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Peaks detection and alignment for mass

spectrometry data

Anestis Antoniadis 1 , Jérémie Bigot 2,3 and Sophie Lambert-Lacroix 1

Titre: Détection et alignement de pics en spectrométrie de masse

Abstract: The goal of this paper is to review existing methods for protein mass spectrometry data analysis, and to

present a new methodology for automatic extraction of significant peaks (biomarkers). For the pre-processing step

required for data from MALDI-TOF or SELDI-TOF spectra, we use a purely nonparametric approach that combines

stationary invariant wavelet transform for noise removal and penalized spline quantile regression for baseline correction.

We further present a multi-scale spectra alignment technique that is based on identification of statistically significant

peaks from a set of spectra. This method allows one to find common peaks in a set of spectra that can subsequently be

mapped to individual proteins. This may serve as useful biomarkers in medical applications, or as individual features for

further multidimensional statistical analysis. MALDI-TOF spectra obtained from serum samples are used throughout

the paper to illustrate the methodology.

Résumé : Le but de cet article est de faire une revue des méthodes existantes pour l’analyse de données protéomiques

issues de spectromètres de masse, et de présenter une nouvelle méthodologie pour l’extraction automatique de pics

significatifs (bio-marqueurs). Pour les étapes de pré-traitement nécessaires pour des données issues de spectres

MALDI-TOF ou SELDI-TOF, nous utilisons une approche purement nonparamétrique qui combine la transformée en

ondelettes invariante par translation pour le débruitage et la régression quantile pénalisée à partir de splines pour la

correction de la ligne de base. Nous présentons ensuite une technique d’alignement multi-échelle qui est basée sur

l’identification des pics statistiquement significatifs dans un ensemble de spectres. Cette méthode permet de trouver les

pics communs à un ensemble de spectres qui peuvent être associés aux protéines des individus. Ceux-ci peuvent servir

de bio-marqueurs utiles pour des applications médicales, ou bien de vecteurs de caractéristiques pour une analyse

statistique multi-dimensionnelle des individus. Des spectres MALDI-TOF obtenus à partir d’échantillons de sérum

sont utilisés à travers tout l’article pour illustrer la méthodologie.
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1. Introduction

Microarray data has been successfully used to identify genes responsible for many diseases.

However, although proteins are coded by genes, there is no one-to-one relationship between the

protein and the mRNA due to different rates of translation. Hence studying mRNA expressions

(microarrays) may be an indirect way to understand a disease etiology. This ineffectiveness of

genomics caused a big shift of interest from genomics to proteomics. Since, the proteins are

the controllers of all cell functions, they are closely connected to many diseases and metabolic

processes, and thus it is hoped that proteomic studies may provide a more direct information

for understanding the biological functions towards a disease profile. An important tool used

for protein identification and high throughput comparative profiling of disease and non-disease

complex protein samples in proteomics is mass spectrometry (MS). With this technology it is

possible to identify specific biomarkers related to a given metabolic process or disease from the

lower molecular weight range of the circulating proteome from easily obtained biological fluids

such as plasma or serum. Recent research has demonstrated that using such technology to generate

protein expression profiles from lung cancer lystates is an alternative promising strategy in the

search for new diagnostic and therapeutic molecular targets.

There are at least two kinds of mass spectrometry instruments commonly applied to clinical

and biological problems today, namely, Matrix-Assisted Laser Desorption and Ionization Time-

Of-Flight (MALDI-TOF) and Surface-Enhanced Laser Desorption and Ionization Time-Of-Flight

(SELDI-TOF) mass spectroscopy. Whatever is the technique used, one obtains from a biological

sample a calibrated output which is a mass spectrum characterized by numerous peaks, which

correspond to individual proteins or protein fragments (polypeptides) present in the sample. The

heights of the peaks represent the intensities or abundance of ions in the sample for a specific mass

to charge ratio (m/z) value. These heights along with the m/z values represent the fingerprint of

the sample. Hence detecting location and amplitude of common peaks from a set of spectra is

a way to identify specific biomarkers that can be used to characterize patients and to compare

groups of individuals.

Such techniques result in a huge amount of data to be analyzed and generate a need for a

rapid, efficient and fully automated method for comparing multiple MS spectra. Raw spectra

acquired by TOF mass-spectrometers are generally a mixture of a real signal, noise of different

characteristics and a varying baseline. Statistically, a possible model for a given mass spectrometry

(MS) spectrum is to represent it schematically by the equation

Y (m/z) = B(m/z)+NS(m/z)+ ε(m/z) (1)

where Y (m/z) is the observed intensity of the spectrum at mass to charge ratio m/z, B(m/z)
is the baseline representing a relatively smooth artifact commonly seen in mass spectrometry

data, S(m/z) is the true signal of interest consisting of a sum of possible overlapping peaks, N

is a normalization factor to adjust for possibly differing amounts of protein in each sample, and

ε(m/z) is an additive white noise with variance σ2
ε arising from the measurement process.

In our numerical experiments, we will consider samples of nipple aspirate fluid (NAF) from

breast cancer patients and from healthy women (for a complete description, see [12]). These data

are available from the web site http://bioinformatics.mdanderson.org/pubdata.html

and have been used by [12] to look at the reproducibility of their method in detecting and



identifying relevant peaks, since the 24 spectra of the NAF data were independently derived from

the same starting material. Typical examples of raw spectra are displayed in Figure 1. The three

spectra shown in Figure 1 will be used as an illustrative example throughout the paper.
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FIGURE 1. A typical example of three raw spectra from different individuals from the NAF data used in [12]. The

horizontal axis is the mass to charge ratio (m/z) in Daltons. The vertical axis is the abundance of ions in the sample

for a specific m/z value.

Pre-processing of such data is therefore extremely important to extract S(m/z) which is the

signal of interest. Indeed, inadequate or incorrect preprocessing methods can result in data sets

that exhibit substantial biases and make it difficult to reach meaningful conclusions.

In this paper, we propose to use the several preprocessing steps that we have developed in detail

in [3] before analyzing MS data. These preprocessing steps include translation invariant wavelet

denoising, baseline correction and normalization along the m/z axis. These pre-processing steps

allow one to obtain an estimator of the true normalized spectra S(m/z). However, to compare

spectra from different samples further statistical analysis has to be performed. Indeed, biologically

significant comparisons for such data are all based on the alignment of spectra where the ultimate

goal is to identify differentially expressed proteins in samples through the identification of

common peaks. MS spectra alignment is difficult even after instrument calibration with internal

markers because the mass errors vary with m/z in a nonlinear fashion as a result of experimental

and instrumental complexity and data variation. In this paper, we propose to perform automatic



landmark-based curve alignment by combining the multiscale technique developed in [4, 5] to

detect significant landmarks (such as locations of maxima) in a set of curves with recent results

in [7, 6, 8, 9, 23] on curve and image warping. The main goal of this paper is to show that

such an approach is particularly well-suited for identifying common peaks from a sample of

normalized spectra. Such peaks can then be used as individual features for multidimensional

statistical analysis (such as classification, clustering, ANOVA), or as specific biomarkers for

biomedical applications.

The rest of the paper is organized as follows. Section 2 describes the pre-processing and

normalization methods proposed in [3]. Section 3 is devoted to the presentation of a multiscale

approach to automatically align and detect multiple peaks in MS spectra. Throughout the paper, we

review existing methods for MS spectra analysis, and we discuss their differences or similarities

with our approach.

2. Pre-processing steps

In this section, we describe the approach followed in [3] for pre-processing raw MS spectra. These

results have been shown to be excellent when compared to other pre-processing methods in MS

spectra analysis.

2.1. Wavelet denoising

To isolate and remove the additive noise component of a spectrum we use a translation invariant

wavelet transform in a spirit similar to the Undecimated Discrete Wavelet Transforms (UDWT)

filtering method of [12] for denoising SELDI-TOF spectra. One reason for the popularity of the

wavelet transform (see for example [25] and [13]) is that measured data from most processes

are inherently multiscale in nature. Consequently, data analysis and modeling methods that

represent the measured variables at multiple scales are better suited for extracting information

from measured data than methods that represent the variables at a single scale. This is why wavelets

have recently received attention as a tool for preprocessing mass spectra (see e.g. [10, 27, 12]).

Briefly, the following steps are used to denoise an observed n-length mass spectrum Y : a

wavelet transform is used to transform Y , certain subsets of coefficients are thresholded, then the

inverse transform is applied to obtain the denoised signal.

In this paper we chose to use a translation invariant wavelet transform introduced in [11] that is

based of the technique of “cycle spinning”; see also [32]. Note that the denoising performances

can change drastically if one uses a wavelet transform that is not translation invariant. The idea of

denoising via cycle spinning is to apply denoising not only to Y , but also to all possible unique

circularly shifted versions of Y , and to average the results.

It is important to recall that for Y of length n cycle spinning is a transform that is overdetermined

and produces a mean-zero wavelet coefficient sequence {W̃
(Y )
j,t , t = 0, . . . ,n−1} at each level j of

the transform. Such a sequence can be written as the length-n column vector W̃
(Y )
j =WjY where

Wj is the level- j stationary wavelet transform matrix that maps Y to W̃
(Y )
j . Then, we have adopted

universal and hard thresholding for denoising MS spectra. Note that j = 1 corresponds to the

finest resolution, and j = J0 to the coarsest such that n ≈ 2J0 . Then the algorithm is:
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1. Compute a level J0 stationary wavelet transform giving coefficient vectors W̃
(Y )
1 , . . . ,W̃

(Y )
J0

and Ṽ
(Y )
J0

, where Ṽ
(Y )
J0

denotes the vector of scaling coefficients at resolution J0.

2. For each j = 1, . . . ,J0 apply hard thresholding using the level-dependent universal threshold

with σ2
n j
= σ2

ε /2 j, to obtain

Ŵ
(Y )
j,t =

{

W̃
(Y )
j,t , if

∣

∣

∣
W̃

(Y )
j,t

∣

∣

∣
> σn j

√
2logn

0, otherwise.

3. The denoised signal is then obtained by applying the inverse stationary wavelet transform

to Ŵ
(Y )
1 , . . . ,Ŵ

(Y )
J0

and Ṽ
(Y )
J0

.

Since σε is unknown, it is estimated by the MAD scale estimate defined by

σ̂MAD =
median

{

|W̃ (Y )
1,0 |, |W̃ (Y )

1,1 |, . . . , |W̃ (Y )
1,n−1|

}

0.6745
.

After denoising in this manner, separating background from true signal is considerably easier.

Note that the universal threshold is a common choice in wavelet denoising that is nearly optimal

in the case of Gaussian noise. Moreover the MAD procedure is a robust estimation technique, and

the universal threshold is not restricted to a Gaussian setting.

2.2. Baseline correction

MS spectra frequently exhibit a decreasing baseline that is unrelated to constituent protein

composition. Clearly, such a nuisance variation has to be removed before applying any meaningful

quantitative analysis since such a background component is added to the real signal and overstates

the intensities of peaks. Varying background present in warped spectra makes it difficult to properly

calculate their similarity, and thus another issue caused by varying baseline is the difficulty with

aligning spectra by maximizing a similarity measure between them (see [17]).

Many numerical methods have been developed for estimating the baseline component. Among

these techniques are methods based on digital filters [35, 31]. Such filters usually introduce

artefacts and simultaneously distort the real signal. Other approaches rely on automated peak

rejection [30, 12]. These algorithms fit some functions to find regions of signal that consist only of

the baseline without peaks of real signal. The functions being fitted may have different forms, e.g.

polynomials, splines. The main disadvantages of peak-rejection approaches are difficulties related

to identification of peak-free regions. On the other hand, threshold-based rejection of peaks gives

good results when the baseline is relatively smooth [36], and fails for signals with significantly

varying baseline.

Because of difficulties caused by automatic peak rejection other approaches have been designed

to fit a baseline without detecting the peaks. In [1], the baseline is fitted with a low-order

polynomial that prevents it from fitting the real signal peaks. For signals with many positive peaks,

however, e.g. mass spectra, the baseline estimated in this way has values which are too high.

Subtraction of a background with values which are too high from a signal introduces significant

distortions to the analyzed signal, i.e. the values for peaks are too low. Other approaches rely on



statistical methods, such as maximum entropy [26]. There are also approaches based on baseline

removal in the wavelet domain [24].

In [3] we have proposed an automated approach for background elimination based on penalized

regression quantile splines. This procedure may be regarded as a method similar to the “peak

rejection” approaches. However, there is no need to detect peaks. It is based on polynomial spline

representation of the varying background signal and a L1-penalization of a regression quantile

loss function.

To be more precise, this method can be summarized as follows (see [3] for a more detailed

presentation): denote by x the m/z variable and suppose that the baseline function denoted by B(·)
is sufficiently regular to be well represented by a linear combination of known basis functions

{h j, j = 1, . . . ,K},

B(x) =
K

∑
j=1

β jh j(x),

Then, estimating the baseline amounts to estimate the coefficients β = (β1, . . . ,βK)
T . As an

example of such basis functions we took polynomial splines (basic references are [14] and [15]).

Polynomial regression splines of degree p with knots x̃1 < · · ·< x̃q may be represented by a family

of piecewise polynomial functions {h j, j = 1, . . . ,K} with K = p+q+1. Assuming the initial

location of the knots known, the K dimensional parameter vector β describes the polynomial

coefficients to represent the function B. The baseline can then be written as B(x) = H(x)β where,

for x given, H(x) is the matrix whose columns are h j(x), for j = 1, . . . ,K. Usually the number K

of basis functions used in the representation of B should be large in order to give a fairly flexible

way for approximating B. A small K may result in a function space which is not flexible enough

to capture the variability of the baseline, but a too large number of basis functions may lead to

serious overfitting and as a consequence to an underestimation of the intensities of the peaks. To

automatically select a small number of basis functions, we consider the following strategy: an

initial fixed large number of potential knots is chosen at fixed quantiles of the x variable with

the intention to have sufficient points at regions where the baseline curve shows rapid changes.

Selection of a small number of basis functions is then obtained by using non-smooth at zero

penalties which eliminate basis functions when they are non necessary and mainly retain basis

functions whose support covers regions with sharp features.

As a fitting criterion, we will not use the standard quadratic loss which yields a regression

function given by a conditional mean. To estimate the baseline in MS spectra, it is more natural to

have an estimate that satisfies the property that a proportion τ of the conditional distribution of Y

with respect to regressors is above the estimate. Following [21], define the following loss function

as

ρτ(u) = τ|u|I{u > 0}+(1− τ)|u|I{u ≤ 0},
where I{·} is an indicator function. This loss function highlights the basic difference between

the conditional mean and the conditional quantile function. Here τ ∈ (0,1) indicates the quantile

of interest. For τ = 0.5 minimization of such a loss function yields an estimate which is the

median. In our context, most of the signal of interest in a spectrum lies above the baseline which

is assumed to be slowly varying, and therefore it seems natural to estimate the baseline by using

quantile regression with a small value of τ . While there is no criterion for establishing when most

of the data lie above the baseline, a cutoff of τ = 0.001 works well.



Our quantile spline estimator of B is then finally given as the minimizer of

min
β∈RK

n

∑
i=1

ρτ (Y (xi)−H(xi)β )+λ
K

∑
j=1

|β j|.

Like other nonparametric smoothing methods, the smoothing parameter λ plays a crucial role

on determining the trade-off between the fidelity to the data and the penalty. Two commonly

criteria for choosing λ are the Schwarz information criterion [22] (SIC) and the generalized

approximate cross-validation criterion [39] (GACV). In our practical implementation we have

used SIC.

2.3. Spectra normalization

To remove the normalization factor N in model (1), we simply divide each denoised and baseline

corrected spectra by its area under the curve (AUC) which is a standard normalizing choice in MS

spectra analysis. In Figure 2, we give an example of spectra pre-processing using denoising by

wavelet thresholding and baseline correction with the SIC criterion. Note that the method is fully

automatic and that the peaks of the spectra are well preserved after baseline correction.

3. Multiscale detection and alignment of peaks

Spectra alignment consists in finding, for each observed spectrum, a warping function in order to

synchronize all spectra before applying any other statistical inferential procedure. In this section,

we present an automatic method for detecting and aligning peaks from denoised, baseline corrected

and normalized spectra. This new peak detection algorithm for MS spectra analysis is based on

the method developed by [4, 5], and the problem of aligning multiple spectra is formulated as a

non-rigid curve registration problem using recent techniques developed in [7, 6, 8, 9, 23] .

Before introducing our framework, we briefly review few methods that have been recently

proposed for addressing the alignment problem for MS spectra (see [3] for a more detailed

discussion). Wavelets to represent the MS data in a multiscale framework are used in [29]. Within

their framework, using a specific peak detection procedure, they first align peaks at a dominant

coarser scale from multiple samples and then align the remaining peaks at a finer scale. However

one may question if representing peaks at multiple scales is biologically reasonable, i.e., if peaks

at coarse scales really correspond to true peptides. A similar in spirit procedure has been also

developed by [12]. In [19] it is assumed that the peak variation is less than the typical distance

between peaks and use a closest point matching method in peak alignment. The applicability

of their method is limited by the data quality and it cannot handle large peak variation or false

positive peak detection results. A recent method is the nonparametric warping model with spline

functions to align MS spectra proposed recently in [18]. While the idea of using smoothing

splines to model the warping function is interesting it is unclear if a smooth function with second

order regularities is precise enough to describe the nonlinear shift of MS peaks encountered in

practice. In [34] the authors applied a hierarchical clustering method to construct a dendrogram

of all peaks from multiple samples. They cut off the dendrogram using a predefined parameter

and clustered the remaining branches into different groups. They then consider the centers of
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FIGURE 2. An example of wavelet-based denoising followed by baseline correction using penalized regression quantile

splines - Compare with Figure 1



these groups as common peaks and align every peak set with respect to the common peaks.

The implicit assumption behind their approach is that around each of the common peaks, the

observed peaks from multiple samples obey a certain kind of distribution with the mean equal

to the location of the common peak. The assumption agrees well with the motivation of peak

alignment. However, the cut-off parameter and the final clustering results can be influenced by

changing a few nodes in the dendrogram, while some noisy points or outliers (e.g., caused by

false positive peak detection results) often cause such changes, as it is shown in the paper by

[37]. To our knowledge, frameworks that are closest to the one we propose in this work are the

recent approaches proposed by [33] and [38]. Both use a robust point matching algorithm to

solve the alignment problem but an implicit assumption in [33] is that there exists a one-to-one

correspondence among peaks in multiple spectra while [38] use a super set method to calibrate the

alignment. To end this subsection let us mention also that [2] also discusses alignment methods

that address proteomic data, yet provides few details and no software for their implementation.

3.1. Multiscale detection of peaks

Let us now describe, the multiscale approach proposed in [4, 5] to estimate the significant peaks

of a noisy signal. This method is based on the estimation of the significant zero-crossings of

the continuous wavelet transform of a noisy signal, and on a new tool, the structural intensity,

proposed in [4] to represent the landmarks of a signal via a probability density function. The main

modes of the structural intensity correspond to the significant landmarks of the unknown signal.

In a sense, the structural intensity can be viewed as a smoothing method which highlights the

significant features of a signal observed with noise.

Let f be a real-valued function, θ a smooth function with a fast decay such that
∫ ∞
−∞ θ(u)du 6= 0

and ψ(x) = ∂
∂x

θ(x) a wavelet with one vanishing moment (in our numerical experiments θ is a

Gaussian density). Then, by definition, the continuous wavelet transform of f at a given scale

s > 0 is:

Ws( f )(x) =
∫ +∞

−∞
f (u)ψs(u− x)du for x ∈ R,

where ψs(u) =
1√
s
ψ( u

s
). The term zero-crossings is used to describe any point (z0,s0) in the

time-scale space such that z 7→ Ws0
( f )(z) has exactly one zero at z = z0 in a neighborhood of

z0. We will call zero-crossings line any connected curve z(s) in the time-scale plane (x,s) along

which all points are zero-crossings. Now, note that if f is differentiable in an interval [a,b], then

for all x ∈]a,b[

lim
s→0

Ws( f )(x)

s3/2
=C

∂

∂x
f (x), where C =

∫ +∞

−∞
θ(u)du 6= 0. (2)

Hence, equation (2) shows that at small scales the zero-crossings of Ws( f )(x) converge to the

zeros of the derivative of f in ]a,b[ (if any). Thus, locations of the extrema of f can be found by

following the propagation at small scales of the curves z(s) (see [4] for further references).

The significant peaks of denoised and baseline corrected MS spectra can be detected by

estimating the significant zero-crossings that correspond to local maxima. A simple hypothesis

testing procedure has been developed in [5] to estimate the zero-crossings lines of a noisy signal



at various scales. The test proposed is based on the choice of an appropriate smoothing parameter

to separate, in a denoised and baseline corrected spectra, the zero-crossings of the true signal

of interest S(m/z) from those that are due to small fluctuations. An example of zero-crossing

estimation from MS spectra is displayed in Figure 3(d,e,f).
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FIGURE 3. An example of multiscale peaks detection. First row: denoised and baseline corrected spectra with red star

indicating the significant peaks. Second row: estimation of significant zero-crossing at various scales (the vertical axis

corresponds to the negative logarithmic scale). Third row: structural intensity of the zero-crossing (note that maxima

of the structural intensities are located at the significant peaks of the MS spectra).

However, such a procedure only gives a visual representation that indicates “where” the peaks

are located, but there is generally no analytical expression of the zero-crossings lines in a closed

form. The structural intensity is a powerful tool introduced in [4] to identify the limits of the

zero-crossing lines when they propagate to small scales. The structural intensity method consists

in using the zero-crossing of a signal at various scales to compute a “density” whose local maxima

will be located at the peaks of f .



More precisely, the structural intensity is defined to be:

Gz(x) =
p̂

∑
i=1

∫ ŝ2
i

ŝ1
i

1

s
θ

(

x− ẑi(s)

s

)

ds, (3)

where p̂ is the number of estimated zero-crossings lines ẑi(.), i = 1, . . . , p̂ and [ŝ1
i , ŝ

2
i ] represent

the supports of these lines in the time-scale plane. It can be seen from Figure 3 that, for small

values of the scale s, the zero-crossings lines ẑi(s), i = 1, . . . , p̂ are close to the locations of the

peaks of a signal. Therefore, for small values of s, the ẑi(s)’s can be viewed as random variables

which are all located near the peaks of a signal. The above definition (3) of structural intensity

can thus be interpreted as a kind of kernel density estimator with scale s playing the role of a

varying bandwidth. Since the ẑi(s)’s are concentrated around the same locations for small s, the

main modes of such a density correspond to the limits of the ẑi(s)’s for small values of s. The

significant peaks of the spectra f are then defined as the local maxima of Gz(x) on [0,1]. The

structural intensity is therefore a tool to identify the limits of the lines ẑi(.), i = 1, . . . , p̂ in the

time-scale plane, Figure 3(d,e,f). In Figure 3, one can see that the local maxima of the structural

intensity correspond to the significant peaks of the spectra.

3.2. Spectra alignment and peaks correspondence

To identify differentially expressed proteins in samples of diseased and healthy individuals,

biologically significant comparisons and conclusions are all based on the alignment results of

spectra. However, MS spectra alignment is difficult even after instrument calibration with internal

markers because the mass errors vary with m/z in a nonlinear fashion as a result of experimental

and instrumental complexity and data variation. As displayed in Figure 4(a), the three spectra

used to illustrate our methodology clearly have significant peaks that are not aligned which makes

difficult the identification of common peaks to compare multiple spectra. In Figure 4(b), we

display the result of the alignment procedure that we describe hereafter.
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FIGURE 4. (a) An example of mis-alignment of significant peaks. (b) Aligned spectra using warping functions

minimizing the criterion (4). For better visualization we only plotted a small part of the spectra



Recall that spectra alignment consists in finding, for each observed spectrum, a warping function

in order to synchronize all spectra before applying any other statistical inferential procedure (a

warping function is a strictly monotone transformation of the interval onto which the spectra

are defined). Such an issue is usually referred to as the curve registration problem in statistics

and various methods have been proposed, see e.g. [20], [16], [28], [5] and references therein.

Classically, to align more than two curves, one uses the average of the observed curves as a

reference template onto which all observed are registered. We have used this approach in [3]

combined with the automatic landmark-based registration technique proposed in [5]. However,

in this paper, we suggest a new method to align multiple spectra that does not require the use

of a reference template. For this, we will use a parametric representation of warping functions

proposed in [8, 7] combined with a new criterion proposed in [6, 9, 23] to align a set of signals

that does not require the use of a reference template.

Let us first describe the parametric model for warping functions proposed in [8, 7]. Let Ω ⊂ R

be a compact interval representing the support of the spectra and denote by x the mass to charge

ratio variable m/z. Let v(·) be a smooth parametric function given by a linear combination of

known basis functions {h j : Ω → R, j = 1, . . . ,K},

v(x) =
K

∑
j=1

a jh j(x).

The function v is thus parametrized by the set of coefficients a = (a1, . . . ,aK)
T ∈R

K and we write

v = va to stress this dependency. In what follows, it will be assumed that the basis functions are

continuously differentiable on Ω and such that h j and h′j vanish at the boundaries of Ω. For the

h j’s we took in our simulations a set of K = 20 B-spline functions that form a basis for polynomial

splines of degree p = 3 with equally-spaced knots x̃1 < · · ·< x̃q on Ω with q = 16. Then, let x ∈ Ω

and for t ∈ [0,1] consider the following ordinary differential equation (ODE)

∂

∂ t
φ(t,x) = va(φ(t,x))

with initial condition φ(0,x) = x. Then, it can be shown (see [8, 7]) that for any t ∈ [0,1] the

solution of the above ODE is unique and such that x 7→ φ(t,x) is a strictly increasing function on

Ω such that φ(t,Ω) = Ω. Then, denote by φa(x) = φ(1,x) the solution at t = 1. In this way we

thus obtain a warping function φa that is parametrized by the set of coefficients a ∈ R
K .

Now, to compute warping functions to synchronize the spectra, we will search to align the

structural intensities displayed in Figure 3 rather than the spectra themselves. As the structural

intensities have their local maxima located at the significant peaks of the spectra this will force the

search of warping functions that put into correspondence the main peaks of the spectra. Assume

that one has to align a set of N spectra with corresponding structural intensities G1, . . . ,GN . Then

N warping functions φ1, . . . ,φN can be computed by minimizing the following cost that has been

recently proposed in [6, 9, 23] as a new matching criteria for curve and image warping:

(â1, . . . , âN) = argmin
(a1,...,aN)∈RK×N

1

N

N

∑
i=1

n

∑
k=1

(

Gi ◦φai
(xk)−

1

N

N

∑
i′=1

Gi′ ◦φai′ (xk)

)2

(4)



where x1, . . . ,xn are the design points in Ω where the spectra are observed. Then, the warping

functions are given by

φi = φâi
for i = 1, . . . ,N.

Minimization of the criterion (4) over the set RK×N is possible by a gradient descent algorithm

with an adaptive step as described in [9]. Note that minimizing (4) automatically yields warping

functions vi, i = 1, . . . ,N and compute a reference template given by

1

N

N

∑
i=1

Gi ◦φi(x) for x ∈ Ω.

Then the warping functions φ1, . . . ,φN can be used to align the spectra. An example of such

alignment is displayed in Figure 4(b). Then, to identify common peaks to a set spectra, one simply

takes the significant peaks given by the structural intensities that are at the same locations after

alignment using the warping functions φ1, . . . ,φN . An example of common peaks detection by this

procedure is displayed in Figure 5. Locations and intensities of such peaks can then be used as

biomarkers and individual features for further multi-dimensional statistical analysis.
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FIGURE 5. An example of common peaks detection. The blue curves are denoised and baseline corrected spectra (not

aligned) with red stars indicating the significant common peaks found using our alignment procedure.



3.3. Comparison with another algorithm for automatic peaks correspondence and spectra

alignment

Let us now compare our method with the algorithm proposed by Jeffries in [18] which also

performs automatic peaks correspondence and spectra alignment. For this purpose, we propose to

test the two methods on the data described in [18] that are available from:

http://krisa.ninds.nih.gov/alignment/

Let us first describe these data. As part of a larger study examining proteomic spectra from

healthy individuals and those with multiple sclerosis, reference samples from a large pool of

serum were included as part of a quality control procedure. As patient and control samples were

processed, a few spectra were consistently drawn from this common, fixed reference pool and

analyzed to alert investigators to deviations related to sample processing. Ideally, all the spectra

from the reference samples should look very similar. Samples were processed on six distinct days

using identical calibration procedures, staff, equipment, and sample handling techniques. Samples

from the first four days were processed within a single week while samples for the last two days

were processed approximately 2 and 3 months later (see [18] for further details). We have chosen

to consider the simple problem of aligning two spectra: a reference spectrum from the third day

and a spectrum for the fifth day. Both spectra are displayed in Figure 6. It can be seen that the

data produced on the fifth day are not well aligned with those of the third.

Then, for sake of completeness, let us briefly recall the method proposed by Jeffries in [18]

for peaks correspondence and spectra alignment. This approach uses a reference spectrum (e.g.

data from the third day) to which the other spectrum (data from the fifth day) will be compared

and aligned. To begin with, define a subrange of the mass values say [5000,5000+a] Daltons

(with a = 500 or a = 250). For this range locate the largest peak in the spectrum to be aligned

and note its location denoted as p1. Then, consider all the peaks in the reference spectrum that are

located within a fixed window around p1, say [0.98p1,1.02p1]. If there are k peaks within this 2%

window they are denoted as m1
1, . . . ,m

1
k . For each of these peaks consider a small window centered

at m1
j , such as [0.95m1

j ,1.05m1
j ], for j = 1, . . . ,k. For each one of these windows, compute the

correlation coefficients of the intensities in the reference spectrum over this mass range with the

intensities over a small window centered about p1, say [0.95p1,1.05p1], in the spectrum to be

aligned. From these k correlation coefficients choose the corresponding target peak as that with

the highest correlation. This procedure is then repeated on the ranges [5000+a(u−1),5000+au]
for u = 2, . . . ,q with q = 10 for a = 500 and q = 20 for a = 250. Thus, in this way, one obtains a

set of q peaks locations p1, . . . , pq in the spectrum to be aligned, and a set of q peaks locations

m1, . . . ,mq in the reference spectrum. Further details regarding implementation are available at

http://krisa.ninds.nih.gov/alignment/.

Then, a warping function φ̂ to align the spectra from the fifth day onto the reference spectra

(from the third day) can be computed by finding the mapping φ̂ which minimizes the following

cost:

φ̂ = argmin
φ∈Φ

q

∑
u=1

(pu −φ(mu))
2,

where Φ denotes a set of smooth increasing functions (e.g. monotone cubic splines or homeomor-

phic splines, see [7] for further details on this issue).
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FIGURE 6. SELDI-TOF proteomic data from [18]: (a) reference spectrum from the third day, (b) spectrum from the

fifth day, (c) superposition of the two spectra on the interval [5700,6200] (mass to charge ratio (m/z) in Daltons).



The results obtained using our method and the above described procedure with q = 10 and

q = 20 are displayed in Figure 7, Figure 8 and Figure 9 respectively. It can be seen that both

methods perform very well for the alignment of the two spectra. However, when comparing the

common peaks found by our method and those found by Jeffries’ procedure, it can be seen that

the results are very much different. Our method detects all the significant common peaks that

would have been found manually by a visual comparison of the spectra. This is not the case for

Jeffries’ procedure: for either q = 10 or q = 20, a significant number of spurious common peaks

are found in intervals without visually significant peaks, and the method also fails in detecting

truly significant common peaks. This example shows that our method clearly outperforms Jeffries’

procedure, in the sense that it not only performs spectra alignment but also allows an automatic

correspondence between truly significant peaks.
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FIGURE 7. Results of spectra alignment and peaks correspondence (with red stars indicating the common peaks) using

our method: (a) reference spectrum from the third day, (b) spectrum from the fifth day, (c) alignment of the two spectra

on the interval [5700,6200] (Mass/Charge Weight in Daltons).
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FIGURE 8. Results of spectra alignment and peaks correspondence (with red stars indicating the common peaks) using

Jeffries’ method with q = 10: (a) reference spectrum from the third day, (b) spectrum from the fifth day, (c) alignment

of the two spectra on the interval [5700,6200] (Mass/Charge Weight in Daltons).
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FIGURE 9. Results of spectra alignment and peaks correspondence (with red stars indicating the common peaks) using

Jeffries’ method with q = 20: (a) reference spectrum from the third day, (b) spectrum from the fifth day, (c) alignment

of the two spectra on the interval [5700,6200] (Mass/Charge Weight in Daltons).



4. Conclusion

In this paper we have first reviewed some commonly used statistical methods for pre-processing

of raw MS data. We have also proposed to use a multi-scale detection procedure based on the

continuous wavelet transform to improve peak detection in observed high-resolution spectra. The

ability of this multi-scale detection procedure to detect efficiently potential peaks has allowed

us to investigate a new method for aligning multiple spectra without the need of a reference

template. We applied this method to several spectra with baseline distortion, and demonstrate it is

effective for spectra with over- crowded peaks. Our study extends the application scope of both

the continuous wavelet transform and the deformation based warping methodology for spectra

alignment. We have also compared our method with another procedure for spectra alignment

and automatic peaks correspondence. Both methods perform similarly for the alignment of two

spectra, but the results indicate that our method is clearly much better for the identification of

truly significant common peaks. This example shows some of the benefits of our approach over

existing methods in the literature. We hope that the methods presented here will stimulate further

investigation into the development of better procedures for multi-scale modeling and analysis of

high-resolution MS spectra.
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