910 research outputs found

    Non-Invasive Electrocardiographic Mapping of Arrhythmia and Arrhythmogenic substrate in the Human Ventricle.

    Get PDF
    PhD Theses.The ablation of ventricular tachycardia often involves mapping when the arrhythmia is ongoing. This is often limited by haemodynamic instability. Non-invasive electrocardiographic mapping (ECGI) may aid in the mapping process by allowing expedient localisation. However, insufficient testing of this technology against ground truth data has been conducted. Furthermore, the system could have utility in detection of arrhythmogenic substrate. Current clinical practice uses echocardiography to risk stratify patients for implantation of intracardiac defibrillators (ICDs). Invasive epicardial electrogram data was collected in 8 patients. Activation and repolarisation times were compared to ECGI derived data showing modest correlation. A detailed analysis of ventricular tachycardia sites of origin in the heart was elucidated using validated electrophysiological techniques. These were compared to ECGI derived data in 18 patients, showing better accuracy than the 12 lead ECG with a resolution of ~2.2cm suggesting it may be a useful adjunctive tool in mapping unstable VT. ECGI derived data collected during sinus rhythm was compared to invasive electrogram maps in 16 patients. The capacity of ECGI to localise scar showed modest accuracy. ECGI and Cardiac MRI scans were performed in 21 patients with cardiac amyloidosis. ECGI showed cardiac amyloidosis to be associated with both ventricular conduction and repolarization abnormalities, supporting the hypothesis that arrhythmic mechanisms may be linked to mortality in this condition

    Limitations and Challenges in Mapping Ventricular Tachycardia: New Technologies and Future Directions

    Get PDF
    Recurrent episodes of ventricular tachycardia in patients with structural heart disease are associated with increased mortality and morbidity, despite the life-saving benefits of implantable cardiac defibrillators. Reducing implantable cardiac defibrillator therapies is important, as recurrent shocks can cause increased myocardial damage and stunning, despite the conversion of ventricular tachycardia/ventricular fibrillation. Catheter ablation has emerged as a potential therapeutic option either for primary or secondary prevention of these arrhythmias, particularly in post-myocardial infarction cases where the substrate is well defined. However, the outcomes of catheter ablation of ventricular tachycardia in structural heart disease remain unsatisfactory in comparison with other electrophysiological procedures. The disappointing efficacy of ventricular tachycardia ablation in structural heart disease is multifactorial. In this review, we discuss the issues surrounding this and examine the limitations of current mapping approaches, as well as newer technologies that might help address them

    Validation and Opportunities of Electrocardiographic Imaging: From Technical chievements to Clinical Applications

    Get PDF
    [EN] Electrocardiographic imaging (ECGI) reconstructs the electrical activity of the heart from a dense array of body-surface electrocardiograms and a patient-specific heart-torso geometry. Depending on how it is formulated, ECGI allows the reconstruction of the activation and recovery sequence of the heart, the origin of premature beats or tachycardia, the anchors/hotspots of re-entrant arrhythmias and other electrophysiological quantities of interest. Importantly, these quantities are directly and non-invasively reconstructed in a digitized model of the patient's three-dimensional heart, which has led to clinical interest in ECGI's ability to personalize diagnosis and guide therapy. Despite considerable development over the last decades, validation of ECGI is challenging. Firstly, results depend considerably on implementation choices, which are necessary to deal with ECGI's ill-posed character. Secondly, it is challenging to obtain (invasive) ground truth data of high quality. In this review, we discuss the current status of ECGI validation as well as the major challenges remaining for complete adoption of ECGI in clinical practice. Specifically, showing clinical benefit is essential for the adoption of ECGI. Such benefit may lie in patient outcome improvement, workflow improvement, or cost reduction. Future studies should focus on these aspects to achieve broad adoption of ECGI, but only after the technical challenges have been solved for that specific application/pathology. We propose 'best' practices for technical validation and highlight collaborative efforts recently organized in this field. Continued interaction between engineers, basic scientists, and physicians remains essential to find a hybrid between technical achievements, pathological mechanisms insights, and clinical benefit, to evolve this powerful technique toward a useful role in clinical practice.This study received financial support from the Hein Wellens Fonds, the Cardiovascular Research and Training Institute (CVRTI), the Nora Eccles Treadwell Foundation, the National Institute of General Medical Sciences of the National Institutes of Health (P41GM103545), the National Institutes of Health (NIH HL080093), the French government as part of the Investments of the Future program managed by the National Research Agency (ANR-10-IAHU-04), from the VEGA Grant Agency in Slovakia (2/0071/16), from the Slovak Research and Development Agency (APVV-14-0875), the Fondo Europeo de Desarrollo Regional (FEDER), the Instituto de Salud Carlos III (PI17/01106) and from Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana (AICO/2018/267) and NIH grant (HL125998) and National Science Foundation (ACI-1350374).Cluitmans, M.; Brooks, D.; Macleod, RS.; Dossel, O.; Guillem Sánchez, MS.; Van Dam, P.; Svehlikova, J.... (2018). Validation and Opportunities of Electrocardiographic Imaging: From Technical chievements to Clinical Applications. Frontiers in Physiology. 9. https://doi.org/10.3389/fphys.2018.01305S9Andrews, C. M., Srinivasan, N. T., Rosmini, S., Bulluck, H., Orini, M., Jenkins, S., … Rudy, Y. (2017). Electrical and Structural Substrate of Arrhythmogenic Right Ventricular Cardiomyopathy Determined Using Noninvasive Electrocardiographic Imaging and Late Gadolinium Magnetic Resonance Imaging. Circulation: Arrhythmia and Electrophysiology, 10(7). doi:10.1161/circep.116.005105Aras, K., Good, W., Tate, J., Burton, B., Brooks, D., Coll-Font, J., … MacLeod, R. (2015). Experimental Data and Geometric Analysis Repository—EDGAR. Journal of Electrocardiology, 48(6), 975-981. doi:10.1016/j.jelectrocard.2015.08.008Austen, W., Edwards, J., Frye, R., Gensini, G., Gott, V., Griffith, L., … Roe, B. (1975). A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation, 51(4), 5-40. doi:10.1161/01.cir.51.4.5Bayley, R. H., & Berry, P. M. (1962). The electrical field produced by the eccentric current dipole in the nonhomogeneous conductor. American Heart Journal, 63(6), 808-820. doi:10.1016/0002-8703(62)90065-0Bear, L. R., Huntjens, P. R., Walton, R. D., Bernus, O., Coronel, R., & Dubois, R. (2018). Cardiac electrical dyssynchrony is accurately detected by noninvasive electrocardiographic imaging. Heart Rhythm, 15(7), 1058-1069. doi:10.1016/j.hrthm.2018.02.024Bear, L. R., LeGrice, I. J., Sands, G. B., Lever, N. A., Loiselle, D. S., Paterson, D. J., … Smaill, B. H. (2018). How Accurate Is Inverse Electrocardiographic Mapping? Circulation: Arrhythmia and Electrophysiology, 11(5). doi:10.1161/circep.117.006108Berger, T., Fischer, G., Pfeifer, B., Modre, R., Hanser, F., Trieb, T., … Hintringer, F. (2006). Single-Beat Noninvasive Imaging of Cardiac Electrophysiology of Ventricular Pre-Excitation. Journal of the American College of Cardiology, 48(10), 2045-2052. doi:10.1016/j.jacc.2006.08.019Berger, T., Pfeifer, B., Hanser, F. F., Hintringer, F., Fischer, G., Netzer, M., … Seger, M. (2011). Single-Beat Noninvasive Imaging of Ventricular Endocardial and Epicardial Activation in Patients Undergoing CRT. PLoS ONE, 6(1), e16255. doi:10.1371/journal.pone.0016255Dubois, R., Pashaei, A., Duchateau, J., & Vigmond, E. (2016). Evaluation of Combined Noninvasive Electrocardiographic Imaging and Phase Mapping approach for Atrial Fibrillation: A Simulation Study. 2016 Computing in Cardiology Conference (CinC). doi:10.22489/cinc.2016.037-540Duchateau, J., Potse, M., & Dubois, R. (2017). Spatially Coherent Activation Maps for Electrocardiographic Imaging. IEEE Transactions on Biomedical Engineering, 64(5), 1149-1156. doi:10.1109/tbme.2016.2593003Erem, B., Brooks, D. H., van Dam, P. M., Stinstra, J. G., & MacLeod, R. S. (2011). Spatiotemporal estimation of activation times of fractionated ECGs on complex heart surfaces. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2011.6091455Erem, B., van Dam, P. M., & Brooks, D. H. (2014). Identifying Model Inaccuracies and Solution Uncertainties in Noninvasive Activation-Based Imaging of Cardiac Excitation Using Convex Relaxation. IEEE Transactions on Medical Imaging, 33(4), 902-912. doi:10.1109/tmi.2014.2297952Erkapic, D., & Neumann, T. (2015). Ablation of Premature Ventricular Complexes Exclusively Guided by Three-Dimensional Noninvasive Mapping. Cardiac Electrophysiology Clinics, 7(1), 109-115. doi:10.1016/j.ccep.2014.11.010Everett, T. H., Lai-Chow Kok, Vaughn, R. H., Moorman, R., & Haines, D. E. (2001). Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Transactions on Biomedical Engineering, 48(9), 969-978. doi:10.1109/10.942586Faes, L., & Ravelli, F. (2007). A morphology-based approach to the evaluation of atrial fibrillation organization. IEEE Engineering in Medicine and Biology Magazine, 26(4), 59-67. doi:10.1109/memb.2007.384097Fitzpatrick, A. P., Gonzales, R. P., Lesh, M. D., odin, G. W., Lee, R. J., & Scheinman, M. M. (1994). New algorithm for the localization of accessory atrioventricular connections using a baseline electrocardiogram. Journal of the American College of Cardiology, 23(1), 107-116. doi:10.1016/0735-1097(94)90508-8Geselowitz, D. B. (1989). On the theory of the electrocardiogram. Proceedings of the IEEE, 77(6), 857-876. doi:10.1109/5.29327Geselowitz, D. B. (1992). Description of cardiac sources in anisotropic cardiac muscle. Journal of Electrocardiology, 25, 65-67. doi:10.1016/0022-0736(92)90063-6Ghanem, R. N., Jia, P., Ramanathan, C., Ryu, K., Markowitz, A., & Rudy, Y. (2005). Noninvasive Electrocardiographic Imaging (ECGI): Comparison to intraoperative mapping in patients. Heart Rhythm, 2(4), 339-354. doi:10.1016/j.hrthm.2004.12.022Ghosh, S., Rhee, E. K., Avari, J. N., Woodard, P. K., & Rudy, Y. (2008). Cardiac Memory in Patients With Wolff-Parkinson-White Syndrome. Circulation, 118(9), 907-915. doi:10.1161/circulationaha.108.781658Ghosh, S., Silva, J. N. A., Canham, R. M., Bowman, T. M., Zhang, J., Rhee, E. K., … Rudy, Y. (2011). Electrophysiologic substrate and intraventricular left ventricular dyssynchrony in nonischemic heart failure patients undergoing cardiac resynchronization therapy. Heart Rhythm, 8(5), 692-699. doi:10.1016/j.hrthm.2011.01.017Grace, A., Verma, A., & Willems, S. (2017). Dipole Density Mapping of Atrial Fibrillation. European Heart Journal, 38(1), 5-9. doi:10.1093/eurheartj/ehw585Dorset, D. L. (1996). Electron crystallography. Acta Crystallographica Section B Structural Science, 52(5), 753-769. doi:10.1107/s0108768196005599Haissaguerre, M., Hocini, M., Denis, A., Shah, A. J., Komatsu, Y., Yamashita, S., … Dubois, R. (2014). Driver Domains in Persistent Atrial Fibrillation. Circulation, 130(7), 530-538. doi:10.1161/circulationaha.113.005421HAISSAGUERRE, M., HOCINI, M., SHAH, A. J., DERVAL, N., SACHER, F., JAIS, P., & DUBOIS, R. (2013). Noninvasive Panoramic Mapping of Human Atrial Fibrillation Mechanisms: A Feasibility Report. Journal of Cardiovascular Electrophysiology, 24(6), 711-717. doi:10.1111/jce.12075Han, C., Pogwizd, S. M., Killingsworth, C. R., & He, B. (2011). Noninvasive imaging of three-dimensional cardiac activation sequence during pacing and ventricular tachycardia. Heart Rhythm, 8(8), 1266-1272. doi:10.1016/j.hrthm.2011.03.014Bin He, Guanglin Li, & Xin Zhang. (2003). Noninvasive imaging of cardiac transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model. IEEE Transactions on Biomedical Engineering, 50(10), 1190-1202. doi:10.1109/tbme.2003.817637Bin He, & Dongsheng Wu. (2001). Imaging and visualization of 3-D cardiac electric activity. IEEE Transactions on Information Technology in Biomedicine, 5(3), 181-186. doi:10.1109/4233.945288Horáček, B. M., Sapp, J. L., Penney, C. J., Warren, J. W., & Wang, J. J. (2011). Comparison of epicardial potential maps derived from the 12-lead electrocardiograms with scintigraphic images during controlled myocardial ischemia. Journal of Electrocardiology, 44(6), 707-712. doi:10.1016/j.jelectrocard.2011.08.009Horáček, B. M., Wang, L., Dawoud, F., Xu, J., & Sapp, J. L. (2015). Noninvasive electrocardiographic imaging of chronic myocardial infarct scar. Journal of Electrocardiology, 48(6), 952-958. doi:10.1016/j.jelectrocard.2015.08.035Jamil-Copley, S., Vergara, P., Carbucicchio, C., Linton, N., Koa-Wing, M., Luther, V., … Kanagaratnam, P. (2015). Application of Ripple Mapping to Visualize Slow Conduction Channels Within the Infarct-Related Left Ventricular Scar. Circulation: Arrhythmia and Electrophysiology, 8(1), 76-86. doi:10.1161/circep.114.001827Janssen, A. M., Potyagaylo, D., Dössel, O., & Oostendorp, T. F. (2017). Assessment of the equivalent dipole layer source model in the reconstruction of cardiac activation times on the basis of BSPMs produced by an anisotropic model of the heart. Medical & Biological Engineering & Computing, 56(6), 1013-1025. doi:10.1007/s11517-017-1715-xKnecht, S., Sohal, M., Deisenhofer, I., Albenque, J.-P., Arentz, T., Neumann, T., … Rostock, T. (2017). Multicentre evaluation of non-invasive biatrial mapping for persistent atrial fibrillation ablation: the AFACART study. EP Europace, 19(8), 1302-1309. doi:10.1093/europace/euw168Kuck, K.-H., Schaumann, A., Eckardt, L., Willems, S., Ventura, R., Delacrétaz, E., … Hansen, P. S. (2010). Catheter ablation of stable ventricular tachycardia before defibrillator implantation in patients with coronary heart disease (VTACH): a multicentre randomised controlled trial. The Lancet, 375(9708), 31-40. doi:10.1016/s0140-6736(09)61755-4Identification of Rotors during Human Atrial Fibrillation Using Contact Mapping and Phase Singularity Detection: Technical Considerations. (2017). IEEE Transactions on Biomedical Engineering, 64(2), 310-318. doi:10.1109/tbme.2016.2554660Leong, K. M. W., Ng, F. S., Yao, C., Roney, C., Taraborrelli, P., Linton, N. W. F., … Varnava, A. M. (2017). ST-Elevation Magnitude Correlates With Right Ventricular Outflow Tract Conduction Delay in Type I Brugada ECG. Circulation: Arrhythmia and Electrophysiology, 10(10). doi:10.1161/circep.117.005107Chenguang Liu, Eggen, M. D., Swingen, C. M., Iaizzo, P. A., & Bin He. (2012). Noninvasive Mapping of Transmural Potentials During Activation in Swine Hearts From Body Surface Electrocardiograms. IEEE Transactions on Medical Imaging, 31(9), 1777-1785. doi:10.1109/tmi.2012.2202914MacLeod, R. S., Ni, Q., Punske, B., Ershler, P. R., Yilmaz, B., & Taccardi, B. (2000). Effects of heart position on the body-surface electrocardiogram. Journal of Electrocardiology, 33, 229-237. doi:10.1054/jelc.2000.20357Metzner, A., Wissner, E., Tsyganov, A., Kalinin, V., Schlüter, M., Lemes, C., … Kuck, K.-H. (2017). Noninvasive phase mapping of persistent atrial fibrillation in humans: Comparison with invasive catheter mapping. Annals of Noninvasive Electrocardiology, 23(4), e12527. doi:10.1111/anec.12527Modre, R., Tilg, B., Fischer, G., Hanser, F., Messnarz, B., Seger, M., … Roithinger, F. X. (2003). Atrial Noninvasive Activation Mapping of Paced Rhythm Data. Journal of Cardiovascular Electrophysiology, 14(7), 712-719. doi:10.1046/j.1540-8167.2003.02558.xNarayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., & Miller, J. M. (2012). Treatment of Atrial Fibrillation by the Ablation of Localized Sources. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022NG, J., KADISH, A. H., & GOLDBERGER, J. J. (2007). Technical Considerations for Dominant Frequency Analysis. Journal of Cardiovascular Electrophysiology, 18(7), 757-764. doi:10.1111/j.1540-8167.2007.00810.xOosterhoff, P., Meijborg, V. M. F., van Dam, P. M., van Dessel, P. F. H. M., Belterman, C. N. W., Streekstra, G. J., … Oostendorp, T. F. (2016). Experimental Validation of Noninvasive Epicardial and Endocardial Activation Imaging. Circulation: Arrhythmia and Electrophysiology, 9(8). doi:10.1161/circep.116.004104Oster, H. S., Taccardi, B., Lux, R. L., Ershler, P. R., & Rudy, Y. (1997). Noninvasive Electrocardiographic Imaging. Circulation, 96(3), 1012-1024. doi:10.1161/01.cir.96.3.1012Oster, H. S., Taccardi, B., Lux, R. L., Ershler, P. R., & Rudy, Y. (1998). Electrocardiographic Imaging. Circulation, 97(15), 1496-1507. doi:10.1161/01.cir.97.15.1496PEDRÓN-TORRECILLA, J., RODRIGO, M., CLIMENT, A. M., LIBEROS, A., PÉREZ-DAVID, E., BERMEJO, J., … GUILLEM, M. S. (2016). Noninvasive Estimation of Epicardial Dominant High-Frequency Regions During Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 27(4), 435-442. doi:10.1111/jce.12931Ploux, S., Lumens, J., Whinnett, Z., Montaudon, M., Strom, M., Ramanathan, C., … Bordachar, P. (2013). Noninvasive Electrocardiographic Mapping to Improve Patient Selection for Cardiac Resynchronization Therapy. Journal of the American College of Cardiology, 61(24), 2435-2443. doi:10.1016/j.jacc.2013.01.093Potyagaylo, D., Segel, M., Schulze, W. H. W., & Dössel, O. (2013). Noninvasive Localization of Ectopic Foci: A New Optimization Approach for Simultaneous Reconstruction of Transmembrane Voltages and Epicardial Potentials. Lecture Notes in Computer Science, 166-173. doi:10.1007/978-3-642-38899-6_20Punshchykova, O., Švehlíková, J., Tyšler, M., Grünes, R., Sedova, K., Osmančík, P., … Kneppo, P. (2016). Influence of Torso Model Complexity on the Noninvasive Localization of Ectopic Ventricular Activity. Measurement Science Review, 16(2), 96-102. doi:10.1515/msr-2016-0013RAMANATHAN, C., & RUDY, Y. (2001). Electrocardiographic Imaging: II. Effect of Torso Inhomogeneities on Noninvasive Reconstruction of Epicardial Potentials, Electrograms, and Isochrones. Journal of Cardiovascular Electrophysiology, 12(2), 241-252. doi:10.1046/j.1540-8167.2001.00241.xReddy, V. Y., Reynolds, M. R., Neuzil, P., Richardson, A. W., Taborsky, M., Jongnarangsin, K., … Josephson, M. E. (2007). Prophylactic Catheter Ablation for the Prevention of Defibrillator Therapy. New England Journal of Medicine, 357(26), 2657-2665. doi:10.1056/nejmoa065457Rodrigo, M., Climent, A. M., Liberos, A., Fernández-Avilés, F., Berenfeld, O., Atienza, F., & Guillem, M. S. (2017). Technical Considerations on Phase Mapping for Identification of Atrial Reentrant Activity in Direct- and Inverse-Computed Electrograms. Circulation: Arrhythmia and Electrophysiology, 10(9). doi:10.1161/circep.117.005008ROTEN, L., PEDERSEN, M., PASCALE, P., SHAH, A., ELIAUTOU, S., SCHERR, D., … HAÏSSAGUERRE, M. (2012). Noninvasive Electrocardiographic Mapping for Prediction of Tachycardia Mechanism and Origin of Atrial Tachycardia Following Bilateral Pulmonary Transplantation. Journal of Cardiovascular Electrophysiology, 23(5), 553-555. doi:10.1111/j.1540-8167.2011.02250.xRudy, Y. (2013). Noninvasive Electrocardiographic Imaging of Arrhythmogenic Substrates in Humans. Circulation Research, 112(5), 863-874. doi:10.1161/circresaha.112.279315Ghosh, S., Avari, J. N., Rhee, E. K., Woodard, P. K., & Rudy, Y. (2008). Noninvasive electrocardiographic imaging (ECGI) of epicardial activation before and after catheter ablation of the accessory pathway in a patient with Ebstein anomaly. Heart Rhythm, 5(6), 857-860. doi:10.1016/j.hrthm.2008.03.011Rudy, Y., Plonsey, R., & Liebman, J. (1979). The effects of variations in conductivity and geometrical parameters on the electrocardiogram, using an eccentric spheres model. Circulation Research, 44(1), 104-111. doi:10.1161/01.res.44.1.104SALINET, J. L., TUAN, J. H., SANDILANDS, A. J., STAFFORD, P. J., SCHLINDWEIN, F. S., & NG, G. A. (2013). Distinctive Patterns of Dominant Frequency Trajectory Behavior in Drug-Refractory Persistent Atrial Fibrillation: Preliminary Characterization of Spatiotemporal Instability. Journal of Cardiovascular Electrophysiology, 25(4), 371-379. doi:10.1111/jce.12331Dalu, Y. (1978). Relating the multipole moments of the heart to activated parts of the epicardium and endocardium. Annals of Biomedical Engineering, 6(4), 492-505. doi:10.1007/bf02584552Sánchez, C., Bueno-Orovio, A., Pueyo, E., & Rodríguez, B. (2017). Atrial Fibrillation Dynamics and Ionic Block Effects in Six Heterogeneous Human 3D Virtual Atria with Distinct Repolarization Dynamics. Frontiers in Bioengineering and Biotechnology, 5. doi:10.3389/fbioe.2017.00029Sanders, P., Berenfeld, O., Hocini, M., Jaïs, P., Vaidyanathan, R., Hsu, L.-F., … Haïssaguerre, M. (2005). Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans. Circulation, 112(6), 789-797. doi:10.1161/circulationaha.104.517011Sapp, J. L., Bar-Tal, M., Howes, A. J., Toma, J. E., El-Damaty, A., Warren, J. W., … Horáček, B. M. (2017). Real-Time Localization of Ventricular Tachycardia Origin From the 12-Lead Electrocardiogram. JACC: Clinical Electrophysiology, 3(7), 687-699. doi:10.1016/j.jacep.2017.02.024Sapp, J. L., Dawoud, F., Clements, J. C., & Horáček, B. M. (2012). Inverse Solution Mapping of Epicardial Potentials. Circulation: Arrhythmia and Electrophysiology, 5(5), 1001-1009. doi:10.1161/circep.111.970160Sapp, J. L., Wells, G. A., Parkash, R., Stevenson, W. G., Blier, L., Sarrazin, J.-F., … Tang, A. S. L. (2016). Ventricular Tachycardia Ablation versus Escalation of Antiarrhythmic Drugs. New England Journal of Medicine, 375(2), 111-121. doi:10.1056/nejmoa1513614Schulze, W. H. W., Chen, Z., Relan, J., Potyagaylo, D., Krueger, M. W., Karim, R., … Dössel, O. (2016). ECG imaging of ventricular tachycardia: evaluation against simultaneous non-contact mapping and CMR-derived grey zone. Medical & Biological Engineering & Computing, 55(6), 979-990. doi:10.1007/s11517-016-1566-xShah, D. C., Jaïs, P., Haïssaguerre, M., Chouairi, S., Takahashi, A., Hocini, M., … Clémenty, J. (1997). Three-dimensional Mapping of the Common Atrial Flutter Circuit in the Right Atrium. Circulation, 96(11), 3904-3912. doi:10.1161/01.cir.96.11.3904Shome, S., & Macleod, R. (s. f.). Simultaneous High-Resolution Electrical Imaging of Endocardial, Epicardial and Torso-Tank Surfaces Under Varying Cardiac Metabolic Load and Coronary Flow. Lecture Notes in Computer Science, 320-329. doi:10.1007/978-3-540-72907-5_33SIMMS, H. D., & GESELOWITZ, D. B. (1995). Computation of Heart Surface Potentials Using the Surface Source Model. Journal of Cardiovascular Electrophysiology, 6(7), 522-531. doi:10.1111/j.1540-8167.1995.tb00425.xSvehlikova, J., Teplan, M., & Tysler, M. (2018). Geometrical constraint of sources in noninvasive localization of premature ventricular contractions. Journal of Electrocardiology, 51(3), 370-377. doi:10.1016/j.jelectrocard.2018.02.013Tsyganov, A., Wissner, E., Metzner, A., Mironovich, S., Chaykovskaya, M., Kalinin, V., … Kuck, K.-H. (2018). Mapping of ventricular arrhythmias using a novel noninvasive epicardial and endocardial electrophysiology system. Journal of Electrocardiology, 51(1), 92-98. doi:10.1016/j.jelectrocard.2017.07.018Umapathy, K., Nair, K., Masse, S., Krishnan, S., Rogers, J., Nash, M. P., & Nanthakumar, K. (2010). Phase Mapping of Cardiac Fibrillation. Circulation: Arrhythmia and Electrophysiology, 3(1), 105-114. doi:10.1161/circep.110.853804Van Dam, P. M., Oostendorp, T. F., Linnenbank, A. C., & van Oosterom, A. (2009). Non-Invasive Imaging of Cardiac Activation and Recovery. Annals of Biomedical Engineering, 37(9), 1739-1756. doi:10.1007/s10439-009-9747-5Van Oosterom, A. (2001). Genesis of the T wave as based on an equivalent surface source model. Journal of Electrocardiology, 34(4), 217-227. doi:10.1054/jelc.2001.28896Van Oosterom, A. (2002). Solidifying the solid angle. Journal of Electrocardiology, 35(4), 181-192. doi:10.1054/jelc.2002.37176Van Oosterom, A. (2004). ECGSIM: an interactive tool for stu

    Towards enabling cardiac digital twins of myocardial infarction using deep computational models for inverse inference

    Get PDF
    Cardiac digital twins (CDTs) have the potential to offer individualized evaluation of cardiac function in a non-invasive manner, making them a promising approach for personalized diagnosis and treatment planning of myocardial infarction (MI). The inference of accurate myocardial tissue properties is crucial in creating a reliable CDT of MI. In this work, we investigate the feasibility of inferring myocardial tissue properties from the electrocardiogram (ECG) within a CDT platform. The platform integrates multi-modal data, such as cardiac MRI and ECG, to enhance the accuracy and reliability of the inferred tissue properties. We perform a sensitivity analysis based on computer simulations, systematically exploring the effects of infarct location, size, degree of transmurality, and electrical activity alteration on the simulated QRS complex of ECG, to establish the limits of the approach. We subsequently present a novel deep computational model, comprising a dual-branch variational autoencoder and an inference model, to infer infarct location and distribution from the simulated QRS. The proposed model achieves mean Dice scores of 0.457 ± 0.317 and 0.302 ± 0.273 for the inference of left ventricle scars and border zone, respectively. The sensitivity analysis enhances our understanding of the complex relationship between infarct characteristics and electrophysiological features. The in silico experimental results show that the model can effectively capture the relationship for the inverse inference, with promising potential for clinical application in the future. The code is available at https: //github.com/lileitech/MI_inverse_inference

    Feasibility of improving risk stratification in the inherited cardiac conditions

    Get PDF
    Fatal ventricular arrhythmias can occur in patients with Hypertrophic Cardiomyopathy, Brugada Syndrome and rarely in patients with normal cardiac investigations. Despite very different pathogeneses, we hypothesised that a common electrophysiological substrate precipitates these arrhythmias and could be used as a marker for risk stratification. In Chapter 3 of this thesis, we found that fewer than half the cardiac arrest survivors with Brugada Syndrome would have been offered prophylactic defibrillators based on current risk scoring, highlighting the need for better risk stratification. Our group previously used a commercially available 252-electrode vest which constructs ventricular electrograms onto a CT image of the heart to show exercise related differences in high-risk patients. In Chapter 4, we applied this method to Brugada patients, but could not reproduce prior results. Further investigation revealed periodic changes in activation patterns after exercise that could explain this discrepancy. An alternative matrix approach was developed to overcome this problem. Exercise induced conduction heterogeneity differentiated Brugada patients from unaffected controls, but not those surviving cardiac arrest. However, if considered alongside spontaneous type 1 ECG and syncope, inducible conduction heterogeneity markedly improved identification of Brugada cardiac arrest survivors. In Chapter 5 the method was shown to differentiate idiopathic ventricular fibrillation patients from those fully recovered from acute ischaemic cardiac arrest, implying a permanent electrophysiological abnormality. In Chapter 8, we showed prolonged mean local activation times and activation-recovery intervals in hypertrophic cardiomyopathy cardiac arrest survivors compared to those without previous ventricular arrhythmia. These metrics were combined into both logistic regression and support vector machine models to strongly differentiate the groups. We concluded that electrophysiological changes could identify cardiac arrest survivors in various cardiac conditions, but a single factor common pathway was not established. Prospective studies are required to determine if using these parameters could enhance current risk stratification for sudden death.Open Acces

    Personalized Multi-Scale Modeling of the Atria: Heterogeneities, Fiber Architecture, Hemodialysis and Ablation Therapy

    Get PDF
    This book targets three fields of computational multi-scale cardiac modeling. First, advanced models of the cellular atrial electrophysiology and fiber orientation are introduced. Second, novel methods to create patient-specific models of the atria are described. Third, applications of personalized models in basic research and clinical practice are presented. The results mark an important step towards the patient-specific model-based atrial fibrillation diagnosis, understanding and treatment

    Contemporary Management of Complex Ventricular Arrhythmias

    Get PDF
    Percutaneous catheter ablation is an effective and safe therapy that can eliminate ventricular tachycardia, reducing the risks of both recurrent arrhythmia and shock therapies from a defibrillator. Successful ablation requires accurate identification of arrhythmic substrate and the effective delivery of energy to the targeted tissue. A thorough pre-procedural assessment is needed before considered 3D electroanatomical mapping can be performed. In contemporary practice, this must combine traditional electrophysiological techniques, such as activation and entrainment mapping, with more novel physiological mapping techniques for which there is an ever-increasing evidence base. Novel techniques to maximise energy delivery to the tissue must also be considered and balanced against their associated risks of complication. This review provides a comprehensive appraisal of contemporary practice and the evidence base that supports recent developments in mapping and ablation, while also considering potential future developments in the field
    corecore