does not distinguish between noise and the compound ions that

are being regressed; this may introduce a bias into the LS regressors. This effect

includes instrumental or experimental noise as baseline, peak-tailing, or compound
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co-elution. The performance of the resolution of mixtures with least squares may,

therefore, depend on the correct estimation of the underlying model from the data.

This study proposes the use of ICR for GC–MS compound identification. In this

approach, we integrate ICA and MCR with a novel orthogonal spectra deconvolution

(OSD) as an alternative to least squares regression with a view to improve the deter-

mination of the compound spectra when compounds elute under the interference of

a biological matrix.

4.2 Materials and methods

This section describes MCR–ALS, ICR and their variants integrated with the OSD

algorithm (ICA–OSD and MCR–OSD). The proposed methods were evaluated by

comparing the resolution of the spectra of 38 compounds in a pure standards sample

and 25 compounds in a human serum sample. A match score between the resolved and

the reference spectra was determined for each compound and method. The samples

were processed by MCR, the proposed ICR, both ICA and MCR using the OSD

approach (ICA-OSD and MCR-OSD). The goal was to use the different methods

compared in this study to extract the most pure spectra for each compound. The

spectra extracted were matched against a reference MS spectra database. For this

study, the Golm Metabolome Database (GMD) [21] was used as a reference database.

4.2.1 Materials

A set of four pure standards samples - four sample repetitions - and a total of eight

biological samples - four sample repetitions of a human serum sample, and two repeti-

tions of two human urine samples from healthy volunteers - were used for evaluation.

The standard mixture was composed of 26 metabolites (see Table A.1 of the Sup-

plementary Material) previously found in the human serum and urine metabolome
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[22]. First, all samples were characterized by a curated identification of the reference

compounds (standards). The pure standards samples were taken as a reference to

later identify the same compounds in the human serum and urine samples. Two com-

pounds identified in the biological samples that are not included in the pure standards

set were validated also analyzing their corresponding standard references.

The metabolites of the human serum and urine samples were extracted and deriva-

tized following a standard protocol [23] with slight modifications to optimize the pro-

cess. Extracts were analyzed using a 7890 gas chromatograph from Agilent (Palo

Alto, CA. USA) coupled to a Pegasus IV TOF/MS from Leco (St. Joseph, MI, USA)

using a DB5–MS capillary column (30 m × 0.25 mm × 0.25 𝜇m, 5% diphenyl, 95%

dimethylpolysiloxane) from Agilent. Analyses were performed by injecting 1 𝜇L of

the extracts into a split/splitless inlet at 250∘C with a split flow of 5 mL min−1 and

a helium constant flow of 1 mL min−1 (99.999%, Abelló Linde, Barcelona). The oven

temperature of the GC was initially held at 50∘C for 1 min, then raised to 285∘C at a

rate of 20∘C min−1 and held at that temperature for 5 min. The GC–TOF/MS inter-

face was set at 280∘C and the ion source at 250∘C. The mass spectrometer acquired

m/z ratios between 35 and 600 amu at 10 Hz and an electron impact energy of 70 eV.

4.2.2 Data pre-processing and analysis

In order to analyze an entire dataset using the MCR or ICA-based approaches, each

chromatogram was divided in chromatographic peak features (CPFs) using the same

criteria as in [24]. The different CPFs contained several compounds, so the algorithm

had to deconvolve them in case of co-elution. The number of factors or components

used to initialize both MCR and ICA was determined by cross-validation (described

in Section 2.6). A unimodality constraint [25] was applied to the resolved profiles and

the same non-negative least squares algorithm was applied for both MCR and ICR.

The simple mean spectra determined either by ICA–OSD, MCR–OSD, ICR or MCR
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in the different samples for each compound were compared using the dot product [26]

against the GMD MS spectra database.

The masses 73, 74, 75, 147, 148, and 149 m/z were excluded before processing the

sample, since they are ubiquitous mass fragments typically generated from compounds

carrying a trimethylsilyl moiety [21]. They were also excluded in the identification.

Only the fragments from m/z 70 to 600 were taken into account when comparing ref-

erence and empirical spectra, since this is the m/z range included in the downloadable

GOLM database. Also, the human serum and urine samples signal was filtered using

a Savitzky–Golay filter [27] and the baseline was removed using a semi-supervised

spline interpolation to reduce the interaction of the biological matrix (described in

Section 3.2). The ICA algorithm used was the joint approximate diagonalization of

eigenvalues (JADE) [30].

4.2.3 Resolution of GC/MS mixtures by multivariate curve

resolution–alternating least squares (MCR–ALS)

The purpose of multivariate curve resolution – alternating least squares (MCR–ALS)

is to decompose a data matrix containing a mixture of compounds into two matri-

ces containing the resolved pure concentration profiles and pure spectra. MCR can

mathematically be expressed as:

𝐷 = 𝐶𝑆𝑇 + 𝐸 (4.1)

where D (𝑁 ×𝑀) is the raw data matrix containing the mixture of compounds,

C (𝑁 × 𝑘) is the resolved concentration profile matrix, S (𝑀 × 𝑘) is the resolved

spectra matrix and E (𝑁 ×𝑀) is the error matrix. In this notation, N is the number

of chromatographic scans (retention time), M is the range of acquisition of the mass-

charge ratio (m/z), and k is the number of components or compounds in the model.
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MCR–ALS uses an iterative least squares algorithm (ALS) to determine both C and

S matrices by minimizing the error matrix E. A detailed explanation of MCR–ALS,

together with pseudocode, is given elsewhere [29]. To optimize execution speed, we

used our own implementation of the MCR–ALS algorithm. This was based on the R

package NNLS, which uses the Lawson–Hanson non-negative least squares (NNLS)

implementation. The package uses C routines to increase the computational speed.

4.2.4 Resolution of GC/MS mixtures by independent compo-

nent regression (ICR)

The proposed independent component regression (ICR) method consists of applying

an independent component analysis (ICA), followed by a least squares regression

(LS) using the ICA output as a regressor. In this manner, ICA is used to determine

the elution profile of the different compounds in the mixture. Then, a least squares

regression is used to determine the spectra of each compound by fitting the extracted

elution profiles to the data. This implementation is the opposite of the extraction

of the compound spectra to later determine the elution profile, used in the above

mention ICA-based implementations. Our ICA model can be expressed as:

𝐷𝑇 = 𝐴𝑍𝑇 (4.2)

Analogously to (Eq. 4.1), D (𝑁 ×𝑀) is the original chromatographic raw data

matrix, A (𝑀 ×𝐾) is the mixing-matrix and Z (𝑁 ×𝐾) is the independent compo-

nents matrix. The Z matrix holds the elution response of the underlying components,

but it presents two main ambiguities: (i) we cannot determine the energy or intensity

of the resolved components and therefore they are not ordered by explained variance,

and (ii) recovered sources do not fulfill non-negativity. Due to the first ambiguity,

the recovered sources in Z are arbitrarily scaled and consequently they cannot be
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used for quantifying the concentration of compounds. Due to the second ambiguity,

the extracted components can be negative or contain negative values - known to be

caused by source signal overlapping, as explained in [16]-. According to [7, 12], the

estimated sources in Z may appear negatively correlated with the data, i.e., the es-

timated elution profile may be a negative mirror image of the real one. Thus, the Z

matrix contains only the qualitative shape—the elution profile model in the retention

time dimension—of the underlying compounds. A natural strategy for avoiding such

negativity ambiguity is the use of non-negative ICA (nnICA). This, however, adds

a significant computational cost and does not solve the first ambiguity, which still

has to be resolved by a least squares regression. Therefore, the following strategy is

proposed to overcome both ICA ambiguities: all the profiles in Z that express more

negative variance than positive variance are negatively rotated. After this step, a non-

negative least squares regression (NNLS) is applied to resolve the variance ambiguity

and to retrieve the spectrum for each compound. This is to determine a non-negative

spectra matrix S that minimizes the error matrix E:

𝐷 = 𝑍𝑆𝑇 + 𝐸 (4.3)

where D (𝑁 ×𝑀) is the raw data matrix, Z (𝑁 × 𝑘) is the elution matrix and S

(𝑀 × 𝑘) the spectra matrix. The hat in 𝑍 denotes a normalized matrix, since real

energies are not known a priori. The determined profiles are fitted in the different

columns of the data matrix containing the different m/z values. For ICR, Z is the

matrix analogous to the C matrix in MCR. The JADE R package is used for the

implementation of the ICA-based algorithms.
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Figure 4-1: Determination of D′
𝑗 for a given data matrix D, where three compounds appear

co-eluted. The extracted ion chromatogram (EIC) of the original D matrix is shown (top).
The grey lines represent the different m/z masses whereas the coloured lines represent the
three resolved compounds for the case given. Each sub-data matrix D′

𝑗 is determined com-
prising the data for which each compound profile D𝑗 is eluting. A cut-off of 5% is applied
to all the profiles, so the D′

𝑗 sub-data matrix comprises the data in D for which the profile
Z𝑗 is non-zero.

4.2.5 Spectra extraction by orthogonal signal deconvolution

(OSD)

Orthogonal signal deconvolution (OSD) is a method to extract and deconvolve the

spectra given only the compounds elution profile. In multivariate curve resolution

or independent component regression, the spectra is determined by means of non-

negative least squares, instead, in OSD principal component analysis (PCA) is used

to determine the spectra of each compound as opposite to the use of least squares. For

this study, a pre-process to determine the elution profiles is conducted by independent

component analysis (ICA) or multivariate curve resolution (MCR), and are referred

as ICA-OSD and MCR-OSD, respectively. In OSD, PCA is used to decorrelate the
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sub-data matrix and to determine which ions co-vary along the retention time, thus

detecting the different ion-redundancies or ion-correlations related to each compound.

However, PCA cannot be used directly to resolve an entire chromatographic mixture,

since it is constrained to fulfill maximum variance and orthogonality [10]. PCA can

be used to deconvolve spectra though if we force PCA to fulfill maximum variance

and orthogonality just in the eluting space of the compound whose spectrum is to be

extracted. Then, for each extracted compound profile 𝑗 in Z (2), a D𝑗 sub-data matrix

is determined comprised only of the data of the retention time in which the compound

Z𝑗 is eluting (Figure 4-1). After that, a PCA is applied for each given window, i.e.,

each compound profile. Following the same notation, PCA can be mathematically

described as:

𝐷′
𝑗 = 𝑌𝑊 𝑇 (4.4)

where D’𝑗 (𝑁 ×𝑀) is the sub-data matrix to decompose, Y (𝑁 ×𝑀) is the score

matrix and W (𝑀 ×𝑀) the loading or eigenvectors matrix. Matrix Y holds the re-

tention time response of the different decomposed components and matrix W holds

the spectra associated with each component, which includes the spectrum of the

compound of interest and other unknown noise interferences. In both decomposed

matrices, each component may have negative or positive variance. The component

of interest associated with the compound whose spectrum is to be extracted is deter-

mined by comparing the different covariance responses in matrix Y with the reference

profile in Z. This is to determine which component has the highest absolute corre-

lation with the elution profile of the compound of interest. The spectra associated

with the selected components are rotated according to the sign of the correlation

coefficient with the compounds profile models. OSD algorithm can be summarized in

the following steps:
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1. Given a Z𝑗 compound elution profile, determine a D𝑗 sub-data matrix com-

prised only of the data of the retention time in which the compound is eluting.

2. Apply a PCA over D𝑗. The result is a score matrix Y and loading matrix W.

3. Determine the correlation coefficient between Z𝑗 and each component in Y

and select the component ℎ with the highest absolute correlation value.

4. Select the component ℎ in W, rotate Wℎ according to the sign of the previous

determined correlation coefficient, and clip to zero all the negative values. Wℎ

is now considered to be the spectrum of Z𝑗.

OSD uses a PCA-based approach in order to avoid the use of an LS regressor,

which finds difficulties in discriminating noise and the compound ions that are being

regressed, which itself may introduce a bias to the LS regressors. This effect results

in the extraction of the spectra with fragments that may not belong to the true

compound spectrum or its intensity is over or underestimated. In OSD, principal

component analysis is proposed to improve this limitation and to take advantage of

the multivariate nature of GC/MS data. The difference in the application of PCA

instead of NNLS resides in the fact that the PCA model takes into account the

inherent noise always present in real data and which may have not been included in

the ICA or MCR model.

4.2.6 Determination of number of components

Both MCR and ICA/ICR require a fixed number of components, also known as fac-

tors, to define their respective models. This parameter clearly affects the ICA or

MCR outcome, as a correct estimation of components in the mixture leads to the

construction of a model which better fits in data. In this study, a cross-validation

approach was used to assure an appropriate determination of the number of com-

ponents, which was implemented by the following steps: (i) Similarly to [31], divide
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the D matrix into D𝑒𝑣𝑒𝑛 and D𝑜𝑑𝑑. Each matrix contains every second row (scans) in

D, and thus, all the columns (m/z channels) are preserved. (ii) Compute PCA over

D𝑒𝑣𝑒𝑛 and determine a L1 matrix containing the PCA loadings. (iii) For each column

j in L1 matrix, determine a matrix 𝑇 = [𝑙1, 𝑙2, ..., 𝑙𝑗] containing all the L1 columns

from 1 to j, (iv) determine a rotation matrix T𝑝 and compute the S2 scores over D𝑜𝑑𝑑

(5), (v) project the variance explained by S2 scores into D𝑜𝑑𝑑 by constructing the M2

matrix (6). For each iteration j determine the residual sum of squares (RSS) error

between D𝑜𝑑𝑑 and M2.

𝑇𝑝 = (𝑇 𝑇𝑇 )−1𝑇 ⇒ 𝑆2 = 𝐷𝑜𝑑𝑑𝑇
𝑇
𝑝 (4.5)

𝑀2 = 𝑆2𝑇
𝑇 (4.6)

This method yields a decreasing RSS curve. The proper number of factors is

determined when the addition of more components does not significantly decrease

the explained variance, i.e., when the RSS error reaches a minimum.

4.3 Results and discussion

4.3.1 Pure standards dataset processing

The synthetic sample was processed by all the alternative strategies described. All

the approaches led to the correct identification of all 26 metabolites in the original

mixture design. Some of the compounds appeared in different trimethylsilyl (TMS)

derivatives and therefore a total of 38 compounds was identified. Table A.2 (see Sup-

plementary Material) shows the complete list of metabolites identified, along with

their match score by the different methods for a quantitative comparison reference.

The identification match score is determined by the following steps: first, the nor-
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MCR

ICR

MCR-OSD

ICA-OSD

p-value < 0.0005

p-value < 0.0005

Match Score (%)

Match Score (%)

(a) Standard Samples Box plots

(b) Biological Samples Box plots

MCR

ICR

MCR-OSD

ICA-OSD

Figure 4-2: Match score box plots. (a) The match score boxplot for the case of pure
standards dataset and (b) for the case of biological samples dataset. Outliers in the boxplot
are not shown. The 𝜌-values were determined with a paired wilcoxon test, with an alternative
hypothesis that the OSD method performs better than LS. The sample size N was of N=152
for (a) and of N=80 for (b).

malized spectra for each compound in the four samples is averaged by a simple mean

- the total sum of the spectra in each sample -. Then, the match score is determined

by the dot product between the average resolved - extracted or empirical - and the

reference spectra. The closer the score to one hundred, the more exact and pure the

spectra extracted.
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(c) Methyl-malonic Acid (3TMS)
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Figure 4-3: Comparison of the standards dataset extracted spectra (black and positively dis-
played) and the reference GMD spectra (color and negatively displayed). Qualitative spectra
differences can be seen between least squares (ICR) and OSD (ICA–OSD) approaches. The
extracted spectra by ICR and ICA–OSD are shown in black for (a) nicotinic acid, (b) fu-
maric acid and (c) methyl-malonic acid. The reference spectra (color) are shown in the same
axis, negatively rotated, for better visual appreciation. The match score (MS) is noted in
each plot.

Overall identification performance for the studied methods is shown in the box

plots of Figure 4-2 (a). To increase the statistical power, these box plots were con-

structed by the match score for each metabolite and sample separately — each spec-
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trum of the same compound in each sample was matched independently against the

reference spectra —. It is clear that in the capability of the proposed ICR and OSD

methods is comparable to the best extended MCR–ALS. Still, some qualitative differ-

ences between ICR and ICA-OSD extracted spectra can be appreciated when visually

comparing the empirical (resolved) and reference spectra of certain compounds, spe-

cially in co-elution situations. Compounds showing important qualitative spectral

differences between methods include nicotinic acid, fumaric acid and methyl-malonic

acid (Figure 4-3), for which the OSD approach performs a better isolation of the

compound-related ions from the other ions or fragments product of the co-elution

with neighboring compounds. In Figure 4-3 (a), the OSD approach is able to dis-

card the ion m/z number 158 for nicotinic acid as it is an interference due to the

co-elution with isoleucine. The same observation can be seen in Figure 4-3 (b) where

the ion number 99 for fumaric acid is detected as an outlier by the OSD approach

and discarded from its resolved spectrum; this interference occurs as fumaric acid in

co-elution with uracil (See Table A.2 of Supplementary Material). Also, Figure 4-3

(c) shows the case of methyl-malonic acid, for which OSD extracted purer spectra,

specially at low ion intensity levels.

4.3.2 Biological samples processing

In this case, the methods under study were tested in biological samples, where com-

pounds appear in very low concentrations and with the interference of a biological

matrix. Processing of the human serum and urine samples by the different methods

led to the extraction of a total of an average of 230 compounds or components per

sample by the OSD approaches, ICR and MCR. From all of them, 15 metabolites

from the original pure standards experiment, and two that were not included in the

standards dataset, were identified in different TMS derivatives, so a total of 25 com-

pounds were found (Table 4.1) - 21 in human serum and 4 of them both in serum and
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urine -.

Table 4.1: Identification score results for the human serum and urine samples.

Name ICA MCR ICR MCR
OSD OSD

Serum
Leucine (1TMS) 99.61 99.26 86.55 89.26
Proline (1TMS) 99.34 99.49 95.42 95.60

Urea (2TMS) 98.45 96.78 95.77 95.24
Isoleucine (2TMS) 98.83 97.20 94.63 96.07

Proline (2TMS) 98.01 98.13 95.08 95.62
Glycine (3TMS) 99.25 99.26 98.56 98.60
Serine (3TMS) 98.18 98.24 96.77 96.81

Allo-threonine (3TMS) 97.35 94.67 87.52 96.21
Methionine (2TMS) 92.24 96.22 85.22 84.85

Aspartic acid (3TMS) 96.51 94.61 87.03 88.91
Phenylalanine (1TMS) 98.65 98.42 99.06 98.99

Cysteine (3TMS) 93.84 93.68 72.12 72.88
2-oxo-glutaric acid (2TMS) 87.48 87.43 73.48 74.40

Proline [+CO2] (2TMS) 98.78 98.74 98.28 98.53
Phenylalanine (2TMS) 97.35 97.01 95.11 95.09

Ornithine (3TMS) 98.22 98.19 97.47 97.91
Ornithine (4TMS) 98.21 98.19 98.92 98.99

Citric acid (4TMS) 96.81 96.78 95.30 95.27
Tyrosine (2TMS) 96.73 96.76 95.54 95.04

Myo-inositol (6TMS) 97.92 97.98 96.19 98.03
Cholesterol (1TMS) 92.58 92.23 92.84 92.23

Urine
Urea (2TMS) 94.26 97.20 91.19 91.17

2-oxo-glutaric acid (2TMS) 80.26 77.99 73.12 73.26
Citric acid (4TMS) 94.41 90.67 88.26 88.83

Myo-inositol (6TMS) 90.74 91.10 91.97 95.35

Raw data pre-processing included signal filtering using a Savitzky–Golay filter

of third order with a 1.1 seconds window length, i.e., half the average peak width.

Baseline was removed using a three-step spline interpolation. For each m/z channel,

first, (i) a running minimum filter was used with window length 10 times the average

peak width (k𝑓𝑖𝑙𝑡𝑒𝑟) and from the resulting signal Υ𝑚𝑖𝑛 the baseline standard deviation

was determined (𝜎𝑏). After that, (ii) a same window length running medians filter

was applied, and the resulting signal was Υ𝑏𝑎𝑠𝑒. The running medians filtered signal

outcomes a good approximation of the underlying baseline, but to refine it and to
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avoid outliers each point in Υ𝑏𝑎𝑠𝑒 was constrained not to have intensity above Υ𝑚𝑖𝑛

plus 𝜎𝑏. Finally, (iii) a spline interpolation was applied - with k𝑓𝑖𝑙𝑡𝑒𝑟/2 degrees of

freedom - to smooth Υ𝑏𝑎𝑠𝑒. The smoothed Υ𝑏𝑎𝑠𝑒 was subtracted from the original raw

data.

An overall identification capability for the studied methods is shown in the box

plots of Figure 4-2 (b). In the biological dataset, the OSD implementations display

a more accurate identification of the metabolites in terms of match score and major

qualitative differences between the regression (ICR/MCR–ALS) and OSD approaches

can be observed. Compounds showing an important match score enhancement be-

tween least squares and OSD methods include proline (1TMS) and (2TMS), serine,

methionine, aspartic acid, 2-oxo-glutaric acid, cysteine, phenylalanine or urea.

Compounds showing important qualitative and quantitative differences between

the least squares and OSD approaches include isoleucine, urea, aspartic acid and

cysteine (Figure 4-4). Figure 4-4 shows that isoleucine low intense interfering ions

are removed in the OSD approach. In the case of urea, the spectra is structurally the

same between methods but in the OSD approach, the intensities of their ions are closer

to the pure spectrum values, and this enhances the match score for the OSD case.

Figure 4-4 also shows that m/z signals 128 and 176 for aspartic acid and 91 and 120 for

cysteine are clearly interfering with the underlying pure spectrum of the compound,

as the least squares approach is not able to diminish the signal disturbance. On the

contrary, the OSD approach is able to deconvolve or discard those signals, and to

correct their intensity so that they are closer to the pure spectrum value. This also

reveals that OSD is not only an m/z classifier but also has a distinct multivariate

deconvolution property. OSD is not only able to discard those m/z signals unrelated

to the compound of interest, but is also able to correct, and therefore deconvolve, the

intensity of the m/z response. This deconvolution property, a product of the benefits

of the application of multivariate over univariate methods, is specially observable in
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the case of urea or cysteine (Figure 4-4) but also occurs in the remainder of the cases.
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Figure 4-4: Comparison of the extracted spectra (black) and the reference GMD spectra
(color) in the biological samples. Significant qualitative and quantitative differences can be
appreciated between least squares (ICR) and OSD (ICA–OSD) approaches. The extracted
spectra by ICR (top row) and ICA–OSD (bottom row) are shown in black for (a) isoleucine,
(b) urea, (c) aspartic acid and (d) cysteine. The reference spectra are shown in the same
axis for a better visual appreciation. The match score (MS) is noted in each plot.

To compare the multivariate deconvolution capacity of the different approaches,

the euclidean error distance was computed for all the normalized spectra and methods
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(Figure 4-5). For each compound, the euclidean distance was computed between the

m/z of each reference spectra and the m/z of the different empirical spectra by each

method, as described in the Supplementary Information. The figure shows that both

ICA–OSD and MCR–OSD methods appear closer to the original spectra, since their

distances are generally smaller. These results confirm that OSD acts as a multivariate

method for spectra deconvolution.

In some cases, the use of OSD led to a decrease of the match score in comparison

with LS, this occurs in the case of phenylalanine (1TMS) or myo-inositol (urine).

This can be explained as the LS approaches are more conservative, since they do not

make any presumption whether a certain fragment belongs or not to the compound

spectrum being extracted. Therefore, the OSD approach may fail in detecting covari-

ability between ions which may lead to an incorrect association of the true fragments

of the compound. Both ICA-OSD and MCR-OSD exhibit similar performance as

can be observed from Table A.2 (Supplementary Materials) and Table 4.1, but there

exist some differences in the match score for certain compounds between both OSD

methods. This can be explained as the only input for OSD is the elution profile, pre-

viously determined in this study by MCR or ICA. Consequently, the elution profiles

determined modify the amount of variance captured by PCA, including the amount

of variance related to the spectra to be extracted, and the amount of outlier variance

from neighboring compounds or noise, and this clearly determines the purity of the

eventual extracted spectra. This thought, is the main advantage of OSD, as it is able

to deconvolve the spectrum for a certain compound only with the shape of its elution

profile, and therefore independent of the quality of the elution profiles extracted for

the rest of the compounds.
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Figure 4-5: Euclidean error distance curves. This shows how close each compound is to
the original spectrum in terms of relative error. This graphic assists the evaluation of the
deconvolution capability between the methods compared. Outliers in the boxplot are not
shown. The 𝜌-values for the euclidean error distances between LS and OSD approaches show
that those differences are statistically significative (𝜌-value < 0.0005).

Execution Speed/scan (ms)

ICA-OSD

ICR

MCR-OSD

MCR

Figure 4-6: Time comparison between methods. The barplot shows the mean and standard
deviation speed of execution, in miliseconds, necessary to proces one scan of data by each
method.
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4.3.3 Execution time comparison

Finally, the execution time differences between ICA–OSD, MCR–OSD, ICR and MCR

are shown in Figure 4-6. Each method was tested by processing 2000 scans of raw

data (3.3 min of sample) with a range of 566 m/z fragments. These bar plots show the

mean speed of execution per scan. From this picture, it can be appreciated that both

ICR and ICA–OSD offer the most rapid processing of the chromatogram. The total

time difference between the ICA- and MCR-based methods becomes more important

as the number of samples to process increases. Data were processed using a 2.4 GHz

Intel Core 2 Duo processor with 4 GB of 1067 MHz DDR3 RAM.

4.4 Conclusion

This paper demonstrates the capability and suitability of independent component

regression (ICR) for GC–MS compound identification as an alternative to multivariate

curve resolution. The results given by ICR are comparable to the results given by

MCR, but ICR is is superior in terms of execution time. This is of special interest in

metabolomics due to the high amount of data that GC–MS currently generates and

the quantity of samples that are analyzed in metabolomics experiments. Also, a novel

OSD approach using principal component analysis as an alternative to the traditional

least squares approach is introduced, allowing the extraction of refined spectra when

compounds elute under the influence of biological matrices, compound co-elution or

other types of noise.
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Abstract

Comprehensive gas chromatography - mass spectrometry (GC×GC–MS) provides a
different perspective in metabolomics profiling of samples. However, algorithms for
GC×GC–MS data processing are needed in order to automatically process the data
and extract the purest information about the compounds appearing in complex bio-
logical samples. This study shows the capability of independent component analysis
- orthogonal signal deconvolution (ICA–OSD), an algorithm based on blind source
separation and distributed in an R package called osd, to extract the spectra of the
compounds appearing in GC×GC–MS chromatograms in an automated manner. We
studied the performance of ICA–OSD by the quantification of 38 metabolites through
a set of 20 Jurkat cell samples analyzed by GC×GC–MS. The quantification by ICA–
OSD was compared with a supervised quantification by selective ions, and most of
the R2 coefficients of determination were in good agreement (R2>0.90) while up to 24
cases exhibited an excellent linear relation (R2>0.95). We concluded that ICA–OSD
can be used to resolve co-eluted compounds in GC×GC–MS.
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5.1 Introduction

Metabolomics is the study of low molecular weight compounds in biological systems

[1]. Particularly, metabolomics focuses on comparing healthy versus metabolomic

disease organisms and, therefore, it attempts to discover predictive biomarkers by

detecting early biochemical changes before the appearance of the disease [2]. For

that purpose, metabolomics experimental designs include non-targeted analysis of

the samples as there is no prior knowledge of the metabolites that may be involved

not only in fully developed metabolomic diseases, but also in pre-symptomatic stages.

Analytical techniques to identify and quantify metabolites include the best-established

gas chromatography-mass spectrometry (GC–MS). Gas chromatography separates

the compounds contained in a sample while passing through a chromatographic col-

umn. However, when two or more compounds do not completely separate chromato-

graphically, those compounds are known to be co-eluted, and this clearly affects the

correct quantification and identification of the metabolites. In that sense, compre-

hensive gas chromatography - mass spectrometry (GC×GC–MS) [3, 4] was devised

to minimize co-elution. In GC×GC–MS, the sample pass through two chromato-

graphic columns with orthogonal polarity properties, which improves the compound

separation and it leads to an increased compound detection capacity as co-elution is

diminished.

However, compounds in the samples usually appear at trace levels and differ-

ent sources of noise derived from the instrument and the sample biological matrix

may interfere with the correct identification of the compounds. In the same way,

GC×GC–MS generates large quantity of data and its interpretation can not be con-

ducted manually. In that sense, GC×GC–MS data processing algorithms are needed

to turn the chromatographic signals into interpretable biological information. Be-

sides, GC×GC–MS samples are composed by a large amount of data in comparison

with GC–MS samples, and algorithms for GC×GC–MS data processing should be
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optimized for a fast data processing.

As reviewed in [5], some of the existing data processing algorithms that can be

applied to resolve mixtures in comprehensive gas chromatography include PARAFAC

[6] and multivariate curve resolution - alternating least squares (MCR–ALS) [7]. Con-

trarily to MCR, PARAFAC can be only applicable to a three-way data set.

In the past years, independent component analysis (ICA) [8] has been introduced

as an alternative to the traditional MCR for GC–MS data analysis [9, 10, 11]. ICA

is a blind source separation (BSS) technique used to separate linearly mixed sources,

i.e., it is capable of separating and retrieve the original compound sources - elution

profile or spectra - from a mass spectra chromatogram. Whereas MCR–ALS re-

solves a chromatographic mixture by minimizing the residual error between the data

and the predicted model, ICA uses another type of measure which is the statistical

independence, and it estimates the original compound sources by maximizing the

independence between components. ICA is widely applied in biomedical sciences,

including data processing in electroencephalography recordings [12, 13, 14], and it

is also one of the most reported algorithms for resolution of spectroscopy mixtures.

More recently, we have developed a new method known as independent component

analysis - orthogonal signal deconvolution (ICA–OSD) [15], embedded in an R pack-

age, that uses a combination of ICA and principal component analysis (PCA) to

identify co-eluted compounds in GC–MS. In ICA–OSD, PCA is proposed as an alter-

native to the typical use of least squares (LS) in MCR–ALS. The application of LS

for spectra extraction has different drawbacks, detailed in [15], which can be summa-

rized in the fact that no correlation or covariance information is taken into account

when applying LS, and therefore LS may find difficulties in distinguishing noise and

the different compound fragments. This may lead to introducing a bias into the LS

regressors specially in situations of co-elution or under undue biological matrix inter-

ference. Besides, whereas the current ICA-based methods consider the spectra as the
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independent source in the chromatograms, in ICA–OSD we implemented a different

approach where we assumed that the elution profile was the independent source, as

opposite to the spectra. In that sense, we used ICA to extract the elution profiles

and then determine the spectra by means of OSD. Finally, ICA–OSD shown itself

as a computationally faster alternative to MCR–ALS. Up to the date, the capability

of independent component analysis - orthogonal signal deconvolution for compound

quantification in chromatographic signals has not been studied.

In this paper we propose an automated method to deconvolve compounds appear-

ing in GC×GC–MS samples by independent component analysis - orthogonal signal

deconvolution.

5.2 Materials and methods

5.2.1 Materials

The performance of ICA–OSD was evaluated through a set of 38 metabolites ap-

pearing in 20 Jurkat cell samples extracted from human acute T cell lymphoblastic

leukemia cell line Jurkat. The samples of this experiment were previously used to

report the intersection of phosphoethanolamine with menaquinone-triggered apopto-

sis by Styczynski et al. [16]. More details on the dataset, sample preparation and

methods can be found in the original study.

5.2.2 Data analysis and pre-processing

ICA–OSD was used to automatically extract and deconvolve the compounds concen-

tration profiles and spectra. The GC×GC–MS chromatograms were processed by

analyzing each modulation cycle separately. Each modulation cycle was first divided

in chromatographic peak features (CPFs) using the same criteria as in [17]. The dif-

ferent CPFs contained several compounds, so the algorithm had to deconvolve them
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in case of co-elution. The number of factors or components for ICA was determined

by evaluation of residual sum of squares (described in Section 3.2).

The chromatograms were automatically processed by ICA–OSD. From the ICA–

OSD output we only took into account those metabolites appearing in at least 15 of

the 20 samples, so a total of 38 compounds with KEGG number (Kyoto Encyclope-

dia of Genes and Genomes) were identified. Metabolite identities were curated by

spectral similarity with the reference spectra and retention index error by retention

time standardization using fatty acid methyl esters (FAME) standards. However, the

identity was not confirmed with the analysis of reference standards and therefore,

the list of identified metabolites is putative, and a name is assigned to facilitate the

interpretation of the results. For this sub-set of 38 compounds, reference relative

compound concentration - relative across samples - was determined by the area of a

selective ion. The most selective ion was manually determined for each compound.

The spectra determined by ICA–OSD were compared using the dot product [18]

against the Golm Metabolome Database (GMD) [19] MS spectra library. The masses

73, 74, 75, 147, 148, and 149 m/z were excluded before processing the sample, since

they are ubiquitous mass fragments typically generated from compounds carrying a

trimethylsilyl moiety [19]. They were also excluded in the identification. Only the

fragments from m/z 70 to 600 were taken into account when comparing reference and

empirical spectra, since this is the m/z range included in the downloadable GOLM

database. Also, chromatographic signals were filtered using a Savitzky–Golay filter

[20]. The ICA algorithm used was the joint approximate diagonalization of eigenvalues

(JADE) [21].
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5.3 Computational methods and theory

This section describes the ICA–OSD algorithm together with the methodology to

determine the number of compounds.

5.3.1 Resolution of GC×GC–MS mixtures by independent com-

ponent analysis – orthogonal signal deconvolution

Orthogonal signal deconvolution (OSD) is a multivariate method which purpose is

to extract and deconvolve the spectrum of a given compound only with the informa-

tion relative to the compound elution profile. OSD is based on principal component

analysis, avoiding thus, the use of least squares used in multivariate curve resolution

- alternating least squares (MCR–ALS). Here, the elution profiles are determined by

ICA to later determine the spectra using OSD, and in this manner we will refer the

complete approach as ICA–OSD.

ICA is mathematically expressed as:

𝑋 = 𝐴𝑍𝑇 (5.1)

where X (N×M) is the matrix containing the mixture of compounds, A (N×k) is

the mixing matrix and Z𝑇 (k×M) is the source matrix. N and M are the number of

rows and columns of the data matrix X, and k denotes the number of components or

compounds in the model. Each row in X holds a m/z channel whereas each column

holds the retention time scans. ICA decomposes the data matrix by finding the

independent sources contained in X.

As mentioned above, generally ICA-based approaches are based on extracting

first the spectra using ICA - the spectra are considered the independent sources

- to later estimate the elution profile using different approaches. In our ICA–OSD
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implementation, the elution profiles of the compounds are considered the independent

sources and thus Z𝑇 holds the elution profile for each compound. Since the elution

profiles determined by ICA may be affected by the ICA ambiguity of negativity, the

sources in Z𝑇 that express more negative variance than positive are negatively rotated.

Moreover, all the components in Z𝑇 are submitted to unimodality constraint to force

one local maxima per source. ICA has a second ambiguity related to variance (energy)

indetermination, which means that the energy of the recovered compound profiles

do not correspond to the real energy of that component. To overcome that, a least

squares regression is performed with the estimated sources hold in Z𝑇 against the base

ion chromatogram of the matrix X. The base ion chromatogram or BIC is determined

by representing the maximum m/z value for each point in the chromatogram.

Once the elution profiles are determined, OSD is applied to extract each corre-

sponding spectra. In OSD, an X′
𝑗 sub-data matrix is determined for each compound 𝑗

in Z𝑇 . This sub-data matrix comprises only the data from X in which the compound

profile in Z𝑇
𝑗 is non-zero - the elution profile in Z𝑇 is used as a mask to suppress

the surrounding data non-related to the compound -. A PCA is performed over the

sub-data matrix to determine the spectra associated to each compound. PCA can be

mathematically expressed as:

𝑋 ′
𝑗 = 𝑌𝑊 𝑇 (5.2)

where X′(N×M) is the sub-data matrix to decompose, Y(N×M) is the score matrix

and W(M×M) is the loading or eigenvectors matrix. For each compound profile, the

PCA decorrelates the information of the sub-data matrix and decomposes it into a

matrix W𝑇 (Eq. 5.2) which is a set of orthogonal spectra and a matrix Y which is

associated to the retention time covariance response for each spectrum in W𝑇 . The

matrix W𝑇 holds the spectra of the compound of interest together with the spectra

of the different sources of noise - such as co-eluted substances or biological matrix

interference -. To determine which spectrum is related to the compound of interest
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we compute the correlation between the profile of the compound in Z𝑇
𝑗 and the

information of the covariance responses determined by the PCA in Y. The component

with the highest absolute correlation is the candidate spectra for the compound of

interest.

OSD can be summarized in the following steps:

1. Given a Z𝑇
𝑗 compound elution profile, determine a X𝑗 sub-data matrix com-

prised only of the data of the retention time in which the compound is eluting.

2. Apply a PCA over X𝑗. The result is a score matrix Y and loading matrix W.

3. Determine the correlation coefficient between Z𝑇
𝑗 and each component in Y

and select the component ℎ with the highest absolute correlation value.

4. Select the component ℎ in W, rotate Wℎ according to the sign of the previous

determined correlation coefficient, and clip to zero all the negative values. Wℎ

is now considered to be the spectrum of Z𝑇
𝑗 .

After the spectra are determined, the elution profiles are refined by the application

of a NNLS regression of all the spectra against the data matrix X.

5.3.2 Determination of number of components

To define the ICA model, it requires a fixed number of components. The number of

components is closely related to the number of compounds present in the mixture, as

usually the model to define the data is not only constructed by pure compounds but

also by baseline, noise, or other interferences. An iterative residual sum of squares

(RSS) approach was used to automatically determine the number of components for

the ICA model. The RSS can be expressed as:

𝑅𝑆𝑆(𝑘) =
𝑁∑︁
𝑖=1

(𝑋 −𝑋*(𝑘))2 (5.3)
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where, X is the original mixture matrix, 𝑋*(𝑘) is the resolved matrix by ICA–OSD

using k components, and N is the total length of the unfolded X matrix. For each k

in 𝑘 = 1, 2, ..., 𝑁 , ICA–OSD resolves the X data with k components and it determines

the RSS. This method yields a decreasing RSS curve that tends to a minimum. The

proper number of factors is determined when the addition of more components does

not significantly decrease the explained variance, i.e., when the RSS error reaches a

certain threshold.

5.4 Results and discussion

The chromatographic data was automatically processed with our proposed method

ICA–OSD. Metabolites eluting in more than one modulation cycle were associated

based on their identity and quantified together (sum of concentrations). The metabo-

lites across samples were aligned also based on their identity. Table 5.1 shows the

list of the identified compounds along with their 1st and 2nd retention times and the

identification match factor (MF). The identification match factor is determined by

dot product between the averaged compound spectra across samples and the refer-

ence spectra (GMD). The closer the score to one hundred, the more exact and pure

the spectra extracted. The table also shows the linear regression coefficient of deter-

mination (R2) between our empirical method ICA–OSD and the selective ion area

(reference model). In order to demonstrate the ICA–OSD quantification capability

along a wide dynamic range of metabolite concentration, we determined the relative

compound concentration (Rel. C.) which is the quotient between the mean concen-

tration of each compound and the mean concentration of all the compounds listed in

the table.

In this study, we use the coefficient of determination R2 as a metric to describe

the relative deviation between our proposed method for quantification (ICA–OSD)
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and our reference model (selective ion). From the given results, most of the R2

coefficients are in good agreement (R2>0.90) while up to 24 cases exhibit an excellent

linear relation (R2>0.95). Overall, ICA–OSD conducted a reliable quantification of

compounds even when those occurred at low concentration or appeared co-eluted.

The efficiency of ICA–OSD is directly conditioned by the degree of noise and co-

elution with other compounds. To illustrate this, and the operation of ICA–OSD

for compound deconvolution we shown two different examples of co-elution situations

in GC×GC–MS. Figure 5-1 shows the total ion chromatogram (BIC) in dotted grey

line, and the resolved compound elution profiles by ICA–OSD in color lines, of two

selected retention time windows from different modulation cycles.
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(2) (3)
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Figure 5-1: Two cases of co-elution resolved by ICA–OSD. The dotted grey line represents
the BIC whereas the resolved profiles are shown in the solid-colored line. In (a), erythritol
appear in co-elution with other unkown compounds (1, 2). In (b), myo-inositol appear also
in co-eluted with an unkown compound (3, 4).

In Figure 5-1 (a), three compounds appear under the same chromatographic peak,

those three compounds were resolved by ICA–OSD and one of them was identified

as erythritol (4TMS). Similarly, in Figure 5-1 (b) three compounds appear co-eluted
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Figure 5-2: Representation of the extracted spectra (black) by ICA–OSD and the reference
GMD spectra (color), for the cases shown in Figure 1, erythritol and myo-inositol. Reference
spectra are shown negatively rotated in the same axis for a better visual appreciation.

but resolved by ICA–OSD; on of them was identified as myo-inositol (6TMS). The

resolved spectra for erythritol and myo-inositol are shown in Figure 5-2 where we

can visually compare the empirical (black and positive) and the reference (color and

negative) spectra. In both cases ICA–OSD successfully extracted the spectra needed

to properly identify both compounds. In the Figure 5-1 (a) case, erythritol appears

low concentrated and in co-elution with a more intense compound. Despite that,

ICA–OSD is capable of extracting a sufficient pure spectrum to allow a correct iden-

tification, with a match score of 98 % - for the given sample case -. In Figure 5-1 (b),

myo-inositol appears strongly interfered by another more concentrated compound. As

a result, ICA–OSD fails in correctly associate the fragments between m/z 100 and 150

(Figure 5-2 (b)), which appears in the reference spectrum but they do not appear in

the empirical spectrum. Also, the ions m/z 305 and 318 appears to be interfered, and

their relative intensities differ from the reference pattern. Consequently, the match

score of myo-inositol in this given case is 87 %. This is a clear example of the problems

for the correct identification of metabolites that co-elution brings. The identification
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performance can be assessed also in an example of a set of spectra extracted by ICA–

OSD shown in Figure 5-3, where we can visually compare the empirical (black and

positive) and the reference (color and negative) spectra for each compound. The

figure shows the spectra extracted for lactic acid (2TMS), phosphoric acid (3TMS),

fumaric acid (2TMS) and glycerol (3TMS), and this exemplifies the capability of

ICA–OSD to successfully extract spectra from chromatographic mixtures.
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Figure 5-3: Representation of a set of extracted average - across samples - spectra (black) by
ICA–OSD and the reference GMD spectra (color). Reference spectra are shown negatively
rotated in the same axis for a better visual appreciation.

As mentioned before, one of the most important factors that difficulties the iden-

tification is co-elution. In those cases, the spectrum of each compound has to be cor-

rectly separated - resolved or deconvolved - from co-eluted compounds or other noise

interferences. Despite that one of the differential characteristics of GC×GC–MS with
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respect to GC–MS is the reduction of the co-elution problem, we still find co-eluted

peaks across the second retention time dimension. Here we show how ICA–OSD is

also an effective method for the resolution of chromatographic signals including those

generated by GC×GC–MS. Due to noise and other interferences, OSD may fail in

correctly classify the m/z when deconvolving spectra. This means that OSD would

fail in associating a certain m/z to a compound where other methods based on least

squares, such as MCR–ALS would probably not, as OSD is a more conservative ap-

proach . On the contrary, OSD brings more accuracy generally in co-eluted situations

as attempts to differentiate which ions correspond to the compound of interest [15].

Here we applied ICA–OSD in each modulation cycle separately. We later grouped

the compounds appearing in different modulation cycles according to their identity.

This may also affect the quantification of compounds as the same compound can be

identified with a different name between or within samples. Automatic alignment or

grouping of compounds between and within samples after deconvolution is still an

important problem that has to be tackled.

5.5 Conclusions

We previously shown that ICA–OSD was able to successfully extract the spectra

from co-eluted compounds in GC–MS [15], but the capability of ICA–OSD to quan-

tify metabolites was not evaluated. In this study we evaluated a method to au-

tomatically resolve chromatographic data in GC×GC–MS samples with ICA–OSD.

Besides, ICA–OSD is an efficient method in terms of speed of execution as previously

shown in [15], which is an important advantage for GC×GC–MS data processing

due to the large amount of data that metabolomics experiments generate with this

analytical platform. This study concludes that ICA–OSD can be used to resolve

co-eluted compounds in GCxGC/MS-based metabolomics samples. The package osd
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is available from the Comprehensive R Archive Network (CRAN) at http://cran.r-

project.org/package=osd and it comes under the GNU General Public Licence (GPL)

2.0 or higher licence.
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Table 5.1: List of identified compounds in Jurkat cell samples. MF is the match factor, R2

is the linear regression coefficient, and Rel. C is the relative concentration.

No. Rt1 Rt2 Name MF R2 Rel. C (%)
1 4.5 1.8 Boric acid (3TMS) 92 0.96 137.28
2 4.58 2.9 Alanine (2TMS) 95 0.82 24.87
3 5.33 1.99 Valine (1TMS) 98 0.92 27.06
4 5.58 2.06 Lactic acid (2TMS) 99 0.99 939.18
5 5.75 2.12 Glycolic acid (2TMS) 98 0.90 61.17
6 5.92 1.94 Ethanolamine (3TMS) 87 0.84 16.26
7 6.5 1.9 Isovaleric acid, 2-oxo- (1MEOX) (1TMS) MP 89 0.98 101.7
8 6.67 2.38 Furan-2-carboxylic acid (1TMS) 98 1.00 25.02
9 7.5 2.78 Phosphoric acid (3TMS) 98 0.97 12.84

10 7.6 1.86 Glycerol (3TMS) 90 0.98 1294.11
11 8.1 2.38 Succinic acid (2TMS) 98 0.85 49.99
12 8.6 2.12 Nonanoic acid (1TMS) 91 0.98 105.88
13 9.1 2.04 Threonine, allo- (3TMS) 98 0.90 12.23
14 9.5 2.48 Aspartic acid (2TMS) 95 0.85 20.99
15 9.6 2.06 Malic acid (3TMS) 72 0.99 13.83
16 9.8 2.11 Decanoic acid (1TMS) 96 1.00 11.63
17 10.6 1.86 Erythritol (4TMS) 97 0.99 56.44
18 11.4 2.48 Proline [+CO2] (2TMS) 99 0.98 7.99
19 11.6 2.54 Hypotaurine (3TMS) 97 0.98 74.63
20 11.8 2.26 Glutamic acid (3TMS) 98 0.99 93.16
21 12.23 3.79 Pyroglutamic acid (2TMS) 99 0.89 112.16
22 12.23 3.05 Proline, 4-hydroxy-, cis- (3TMS) 98 0.82 14.45
23 12.82 4.28 Glutamic acid (2TMS) 97 0.97 17.37
24 13.23 3.26 Glutamic acid (3TMS) 98 0.99 80.1
25 13.48 3.01 Dodecanoic acid (1TMS) 98 0.94 25.84
26 13.9 3.65 Pyrophosphate (4TMS) 96 0.99 5.25
27 14.23 3.94 Glucose, 2-amino-2-deoxy- (4TMS) MP 91 0.99 8.38
28 14.57 2.89 Xylitol (5TMS) 98 0.92 24.63
29 14.98 3.41 Glycerol-3-phosphate (4TMS) 98 0.92 93.59
30 15.4 3 Ornithine (4TMS) 97 1.00 3.95
31 15.57 3.02 Tetradecanoic acid (1TMS) 98 0.97 154.25
32 16.07 3.25 Tyrosine (2TMS) 99 0.84 3.84
33 16.15 2.85 Psicose (1MEOX) (5TMS) BP 99 0.96 270.47
34 16.4 2.85 Glucose (1MEOX) (5TMS) MP 97 1.00 149.68
35 16.48 2.83 Mannose (1MEOX) (5TMS) MP 98 1.00 66.15
36 17.65 2.9 Inositol, allo- (6TMS) 94 0.95 19.81
37 18.98 2.98 Octadecenoic acid, 9-(Z)- (1TMS) 91 0.89 30.99
38 22.9 2.8 Sucrose (8TMS) 94 1.00 3.43
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Chapter 6

Avoiding hard chromatographic

segmentation: a moving window

approach for the resolution of

GC–MS signals in metabolomics by

multivariate methods.
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Abstract

Gas chromatography – mass spectrometry (GC–MS) produces large and complex
datasets characterized by co-eluted compounds and at trace levels, and with a dis-
tinct ion-redundancy as a result of the high fragmentation produced by electron im-
pact ionization. Compounds in GC–MS can be resolved by taking advantage of the
multivariate nature of GC–MS data by applying multivariate resolution methods.
However, to ensure a correct performance, multivariate methods have to be applied
in small regions of the chromatogram, and therefore the chromatogram is segmented
prior to the application of the algorithms. The automation of this segmentation pro-
cess is a challenging task as it implies separating between informative data and noise
from the chromatogram. This study demonstrates the capabilities of independent
component analysis – orthogonal signal deconvolution (ICA–OSD) and multivariate
curve resolution – alternating least squares (MCR–ALS) with a moving window im-
plementation. We evaluated the proposed methods through a quantitative analysis
of GC-qTOF MS data from 25 serum samples. The quantitative performance of both
ICA–OSD and MCR–ALS moving window-based implementations was compared with
the quantification of 33 compounds by the XCMS package. Results shown that most
of the R2 coefficients of determination exhibited a high correlation (R2>0.90). This
demonstrates the capability of both ICA–OSD and MCR–ALS moving window-based
to resolve and quantify compounds appearing in GC–MS samples.
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6.1 Introduction

Gas chromatography – mass spectrometry (GC–MS) has been extensively applied

for compound profiling in metabolomics experiments due to the highly reproducible

electron impact ionization process. Electron impact (EI) is a high fragmentation

ionization method which leads to an extensive fragmentation. Therefore, the richness

of GC–MS data relies on an inherent correlation – or ion-redundancy – between

fragments or ions from the same compound, i.e., different peak fragments elute at

the same retention time and with the same elution profile [1]. However, compounds

in GC–MS may appear co-eluted - chromatographycally not completely separated or

resolved - and/or at trace levels. Due to the multivariate nature of GC–MS data, some

approaches for its processing have been focused on the implementation of multivariate

methods.

The most reported multivariate methods applied for the resolution of GC–MS

signals are those based on multivariate curve resolution - alternating least squares

(MCR–ALS) [2, 3], or parallel factor analysis (PARAFAC) [4, 5]. Agorithms based

on independent component analysis (ICA) have also been applied for GC–MS signal

resolution [6, 7, 8]. More recently, an alternative application of ICA, called indepen-

dent component analysis – orthogonal signal deconvolution (ICA–OSD) [1, 9], for the

resolution of GC–MS chromatograms has been introduced, where the concept of inde-

pendence was twisted: whereas the aforementioned ICA-based methods consider the

spectra as the independent source in the chromatograms, ICA–OSD considers the elu-

tion profile as the independent source, as opposite to the spectra [9]. Contrarily to the

spectra, chromatography aims to separate the compounds along the chromatogram,

so compound chromatographic profiles are naturally independent between them and

their degree of independence depends on their degree of co-elution. In that sense, in

ICA–OSD, ICA is employed to extract the elution profiles and then determine the

spectra by means of OSD. Orthogonal signal deconvolution (OSD) is a method that
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uses principal component analysis (PCA) as an alternative to the typical use of least

squares (LS) used for example in MCR–ALS. When applying LS, no correlation or

covariance information is taken into account, and this may introduce a bias into the

LS regressors specially in situations of co-elution or under undue biological matrix

interference [1, 9]. OSD allows the extraction of more pure spectra in comparison

with least squares-based algorithms.

Despite the availability of multivariate methods for GC–MS signal resolution,

the correct answering to biological hypothesis or the discovering of new biological

insights is the current untargeted GC–MS-based metabolomics challenge. In that

sense, all the implementations of multivariate methods should be fully automated, and

this automatization should not be limited to the deconvolution process but also the

posterior alignment of the resolved metabolites. There is a need for high-throughput

application of these multivariate methods. Several automated methods based on

the aforementioned algorithms have been reported [10, 11, 12, 13, 14]. However, as

curve resolution techniques work in small and regional intervals [13], the application of

multivariate methods in high-throughput GC–MS resolution is usually conducted by a

hard chromatographic segmentation, i.e., windowing or dividing the chromatogram by

selection those regions with putative information – compounds – to be resolved. The

automation of this segmentation process is a challenging task as it implies separating

what is useful data and what is noise from the chromatogram and thus, selecting

regions of the chromatogram without splitting compounds on window borders or

loosing useful information, i.e., considering compounds at trace levels as noise.

Moving windows have been used in GC–MS for factor analysis [15, 16, 17, 18]. In

these studies, factor analysis techniques are applied trough a moving window with

the aim of detecting components or spectral features. Those spectral features can

be later resolved for a posterior resolution and comparison between samples. More

recently, the concept of sliding window multivariate curve resolution (SW-MCR) [19]
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was introduced for the resolution of ion-mobility gas chromatography data. When

using a moving - or sliding - window to resolve the chromatogram, the consecutive

windows have to be overlapped to ensure that one compound that could be split on

window borders is fully covered by the next window. In SW-MCR, they tackle this

issue by grouping compounds through consecutive windows based on the similarity of

their spectra. Grouping compounds across windows based on spectral similarity is a

challenging task, as due to noise, the spectra of the same compounds deconvolved from

two consecutive windows may change, which difficults the selection of the best spectra.

To our knowledge, the performance and suitability of moving window MCR–ALS and

ICA–OSD-based approaches for the automated resolution of GC–MS metabolomics

samples has not yet been studied.

In this study we propose an automated application of moving window-based ICA–

OSD and MCR–ALS approaches for the resolution of GC–MS signals in biological

samples. This approach avoids hard segmentation or windowing of the chromatogram.

We propose a duplicity filter based on the minimization of the residual error to filter

duplicated compounds resolved across windows, and thus selecting the best models.

Also, to increase the automated reproducibility of the results, we use an existing au-

tomated method for aligning compounds across samples. We evaluated the proposed

methods through a quantitative analysis of GC-qTOF MS data from serum samples

of adolescents with hyperinsulinaemic androgen excess and healthy controls and the

quantitative results were compared with centWave [20], the peak-picking algorithm

implemented in the widely used XCMS package [21, 22].
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6.2 Materials and methods
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Figure 6-1: In (a), illustration of the moving window approach. A fixed-length window is
displaced with a certain overlapp along the chromatogram. The blue lines represent each
m/z (extracted ion chromatogram). Each chromatographic window (b) is resolved by ICA–
OSD or MCR–ALS into pure chromatographic profiles and spectra. This case shows the
resolution of (i) glycerol and (ii) phosphoric acid, which appear strongly co-eluted. For this
case, the extracted ion chromatogram is shown in grey, whereas colored solid lines represent
the resolved chromatographic profiles. Compound resolved spectra are shown in color red
and green along with each reference spectrum negatively rotated in the same axis and shown
in black. In this example, the resolved spectra of both phosphoric acid and glycerol - by
comparing it with the reference - seems to be affected by the strong co-elution in which they
appear.

6.2.1 Materials

The methods were compared by the quantification of 33 metabolites across 25 serum

samples (from 11 young, non-obese adolescents with HIAE and 14 age-, weight- and

ethnicity-matched healthy controls) [23], analyzed through GC-qTOF MS. This work-
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bench was previously used to demonstrate the capabilities of the eRah R package [24].

More details on the dataset, sample preparation and methods can be found in the

original study. Briefly, analysis was carried out on a qTOF MS 7200 (Agilent, Santa

Clara, CA, USA) coupled to an Agilent 7890A gas chromatography (GC). Derivatized

samples (1 𝜇L each) were injected in the gas chromatograph system with a split inlet

equipped with a J&W Scientific DB5–MS+DG stationary phase column (30 mm ×

0.25 mm i.d., 0.1 𝜇m film, Agilent Technologies). Helium was used as a carrier gas at

a flow rate of 1 mL/min in constant flow mode. The injector split ratio was adjusted

to 1:5 and oven temperature was programmed at 70 ∘C for 1 min and increased at 10

∘C/min to 325 ∘C. The MS was operated in the electron impact ionization mode at

70 eV. Mass spectral data were acquired in full scan mode from m/z 35 to 700 with

an acquisition rate of 5 spectra per second.

6.2.2 Data analysis and pre-processing

GC–MS chromatograms were processed using XCMS in order to detect and align

features. A feature is defined as an ion entity with a unique m/z and a specific

retention time (mzRT). The parameters used in the XCMS workflow were: xcmsSet

(method = ’centWave’, ppm = 15, peakwidth = c(1,5)); retcor (method =

’peakgroups’, extra = 1, missing=1) and group (mzwid = 0.0025,

minfrac = 0.5, bw = 5). XCMS analysis provided an xcmsSet object containing

the retention time, m/z value, and peak intensity (or area) of each feature for every

serum sample. For each compound, we selected the feature to be used as a selective

ion for quantification reference. Raw GC–MS files are available at MetaboLights with

accession number MTBLS321.

Both moving window-based ICA–OSD and MCR–ALS implementations were used

to automatically extract and deconvolve the compounds concentration profiles and

spectra. The methods were compared using different lengths of window, concretely,

119



we used 50, 75 and 100 scans length corresponding to 10, 15 and 20 seconds respec-

tively. We used an overlapping of 50 % for all the implementations. The number of

factors or components for both ICA and MCR was determined by a singular value

decomposition (SVD), as described in [25]. MCR–ALS was initialized by means of a

principal component analysis (PCA).

Reference spectra were obtained from the Golm Metabolme Database (GMD)

[26, 27]. The fragments at m/z 73, 74, 75, 147, 148, and 149 were excluded before

processing the sample, since they are widespread mass fragments typically gener-

ated from compounds carrying a trimethylsilyl-moiety [27]. Also, chromatographic

signals were filtered by noise and baseline removal as described in [1, 24].The ICA

algorithm used was the joint approximate diagonalization of eigenvalues (JADE) [28]

implemented in the R package JADE [29]. Both MCR–ALS and ICA–OSD algo-

rithms employed were those included in the R package osd, freely available as an

R package on the Comprehensive R Archive Network (CRAN) at http://CRAN.R-

project.org/package=osd. Once resolved, compounds were aligned across samples

with eRah [24] alignment algorithm (http://CRAN.R-project.org/package=erah).

6.2.3 Moving window resolution of chromatographic signals

The aim of the method is to achieve the resolution of an entire chromatogram. Then,

a moving window is proposed where, in each iteration, the window is displaced with

a determined overlapping along the retention time (Figure 6-1 (a)). Each chromato-

graphic window is resolved into pure chromatographic profiles and spectra (Figure

6-1 (b)).

We employed two methods for the resolution of mixtures, one is the widely used

multivariate curve resolution – alternating least squares (MCR–ALS), and the other is

independent component analysis - orthogonal signal deconvolution (ICA–OSD). Both

algorithms share the same objective based on the assumption of the Lambert-Beer’s
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law, which can be mathematically described as follows:

𝐷 = 𝐶𝑆𝑇 + 𝐸 (6.1)

where D (𝑁 ×𝑀) is the chromatographic window to be resolved, C (𝑁 × 𝑘) is the

resolved concentration profile matrix, S (𝑀 × 𝑘) is the resolved spectra matrix and E

(𝑁 ×𝑀) is the error matrix. In this notation, N is the number of chromatographic

scans (retention time), M is the range of acquisition of the mass-charge ratio (m/z),

and k is the number of components or compounds in the model. MCR–ALS uses

an iterative least squares algorithm (ALS) to determine both C and S matrices by

minimizing the error matrix E. A detailed explanation of MCR–ALS, together with

pseudocode, is given elsewhere [30]. In ICA–OSD, independent component analysis

is used to extract the chromatographic profile matrix C by considering those the

independent source of the chromatogram. After that, orthogonal signal deconvolution

(OSD) is applied to determine S. OSD purpose is to extract and deconvolve the

spectrum of a given compound only with the information relative to the compound

elution profile - which are previously determined by ICA -. A detailed explanation of

ICA–OSD is given elsewhere [1, 9].

Both methods obtain a local C and S matrices, corresponding to the resolution

of each window into pure chromatographic profiles and spectra, respectively. Each

local C and S matrices are appended to a general C𝑔 and S𝑔 matrices containing

the resolution of all the chromatogram. As mentioned before, when using a moving

window to resolve the chromatogram, the consecutive windows have to be overlapped

to ensure that one compound that could be split on window borders is fully covered

by the next window. Then, compounds - or often a part of it when it is split by the

window border - are expected to be resolved in more than one window. This leads

to multiple duplicates that difficulties the selection of the quantitative - correctly

resolved - compound. To ensure only one chromatographic profile and spectrum per

121



compound, a duplicity filter is proposed. First, a correlation matrix for C𝑔 is deter-

mined, and those groups of chromatographic profiles that correlate in more than a

certain threshold - typically 75 % - are considered that may be duplicated. These

groups may be composed of two or more chromatographic profiles. After that, all

the possible combinations are considered. As an illustrative example, let us consider

that three (N=3) chromatographic profiles C1, C2 and C3 correlate between them.

Then, 8 (2𝑁=3) possible scenarios are considered. For each scenario, first, a chromato-

graphic matrix D is determined comprising the retention time of the all the considered

chromatographic profiles, and after that, a putative D* matrix is determined by:

𝐷*(𝑘) = 𝐶𝑗𝑆
𝑇
𝑗 (6.2)

where D*(k) is the reconstructed matrix and the subindex j denotes the com-

pounds considered in each k=1,2,...,N case. Then, a residual sum of squares for each

scenario is determined as follows:

𝑅𝑆𝑆(𝑘) =
𝑁∑︁
𝑖=1

(𝐷 −𝐷*(𝑘))2 (6.3)

The scenario with the least RSS errors is considered to be the combination that

best describes the data, and the chromatographic profiles that are not included in

this combination, are removed from C𝑔 and S𝑔.

6.3 Results

The moving window-based ICA–OSD and MCR–ALS implementations were used to

automatically extract and deconvolve the compounds concentration profiles and spec-

tra from all the 25 serum samples. Three different window lengths were employed -

50, 75 and 100 scans length corresponding to 10, 15 and 20 seconds respectively -, all
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with an overlap of 50 %. After being resolved, compounds were automatically aligned

across samples by the eRah’s alignment algorithm. The area and intensity of a set of

33 compounds by ICA–OSD and MCR–ALS were determined by the area and inten-

sity of the resolved compounds elution profile, whereas for the case of XCMS, we man-

ually selected a quantitative mzRT feature corresponding to a selective/quantitative

ion. Table 1 shows the list of the 33 metabolites with their retention time, the quan-

tification m/z and a linear regression coefficient of determination (R2) between our the

proposed methods (ICA–OSD and MCR–ALS) and the selective ion area (reference

model). In order to demonstrate the ICA-OSD/MCR–ALS quantification capability

along a wide dynamic range of metabolite concentration, we determined the relative

compound concentration (Rel. C.) which is the quotient between the mean concentra-

tion of each compound and the mean concentration of all the compounds listed in the

table. Overall, results shown excellent linear correlations (R2>0.90) for most com-

pounds and methods. Those compounds noted with NF (Not Found) have not been

found by the algorithm: we considered one compound as NF when it was detected

in less than 9 samples. We define the term detected as a compound that has been

correctly resolved in a sample and also correctly aligned with the same compounds

appearing in the rest of the samples.

From the table, differences between windows size were observed. For example,

Valine (1) eluting at 6.11 min, was not found for the 20 seconds window size. This

can be attributed at the fact that its low concentration (9 %) affected its detection

when more compounds were included in a window. Contrarily, in small windows, the

compound had relatively more importance - variance - respect the whole window,

which benefited its correct detection in the 10 and 15 s windows cases. The same

occurred with isoleucine and proline at 9.06 and 9.10 min, with relative concentrations

of 2 and 9 % respectively.

Also, some coefficients of determination varied when comparing area and intensity.
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Intensity is expected to be a more robust variable, as the fragments shape may be

easily affected by noise or co-elution, whereas in those cases the peak intensity remains

more stable. This is because the peak apex is relatively more difficult to be found

co-eluted.

From the results, both ICA–OSD and MCR–ALS shown a comparable quantitative

performance. Both methods led to similar R2 values. Differences were found, for

example, for the case of Leucine (2) at 8.75 min, where ICA–OSD failed in detecting it

whereas MCR–ALS did not, and ICA–OSD successfully quantified glycerol at 8.8 min,

whereas MCR–ALS shown a poor performance. Also, the number of samples for where

each compound was automatically detected varied between methods (Supplementary

Table B.1). For example, hexanoic acid eluting at 5.85 min was detected by ICA–OSD

13 and 18 times for the 10 and 15 s windows cases respectively, whereas MCR–ALS

successfully detected it in all the 25 samples. This also explains the fact that glycerol

was not correctly detected by MCR–ALS, as it was detected only in 4, 17 and 9

samples for the 10, 15 and 20 seconds windows cases whereas it was detected in

almost all the samples by ICA–OSD.

After being resolved, compounds were automatically aligned by the eRah’s align-

ment algorithm. This multivariate algorithm groups the compounds across samples

by taking into account the retention time distance and spectral similarity. Thus,

a good resolution is important to achieve a good alignment, as automation should

not only be limited to deconvolution, but it should also contemplate the automated

alignment in order to register the concentrations changes among samples to obtain

new biological insights.

Finally, the most significant difference between ICA–OSD and MCR–ALS is their

speed of execution. ICA–OSD is a fast resolution method, whereas the implementa-

tion based on MCR–ALS resolved an entire sample in approximately 3 min for the 20

s window size, ICA–OSD only took approximately 1.4 min. A fast speed of execution
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is and advantageous feature due to the large amount of data that metabolomics ex-

periments generate and also because when a moving window approach is employed,

the same data is analyzed twice due to the overlapping, leading to a lower speed of

execution in comparison with the traditional hard segmentation approaches. Process-

ing was conducted with a 2.4 GHz Intel Core i7 with 16 GB of DDR3 memory at

1333 MHz.

6.4 Conclusions

Different multivariate methods have been reported in literature for the processing

of GC–MS data. However, its application in GC–MS data involve segmenting the

chromatogram into regions or windows, which may lead to failure in the detection

of compounds. In this study, we proposed the application of moving window-based

independent component analysis – orthogonal signal deconvolution (ICA–OSD) and

multivariate curve resolution – alternating least squares (MCR–ALS) approaches. We

evaluated the proposed methods through their quantification capabilities in compari-

son with the XCMS package. Results shown that the proposed methodology was able

to correctly quantify compounds appearing in biological matrices with the advan-

tage that the automation of the method was not limited only to the resolution, but

also the alignment of compounds across samples. Altogether, our results strengthen

the suitability of the challenged independent component analysis (ICA) technique

for multivariate resolution in analytical chemistry [31], and they demonstrate the ro-

bustness of ICA–OSD as a complementary method to MCR–ALS for the automated

resolution of GC–MS mixtures in metabolomics experiments.
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Chapter 7

eRah: a computational tool

integrating spectral deconvolution

and alignment with quantification

and identification of metabolites in

GC–MS-based metabolomics

133



Abstract

Gas chromatography coupled to mass spectrometry (GC–MS) has been a long-standing
approach used for identifying small molecules due to the highly reproducible ionization
process of electron impact ionization (EI). However, the use of GC–EI MS in untar-
geted metabolomics produces large and complex datasets characterized by co-eluting
compounds and extensive fragmentation of molecular ions caused by the hard electron
ionization. In order to identify and extract quantitative information of metabolites
across multiple biological samples, integrated computational workflows for data pro-
cessing are needed. Here we introduce eRah, a free computational tool written in
the open language R composed of five core functions: (i) noise filtering and base-
line removal of GC–MS chromatograms, (ii) an innovative compound deconvolution
process using multivariate analysis techniques based on compound match by local
covariance (CMLC) and orthogonal signal deconvolution (OSD), (iii) alignment of
mass spectra across samples, (iv) missing compound recovery, and (v) identification
of metabolites by spectral library matching using publicly available mass spectra.
eRah outputs a table with compound names, matching scores and the integrated
area of compounds for each sample. The automated capabilities of eRah are demon-
strated by the analysis of GC–qTOF MS data from plasma samples of adolescents
with hyperinsulinaemic androgen excess and healthy controls. The quantitative re-
sults of eRah are compared to centWave, the peak-picking algorithm implemented
in the widely used XCMS package, and further validated using pure standards and
targeted analysis by GC–QqQ MS, LC–QqQ and NMR. eRah is freely available at
http://CRAN.R-project.org/package=erah.
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7.1 Introduction

Metabolomics is widely used to obtain new insights into human, plant and microbial

biochemistry, as well as in drug discovery, nutrition research and food control. Al-

though different technologies are nowadays used to achieve these objectives [1], the

proof of concept for what we now know as mass spectrometry-based metabolomics

was reported in 1966 by Dalgliesh et al. [2], which conducted the first GC–MS exper-

iment to separate a wide range of metabolites occurring in urine and tissue extracts.

Later in 1971, Horning et al.[3] introduced the term “metabolic profiles”, and along

with Pauling and Robinson led to the development of GC–MS methods for monitoring

metabolites in biological samples through the 1970s [4, 5].

GC–MS has been a long-standing approach used for metabolite profiling of volatile

and semi-volatile compounds due to the widespread use of electron impact ionization

(EI). EI is a hard ionization technique that has been historically standardized at 70

eV. Unlike soft ionization techniques such as ESI[6] or MALDI[7], EI is a highly re-

producible ionization process across many different platforms. However, co-elution

of compounds from complex biological samples in GC along with extensive frag-

mentation of molecular ions by EI ionization, result in large and complex datasets.

Reconstructing GC–MS profile data into identified and quantified metabolites across

multiple samples remains a challenging task due to the lack of integrated computa-

tional tools in GC–MS-based untargeted metabolomics.

Current computational approaches for GC–MS data processing fall into two main

categories: tools based on peak-picking, and tools for compound extraction through

the so-called curve resolution or spectral deconvolution. The first category involves

detecting all relevant fragment ion peaks in the spectra, and align them across mul-

tiple samples [8, 9] to subsequently discover statistical peak variations between ex-

perimental groups. Representative tools from this category include MZmine [10, 11],

MetAlign [12, 13], and XCMS [14, 15]. Although these tools were initially intended
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for liquid chromatography mass spectrometry (LC-MS) data processing, they can also

be used for GC–MS data analysis [16, 17]. The quantitative variables provided by

these methods are not based on the compound spectra, but the m/z value, retention

time window and area of fragment ion peaks. Thus, compound identification is the

main bottleneck of peak-picking approaches. In this regard, tools such as metaMS

[18], TagFinder [19], MetaboliteDetector [20] and PyMS [21] attempt to overcome this

limitation by grouping the different peaks (based on their shape similarity or peak cor-

relations) into compound spectra, allowing the putative identification of compounds

by comparing their mass spectra with a reference MS library.

The second category focuses on the compound as the analysis entity, as opposed

to the use of individual fragment ion peaks. Compounds are quantified and identified

on the basis of a multivariate deconvolution process [22] that extracts and constructs

pure compound spectra from raw data. Representative tools falling into this cate-

gory include TNO–DECO [23] or ADAP–GC [24]. TNO–DECO uses multivariate

curve resolution to extract the compound spectra, whereas the deconvolution algo-

rithm of ADAP–GC is based on an hierarchical clustering of fragment ions. Other

free software, such as AMDIS [25] or BinBase [26, 27] perform parts of the GC–MS

metabolomics workflow. AMDIS is used to identify compounds by using the NIST

library, but it processes samples independently and it does not include spectral align-

ment. BinBase uses the spectral deconvolution provided by a proprietary algorithm

in the commercial software ChromaTOF (LECO Corporation) in order to align com-

pounds across samples, and it provides compound quantification and identification

based on self-constructed libraries [28].

Despite these efforts, there is a need for a free and open source software that

integrates all the necessary steps for data processing in GC–MS-based untargeted

metabolomics. Here we introduce eRah, an R package with an integrated design that

incorporates a novel spectral deconvolution method using multivariate techniques
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based on blind source separation (BSS), alignment of spectra across samples, quan-

tification, and automated identification of metabolites by spectral library matching.

We demonstrate the functionality of eRah through a comparative analysis of serum

samples from adolescents with hyperinsulinaemic androgen excess (HIAE) and healthy

controls.

7.2 Experimental Section

7.2.1 Materials

A dataset of 25 serum samples (from 11 young, non-obese adolescents with HIAE and

14 age-, weight- and ethnicity-matched healthy controls) [29] were analyzed by GC-

EI-qTOF-MS (Agilent Technologies). Pure standards nicotinic acid, leucine, proline,

methionine, aspartic acid, myo-inositol, ornithine, urea and lactic acid were purchased

from Sigma Aldrich (Steinheim, Germany). Analytical grade methanol was purchased

from SDS (Peypin, France). Water was produced in an in-house Milli-Q purification

system (Millipore, Molsheim, France). N-methyl-N-trimethylsilyltrifluoroacetamide,

methoxamine hydrochloride and pyridine were purchased from Sigma-Aldrich (Stein-

heim, Germany). Myristic-d27 acid and succinic acid-2,2,3,3-d4 were from Isotec

Stable Isotopes (Miamisburg, USA).

7.2.2 Metabolite extraction method

Serum aliquots (25 𝜇L) were thawed at 4 ∘C. Samples were briefly vortex-mixed

and each aliquot was supplemented with 20 𝜇L of 1 𝜇g/𝜇L succinic-d4 acid (in-

ternal standard). Proteins were then precipitated by the addition of 475 𝜇L cold

methanol/water (8:1 vol/vol) followed by 3 min of ultrasonication and 10 s of vortex-

mixing. Aliquots were subsequently maintained on ice for 10 min. After centrifu-

gation for 10 min (19.000 g, 4 ∘C), 100 𝜇L of supernatant were transferred to a
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GC autosampler vial and lyophilized. We incubated the lyophilized serum residues

with 50 𝜇L methoxyamine in pyridine (40 𝜇g/𝜇L) for 30 min at 60 ∘C. To increase

the volatility of the compounds, we silylated the samples using 30 𝜇L N-methyl-N-

trimethylsilyltrifluoroacetamide with 1% trimethylchlorosilane (Thermo Fisher Sci-

entific) for 30 min at 60 ∘C.

7.2.3 GC-qTOF MS analysis

Analysis was carried out on a qTOF MS 7200 (Agilent, Santa Clara, CA, USA)

coupled to an Agilent 7890A gas chromatography (GC). Derivatized samples (1 𝜇L

each) were injected in the gas chromatograph system with a split inlet equipped with

a J&W Scientific DB5–MS+DG stationary phase column (30 mm × 0.25 mm i.d.,

0.1 𝜇m film, Agilent Technologies). Helium was used as a carrier gas at a flow rate

of 1 mL/min in constant flow mode. The injector split ratio was adjusted to 1:5 and

oven temperature was programmed at 70 ∘C for 1 min and increased at 10 ∘C/min to

325 ∘C. The MS was operated in the electron impact ionization mode at 70 eV. Mass

spectral data were acquired in full scan mode from m/z 35 to 700 with an acquisition

rate of 5 spectra per second.

7.2.4 GC-QqQ MS analysis

Myo-inositol, ornithine, urea and lactic acid were analyzed using an Agilent 7890A

GC coupled to a triple quadrupole (QqQ) MS (7000 Agilent Technologies, Santa

Clara, CA, USA) operating in single ion monitoring (SIM) mode and electron impact

ionization of 70 eV and a emission intensity of 35 𝜇A. We acquired quantitative and

qualitative ions for myo-inositol (318 m/z, 305 m/z and 265 m/z at RT 18.23 min),

ornithine (200 m/z, 174 m/z and 142 m/z at RT 15.40 min), urea (189 m/z, 130 m/z

and 100 m/z at RT 8.19 min) and lactic acid (191 m/z, 133 m/z and 117 m/z at RT

5.73 min).
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7.2.5 Data processing methods

With the aim of comparing the quantitative results of GC–MS serum samples, the

data set was processed using eRah and XCMS [14, 15]. GC–MS data files were con-

verted to .mzXML format using Proteowizard software [30]. Converted files were

processed using XCMS in order to detect and align features. A feature is defined

as an ion entity with a unique m/z and a specific retention time (mzRT). The pa-

rameters used in the XCMS workflow were: xcmsSet (method = ’centWave’, ppm

= 15, peakwidth = c(1,5)); retcor (method = ’peakgroups’, extra = 1,

missing=1) and group (mzwid = 0.0025, minfrac = 0.5, bw = 5). XCMS anal-

ysis provided an xcmsSet object containing the retention time, m/z value, and peak

intensity (or area) of each feature for every serum sample. Converted files were

also processed using eRah through a fast script in R, which includes (i) data pre-

processing, (ii) spectral deconvolution, (iii) spectral alignment, (iv) missing com-

pound recovery, and (v) compound identification (see details below). The samples

raw-data are classified in folders, where each folder is a class. Signals at m/z 73,

74, 75, 147, 148, and 149 were excluded for data processing, since these are ubiq-

uitous mass fragments typically generated from compounds carrying a trimethylsilyl

moiety. These m/z were thus not used for mass spectral matching and metabolite

identification. We used the mass range 70-600 m/z (except for the six excluded m/z)

for comparison between deconvoluted and reference spectra. The selected/excluded

masses can be modified according to the user criterion. The eRah parameters for

the deconvolution were: setDecPar(min.peak.width=1, min.peak.height=2000,

noise.threshold=500, avoid.processing.mz= c(73:75,147:149)), and for the

alignment: setAlPar(min.spectra.cor=0.90, max.time.dist=3, mz.range=

1:600). The minimum number of samples was set to 8 for the missing compound

recovery step. The complete analysis of 25 samples was performed in less than 30

minutes (in a 2.4 GHz Intel Core i7 computer). The eRah package includes a tutorial
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and the description of each function and parameter through the R help.

7.3 Results and discussion

7.3.1 Computational workflow

This section describes the five steps of the eRah workflow (Figure 7-1): (i) data pre-

processing, (ii) spectral deconvolution, (iii) spectral alignment, (iv) missing compound

recovery, and (v) compound identification. A detailed explanation of eRah methods

can be found in the Supplementary Information.

(i) Pre-processing.

GC–MS chromatograms are usually affected by baseline drift and instrumental noise.

Smoothing the data by noise filtering and baseline removal improves the eRah’s de-

convolution and alignment algorithms. Both baseline and noise are filtered according

to a minimum compound peak width 𝜎𝑀𝐼𝑁 , a value (in seconds) selected by the user.

eRah then approximates the baseline drift by a moving-minimum filter [31] to correct

the chromatogram, and removes noise using Savitzky-Golay filter [32].

(ii) Deconvolution.

eRah performs a two-step compound deconvolution. First, a multivariate matched

filter called compound match by local covariance (CMLC) is applied. The CMLC filter

is based on the covariance match filter [33] applied using local covariance matrices [34].

This multivariate approach benefits from the inherent correlation of fragment ions of

each compound in EI-MS. CMLC uses covariance matrices to detect patterns of ion

redundancy that characterize each compound within the chromatogram. The patterns

of ion redundancy approximate to a gaussian peak shape. This matched filter outputs

a signal with local minima on spots of ion redundancy in the chromatogram, which are
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Figure 7-1: eRah’s workflow. First, a pre-processing step (a) is applied to remove the noise
and the baseline (red) from the chromatogram (black). Second, the deconvolution stage
(b) extracts the chromatographic compound profiles and spectra from each sample. Third,
compound spectra are aligned (c) across all samples and a missing compounds recovery step
(d) retrieves those compounds that were not found in certain samples. Finally, extracted
spectra are matched against an MS library (e), providing a list of metabolites and their
intensity (or area) in each sample.
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determined by compounds with a peak width equal or greater than the selected 𝜎𝑀𝐼𝑁

(Figure 7-2 (a)). Upon compound detection by CMLC, the pure compound spectrum

is determined using a blind source separation-based algorithm known as orthogonal

signal deconvolution (OSD) [35, 36]. OSD is a method able to retrieve a compound

spectrum given a compound elution profile. We approximate the elution profile for

OSD with the same gaussian model used in CMLC. After the spectrum is determined,

we obtain the quantitative compound profile with a least absolute deviation (LAD)

regression [37] between the spectrum found by OSD and the chromatogram.

This two-step deconvolution in eRah is depicted in Figure 7-2 using a mixture of

five standard compounds, where two different co-elution scenarios are shown. Figures

7-2(b) and 7-2(c) show the eRah’s resolved chromatograms for nicotinic acid (I),

isoleucine (II) and proline (III) (minutes 5.65–5.74), and methionine (IV) and aspartic

acid (V) (minutes 7.13–7.19), respectively. The five compounds were detected using

CMLC and their corresponding spectra successfully deconvolved by OSD.

(iii) Alignment.

This step aims to correct the retention time variation of the eluting compounds, fa-

cilitating the relative quantification and comparison of compounds across samples.

Firstly, the user selects the maximum retention time drift (in seconds) and the mini-

mum spectral similarity (from 0 to 1, being 0 no similarity and 1 the highest similarity)

that will be allowed for alignment. This means that two or more compounds with a

retention time distance above a maximum retention time drift are not aligned because

they are seen as different compounds. The same occurs with the minimum spectral

similarity. The alignment is then performed by clustering compounds within these

boundaries of retention time distance and spectral similarity (Figure 7-3(a) and Sup-

plementary Information). To determine these clusters eRah computes the Euclidean

distance between retention time distance and spectral similarity for all compounds in
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Figure 7-2: Top image (A), shows the operation of the CMLC filter: the black lines depict
extracted ion chromatograms (EIC) in the sample, the purple line is the filter output char-
acterized by local minima (marked with red dots in the EIC). Figures B and C show two
co-elution situations. The extracted ion chromatograms are shown, where each gray line
corresponds to a different m/z peak. Colored solid lines are the deconvolved profiles of the
compounds. The deconvolved spectra for each compound are shown in black in figures I-V
along with each reference spectrum negatively rotated in the same axis. The match factor
is also noted (see details below).
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the chromatograms, resulting in compounds appearing across the maximum number

of samples and with the least retention time and spectral distance. As an indicative

example, Figure 7-3(b) shows the profile of urea before and after the alignment step.
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Figure 7-3: (a) Representation of the alignment algorithm. The spheres represent four
resolved compounds after deconvolution by eRah. Each compound (purple, blue, green and
red spheres) appears in five different samples. We have included three additional compounds
as an interference (orange, pink and light blue sphere). The compounds are projected into
a two-dimensional space for illustration purposes where their proximity is determined by
the spectral similarity and retention time distance. The algorithm aims to cluster the same
compound in one group on the basis of proximity in spectra similarity and retention time.
(b) Elution profile of urea across samples before and after alignment.

(iv) Missing Compounds Recovery.

Alignment in eRah is a blind step where the algorithm is not forced to find com-

pounds throughout the samples. This means that, in certain circumstances where a

strong variation in a compound spectrum occurs, for instance, due to low concentra-

tion in a sample (leading noise to disturb the compound spectrum), the alignment

step may fail to group the same compound in all samples. To resolve this situation

144



we have implemented a missing compound recovery step. Similarly to XCMS, the

user may impose that compounds appearing in at least e.g., 80% of the samples in

an experimental class, may also be found in all other samples. To do this, eRah

determines a target spectrum from the mean spectra of each aligned compound. As

in the deconvolution step, eRah retrieves the compound chromatographic profile by a

LAD regression between the target spectrum and a chromatographic window around

the expected elution time in the samples where the compound is missing.

(v) Identification.

Aligned compounds are identified by comparing the mean spectra to reference spectra

in a MS library [38]. The current eRah package integrates the free and downloadable

version of the MassBank [39] repository containing a set of ∼500 EI GC-TOF mass

spectra. However, users may import other libraries such as the Golm Metabolome

Database (GMD) [40, 41], Fiehn [28], Human Metabolome Database (HMDB) [42] or

an internal database, as long as the library is available in an interpretable format. To

use the NIST library, users can export compound spectra from eRah to .MSP format

to be read by the MS Search software (NIST) for spectral matching and identification.

By comparing the empirical spectra with a reference MS library, eRah generates a

list of candidate metabolites along with a similarity match factor, determined using

the cosine product [43] (see Supplementary Information for details).

7.3.2 Comparative analysis of serum samples from adolescents

with hyperinsulinaemic androgen excess and healthy con-

trols

To illustrate the integrative workflow of eRah, we carried out a comparative metabolomic

analysis using 11 serum samples from girls with hyperinsulinemic androgen excess
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(HIAE), and 14 age-, weight- and ethnicity-matched healthy controls [29]. HIAE in

post-menarcheal adolescent girls is recognized as the phenotypic core of a broader

pathological entity traditionally known as polycystic ovary syndrome (PCOS) [44],

which affects 8–21% of women of reproductive age worldwide [45, 46]. HIAE usu-

ally precedes a broader pathological phenotype in adulthood that is associated with

anovulatory infertility, metabolic syndrome, type 2 diabetes [47] and possibly cardio-

vascular disease. [48]. Therefore, unveiling metabolic derangements in early stages

can bring a better understanding of these long-term health risks.

Samples were analyzed using GC-EI-qTOF MS (see Methods section for further

details). Raw GC–MS files are available at MetaboLights with accession number

MTBLS321. With the aim of comparing the quantitative results of the deconvolved

compounds by eRah, mass spectra were also processed using XCMS [14, 15] (Supple-

mentary File 1 and 2). The latter uses centWave, a highly sensitive peak detection

algorithm [49]. The output of eRah contained 169 resolved and aligned compounds

(Supplementary File 3). We focused, however, on 33 compounds to assess the quan-

titative accuracy of eRah by comparison with XCMS (Table 7.1). These compounds

showed a high similarity match factor (>80.0) to reference MS spectra in the GMD

and MassBank. We manually selected a quantitative mzRT feature from the xcmsSet

object for each of the 33 compounds. Given the multivariate nature of the spectral de-

convolution in eRah, compound quantification is based on the area of the deconvolved

compound elution profile and not just a fragment ion peak. Table 7.1 shows the list

of 33 compounds with their retention time (RT), identification match factor (MF),

and quantitative ion from XCMS. To demonstrate that eRah performs well in a wide

dynamic range of metabolite concentrations, we determined the relative compound

concentrations (Rel. C.) defined as the quotient between the mean concentration of

each compound (i.e., mean area of each deconvolved compound profile) and the mean

concentration of all the compounds listed in the table. In addition, the table shows
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the coefficient of determination (R2) of the regression between the mean area - and

intensity - of the deconvolved compound profile (eRah) and the quantitative mzRT

feature (XCMS). Finally, the percentage of variation between disease (HIAE) and

control was also calculated for each compound.

Table 7.2: Percentages of variation for lactate, urea, ornithine and myo-inositol using peak
intensity (int) and area determined using eRah, XCMS, MassHunter (MH) and GC-QqQ MS
analysis. The percentage was calculated as 100*(mean(HIAE)-mean(CTR)/mean(CTR)).

QqQ MH eRah XCMS
Rt Name m/z area area area int area int

5.73 Lactic acid 117 32 39 35 38 38 35
8.19 Urea 130 1 13 15 13 19 17

15.40 Ornithine 142 44 64 64 65 63 64
18.23 Myo-inositol 305 11 23 18 16 22 21

The analysis indicated an excellent linear correlation (R2>0.90) for most com-

pounds. Even for coeluted (e.g., glycerol and phosphoric acid) and low concentration

compounds (e.g., myo-inositol and uric acid), the correlation between the area - and

intensity - of deconvolved compounds and selective mzRT features was high. Only

the area of hydroxylamine and lysine showed R2<0.90, however these two compounds

exhibited similar percentages of variation between HIAE and control groups when

compared to XCMS. We also noted that for some compounds the coefficients of de-

termination varied when comparing area and intensity. We attribute these differences

to the fact that eRah and XCMS use distinct methodology for quantifying compounds

and peaks, respectively, which may lead to some disagreements when comparing ar-

eas linearly. Moreover, although XCMS is a very reliable reference, its results should

not be taken as ground truth. For this reason, we validated eRah’s results using two

additional analytical platforms (Table 7.2). Due to availability of pure standards in

our laboratory, we focused on lactate, myo-inositol, urea and ornithine for validation

experiments. Manual integration of peaks using MassHunter (Agilent Technologies)

revealed similar differences, and targeted analysis using GC-triple quadrupole (QqQ)

MS (see Methods section for details) reproduced similar variations between HIAE
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and control. Altogether, Table 7.2 consistently shows similar quantitative differences

using eRah, XCMS, MassHunter and QqQ MS analysis, which further supports the

strength of eRah for GC–MS-based untargeted metabolomics studies.

Table 7.3: Percentage of variation and p-values (Wilcoxon–Mann–Whitney test) of statis-
tically significant metabolites. The positive variations indicate higher levels in girls with
HIAE relative to healthy controls.

Rt Name p-value %Var
5.73 Lactic acid (2TMS) 0.0090 35
7.08 Leucine (1TMS) 0.0014 23
8.55 Serine (2TMS) 0.0022 48
8.75 Leucine (2TMS) 0.0034 85

11.82 5-oxoproline (2TMS) 0.0042 35
13.17 Glutamic acid (3TMS) 0.0028 118
15.40 Ornithine (4TMS) 0.0002 64
16.43 Lysine (4TMS) 0.0034 45

Consequently, we determined statistical significant differences between HIAE and

control using eRah. Lactic acid, leucine, serine, 5-oxoproline (pyroglutamic acid), glu-

tamic acid, ornithine and lysine showed higher levels (p-value<0.01) in HIAE relative

to control serum samples (Table 7.3). Next, we focused on changes in 5-oxoproline,

glutamic acid, lactic acid and leucine to be validated by complementary analyses on

the same serum samples using nuclear magnetic resonance (NMR) or liquid chro-

matography (LC–QqQ MS) as previously described [29] (Figure 7-4). Metabolites in

NMR spectra were quantified using Dolphin [50, 51]. Interestingly, analytical plat-

forms such as NMR, which analyze serum non-destructively, and LC-MS, which pro-

duces intact molecular ions due to soft ionization, revealed very similar percentages

of variation and p-values. Moreover, Zhao et al. [52] observed a positive association

of lactate and leucine concentrations with insulin resistance independently of obesity

in adult (28-29 years old) PCOS patients. In this previous study, serine levels were

increased in PCOS plasma samples as compared with the normal controls indepen-

dently of obesity or insulin resistance [52]. Our results also revealed elevated levels of

lactate, leucine and serine, although in non-obese adolescents with hyperinsulinaemic

149



androgen excess. Finally, elevated level of ornithine suggests the imbalance of urea

cycle in adolescents with HIAE.

Altogether, our results strengthen the feasibility of the recently challenged [53]

GC–MS technique for metabolomic applications, and demonstrate the robustness of

eRah for data processing.

5-oxoproline

GC-MS LC-QqQ GC-MS LC-QqQ

Glutamic acid

%Var: 35%
p-value: 0.0041

%Var: 70%
p-value: 0.0005

%Var: 118%
p-value: 0.0027

%Var: 58%
p-value: <0.0001

GC-MS NMR GC-MS NMR

%Var: 35%
p-value: 0.0090

%Var: 37%
p-value: 0.0022

%Var: 23%
p-value: 0.0014

%Var: 21%
p-value: 0.0286

Lactic acid Leucine

Figure 7-4: Scatter plots of metabolites identified and quantified by GC–MS (eRah), LC–
QqQ-MS targeted analysis and NMR. The scatter plots show the abundance of 5-oxoproline,
glutamic acid, lactic acid and leucine in controls and HIAE serum samples and trimmed mean
(controls are depicted in red and HIAE in blue). Percentage variation (%Var) and p-values
(Wilcoxon–Mann–Whitney test) are also shown.

150



7.4 Conclusions

Despite the existence of different pieces of free and commercial software for GC–MS

data analysis, none of these allow the execution of an integrated workflow that in-

cludes spectral deconvolution and alignment, followed by the identification and quan-

tification of metabolites in the same application. This still leads many researchers to

implement separate software for each process, and tedious manual workflows for data

processing. We have developed eRah to fill this gap. eRah is a free computational tool

(http://CRAN.R-project.org/package=erah) written in the open language R that en-

ables users to execute a complete automated workflow for data analysis in GC–MS

untargeted metabolomics. Moreover, eRah incorporates an innovative deconvolution

process based on multivariate compound detection and blind source separation that

differs from existing tools. The comparative analysis of serum samples of adolescents

with hyperinsulinaemic androgen excess and healthy controls by GC-qTOF MS pro-

vided test data demonstrating an excellent correlation with alternative quantitative

approaches and analytical platforms such as XCMS, GC-QqQ MS, LC-QqQ MS and

NMR, with the manifest advantage that eRah provides a complete automated data

analysis workflow. Collectively, we anticipate that eRah will help to expedite and

facilitate the analysis of GC–MS data resulting in a greater implementation of this

technique in untargeted metabolomic studies.
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Chapter 8

Targeting the untargeted: BaitMet,

an R package for GC–MS

library-driven compound profiling in

metabolomics
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Abstract

Targeted metabolomics aims to answer biological hypotheses by the quantification
of known (target) metabolites. Target analysis is generally achieved by limiting the
mass detector to analyze (monitor) only either those ions or transitions which are suf-
ficiently selective (unique) for a given set of compounds at a certain retention time.
This process clearly limits the coverage of the target analysis. An alternative to this
is to combine the strengths of the targeted and the untargeted types of analysis: tar-
geting the untargeted. This means using a previous knowledge about the metabolome
(MS libraries) and target this knowledge in chromatograms acquired in full scan mode
(untargeted). This study introduces BaiTMet, and R package for high-throughput
quantification of compounds of an entire MS library into GC–MS data using blind
source separation methods. In GC–MS, internal standards are mixed with the sam-
ples to standardize the retention times into retention indexes (RI), and thus increase
the identification confidence. Mixing internal standards also increases the complex-
ity to the already complex GC–MS samples and increases the wet laboratory sample
preparation time. BaitMet was applied for the automated profiling of serum samples
of patients with chronic kidney disease. BaitMet was able to identify target com-
pounds in chromatograms acquired in full scan mode given a reference library and to
automatically standardize the retention time without the use of internal standards.
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8.1 Introduction

Metabolomics, which is the profiling of metabolites in biofluids, cells and tissues, is

routinely applied as a tool for biomarker discovery [1]. In this context, gas chromatog-

raphy – mass spectrometry (GC–MS) has been a long–standing analytical platform for

the quantification of volatile and semivolatile metabolites due to the reproducibility

of electron impact ionization and retention time robustness of capillary compounds.

Metabolomics experiments are branched into untargeted - measuring as many

metabolites as possible - and targeted - measuring a set of known metabolites -.

While a great attention has been laid on untargeted analysis, the quantification of

a set of known (target) metabolites - typically focusing on certain related pathways

of interest -, also has merits in addressing hypothesis-driven biological questions [2].

Depending on the configuration of GC–MS instrument, targeted analysis can be con-

ducted using SIM (selective ion monitoring) in the case of GC–MS (single quadrupole)

and GC–TOF instruments; either MRM (multiple reaction monitoring) or SRM (sin-

gle reaction monitoring) for GC–QqQ and GC–Orbitrap MS/MS instruments and

full spectrum of Product Ions (SIM–TOF) in the case of GC–qTOF. In all cases

limiting the mass detector limits the metabolite coverage of the target analysis as

it is constricted to analyze (monitor) only either those ions or transitions which are

sufficiently selective (unique) for a given set of compounds at a certain retention

time. Higher sensitivity and usually wider dynamic ranges are achieved through this

approach as compared to full scan data acquisition modes commonly employed in

untargeted analysis.

An alternative to this is to combine the strengths of the targeted and the untar-

geted types of analysis: targeting the untargeted. This means using a previous knowl-

edge about the metabolome and target this knowledge in chromatograms acquired in

full scan mode (untargeted). Due to the rising interest in metabolomics, specific MS li-

braries have been developed [3], including NIST, Golm Metabolome Database (GMD)
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[6], Human Metabolme Database (HMD) [4] or MassBank [5]. Those libraries provide

the knowledge needed for a library-driven compound profiling: metabolite MS spec-

tra and retention time; the last can be predicted using retention indexes by internal

standards.

Some tools have already combined the strengths of the targeted and the untar-

geted types of analysis, including TargetSearch [7] and targeted mass spectral ratio

analysis (TMSRA) [8]. Those tools are able to quantify known metabolites, but in

chromatograms acquired in full scan mode. TMSRA requires to input the expected

retention time of the target compounds, and their mass spectra. Then, it attempts to

quantify the ’target’ compounds by automatically determine the selective masses of

each target analyte. TargetSearch is an R package for library-driven compound pro-

filing that relies on the retention indexes (RI) and the list of selective masses provided

by a reference MS library to quantify a high number target compounds with univari-

ate techniques. It requires mixing internal standards with the samples. The use of

internal standards - typically n-alkanes (ALK) and n-alkyl fatty acid methyl esters

(FAME) - may chromatographically mask other compounds, besides of increasing the

wet laboratory sample preparation time.

This paper introduces BaiTMet, an R package that allows a high-throughput

search of an entire MS library into full-scan GC–MS data, using the library as a bait

(Bait), to quantify metabolites (Met) and thus performing a library-driven compound

profiling. BaitMet can quantify compounds with (i) multivariate methods and with-

out any prior information about the selective masses or (ii) by the integration of a

previously defined selective mass for each compound. Also, internal standards (IS)

for RT standardization are not needed in each sample, instead, only a single sepa-

rated analysis of the IS is needed. BaitMet automatically determines which is the

instrumental retention time variation of each samples with respect to a fixed reten-

tion index/retention time curve. BaiTMet outputs a table with compounds name,
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spectral matching score, RI error, and the peak intensity or integrated area - relative

concentration - of the compound in each sample.

8.2 Methods

The automated capabilities of BaitMet were demonstrated by the analysis of GC–

MS data from a total of 182 human serum samples from age and weight matched

volunteers with chronic kidney disease. Concretely, we used 60 different biological

samples in 3 replicates plus 2 serum as quality control. Each sample were mixed with

9 FAMEs (C10-25).

For this set of samples, BaitMet was used to (i) automatically find the internal

standards (FAME) mixed in the samples. Also, (ii) BaitMet was evaluated by its

capability to infer the chromatographic RI/RT curve variation without any informa-

tion about the internal standards (as if the IS were not mixed with the samples).

Additionally, the quantitative results of BaiTMet were compared with a reference

concentration by a selective (quantitative) molecular ion for a set of 33 identified

metabolites.

8.2.1 Metabolite extraction method

Serum samples were thawed on ice at 4 ∘C for 30-60 min. Each aliquot of serum (70

𝜇L) was spiked with 300 𝜇L of acetonitrile isopropanol water (3:3:2) (deproteiniza-

tion), added 5 𝜇L of internal standard solution (myristic acid D27 - 3 mg/mL).

After vortex for 15 sec, the mixture was centrifuged for 15 min at 15,800xg at 4

∘C. Supernatant (320 𝜇L) was transferred to a new microcentrifuge tube, followed

by lyophilization in a speedvac concentrator. Subsequently, 5 𝜇L of FAME (C10-25)

was added in the residue and was resuspended in 50 𝜇L of methoxyamine in pyridine

(Sigma-Aldrich) solution (40 mg/mL) and vortexed for 3 min. This methoximation

165



reaction was performed at room temperature for 16h, followed by trimethylsilylation

for 1 h adding 100 𝜇L MSTFA (N-methyl-Ntrimethylsilyltrifluoroacetamine) with 1%

TMCS (trimethylchlorosilane) (Sigma-Aldrich). After derivatization, 1 𝜇L of this

derivative was used for Gas Chromatography Mass Spectrometry (GC/MS) analysis.

8.2.2 GC–MS analysis

Extracts were analyzed by a 7890B gas chromatograph from Agilent (Palo Alto, CA.

USA) coupled to an Agilent 5977A mass selective detector, using a DB5–MS Duragard

capillary column (10 m) from Agilent (Agilent 122-5532G). Analyses were performed

by injecting 1 𝜇L of the extracts into a splitless inlet at 250 ∘C and a helium constant

flow of 1.1 mL min−1. The oven temperature of the GC was initially held at 60 ∘C for 1

min, then raised to 310 ∘C at a rate of 10 ∘C min−1. The mass spectrometer operated

in the electron impact ionization mode (70 eV) and mass spectra were recorded after

a solvent delay of 6.5 min with 3 scans per second in full scan mode (from 50 to

500 Da). The MS quadrupole temperature was set at 180 ∘C and the ion source

temperature was set at 280 ∘C.

8.2.3 Data analysis

BaiTMet was provided with a reference library and a fixed RI/RT curve determined by

the mean RT of each FAME. The library used was a subset of the downloadable version

of the Golm Metabolome Database (GMD) [6] (Version at 2011-11-21) containing only

those compounds with KEGG number (a total of 1152). FAMEs were not included

in the library. The RI error was set to 0.5% according to thresholds proposed by [11]

and the FWHM𝑚𝑖𝑛 was of 2 seconds. Thus, BaitMet parameters as in code were as

follows:

> setBaitPar(ri.error=0.05, min.peak.width=2, avoid.processing.mz=

c(35:69,73:75,147:149), min.peak.height=1000, noise.threshold=100)
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8.2.4 Computational workflow

Compound deconvolution

First, the compound chromatographic location where each compound may be eluting

is determined. BaiMet compound location is based upon retention time indexes (RI)

tabulated in the library and a series of reference standards (either FAME or ALK,

commonly employed in GC–MS). These reference standards should be measured once

in a single sample using the same chromatographic method that will be further used

to measure samples. A RT/RI curve is built by a linear interpolation between -

and linear extrapolation outside - the reference standards retention times. Then, an

Expected Elution Window (EEW) for each compound in the library can be estimated

as 𝑅𝐼𝑗−𝑅𝐼𝑗 *𝑟𝑖𝑒 to 𝑅𝐼𝑗 +𝑅𝐼𝑗 *𝑟𝑖𝑒, where the subindex j denotes each metabolite RI,

and 𝑟𝑖𝑒 is the expected error for RT variation respective to reference RI (Figure 8-1

(a)). The spectra of each compound in the library is correlated against each spectrum

recorded within EEW in the real sample. The RT that maximizes this correlation is

retained as the specific compound retention time in the real sample. A more accurate

compound elution window ROI (Region of Interest) (Figure 8-1 (b)) is defined at this

specific retention with boundaries calculated as two times the minimum compound

full width at half maximum (FWHM𝑚𝑖𝑛), an user-value in seconds, before and after

the compound retention time.

Once the ROI is determined, BaitMet aims to recover the compound chromato-

graphic profile. An intuitive way to recover a compound chromatographic profile

given its spectrum is by a least squares regression of the spectrum against the chro-

matogram. This process though, can be substituted by a L1 estimation, also known

as least absolute deviation (LAD). Whereas the least squares regression minimizes the

squared residuals between the data and the regressor, the L1 estimation minimizes
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the sums of absolute residuals. L1 estimation is mathematically defined as:

𝑚𝑖𝑛𝛼 𝑓(𝛼) = |𝛼sr −Dj| ; 𝑗 = 1, 2, ..., 𝑁 (8.1)

where D (𝑁 ×𝑀) is the chromatographic ROI and s𝑟 (𝑀 × 1) is the reference

spectrum from the MS library. In this notation, N is the number of chromatographic

scans (retention time) and M is the range of acquisition of the mass-charge ratio

(m/z). The L1 estimation is more robust to outliers than least squares as it weights

all the observations equally. Physically, this means that all the ions of the spectrum

that are regressed against the chromatogram have the same importance. This is

a natural way to give the same importance also to the selective m/z - which best

describe the pure chromatographic profile - and that tend to be less abundant.

Next, although we initially have the reference spectrum of the target compound,

we extract the empirical spectrum for each chromatographic profile deconvolved. The

empirical spectra will be subsequently compared with the reference spectra by spec-

tral matching allowing users to evaluate wether or not the compound is in the sample.

BaitMet uses orthogonal signal deconvolution (OSD) [9, 10] for spectral deconvolu-

tion. OSD is a method, based on blind source separation, to extract the spectra from

data given the compound profile, in an accurate and fast manner.

RT/RI elastic curve correction

The hypothesis behind BaiTMet is that, when using internal standards (IS) to char-

acterize the relative retention indexes (RI) along the chromatographic retention time

(RT), the curve RI/RT is the same for all the samples under the same chromatographic

method. This RI/RT though may suffer of an elastic variation due to instrumental

error, i.e., the RI/RT curve for each sample can be approximated given a fixed RI/RT

curve (representative of the chromatographic method) plus an elastic variation of the
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Figure 8-1: Illustration of BaitMet deconvolution stage: first (a), the approximated retention
time of the compound j is approximated by projecting its retention index into the fixed
RT/RI curve. Next, (b) the target spectrum is correlated against a wide expected elution
window (EEW), where a region of interest (ROI) is later determined around the RT that
maximizes this correlation. Finally, (c) the compound empirical spectrum is extracted for
its further comparison with the reference.
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Figure 8-2: This figure shows how the original RI/RT curve (black) is elastically modified
into the new curve (blue). The grey points are all the compounds detected by BaiTMet, in
orange, are all the compounds that are taken into account to infer the elastic variation.

form:

𝑥𝑛 = 𝑥𝛽 + 𝑦0 (8.2)

where 𝑥𝑛 is the vector that defines the particular RI curve for each retention time

and for each sample n, 𝑥 is the fixed RI/RT curve, and (𝛽) and 𝑦0 are the scalars

- to be inferred - that define the elastic variation and the offset value respectively.

BaiTMet automatically determines which is the variation of the curve in each chro-

matogram by the following steps: those compounds with a match factor above a

user-defined threshold of 90 % are considered tentatively correctly identified. Then,

an optimization procedure determines which elastic variation minimizes the median

absolute error between the reference RI - provided by the library - and the predicted

RI by a modified RI/RT curve (Figure 8-2). The compounds empirical RI is deter-
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mined following this new inferred curve.

8.3 Results

We analyzed a total of 182 human serum samples from age and weight matched

subjects with chronic kidney disease. Each sample was mixed with 9 FAMEs (C10-

25). BaiTMet detected a total of 95 compounds with less than 0.1 % of error and with

a spectra similarity score above 90 %. Of all the compounds detected, we focused on

a subset of 33 compounds. The list of the metabolites along with the the spectral

similarity match factor is shown in Table 8.1. The empirical RI for each compound

found was automatically determined by the BaiTMet algorithm without FAMEs.

For evaluation purposes, we additionally determined the RI with the van den Dool

and Kratz algorithm [12] using the FAMEs retention time. The area of a selective

(quantitative) molecular ion from each metabolite was used as quantitative reference.

Table 8.1 shows the list of the 33 compounds with their respective match factor and

RI error provided by the BaitMet algorithm and by the use of FAME. Table 8.1 also

shows the coefficient of determination between the quantification by BaiTMet and

the reference concentration. From the table, almost all the compounds exhibited an

excellent linear relation (R2>0.95).

Figure 8-3 shows the overall RI error barplot of the 33 compounds by both BaiT-

Met and FAMEs. Statistical significative differences using a paired t-test were ob-

served - FAME mean RI error was less than BatiMet - (p-value <0.0001). The

absolute mean difference between both methods is of 0.01 %, which is significantly

less than the typical identification RI error (0.5 - 1 %). This proves the capability

of BaiTMet to automatically standardize the RT into RI. Both methods yield to the

identification of the studied compounds with mean relative retention index errors

below 0.5 %.
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Figure 8-3: Overall RI error barplot of the 34 identified compounds by both BaiTMet (elastic
curve) and FAMEs. Outliers (those with values above 2𝜎) were removed. The sample size
was of N=6188 (34 compounds in 182 samples).

8.4 Conclusion

Currently, target analysis is achieved by limiting the mass detector to analyze those

ions or transitions which are sufficiently selective for a given set of compounds at a

certain retention time. This process clearly limits the coverage of the target analysis.

This study introduces BaitMet, an R package for high-throughput quantification of

compounds of an entire MS library into full scan GC–MS chromatograms. BaitMet

combines thus the strengths of the targeted and the untargeted types of analysis.

BaiTMet is also able to identify compounds by the standardization of retention time

without mixing internal standards in the samples. Alternatively, BaiTMet is also

compatible with the use of internal standards mixed in the samples, and using them

to characterize the RI/RT curve in each chromatogram.
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Table 8.1: Adjusted coefficients of determination (R2) for the regression between the quan-
tification by BaiTMet and the reference concentration by the selective/quantitative ion for
each metabolite. The table also lists the quantitative m/z, the spectral similarity match
factor (MF), the retention index error (RI𝑒) by the elastic curve modification inferred by
BaitMet (BM) and by using internal standards (IS), and the relative concentration (RC).

RI𝑒
No. m/z RT Name MF R2 BM IS RC

1 247 10.57 Succinic acid (2TMS) 91.0 0.93 0.44 0.45 5
2 205 11.14 Serine (3TMS) 96.1 0.94 0.09 0.05 40
3 129 11.19 Nonanoic acid (1TMS) 92.5 0.74 0.45 0.31 7
4 101 11.46 Threonine (3TMS) 98.3 0.99 0.25 0.09 48
5 261 11.75 Glutaric acid (2TMS) 90.4 0.81 0.40 0.36 3
6 158 12.61 Proline, 4-hydroxy-, trans- (2TMS) 97.8 1.00 0.38 0.20 8
7 233 12.75 Malic acid (3TMS) 97.8 0.99 0.15 0.05 4
8 157 13.01 Pyroglutamic acid (1TMS) 97.5 0.92 0.58 0.36 15
9 232 13.15 Aspartic acid (3TMS) 95.1 0.96 0.03 0.25 10

10 156 13.21 Pyroglutamic acid (2TMS) 99.9 1.00 0.36 0.15 194
11 84 13.31 Glutamic acid (2TMS) 99.0 1.00 0.21 0.01 222
12 205 13.44 Erythronic acid (4TMS) 94.8 0.99 0.52 0.73 36
13 120 13.57 Phenylalanine (1TMS) 98.5 0.96 0.54 0.33 34
14 142 13.93 Proline [+CO2] (2TMS) 99.8 1.00 0.28 0.06 33
15 247 14.34 Glutamic acid (3TMS) 94.1 1.00 0.03 0.25 125
16 219 14.46 Phenylalanine (2TMS) 98.0 0.99 0.29 0.08 22
17 217 15.46 Ribitol (5TMS) 94.9 0.99 0.00 0.22 14
18 175 15.87 Ornithine (3TMS) 96.6 0.98 0.10 0.12 31
19 357 15.93 Glycerol-3-phosphate (4TMS) 96.7 1.00 0.22 0.45 144
20 133 16.55 Citric acid (4TMS) 90.6 0.99 0.33 0.56 292
21 156 17.01 Lysine (3TMS) 96.7 0.94 0.20 0.44 66
22 181 17.32 Tyrosine (2TMS) 95.4 1.00 0.29 0.01 29
23 156 17.65 Lysine (4TMS) 86.5 0.91 0.02 0.09 177
24 218 17.83 Tyrosine (3TMS) 97.1 1.00 0.13 0.13 56
25 333 18.38 Gluconic acid (6TMS) 94.0 0.96 0.09 0.35 58
26 174 18.83 Lysine, 5-hydroxy- (4TMS) 94.4 0.40 0.19 0.48 3
27 129 18.90 Hexadecanoic acid (1TMS) 97.4 1.00 0.27 0.01 526
28 191 19.28 Inositol, myo- (6TMS) 96.3 1.00 0.05 0.33 302
29 441 19.35 Uric acid (4TMS) 94.3 1.00 0.25 0.02 51
30 200 20.38 Tryptophan (2TMS) 98.4 0.73 0.47 0.17 72
31 117 20.48 Octadecenoic acid, 9-(E)- (1TMS) 95.4 0.97 0.38 0.08 315
32 117 20.71 Octadecanoic acid (1TMS) 97.5 1.00 0.01 0.29 291
33 204 24.57 Maltose (1MEOX) (8TMS) MP 91.2 0.99 0.08 0.47 66
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Chapter 9

Results and Conclusions

9.1 Summary of the results

Independent component regression (ICR), multivariate curve resolution (MCR–ALS)

and the orthogonal signal deconvolution-based (OSD) tandem strategies ICA–OSD

and MCR–OSD were tested in both pure standard and biological samples. A total

of 38 and a total of 25 compounds were identified in the standard and the biological

samples respectively. The identification performance of the methods was evaluated

through the spectral similarity match score in comparison with the reference spectra

provided by the Golm Metabolome Database (GMD). For the case of the standards

samples, no significative differences in match score were appreciated between meth-

ods. For the case of the biological matrices - where compounds appear in very low

concentrations and with the interference of a biological matrix -, statistical significa-

tive differences were appreciated between methods, where the OSD implementations

displayed a more accurate identification of the metabolites in terms of match score

and major qualitative (structure of the spectra) differences could be observed between

the regression (ICR/MCR–ALS) and OSD approaches (ICA–OSD and MCR–OSD).

Finally, the ICA-based approaches were faster in terms of execution time.

177



The capability of ICA–OSD to quantify metabolites in chromatographic samples

was later evaluated by the automated resolution of GC×GC–MS chromatograms. We

studied the performance of ICA–OSD by the quantification of 38 metabolites through

a set of 20 Jurkat cell samples analyzed by GC×GC–MS. Results shown that ICA–

OSD could be used to resolve co-eluted compounds in chromatographic signals, as

the automated ICA–OSD approach was able to correctly quantify a set of compounds

across different samples.

The application of multivariate algorithms in GC–MS data, e.g., MCR–ALS or

ICA-based approaches, involve segmenting the chromatogram into regions or win-

dows, which may lead to failure in the detection of compounds. Thus, we proposed

the application of ICA–OSD and MCR–ALS through moving window to avoid the

usual practice of chromatographic segmentation into regions or windows. We evalu-

ated this strategy through its quantification capability in comparison with the XCMS

package. Results shown that the proposed methodology was able to correctly quantify

compounds appearing in biological matrices.

To illustrate the integrative workflow of eRah, we carried out a comparative

metabolomic analysis using 11 serum samples from girls with hyperinsulinemic an-

drogen excess (HIAE), and 14 age-, weight- and ethnicity-matched healthy controls.

With the aim of comparing the quantitative results of the deconvolved compounds by

eRah, mass spectra were also processed using XCMS. The output of eRah contained

169 resolved and aligned compounds. We focused, however, on 33 compounds to as-

sess the quantitative accuracy of eRah in comparison with XCMS. These compounds

showed a high similarity match factor (>80.0) to reference MS spectra in the GMD

and MassBank. The analysis indicated an excellent linear correlation (R2>0.90) be-

tween eRah and XCMS for most compounds. Even when appearing coeluted and/or

low concentration compounds the correlation between the area - and intensity - of

deconvolved compounds and selective mzRT features was high. Moreover, although
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XCMS is a very reliable reference, its results should not be taken as ground truth.

For this reason, we validated eRah’s quantitative results of four compounds by an in-

tegration using MassHunter on the raw data and an additional GC-triple quadrupole

(QqQ) MS targeted analysis, which consistently shown similar percentages of varia-

tion between HIAE and control groups in comparison with eRah. Finally, we focused

on changes in four additional metabolites to be validated by complementary analyses

on the same serum samples using nuclear magnetic resonance (NMR) or liquid chro-

matography (LC–QqQ MS). Interestingly, analytical platforms such as NMR, which

analyze serum non-destructively, and LC–MS, which produces intact molecular ions

due to soft ionization, revealed very similar percentages of variation and p-values

BaitMet was evaluated by the analysis of 182 human serum samples subjects with

chronic kidney disease. Each sample was mixed with 9 FAMEs (C10-25). BaiTMet

detected a total of 95 compounds with less than 0.1 % of error and with a spectra

similarity score above 90 %. Of all the compounds detected, we focused on a subset

of 33 compounds. The empirical RI for each compound found was automatically

determined by the BaiTMet algorithm without FAMEs. For evaluation purposes,

we additionally determined the RI with the van den Dool and Kratz algorithm [12]

using the FAMEs retention time. Although statistical significative differences using

a paired t-test were observed (p-value <0.0001) - FAME mean RI error was less than

BaitMet -, the absolute mean difference between both methods was of 0.01 %, which

is significantly less than the typical identification RI error (0.5 - 1 %). Also, the

quantitative performance of BaiTMet was evaluated by comparing its quantification

with a selective (quantitative) ion for each metabolite. Almost all the compounds

exhibited an excellent linear relation (R2>0.95).

Overall, the results of this thesis aim at improving and integrating all the steps of

the metabolomics workflow, including a new factor analysis-free spectral deconvolu-

tion strategy which attempts to evolve from peak-picking to compound picking. These
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methods rely on orthogonal signal deconvolution. OSD was also used in combination

with independent component analysis and multivariate curve resolution, which high-

lighted the necessity of new methodologies for the application of multivariate methods

for high- throughput compound deconvolution. In that sense, GC–MS chromatograms

can be processed using eRah for untargeted purposes, which provides with a list of

compounds found and putative names, and their relative concentration among sam-

ples. Also, to obtain confirmatory results or focus on certain metabolites of interest,

BaitMet can be used for compound profiling of MS library available metabolites. The

methods were embedded into R libraries publicly available.

9.2 Discussion of the results and further work

Metabolomics, along with the rest of the -omics sciences that use analytical chemistry

platforms, have boosted the application of computational methods to deal with the

large and complex datasets that those platforms generate. If we focus in metabolomics

though, we can state that the the current computational methods that tackle the

data processing problems lag behind the analytical platforms capabilities. In that

sense, many strategies can still been designed to improve the different steps of the

metabolomics workflow, and more importantly, embed them into computational tools.

Those computational tools should not only integrate the complete metabolomics work-

flow, allowing to obtain biological interpretable information from raw data, but they

should also be implemented in a highly modularized and standardized manner. This

modularization should serve two purposes: in one hand, it allows the scientific commu-

nity to easily implement their own specific algorithms and improvements of each step

(module) of the workflow. On the other hand, it allows a straightforward comparison

between different and new methods (e.g., new or improved methods for deconvolution,

alignment), since the rest of the modular frame remains the same.
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From the literature, we can also view two different schools that focus on the

processing of chromatographic data. The first is the chemometrician school, which

use multivariate methods of mathematical complexity to resolve the data generated

by, in this case, GC–MS or GC×GC–MS. Generally, this school focuses on the de-

sign of strategies that, although through the use of multivariate techniques achieve a

greater performance, those clearly lack of automation capabilities or tools integrating

those methods. Besides, this school is focused on solving chromatographic mixtures,

independently of the field of research (metabolomics). On the other hand, the bioin-

formatics school has put special interest in strategies that are fully automated and

included into dedicated metabolomics tools (software), but this school has mainly

contributed with univariate techniques.

In that sense, we designed independent component analysis – orthogonal signal

deconvolution (ICA–OSD), which although it could be seen as a chemometric method,

it has given a boost to the suitability of independent component analysis/blind source

separation in GC–MS-based metabolomics, it has also been embedded in an R package

(osd), and finally, it has been shown that its application can be fully automated,

including an original moving window strategy, where ICA–OSD was compared with

MCR–ALS and with univariate approaches in real metabolomics applications.

Concretely, ICA–OSD included two main improvements. First, in this ICA ap-

proach, the concept of independence was twisted: compound profiles were targeted as

the independent source of the chromatographic mixture, as opposite to the spectra,

which was up to the date the typical approach of the ICA-based methods for GC–MS

data processing. We believe that this approach is a more natural implementation of

ICA in GC–MS data. Second, orthogonal signal deconvolution included an alterna-

tive extraction of spectra, based on principal component analysis as opposite to the

typical use of least squares in MCR–ALS or ICR. We have seen in OSD, a powerful

and reliable tool for multivariate spectral deconvolution.
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Despite the existence of different pieces of free and commercial software for GC-

MS data analysis, none of these allow the execution of an integrated workflow that

includes spectral deconvolution and alignment, followed by the identification and

quantification of metabolites in the same application, and implemented in a mod-

ularized and standardized manner. This still leads many researchers to implement

separate software for each process, and tedious manual workflows for data processing.

This lack of tools integrating the complete metabolomics workflow with multivariate

methods, inspired the design of eRah. When using multivariate resolution methods

(e.g., ICA–OSD or MCR–ALS) the number of components or factors has to be esti-

mated (automatedly), which is a key parameter that clearly affects the outcome of

the algorithms, and for which any optimal solution has still not been found. This has

clearly limited the application of multivariate algorithms for high-throughput GC-MS

data processing. In eRah, we attempted to overcome this limitation by evolving the

traditional peak-picking approach into an innovative multivariate compound detector,

where compounds are detected as opposite to peaks. Spectra are later determined by

OSD, the previously designed multivariate method for spectral deconvolution based

on principal component analysis. We demonstrated the capabilities of eRah with a

comparative analysis of plasma samples of adolescents with hyperinsulinaemic an-

drogen excess, where eRah allowed to turn raw data into biological interpretable

information.

eRah shown itself as a robust and efficient tool for processing GC–MS-based un-

targeted metabolomics data. However, tackling the data processing from different

angles (ideally orthogonal, e.g., peak picking with multivariate deconvolution, or

completely different approaches) could provide not only confirmatory analysis but

also complementary information. This, together with the idea of integrating physico-

chemical knowledge into computational methods to improve the performance of those,

lead to the design of BaitMet. In BaitMet, the concept of targeting the untargeted
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was achieved by targeting those compounds from a mass spectral library into chro-

matograms acquired in full scan mode. In that sense, BaitMet was able to perform a

library-driven compound profiling.

Finally, future work includes the design of new and improved compound detector

match filters, and strategies that outperform the current methods for spectra decon-

volution, but that avoid the use of factor analysis. Also, the capabilities of eRah’s

methodology could be tested in other analytical platforms including comprehensive

gas chromatography or liquid chromatography – mass spectrometry.

9.3 Conclusions

This section summarizes the conclusions of the doctoral thesis.

∙ First, an independent component regression (ICR) for GC–MS compound iden-

tification as an alternative to multivariate curve resolution (MCR–ALS) was

introduced. However, the typical approach of the ICA-based methods for GC–

MS data processing was based on considering the spectra as the independent

component in the chromatogram. In this thesis, the concept of independence

was twisted: compound profiles were targeted as the independent source of the

chromatographic mixture, as opposite to the spectra. Also, the results given by

ICR were comparable to the results given by MCR–ALS, but ICR was superior

in terms of execution time. This is of special interest in metabolomics due to

the high amount of data that GC–MS currently generates and the quantity of

samples that are analyzed in metabolomics experiments. Also, a novel orthogo-

nal signal deconvolution (OSD) approach using principal component analysis as

an alternative to the traditional least squares approach was introduced, allow-

ing the extraction of refined spectra when compounds elute under the influence

of biological matrices, compound co-elution or other types of noise. Also, we
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concluded that ICA–OSD could also be used to robustly quantify compounds

in chromatographic signals. This accomplished the objective O1.

∙ The application of multivariate algorithms in GC–MS data, e.g., MCR–ALS

or ICA-based approaches, involve segmenting the chromatogram into regions

or windows, which may lead to failure in the detection of compounds. Thus,

we proposed the application of ICA–OSD and MCR–ALS through moving win-

dow to avoid the usual practice of chromatographic segmentation into regions

or windows. We evaluated this strategy through its quantification capability in

comparison with the XCMS package. Results shown that the proposed method-

ology was able to correctly quantify compounds appearing in biological matrices.

This accomplished the objective O1.

∙ While univariate peak–picking approaches are focused on the ion fragment peak

as the analysis entity, multivariate methods such as MCR–ALS or ICA aim at

extracting the spectra from GC–MS data by taking advantage of the inherent

fragment-redundancy in mass spectrometry. However, multivariate methods

performance depend, to a greater degree, on an appropriate estimation of the

number of components to build the multivariate model. This bottleneck has

limited the use of multivariate methods in high-throughput GC–MS data pro-

cessing tools. In this thesis we introduced a multivariate compound detector to

detect compounds instead of peaks. We later used OSD to determine the com-

pound spectra. The tandem application of the multivariate compound detector

by local covariance (CMLC), with OSD allowed the spectral deconvolution of

compounds in GC–MS mixtures without the use of factor analysis techniques.

This accomplished the objective O2.

∙ Despite the existence of different pieces of free and commercial software for GC–

MS data analysis, none of these allow the execution of an integrated workflow
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that includes spectral deconvolution and alignment, followed by the identifica-

tion and quantification of metabolites in the same application, and implemented

in a modularized and standardized manner. This still leads many researchers

to implement separate software for each process, and tedious manual workflows

for data processing. In this thesis, eRah was designed to fill this gap. eRah was

demonstrated to be capable of conducting the complete metabolomics workflow

with robust identification and quantification methods. This accomplished the

objective O3.

∙ BaiTMet was designed to take advantage of the knowledge provided by metabolomics

spectral libraries to process full scan GC–MS chromatograms in a driven man-

ner, and with the possibility of standardize the retention times without the use

of internal standards. BaiTMet operates under the assumption that the reten-

tion time relation between metabolites naturally found in the samples can be

used to predict their respective retention indexes. BaiTMet is an R package

for high-throughput quantification of compounds of an entire MS library into

GC-MS data. BaiTMet was able to identify compounds by the standardization

of retention time without mixing internal standards in the samples. Moreover,

BaiTMet is also compatible with the use of internal standards mixed in the

samples, and use them to characterize the RI/RT curve in each chromatogram.

This accomplished the objective O4.

∙ eRah and BaitMet libraries were implemented in a modularized manner, and

also their structure was standardized in a single S4 method known as Meta-

boSet. This class is inspired in the expressionSet class widely used in genomics.

This class contains all the objects to hold, not only the information of the re-

sults provided by eRah, but it may also hold results from other softwares and

platforms(e.g., it could store the XCMS results after processing LC–MS data if
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XCMS were adapted for that purpose). The main functions of the eRah or Bait-

Met packages have a MetaboSet object as an input and give another MetaboSet

object as an output containing the new results. Overall, this allows a familiar-

ized programmer to attach their own modules (e.g., deconvolution, alignment,

identification) to the main package, and easily understand the internal main

operation core. Then, this allows the user to easily access to the object created

as a result of the processing of the data, and therefore, access to the internal

structure of the results and create modifications or functions to customize their

results. This accomplished the objective O5.
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Chapter 10

Publications

During the development of this thesis there were produced a set of publications as

scientific papers in indexed journals and in international conferences as oral or poster

communications. As a result of the methods developed in this thesis, a set of R

packages were also made publicly available.

10.1 Indexed Journal Papers

∙ Domingo-Almenara X, Perera A, Ramirez N, Canellas N, Correig X, Brezmes J.

Compound identification in gas chromatography/mass spectrometry-

based metabolomics by blind source separation. Journal of Chromatog-

raphy A (2015). Vol. 1409: 226-233.

∙ Domingo-Almenara X, Perera A, Ramirez N, Brezmes J. Automated resolu-

tion of chromatographic signals by independent component analysis

- orthogonal signal deconvolution in comprehensive gas chromatog-

raphy/mass spectrometry-based metabolomics. Computer Methods and

Programs in Biomedicine (2016). Vol. 130, 135-141.

∙ Domingo-Almenara X, Brezmes J, Vinaixa M, Samino S, Ramirez N, Ramon-
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Krauel M, Lerin C, Diaz M, Ibanez L, Correig X, Perera-Lluna A, Yanes O.

eRah: a computational tool integrating spectral deconvolution and

alignment with quantification and identification of metabolites in GC-

MS-based metabolomics. Analytical Chemistry (2016). Accepted.

∙ Domingo-Almenara X, Perera A, Venturini G, Vivo-Truyols G, Vinaixa M,

Brezmes J. Targeting the untargeted: BaiTMet, an R package for

library-driven GC-MS compound profiling in metabolomics. (Submit-

ted).

∙ Domingo-Almenara X, Perera A, Brezmes J. Avoiding hard chromatographic

segmentation: a moving window approach for the resolution of GC-

MS signals in metabolomics by multivariate methods. (Submitted).

10.2 Conference Proceedings

∙ Domingo-Almenara X, Perera A, Ramirez N, Brezmes J. Compound Identifi-

cation in Comprehensive Gas Chromatography – Mass Spectrometry-

Based Metabolomics by Blind Source Separation. 9th International Con-

ference on Practical Applications of Computational Biology and Bioinformatics.

(2015). DOI: 10.1007/978-3-319-19776

10.3 Oral or Poster Communications

∙ Navarro M, Senan O, Domingo-Almenara X, Capellades J, Aguilar-Mogas A,

Brezmes J, Sales-Pardo M, Guimera R, Yanes O. From ’peakomics’ to metabolomics

in LC-MS global profiling of human plasma. 12th Annual Conference of the

Metabolomics Society (June 2016), Dublin, Ireland. (Poster).
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∙ Domingo-Almenara X, Brezmes J, Vinaixa M, Samino S, Diaz M, Ibanez L,

Correig X, Perera A, Yanes O. eRah: a computational tool integrating spectral

deconvolution and alignment with quantification and identification of metabo-

lites in GC-MS-based metabolomics. Chemometrics in Analytical Chemistry

(CAC), (June 2016), Barcelona, Spain. (Poster).

∙ Domingo-Almenara X, Perera A, Vivo-Truyols G, Brezmes J. R2D2: an R pack-

age for the automated profiling of GCxGC-MS samples in untargeted metabolomics.

15th GCxGC Symposium (June 2016), Riva del Garda, Italy. (Poster).

∙ Gomez J, Barrilero R, Domingo-Almenara X, Correig X, Brezmes J, Canel-

las N. Evaluation of Multivariate Curve Resolution for Macromolecular Base-

line Removal in 1H-NMR Spectra, Small Molecule NMR Conference (SMASH)

(September 2015), Baveno, Italy. (Poster).

∙ Domingo-Almenara X, Brezmes J, Vinaixa M, Samino S, Ramirez N, Correig X,

Perera A, Yanes O. eRah: an R package for automatic spectra deconvolution,

alignment, and library matching of metabolites from GC/TOFMS untargeted

metabolomics. The 11th International conference of the metabolomics society

(July 2015), San Francisco, California, US. (Poster).

∙ Domingo-Almenara X, Perera A, Ramirez N, Brezmes J. Compound Identi-

fication in Comprehensive Gas Chromatography – Mass Spectrometry-Based

Metabolomics by Blind Source Separation. 9th International Conference on

Practical Applications of Computational Biology and Bioinformatics. (June

2015), Salamanca, Spain. (Oral).

∙ Domingo-Almenara X, Fernandez F, Canellas N, Perera A, Correig X, Brezmes

J. Automated compound deconvolution and alignment in comprehensive dou-

ble gas chromatography-mass spectrometry by blind source separation. 13th
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GCxGC Symposium (June 2014), Riva del Garda, Italy. (Poster).

10.4 Computational Tools and packages developed

∙ osd: Orthogonal Signal Deconvolution for Spectra Deconvolution in GC-MS

and GCxGC-MS Data. Compound deconvolution for chromatographic data, in-

cluding gas chromatography - mass spectrometry (GC-MS) and comprehensive

gas chromatography - mass spectrometry (GCxGC-MS). The package includes

functions to perform independent component analysis - orthogonal signal de-

convolution (ICA-OSD), independent component regression (ICR), multivariate

curve resolution (MCR-ALS) and orthogonal signal deconvolution (OSD) alone.

URL: http://CRAN. R-project.org/package=osd.

∙ erah: Automated Spectral Deconvolution, Alignment, and Metabolite Identifica-

tion in GC/MS-Based Untargeted Metabolomics. Automated compound decon-

volution, alignment across samples, and identification of metabolites by spec-

tral library matching in Gas Chromatography - Mass spectrometry (GC-MS)

untargeted metabolomics. eRah outputs a table with compound names, match-

ing scores and the integrated area of the compound for each sample. URL:

http://CRAN. R-project.org/package=erah.

∙ BaitMet Library driven compound profiling in full scan GC–MS. Automated

quantification of metabolites by targeting MS library into the chromatograms.

BaiTMet outputs a table with compounds name, spectral matching score, gen-

eral across-samples RI error, and the area of the compound for each sample.

BaitMet automatically determines which is the compounds retention index with-

out mixing internal standards. (To be uploaded).
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identification in gas

chromatography/mass

spectrometry–based metabolomics by

blind source separation

191



A.1 Determination of the euclidean error distance

For each method and compound, the euclidean error distance 𝜌 is determined by the

sum of euclidean differences between each m/z for a given reference spectrum S𝑟 and

an empirical spectrum S𝑒 (Eq 1). First, both spectra have been normalized to unity.

𝜌 =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

(𝑆𝑟(𝑖)− 𝑆𝑒(𝑖))2 (A.1)
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A.2 List of standards used in the pure standards

mixture.

Table A.1: List of standards used in the pure standards mixture.

Name
2-oxo-glutaric acid Isoleucine
Allo-threonine Leucine
Asparagine Malonic acid
Aspartic acid Methionine
Benzoic acid Methylmalonic acid
Citric acid Myo-inositol
Cholesterol Nicotinic acid
Cysteine Phenylalanine
Dodecanoic acid Proline
Fumaric acid Serine
Glycerol Tryptophan
Glycine Tyrosine
Heptadecanoic acid Uracil
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A.3 Pure standards sample identification scores

Table A.2: Identification score results for the pure standards sample.

No.# RT Name ICA MCR ICR MCR
OSD OSD

1 4.40 Glycine (2TMS) 99.55 99.88 99.19 99.53
2 4.66 Leucine (1TMS) 99.77 99.82 99.63 99.73
3 4.81 Proline (1TMS) 99.79 99.82 99.65 99.90
4 4.82 Isoleucine (1TMS) 99.78 99.70 99.42 99.59
5 5.05 Malonic acid (2TMS) 89.90 89.97 89.38 90.69
6 5.13 Malonic acid, methyl- (2TMS) 90.65 90.71 90.49 91.27
7 5.30 Benzoic acid, (1TMS) 97.64 98.35 98.71 98.88
8 5.40 Serine (2TMS) 98.08 97.47 97.41 97.34
9 5.60 Glycerol (3TMS) 94.37 94.31 94.60 96.42
10 5.68 Nicotinic acid (1TMS) 97.76 97.90 95.82 97.81
11 5.69 Isoleucine (2TMS) 99.01 98.88 96.85 99.02
12 5.72 Proline (2TMS) 99.77 99.84 99.54 99.78
13 5.78 Glycine (3TMS) 98.07 97.59 96.43 97.72
14 6.01 Uracil (2TMS) 90.65 90.51 86.16 93.98
15 6.02 Fumaric acid (2TMS) 96.61 96.28 88.13 97.02
16 6.14 Serine (3TMS) 94.96 94.98 95.16 95.22
17 6.33 Threonine, allo- (3TMS) 99.05 99.06 99.05 99.04
18 6.46 Methionine (1TMS) 98.77 98.87 98.09 98.26
19 6.49 Malonic acid, methyl- (3TMS) 98.82 98.82 95.86 97.20
20 7.15 Methionine (2TMS) 98.70 98.78 98.13 99.06
21 7.17 Aspartic acid (3TMS) 95.03 95.08 93.61 96.02
22 7.33 Phenylalanine (1TMS) 96.47 96.72 92.17 93.53
23 7.37 Cysteine (3TMS) 97.36 97.38 96.33 96.93
24 7.48 Serine (4TMS) 97.44 97.44 95.85 95.90
25 7.53 Glutaric acid, 2-oxo- (2TMS) ‡ 96.40 96.34 96.23 96.61
26 7.55 Proline [+CO2] (2TMS) 97.99 97.98 97.31 97.61
27 7.68 Asparagine (4TMS) MP 88.13 87.34 82.96 93.96
28 7.80 Phenylalanine (2TMS) 94.98 94.99 94.79 96.37
29 7.87 Dodecanoic acid (1TMS) 98.46 98.46 98.47 98.47
30 8.88 Citric acid (4TMS) 93.42 93.42 93.16 93.17
31 9.20 Tyrosine (2TMS) 99.19 99.16 98.83 98.90
32 9.47 Tyrosine (3TMS) 99.49 99.50 99.50 99.51
33 10.22 Inositol, myo- (6TMS) 96.59 96.63 96.64 96.92
34 10.34 Heptadecanoic acid (1TMS) 99.24 99.27 99.22 99.25
35 10.75 Tryptophan (2TMS) 98.53 98.52 98.31 98.70
36 10.83 Tryptophan (3TMS) 99.68 99.73 99.62 99.70
37 11.12 Cystine (4TMS) 98.39 98.40 98.27 98.42
38 14.81 Cholesterol (1TMS) 93.27 93.28 93.21 92.68

‡ Glutaric acid, 2-oxo- (1MEOX) (2TMS) MP
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Supporting Information: Avoiding
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a moving window approach for the
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methods.
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B.1 Supplementary Tables

Table B.1: Number of samples for where each compound was automatically detected between
methods (ICA–OSD and MCR–ALS) and window length (WL) of 10, 15 and 20 seconds.

ICA–OSD MCR–ALS
Cp. Name WL WL WL WL WL WL

10 15 20 10 15 20
1 Lactic acid (2TMS) 25 25 25 25 25 25
2 Hexanoic acid (1TMS) 13 18 3 25 25 2
3 Valine (1TMS) 25 25 25 25 25 25
4 Hydroxylamine (3TMS) 25 25 25 25 25 25
5 Butanoic acid, 2-hydroxy- (2TMS) 20 10 25 25 25 25
6 Leucine (1TMS) 24 25 24 24 24 24
7 Butanoic acid, 3-hydroxy- (2TMS) 20 22 24 24 23 24
8 Valine (2TMS) 22 24 23 25 25 25
9 Urea (2TMS) 25 25 25 25 25 25

10 Benzoic acid, (1TMS) 24 25 25 25 25 25
11 Serine (2TMS) 24 25 25 25 25 25
12 Norleucine (2TMS) 6 5 3 10 5 5
13 Glycerol (3TMS) 24 22 22 4 17 9
14 Phosphoric acid (3TMS) 25 24 24 22 23 23
15 Isoleucine (2TMS) 17 19 24 18 17 25
16 Proline (2TMS) 17 18 24 18 17 25
17 Glyceric acid (3TMS) 18 20 18 25 25 25
18 Nonanoic acid (1TMS) 24 25 25 25 25 25
19 Threonine (3TMS) 17 21 19 25 25 24
20 Norleucine (3TMS) 10 13 16 18 20 20
21 Glumatic Acid (2TMS) 25 25 25 25 25 25
22 Proline [+CO2] (2TMS) 18 24 23 25 25 24
23 Glutamic acid (3TMS) 18 21 20 21 23 22
24 Phenylalanine (2TMS) 23 25 25 25 25 25
25 Dodecanoic acid (1TMS) 25 25 24 25 25 25
26 Ornithine (4TMS) 17 24 25 25 25 24
27 Citric acid (4TMS) 25 25 23 24 25 25
28 Tetradecanoic acid (1TMS) 25 25 25 25 25 25
29 Lysine (4TMS) 24 23 23 21 21 22
30 Hexadecanoic acid (1TMS) 25 25 25 25 25 25
31 Inositol, myo- (6TMS) 19 20 21 25 25 24
32 Uric acid (4TMS) 18 17 18 20 21 19
33 Octadecanoic acid (1TMS) 25 25 25 25 25 25
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Supporting Information: eRah: a

computational tool integrating

spectral deconvolution and alignment

with quantification and identification

of metabolites in GC–MS-based

metabolomics.
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C.1 Supplementary Theory

The eRah package includes a tutorial and the description of each function and param-

eter through the R help. Also, a user forum is available at http://erah.lefora.com/.

This section details the methods described in the original paper.

Multivariate compound detector: compound match by local covariance

(CMLC). The multivariate match filter is adapted from the versions of match filter

by local co-variance, by applying the constraints of multiple channels (m/z), leading

to the following equation:

𝑀𝐹 (𝐷, 𝑥) =
𝑁∑︁
𝑖

|𝑥𝑇𝐶−1𝐷𝑖| (C.1)

where C (N × N) is the covariance matrix of D (N × M), where D is the data

matrix comprising a sub-window (local) of the chromatogram, and x (N × 1) is the

known pattern (gaussian peak shape). In this notation, N is the number of chromato-

graphic scans (retention time), M is the range of acquisition of the mass-to-charge

ratio (m/z). This filter detects the presence of a known pattern (a gaussian peak shape

with a standard deviation of at least 𝜎𝑀𝐼𝑁). In each scan of the chromatogram, a

Region of Interest (ROI) is determined. First, the gaussian peak shape is centered on

each scan. Then, each ROI is a sub-window (local) which comprises the data where

the gaussian peak shape is non-zero. The local covariance matrix is determined from

this ROI sub-window.

Compound spectra deconvolution: orthogonal signal deconvolution. Or-

thogonal signal deconvolution (OSD) is used to retrieve each compound spectrum.
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To determine an spectrum, OSD needs an approximation of the compound elution

profile whose spectrum is to be determined. ERah assumes that in each spot where

the CMLC filter detects a compound, there is a compound with a peak width 𝜎𝑀𝐼𝑁

and intensity equal to the maximum value in the data point, i.e., eRah approximates

the elution profile for OSD with the same gaussian model used in CMLC.

Compound chromatographic profile deconvolution: least absolute devia-

tion. The chromatographic profile deconvolution aims at determining the quantita-

tive compound profile. In this step, we know the spectrum whose compound profile is

to be determined. An intuitive way to recover a compound chromatographic profile

given its spectrum is by a least squares regression of the spectrum against the chro-

matogram. This process though, can be substituted by a L1 estimation, also known

as least absolute deviation (LAD). Whereas the least squares regression minimizes the

squared residuals between the data and the regressor, the L1 estimation minimizes

the sums of absolute residuals. L1 estimation is mathematically defined as:

𝑚𝑖𝑛𝛼 𝑓(𝛼) = |𝛼sr −Dj| ; 𝑗 = 1, 2, ..., 𝑁 (C.2)

where D (𝑁 ×𝑀) is the chromatographic data and s𝑟 (𝑀 × 1) is the spectrum

already determined by OSD. In this notation, N is the number of chromatographic

scans (retention time) and M is the range of acquisition of the mass-charge ratio

(m/z). The L1 estimation is more robust to outliers than least squares as it weights

all the observations equally. Physically, this means that all the ions of the spectrum

that are to be regressed against the chromatogram have the same importance. This

is a natural way to give the same importance also to the selective m/z - which best

describes the pure chromatographic profile - and that tend to be less abundant. More-

over, we are fitting a single component into the chromatogram, which, due to noise

and other co-eluted compounds, would not always be composed only by the compo-
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nent we are regressing. We can reduce the influence from outlier data by applying a

L1 estimation. The L1 estimation is computationally faster than the typical robust

regression through M estimators.

However, sometimes the L1 estimation introduces an energy ambiguity. This

means that although the deconvolved profile represents the true chromatographic

profile, its intensity does not correspond to the true one. To correct this, the inten-

sity of the deconvolved chromatographic profile can be now adjusted by means of a

least squares regression, of the chromatographic profile against the chromatogram.

Alignment. A custom clustering algorithm aligns the compounds across the

different samples. First, two distance matrices are determined, one containing the

retention time distance and the other containing the spectral correlation distance

between the different compounds of all the samples in the experiment. The upper

boundaries for those distances are required, i.e., the maximum distances up to which

two or more compounds are allowed to be grouped. The distances in the matrix that

are outside these boundaries are omitted. The two matrices are transformed to a sin-

gle matrix containing the Euclidean distance from the retention time and correlation

distances.

The algorithm is shown in Algorithm 1. Distances between compounds belong-

ing to the same sample are set as null in the input euclidean distance matrix H for

this algorithm.

Notation: k : number of components; n: number of samples; H: euclidean dis-

tance matrix; s: vector containing the sample for each compound; G: list containing

grouped indexes; g : vector containing the distances for each compound versus its

neighbors compounds; q vector containing local grouped indexes.
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Algorithm 1 Sample-constrained clustering

Input: H ∈ R𝑘×𝑘, s ∈ R𝑘

Output: G
1: G ← ∅; p ← 0
2: repeat
3: g ← ∅; q ← ∅
4: for 𝑗 = 1 to 𝑘 do
5: m ← ∅
6: for 𝑖 = 1 to 𝑛 do
7: Set in p the indexes for which the condition s==i is True
8: m𝑖 ← arg min(H𝑗,𝑝)
9: end for

10: g𝑗 ←
√︀∑︀𝑛

𝑖=1𝑚
2/‖𝑚‖

11: end for
12: Set in q the indexes for which arg min(g) is true.
13: Append q to G𝑗.
14: H𝑞,𝑞 ← ∅.
15: until All elements of H are ∅, or no alignment is feasible

The euclidean distance matrix is submitted to the clustering algorithm along with

a vector containing the sample identifier-tag to which each compound belongs. The

aim of the algorithm is to group the different compounds under one constraint: the

compounds must belong to different samples i.e., two compounds belonging to the

same sample can not be align. The algorithm determines, for each compound, the

mean euclidean distance over all the other compound in the different samples. In each

iteration, compounds present in at least two different samples and with the minimum

mean distance are grouped together. The algorithm iterates until all the compound

have been aligned or no alignment is feasible.

Identification

The identification match factor is determined by the following steps: first, the

normalized spectra for each compound in all the samples is averaged by a simple

mean. Then, the match score is determined by the dot product between the average
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empirical spectra and the reference MS spectra. Each compound is matched against

the entire library, and eRah provides with a list of putative hits (metabolite names)

ordered by match score.

The cosine dot product is determined by the following equation:

𝑐𝑜𝑠(𝛼) =
𝑥 · 𝑦𝑇√︀

(𝑥 · 𝑦)𝑇 · (𝑥 · 𝑦)
(3)

where x and y are the vectors comprising the two spectra to be compared.
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